Sample records for total fe concentrations

  1. Relative bioavailability of iron proteinate for broilers fed a casein-dextrose diet.

    PubMed

    Ma, X Y; Liu, S B; Lu, L; Li, S F; Xie, J J; Zhang, L Y; Zhang, J H; Luo, X G

    2014-03-01

    An experiment was carried out to determine the bioavailability of organic Fe as Fe proteinate (Alltech, Nicholasville, KY) relative to inorganic Fe source (FeSO4•7H2O) for broiler chicks fed a casein-dextrose diet. A total of 448 1-d-old Arbor Acres commercial male broiler chicks were randomly allotted to 1 of 8 replicate cages (8 chicks per cage) for each of 7 treatments in a completely randomized design involving a 2 × 3 factorial arrangement of treatments with 2 Fe sources (Fe proteinate and Fe sulfate) and 3 levels of added Fe (10, 20, or 40 mg of Fe/kg) plus a Fe-unsupplemented control diet containing 4.56 mg of Fe/kg by analysis. Feed and distilled-deionized water were available ad libitum for an experimental phase of 14 d. At 14 d of age, blood samples were collected for testing hemoglobin (Hb) and hematocrit, and calculating total body Hb Fe, whereas liver and kidney samples were excised for Fe analyses. The results showed that ADG, ADFI, blood Hb, hematocrit, and total body Hb Fe and Fe concentrations in liver and kidney increased linearly (P < 0.0001), whereas mortality decreased linearly (P < 0.0001) as dietary Fe level increased. However, only blood Hb concentration and total body Hb Fe differed (P < 0.004) between the 2 Fe sources. Based on slope ratios from the multiple linear regression of Hb concentration and total body Hb Fe on daily intake of analyzed dietary Fe, the bioavailability of Fe proteinate relative to FeSO4•7H2O (100%) was 117 and 114%, respectively (P < 0.009). The results indicated that blood Hb concentration and total body Hb Fe were sensitive indices in reflecting differences in bioavailability among different Fe sources, and Fe proteinate was significantly more available to broilers than inorganic Fe sulfate in enhancing Hb concentration and total body Hb Fe.

  2. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Furukawa, T.; Kanai, Y.; Uematsu, M.; Zheng, G.; Marcus, M. A.

    2013-08-01

    Atmospheric iron (Fe) can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively). However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003) to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS) spectroscopy was performed in order to identify the Fe species in aerosols. Fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (μ-XRF) showed the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III) sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III) sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III) concentration in the atmosphere, which was high in spring due to the high mineral dust concentrations during spring in East Asia. However, this factor does not contribute to the amount of soluble Fe to a larger degree than the effect of Fe speciation, or more strictly speaking the presence of Fe(III) sulfate. Therefore, based on these results, the most significant factor influencing the amount of soluble Fe in the North Pacific region is the concentration of anthropogenic Fe species such as Fe(III) sulfate that can be emitted from megacities in Eastern Asia.

  3. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Furukawa, T.; Kanai, Y.; Uematsu, M.; Zheng, G.; Marcus, M. A.

    2013-03-01

    Atmospheric iron (Fe) can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively). However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003) to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS) spectroscopy was performed in this study to identify the Fe species in aerosols. The fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (XRF) determined the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III) sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III) sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III) concentration in the atmosphere, which was high in spring due to the high mineral dust concentrations during spring in East Asia. However, this factor does not contribute to the amount of soluble Fe to a larger degree than the effect of Fe speciation, or more strictly speaking the presence of Fe(III) sulfate. Therefore, based on these results, the most significant factor influencing the amount of soluble Fe in the North Pacific region is the concentration of anthropogenic Fe species such as Fe(III) sulfate that can be emitted from megacities in Eastern Asia.

  4. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    DOE PAGES

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; ...

    2017-05-19

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less

  5. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less

  6. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    NASA Astrophysics Data System (ADS)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  7. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    NASA Astrophysics Data System (ADS)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  8. Rootstock influence on iron uptake responses in Citrus leaves and their regulation under the Fe paradox effect

    PubMed Central

    Quiñones, Ana; Bermejo, Almudena

    2017-01-01

    Background and aims This work evaluates the regulation of iron uptake responses in Citrus leaves and their involvement in the Fe paradox effect. Methods Experiments were performed in field-grown ‘Navelina’ trees grafted onto two Cleopatra mandarin × Poncirus trifoliata (L.) Raf. hybrids with different Fe-chlorosis symptoms: 030146 (non-chlorotic) and 030122 (chlorotic). Results Chlorotic leaves were smaller than non-chlorotic ones for both dry weight (DW) and area basis, and exhibited marked photosynthetic state affection, but reduced catalase and peroxidase enzymatic activities. Although both samples had a similar total Fe concentration on DW, it was lower in chlorotic leaves when expressed on an area basis. A similar pattern was observed for the total Fe concentration in the apoplast and cell sap and in active Fe (Fe2+) concentration. FRO2 gene expression and ferric chelate reductase (FC-R) activity were also lower in chlorotic samples, while HA1 and IRT1 were more induced. Despite similar apoplasmic pH, K+/Ca2+ was higher in chlorotic leaves, and both citrate and malate concentrations in total tissue and apoplast fluid were lower. Conclusion (1) The rootstock influences Fe acquisition system in the leaf; (2) the increased sensitivity to Fe-deficiency as revealed by chlorosis and decreased biomass, was correlated with lower FC-R activity and lower organic acid level in leaf cells, which could cause a decreased Fe mobility and trigger other Fe-stress responses in this organ to enhance acidification and Fe uptake inside cells; and (3) the chlorosis paradox phenomenon in citrus likely occurs as a combination of a marked FC-R activity impairment in the leaf and the strong growth inhibition in this organ. PMID:28966887

  9. Fetal and Neonatal Iron Deficiency Exacerbates Mild Thyroid Hormone Insufficiency Effects on Male Thyroid Hormone Levels and Brain Thyroid Hormone-Responsive Gene Expression

    PubMed Central

    Bastian, Thomas W.; Prohaska, Joseph R.; Georgieff, Michael K.

    2014-01-01

    Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression. PMID:24424046

  10. Physical and chemical characteristics including total and geochemical forms of phosphorus in sediment from the top 30 centimeters of cores collected in October 2006 at 26 sites in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Simon, Nancy S.; Ingle, Sarah N.

    2011-01-01

    μThis study of phosphorus (P) cycling in eutrophic Upper Klamath Lake (UKL), Oregon, was conducted by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation. Lakebed sediments from the upper 30 centimeters (cm) of cores collected from 26 sites were characterized. Cores were sampled at 0.5, 1.5, 2.5, 3.5, 4.5, 10, 15, 20, 25, and 30 cm. Prior to freezing, water content and sediment pH were determined. After being freeze-dried, all samples were separated into greater than 63-micron (μm) particle-size (coarse) and less than 63-μm particle-size (fine) fractions. In the surface samples (0.5 to 4.5 cm below the sediment water interface), approximately three-fourths of the particles were larger than 63-μm. The ratios of the coarse particle-size fraction (>63 μm) and the fine particle-size fraction (<63 μm) were approximately equal in samples at depths greater than 10 cm below the sediment water interface. Chemical analyses included both size fractions of freeze-dried samples. Chemical analyses included determination of total concentrations of aluminum (Al), calcium (Ca), carbon (C), iron (Fe), poorly crystalline Fe, nitrogen (N), P, and titanium (Ti). Total Fe concentrations were the largest in sediment from the northern portion of UKL, Howard Bay, and the southern portion of the lake. Concentrations of total Al, Ca, and Ti were largest in sediment from the northern, central, and southernmost portions of the lake and in sediment from Howard Bay. Concentrations of total C and N were largest in sediment from the embayments and in sediment from the northern arm and southern portion of the lake in the general region of Buck Island. Concentrations of total C were larger in the greater than 63-μm particle-size fraction than in the less than 63-μm particle-size fraction. Sediments were sequentially extracted to determine concentrations of inorganic forms of P, including loosely sorbed P, P associated with poorly crystalline Fe oxides, and P associated with mineral phases. The difference between the concentration of total P and sum of the concentrations of inorganic forms of P is referred to as residual P. Residual P was the largest fraction of P in all of the sediment samples. In UKL, the correlation between concentrations of total P and total Fe in sediment is poor (R2<0.1). The correlation between the concentrations of total P and P associated with poorly crystalline Fe oxides is good (R2=0.43) in surface sediment (0.5-4.5 cm below the sediment water interface) but poor (R2<0.1) in sediments at depths between 10 cm and 30 cm. Phosphorus associated with poorly crystalline Fe oxides is considered bioavailable because it is released when sediment conditions change from oxidizing to reducing, which causes dissolution of Fe oxides.

  11. Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India.

    PubMed

    Singh, Anand N; Zeng, De-hui; Chen, Fu-sheng

    2005-01-01

    Total concentration of heavy metals (Cd, Cr, Cu, Fe, Pb, Ni, Mn and Zn) was estimated in the redeveloping soil of mine spoil under 5-yr old plantations of four woody species namely: Albizia lebbeck, Albizia procera, Tectona grandis and Dendrocalamus strictus. The data recorded in the present study were compared with other unplanted coal mine spoil colliery, which was around to the study site and adjoining area of dry tropical forest. Among all the heavy metals, the maximum concentration was found for Fe and minimum for Cd. However, among all four species, total concentrations of these heavy metals were recorded maximally in the plantation plots of T. grandis except for Fe, while minimally in A. lebbeck except for Zn, whereas, the maximum concentration of Fe and Zn was in the plantation plots of D. strictus and A. procera. Statistical analysis revealed significant differences due to species for all the heavy metals except Cu. Among four species, A. lebbeck, A. procera and D. strictus showed more efficient for reducing heavy metal concentrations whereas T. grandis was not more effective to reduce heavy metal concentrations in redeveloping soil of mine spoil.

  12. Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species.

    PubMed

    Trovó, Alam G; Pupo Nogueira, Raquel F; Agüera, Ana; Fernandez-Alba, Amadeo R; Malato, Sixto

    2012-10-15

    The photo-Fenton degradation of paracetamol (PCT) was evaluated using FeSO(4) and the iron complex potassium ferrioxalate (FeOx) as iron source under simulated solar light. The efficiency of the degradation process was evaluated considering the decay of PCT and total organic carbon concentration and the generation of carboxylic acids, ammonium and nitrate, expressed as total nitrogen. The results showed that the degradation was favored in the presence of FeSO(4) in relation to FeOx. The higher concentration of hydroxylated intermediates generated in the presence of FeSO(4) in relation to FeOx probably enhanced the reduction of Fe(III) to Fe(II) improving the degradation efficiency. The degradation products were determined using liquid chromatography electrospray time-of-flight mass spectrometry. Although at different concentrations, the same intermediates were generated using either FeSO(4) or FeOx, which were mainly products of hydroxylation reactions and acetamide. The toxicity of the sample for Vibrio fischeri and Daphnia magna decreased from 100% to less than 40% during photo-Fenton treatment in the presence of both iron species, except for D. magna in the presence of FeOx due to the toxicity of oxalate to this organism. The considerable decrease of the sample toxicity during photo-Fenton treatment using FeSO(4) indicates a safe application of the process for the removal of this pharmaceutical. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Iron Cycling in Sediment of the North Atlantic: Preliminary Results from R/V Knorr Expedition 223

    NASA Astrophysics Data System (ADS)

    Anderson, C. H.; Estes, E. R.; Dyar, M. D.; Murray, R. W.; Spivack, A. J.; Sauvage, J.; McKinley, C. C.; Present, T. M.; Homola, K.; Pockalny, R. A.; D'Hondt, S.

    2015-12-01

    Iron (Fe) in marine sediments is a significant microbial electron acceptor [Fe(III)] in suboxic conditions and is an electron donor [Fe(II)] in oxic conditions. In the transition from oxic to suboxic sediment, a portion of solid Fe is reduced and mobilized as soluble Fe(II) into interstitial water during the oxidation of organic matter. The presence of Fe and its oxidation state in oxic sediment provides insight into an important metabolic and mineral reaction pathway in subseafloor sediment. We recovered bulk sediment and interstitial water at western North Atlantic sites during Expedition 223 on the R/V Knorr in November, 2014. The expedition targeted regions with predominantly oxic sediment and regions with predominantly anoxic sediment, ideal for investigating redox Fe cycling between solid and aqueous phases. At Site 10 (14.4008N, 50.6209W, 4455m water depth), interstitial dissolved oxygen is depleted within the upper few meters of sediment. At Site 12 (29.6767N, 58.3285W, 5637m water depth), interstitial dissolved oxygen is present throughout the cored sediment column (10s of meters). Here we present total solid Fe concentration for 45 bulk sediment samples and total aqueous Fe and Mn concentrations for 50 interstitial water samples analyzed via ICP-ES. We additionally present Fe(II) and Fe(III) speciation results from 10 solid sediment samples determined by Mossbauer spectroscopy. We trace downcore fluctuations in Fe in solid and aqueous phases to understand Fe cycling in oxic, suboxic, and transitional regimes. Our preliminary data indicate that solid Fe concentration ranges from 4-6 wt % at the oxic site; aqueous Fe ranges from below detection to 20μM and aqueous Mn ranges from 1 to 125 μM at the anoxic site. In the anoxic sediment (Site 10), 86-90% of the total Fe is oxidized [Fe(III)] and 10-14% as reduced [Fe(II)], compared to 3-6% as reduced [Fe(II)] at the oxic site (Site 12), even in sediment as old as 25 million years.

  14. Distribution and flux estimates of soluble, colloidal, and leachable particulate trace metals in dynamic and oxygen depleted Mauritanian shelf waters

    NASA Astrophysics Data System (ADS)

    Rapp, I.; Schlosser, C.; Gledhill, M.; Achterberg, E. P.

    2016-02-01

    Fe availability in surface waters determines primary production, N2 fixation and microbial community structure and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling areas with oxygen minimum zones, such as the Mauritanian shelf region, are typically associated with elevated Fe concentrations with shelf sediments as key source of Fe to bottom and surface waters. The magnitude of vertical and horizontal Fe fluxes from shelf sediments to onshore and offshore surface waters are not well constrained and there are still large uncertainties concerning the stabilisation of Fe once released from sediments into suboxic and oxic waters. Supportive data of other trace metals can be used as an indicator of sediment release, scavenging processes and biological utilisation. Here we present soluble (<0.02 µm), dissolved (<0.2 µm) and total dissolvable (unfiltered) trace metal data collected at 10 stations on a 90 nautical mile transect across the Mauritanian shelf region in June 2014 (cruise Meteor 107). The samples were pre-concentrated using an automated off-line pre-concentration device and analysed simultaneously for Cd, Pb, Fe, Ni, Cu, Zn, Mn and Co using a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS). First results indicate the importance of benthic sources to the overall Fe budget in this region. Both dissolved Fe and Mn showed enhanced concentrations close to the shelf at depths between 40 and 180 m corresponding with low oxygen concentrations (<50 µmol L-1). Elevated soluble, dissolved, and total dissolvable Fe and Mn concentrations at an offshore station coincided with the location of a cyclonic Eddie that was characterised by an oxygen depleted water body. To further assess the accuracy of vertical and horizontal fluxes of Fe and other trace metals, we compare diffusivity estimates determined by a microstructure profiler and the scale length method (de Jong et al. 2012) with observed isotopic Ra data.

  15. Effects of Grazing Management and Buffer Strips on Metal Runoff from Pastures Fertilized with Poultry Litter.

    PubMed

    Pilon, C; Moore, P A; Pote, D H; Martin, J W; DeLaune, P B

    2017-03-01

    Metal runoff from fields fertilized with poultry litter may pose a threat to aquatic systems. Buffer strips located adjacent to fields may reduce nutrients and solids in runoff. However, scant information exists on the long-term effects of buffer strips combined with grazing management on metal runoff from pastures. The objective of this study was to assess the 12-yr impact of grazing management and buffer strips on metal runoff from pastures receiving poultry litter. The research was conducted using 15 watersheds (25 m wide and 57 m long) with five treatments: hayed (H), continuously grazed (CG), rotationally grazed (R), rotationally grazed with a buffer strip (RB), and rotationally grazed with a fenced riparian buffer strip (RBR). Poultry litter was applied annually in spring at 5.6 Mg ha. Runoff samples were collected after every rainfall event. Aluminum (Al) and iron (Fe) concentrations were strongly and positively correlated with total suspended solids, indicating soil erosion was the primary source. Soluble Al and Fe were not related to total Al and Fe. However, there was a strong positive correlation between soluble and total copper (Cu) concentrations. The majority of total Cu and zinc was in water-soluble form. The CG treatment had the highest metal concentrations and loads of all treatments. The RBR and H treatments resulted in lower concentrations of total Al, Cu, Fe, potassium, manganese, and total organic carbon in the runoff. Rotational grazing with a fenced riparian buffer and converting pastures to hayfields appear to be effective management systems for decreasing concentrations and loads of metals in surface runoff from pastures fertilized with poultry litter. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Iron-bound organic carbon in forest soils: quantification and characterization

    DOE PAGES

    Zhao, Qian; Poulson, Simon R.; Obrist, Daniel; ...

    2016-08-24

    Iron oxide minerals play an important role in stabilizing organic carbon (OC) and regulating the biogeochemical cycles of OC on the earth surface. To predict the fate of OC, it is essential to understand the amount, spatial variability, and characteristics of Fe-bound OC in natural soils. In this study, we investigated the concentrations and characteristics of Fe-bound OC in soils collected from 14 forests in the United States and determined the impact of ecogeographical variables and soil physicochemical properties on the association of OC and Fe minerals. On average, Fe-bound OC contributed 37.8 % of total OC (TOC) in forestmore » soils. Atomic ratios of OC : Fe ranged from 0.56 to 17.7, with values of 1–10 for most samples, and the ratios indicate the importance of both sorptive and incorporative interactions. The fraction of Fe-bound OC in TOC (fFe-OC) was not related to the concentration of reactive Fe, which suggests that the importance of association with Fe in OC accumulation was not governed by the concentration of reactive Fe. Concentrations of Fe-bound OC and fFe-OC increased with latitude and reached peak values at a site with a mean annual temperature of 6.6 °C. Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) and near-edge X-ray absorption fine structure (NEXAFS) analyses revealed that Fe-bound OC was less aliphatic than non-Fe-bound OC. Fe-bound OC also was more enriched in 13C compared to the non-Fe-bound OC, but C/N ratios did not differ substantially. In summary, 13C-enriched OC with less aliphatic carbon and more carboxylic carbon was associated with Fe minerals in the soils, with values of fFe-OC being controlled by both sorptive and incorporative associations between Fe and OC. Overall, this study demonstrates that Fe oxides play an important role in regulating the biogeochemical cycles of C in forest soils and uncovers the governing factors for the spatial variability and characteristics of Fe-bound OC.« less

  17. Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation.

    PubMed

    Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat

    2015-02-05

    A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH∼3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L(-1). The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL(-1) and a detection limit of 1.68 ng mL(-1). It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL(-1) of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. New method for the direct determination of dissolved Fe(III) concentration in acid mine waters

    USGS Publications Warehouse

    To, T.B.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.; McCleskey, R. Blaine

    1999-01-01

    A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), Al(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2/??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.

  19. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation.

    PubMed

    Long, Yuyang; Xu, Jing; Shen, Dongsheng; Du, Yao; Feng, Huajun

    2017-01-01

    Leachate membrane concentrates containing high concentrations of organics and trace toxic compounds pose a major threat to the environment, and their treatment is an urgent issue. In this work, various coagulants were used to treat leachate membrane concentrates. Appropriate pH values for treatments with FeCl 2 , FeSO 4 , polyaluminum chloride, and FeCl 3 were 3, 5, 5, and 4, respectively. FeCl 3 achieved the highest total organic carbon (TOC) removal efficiency. The effect of the various anions in ferric coagulants [FeCl 3 , Fe 2 (SO 4 ) 3 , and Fe(NO 3 ) 3 ] on the TOC removal efficiency was negligible. The main organics remaining in the leachate membrane concentrates after coagulation were humic and fulvic acids. The conditions for coagulation with FeCl 3 were optimized using the response surface method (RSM). The highest TOC, chemical oxygen demand (COD), and chromaticity reduction efficiencies, 81%, 82%, and 97%, respectively, were achieved at pH 4 using FeCl 3 (5 g L -1 ) and polyacrylamide (PAM; 0.07 g L -1 ). The COD of leachate membrane concentrates was reduced from 4000 to 718 mg L -1 . The mole ratio of removed COD and Fe(III) (2.4 mol) at 5 g L -1 FeCl 3 (pH 4, PAM 0.07 g L -1 ) was lower than that (3.8 mol) at 3 g L -1 FeCl 3 (pH 4, PAM 0.07 g L -1 ); based on the cost and COD removal efficiency, the latter conditions were the best choice. Our work provides guidelines for the treatment of leachate membrane concentrates in engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    PubMed

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The findings from this study should promote a better understanding of the benefits and challenges of using sintered metal systems and fuel additives to control the exposure of underground miners and other workers to diesel aerosols and gases. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2015.

  1. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System

    PubMed Central

    Bugarski, Aleksandar D.; Hummer, Jon A.; Stachulak, Jozef S.; Miller, Arthur; Patts, Larry D.; Cauda, Emanuele G.

    2015-01-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The findings from this study should promote a better understanding of the benefits and challenges of using sintered metal systems and fuel additives to control the exposure of underground miners and other workers to diesel aerosols and gases. PMID:26424805

  2. Simplified sample treatment for the determination of total concentrations and chemical fractionation forms of Ca, Fe, Mg and Mn in soluble coffees.

    PubMed

    Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna

    2014-11-15

    A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.

    2008-06-01

    We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.

  4. The memory of iron stress in strawberry plants.

    PubMed

    Gama, Florinda; Saavedra, Teresa; da Silva, José Paulo; Miguel, Maria Graça; de Varennes, Amarilis; Correia, Pedro José; Pestana, Maribela

    2016-07-01

    To provide information towards optimization of strategies to treat Fe deficiency, experiments were conducted to study the responses of Fe-deficient plants to the resupply of Fe. Strawberry (Fragaria × ananassa Duch.) was used as model plant. Bare-root transplants of strawberry (cv. 'Diamante') were grown for 42 days in Hoagland's nutrient solutions without Fe (Fe0) and containing 10 μM of Fe as Fe-EDDHA (control, Fe10). For plants under Fe0 the total chlorophyll concentration of young leaves decreased progressively on time, showing the typical symptoms of iron chlorosis. After 35 days the Fe concentration was 6% of that observed for plants growing under Fe10. Half of plants growing under Fe0 were then Fe-resupplied by adding 10 μM of Fe to the Fe0 nutrient solution (FeR). Full Chlorophyll recovery of young leaves took place within 12 days. Root ferric chelate-reductase activity (FCR) and succinic and citric acid concentrations increased in FeR plants. Fe partition revealed that FeR plants expressively accumulated this nutrient in the crown and flowers. This observation can be due to a passive deactivation mechanism of the FCR activity, associated with continuous synthesis of succinic and citric acids at root level, and consequent greater uptake of Fe. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. The Effect of Ion Adsorption on Microbial Dissimilatory Iron-Reduction and the Mobility of Adsorbed As(V)

    NASA Astrophysics Data System (ADS)

    Meyer, B. A.; Stillings, L. L.

    2003-12-01

    The effect of varying environmental conditions on the microbial reduction of Fe(III) and the mobility of adsorbed As(V) was investigated by studying the kinetics of reductive dissolution of synthetic, hydrous ferric oxide (HFO) in three batch-reactor experiments. Growth medium, containing HFO as an electron acceptor (EA) and acetate as an electron donor (ED), was dispensed into 500-ml septum sealed serum bottles. Each bottle was inoculated with an enrichment culture (MEC) containing an anaerobic Fe-reducing bacterium obtained from sediments at Milltown Reservoir near Missoula, MT. Each enrichment culture grew for at least 600 hrs and exhibited both exponential and stationary growth. Microbial reduction was monitored by measuring the production of dissolved Fe(II). Total Fe(II) was calculated by applying a Langmuir adsorption model, developed for each growth condition, to the measured dissolved Fe(II). Total Fe(II) production was modeled by: x = Xs(1-e-ket)-[kL(e-ket)]+(kL/ke) where x is the total Fe(II) concentration (mM) at t, ke is the exponential production rate constant (hr-1), Xs is the total Fe(II) concentration (mM) at the time of transition between exponential and stationary growth, t is the time since inoculation minus lag time, and kL is the stationary (linear) production rate constant (mM hr-1). From our experiments we learned that: 1) increasing the concentration of EA from 10-30 mM had no effect on the value of ke, which remained constant at 0.015 hr-1. However, the maximum production rate, Rmax = (ke Xs)+kL, did increase with increasing EA, varying from 0.014-0.031 mM hr-1; 2) increasing the concentration of ED from 10-30 mM had no effect on either ke or Rmax. These values remained constant as ED increased; 3) sorption of As(V) to the EA (in mM ratios of 1:10 and 1:30, As(V):HFO) affected Rmax but not ke. Rmax increased with increasing EA, as observed earlier, but its value was lower than in cultures without arsenic. In the presence of As(V), Rmax was unaffected by increasing ED. Microbial reduction of EA did not result in the release of aqueous As(V) or As(III). In all cases, representative blank and kill controls were run concurrent with growth experiments. No Fe(II) production was observed in the controls. The modeling method showed that increases in Rmax, when observed, were due to an elongated exponential growth phase. We conclude that the availability of surface sites to the culture is the controlling factor in microbial iron reduction. The length of the exponential growth phase depends on the concentration of surface sites available for microbial reduction. Adsorbed Fe(II) or As(V) inhibits reduction by decreasing the concentration of available surface sites. Likewise, increasing the initial concentration of EA increases the concentration of available surface sites thus increasing Rmax.

  6. Growth, Toxin Production and Allelopathic Effects of Pseudo-nitzschia multiseries under Iron-Enriched Conditions

    PubMed Central

    Sobrinho, Bruna Fernanda; de Camargo, Luana Mocelin; Sandrini-Neto, Leonardo; Kleemann, Cristian Rafael; Machado, Eunice da Costa; Mafra, Luiz Laureno

    2017-01-01

    In order to assess the effects of Fe-enrichment on the growth and domoic acid (DA) production of the toxigenic diatom Pseudo-nitzschia multiseries, static cultures that received the addition of different iron (Fe) concentrations were maintained for 30 days. Intra- and extracellular DA concentrations were evaluated over time, and growth and chain-formation were compared to those of non-toxic diatoms, Bacillaria sp. Growth rates of P. multiseries (μ = 0.45–0.73 d−1) were similar among cultures containing different Fe concentrations. Likewise, the similar incidence and length of P. multiseries stepped cell chains (usually 2–4; up to 8-cell long) among the treatments reinforces that the cultures were not growth-inhibited under any condition tested, suggesting an efficient Fe acquisition mechanism. Moreover, DA concentrations were significantly higher under the highest Fe concentration, indicating that Fe is required for toxin synthesis. Bacillaria sp. reached comparable growth rates under the same Fe concentrations, except when the dissolved cell contents from a P. multiseries culture was added. The 50–70% reduction in cell density and 70–90% decrease in total chlorophyll-a content of Bacillaria sp. at early stationary growth phase indicates, for the first time, an allelopathic effect of undetermined compounds released by Pseudo-nitzschia to another diatom species. PMID:29064395

  7. Growth, Toxin Production and Allelopathic Effects of Pseudo-nitzschia multiseries under Iron-Enriched Conditions.

    PubMed

    Sobrinho, Bruna Fernanda; de Camargo, Luana Mocelin; Sandrini-Neto, Leonardo; Kleemann, Cristian Rafael; Machado, Eunice da Costa; Mafra, Luiz Laureno

    2017-10-24

    In order to assess the effects of Fe-enrichment on the growth and domoic acid (DA) production of the toxigenic diatom Pseudo-nitzschia multiseries , static cultures that received the addition of different iron (Fe) concentrations were maintained for 30 days. Intra- and extracellular DA concentrations were evaluated over time, and growth and chain-formation were compared to those of non-toxic diatoms, Bacillaria sp. Growth rates of P. multiseries (μ = 0.45-0.73 d -1 ) were similar among cultures containing different Fe concentrations. Likewise, the similar incidence and length of P. multiseries stepped cell chains (usually 2-4; up to 8-cell long) among the treatments reinforces that the cultures were not growth-inhibited under any condition tested, suggesting an efficient Fe acquisition mechanism. Moreover, DA concentrations were significantly higher under the highest Fe concentration, indicating that Fe is required for toxin synthesis. Bacillaria sp. reached comparable growth rates under the same Fe concentrations, except when the dissolved cell contents from a P. multiseries culture was added. The 50-70% reduction in cell density and 70-90% decrease in total chlorophyll-a content of Bacillaria sp. at early stationary growth phase indicates, for the first time, an allelopathic effect of undetermined compounds released by Pseudo-nitzschia to another diatom species.

  8. Effect of EDTA and Fe-EDTA complex concentration on TCF Kraft mill effluent degradability. Batch and continuous treatments.

    PubMed

    Diez, M C; Pouleurs, D; Navia, R; Vidal, G

    2005-09-01

    The effect of ethylenediaminetetracetic acid (EDTA) and Fe-EDTA complex on synthetic totally chlorine-free (TCF) effluent degradability in batch and continuously operating reactors was evaluated. Under batch treatment, the addition of EDTA and Fe-EDTA complex was studied in the range of 80 to 320 mg l(-1). Under continuously operated reactors, the Fe-EDTA complex concentration varied from 20 to 80 mg l(-1), and the hydraulic retention time (HRT) varied from 48 to 24 h. Sludge oxygen uptake rate (OUR) and chemical oxygen demand (COD) removal decreased when EDTA concentration increased in the influent under batch treatment; however, this inhibitory effect was reduced by the addition of Fe-EDTA complex. Without the addition of EDTA, COD removal decreased from 71% to 8%. The most efficient EDTA removal treatment (almost 10%) was the treatment of 80 mg l(-1) Fe-EDTA. Under continuously operated reactors, COD removal was greater than 57% in the synthetic TCF effluent with a Fe-EDTA concentration that varied from 20 to 80 mg l(-1); however, EDTA removal was lower than 25% in all cases. Synthetic TCF effluent with a Fe -EDTA concentration higher than 80 mg l(-1) could not be treated by the activated sludge treatment due to EDTA's inhibitory effect on the sludge.

  9. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    PubMed

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  10. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris.

    PubMed

    Gwenzi, Willis; Mupatsi, Nyarai M

    2016-03-01

    Application of coal ash in construction materials is constrained by the potential risk of heavy metal leaching. Limited information is available on the comparative heavy metal leaching from coal ash-versus conventional concrete. The current study compared total and leached heavy metal concentrations in unbound coal ash, cement and sand; and investigated the effect of initial leachant pH on heavy metal leaching from coal-ash versus conventional concrete monoliths and their debris. Total Pb, Mn and Zn in coal ash were lower than or similar to that of other materials, while Cu and Fe showed the opposite trend. Leached concentrations of Zn, Pb, Mn, Cu and Fe in unbound coal ash, its concrete and debris were comparable and in some cases even lower than that for conventional concrete. In all cases, leached concentrations accounted for just <1% of the total concentrations. Log-log plots of concentration and cumulative release of Fe versus time based on tank leaching data showed that leaching was dominated by diffusion. Overall, the risk of Zn, Pb, Mn, Cu and Fe leaching from coal ash and its concrete was minimal and comparable to that of conventional concrete, a finding in contrast to widely held public perceptions and earlier results reported in other regions such as India. In the current study the coal ash, and its concrete and debris had highly alkaline pH indicative of high acid neutralizing and pH buffering capacity, which account for the stabilization of Zn, Pb, Mn, Cu and Fe. Based on the low risk of Zn, Pb, Mn, Cu and Fe leaching from the coal ash imply that such coal ash can be incorporated in construction materials such as concrete without adverse impacts on public and environmental health from these constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Anthropogenic sources and environmentally relevant concentrations of heavy metals in surface water of a mining district in Ghana: a multivariate statistical approach.

    PubMed

    Armah, Frederick A; Obiri, Samuel; Yawson, David O; Onumah, Edward E; Yengoh, Genesis T; Afrifa, Ernest K A; Odoi, Justice O

    2010-11-01

    The levels of heavy metals in surface water and their potential origin (natural and anthropogenic) were respectively determined and analysed for the Obuasi mining area in Ghana. Using Hawth's tool an extension in ArcGIS 9.2 software, a total of 48 water sample points in Obuasi and its environs were randomly selected for study. The magnitude of As, Cu, Mn, Fe, Pb, Hg, Zn and Cd in surface water from the sampling sites were measured by flame Atomic Absorption Spectrophotometry (AAS). Water quality parameters including conductivity, pH, total dissolved solids and turbidity were also evaluated. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to identify possible sources of these heavy metals. Pearson correlation coefficients among total metal concentrations and selected water properties showed a number of strong associations. The results indicate that apart from tap water, surface water in Obuasi has elevated heavy metal concentrations, especially Hg, Pb, As, Cu and Cd, which are above the Ghana Environmental Protection Agency (GEPA) and World Health Organisation (WHO) permissible levels; clearly demonstrating anthropogenic impact. The mean heavy metal concentrations in surface water divided by the corresponding background values of surface water in Obuasi decrease in the order of Cd > Cu > As > Pb > Hg > Zn > Mn > Fe. The results also showed that Cu, Mn, Cd and Fe are largely responsible for the variations in the data, explaining 72% of total variance; while Pb, As and Hg explain only 18.7% of total variance. Three main sources of these heavy metals were identified. As originates from nature (oxidation of sulphide minerals particularly arsenopyrite-FeAsS). Pb derives from water carrying drainage from towns and mine machinery maintenance yards. Cd, Zn, Fe and Mn mainly emanate from industry sources. Hg mainly originates from artisanal small-scale mining. It cannot be said that the difference in concentration of heavy metals might be attributed to difference in proximity to mining-related activities because this is inconsistent with the cluster analysis. Based on cluster analysis SN32, SN42 and SN43 all belong to group one and are spatially similar. But the maximum Cu concentration was found in SN32 while the minimum Cu concentration was found in SN42 and SN43.

  12. Arsenic associations in sediments from shallow aquifers of northwestern Hetao Basin, Inner Mongolia

    USGS Publications Warehouse

    Deng, Y.; Wang, Y.; Ma, T.; Yang, H.; He, J.

    2011-01-01

    Understanding the mechanism of arsenic mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Hetao Basin in Inner Mongolia, northern China. Aquifer geochemistry was characterized at three field sites (SH, HF, TYS) in Hangjinhouqi County of northwestern Hetao Basin. The results of bulk geochemistry analysis of sediment samples indicated that total As concentrations have a range of 6. 8-58. 5 mg/kg, with a median of 14. 4 mg/kg. The highest As concentrations were found at 15-25 m depth. In the meanwhile, the range of As concentration in the sediments from background borehole is 3-21. 8 mg/kg, with a median value of 9 mg/kg. The As sediments concentrations with depth from the SH borehole were correlated with the contents of Fe, Sb, B, V, total C and total S. Generally, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments. Distinct lithology profile and different geochemical characteristics of aquifer sediments indicate the sediments are associated with different sources and diverse sedimentary environments. Up to one third of arsenic in the sediments could be extracted by ammonium oxalate, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. Sequential extraction results indicate that arsenic occurs as strongly adsorbed on and/or co-precipitated with amorphous Fe oxyhydroxides in sediments accounting for 35 and 20%, respectively, of the total contents of arsenic. The release of As into groundwater may occur by desorption from the mineral surface driven by reductive dissolution of the Fe oxide minerals. Furthermore, small proportions of As associated with iron sulfides occur in the reductive sediments. ?? 2011 Springer-Verlag.

  13. In situ arsenic removal in an alkaline clastic aquifer

    USGS Publications Warehouse

    Welch, A.H.; Stollenwerk, K.G.; Paul, A.P.; Maurer, D.K.; Halford, K.J.

    2008-01-01

    In situ removal of As from ground water used for water supply has been accomplished elsewhere in circum-neutral ground water containing high dissolved Fe(II) concentrations. The objective of this study was to evaluate in situ As ground-water treatment approaches in alkaline ground-water (pH > 8) that contains low dissolved Fe (

  14. Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding.

    PubMed

    Wan, Caichao; Jiao, Yue; Qiang, Tiangang; Li, Jian

    2017-01-20

    We describe a rapid and facile chemical precipitation method to grow goethite (α-FeOOH) nanoneedles and nanoflowers on the carbon aerogels which was obtained from the pyrolysis of cellulose aerogels. When evaluated as electromagnetic interference (EMI) shielding materials, the α-FeOOH/cellulose-derived carbon aerogels composite displays the highest SE total value of 34.0dB at the Fe 3+ /Fe 2+ concentration of 0.01M, which is about 4.8 times higher than that of the individual α-FeOOH (5.9dB). When the higher or lower Fe 3+ /Fe 2+ concentrations were used, the EMI shielding performance deterioration occurred. The integration of α-FeOOH with the carbon aerogels transforms the reflection-dominant mechanism for α-FeOOH into the adsorption-dominant mechanism for the composite. The adsorption-dominant mechanism undoubtedly makes contribution to alleviating secondary radiation, which is regarded as more attractive alternative for developing electromagnetic radiation protection products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 1999-2000

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.

    2002-01-01

    Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were determined by Zeeman-corrected graphitefurnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Concentrations of Cl, NO3, Br, and SO4 were determined by IC. Concentrations of Fe(II) and Fe(total) were determined by the ferrozine colorimetric method. Concentrations of NO2 were determined by colorimetry using matrix-matched standards. Concentrations of NH4 were determined by IC, with reanalysis by colorimetry where separation of Na and NH4 peaks was poor. Dissolved organic carbon (DOC) concentrations were determined by the wet persulfate oxidation method.

  16. [Accumulation of S, Fe and Cd in rhizosphere of rice and their uptake in rice with different water managements].

    PubMed

    Zhang, Xue-Xia; Zhang, Xiao-Xia; Zheng, Yu-Ji; Wang, Rong-Ping; Chen, Neng-Chang; Lu, Pu-Xiang

    2013-07-01

    The interactions between the concentrations of sulfur, iron and cadmium in the rhizosphere and their uptakes in rice (Oryza sativa L. ) were studied using paddy soil which was contaminated by acid mine drainage under five water-management treatments of 60%, 80%, 100% field moisture capacity (FMC), flooded throughout the entire rice growth period and flooded followed by keeping 80% FMC after heading-flowering period. The water managements had no significant influence on the Fe and Cd concentrations in rhizosphere soil in maturity stage, although the concentration of Cd slightly increased with the increase of soil moisture in the tillering stage. However, the uptake of Fe and Cd in rice was obviously related to water managements. The increase of soil moisture enhanced the uptake of Fe, but decreased the uptake of Cd in different organs of rice (roots, stems and leaves, grains) except for Cd uptake of the root in the 60% FMC treatment. However, aerobic treatment after heading-flowering period enhanced Cd uptake in rice in all treatments, but did not influence the uptake of Fe in rice. On the other hand, the increase of soil moisture reduced the concentrations of total sulfur and available sulfur in the rhizosphere soil except for the 60% FMC treatment, which corresponded with the reduction of Cd uptake in rice. And the aerobic treatment promoted Cd uptake in rice, which was also positively related to the increase of total sulfur and available sulfur in rhizosphere soil. Therefore, it was concluded that the uptake and speciation of sulfur in rhizosphere soil other than the change of Fe concentration induced by water management could play an important role in Cd uptake of rice.

  17. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model.

    PubMed

    Seim, Gretchen L; Ahn, Cedric I; Bodis, Mary S; Luwedde, Flavia; Miller, Dennis D; Hillier, Stephen; Tako, Elad; Glahn, Raymond P; Young, Sera L

    2013-08-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1 : 16 ratio, sample : WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14 ,571) μg g⁻¹ and mean Fe concentration in the clay minerals was 2791 (±1782) μg g⁻¹. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg g⁻¹). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some geophagic earth and clay mineral samples inhibit Fe absorption from foods. In vivo research is warranted to confirm these observations and to determine if geophagic earth samples can be a source of Fe and/or inhibit Fe absorption.

  18. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model

    PubMed Central

    Seim, Gretchen L.; Ahn, Cedric I.; Bodis, Mary S.; Luwedde, Flavia; Miller, Dennis D.; Hillier, Stephen; Tako, Elad; Glahn, Raymond P.; Young, Sera L.

    2014-01-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1:16 ratio, sample:WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14571) μg/g and mean Fe concentration in the clay minerals was 2791 (± 1782) μg/g. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg/g). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some geophagic earth and clay mineral samples inhibit Fe absorption from foods. In vivo research is warranted to confirm these observations and to determine if geophagic earth samples can be a source of Fe and/or inhibit Fe absorption. PMID:23787405

  19. Biofilm Formation and Adaptation by Pseudomonas fluorescens on both Biotite and Glass Coupons Under Varying Fe-Nutrient Availability

    NASA Astrophysics Data System (ADS)

    Grant, M.; Helms, G. L.; Shi, Z.; Thomashow, L.; Keller, C. K.; Harsh, J. B.

    2014-12-01

    We isolated an efficient weathering strain of Pseudomonas fluorescens from the rhizosphere of a White Pine (Pinus strobus) seedling. We grew it in a drip-flow biofilm reactor using both Fe-abundant and Fe-deficient media on either a glass or biotite coupon. Our working hypothesis was that the bacterium would respond to Fe deficiency by enhancing biotite weathering through an increase in the relative amount of polysaccharides in the biofilm compared to the Fe-abundant treatment. Because Fe is necessary for biofilm development, we hypothesized that biomass production on the biotite surface would exceed that on a Fe-free glass slide only in the Fe-deficient medium. We quantified total biomass, specific number of viable cells (SNVC), and the concentrations of K, Mg, and Fe in the biofilm. High-resolution magic angle spinning proton nuclear magnetic resonance (HR-MAS 1H-NMR) spectroscopy was used to characterize the biofilm matrix in terms of relative biofilm constituent concentrations. Compared with biofilms grown on glass, biofilms grown on biotite had higher total biomass and SNVC irrespective of Fe supply, with a near doubling of both the biofilm biomass from 0.43 to 0.76 mg cm-2 and SNVC from 1.52 × 107 to 3.24 × 107 CFU cm-2 mg-1 when Fe was deficient, and an increase in biomass from 1.94 to 2.46 mg cm-2 and in SNVC from 8.39 × 107 to 1.96 × 108 CFU cm-2 mg-1 when Fe was sufficient. Similarly with Fe deficient, the cation concentrations in biofilms grown on biotite vs. glass increased 2.14 and 2.46 times for K and Mg, respectively, and 7.01 times for Fe. When Fe was sufficient, the concentrations of cations increased 1.24, 2.07, and 3.77 times for K, Mg, and Fe, respectively. Based on NMR spectra, no significant change in biofilm chemistry occurred between the glass and biotite systems whether Fe was deficient or not. However, we did observe an increase in the ratio of the integrated areas corresponding to the carbohydrate and protein NMR regions, increasing from 0.52 for biofilms grown on biotite with Fe, to 0.74 for biofilms grown on biotite without Fe. The response to Fe deficiency suggests that the biofilm adapted to nutrient stress rather than the surface it attached to and that the primary response was increased polysaccharide production.

  20. Bioavailability of zinc in two zinc sulfate by-products of the galvanizing industry.

    PubMed

    Edwards, H M; Boling, S D; Emmert, J L; Baker, D H

    1998-10-01

    Two Zn depletion/repletion assays were conducted with chicks to determine the relative bioavailability (RBV) of Zn from two new by-products of the galvanizing industry. Using a soy concentrate-dextrose diet, slope-ratio methodology was employed to evaluate two different products: Fe-ZnSO4 x H2O with 20.2% Fe and 13.0% Zn, and Zn-FeSO4 x H2O with 14.2% Fe and 20.2% Zn. Feed-grade ZnSO4 x H2O was used as a standard. Weight gain, tibia Zn concentration, and total tibia Zn responded linearly (P < 0.01) to Zn supplementation from all three sources. Slope-ratio calculations based on weight gain established average Zn RBV values of 98% for Fe-ZnSO4 x H2O and 102% for Zn-FeSO4 x H2O, and these values were not different (P > 0.10) from the ZnSO4 standard (100%). Slope-ratio calculations based on total tibia Zn established average Zn RBV values of 126% for Fe-ZnSO4 x H2O and 127% for Zn-FeSO4 x H2O, and these values were greater (P < 0.01) than those of the ZnSO4 standard (100%). It is apparent that both mixed sulfate products of Fe and Zn are excellent sources of bioavailable Zn.

  1. Imaging of Al/Fe ratios in synthetic Al-goethite revealed by nanoscale secondary ion mass spectrometry.

    PubMed

    Pohl, Lydia; Kölbl, Angelika; Werner, Florian; Mueller, Carsten W; Höschen, Carmen; Häusler, Werner; Kögel-Knabner, Ingrid

    2018-04-30

    Aluminium (Al)-substituted goethite is ubiquitous in soils and sediments. The extent of Al-substitution affects the physicochemical properties of the mineral and influences its macroscale properties. Bulk analysis only provides total Al/Fe ratios without providing information with respect to the Al-substitution of single minerals. Here, we demonstrate that nanoscale secondary ion mass spectrometry (NanoSIMS) enables the precise determination of Al-content in single minerals, while simultaneously visualising the variation of the Al/Fe ratio. Al-substituted goethite samples were synthesized with increasing Al concentrations of 0.1, 3, and 7 % and analysed by NanoSIMS in combination with established bulk spectroscopic methods (XRD, FTIR, Mössbauer spectroscopy). The high spatial resolution (50-150 nm) of NanoSIMS is accompanied by a high number of single-point measurements. We statistically evaluated the Al/Fe ratios derived from NanoSIMS, while maintaining the spatial information and reassigning it to its original localization. XRD analyses confirmed increasing concentration of incorporated Al within the goethite structure. Mössbauer spectroscopy revealed 11 % of the goethite samples generated at high Al concentrations consisted of hematite. The NanoSIMS data show that the Al/Fe ratios are in agreement with bulk data derived from total digestion and demonstrated small spatial variability between single-point measurements. More advantageously, statistical analysis and reassignment of single-point measurements allowed us to identify distinct spots with significantly higher or lower Al/Fe ratios. NanoSIMS measurements confirmed the capacity to produce images, which indicated the uniform increase in Al-concentrations in goethite. Using a combination of statistical analysis with information from complementary spectroscopic techniques (XRD, FTIR and Mössbauer spectroscopy) we were further able to reveal spots with lower Al/Fe ratios as hematite. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria

    PubMed Central

    McCormick, Sean P.; Moore, Michael J.; Lindahl, Paul A.

    2015-01-01

    Liquid chromatography was used with an on-line inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20 – 40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria had a mass of ca. 1100 Da and a concentration of ~ 2 μM. Mammalian mitochondria contained a second Mn species with a mass of ca. 2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ca. 580 Da; the concentration of Fe580 in mitochondria was ca. 100 μM. When mitochondria were isolated from fermenting cells in post-exponential phase, the mass of the dominant LMM Fe complex was ca. 1100 Da. Upon incubation, the intensity of Fe1100 declined and Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and 2 other Fe species (Fe2000 and Fe1100) at concentrations of ca. 50 μM each. The dominant LMM Zn species in mitochondria had a mass of ca. 1200 Da and a concentration of ca. 110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ca. 5000 Da and a concentration in yeast mitochondria of ca. 16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at ca. 1 μM concentration. Increasing Mn, Fe, Cu, and Zn concentrations 10 fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free GSH or GSSG. PMID:26018429

  3. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions.

    PubMed

    Carrasco-Gil, Sandra; Rodríguez-Menéndez, Sara; Fernández, Beatriz; Pereiro, Rosario; de la Fuente, Vicenta; Hernandez-Apaolaza, Lourdes

    2018-04-01

    A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Mössbauer, EPR, and Modeling Study of Iron Trafficking and Regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae

    PubMed Central

    2015-01-01

    Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) FeII present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS FeIII, and more NHHS FeII than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS FeIII in Δccc1 cells increased to just 60% of WT levels, while NHHS FeII increased to twice WT levels, suggesting that the NHHS FeII was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS FeII promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS FeII and FeIII and as FeIII oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS FeII suggesting that some of the NHHS FeII that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS FeII in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS FeIII species. PMID:24785783

  5. Mössbauer, EPR, and modeling study of iron trafficking and regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae.

    PubMed

    Cockrell, Allison; McCormick, Sean P; Moore, Michael J; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2014-05-13

    Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) Fe(II) present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS Fe(III), and more NHHS Fe(II) than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS Fe(III) in Δccc1 cells increased to just 60% of WT levels, while NHHS Fe(II) increased to twice WT levels, suggesting that the NHHS Fe(II) was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS Fe(II) promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS Fe(II) and Fe(III) and as Fe(III) oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS Fe(II) suggesting that some of the NHHS Fe(II) that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS Fe(II) in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS Fe(III) species.

  6. Vertical distribution of Fe and Fe(III)-reducing bacteria in the sediments of Lake Donghu, China.

    PubMed

    Tian, Cuicui; Wang, Chunbo; Tian, Yingying; Wu, Xingqiang; Xiao, Bangding

    2015-08-01

    In lake sediments, iron (Fe) is the most versatile element, and the redox cycling of Fe has a wide influence on the biogeochemical cycling of organic and inorganic substances. The aim of the present study was to analyze the vertical distribution of Fe and Fe(III)-reducing bacteria (FeRB) in the surface sediment (30 cm) of Lake Donghu, China. At the 3 sites we surveyed, FeRB and Fe(II)-oxidizing bacteria (FeOB) coexisted in anoxic sediments. Geobacter-related FeRB accounted for 5%-31% of the total Bacteria, while Gallionella-related FeOB accounted for only 0.1%-1.3%. A significant correlation between the relative abundance of poorly crystalline Fe and Geobacter spp. suggested that poorly crystalline Fe favored microbial Fe(III) reduction. Poorly crystalline Fe and Geobacter spp. were significantly associated with solid-phase Fe(II) and total inorganic phosphorus levels. Pore water Fe(II) concentrations negatively correlated with NO3(-) at all sites. We concluded that Geobacter spp. were abundant in the sediments of Lake Donghu, and the redox of Fe might participate in the cycling of nitrogen and phosphorus in sediments. These observations provided insight into the roles of microbial Fe cycling in lake sediments.

  7. Distinct Siderophores Contribute to Iron Cycling in the Mesopelagic at Station ALOHA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundy, Randelle M.; Boiteau, Rene M.; McLean, Craig

    The distribution of dissolved iron (Fe), total organic Fe-binding ligands, and siderophores were measured between the surface and 400 m at Station ALOHA, a long term ecological study site in the North Pacific Subtropical Gyre. Dissolved Fe concentrations were low throughout the water column and strong organic Fe-binding ligands exceeded dissolved Fe at all depths; varying from 0.9 nmol L -1 in the surface to 1.6 nmol L -1 below 150 m. Although Fe does not appear to limit microbial production, we nevertheless found siderophores at nearly all depths, indicating some populations of microbes were responding to Fe stress. Ferrioxaminemore » siderophores were most abundant in the upper water column, with concentrations between 0.1-2 pmol L -1, while a suite of amphibactins were found below 200 m with concentrations between 0.8-11 pmol L -1. The distinct vertical distribution of ferrioxamines and amphibactins may indicate disparate strategies for acquiring Fe from dust in the upper water column and recycled organic matter in the lower water column. Amphibactins were found to have conditional stability constants (log ) ranging from 12.0-12.5, while ferrioxamines had much stronger conditional stability constants ranging from 14.0-14.4, within the range of observed L1 ligands by voltammetry. We used our data to calculate equilibrium Fe speciation at Station ALOHA to compare the relative concentration of inorganic and siderophore complexed Fe. The results indicate that the concentration of Fe bound to siderophores was up to two orders of magnitude higher than inorganic Fe, suggesting that even if less bioavailable, siderophores were nevertheless a viable pathway for Fe acquisition by microbes at our study site. Finally, we observed rapid production of ferrioxamine E by particle-associated bacteria during incubation of freshly collected sinking organic matter. Fe-limitation may therefore be a factor in regulating carbon metabolism and nutrient regeneration in the mesopelagic.« less

  8. Distinct Siderophores Contribute to Iron Cycling in the Mesopelagic at Station ALOHA

    DOE PAGES

    Bundy, Randelle M.; Boiteau, Rene M.; McLean, Craig; ...

    2018-03-01

    The distribution of dissolved iron (Fe), total organic Fe-binding ligands, and siderophores were measured between the surface and 400 m at Station ALOHA, a long term ecological study site in the North Pacific Subtropical Gyre. Dissolved Fe concentrations were low throughout the water column and strong organic Fe-binding ligands exceeded dissolved Fe at all depths; varying from 0.9 nmol L -1 in the surface to 1.6 nmol L -1 below 150 m. Although Fe does not appear to limit microbial production, we nevertheless found siderophores at nearly all depths, indicating some populations of microbes were responding to Fe stress. Ferrioxaminemore » siderophores were most abundant in the upper water column, with concentrations between 0.1-2 pmol L -1, while a suite of amphibactins were found below 200 m with concentrations between 0.8-11 pmol L -1. The distinct vertical distribution of ferrioxamines and amphibactins may indicate disparate strategies for acquiring Fe from dust in the upper water column and recycled organic matter in the lower water column. Amphibactins were found to have conditional stability constants (log ) ranging from 12.0-12.5, while ferrioxamines had much stronger conditional stability constants ranging from 14.0-14.4, within the range of observed L1 ligands by voltammetry. We used our data to calculate equilibrium Fe speciation at Station ALOHA to compare the relative concentration of inorganic and siderophore complexed Fe. The results indicate that the concentration of Fe bound to siderophores was up to two orders of magnitude higher than inorganic Fe, suggesting that even if less bioavailable, siderophores were nevertheless a viable pathway for Fe acquisition by microbes at our study site. Finally, we observed rapid production of ferrioxamine E by particle-associated bacteria during incubation of freshly collected sinking organic matter. Fe-limitation may therefore be a factor in regulating carbon metabolism and nutrient regeneration in the mesopelagic.« less

  9. Iron isotope constraints on arsenic release from Mekong Delta sediments, Cambodia

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Yamaguchi, K. E.; Hirata, T.; Yamagata, Y.; Yamaguchi, A.; Abe, G.

    2017-12-01

    Arsenic-contaminated groundwater is a world-wide environmental problem and threatens more than 100 million people living in delta areas of South, SE and East Asia. It is typically associated with reducing aquifers with organic-rich alluvial sediments, little thermal gradients, low sulfate concentrations, and slow flushing rates. Such conditions are typical for low-lying countries in Asian deltas; however, compared to Bangladesh, Cambodia has received far less attention. Upon reductive dissolution of Fe-(oxyhydr)oxides that adsorbed As, Fe and As are released into solution as dissolved Fe2+ and arsenate, respectively. Following the oxidation of dissolved Fe2+, newly-formed Fe-(oxyhydr)oxides adsorb As again. Thus, in anoxic waters, concentrations of As correlate with those of dissolved Fe2+. Fluctuating redox conditions in the aquifer are control As release, although inhibition of adsorption of arsenate and arsenite onto the Fe-(oxyhydr)oxides occurs when the concentrations of phosphate, bicarbonate, silicate, and/or organic matter become sufficiently high. Biogeochemical redox reactions of Fe result in significant isotope fractionation (e.g., Johnson et al., 2008). We hypothesized that magnitude of isotope fractionation of Fe in the aquifer sediments, reflecting repeated (incomplete) redox reactions of Fe, may be proportional to the amount of total As release. We aim to calibrate the As release from aquifer sediment by Fe isotope analysis. As a preliminary study, series of sediment samples were collected from the Mekong Delta, Cambodia, in September 2016. Based on measurements by XRF, ICP-AES and ICP-MS, concentrations of As varied significantly covering the range from 4.5 to 15.5 µg/g with a median value of 11 µg/g (higher than the average crustal value of 5 µg/g), and those of Fe is from 2.6 to 9.7 wt.% with a median value of 7.1 wt.%. Concentrations of As and Fe show positive correlation (R2 = 0.72), indicating an effective redox cycling of Fe and As as stated above. Sediment incubation experiment to explore various pathways of As release would show time-series correlated changes in the Fe isotope compositions and As concentrations. The data obtained here are essential in investigating the mechanism of As release.

  10. Concentrations and health risk assessment of trace elements in animal-derived food in southern China.

    PubMed

    Wu, Yaketon; Zhang, Huimin; Liu, Guihua; Zhang, Jianqing; Wang, Jizhong; Yu, Yingxin; Lu, Shaoyou

    2016-02-01

    This study aimed to investigate the levels of trace elements in animal-derived food in Shenzhen, Southern China. The concentrations of 14 trace elements (Cd, Hg, Pb, As, Cr, Cu, Fe, Zn, Mn, Mo, Ni, Co, Se and Ti) in a total of 220 meat samples, collected from the local markets of Shenzhen were determined. Cu, Fe and Zn were the major elements, with concentrations approximately 2-3 orders of magnitude higher than those of other elements. However, the daily intakes of Cu, Fe and Zn merely via the consumption of the meat products were lower than the recommended nutrient intake values provided by the 2013 Chinese Dietary Guide. Among the non-essential trace elements, Cd was accumulated in animal viscera, and the concentration ratios of chicken gizzard/chicken, chicken liver/chicken, pig kidney/pork and pig liver/pork were 41.6, 55.2, 863 and 177, respectively. In addition, high concentrations of As were found in aquatic products, especially in marine fish. The concentration of As in marine fish was slightly higher than the limits recommended by China, USA and Croatia. The health risk assessment of trace elements through the consumption of meat products by adult residents in Shenzhen was evaluated by using the target hazard quotient (THQ) method. The total THQ was greater than 1, implying a potential health risk. Approximately 66% of total THQ values, mainly from As, were from the consumption of aquatic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    PubMed

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  12. The influence of microtopography on soil nutrients in created mitigation wetlands

    USGS Publications Warehouse

    Moser, K.F.; Ahn, C.; Noe, G.B.

    2009-01-01

    This study explores the relationship between microtopography and soil nutrients (and trace elements), comparing results for created and reference wetlands in Virginia, and examining the effects of disking during wetland creation. Replicate multiscale tangentially conjoined circular transects were used to quantify microtopography both in terms of elevation and by two microtopographic indices. Corresponding soil samples were analyzed for moisture content, total C and N, KCl-extractable NH4-N and NO3-N, and Mehlich-3 extractable P, Ca, Mg, K, Al, Fe, and Mn. Means and variances of soil nutrient/element concentrations were compared between created and natural wetlands and between disked and nondisked created wetlands. Natural sites had higher and more variable soil moisture, higher extractable P and Fe, lower Mn than created wetlands, and comparatively high variability in nutrient concentrations. Disked sites had higher soil moisture, NH4-N, Fe, and Mn than did nondisked sites. Consistently low variances (Levene test for inequality) suggested that nondisked sites had minimal nutrient heterogeneity. Across sites, low P availability was inferred by the molar ratio (Mehlich-3 [P/(Al + Fe)] < 0.06); strong intercorrelations among total C, total N, and extractable Fe, Al, and P suggested that humic-metal-P complexes may be important for P retention and availability. Correlations between nutrient/element concentrations and microtopographic indices suggested increased Mn and decreased K and Al availability with increased surface roughness. Disking appears to enhance water and nutrient retention, as well as nutrient heterogeneity otherwise absent from created wetlands, thus potentially promoting ecosystem development. ?? 2008 Society for Ecological Restoration International.

  13. Tunable magnetism of 3d transition metal doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T.

    2017-10-01

    Electronic polarization or bond relaxation can effectively alter the electronic and magnetic behavior of materials by doping impurity atom. For this aim, the thermodynamic, electronic and magnetic performances of cubic BiFeO3 have been modulated by the 3d transition metal (TM) dopants (Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) based on the density functional theory. Results show that the doped specimen with low impurity concentration is more stable than that with high impurity concentration. The Mulliken charge values and spin magnetic moments of TM element are making major changes, while those of all host atoms are making any major changes. Especially, it is the linear relation between the spin magnetic moments of TM dopants and the total magnetic moment of doped specimens; thus, the variations of total magnetic moment of doped specimens are decided by the spin magnetic moments of TM dopants, thought the total magnetic moments of doped specimens mainly come from Fe atom and TM dopants. Besides, as double TM atoms substitution the Fe atoms, the Sc-, Ti-, Mn-, Co- and Zn-doped specimens show AFM state, while the V-, Cr-, Ni- and Cu-doped specimens show FM state.

  14. Trace elements in stormflow, ash, and burned soil following the 2009 station fire in southern California

    USGS Publications Warehouse

    Burton, Carmen; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.

  15. Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California

    PubMed Central

    Burton, Carmen A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life. PMID:27144270

  16. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters

    NASA Astrophysics Data System (ADS)

    Liu, Ruixia; Lead, Jamie R.; Zhang, Hao

    2013-05-01

    Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.

  17. Combined effects of hydrographic structure and iron and copper availability on the phytoplankton growth in Terra Nova Bay Polynya (Ross Sea, Antarctica)

    NASA Astrophysics Data System (ADS)

    Rivaro, Paola; Luisa Abelmoschi, Maria; Grotti, Marco; Ianni, Carmela; Magi, Emanuele; Margiotta, Francesca; Massolo, Serena; Saggiomo, Vincenzo

    2012-04-01

    Surface water (<100 m) samples were collected from the Terra Nova Bay polynya region of the Ross Sea (Antarctica) in January 2006, with the aim of evaluating the individual and combined effects of hydrographic structure, iron and copper concentration and availability on the phytoplankton growth. The measurements were conducted within the framework of the Climatic Long Term Interaction for the Mass-balance in Antarctica (CLIMA) Project of the Programma Nazionale di Ricerca in Antartide activities. Dissolved oxygen, nutrients, phytoplankton pigments and concentration and complexation of dissolved trace metals were determined. Experimental data were elaborated by Principal Component Analysis (PCA). As a result of solar heating and freshwater inputs from melting sea-ice, the water column was strongly stratified with an Upper Mixed Layer 4-16 m deep. The integrated Chl a in the layer 0-100 m ranged from 60 mg m-2 to 235 mg m-2, with a mean value of 138 mg m-2. The pigment analysis showed that diatoms dominated the phytoplankton assemblage. Major nutrients were generally high, with the lowest concentration at the surface and they were never fully depleted. The Si:N drawdown ratio was close to the expected value of 1 for Fe-replete diatoms. We evaluated both the total and the labile dissolved fraction of Fe and Cu. The labile fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The total dissolved Fe ranged from 0.48 to 3.02 nM, while the total dissolved Cu from 3.68 to 6.84 nM. The dissolved labile Fe ranged from below the detection limit (0.15 nM) to 1.22 nM, and the dissolved labile Cu from 0.31 to 1.59 nM, respectively. The labile fractions measured at 20 m were significantly lower than values in 40-100 m samples. As two stations were re-sampled 5 days later, we evaluated the short-term variability of the physical and biogeochemical properties. In particular, in a re-sampled station at 20 m, the total dissolved Fe increased and the total dissolved Cu decreased, while their labile fraction was relatively steady. As a result of the increase in total Fe, the percentage of the labile Fe decreased. An increase of the Si:N, Si:P and Si:FUCO ratios was measured also in the re-sampled station. On this basis, we speculated that a switch from a Fe-replete to a Fe-deplete condition was occurring.

  18. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    PubMed

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    NASA Astrophysics Data System (ADS)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments decreased as residence time decreased and as water column depth increased. Control reactors with Co-60 irradiated sediments showed an increase in Fe concentration as a result of dissolution of the sediments; thus, it was concluded that Fe(II) oxidation in the reactors was a result of biological processes and not abiotic oxidation. It was also concluded that Fe(II) oxidation and removal rates were dependent upon geochemical gradients (pH, Fe(II) concentration) rather than depositional facies. Fluorescent in situ hybridization was also performed on field and reactor samples to determine which microbial communities were responsible for the highest Fe(II) oxidation rates.

  20. Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species.

    PubMed

    He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong

    2010-03-24

    In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.

  1. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse.

    PubMed

    Cheng, Weizhi; Roessler, Justin; Blaisi, Nawaf I; Townsend, Timothy G

    2014-12-01

    Drinking water treatment residues (WTR) offer potential benefits when recycled through land application. The current guidance in Florida, US allows for unrestricted land application of lime softening WTR; alum and ferric WTR require additional evaluation of total and leachable concentrations of select trace metals prior to land application. In some cases a mixed WTR is produced when lime softening is accompanied by the addition of a coagulant or other treatment chemical; applicability of the current guidance is unclear. The objective of this research was to characterize the total and leachable chemical content of WTR from Florida facilities that utilize multiple treatment chemicals. Lime and mixed lime WTR samples were collected from 18 water treatment facilities in Florida. Total and leachable concentrations of the WTR were measured. To assess the potential for disposal of mixed WTR as clean fill below the water table, leaching tests were conducted at multiple liquid to solid ratios and under reducing conditions. The results were compared to risk-based soil and groundwater contamination thresholds. Total metal concentrations of WTR were found to be below Florida soil contaminant thresholds with Fe found in the highest abundance at a concentration of 3600 mg/kg-dry. Aluminum was the only element that exceeded the Florida groundwater contaminant thresholds using SPLP (95% UCL = 0.23 mg/L; risk threshold = 0.2 mg/L). Tests under reducing conditions showed elevated concentrations of Fe and Mn, ranging from 1 to 3 orders of magnitude higher than SPLP leachates. Mixed lime WTR concentrations (total and leachable) were lower than the ferric and alum WTR concentrations, supporting that mixed WTR are appropriately represented as lime WTR. Testing of WTR under reducing conditions demonstrated the potential for release of certain trace metals (Fe, Al, Mn) above applicable regulatory thresholds; additional evaluation is needed to assess management options where reducing conditions may develop. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Studies on different iron source absorption by in situ ligated intestinal loops of broilers.

    PubMed

    Jia, Y F; Jiang, M M; Sun, J; Shi, R B; Liu, D S

    2015-02-01

    The objective of this study was to investigate the iron source absorption in the small intestine of broiler. In situ ligated intestinal loops of 70 birds were poured into one of seven solutions, including inorganic iron (FeSO4, Fe2(SO4)3), organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)), the mixtures (FeSO4 with glycine (Fe+Gly(II)), Fe2(SO4)3 with glycine (Fe+Gly(III)), and no Fe source (control). The total volume of 3-mL solution (containing 1 mg of elemental Fe) was injected into intestinal loops, and then 120-min incubation was performed. Compared with inorganic iron groups, in which higher FeSO4 absorption than Fe2(SO4)3 was observed, supplementation with organic Fe glycine chelate significantly increased the Fe concentration in the duodenum and jejunum (P < 0.05), however, decreased DMT1 and DcytB messenger RNA (mRNA) levels (P < 0.05). Organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)) increased serum iron concentration (SI), compared with inorganic 3 valence iron groups (Fe2(SO4)3 and Fe+Gly(III)) (P < 0.05); moreover, lower TIBC value was observed for the chelate (P < 0.05); however, mixture of inorganic iron and glycine did not have a positive role at DMT1 and DcytB mRNA levels, SI and Fe concentrations in the small intestine. Those results indicated that the absorption of organic Fe glycine chelate was more effective than that of inorganic Fe, and the orders of iron absorption in the small intestine were: Fe-Gly(II), Fe-Gly(III) > FeSO4, Fe+Gly(II) > Fe2(SO4)3, Fe+Gly(III). Additionally, the simple mixture of inorganic iron and glycine could not increase Fe absorption, and the duodenum was the main site of Fe absorption in the intestines of broilers and the ileum absorbed iron rarely.

  3. Pistachio (Pistacia vera L.) gum: a potent inhibitor of reactive oxygen species.

    PubMed

    Sehitoglu, M Hilal; Han, Hatice; Kalin, Pınar; Gülçin, İlhami; Ozkan, Ali; Aboul-Enein, Hassan Y

    2015-04-01

    In the present study, in order to evaluate antioxidant and radical scavenging properties of Pistachio gum (P-Gum), different bioanalytical methods such as DPPH(•) scavenging activity, DMPD(•+) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, reducing ability Fe(3+)-Fe(2+) transformation, Cuprac and FRAP assays, O2(•-) scavenging by riboflavin-methionine-illuminate system and ferrous ions (Fe(2+)) chelating activities by 2,2'-bipyridyl reagent were performed separately. P-Gum inhibited 54.2% linoleic acid peroxidation at 10 µg/ml concentration. On the other hand, BHA, BHT, α-tocopherol and trolox, pure antioxidant compounds, indicated inhibition of 80.3%, 73.5%, 36.2% and 72.0% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, all of sample had an effective DPPH(•), DMPD(•+) and O2(•-) scavenging, Fe(3+) reducing power by Fe(3+)-Fe(2+) transformation and FRAP assay, Cu(2+) reducing ability by Cuprac method and Fe(2+) chelating activities.

  4. Life on the energetic edge: Iron oxidation by circumneutral lithotrophic bacteria in the wetland plant rhizosphere

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Emerson, D.; Megonigal, J. P.; Weiss, J. V.

    2002-05-01

    We have discovered a phylogenetically and genotypically coherent group of obligately lithotrophic Fe-oxidizing bacteria that grow at neutral pH and are globally distributed in a range of habitats, from the rhizosphere of freshwater wetlands to deep-sea hydrothermal vents. We have initiated bioreactor studies using pure cultures of these organisms to determine the significance of microbial Fe(II) oxidation at circumneutral pH and identify the biotic and abiotic variables that affect the partitioning between microbial and chemical oxidation. These studies have focused on strain BrT, which was isolated from an iron oxide precipitate in rhizosphere of a wetland plant. In one set of experiments, Fe(II) oxidation rates were measured before and after cultures of strain BrT were poisoned with sodium azide. These experiments indicated that 18 to 53 % of total iron oxidation was due to microbial metabolism. In a second set of experiments, Fe(II) was constantly added to bioreactors inoculated with live cells, killed cells, or no cells. A statistical model fit to the experimental data demonstrated that metabolic Fe(II) oxidation accounted for up to 62 % of total oxidation. Total Fe(II) oxidation rates in these experiments were strongly limited by the rate of Fe(II) delivery to the system, and were also influenced by O2 and total iron concentrations. Additionally, the model suggested that the microbes inhibited rates of abiotic Fe(II) oxidation, perhaps by binding Fe(II) to bacterial exopolymers. The net effect of strain BrT was to accelerate total oxidation rates by up to 18 % versus cell-free treatments. Using two independent techniques, we demonstrated that strain BrT actively metabolizes Fe(II) and can account for up to 50 to 60 % of total Fe(II) oxidation in laboratory cultures. These results suggest that neutrophilic Fe(II)-oxidizing bacteria may compete for limited O2 in the rhizosphere and influence the biogeochemistry of other elements including carbon, phosphorus, and sulfur.

  5. Characterization and depositional and evolutionary history of the Apollo 17 deep drill core

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Lauer, H. V., Jr.; Gose, W. A.

    1979-01-01

    With a depth resolution of about 0.5 cm, the stratigraphy of the approximately 3 m Apollo 17 deep drill core by measurement of the total FeO concentration is characterized along with the FMR surface exposure (maturity) index Is/FeO, the metallic iron concentration Fe-vsm, and the FMR linewidth delta-H. For stratigraphic characterization, the first two parameters are the most important. Most of the core is characterized by a FeO concentration of approximately 15.5 wt. %; there is a more mafic zone in the upper approximately 75 cm where the maximum FeO concentration is approximately 18.5 wt. %, and a more felsic zone between approximately 225 and 260 cm where the minimum FeO concentration is approximately 14.0%. As indicated by Is/FeO, most of the soil in the core is submature to mature; the only immature zone is located between approximately 20 and 60 cm and is one of the most distinctive features in the core. A two stage model for the depositional and evolutionary history of the Apollo 17 deep drill core is proposed: (1) deposition by one event approximately 110 m.y. ago or deposition by a sequence of closely spaced events initating a maximum of approximately 200 m.y. ago and terminating approximately 110 m.y. ago, (2) in situ reworking (gardening) to a depth of approximately 26 cm in the period between approximately 110 m.y. ago and the present day.

  6. Iron Biogeochemistry in the High Latitude North Atlantic Ocean.

    PubMed

    Achterberg, Eric P; Steigenberger, Sebastian; Marsay, Chris M; LeMoigne, Frédéric A C; Painter, Stuart C; Baker, Alex R; Connelly, Douglas P; Moore, C Mark; Tagliabue, Alessandro; Tanhua, Toste

    2018-01-19

    Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world's ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (<0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250-300 km. Particulate Fe formed the dominant pool, as evidenced by 4-17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m -2 d -1 ) was at least ca. 4-10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.

  7. The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility

    NASA Astrophysics Data System (ADS)

    Schuwerack, P.-M. M.; Neal, M.; Neal, C.

    2007-01-01

    Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.

  8. Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture

    PubMed Central

    Dang, T. C.; Fujii, M.; Rose, A. L.; Bligh, M.

    2012-01-01

    A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (ρmax) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ρmax while maintaining a constant affinity for Fe. PMID:22210212

  9. The effects of glass doping, temperature and time on the morphology, composition, and iron redox of spinel crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Amonette, James E.; Kukkadapu, Ravi K.

    2014-10-31

    Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals weremore » extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fe total ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.« less

  10. Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R. Blaine; Amils, R.; Poulson, S.R.

    2008-01-01

    A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.

  11. [Changes in serum lipids in rats treated with oral cooper].

    PubMed

    Alarcón-Corredor, O M; Carnevalí de Tatá, E; Reinosa-Füller, J; Contreras, Y; Ramírez de Fernández, M; Yánez-Domínguez, C

    2000-09-01

    Disturbances in lipid metabolism during copper deficiency in rats are well recognized. Copper deficiency is associated with the spontaneous retention of hepatic iron. Previous studies have reported that hypercholesterolemia and hypertriglyceridemia are associated with elevated hepatic iron concentrations in copper deficient rats. There was a direct relationship between the magnitude of blood lipids and the concentration of hepatic iron. Based on these data, it has been hypothesized that iron was responsible for the development of lipemia of copper deficiency. In this study was determined the effect of increasing doses of Cu(10, 20 and 50 ppm) in the diet, on the serum total lipids, total cholesterol, triglycerides (triacylglicerols), phospholipids, non-esterified fatty acids (NEFA) and liver iron and zinc concentrations in normal rats. The results were compared with normal rats that received a balanced diet containing 0.6 and 6 ppm of Cu, respectively. The results show that Cu-supplement diminished the cholesterol and triglyceride serum levels, increased the level of phospholipids, NEFA and concomitantly decreased the hepatic concentrations of Fe and Zn. There was a statistically significant (p < 0.05) simple correlation between triglycerides and liver Fe (r = 0.917; R2 = 64.03%), cholesterol and liver Zn (r = 0.872; R2 = 76.07%), cholesterol and liver Fe (r = 0.995; R2 = 99.10%), liver Fe and liver Cu (r = -0.612), liver Fe and liver Zn (r = 0.837), liver Cu and liver Zn (r = -0.612), and serum triglycerides and liver Zn (r = 0.967). The mechanism(s) by which Fe and Zn determine these changes is not known; none of the enzymes that act in cholesterol and triglyceride metabolism and biosynthesis require Fe and/or Zn. The increase of NEFA is due to changes in the process of lipolysis and re-esterification of the fatty acids in blood. However, additional studies are needed for the precise mechanisms of this interrelationships to be clarified.

  12. Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador.

    PubMed

    Otero, X L; Tierra, W; Atiaga, O; Guanoluisa, D; Nunes, L M; Ferreira, T O; Ruales, J

    2016-12-15

    Geogenic arsenic (As) can accumulate and reach high concentrations in rice grains, thus representing a potential threat to human health. Ecuador is one of the main consumers of rice in South America. However, there is no information available about the concentrations of As in rice agrosystems, although some water bodies are known to contain high levels of the element. We carried out extensive sampling of water, soil, rice plants and commercial rice (obtained from local markets). Water samples were analysed to determine physico-chemical properties and concentrations of dissolved arsenic. Soil samples were analysed to determine total organic C, texture, total Fe and amorphous Fe oxyhydroxides (Fe Ox ), total arsenic (tAs) and the bioavailable fraction (As Me ). The different plant parts were analysed separately to determine total (tAs), inorganic (iAs) and organic arsenic (oAs). Low concentrations of arsenic were found in samples of water (generally <10μgl -1 ) and soil (4.48±3mgkg -1 ). The tAs in the rice grains was within the usual range (0.042-0.125mgkg -1 dry weight, d.w.) and was significantly lower than in leaves (0.123-0.286mgkg -1 d.w.) and stems (0.091-0.201mgkg -1 d.w.). The Fe Ox and tAs and also As Me in flood water were negatively correlated with tAs in the plants. However, the concentrations of As in stems and leaves were linearly correlated with tAs in the soil and flood water. The relationship between tAs and arsenic in the grain fitted a logarithmic function, as did that between tAs in the grain and the stem. The findings seem to indicate that high concentrations of arsenic in the environment (soil or water) or in the rice stem do not necessarily imply accumulation of the element in the grain. The iAs form was dominant (>80%) in all parts of the rice plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases

    NASA Astrophysics Data System (ADS)

    Winkler, Martin; Senger, Moritz; Duan, Jifu; Esselborn, Julian; Wittkamp, Florian; Hofmann, Eckhard; Apfel, Ulf-Peter; Stripp, Sven Timo; Happe, Thomas

    2017-07-01

    H2 turnover at the [FeFe]-hydrogenase cofactor (H-cluster) is assumed to follow a reversible heterolytic mechanism, first yielding a proton and a hydrido-species which again is double-oxidized to release another proton. Three of the four presumed catalytic intermediates (Hox, Hred/Hred and Hsred) were characterized, using various spectroscopic techniques. However, in catalytically active enzyme, the state containing the hydrido-species, which is eponymous for the proposed heterolytic mechanism, has yet only been speculated about. We use different strategies to trap and spectroscopically characterize this transient hydride state (Hhyd) for three wild-type [FeFe]-hydrogenases. Applying a novel set-up for real-time attenuated total-reflection Fourier-transform infrared spectroscopy, we monitor compositional changes in the state-specific infrared signatures of [FeFe]-hydrogenases, varying buffer pH and gas composition. We selectively enrich the equilibrium concentration of Hhyd, applying Le Chatelier's principle by simultaneously increasing substrate and product concentrations (H2/H+). Site-directed manipulation, targeting either the proton-transfer pathway or the adt ligand, significantly enhances Hhyd accumulation independent of pH.

  14. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T.

    2006-11-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  15. Diel changes in metal concentrations in a geogenically acidic river: Rio Agrio, Argentina

    NASA Astrophysics Data System (ADS)

    Parker, Stephen R.; Gammons, Christopher H.; Pedrozo, Fernando L.; Wood, Scott A.

    2008-12-01

    Rio Agrio in Patagonia, Argentina is a geogenically acidic stream that derives its low-pH waters from condensation of acidic gases near its headwaters on the flanks of the active Copahue Volcano. This study reports the results of three diel (24-h) water samplings in three different pH regimes (3.2, 4.4 and 6.3) along the river. Changes in the concentration and speciation of Fe dominated the diel chemical changes at all three sites, although the timing and intensity of these cycles were different in each reach. At the two acidic sampling sites, total dissolved Fe and dissolved Fe(III) concentrations decreased during the day and increased at night, whereas dissolved Fe(II) showed the reverse pattern. These cycles are explained by Fe(III) photoreduction, as well as enhanced rates of precipitation of hydrous ferric oxide (HFO) during the warm afternoon hours. A strong correlation was observed between Fe(III) and As at the furthest upstream (pH 3.2) site, most likely due to co-precipitation of As with HFO. At the downstream (pH 6.3) location, Fe(II) concentrations increased at night, as did concentrations of rare earth elements and dissolved Al. Photoreduction does not appear to be an important process at pH 6.3, although it may be indirectly responsible for the observed diel cycle of Fe(II) due to advection of photochemically produced Fe(II) from acidic upstream waters. The results of this study of a naturally-acidic river are very similar to diel trends recently obtained from mining-impacted streams receiving acid rock drainage. The results are also used to explore the link between geochemistry and microbiology in acidic eco-systems. For example, Fe(III) photoreduction produces chemical potential energy (in the form of metastable Fe 2+) that helps support the bacterial community in this unique extreme environment.

  16. Experimental study of iron-chloride complexing in hydrothermal fluids

    USGS Publications Warehouse

    Fein, J.B.; Hemley, J.J.; d'Angelo, W. M.; Komninou, A.; Sverjensky, D.A.

    1992-01-01

    Mineral assemblage solubilities were measured in cold-seal pressure vessels as a function of pressure, temperature, and potassium chloride concentration in order to determine the nature and thermodynamic properties of iron-chloride complexes under hydrothermal conditions. The assemblage pyritepyrrhotite-magnetite was used to buffer f{hook}S2 and f{hook}O2, and K+ H+ ratios were buffered at reasonable geologic values using the assemblage potassium feldspar-muscovite (or andalusite)-quartz. The pressure-temperature ranges were 0.5-2.0 kbar and 300-600??C, and initial fluid compositions ranged from 0.01-2.0 molal KCl. With all other factors constant, the concentration of iron in solution increases with increasing temperature, with decreasing pressure, and with increasing total potassium chloride concentration. Changes in iron concentrations as a function of KCl concentration, in conjunction with charge balance, mass action, and mass balance constraints on the system, place constraints on the stoichiometry of the important iron-chloride complexes under each of the experimental conditions. Using least-squared linear regression fits to determine these slopes, the calculations yield values for the average ligand numbers that are in the range 1.2-1.9, with uncertainties ranging from ??0.1-0.6 at the several PT conditions considered. The slopes of the regressed fits to the data suggest that both FeCl+ and FeCl20 are important in the experimental fluids, with FeCl20 becoming dominant at the higher temperatures. Theoretical calculations, however, indicate that FeCl+ does not contribute significantly to the solubility. Because of the large uncertainties associated with some of the calculated average ligand numbers, we base our data analysis on the theoretical calculations. A statistical analysis is applied to the solubility data in order to determine the values and uncertainties of the dissociation constant for FeCl20 that best fit the data at each of the experimental pressures and temperatures. The calculated stability of FeCl20 increases with increasing temperature and total chloride concentration, and with decreasing pressure. The values of the dissociation constant of FeCl20that are calculated in this study are in moderately good agreement with FeCl20dissociation constants from other studies of iron-chloride complexing in supercritical fluids. Differences are likely due to different assumptions made concerning activity coefficients of aqueous species. Log kd values for full dissociation of FeCl20 at 0.5 kbar-300??C-and at 1 kbar-400, 500, and 600??C, respectively-are -3.75 ?? 0.40, -6.25 ?? 0.10, -9.19 ?? 0.44, and -13.29 ?? 0.09. ?? 1992.

  17. Distribution and bioavailability of Cr in central Euboea, Greece

    NASA Astrophysics Data System (ADS)

    Megremi, Ifigeneia

    2010-06-01

    Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L-1 to 130 μg.L-1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L-1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L-1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L-1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.

  18. Trace Metals in Urban Stormwater Runoff and their Management

    NASA Astrophysics Data System (ADS)

    Li, T.; Hall, K.; Li, L. Y.; Schreier, H.

    2009-04-01

    In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations were 3, 0.7, 9, and 3.2 times higher than the GVRD urban area limits for Cu, Mn, Fe, and Zn, respectively. The filter showed high and stable capture efficiencies in total metals (Cu 62%, Mn 75%, Fe 83%, Zn 62%), dissolved metals (Cu 39%, Mn 37%, Fe 47%, Zn 32%), turbidity (72%), and suspended solids (74%) removal during the first month of operation. After that, there was gradual degradation. The catch basin filter performance improved significantly for the suspended solids and total metal removal after cleaning. However, the perlite filter medium showed poor performance for dissolved metal removal in the second study period. Based on the findings, a catch basin filter is effective in storm water management to control suspended solids loading from storm water runoff.

  19. A hybrid treatment of ozonation with limestone adsorption processes for the removal of Fe2+ in groundwater: Fixed bed column study

    NASA Astrophysics Data System (ADS)

    Akbar, Nor Azliza; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2017-10-01

    During pumping of groundwater to the surface, the reaction between dissolved iron (Fe2+) and oxygen causes oxidation to ferric iron (Fe3+), thereby increasing the concentration of Fe2+. In this research, the potential application of ozonation with limestone adsorption to remove Fe2+ from groundwater was investigated through batch ozonation and fixed-bed-column studies. Groundwater samples were collected from a University Science Malaysia tube well (initial concentration of Fe2+, Co=1.563 mg/L). The effect of varying ozone dosages (10, 12.5, 15, 17.5, 20, 22.5, and 25 g/Nm3) was analyzed to determine the optimum ozone dosage for treatment. The characteristics of the column data and breakthrough curve were analyzed and predicted using mathematical models, such as Adam Bohart, Thomas, and Yoon-Nelson models. The data fitted well to the Thomas and Yoon-Nelson models, with correlation coefficient r2>0.93, but not to the Adam Bohart (r2=0.47). The total Fe2+ removed was 72% (final concentration of Fe2+, Ct=0.426 mg/L) at the maximum dosage of 25 g/Nm3 through ozonation only. However, the efficiency of Fe2+ removal was increased up to 99.5% (Ct=0.008 mg/L) when the hybrid treatment of ozonation with limestone adsorption was applied in this study. Thus, this integrated treatment was considerably more effective in removing Fe2+ than single ozonation treatment.

  20. Seasonal and spatial variabilities in northern Gulf of Alaska surface water iron concentrations driven by shelf sediment resuspension, glacial meltwater, a Yakutat eddy, and dust

    NASA Astrophysics Data System (ADS)

    Crusius, John; Schroth, Andrew W.; Resing, Joseph A.; Cullen, Jay; Campbell, Robert W.

    2017-06-01

    Phytoplankton growth in the Gulf of Alaska (GoA) is limited by iron (Fe), yet Fe sources are poorly constrained. We examine the temporal and spatial distributions of Fe, and its sources in the GoA, based on data from three cruises carried out in 2010 from the Copper River (AK) mouth to beyond the shelf break. April data are the first to describe late winter Fe behavior before surface water nitrate depletion began. Sediment resuspension during winter and spring storms generated high "total dissolvable Fe" (TDFe) concentrations of 1000 nmol kg-1 along the entire continental shelf, which decreased beyond the shelf break. In July, high TDFe concentrations were similar on the shelf, but more spatially variable, and driven by low-salinity glacial meltwater. Conversely, dissolved Fe (DFe) concentrations in surface waters were far lower and more seasonally consistent, ranging from 4 nmol kg-1 in nearshore waters to 0.6-1.5 nmol kg-1 seaward of the shelf break during April and July, despite dramatic depletion of nitrate over that period. The reasonably constant DFe concentrations are likely maintained during the year across the shelf by complexation by strong organic ligands, coupled with ample supply of labile particulate Fe. The April DFe data can be simulated using a simple numerical model that assumes a DFe flux from shelf sediments, horizontal transport by eddy diffusion, and removal by scavenging. Given how global change is altering many processes impacting the Fe cycle, additional studies are needed to examine controls on DFe in the Gulf of Alaska.

  1. Revisiting Mn and Fe removal in humic rich estuaries

    NASA Astrophysics Data System (ADS)

    Oldham, Véronique E.; Miller, Megan T.; Jensen, Laramie T.; Luther, George W.

    2017-07-01

    Metal removal by estuarine mixing has been studied for several decades, but few studies emphasize dissolved metal speciation and organic ligand complexation. Findings from the last decade indicate that metal-humic complexation can be significant for dissolved metals including Cu(II), Al(III) and Fe(III), but little consideration is given to the precipitation of these complexes with humic material at pH < 2. Given that total soluble metal analysis involves an acidification step for sample preservation, we show that Mn and other metal concentrations may have been underestimated in estuaries, especially when humic substance concentrations are high. A competitive ligand assay of selected samples from our study site, a coastal waterway bordered by wetlands (Broadkill River, DE), showed that Mn(III)-humic complexation is significant, and that some Mn(III)-L complexes precipitate during acidification. In the oxygenated surface waters of the Broadkill River, total dissolved Mn (dMnT) was up to 100% complexed to ambient ligands as Mn(III)-L, and we present evidence for humic-type Mn(III)-L complexes. The Mn(III) complexes were kinetically stabilized against Fe(II) reduction, even when [Fe(II)] was 17 times higher than [dMnT]. Unlike typical oceanic surface waters, [Fe(II)] > [Fe(III)-L] in surface waters, which may be attributed to high rates of photoreduction of Fe(III)-L complexes. Total [Mn(III)-L] ranged from 0.22 to 8.4 μM, in excess of solid MnOx (below 0.28 μM in all samples). Filtration of samples through 0.02 μm filters indicated that all Mn(III)-L complexes pass through the filters and were not colloidal species in contrast to dissolved Fe. Incubation experiments indicated that the reductive dissolution of solid MnOx by ambient ligands may be responsible for Mn(III) formation in this system. Unlike previous studies of estuarine mixing, which demonstrated metal removal during mixing, we show significant export of dMn and dissolved Fe (dFe) in the summer and fall of 2015. Thus, we propose that estuarine removal should be considered seasonal for dMn and dFe, with export in the summer and fall and removal during the winter.

  2. PGE abundance and Re-Os isotope Systematics of Native-Fe-Bearing Basaltic Rocks and Their Carbonaceous Crustal Contaminants: Insights into magma plumbing-system dynamics in LIPs

    NASA Astrophysics Data System (ADS)

    Howarth, G. H.; Day, J. M.; Goodrich, C. A.; Pernet-Fisher, J.; Pearson, D. G.; Taylor, L. A.

    2014-12-01

    Native-Fe grains form in basaltic melts at highly reducing conditions (

  3. Acid Sulfate Alteration in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic dust. The Moessbauer parameters are not definitive for mineralogical speciation (other than octahedrally-coordinated Fe(3+) but are consistent with a schwertmannite-like phase (i.e., a nanophase ferric oxide). The high oxidation state and values of Moessbauer parameters (center shift and quadrupole splitting) for the high-SO3 samples imply ferric sulfate (i.e., oxidized sulfur), although the hydration state cannot be constrained. In no case is there an excess of SO3 over available cations (i.e., no evidence for elemental sulfur), and Fe sulfide (pyrite) has been detected in only one Gusev sample. The presence of both high-SiO2 (and low total iron and SO3) and high SO3 (and high total iron as ferric sulfate) can be accommodated by a two-step geochemical model developed with the Geochemist's Workbench. (1) Step 1 is anoxic acid sulfate leaching of Martian basalt at high water-to rock ratios (greater than 70). The result is a high-SiO2 residue0, and anoxic conditions are required to solubilize Fe as Fe(2+). (2) Step 2 is the oxic precipitation of sulfate salts from the leachate. Oxic conditions are required to produce the high concentrations of ferric sulfate with minor Mg-sulfates and no detectable Fe(2+)-sulfates.

  4. Analysis of the relationship between rusty root incidences and soil properties in Panax ginseng

    NASA Astrophysics Data System (ADS)

    Wang, Q. X.; Xu, C. L.; Sun, H.; Ma, L.; Li, L.; Zhang, D. D.; Zhang, Y. Y.

    2016-08-01

    Rusty root is a serious problem in ginseng cultivation that limits the production and quality of ginseng worldwide. The Changbai Mountains are the most famous area for ginseng cultivation in China. To clarify the relationship between rusty root and soil characteristics, physico-chemical properties and enzymatic activities of soil collected from five different fields in the Changbai Mountains were analyzed and a controlled experiment carried out by increasing the concentration of Fe (II). Soil bulk density, moisture, total iron (Fe) and total manganese (Mn) concentrations and polyphenol oxidase (PPO) activity were significantly higher in rusty root than healthy root groups (two-sample test, P<0.05 or P<0.01), respectively. Pearson test showed that there was a significant positive correlation between rusty root index and pH, N, Fe, Mn, Al, Zn and Ca of soil samples collected from fields (P<0.05 or P<0.01), and a significant positive correlation also occurred between rusty root index and Fe (II) added to soil in Fe (II) inducing rusty root (P<0.01). Physiological factors may be very important roles giving rise to ginseng rusty root. Fe (III) reduction and Fe (II) oxidation could be important in increasing the incidence of rusty root. Soil moisture and bulk density of non-rhizosphere soil not attached to the root surface, and pH, N and PPO content of rhizosphere soils attached to the root surface were heavily involved in the reduction, oxidation and sequestration of metal ions.

  5. Total and water-soluble trace metal content of urban background PM 10, PM 2.5 and black smoke in Edinburgh, UK

    NASA Astrophysics Data System (ADS)

    Heal, Mathew R.; Hibbs, Leon R.; Agius, Raymond M.; Beverland, Iain J.

    Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM 10, PM 2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO 3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median ( n>349) daily water-soluble metal concentration in PM 2.5 ranged from 0.05 ng m -3 for Ti to 5.1 ng m -3 for Pb; and in PM 10 from 0.18 ng m -3 for Ti to 11.7 ng m -3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM 2.5 ranged from 0.3 ng m -3 for As to 27.6 ng m -3 for Fe; and in PM 10 from 0.37 ng m -3 for As to 183 ng m -3 for Fe. The PM 2.5:PM 10 ratio varied considerably with metal, from <17%, on average, for Ti and Fe, to >70% for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM 10-2.5 fraction than of the PM 2.5 fraction (0.9%). The proportion of water-soluble metal in each size-fraction varied considerably, from <10% water-soluble Fe and Ti in PM 10-2.5, to >50% water-soluble V, Zn, As and Cd in PM 2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90% of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust "resuspension" rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for trajectories traversing over land. For Mn, Fe, Cu, Zn, As and Pb there was greater correlation of metal concentration with BS mass than with either PM 10 or PM 2.5 mass, suggesting that BS reflectance monitoring could be a cost-effective surrogate measure of particle metal concentration in urban background air.

  6. High Dietary Iron and Radiation Exposure Increase Biomarkers of Oxidative Stress in Blood and Liver of Rats

    NASA Technical Reports Server (NTRS)

    Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.

  7. High Magnetic Susceptibility in a Highly Saline Sulfate-Rich Aquifer Undergoing Biodegradation of Hydrocarbon Results from Sulfate Reduction.

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; Enright, A.; Ntarlagiannis, D.; Slater, L. D.; Bernier, R.; Beaver, C. L.; Rossbach, S.

    2016-12-01

    We investigated the chemical and stable carbon isotope composition of groundwater in a highly saline aquifer contaminated with hydrocarbon. Our aim to evaluate hydrocarbon degradation and to constrain the geochemical conditions that generated high anomalous magnetic susceptibility (MS) signatures observed at the water table interface. The occurrence of high MS in the water table fluctuating zone has been attributed to microbial iron reduction, suggesting the use of MS as a proxy for iron cycling. The highly saline aquifer had total dissolved solids concentrations of 3.7 to 29.3 g/L and sulfate concentrations of 787 to 37,100 mg/L. We compared our results for groundwater locations with high hydrocarbon contamination (total petroleum hydrocarbon (TPH) >10 mg/L), at lightly contaminated (TPH <10 mg/L) and locations with no contaminations. Our results for the terminal electron acceptors (TEAs) dissolved oxygen (DO), nitrate (NO3-), dissolved iron (Fe2+) , dissolved manganese (Mn2+), sulfate (SO42-) and methane (CH4) suggest a chemically heterogeneous aquifer, probably controlled by heterogeneous distribution of TEAs and contamination (type of hydrocarbon, phase and age of contamination). The concentrations of dissolved inorganic carbon (DIC) ranged from 67 to 648 mg C/L and the stable carbon isotope (δ13CDIC) ranged from -30.0‰ to 1.0 ‰ and DIC-δ13CDIC modeling indicates that the carbon in the DIC is derived primarily from hydrocarbon degradation. The concentrations of Fe2+ in the aquifer ranged from 0.1 to 55.8 mg/L, but was mostly low, averaging 2.7+10.9 mg/L. Given the low Fe2+ [AE1] in the aqueous phase and the high MS at contaminated locations, we suggest that the high MS observed does not arise from iron reduction but rather from sulfate reduction. Sulfate reduction produces H2S which reacts with Fe2+ to produce ferrous sulfide (Fe2+S) or the mixed valence greigite (Fe2+Fe3+2S4). We conclude that in highly saline aquifers with high concentrations of sulfate and contaminated with hydrocarbon, dominance of sulfate reduction as the TEA is responsible for iron cycling and therefore the high MS associated with biodegradation. [AE1]What about sulfate concentrations? And the range in salinity? You need to add these values to the bastrcat

  8. Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at 26°N

    NASA Astrophysics Data System (ADS)

    Trocine, Robert P.; Trefry, John H.

    1988-04-01

    Suspended particles were collected from an area of active hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge and analyzed for Fe, Mn, Cd, Zn, Cu, V, Ni, Cr, Pb, Mg, Ca, Al and Si. Rapid advection of vent-derived precipitates produced a lens with total suspended matter (TSM) loadings of 14-60 μg/l at 200-700 m above the seafloor; TSM concentrations > 60 μg/l were observed only at near-vent sites. The distribution of suspended particles correlated well with increased dissolved Mn concentrations and particulate Fe values near the vent source. Particulate Fe values decreased linearly relative to TSM concentrations as hydrothermal precipitates mixed with background suspended matter. Near-vent precipitates were characterized by up to 35% Fe, 2% Zn, 0.6% Cu and > 100 μg/g Cd. In comparison to Fe, particulate Cd, Zn and Cu values decreased dramatically away from the vent source. This trend supports differential settling and/or dissolution of Cd-, Zn- and Cu-bearing phases. Particulate Mn and Fe values were inversely related with only 50 μg Mn/g in the near-vent particles. At near-vent sites, > 99% of the total Mn was in solution; this fraction decreased to 75-80% at background TSM values. In contrast to Cd, Zn and Cu, particulate V levels show a continuous, linear decrease with particulate Fe values. This trend is explained by adsorption of V on Fe-oxides in the vent plume. Scavenging of Cr, Pb and Mg by hydrothermal precipitates is also suggested by the data. Nickel and Al values were low in near-vent particles at < 100 and < 3 μg/g, respectively. The complementary behavior of dissolved Mn and particulate trace metals provides a useful framework for studying broad aspects of hydrothermal plume processes.

  9. Porewater inputs drive Fe redox cycling in the water column of a temperate mangrove wetland

    NASA Astrophysics Data System (ADS)

    Holloway, Ceylena J.; Santos, Isaac R.; Rose, Andrew L.

    2018-07-01

    Iron is a vital micronutrient within coastal marine ecosystems, playing an integral role in the scale and dynamics of primary production and carbon cycling in the world's oceans. We investigated the relative importance of in situ Fe(II) production from photochemical, microbial and thermal Fe reduction in the surface water column as well as advective porewater inputs in a temperate saline wetland in Australia containing mangrove and saltmarsh vegetation. The diel average concentration of Fe(II) (0.63 ± 0.21 μM, accounting for >70% of the total dissolved Fe present in surface water) was much higher than commonly reported in oxygenated marine waters despite high dissolved oxygen concentrations (81-112% saturation), pH (7.7-7.8) and salinity (33-36) that favor Fe oxidation. In situ production of Fe(II) in the surface water column was primarily driven by microbial processes rather than photochemical and thermal reduction, with a maximum production rate of 4.9 × 10-3 nM s-1. Advective porewater Fe(II) inputs to the wetland averaged over a diel cycle (3.0 × 10-1 nM s-1) were an order of magnitude greater than the combined Fe(II) production rate from autochthonous water column processes (1.0 × 10-2 nM s-1). A bottom up model based on the estimated individual fluxes was used to explain the high Fe(II) concentrations measured during a 24 h time series experiment. Combined, different lines of evidence suggest that advective porewater exchange provides significant quantities of Fe(II) to the estuarine wetland.

  10. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    PubMed

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K

    2012-05-01

    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Cleasby, T.E.; McCleskey, R. Blaine

    2005-01-01

    Three simultaneous 24-h samplings at three sites over a downstream pH gradient were conducted to examine diel fluctuations in heavy metal concentrations in Fisher Creek, a small mountain stream draining abandoned mine lands in Montana. Average pH values at the upstream (F1), middle (F2), and downstream (F3) monitoring stations were 3.31, 5.46, and 6.80, respectively. The downstream increase in pH resulted in precipitation of hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) on the streambed. At F1 and F2, Fe showed strong diel cycles in dissolved concentration and Fe(II)/Fe(III) ratio; these cycles were attributed to daytime photoreduction of Fe(III) to Fe(II), reoxidation of Fe(II) to Fe(III), and temperature-dependent hydrolysis and precipitation of HFO. At the near-neutral downstream station, no evidence of Fe(III) photoreduction was observed, and suspended particles of HFO dominated the total Fe load. HFO precipitation rates between F2 and F3 were highest in the afternoon, due in part to reoxidation of a midday pulse of Fe2+ formed by photoreduction in the upper, acidic portions of the stream. Dissolved concentrations of Fe(II) and Cu decreased tenfold and 2.4-fold, respectively, during the day at F3. These changes were attributed to sorption onto fresh HFO surfaces. Results of surface complexation modeling showed good agreement between observed and predicted Cu concentrations at F3, but only when adsorption enthalpies were added to the thermodynamic database to take into account diel temperature variations. The field and modeling results illustrate that the degree to which trace metals adsorb onto actively forming HFO is strongly temperature dependent. This study is an example of how diel Fe cycles caused by redox and hydrolysis reactions can induce a diel cycle in a trace metal of toxicological importance in downstream waters. Copyright ?? 2005 Elsevier Ltd.

  12. Plankton copper requirements and uptake in the subarctic Northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Semeniuk, David M.; Cullen, Jay T.; Johnson, W. Keith; Gagnon, Katie; Ruth, Thomas J.; Maldonado, Maria T.

    2009-07-01

    We undertook the first measurements of metabolic Cu requirements (net Cu:C assimilation ratios) and steady-state Cu uptake rates (ρCu ss) of natural plankton assemblages in the northeast subarctic Pacific using the short-lived radioisotope 67Cu. Size-fractionated net Cu:C assimilation ratios varied ˜3 fold (1.35-4.21 μmol Cu mol C -1) among the stations along Line P, from high Fe coastal waters to the Fe-limited open ocean. The variability in Cu:C was comparable to biogenic Fe:C ratios in this region. As previously observed for Fe uptake, the bacterial size class accounted for half of the total particulate ρCu ss. Interestingly, carbon biomass-normalized rates of Fe uptake from the siderophore desferrioxamine B (DFB) (ρFe DFB; a physiological proxy for Fe-limitation) by the >20 μm size class were positively correlated with the intracellular net Cu:C assimilation ratios in this size class, suggesting that intracellular Cu requirements for large phytoplankton respond to increased Fe-limitation. At Fe-limited Ocean Station Papa (OSP), we performed short-term Cu uptake (ρCu L) assays to determine the relative bioavailability of Cu bound to natural and synthetic ligands. Like the volumetric ρCu ss measured along Line P, the bacterial size class was responsible for at least 50% of the total ρCu L. Uptake rates of Cu from the various organic complexes suggest that Cu uptake was controlled by the oxidation state of the metal and by the metal:ligand concentration ratio, rather than the concentration of inorganic species of Cu in solution. Collectively, these data suggest that Cu likely plays an important role in the physiology of natural plankton communities beyond the toxicological effects studied previously.

  13. Suspended particulate matter determines physical speciation of Fe, Mn, and trace metals in surface waters of Loire watershed.

    PubMed

    Baalousha, Mohamed; Stoll, Serge; Motelica-Heino, Mikaël; Guigues, Nathalie; Braibant, Gilles; Huneau, Frédéric; Le Coustumer, Philippe

    2018-02-10

    This study investigates the spatiotemporal variability of major and trace elements, dissolved organic carbon (DOC), total dissolved solids (TDS), and suspended particulate matter (SPM) in surface waters of several hydrosystems of the Loire River watershed in France. In particular, this study aims to delineate the impact of the abovementioned water physicochemical parameters on natural iron and manganese physical speciation (homoaggregation/heteroaggregation) among fine colloidal and dissolved (< 10 nm), colloidal (10-450 nm) and particulate (> 450 nm) phases in Loire River watershed. Results show that the chemistry of the Loire River watershed is controlled by two end members: magmatic and metamorphic petrographic context on the upper part of the watershed; and sedimentary rocks for the middle and low part of the Loire. The percentage of particulate Fe and Mn increased downstream concurrent with the increase in SPM and major cations concentration, whereas the percentage of colloidal Fe and Mn decreased downstream. Transmission electron microscopy analyses of the colloidal and particulate fractions (from the non-filtered water sample) revealed that heteroaggregation of Fe and Mn rich natural nanoparticles and natural organic matter to the particulate phase is the dominant mechanism. The heteroaggregation controls the partitioning of Fe and Mn in the different fractions, potentially due to the increase in the ionic strength, and divalent cations concentration downstream, and SPM concentration. These findings imply that SPM concentration plays an important role in controlling the fate and behavior of Fe and Mn in various sized fractions. Graphical abstract Physical speciation by heteroaggregation of (Fe-Mn) compounds: high [SPM] → [Fe-Mn] particulate faction; low {SPM] → [Fe-Mn] colloid-dissolved fraction.

  14. Mobility of arsenic in the sub-surface environment: An integrated hydrogeochemical study and sorption model of the sandy aquifer materials

    NASA Astrophysics Data System (ADS)

    Nath, Bibhash; Chakraborty, Sudipta; Burnol, André; Stüben, Doris; Chatterjee, Debashis; Charlet, Laurent

    2009-01-01

    SummaryGroundwater and aquifer materials have been characterized geochemically at a field site located in the Chakdaha municipality of West Bengal, India. Sorption experiments were also carried out on a sandy aquifer material to understand the mobility of arsenic (As) in the sub-surface environments. The result shows that the areas associated with high groundwater As (mean: 1.8 μM) is typically associated with low Eh (mean: -129 mV), and high Fe (mean: 0.11 mM), where Fe 2+/Fe(OH) 3 couple is controlling groundwater redox potential. Analysis of the aquifer material total concentrations showed the dominance of As (range: 8.9-22 mg kg -1), Fe (range: 3.0-9.7% as Fe 2O 3) and Mn (range: 0.05-0.18% as MnO) in the silt-/clay-rich sediments; whereas fine-/medium-sand rich sediment contains considerably lower amount of As (<8.1 mg kg -1), Fe (range: 1.6-3.9% as Fe 2O 3) and Mn (range: 0.02-0.08% as MnO). The acid extractable As do not correlate with ascorbate extractable Fe-oxyhydroxide, however Fe-oxyhydroxide is generally high in the sediments from low groundwater As areas. Chemical speciation computations indicated Fe(II), Ca(II), Mg(II) and Mn(II) to be at equilibrium (with respect to calcite, dolomite and rhodochrosite) or slightly over-saturated (with respect to siderite). These carbonate minerals may therefore participate to the As immobilization. The measured total organic carbon (˜1%) and groundwater temperature (26-32 °C) coupled with sorption studies strongly favors microbially mediated Fe(III)-oxyhydroxide reduction as the dominant mechanism for the release of As in the groundwater. Oscillations of As, Mn and Fe concentrations with depth reflected pCO 2 oscillations consecutive to microbial respiration intensity.

  15. Photo Degradation of Methyl Orange by Persulfate Activated with Zero Valent Iron

    NASA Astrophysics Data System (ADS)

    Munkoeva, V. A.; Sizykh, M. R.; Batoeva, A. A.

    2017-11-01

    The oxidative degradation of Methyl Orange (MO) subjected to direct photolysis (Solar) and various oxidative systems was studied. The comparative experiments have shown that MO conversion and mineralization increases in the following order: Solar ∼ Solar/Fe0 ∼ Solar/S2O82- < S2O82-/Fe0 < Solar/S2O82-/Fe0. The influence of the main factors (duration of exposure, the ratio of initial concentrations of MO:S2O82-:Fe0, pH and temperature of the reaction medium) on the degree of MO conversion and mineralization was studied. The optimal pH and temperature of the reaction medium were 5.8 and 25°C, respectively. The rate of MO decomposition and mineralization increased proportionally to the initial concentration of the oxidant at the molar ratios [S2O82-] :[MO] ≤ 12. Judging by the nature of the kinetic curves, a further increase of this ratio is impractical. However, an increase in the oxidant concentration had a positive effect on the degrees of conversion and mineralization of total organic carbon (TOC). Thus, at the ratios of 12:1 and 48:1, the conversion efficiency of TOC was 23 and 60 %, respectively. The optimal concentration of Fe0 was 100 mg/l.

  16. Effects of dietary tannins on total and extractable nutrients from manure.

    PubMed

    Halvorson, J J; Kronberg, S L; Hagerman, A E

    2017-08-01

    The effects of condensed tannins on N dynamics in ruminants have been a topic of research for some time, but much less work has focused on their impacts on other nutrients in manure. A 4 × 4 Latin square trial was used to determine if intake of sericea lespedeza (; SL; a condensed tannin source), at 0, 10, 20, or 40% of the diet (as-fed basis), would affect concentrations of nutrients in manure and patterns of total excretion when offered with alfalfa (; ALF) to sheep. With SL additions, average daily manure production increased linearly ( ≤ 0.01), from 40 to 50% of the diet mass. The concentrations of total C, total N, soluble P, total and soluble Na, total and soluble S, total and soluble Mn, and total and soluble B in feces increased ( ≤ 0.05) while soluble N, total Ca, total and soluble Mg, soluble Zn, total and soluble Fe, total and soluble Cu decreased ( ≤ 0.02). Total P, total and soluble K, soluble Ca, and total Zn were less affected ( > 0.05). Comparing diets containing 0 to 40% SL, average daily outputs of total C, total N, soluble P, soluble K, total and soluble Na, and total Mn increased linearly ( ≤ 0.01) by 42.0, 71.2, 93.3, 45.2, 111, 148, and 52.4 percentage points, respectively. Total K, total and soluble S, soluble Mn, and total and soluble B increased quadratically ( ≤ 0.02) by 26.1, 52.3, 26.7, 147, 100, and 19.5 percentage points, respectively. Conversely, outputs of soluble Zn and total Fe decreased linearly ( ≤ 0.01), by -51.5 and -24.8 percentage points, while total Ca, total and soluble Mg, soluble Fe, and soluble Cu decreased quadratically ( ≤ 0.05) by -15.7, -12.3, -40.0, -89.9, and -60.3 percentage points, respectively. Outputs of soluble N, total P, soluble Ca, total Zn, and total Cu remained unchanged ( ≥ 0.14). Ratios of manure outputs to feed inputs for C, N, K, and B increased ( ≤ 0.02) but those for P and Mg were unchanged ( ≥ 0.10). Ratios of soluble to total manure outputs (S:O) increased ( ≤ 0.01) for P, Ca, Na, Mn; decreased ( ≤ 0.05) for N, S, Mg, Zn, Fe, Cu, and B; and were unaffected by treatment ( ≤ 0.16) for K. Decreasing S:O ratios are consistent with the formation of complexes that adsorb these nutrients to insoluble fiber fractions of manure and could thus affect mineralization rates. This study suggests that dietary tannins, found in forages like SL, can alter the concentrations, total excretion rates and throughput efficiency of nutrients in manure.

  17. Physicochemical Characterization of Simulated Welding Fume from a Spark Discharge System

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Kim, Jong Sung; Stanam, Aditya; Thorne, Peter S.; Grassian, Vicki H.; Peters, Thomas M.

    2014-01-01

    This study introduces spark discharge system (SDS) as a way to simulate welding fumes. The SDS was developed using welding rods as electrodes with an optional coagulation chamber. The size, morphology, composition, and concentration of the fume produced and the concentration of ozone (O3) and nitrogen oxides (NOX) were characterized. The number median diameter (NMD) and total number concentration (TNC) of fresh fume particles were ranged 10–23 nm and 3.1×107–6×107 particles/cm3, respectively. For fresh fume particles, the total mass concentration (TMC) measured gravimetrically ranged 85–760 μg/m3. The size distribution was stable over a period of 12 h. The NMD and TNC of aged fume particles were ranged 81–154 nm and 1.5×106–2.7×106 particles/cm3, respectively. The composition of the aged fume particles was dominated by Fe and O with an estimated stoichiometry between that of Fe2O3 and Fe3O4. Concentrations of O3 and NOX were ranged 0.07–2.2 ppm and 1–20 ppm, respectively. These results indicate that the SDS is capable of producing stable fumes over a long-period that are similar to actual welding fumes. This system may be useful in toxicological studies and evaluation of instrumentation. PMID:25097299

  18. Effect of citric acid on metals mobility in pruning wastes and biosolids compost and metals uptake in Atriplex halimus and Rosmarinus officinalis.

    PubMed

    Tapia, Y; Eymar, E; Gárate, A; Masaguer, A

    2013-05-01

    To assess metal mobility in pruning waste and biosolids compost (pH 6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g L(-1), pH 2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7 ± 0.1-3.3 ± 0.1 mg kg(-1)), Fe (49.2 ± 5.2-76.8 ± 6.8 mg kg(-1)), and Mn (7.2 ± 1.1-11.4 ± 0.7 mg kg(-1)) in leaves of R. officinalis, whereas the concentration of only Mn (25.4 ± 0.3-42.2 ± 2.9 mg kg(-1)) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.

  19. Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II)

    USGS Publications Warehouse

    Amirbahman, Aria; Kent, Douglas B.; Curtis, Gary P.; Marvin-DiPasquale, Mark C.

    2013-01-01

    Production of elemental mercury, Hg(0), via Hg(II) reduction is an important pathway that should be considered when studying Hg fate in environment. We conducted a kinetic study of abiotic homogeneous and surface-catalyzed Hg(0) production by Fe(II) under dark anoxic conditions. Hg(0) production rate, from initial 50 pM Hg(II) concentration, increased with increasing pH (5.5–8.1) and aqueous Fe(II) concentration (0.1–1 mM). The homogeneous rate was best described by the expression, rhom = khom [FeOH+] [Hg(OH)2]; khom = 7.19 × 10+3 L (mol min)−1. Compared to the homogeneous case, goethite (α-FeOOH) and hematite (α-Fe2O3) increased and γ-alumina (γ-Al2O3) decreased the Hg(0) production rate. Heterogeneous Hg(0) production rates were well described by a model incorporating equilibrium Fe(II) adsorption, rate-limited Hg(II) reduction by dissolved and adsorbed Fe(II), and rate-limited Hg(II) adsorption. Equilibrium Fe(II) adsorption was described using a surface complexation model calibrated with previously published experimental data. The Hg(0) production rate was well described by the expression rhet = khet [>SOFe(II)] [Hg(OH)2], where >SOFe(II) is the total adsorbed Fe(II) concentration; khet values were 5.36 × 10+3, 4.69 × 10+3, and 1.08 × 10+2 L (mol min)−1 for hematite, goethite, and γ-alumina, respectively. Hg(0) production coupled to reduction by Fe(II) may be an important process to consider in ecosystem Hg studies.

  20. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil.

    PubMed

    Weber, Frank-Andreas; Hofacker, Anke F; Voegelin, Andreas; Kretzschmar, Ruben

    2010-01-01

    Arsenic (As) in soils and sediments is commonly mobilized when anoxic conditions promote microbial iron (Fe) and As reduction. Recent laboratory studies and field observations have suggested a decoupling between Fe and As reduction and release, but the links between these processes are still not well understood. In microcosm experiments, we monitored the formation of Fe(II) and As(III) in the porewater and in the soil solid-phase during flooding of a contaminated floodplain soil at temperatures of 23, 14, and 5 degrees C. At all temperatures, flooding induced the development of anoxic conditions and caused increasing concentrations of dissolved Fe(II) and As(III). Decreasing the temperature from 23 to 14 and 5 degrees C strongly slowed down soil reduction and Fe and As release. Speciation of As in the soil solid-phase by X-ray absorption spectroscopy (XAS) and extraction of the Fe(II) that has formed by reductive Fe(III) (hydr)oxide dissolution revealed that less than 3.9% of all As(III) and less than 3.2% of all Fe(II) formed during 52 days of flooding at 23 degrees C were released into the porewater, although 91% of the initially ascorbate-extractable Fe and 66% of the total As were reduced. The amount of total As(III) formed during soil reduction was linearly correlated to the amount of total Fe(II) formed, indicating that the rate of As(V) reduction was controlled by the rate of microbial Fe(III) (hydr)oxide reduction.

  1. Broiler litter as a micronutrient source for cotton: concentrations in plant parts.

    PubMed

    Tewolde, H; Sistani, K R; Rowe, D E

    2005-01-01

    Analytically, poultry litter contains nearly all essential micronutrients but the extent of phytoavailability of these nutrients and whether cotton (Gossypium hirsutum L.) and other crop plants can receive adequate amounts of these nutrients from litter is not fully known. The objective of this research was to determine whether cotton receives sufficient amounts of Fe, Cu, Mn, and Zn from litter and estimate the efficiency of cotton in extracting these metal nutrients from litter in the absence of any other source of the micronutrients. The greenhouse research used plastic pots filled with approximately 11 kg of a 2:1 (v/v) sand to vermiculite growing mix. Cotton (cv. Stoneville 474) was grown in the pots fertilized with broiler litter at rates of 30, 60, 90, or 120 g pot(-1) in a factorial combination with four supplemental nutrient solution (NS) treatments. The nutrient solutions consisted of full Hoagland's nutrient solution (NS-full); a solution of the macronutrients N, P, K, Ca, and Mg (NS-macro); a solution of the micronutrients Fe, Zn, Mn, Cu, B, and Mo (NS-micro); and water (NS-none). Based on tissue nutrient analysis, a one-time broiler litter application supplied adequate amounts of Fe, Cu, and Mn to bring the concentration of these nutrients in upper leaves within published sufficiency ranges. Zinc, with <17 mg kg(-1) concentration in the upper leaves, was the only micronutrient below the established sufficiency range regardless of the rate of applied litter. Cotton extracted Fe and Mn more efficiently than Cu or Zn, removing as much as 8.8% of Fe and 7.2% of Mn supplied by 30 g litter pot(-1). In contrast, the extraction efficiency was 1.7% for Cu and 1.9% for Zn. Roots accumulated 58% of the total absorbed Fe and 64% of Cu, and leaves accumulated 32% of the Fe and only 13% of the Cu supplied by litter. In contrast, only 16% of the total absorbed Mn and 23% of Zn accumulated in roots while leaves accumulated 64% of the total Mn and 37% of Zn. These results demonstrate that broiler litter is a valuable source of the metal nutrients supplying Fe, Cu, and Mn in full and Zn in part, but a very large fraction of the litter-supplied metal nutrients remained in the growing mix.

  2. Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    González-Dávila, M.; Santana-González, C.; Santana-Casiano, J. M.

    2017-12-01

    The eruptive process that took place in October 2011 in the submarine volcano Tagoro off the Island of El Hierro (Canary Island) and the subsequent degasification stage, five months later, have increased the concentration of TdFe(II) (Total dissolved iron(II)) in the waters nearest to the volcanic edifice. In order to detect any variation in concentrations of TdFe(II) due to hydrothermal emissions, three cruises were carried out two years after the eruptive process in October 2013, March 2014, May 2015, March 2016 and November 2016. The results from these cruises confirmed important positive anomalies in TdFe(II), which coincided with negatives anomalies in pHF,is (pH in free scale, at in situ conditions) located in the proximity of the main cone. Maximum values in TdFe(II) both at the surface, associated to chlorophyll a maximum, and at the sea bottom, were also observed, showing the important influence of organic complexation and particle re-suspension processes. Temporal variability studies were carried out over periods ranging from hours to days in the stations located over the main and two secondary cones in the volcanic edifice with positive anomalies in TdFe(II) concentrations and negative anomalies in pHF,is values. Observations showed an important variability in both pHF,is and TdFe(II) concentrations, which indicated the volcanic area was affected by a degasification process that remained in the volcano after the eruptive phase had ceased. Fe(II) oxidation kinetic studies were also undertaken in order to analyze the effects of the seawater properties in the proximities of the volcano on the oxidation rate constants and t1/2 (half-life time) of ferrous iron. The increased TdFe(II) concentrations and the low associated pHF,is values acted as an important fertilization event in the seawater around the Tagoro volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.

  3. Phosphorus mitigation during springtime runoff by amendments applied to grassed soil.

    PubMed

    Uusi-Kämppä, J; Turtola, E; Närvänen, A; Jauhiainen, L; Uusitalo, R

    2012-01-01

    Permanent grass vegetation on sloping soils is an option to protect fields from erosion, but decaying grass may liberate considerable amounts of dissolved reactive P (DRP) in springtime runoff. We studied the effects of freezing and thawing of grassed soil on surface runoff P concentrations by indoor rainfall simulations and tested whether the peak P concentrations could be reduced by amending the soil with P-binding materials containing Ca or Fe. Forty grass-vegetated soil blocks (surface area 0.045 m, depth 0.07 m) were retrieved from two permanent buffer zones on a clay and loam soil in southwest Finland. Four replicates were amended with either: (i) gypsum from phosphoric acid processing (CaSO × 2HO, 6 t ha), (ii) chalk powder (CaCO, 3.3 t ha), (iii) Fe-gypsum (6 t ha) from TiO processing, or (iv) granulated ferric sulfate (Fe[SO], 0.7 t ha), with four replicates serving as untreated controls. Rainfall (3.3 h × 5 mm h) was applied on presaturated samples set at a slope of 5% and the surface runoff was analyzed for DRP, total dissolved P (TDP), total P (TP), and suspended solids. Rainfall simulation was repeated twice after the samples were frozen. Freezing and thawing of the samples increased the surface runoff DRP concentration of the control treatment from 0.19 to 0.46 mg L, up to 2.6-3.7 mg L, with DRP being the main P form in surface runoff. Compared with the controls, surface runoff from soils amended with Fe compounds had 57 to 80% and 47 to 72% lower concentrations of DRP and TP, respectively, but the gypsum and chalk powder did not affect the P concentrations. Thus, amendments containing Fe might be an option to improve DRP retention in, e.g., buffer zones. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages.

    PubMed

    Hurrell, R F; Reddy, M; Cook, J D

    1999-04-01

    The effects of different polyphenol-containing beverages on Fe absorption from a bread meal were estimated in adult human subjects from the erythrocyte incorporation of radio-Fe. The test beverages contained different polyphenol structures and were rich in either phenolic acids (chlorogenic acid in coffee), monomeric flavonoids (herb teas, camomile (Matricaria recutita L.), vervain (Verbena officinalis L.), lime flower (Tilia cordata Mill.), pennyroyal (Mentha pulegium L.) and peppermint (Mentha piperita L.), or complex polyphenol polymerization products (black tea and cocoa). All beverages were potent inhibitors of Fe absorption and reduced absorption in a dose-dependent fashion depending on the content of total polyphenols. Compared with a water control meal, beverages containing 20-50 mg total polyphenols/serving reduced Fe absorption from the bread meal by 50-70%, whereas beverages containing 100-400 mg total polyphenols/serving reduced Fe absorption by 60-90%. Inhibition by black tea was 79-94%, peppermint tea 84%, pennyroyal 73%, cocoa 71%, vervain 59%, lime flower 52% and camomile 47%. At an identical concentration of total polyphenols, black tea was more inhibitory than cocoa, and more inhibitory than herb teas camomile, vervain, lime flower and pennyroyal, but was of equal inhibition to peppermint tea. Adding milk to coffee and tea had little or no influence on their inhibitory nature. Our findings demonstrate that herb teas, as well as black tea, coffee and coca can be potent inhibitors of Fe absorption. This property should be considered when giving dietary advice in relation to Fe nutrition.

  5. Heavy metal, pH, and total solid content of maple sap and syrup produced in eastern Canada.

    PubMed

    Robinson, A R; MacLean, K S; MacConnell, H M

    1989-01-01

    Maple sap and syrups in eastern Canada were analyzed for pH, total solids, and the heavy metals Cu, Fe, Pb, and Zn. The levels of heavy metals found were within the range normally contained in food and water samples except for Pb. The concentration factor found in reducing sap to syrup did not reflect the same concentration change for the measured parameters. This indicates removal or conversion of heavy metals and organic acids with the sugar sands. There was no statistical difference among provinces with respect to the heavy metal, pH, and total solids content of sap. The only significant difference in syrup occurred with Cu and this appeared to be the result of the processing procedure. As the season progressed, the Cu, Pb, pH, and total solids content of the sap decreased while Zn increased and Fe showed little change. Syrups reflected a similar change. Statistical differences occurred in sap composition among sites within each province.

  6. Iron Fortification of Lentil (Lens culinaris Medik.) to Address Iron Deficiency.

    PubMed

    Podder, Rajib; Tar'an, Bunyamin; Tyler, Robert T; Henry, Carol J; DellaValle, Diane M; Vandenberg, Albert

    2017-08-11

    Iron (Fe) deficiency is a major human health concern in areas of the world in which diets are often Fe deficient. In the current study, we aimed to identify appropriate methods and optimal dosage for Fe fortification of lentil ( Lens culinaris Medik.) dal with FeSO₄·7H₂O (ferrous sulphate hepta-hydrate), NaFeEDTA (ethylenediaminetetraacetic acid iron (III) sodium salt) and FeSO₄·H₂O (ferrous sulphate mono-hydrate). We used a colorimetric method to determine the appearance of the dal fortified with fortificants at different Fe concentrations and under different storage conditions. Relative Fe bioavailability was assessed using an in vitro cell culture bioassay. We found that NaFeEDTA was the most suitable fortificant for red lentil dal, and at 1600 ppm, NaFeEDTA provides 13-14 mg of additional Fe per 100 g of dal. Lentil dal sprayed with fortificant solutions, followed by shaking and drying at 75 °C, performed best with respect to drying time and color change. Total Fe and phytic acid concentrations differed significantly between cooked unfortified and fortified lentil, ranging from 68.7 to 238.5 ppm and 7.2 to 8.0 mg g -1 , respectively. The relative Fe bioavailability of cooked fortified lentil was increased by 32.2-36.6% compared to unfortified cooked lentil. We conclude that fortification of lentil dal is effective and could provide significant health benefits to dal-consuming populations vulnerable to Fe deficiency.

  7. Iron Fortification of Lentil (Lens culinaris Medik.) to Address Iron Deficiency

    PubMed Central

    Podder, Rajib; Tar’an, Bunyamin; Tyler, Robert T.; Henry, Carol J.; Vandenberg, Albert

    2017-01-01

    Iron (Fe) deficiency is a major human health concern in areas of the world in which diets are often Fe deficient. In the current study, we aimed to identify appropriate methods and optimal dosage for Fe fortification of lentil (Lens culinaris Medik.) dal with FeSO4·7H2O (ferrous sulphate hepta-hydrate), NaFeEDTA (ethylenediaminetetraacetic acid iron (III) sodium salt) and FeSO4·H2O (ferrous sulphate mono-hydrate). We used a colorimetric method to determine the appearance of the dal fortified with fortificants at different Fe concentrations and under different storage conditions. Relative Fe bioavailability was assessed using an in vitro cell culture bioassay. We found that NaFeEDTA was the most suitable fortificant for red lentil dal, and at 1600 ppm, NaFeEDTA provides 13–14 mg of additional Fe per 100 g of dal. Lentil dal sprayed with fortificant solutions, followed by shaking and drying at 75 °C, performed best with respect to drying time and color change. Total Fe and phytic acid concentrations differed significantly between cooked unfortified and fortified lentil, ranging from 68.7 to 238.5 ppm and 7.2 to 8.0 mg g−1, respectively. The relative Fe bioavailability of cooked fortified lentil was increased by 32.2–36.6% compared to unfortified cooked lentil. We conclude that fortification of lentil dal is effective and could provide significant health benefits to dal-consuming populations vulnerable to Fe deficiency. PMID:28800117

  8. Chemical composition, dietary fibre, tannins and minerals of grain amaranth genotypes.

    PubMed

    Mustafa, Arif F; Seguin, Philippe; Gélinas, Bruce

    2011-11-01

    The objective of this study was to determine the chemical composition of 28 white and coloured grain amaranth (Amaranthus spp.) genotypes. Neutral detergent fibre (NDF) concentration was greater while strach concentration was lower for coloured seeds genotypes than white seeds genotypes. Total dietary fibre followed a similar trend to that observed for NDF. Total tannin concentrations ranged between 20.7 and 0 g/kg with total and hydrolysed tannin concentrations being higher for white than for coloured seeds genotypes. Coloured seeds genotypes contained higher Mg and Ca concentrations than white seeds genotypes. However, seed colour had no influence on K, Na and P concentrations. Copper and Fe were the most variable micro-minerals in the evaluated genotypes with no significant effect of seed colour on the concentration of either mineral.

  9. Effects of processing on the proximate and metal contents in three fish species from Nigerian coastal waters

    PubMed Central

    Bassey, Francisca I; Oguntunde, Fehintola C; Iwegbue, Chukwujindu M A; Osabor, Vincent N; Edem, Christopher A

    2014-01-01

    The effects of culinary practices such as boiling, frying, and grilling on the proximate compositions and concentrations of metals (Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg) in commonly consumed fish species from the Nigerian coastal waters were investigated. The selected fish species were Polydactylus quadratifilis, Chrysicthys nigrodigitatus and Cynoglossus senegalensis. The culinary practices lead to increased protein, fat, and ash contents and decreased moisture contents of these fish species. The culinary practices resulted significant increase in the concentrations of most of the studied metals and decrease in the concentrations of Fe, Cr, and Pb in some fish types. The concentrations and estimated dietary intakes of Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg from consumption of the processed fish were within their statutory safe limits. The individual metal target hazard quotient (THQ) values and the total THQs were less than 1 which indicates that no health risks would arise from the long-term consumption of these fish species. PMID:24936297

  10. Mobility and fractionation of Fe, Pb and Zn in river sediments from a silver and base-metals mining area: Taxco, México.

    PubMed

    Espinosa, E; Armienta, M A

    2007-08-01

    The impact of mining wastes on both the concentration and environmental mobility of Zn, Pb and Fe was studied in a shallow river. The studied tributary of the Taxco river is located south of the historical Ag, Zn, Cu and Pb mining area of Taxco, about 150 km south of México City. Methodology included total concentration determinations and sequential extraction analyses of the operational defined fractions of sediments. Results indicated that Fe, Pb and Zn concentrations are up to 5, 100 and 390 times respectively, greater than regional background concentrations. Higher contents of Pb and Zn were observed in the rainy season versus the dry season, whereas Fe was lower in the rainy season. Zinc and lead increased downflow in the dry season, and did not show any trend during the rainy season. Speciation showed that Zn was mainly linked to the carbonatic fraction (25-39%), to the hydrous Fe/Mn oxides fraction (15-25%) and to the organic matter and sulfide fraction (14-48%); lead was mainly associated to the hydrous Fe/Mn oxides (49-59%) and residual (22-39%) fractions; finally, iron was contained mainly in the residual (65-78%) and the hydrous Fe/Mn oxides fraction (15%). Mobility decreased according to the relation: Zn > Pb > Fe. Sediments were classified as strongly polluted in zinc, strongly to very strongly polluted in Pb, and moderately to strongly polluted in iron. However, a low proportion of metals in the exchangeable fractions, indicates low bioavailability. Limestone presence played a very important role on Zn and Pb fractionation and environmental mobility. Results show the importance of including geological background in river pollution studies.

  11. Concentrations and bioaccessibilities of trace elements in barbecue charcoals.

    PubMed

    Sharp, Annabel; Turner, Andrew

    2013-11-15

    Total and bioaccessible concentrations of trace elements (Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb and Zn) have been measured in charcoals from 15 barbecue products available from UK retailers. Total concentrations (available to boiling aqua regia) were greater in briquetted products (with mean concentrations ranging from 0.16 μg g(-1) for Cd to 3240 μg g(-1) for Al) than in lumpwoods (0.007 μg g(-1) for Cd to 28 μg g(-1) for Fe), presumably because of the use of additives and secondary constituents (e.g. coal) in the former. On ashing, and with the exception of Hg, elemental concentrations increased by factors ranging from about 1.5 to 50, an effect attributed to the combustion of organic components and offset to varying extents by the different volatilities of the elements. Concentrations in the ashed products that were bioaccessible, or available to a physiologically based extraction test (PBET) that simulates, successively, the chemical conditions in the human stomach and intestine, exhibited considerable variation among the elements studied. Overall, however, bioaccessible concentrations relative to corresponding total concentrations were greatest for As, Cu and Ni (attaining 100% in either or both simulated PBET phases in some cases) and lowest for Pb (generally <1% in both phases). A comparison of bioaccessible concentrations in ashed charcoals with estimates of daily dietary intake suggest that Al and As are the trace elements of greatest concern to human health from barbecuing. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.

    PubMed

    Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-04-01

    Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig

    NASA Astrophysics Data System (ADS)

    Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut

    2018-03-01

    Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; < 0.3 ng/m3, <0.5 ng/m3 and 0.5-0.7 ng/m3, respectively. PM10 trace metal concentrations during easterly air mass inflow especially at the background sites were in average 70% higher in the winter and 30% higher in the summer in comparison to westerly air mass inflow. Traffic at LMI contributed to about 75% of Cr, Ba, Cu, Sb, Sn, Ca, Co, Mn, Fe and Ti concentrations while regional activities contributed to more than 70% of K, Rb, Pb, Se, As and V concentrations. Traffic dominated trace metals were often observed in the coarse mode while the regional background dominated trace metals were often observed in the fine mode. Trace metal sources were related to crustal matter and road dust re-suspension for metals such as Ca, Fe, Co, Sr, and Ti, brake and tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were observed at the regional background site. In total, non-exhaust emissions could account for about 10-22% of the PM10 mass in the summer and about 7-15% of the PM10 mass in the winter.

  14. Protein and Metalloprotein Distribution in Different Varieties of Beans (Phaseolus vulgaris L.): Effects of Cooking

    PubMed Central

    Oliveira, Aline P.; Andrade, Geyssa Ferreira; Mateó, Bianca S. O.

    2017-01-01

    Beans (Phaseolus vulgaris L.) are among the main sources of protein and minerals. The cooking of the grains is imperative, due to reduction of the effect of some toxic and antinutritional substances, as well as increase of protein digestibility. In this study, the effects of cooking on albumins, globulins, prolamins, and glutelins concentration and determination of Fe associated with proteins for different beans varieties and on phaseolin concentration in common and black beans were evaluated. Different extractant solutions (water, NaCl, ethanol, and NaOH) were used for extracting albumins, globulins, prolamins, and glutelins, respectively. For the phaseolin separation NaOH, HCl, and NaCl were used. The total concentration of proteins was determined by Bradford method; Cu and Fe associated with phaseolin and other proteins were obtained by graphite furnace atomic absorption spectrometry and by flame atomic absorption spectrometry, respectively. Cooking promoted a negative effect on (1) the proteins concentrations (17 (glutelin) to 95 (albumin) %) of common beans and (2) phaseolin concentration (90%) for common and black beans. Fe associated with albumin, prolamin, and glutelin was not altered. In Fe and Cu associated with phaseolin there was an increase of 20 and 37% for the common and black varieties, respectively. PMID:28326316

  15. Protein and Metalloprotein Distribution in Different Varieties of Beans (Phaseolus vulgaris L.): Effects of Cooking.

    PubMed

    Oliveira, Aline P; Andrade, Geyssa Ferreira; Mateó, Bianca S O; Naozuka, Juliana

    2017-01-01

    Beans ( Phaseolus vulgaris L.) are among the main sources of protein and minerals. The cooking of the grains is imperative, due to reduction of the effect of some toxic and antinutritional substances, as well as increase of protein digestibility. In this study, the effects of cooking on albumins, globulins, prolamins, and glutelins concentration and determination of Fe associated with proteins for different beans varieties and on phaseolin concentration in common and black beans were evaluated. Different extractant solutions (water, NaCl, ethanol, and NaOH) were used for extracting albumins, globulins, prolamins, and glutelins, respectively. For the phaseolin separation NaOH, HCl, and NaCl were used. The total concentration of proteins was determined by Bradford method; Cu and Fe associated with phaseolin and other proteins were obtained by graphite furnace atomic absorption spectrometry and by flame atomic absorption spectrometry, respectively. Cooking promoted a negative effect on (1) the proteins concentrations (17 (glutelin) to 95 (albumin) %) of common beans and (2) phaseolin concentration (90%) for common and black beans. Fe associated with albumin, prolamin, and glutelin was not altered. In Fe and Cu associated with phaseolin there was an increase of 20 and 37% for the common and black varieties, respectively.

  16. Seasonal determination of trace and ultra-trace content in Macrocystis pyrifera from San Jorge Gulf (Patagonia) by Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia

    2017-05-01

    Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.

  17. Surface catalysis of uranium(VI) reduction by iron(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liger, E.; Charlet, L.; Van Cappellen, P.

    1999-10-01

    Colloidal hematite ({alpha}-Fe{sub 2}O{sub 3}) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (U{sup VI}O{sub 2}{sup 2+}) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O{sub 2}- and CO{sub 2}-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: ({equivalent{underscore}to}Fe{sup III}OFe{sup II}){sup +} (or {equivalent{underscore}to}Fe{sup III}OFe{sup II}(OH{sub 2}){sub n}{sup +}) and {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0} (or {equivalent{underscore}to}Fe{sup III}OFe{supmore » II}(OH{sub 2}){sub n{minus}1}OH{sup 0}). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH {gt} 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH {gt} 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO{sub 3}. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6--7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2--160 {micro}M). When analyzing the rate data in terms of the calculated surface speciation, the variability of the rate constant can be accounted for entirely by changes in the concentration of the Fe(II) monohydroxo surface complex {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0}. Therefore, the rate law is derived for the hematite-catalyzed reduction of uranyl by Fe(II), where the bimolecular rate constant {kappa} has a value of 399 {+-} 25 M{sup {minus}1} min{sup {minus}1} at 25 C. The hydroxo surface complex is the rate-controlling reductant species, because it provides the most favorable coordination environment in which electrons are removed from Fe(II). Natural particulate matter collected in the hypolimnion of a seasonally stratified lake also causes the rapid reduction of uranyl by Fe(II), Ferrihydrite, identified in the particulate matter by X-ray diffraction, is one possible mineral phase accelerating the reaction between U(VI) and Fe(II). At near-neutral pH and total Fe(II) levels less than 1 mM, the pseudo-first-order rate constants of chemical U(VI) reduction, measured in the presence of the hematite and lake particles, are of the same order of magnitude as the highest corresponding rate coefficients for enzymatic U(VI) reduction in bacterial cultures. Hence, based on the results of this study, surface-catalyzed U(VI) reduction by Fe(II) is expected to be a major pathway of uranium immobilization in a wide range of redox-stratified environments.« less

  18. Physiologic and systemic acute phase inflammatory responses in young horses repeatedly infected with cyathostomins and Strongylus vulgaris.

    PubMed

    Andersen, U V; Reinemeyer, C R; Toft, N; Olsen, S N; Jacobsen, S; Nielsen, M K

    2014-03-17

    Migrating Strongylus vulgaris and encysted cyathostomin larvae cause a localized inflammatory response in horses. It is unknown whether these larvae elicit a systemic acute phase response (APR), evidenced by changes in serum amyloid A (SAA), haptoglobin (Hp), iron (Fe), albumin, or albumin/globulin (A/G) ratio. In this study, 28 horses were randomly allocated to receive either pyrantel tartrate or a pelleted placebo formulation in their daily feed. Concurrent with treatment, all the horses were administered 5000 pyrantel-susceptible cyathostomin infective larvae once daily, 5 days a week, for 24 weeks. Beginning in the fifth week, the horses also received 25 S. vulgaris larvae once weekly for the remainder of the study. At regular biweekly intervals, fecal samples were collected for quantitative egg counts, and whole blood and serum samples were collected for measurement of packed cell volume, total protein, albumin, globulin, A/G ratio, SAA, Hp, and Fe. On days 161-164, all the horses were euthanatized and necropsied. Samples were collected for enumeration of total luminal worm burdens, encysted cyathostomin larval populations, and migrating S. vulgaris larvae. Concentrations of Hp, Fe, and A/G ratio were associated significantly with strongyle burdens. Only treated male horses had significant increases in serum albumin. Larval S. vulgaris did not associate with Fe, whereas Fe was associated negatively with both total cyathostomin burdens and encysted L4s. The A/G ratios differed significantly between the two treatment groups. Significant differences between groups and individual time points were also observed for Hp and Fe, whereas SAA concentrations remained low throughout the study. In general, this study illustrated that experimental inoculations with S. vulgaris and cyathostomins may be associated with changes in Hp, Fe, and serum proteins, but not with SAA. Overall, these changes suggest that mixed strongyle infections elicit a mild acute phase reaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Seasonal changes in Fe along a glaciated Greenlandic fjord.

    NASA Astrophysics Data System (ADS)

    Hopwood, Mark; Connelly, Douglas; Arendt, Kristine; Juul-Pedersen, Thomas; Stinchcombe, Mark; Meire, Lorenz; Esposito, Mario; Krishna, Ram

    2016-03-01

    Greenland's ice sheet is the second largest on Earth, and is under threat from a warming Arctic climate. An increase in freshwater discharge from Greenland has the potential to strongly influence the composition of adjacent water masses with the largest impact on marine ecosystems likely to be found within the glaciated fjords. Here we demonstrate that physical and chemical estuarine processes within a large Greenlandic fjord are critical factors in determining the fate of meltwater derived nutrients and particles, especially for non-conservative elements such as Fe. Concentrations of Fe and macronutrients in surface waters along Godthåbsfjord, a southwest Greenlandic fjord with freshwater input from 6 glaciers, changed markedly between the onset and peak of the meltwater season due to the development of a thin (<10 m), outflowing, low-salinity surface layer. Dissolved (<0.2 µm) Fe concentrations in meltwater entering Godthåbsfjord (200 nM), in freshly melted glacial ice (mean 38 nM) and in surface waters close to a land terminating glacial system (80 nM) all indicated high Fe inputs into the fjord in summer. Total dissolvable (unfiltered at pH <2.0) Fe was similarly high with concentrations always in excess of 100 nM throughout the fjord and reaching up to 5.0 µM close to glacial outflows in summer. Yet, despite the large seasonal freshwater influx into the fjord, Fe concentrations near the fjord mouth in the out-flowing surface layer were similar in summer to those measured before the meltwater season. Furthermore, turbidity profiles indicated that sub-glacial particulate Fe inputs may not actually mix into the outflowing surface layer of this fjord. Emphasis has previously been placed on the possibility of increased Fe export from Greenland as meltwater fluxes increase. Here we suggest that in-fjord processes may be effective at removing Fe from surface waters before it can be exported to coastal seas.

  20. Metals geochemistry and mass export from the Mississippi-Atchafalaya River system to the Northern Gulf of Mexico.

    PubMed

    Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M

    2018-08-01

    Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    PubMed

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.

    PubMed

    Liu, Hongyuan; Guo, Min; Zhang, Yan

    2014-01-01

    Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.

  3. Eruptive Dynamics Inferred from Textural Analysis of Ash Time Series: The 2015 Reawakening of Cotopaxi Volcano

    NASA Astrophysics Data System (ADS)

    Gaunt, H. E.; Bernard, B.; Hidalgo, S.; Proaño, A.; Wright, H. M. N.; Mothes, P. A.; Criollo, E.

    2016-12-01

    The eruptive process that took place in October 2011 in the submarine volcano Tagoro off the Island of El Hierro (Canary Island) and the subsequent degasification stage, five months later, have increased the concentration of TdFe(II) (Total dissolved iron(II)) in the waters nearest to the volcanic edifice. In order to detect any variation in concentrations of TdFe(II) due to hydrothermal emissions, three cruises were carried out two years after the eruptive process in October 2013, March 2014, May 2015, March 2016 and November 2016. The results from these cruises confirmed important positive anomalies in TdFe(II), which coincided with negatives anomalies in pHF,is (pH in free scale, at in situ conditions) located in the proximity of the main cone. Maximum values in TdFe(II) both at the surface, associated to chlorophyll a maximum, and at the sea bottom, were also observed, showing the important influence of organic complexation and particle re-suspension processes. Temporal variability studies were carried out over periods ranging from hours to days in the stations located over the main and two secondary cones in the volcanic edifice with positive anomalies in TdFe(II) concentrations and negative anomalies in pHF,is values. Observations showed an important variability in both pHF,is and TdFe(II) concentrations, which indicated the volcanic area was affected by a degasification process that remained in the volcano after the eruptive phase had ceased. Fe(II) oxidation kinetic studies were also undertaken in order to analyze the effects of the seawater properties in the proximities of the volcano on the oxidation rate constants and t1/2 (half-life time) of ferrous iron. The increased TdFe(II) concentrations and the low associated pHF,is values acted as an important fertilization event in the seawater around the Tagoro volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.

  4. Carbonate component reduces o,oEDDHA/Fe sorption on two-line ferrihydrite

    NASA Astrophysics Data System (ADS)

    Yunta, F.; Lucena, J. J.; Smolders, E.

    2012-04-01

    The o,oEDDHA/Fe is the most common and effective iron chelate used as fertilizer in calcareous soils. Several authors have reported that the anionic o,oEDDHA/Fe complex is adsorbed to soil components such as ferrihydrite. The bicarbonate anion may be a competing ion for this sorption, however no studies have yet identified the extent and mechanism of this interaction. The aim of this work was to study the carbonate (bicarbonate + carbonate) effect on EDDHA/Fe adsorption on two-line ferrihydrite. Two-line ferrihydrite was synthetized adding NaOH on a nitrate iron (III) solution up to a final pH to be 8.0 and allowing to age for 22 hours at 20°C. Dialyzed ferrihydrite was characterized by determining specific parameters such as Fe/OH ratio, BET surface, point zero of charge and x-ray diffraction. The sorption was performed at three pH levels (5, 7.5 and 9.5) and three initial carbonate concentrations (from 0 to 2 mM). Initial EDDHA/Fe, ferrihydrite and ionic strength concentrations were adjusted to 0.18 mM, 10 g L-1 and 5 mM respectively. Total dissolved FeEDDHA concentrations were quantified at 480 nm. The o,oEDDHA/Fe isomers (rac-o,oEDDHA/Fe and meso-o,oEDDHA/Fe) were separated and quantified by High Performance Liquid Chromatography (HPLC) fitting a photodiode array detector (PDA). Distribution factor (KD) and sorbed o,oEDDHA/Fe concentration were determined. Actual carbonate concentration was determined using a multi N/C analyzer. Ferrihydrite samples showed a typical XRD pattern of two-line ferrihydrite, two broad peaks at about 35 and 62° respectively. The BET surfaces (two replicates) were 259.2 ± 3.1 m2/g and 256.0 ± 2.5 m2/g. The Point Zero of Salt Effect (PZSE) was 7.9 ± 0.2 as bibliographically supported for all fresh and thus not rigorously de-carbonated ferrihydrite samples. The KD of the o,oEDDHA/Fe increased from 27.4 ± 0.6 to 304 ± 6 l/kg by decreasing pH from 9.5 and 5.0 when no carbonate was added. Increasing equilibrium carbonate concentrations between 8.6 10-2 and 76 10-2 mM decreased the KD about two-fold at pH 7.5. The KD values from meso-o,oEDDHA/Fe were up to 1000 fold larger than those of rac-o,oEDDHA/Fe at highest carbonate concentration at pH 7.5 and pH dependency suggests that former binds as inner sphere whereas latter binds as outer sphere. Despite the carbonate competition is unlikely to largely affect the net sorption of the chelate in soil, clear differences between meso-o,oEDDHA/Fe and rac-o,oEDDHA/Fe sorption rate on ferrihydrite in presence of carbonate were found.

  5. Comparisons of protein, lipid, phenolics, γ-oryzanol, vitamin E, and mineral contents in bran layer of sodium azide-induced red rice mutants.

    PubMed

    Jeng, Toong Long; Ho, Pei Tzu; Shih, Yi Ju; Lai, Chia Chi; Wu, Min Tze; Sung, Jih Min

    2011-06-01

    The bran part of red rice grain is concentrated with many phytochemicals, including proanthocyanidins, oryzanol and vitamin E, that exert beneficial effects on human health, but it contains low levels of essential minerals such as Fe and Zn. In the present study, the protein, lipid, phytochemicals and mineral contents in bran samples were compared among red rice SA-586 and its NaN₃-induced mutants. The plant heights of NaN₃-induced mutants were decreased. The contents of protein, lipid, total phenolics, total flavonoids, total anthocyanins, total proanthocyanidins, total γ-oryzanol, total tocopherols and total tocotrienols also varied among the tested mutants. The brans of mutants M-18, M-56 and M-50 contained more proanthocyanidins, γ-oryzanol, vitamin E than that of SA-586, respectively. M-54 accumulated more Fe content (588.7 mg kg⁻¹ bran dry weight) than SA-586 (100.1 mg kg⁻¹ bran dry weight). The brans of M-18, M-50 and M-56 are good sources of proanthocyanidins, vitamin E and γ-oryzanol, respectively, while the bran of M-54 is rich in Fe. Thus these mutants could be used to produce high-value phytochemicals or Fe byproducts from bran during rice grain milling or as genetic resources for rice improvement programs. Copyright © 2011 Society of Chemical Industry.

  6. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Pearce, Carolyn I.; Neumann, Anke

    Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important source of electron equivalents limiting the transport of redox active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced clays in field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) concentration, but FeTOTAL remains constant demonstrating no Fe loss duringmore » reduction-oxidation cycling. At its native pH of 8.6, the anoxic fraction despite its significant Fe(II) (~23% of FeTOTAL), exhibits minimal reactivity with TcO4- and CrO42- and much slower reaction kinetics than that measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added Fe(II) (if Fe(II)SORBED >8% clay Fe(II)LABILE), however the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II)SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within clay mineral.« less

  7. Do fattening process and biological parameters affect the accumulation of metals in Atlantic bluefin tuna?

    PubMed

    Milatou, Niki; Dassenakis, Manos; Megalofonou, Persefoni

    2015-01-01

    The objective of this study was to determine the current levels of heavy metals and trace elements in Atlantic bluefin tuna muscle tissues and how they are influenced by the fattening process and various life history parameters to ascertain whether the concentrations in muscle tissue exceed the maximum levels defined by the European Commission Decision and to evaluate the health risk posed by fish consumption. A total of 20 bluefin tuna reared in sea cages, ranging from 160 to 295 cm in length and from 80 to 540 kg in weight, were sampled from a bluefin tuna farm in the Ionian Sea. The condition factor K of each specimen was calculated and their age was estimated. Heavy metal and trace element (Hg, Zn, Fe and Cu) contents were determined in muscle tissue using cold vapour atomic absorption spectrometry and flame and graphite furnace atomic absorption spectrometry. The total Hg concentrations ranged from 0.28 to 1.28 mg kg(-1) w/w, Zn from 5.81 to 76.37 mg kg(-1) w/w, Fe from 12.14 to 39.58 mg kg(-1) w/w, and Cu from 0.36 to 0.94 mg kg(-1) w/w. Only 5% of the muscle samples of tuna contained Hg above the maximum level laid down by the European Commission Decision. Moreover, 15% of the muscle samples contained Zn above the maximum level, while Fe and Cu concentrations were within the acceptable tolerable guideline values. The reared bluefin tuna had lower concentrations of Hg than the wild ones from the Mediterranean Sea. Hg and Fe concentrations showed a positive relationship with size and age of bluefin tuna, whereas negative relationships were found for the concentrations of Zn and Cu. The estimated dietary intake values of the analysed metals were mostly below the derived guidelines.

  8. Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: Labile-Fe(II) and other trace metals

    NASA Astrophysics Data System (ADS)

    Siefert, Ronald L.; Johansen, Anne M.; Hoffmann, Michael R.

    1999-02-01

    Atmospheric deposition of iron (Fe) to certain regions of the oceans is an important nutrient source of Fe to the biota, and the ability of the biota to uptake Fe is dependent on the speciation of the Fe. Therefore understanding the speciation of Fe in the atmosphere is critical to understanding the role of Fe as a nutrient source in surface ocean waters. Labile ferrous iron (Fe(II)) concentrations as well as total concentrations for Fe and other important trace metals, cations, and anions were determined over the Arabian Sea for two nonconsecutive months during 1995. Ambient aerosol samples were collected during the Indian Ocean intermonsoon and southwest monsoon seasons over the Arabian Sea. Sampling took place aboard the German research vessel Meteor in the months of May (leg M32/3; intermonsoon) and July/August (leg M32/5; southwest monsoon). Both cruise tracks followed the 65th east meridian, traveling for 30 days each (from north to south during leg M32/3 and from south to north during leg M32/5). A high-volume dichotomous virtual impactor with an aerodynamic cutoff size of 3 μm was used to collect the fine and coarse aerosol fractions for metal analysis. A low volume collector was used to collect aerosol samples for anion and cation analysis. The analysis for labile-Fe(II) was done immediately after sample collection to minimize any possible Fe redox reactions which might occur during sample storage. The analytical procedure involved filter extraction in a formate/formic acid buffered solution at pH 4.2 followed by colorimetric quantification of soluble Fe(II). Metals, anions, and cations were analyzed after the cruise. Total atmospheric aqueous-labile-Fe(II) concentrations during the intermonsoon were between 4.75 and <0.4 ng m-3, of which most (>80%) was present in the fine fraction (<3.0 μm). During the southwest monsoon, atmospheric aqueous-labile-Fe(II) concentrations were consistently below the detection limit (<0.34 to <0.089 ng m-3, depending on the volume of air sampled). Air mass back trajectories (5 day, three dimensional) showed that air masses sampled during the southwest monsoon had advected over the open Indian Ocean, while air masses sampled during the intermonsoon had advected over northeast Africa, the Saudi Arabian peninsula, and southern Asia. These calculations were consistent with the results of the statistical analysis performed on the data set which showed that the variance due to crustal species during the intermonsoon samples was greater than the variance due to crustal species during the southwest monsoon. The factor scores for the crustal components were also greater when the back trajectories had advected over the nearby continental masses. Principal component analysis was also performed with the intermonsoon samples where aqueous labile Fe(II) was above the detection limit. Aqueous labile Fe(II) did not correlate well with other species indicating possible atmospheric processing of the iron during advection.

  9. Exposure of women to trace elements through the skin by direct contact with underwear clothing.

    PubMed

    Nguyen, Thao; Saleh, Mahmoud A

    2017-01-02

    Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.

  10. Vertical distribution of phosphorus in agricultural drainage ditch soils.

    PubMed

    Vaughan, Robert E; Needelman, Brian A; Kleinman, Peter J A; Allen, Arthur L

    2007-01-01

    Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.

  11. Water-Chemistry and On-Site Sulfur-Speciation Data for Selected Springs in Yellowstone National Park, Wyoming, 1996-1998

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Schoonen, Martin A.A.; Xu, Yong

    2001-01-01

    Fifty-eight water analyses are reported for samples collected from 19 hot springs and their overflow drainages and one ambient-temperature acid stream in Yellowstone National Park (YNP) during 1996-98. These water samples were collected and analyzed as part of research investigations on microbially mediated sulfur oxidation in stream waters and sulfur redox speciation in hot springs in YNP and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. The research on sulfur redox speciation in hot springs is a collaboration with the State University of New York at Stony Brook, Northern Arizona University, and the U.S. Geological Survey (USGS). One ambient-temperature acidic stream system, Alluvium Creek and its tributaries in Brimstone Basin, was studied in detail. Analyses were performed adjacent to the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability and preservability of the constituent. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity and F were determined within a few days of sample collection by titration and by ion-selective electrode, respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by ion chromatography (IC). Concentrations of Cl, SO4, and Br were determined by IC within a few days of sample collection. Concentrations of Fe(II) and Fe(total) were determined by ultraviolet/visible spectrophotometry within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li, Na, and K were determined by flame atomic absorption (Li) and emission (Na, K) spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), Mg, Mn, Ni, Pb, Si, Sr, V, and Zn were determined by inductively-coupled plasma optical emission spectrometry. Trace concentrations of Cd, Se, As(total), Ni, and Pb were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation using a flow-injection analysis system.

  12. Chemical speciation and ecological risk assessment of arsenic in marine sediments from Izmir Bay (Eastern Aegean Sea).

    PubMed

    Gonul, L T

    2015-12-01

    Total arsenic, arsenic(III) and (V), Fe, and Mn were measured in 17 surface sediment samples from Izmir Bay. The concentrations and ecological risk of As were characterized in the sediment affected by urban and agricultural activities. Total As ranged from 8.87 to 28.3 μg g(-1) dry weight (96.5-99.9 % as inorganic As). Distribution of total As and total As/Fe followed a different trend in sediments at all sampling sites. Arsenite (As(III)) was the most dominant form followed by As(V), while organic arsenic represented a minor constituent (0.03 to 3.49 %). The highest concentration of total As was observed at Gediz River estuary and exceeded lower threshold value (threshold effects level (TEL)). Due to the biological reduction of As(V) and abundance of Fe (oxyhydr)oxides in the sediments, most inorganic As in the Izmir Bay was present as As(III). Besides, the levels of As were >TEL and

  13. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.)

    PubMed Central

    2014-01-01

    Background Our objective was to determine if a biofortified variety of black bean can provide more bioavailable-iron (Fe) than a standard variety. Two lines of black beans (Phaseolus-vulgaris L.), a standard (DOR500; 59μg Fe/g) and biofortified (MIB465; 88μg Fe/g) were used. The DOR500 is a common commercial variety, and the MIB465 is a line developed for higher-Fe content. Given the high prevalence of Fe-deficiency anemia worldwide, it is important to determine if Fe-biofortified black beans can provide more absorbable-Fe. Methods Black bean based diets were formulated to meet the nutrient requirements for the broiler (Gallus-gallus) except for Fe (dietary Fe-concentrations were 39.4±0.2 and 52.9±0.9 mg/kg diet, standard vs. biofortified, respectively). Birds (n=14) were fed the diets for 6-weeks. Hemoglobin-(Hb), liver-ferritin and Fe-related transporter/enzyme gene-expression were measured. Hemoglobin-maintenance-efficiency and total-body-Hb-Fe values were used to estimate Fe-bioavailability. Results Hemoglobin-maintenance-efficiency values were higher (P<0.05) in the group consuming the standard-Fe beans on days 14, 21 and 28; indicating a compensatory response to lower dietary-Fe. Final total-Hb-Fe body content was higher in the biofortified vs. the standard group (26.6±0.9 and 24.4±0.8 mg, respectively; P<0.05). There were no differences in liver-ferritin or in expression of DMT-1, Dcyt-B, and ferroportin. In-vitro Fe-bioavailability assessment indicated very low Fe-bioavailability from both diets and between the two bean varieties (P>0.05). Such extremely-low in-vitro Fe-bioavailability measurement is indicative of the presence of high levels of polyphenolic-compounds that may inhibit Fe-absorption. High levels of these compounds would be expected in the black bean seed-coats. Conclusions The parameters of Fe-status measured in this study indicate that only a minor increase in absorbable-Fe was achieved with the higher-Fe beans. The results also raise the possibility that breeding for increased Fe-concentration elevated the levels of polyphenolic-compounds that can reduce bean Fe-bioavailability, although the higher levels of polyphenolics in the higher-Fe beans may simply be coincidental or an environmental effect. Regardless, Fe-biofortified beans remain a promising vehicle for increasing intakes of bioavailable-Fe in human populations that consume high levels of these beans as a dietary staple, and the bean polyphenol profile must be further evaluated and modified if possible in order to improve the nutritional quality of higher-Fe beans. PMID:24669764

  14. Significance of the concentration of chelating ligands on Fe3+-solubility, bioavailability, and uptake in rice plant.

    PubMed

    Hasegawa, Hiroshi; Rahman, M Mamunur; Kadohashi, Kouta; Takasugi, Yui; Tate, Yousuke; Maki, Teruya; Rahman, M Azizur

    2012-09-01

    Present study investigated the significance of the concentration of chelating ligand on Fe(3+)-solubility in growth medium and its influence on Fe bioavailability and uptake in rice plant. Rice seedlings were grown in modified Murashige and Skoog (MS) hydroponic growth medium with moderate (250 μM) and high (500 μM) concentrations of ethylenediaminetetraacetate (EDTA) and hydroxyiminodisuccinate (HIDS) under sterile and non-sterile conditions. Concentrations of soluble Fe in the growth medium increased with increasing ligand concentrations, and the growth of rice seedlings was higher at moderate ligand concentration than at control (without chelant) and high ligand concentration. This explains the relationship between Fe solubility and bioavailability in the growth medium, and its effect on Fe uptake in rice plant. Fe exists in the growth medium predominantly as particulate (insoluble) forms at low ligand concentration, and as soluble [Fe(OH)(2+), Fe(OH)(2)(+), Fe-L complex] and apparently soluble (colloidal) forms at moderate ligand concentration. At high ligand concentration, most of the Fe(3+) in the growth medium forms soluble Fe-L complex, however, the bioavailability of Fe from Fe-L complex decreased due to lopsided complex formation equilibrium reaction (CFER) between Fe and the ligands. Also, Fe is solubilized forming stable and soluble Fe-L complex, which is then detached as less stable, but soluble and bioavailable substance(s) after (time-dependent) biodegradation. Therefore- i) ligand concentration and stability constant of Fe-L complex (K(Fe-L)) influence Fe bioavailability and uptake in rice plant, and ii) the biodegradable ligands (e.g., HIDS) would be more effective Fe fertilizer than the environmentally persistent and less biodegradable ligands (e.g., EDTA). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Examining Two Sets of Introgression Lines in Rice (Oryza sativa L.) Reveals Favorable Alleles that Improve Grain Zn and Fe Concentrations

    PubMed Central

    Hu, Xia; Cheng, Li-Rui; Xu, Jian-Long; Shi, Yu-Min; Li, Zhi-Kang

    2015-01-01

    In the modern world, the grain mineral concentration (GMC) in rice (Oryza sativa L.) not only includes important micronutrient elements such as iron (Fe) and zinc (Zn), but it also includes toxic heavy metal elements, especially cadmium (Cd) and lead (Pb). To date, the genetic mechanisms underlying the regulation of GMC, especially the genetic background and G × E effects of GMC, remain largely unknown. In this study, we adopted two sets of backcross introgression lines (BILs) derived from IR75862 (a Zn-dense rice variety) as the donor parent and two elite indica varieties, Ce258 and Zhongguangxiang1, as recurrent parents to detect QTL affecting GMC traits including Fe, Zn, Cd and Pb concentrations in two environments. We detected a total of 22 loci responsible for GMC traits, which are distributed on all 12 rice chromosomes except 5, 9 and 10. Six genetic overlap (GO) regions affecting multiple elements were found, in which most donor alleles had synergistic effects on GMC. Some toxic heavy metal-independent loci (such as qFe1, qFe2 and qZn12) and some regions that have opposite genetic effects on micronutrient (Fe and Zn) and heavy metal element (Pb) concentrations (such as GO-IV) may be useful for marker-assisted biofortification breeding in rice. We discuss three important points affecting biofortification breeding efforts in rice, including correlations between different GMC traits, the genetic background effect and the G × E effect. PMID:26161553

  16. Seasonal and spatial variation in soil chemistry and anaerobic processes in an Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Mauritz, M.; Bozzolo, F.; Raab, T. K.; Santos, M. J.; Friedman, E. F.; Rosenbaum, M.; Angenent, L.

    2009-12-01

    Drained thaw lake basins (DTLB) are the dominant landform in the Arctic coastal plain near Barrow, Alaska. Our previous work in a DTLB showed that Fe(III) and humic substances are important electron acceptors in anaerobic respiration, and play a significant role in the C cycle of these organic-rich soils. In the current study, we investigated seasonal and spatial patterns of availability of electron acceptors and labile substrate, redox conditions and microbial activity. Landscapes within DTLB contain complex, fine-scale topography arising from ice wedge polygons, which produce raised and lowered areas. One goal of our study was to determine the effects of microtopographic variation on the potential for Fe(III) reduction and other anaerobic processes. Additionally, the soil in the study site has a complex vertical structure, with an organic peat layer overlying a mineral layer, overlying permafrost. We described variations in soil chemistry across depth profiles into the permafrost. Finally, we installed an integrated electrode/potentiostat system to electrochemically monitor microbial activity in the soil. Topographically low areas differed from high areas in most of the measured variables: low areas had lower oxidation-reduction potential, higher pH and electrical conductivity. Soil pore water from low areas had higher concentrations of Fe(III), Fe(II), dissolved organic C (DOC), and aromaticity (UV absorbance at 260nm, “A260”). Low areas also had higher concentrations of dissolve CO2 and CH4 in soil pore water. Laboratory incubations of soil showed a trend toward higher potentials for Fe(III) reduction in topographically low areas. Clearly, ice wedge-induced microtopography exerts a strong control on microbial processes in this DTLB landscape, with increased anaerobic activity occurring in the wetter, depressed areas. Soil water extracted from 5-15 cm depth had higher concentrations of Fe(III), Fe(II), A260, and DOC compared to soil water sampled from 0-5cm. The soil depth profile showed highest concentrations of acid-extractable Fe in the mineral layer and permafrost, though Fe(III) was highest in the surface layer. Total and soluble C increased with depth, as did the potential for CO2 and CH4 production in anaerobic incubations. Thus, the mineral layer may be a significant source of Fe for oxidation-reduction reactions that occur at shallower depths, though methanogenesis dominates in the mineral layer, while Fe(III) reduction dominates in the organic layer. Most of the ions measured in the soil pore water (Fe(III), DOC, A260) showed the same general seasonal pattern: high concentrations soon after soils thawed, declining over time until mid-August. Concentrations of Fe(II) in soil pore water were fairly stable over time. There was a significant positive relationship between A260 and Fe(III) concentrations, possibly indicating the presence of microbially-produced aromatic chelating molecules. Potentiostat measurements confirmed the presence of an electrochemically active microbial community in the soil.

  17. TOTAL AND BIOAVAILABLE METALS AT MARINA SEDIMENTS IN LAKE TEXOMA

    EPA Science Inventory

    Total and bioavailable metals in sediments were measured at marina areas in Lake Texoma during the fall of 2001. The metals most often found in the highest concentrations in sediments were Ca (56811 mg/kg) and Al (31095 mg/kg), followed by Fe (19393 mg/kg), K (6089 mg/kg), and Mg...

  18. Naphthenic acids removal from high TDS produced water by persulfate mediated iron oxide functionalized catalytic membrane, and by nanofiltration.

    PubMed

    Aher, Ashish; Papp, Joseph; Colburn, Andrew; Wan, Hongyi; Hatakeyama, Evan; Prakash, Prakhar; Weaver, Ben; Bhattacharyya, Dibakar

    2017-11-01

    Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (Fe x O y nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent. Catalytic decomposition of persulfate by Fe x O y functionalized membranes followed pseudo-first order kinetics with an apparent activation energy of 18 Kcal/mol. Fe x O y functionalized membranes were capable of lowering the NA concentrations to less than discharge limits of 10 ppm at 40 °C. Oxidation state of iron during reaction was quantified. Membrane performance was investigated for extended period of time. A coupled process of advanced oxidation catalyzed by membrane and nanofiltration was also evaluated. Commercially available nanofiltration membranes were found capable of retaining NA from water containing high concentrations of dissolved salts. Commercial NF membranes, Dow NF270 (Dow), and NF8 (Nanostone) had NA rejection of 79% and 82%, respectively. Retentate for the nanofiltration was further treated with advanced oxidation catalyzed by Fe x O y functionalized membrane for removal of NA.

  19. Accumulation of iron by primary rat hepatocytes in long-term culture: changes in nuclear shape mediated by non-transferrin-bound forms of iron.

    PubMed Central

    Cable, E. E.; Connor, J. R.; Isom, H. C.

    1998-01-01

    We have previously shown that hepatocytes in long-term dimethylsulfoxide (DMSO) culture, fed a chemically defined medium, are highly differentiated and an excellent in vitro model of adult liver. Hepatocytes in long-term DMSO culture can be iron loaded by exposure to non-transferrin-bound iron (NTBI) in the form of ferrous sulfate (FeSO4), ferric nitrilotriacetate, or trimethylhexanoyl (TMH)-ferrocene. Holotransferrin, at equivalent times and concentrations, was unable to load hepatocytes. Of the iron compounds tested, TMH-ferrocene most accurately simulated the morphological features of iron-loaded hepatocytes in vivo. When exposed to 25 micromol/L TMH-ferrocene, hepatocytes loaded increasing amounts of iron for 2 months before the cells died. When exposed to lower concentrations of TMH-ferrocene (as low as 2.5 micromol/L), hepatocytes continuously loaded iron and remained viable for more than 2 months. The cellular deposition of iron was different in hepatocytes exposed to TMH-ferrocene compared with those exposed to FeSO4; exposure to TMH-ferrocene resulted in the presence of more ferritin cores within lysosomes than were seen with FeSO4. When the concentration of TMH-ferrocene was increased, a greater number of ferritin cores were observed within the lysosome, and total cellular ferritin, as assessed by Western blot, increased. The formation of hemosiderin was also observed. Furthermore, nuclear shape was distorted in iron-loaded hepatocytes. The extent of deviation from circularity in the nucleus correlated with increasing concentrations of TMH-ferrocene and was greater in hepatocytes exposed to FeSO4 than an equivalent concentration of TMH-ferrocene. The deviation from circularity was smallest in hepatocytes that contained well formed ferritin cores and increased in hepatocytes that contained greater amounts of hemosiderin. Furthermore, in hepatocytes treated with FeSO4, a large amount of cell-associated iron was detected but without a significant increase in the total amount of ferritin. The deviation from circularity was the largest in FeSO4-treated hepatocytes, indicating that iron not properly incorporated into ferritin caused more cellular damage. We conclude that iron-loaded hepatocytes in long-term DMSO culture represent a flexible system for studying the effects of chronic iron loading on hepatocytes. Images Figure 1 Figure 2 Figure 5 Figure 7 PMID:9502420

  20. Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans.

    PubMed

    Yang, Ying-Fei; Chen, Pei-Jen; Liao, Vivian Hsiu-Chuan

    2016-05-01

    Nanoscale zerovalent iron (nZVI) is widely used with large scale for environmental remediation for in situ or ex situ applications. The potential impact of nZVI on biota at environmentally relevant concentrations needs to be elucidated. In this study, the reproductive toxicities of three irons species: carboxymethyl cellulose (CMC)-stabilized nZVI, nanoscale iron oxide (nFe3O4), and ferrous ion (Fe(II)aq) in the soil-dwelling nematode Caenorhabditis elegans were examined. In addition, the generational transfer of reproductive toxicity of CMC-nZVI on C. elegans was investigated. The results showed that CMC-nZVI, nFe3O4, and Fe(II)aq did not cause significant mortality after 24 h exposure at the examined concentrations. Reproductive toxicity assays revealed that CMC-nZVI, nFe3O4, and Fe(II)aq significantly decreased offsprings in parental generation (F0) in accompany with the increased intracellular reactive oxygen species (ROS). Furthermore, the reproductive toxicity of CMC-nZVI at environmentally relevant concentrations was transferrable from the F0 to the F1 and F2 generations, but then recovered in the F3 and F4 generations. Further evidence showed that total irons were accumulated in the F0 and F1 generations of C. elegans after CMC-nZVI parental exposure. This study demonstrated that environmentally relevant concentrations of CMC-nZVI induced multigenerational reproductive toxicity which can be ascribed to its high production of ROS in F0 generation, toxicity of Fe(II)aq, and iron accumulation in C. elegans. Since nZVI is widely used for environmental remediation, considering the multigenerational toxicity, this study thus implicates a potential environmental risk of nZVI-induced nanotoxicity in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of feeding higher concentrations of limiting amino acids on performance, slaughter variables and nitrogen retention in broiler chicken fed graded levels of toasted guar (Cyamopsis tetragonoloba) meal.

    PubMed

    Rao, S V Rama; Raju, M V L N; Prakash, B; Rajkumar, U; Srilatha, T; Reddy, E P K

    2018-06-01

    An experiment was conducted to study the effect of supplementing higher concentrations (100 vs. 110%) of critical amino acids (CAA) on performance (body weight gain - BWG, feed efficiency - FE), slaughter variables and nitrogen retention in broiler chicken (1-6 weeks of age) fed graded levels of toasted guar meal (TGM) as a protein source in diets. The TGM was included at five graded concentrations (0, 50, 100, 150and200 g/kg) in iso-caloric and iso-protein diets with either the recommended concentration (100%) of CAA (lysine, total sulphur amino acids, threonine, tryptophan and valine) or at 10% higher (110%) concentration. A metabolism trial of three-day duration was conducted during sixth week of age to study nitrogen retention. The TGM levels and CAA concentration at 21 or 42 d of age did not influence BWG, FI and FE. BWG was not affected with inclusion of TGM up to 100 g/kg in starter and overall production (1 - 42 d of age) phases. The FE improved with TGM supplementation during starter phase, while at the end of experiment (42 d), FE was depressed by inclusion of TGM in dose dependant manner. All performance variables improved with increase in concentration of CAA from 100 to 110%. Breast meat weight improved and abdominal fat weight reduced with higher levels of CAA in diet. Retention of nitrogen reduced with increase in level of TGM in broiler diet. Increasing concentrations of CAA in diet improved nitrogen retention. It was concluded that TGM could be incorporated up to 100 g/kg with 100% CAA and up to 150 g/kg with 110% CAA without affecting performance. Increasing CAA concentration (110%) in diets significantly improved BWG and FE (21 and 42 d), breast meat weight and nitrogen retention in broiler chicken.

  2. Acute and subacute response of iron, zinc, copper and selenium in pigs experimentally infected with Actinobacillus pleuropneumoniae.

    PubMed

    Humann-Ziehank, Esther; Menzel, Anne; Roehrig, Petra; Schwert, Barbara; Ganter, Martin; Hennig-Pauka, Isabel

    2014-10-01

    This study was performed to characterise the response of iron (Fe), zinc (Zn), copper (Cu) and selenium (Se) in bacterial-induced porcine acute phase reaction (APR). Twenty piglets were challenged by aerosolic infection with Actinobacillus pleuropneumoniae (A.pp.) serotype 2, ten piglets serving as controls. Blood sampling was done initially and at day 4 and 21 after infection, collection of liver tissue was done at day 21 (autopsy). A.pp.-infection caused fever and respiratory symptoms. APR at day 4 after infection was marked by an increase in total white blood cells, granulocytes and monocytes in whole blood samples and an increase in globulin/albumin ratio (G/A), α2-globulins, C-reactive protein, haptoglobin, ceruloplasmin (Cp), Cu and Se in serum. Concurrently, there was a decrease in haemoglobin (Hb) and packed cell volume (PCV) in whole blood as well as a decrease in albumin, transferrin, total iron binding capacity and Fe in serum and Zn in plasma. The subacute stage at day 21 was characterised by progressively increased concentrations of G/A, β-globulins and γ-globulins reflecting the specific immune reaction. Hb and PCV showed further decreases, all other parameters returned to the initial concentrations. Glutathione peroxidase activity in plasma and liver tissue remained unaffected by A.pp.-infection. The liver concentration (day 21) of Zn was found to be higher, that of Se was lower in the A.pp.-group, whereas hepatic concentrations of Cu and Fe were not affected by A.pp.-infection. In summary, the acute and subacute stages of A.pp.-infection were accurately characterised by the APR-related parameters. Se was only marginally affected by the A.pp.-infection. The elevated plasma Cu concentration may be a side effect of the transient hepatic induction of Cp synthesis. Zn responded, being distinctly reduced in plasma and probably having been sequestered in the liver tissue. Reduction in serum Fe can be regarded as an unspecific defence mechanism in A.pp.-infection to withdraw Fe from bacterial acquisition systems.

  3. Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system.

    PubMed

    Simões da Costa, A M; Delgadillo, I; Rudnitskaya, A

    2014-11-01

    An array of 10 potentiometric chemical sensors has been applied to the detection of total Fe, Cu, Pb and Cd content in digested wine. As digestion of organic matter of wine is necessary prior to the trace metal detection using potentiometric sensors, sample preparation procedures have been optimized. Different variants of wet and microwave digestion and dry ashing, 14 conditions in total, have been tested. Decomposition of organic matter was assessed using Fourier transform mid-infrared spectroscopy and total phenolic content. Dry ashing was found to be the most effective method of wine digestion. Measurements with sensors in individual solutions of Fe(III), Cu(II), Pb(II) and Cd(II) prepared on different backgrounds have shown that their detection limits were below typical concentration levels of these metals in wines and, in the case of Cu, Pb and Cd below maximum allowed concentrations. Detection of Fe in digested wine samples was possible using discrete iron-sensitive sensors with chalcogenide glass membranes with RMSEP of 0.05 mmol L(-1) in the concentration range from 0.0786 to 0.472 mmol L(-1). Low concentration levels of Cu, Pb and Cd in wine and cross-sensitivity of respective sensors resulted in the non-linearity of their responses, requiring back-propagation neural network for the calibration. Calibration models have been calculated using measurements in the model mixed solutions containing all three metals and a set of digested wine sample. RMSEP values for Cu, Pb and Cd were 3.9, 39 and 1.2 μmol L(-1) in model solutions and 2, 150 and 1 μmol L(-1) in digested wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil.

    PubMed

    da Silva, Yuri Jacques Agra Bezerra; do Nascimento, Clístenes Williams Araújo; Cantalice, José Ramon Barros; da Silva, Ygor Jacques Agra Bezerra; Cruz, Cinthia Maria Cordeiro Atanázio

    2015-09-01

    Determining heavy metal background concentrations in soils is fundamental in order to support the monitoring of potentially contaminated areas. This is particularly important to areas submitted to high environmental impact where an intensive and local monitoring is required. To this end, the aim of this study was to establish background concentrations and quality reference values (QRVs) for the heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg in an environmentally impacted watershed from Brazil. Geochemical associations among Fe, Mn, and trace elements were also assessed to provide an alternative tool for establishing background concentrations. A total of one hundred and four samples comprised twenty-six composite soil samples from areas of native forest or minimal anthropic influence. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES, except for As and Hg measured by atomic absorption spectrophotometer. Background concentrations of heavy metals in soils had the following decreasing order: Fe > Mn > Zn > Cr > Pb > Ni > Cu > As > Cd > Hg. These values were usually lower than those observed in the international and national literature. The QRVs for Ipojuca watershed followed the order (mg kg(-1)) Fe (13,020.40) > Mn (91.80) > Zn (30.12) > Cr (15.00) > Pb (13.12) > Cu (3.53) > Ni (3.30) > As (0.51) > Cd (0.08) > Hg (0.04). Significant correlation among Fe, Mn, and heavy metals shows that solubilization by the method 3051A provides a reasonable estimate for predicting background concentrations for Cd, Cr, and Cu as well as Zn, Cr, Cu, and Ni.

  5. Selenium and other elements in juvenile striped bass from the San Joaquin Valley and San Francisco Estuary, California

    USGS Publications Warehouse

    Saiki, Michael K.; Palawski, Donald U.

    1990-01-01

    Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the San Joaquin Valley and San Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the San Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the San Joaquin River.

  6. Concentration, solubility and deposition flux of atmospheric particulate nutrients over the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Hui; Zhang, Jing; Gao, Hui-Wang; Tan, Sai-Chun; Yao, Xiao-Hong; Ren, Jing-Ling

    2013-12-01

    Satellite images showed that two large dust storms swept over the Yellow Sea from 31 Mach to 1 April 2007; both were accompanied by precipitation. Three to four days after the dust episodes, blooms occurred in the Yellow Sea. As an important and potential controlling factor of the bloom, nutrients in the total suspended particle (TSP) and size-segregated particle samples during the cruise campaign were measured and their atmospheric deposition fluxes of nutrients are reported in this paper. Concentrations of total P and TIN (NH4+, NO2- and NO3-) in TSP varied from 0.01 to 1.05 μg m-3, and from 1.21 to 22.28 μg m-3, with the maximum occurring concurrently with the dust storm events. In addition, the measured solubility of Fe in these particles varied from 1.0 to 20.1%, while it ranged from 0.8 to 15% for Al. The total deposition fluxes of Asian dust as well as the contained nutrients were estimated on the basis of an episodic increment of the measured concentration of dissolved Al in the surface ocean during the dust events. The estimated fluxes of atmospheric deposition of soluble Fe, P and inorganic nitrogen over the Yellow Sea during the dust episodes were 42.5±10.9, 10.3±2.6 and 772.0±198.0 mg m-2, respectively. The estimated fluxes of nutrients via dry atmospheric deposition accounted for only ~2% of the total fluxes. The deposition fluxes of particulate Fe and P during the two dust storm events associated with precipitation were about 500-1000 times of that daily averaged flux during non-dust days, indicating the importance of the episodic inputs to the annual budget of these metals deposited into the ocean.

  7. The effect of dietary cation-anion difference concentration and cation source on milk production and feed efficiency in lactating dairy cows.

    PubMed

    Iwaniuk, M E; Weidman, A E; Erdman, R A

    2015-03-01

    Feed costs currently account for 55% or more of the total cost of milk production in US dairy herds, and dairy producers are looking for strategies to improve feed efficiency [FE; 3.5% fat-corrected milk (FCM) per dry matter (DM) intake]. Increasing dietary cation-anion difference [DCAD; Na+K-Cl (mEq/kg of DM)] has been shown to increase milk production, FCM, and FE. However, the optimal DCAD concentration for maximal FE has yet to be determined. The objectives of this research were to test the effects of DCAD concentration and cation source on dairy FE. Sixty Holstein dairy cows (20 cows per experiment) were used in three 4×4 Latin square design experiments with 3-wk experimental periods. In experiments 1 and 2, we tested the effect of DCAD concentration: cows were fed a basal diet containing ~250 mEq/kg of DM DCAD that was supplemented with potassium carbonate at 0, 50, 100, and 150 mEq/kg of DM or 0, 125, 250, and 375 mEq/kg of DM in experiments 1 and 2, respectively. In experiment 3, we tested the effect of cation source: sodium sesquicarbonate replaced 0, 33, 67, and 100% of the supplemental potassium carbonate (150 mEq/kg of DM DCAD). The DCAD concentration had no effect on milk production, milk protein concentration, or milk protein yield in experiments 1 and 2. Dry matter intake was not affected by DCAD concentration in experiment 1 or by cation source in experiment 3. However, DMI increased linearly with increasing DCAD in experiment 2. We detected a linear increase in milk fat concentration and yield with increasing DCAD in experiments 1 and 2 and by substituting sodium sesquicarbonate for potassium carbonate in experiment 3. Increased milk fat concentration with increasing DCAD led to increases in 3.5% FCM in experiments 1 and 2. Maximal dairy FE was achieved at a DCAD concentration of 426 mEq/kg of DM in experiments 1 and 2 and by substituting Na for K in experiment 3. The results of these experiments suggest that both DCAD concentration and the cation source used to alter DCAD concentration have effects on milk fat content and yield and dairy FE. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Gas-liquid hybrid discharge-induced degradation of diuron in aqueous solution.

    PubMed

    Feng, Jingwei; Zheng, Zheng; Luan, Jingfei; Li, Kunquan; Wang, Lianhong; Feng, Jianfang

    2009-05-30

    Degradation of diuron in aqueous solution by gas-liquid hybrid discharge was investigated for the first time. The effect of output power intensity, pH value, Fe(2+) concentration, Cu(2+) concentration, initial conductivity and air flow rate on the degradation efficiency of diuron was examined. The results showed that the degradation efficiency of diuron increased with increasing output power intensity and increased with decreasing pH values. In the presence of Fe(2+), the degradation efficiency of diuron increased with increasing Fe(2+) concentration. The degradation efficiency of diuron was decreased during the first 4 min and increased during the last 10 min with adding of Cu(2+). Decreasing the initial conductivity and increasing the air flow rate were favorable for the degradation of diuron. Degradation of diuron by gas-liquid hybrid discharge fitted first-order kinetics. The pH value of the solution decreased during the reaction process. Total organic carbon removal rate increased in the presence of Fe(2+) or Cu(2+). The generated Cl(-1), NH(4)(+), NO(3)(-), oxalic acid, acetic acid and formic acid during the degradation process were also detected. Based on the detected Cl(-1) and other intermediates, a possible degradation pathway of diuron was proposed.

  9. Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS).

    PubMed

    de Jong, Jeroen; Schoemann, Véronique; Tison, Jean-Louis; Becquevort, Sylvie; Masson, Florence; Lannuzel, Delphine; Petit, Jérôme; Chou, Lei; Weis, Dominique; Mattielli, Nadine

    2007-04-18

    A novel analytical technique for isotopic analysis of dissolved and particulate iron (Fe) from various marine environments is presented in this paper. It combines coprecipitation of dissolved Fe (DFe) samples with Mg(OH)(2), and acid digestion of particulate Fe (PFe) samples with double pass chromatographic separation. Isotopic data were obtained using a Nu Plasma MC-ICP-MS in dry plasma mode, applying a combination of standard-sample bracketing and external normalization by Cu doping. Argon interferences were determined prior to each analysis and automatically subtracted during analysis. Sample size can be varied between 200 and 600 ng of Fe per measurement and total procedural blanks are better than 10 ng of Fe. Typical external precision of replicate analyses (1S.D.) is +/-0.07 per thousand on delta(56)Fe and +/-0.09 per thousand on delta(57)Fe while typical internal precision of a measurement (1S.E.) is +/-0.03 per thousand on delta(56)Fe and +/-0.04 per thousand on delta(57)Fe. Accuracy and precision were assured by the analysis of reference material IRMM-014, an in-house pure Fe standard, an in-house rock standard, as well as by inter-laboratory comparison using a hematite standard from ETH (Zürich). The lowest amount of Fe (200 ng) at which a reliable isotopic measurement could still be performed corresponds to a DFe or PFe concentration of approximately 2 nmol L(-1) for a 2 L sample size. To show the versatility of the method, results are presented from contrasting environments characterized by a wide range of Fe concentrations as well as varying salt content: the Scheldt estuary, the North Sea, and Antarctic pack ice. The range of DFe and PFe concentrations encountered in this investigation falls between 2 and 2000 nmol L(-1) Fe. The distinct isotopic compositions detected in these environments cover the whole range reported in previous studies of natural Fe isotopic fractionation in the marine environment, i.e. delta(56)Fe varies between -3.5 per thousand and +1.5 per thousand. The largest fractionations were observed in environments characterized by redox changes and/or strong Fe cycling. This demonstrates the potential use of Fe isotopes as a tool to trace marine biogeochemical processes involving Fe.

  10. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    PubMed

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Distribution of dissolved labile and particulate iron and copper in Terra Nova Bay polynya (Ross Sea, Antarctica) surface waters in relation to nutrients and phytoplankton growth

    NASA Astrophysics Data System (ADS)

    Rivaro, Paola; Ianni, Carmela; Massolo, Serena; Abelmoschi, M. Luisa; De Vittor, Cinzia; Frache, Roberto

    2011-05-01

    The distribution of the dissolved labile and of the particulate Fe and Cu together with dissolved oxygen, nutrients, chlorophyll a and total particulate matter was investigated in the surface waters of Terra Nova Bay polynya in mid-January 2003. The measurements were conducted within the framework of the Italian Climatic Long-term Interactions of the Mass balance in Antarctica (CLIMA) Project activities. The labile dissolved fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The dissolved labile Fe ranges from below the detection limit (0.15 nM) to 3.71 nM, while the dissolved labile Cu from below the detection limit (0.10 nM) to 0.90 nM. The lowest concentrations for both metals were observed at 20 m depth (the shallowest depth for which metals were measured). The concentration of the particulate Fe was about 5 times higher than the dissolved Fe concentration, ranging from 0.56 to 24.83 nM with an average of 6.45 nM. The concentration of the particulate Cu ranged from 0.01 to 0.71 nM with an average of 0.17 nM. The values are in agreement with the previous data collected in the same area. We evaluated the role of the Fe and Cu as biolimiting metals. The N:dissolved labile Fe ratios (18,900-130,666) would or would not allow a complete nitrate removal, on the basis of the N:Fe requirement ratios that we calculated considering the N:P and the C:P ratios estimated for diatoms. This finding partially agrees with the Si:N ratio that we found (2.29). Moreover we considered a possible influence of the dissolved labile Cu on the Fe uptake process.

  12. Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt

    NASA Astrophysics Data System (ADS)

    Redwan, Mostafa; Elhaddad, Engy

    2017-10-01

    This study was carried out to investigate the seasonal variability and distribution of heavy metals ;HMs; (Fe, Mn, Co, Cr, Cu, Ni, Pb, Zn and V) in the bottom sediments of Lake Qaroun, in Egypt. The samples were collected from 10 sites in summer and winter seasons in 2015. Total metals concentrations were measured using inductively coupled plasma spectrometer. Multivariate techniques were applied to analyse the distribution and potential source of heavy metals. The mean seasonal concentrations follow a descending order of Fe > Mn > V > Zn > Cr > Ni > Cu > Co > Pb. The mean concentrations of HMs in sediments during summer were higher than the concentrations during winter and above the average world shale values, except for Pb, suggesting potential adverse toxicity to aquatic organisms. All metals showed enrichment during summer and winter at sites S3 and S5 in the southeastern parts of the lake due to the heavy discharge of contaminants from El-Bats and El-Wadi drains. Principal component analysis results suggested two principal components controlling HMs variability in sediments, which accounted for 63.9% (factor 1: Co, Cr, Cu, Ni, Zn, Pb and V), 15.9% (factor 2: Mn and Fe) during summer, and 76.7% (factor 1: Fe, Co, Cr, Cu, Ni, Zn, Pb and V), 13.8% (factor 2: Mn) during winter of the total variance. Geo-accumulation index (Igeo) showed some pollution risk at the southeastern and southern parts (sites S3 and S5). Dilution during winter, concentration during summer, impact of non-point sources from different agricultural, industrial, municipal sewage and fish farms in the southern part of Lake Qaroun, adsorption and salt dissolution reactions and lithogenic sources are the main controlling factors for HMs in the study area. Monitoring of contaminant discharge at Lake Qaroun should be introduced for future remediation and management strategies.

  13. Enhancing effect of Fe2+ on the formaldehyde production from trimethylamine N-oxide decomposition catalyzed by the extract of Harpadon nehereus kidney

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Zhou, Deqing; Zhao, Feng

    2011-03-01

    The effects of Fe2+ on the trimethylamine N-oxide (TMAO) demethylating activity of the Harpadon nehereus kidney extract were studied in this research. The activity of the kidney extract was presumably inhibited by ethylene diamine tetra-acetic acid (EDTA), which indicates that the kidney extract contains an enzyme or enzyme system with metal cations as activator. Activity of the kidney extract was enhanced significantly when Fe2+ was added into the model system in vitro. As the concentration of Fe2+ increased, the decomposing rate of TMAO increased rapidly until TMAO decomposed completely. The activity of the kidney extract was also enhanced by reductant such as ascorbic acid. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was employed to determine the content of total iron in a number of fishery products. Significant positive correlation between the contents of total iron and endogenous formaldehyde (FA) was found, especially in marine products.

  14. Trace metals in bulk precipitation and throughfall in a suburban area of Japan

    NASA Astrophysics Data System (ADS)

    Hou, H.; Takamatsu, T.; Koshikawa, M. K.; Hosomi, M.

    Throughfall and bulk precipitation samples were collected monthly for 1.5 years over bare land and under canopies of Japanese cedar ( Cryptomeria japonica), Japanese red pine ( Pinus densiflora), Japanese cypress ( Chamaecyparis obtusa), and bamboo-leafed oak ( Quercus myrsinaefolia) in a suburban area of Japan. Samples were analyzed for dissolved Al, Mn, Fe, Cu, Zn, Ag, In, Sn, Sb and Bi by ICP-AES and ICP-MS. The metal concentrations were higher in throughfall, especially that of C. japonica, than bulk precipitation. Enrichment ratios (ERs: ratios of metal concentrations in throughfall to those in bulk precipitation) ranged from 2.5 (Zn) to 5.3 (Ag) (3.9 on average), and ERs for slightly soluble metals were generally higher than those for easily soluble metals. Concentrations of Mn, Fe, Cu, and Zn accounted for 99% of the total concentration of heavy metals in rainwater, whereas those of rare metals such as Ag, In, Sn, and Bi totaled <0.23%. Average concentrations of rare metals were 0.002 and 0.010 μg l -1 for Ag, 0.001 and 0.005 μg l -1 for In, 0.062 and 0.21 μg l -1 for Sn, and 0.006 and 0.023 μg l -1 for Bi in bulk precipitation and throughfall, respectively. The metal concentrations in rainwater were negatively correlated to the volume of rainwater, indicating that washout is the main mechanism that incorporates metals into rainwater. From the enrichment factors, that is, (X/Al) rain/(X/Al) crust, metals other than Fe were shown to be more enriched in rainwater than in the Earth's crust, including those present as a result of leaching from soil dust (Mn) and from anthropogenic sources (Cu, Zn, Ag, In, Sn, Sb, and Bi).

  15. Impact of Fe(III)-OM complexes and Fe(III) polymerization on SOM pools reactivity under different land uses

    NASA Astrophysics Data System (ADS)

    Giannetta, B.; Plaza, C.; Zaccone, C.; Siebecker, M. G.; Rovira, P.; Vischetti, C.; Sparks, D. L.

    2017-12-01

    Soil organic matter (SOM) protection and long-term accumulation are controlled by adsorption to mineral surfaces in different ways, depending on its molecular structure and pedo-climatic conditions. Iron (Fe) oxides are known to be key regulators of the soil carbon (C) cycle, and Fe speciation in soils is highly dependent on environmental conditions and chemical interactions with SOM. However, the molecular structure and hydrolysis of Fe species formed in association with SOM is still poorly described. We hypothesize the existence of two pools of Fe which interact with SOM: mononuclear Fe(III)-SOM complexes and precipitated Fe(III) hydroxides. To verify our hypothesis, we investigated the interactions between Fe(III) and physically isolated soil fractions by means of batch experiments at pH 7. Specifically, we examined the fine silt plus clay (FSi+C) fraction, obtained by ultrasonic dispersion and wet sieving. The soil samples spanned several land uses, including coniferous forest (CFS), grassland (GS), technosols (TS) and agricultural (AS) soils. Solid phase products and supernatants were analyzed for C and Fe content. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis were also performed. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to assess the main C functional groups involved in C complexation and desorption experiments. Preliminary linear combination fitting (LCF) of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra suggested the formation of ferrihydrite-like polymeric Fe(III) oxides in reacted CFS and GS samples, with higher C and Fe concentration. Conversely, mononuclear Fe(III) OM complexes dominated the speciation for TS and AS samples, characterized by lower C and Fe concentration, inhibiting the hydrolysis and polymerization of Fe (III). This approach will help revealing the mechanisms by which SOM pools can control Fe(III) speciation, and will elucidate how both Fe(III)-OM complexes and Fe(III) polymerization can affect SOM reactivity and, consequently, its mean residence time in different ecosystems.

  16. The Hydrothermal System at Home Plate in Gusev Crater, Mars: Formation of High Silica Material by Acid-Sulfate Alteration of Basalt

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Yen, A.; Clark, B. C.; Gnaff, T. G.; Arvidson, R. E.; Squyres, S. W.

    2008-01-01

    The Alpha Particle X-ray Spectrometer (APXS) instrument on the Mars Exploration Rover (MER) Spirit measured three targets on or adjacent to Home Plate in Gusev Crater that have unusually high SiO2 concentrations (68% to 91%), unusually low FeO concentrations (1% to 7%, with total Fe as FeO), and unusually high TiO2/FeO ratios (0.2 to 1.2 by weight) [1]. Two targets (Kenosha Comets and Lefty Ganote) are located on high albedo soil (Gertrude Weise) that was exposed by the rover wheels, and one target is a float rock called Fuzzy Smith. Kenosha Comets has the highest SiO2 concentration, lowest FeO concentration, and highest TiO2/FeO ratio. Mineralogical evidence from the MER Miniature Thermal Emission Spectrometer (Mini-TES) suggests that the SiO2 is present as amorphous (noncrystalline) SiO2 at Gertrude Weise and nearby targets [2,3]. Mini-TES data were not acquired for Fuzzy Smith. Home Plate is considered to have an explosive volcanic origin, resulting when basaltic magma came into contact with ground water or ice [4]. Within 50 m to 1 km of Home Plate are sulfate rich soil deposits (Paso Robles class soils with 22-35% SO3) which are considered to be probable fumarolic and/or hydrothermal deposits associated with the volcanism [5]. We develop the model here, suggested by [5], that the high-silica materials are another manifestation of acid-sulfate processes associated with fumarolic and hydrothermal activity at Home Plate. This is done by analogy with basaltic materials altered by acid sulfate processes on the Island of Hawaii.

  17. Iron in the aquifer system of Suffolk County, New York, 1990–98

    USGS Publications Warehouse

    Brown, Craig J.; Walter, Donald A.; Colabufo, Steven

    1999-01-01

    High concentrations of dissolved iron in ground water contribute to the biofouling of public-supply wells, and the treatment and remediation of biofouling are costly. Water companies on Long Island, N.Y., spend several million dollars annually to recondition, redevelop, and replace supply wells and distribution lines; treat dissolved iron with sequestering agents or by filtration; and respond to iron-related complaints by customers. This report summarizes the results of studies done by the U.S. Geological Survey, in cooperation with the Suffolk County Water Authority, to characterize the geochemistry and microbiology of iron in the aquifer system of Suffolk County. This information should be helpful for the siting and operation of supply wells.Concentrations of dissolved iron in Long Island's ground water, and the frequency of iron biofouling of wells, are highest in ground-water-discharge zones, particularly near the south shore. Ground water along a deep north-south flowpath of the Magothy aquifer in southwestern Suffolk County becomes anaerobic (oxygen deficient) and Fe(III) reducing at a distance of 8 to 10 kilometers south of the ground-water divide, and this change coincides with the downgradient increase in dissolved iron concentrations. The distribution of organic carbon, and the distribution and local variations in reactivity of Fe(III), in Magothy aquifer sediments have resulted in localized differences in redox microenvironments. For example, Fe(III)-reducing zones are associated with anaerobic conditions, where relatively large amounts of Fe(III) oxyhydroxide grain coatings are present, whereas sulfate-reducing zones are associated with lignite-rich lenses of silt and clay and appear to have developed in response to the depletion of available Fe(III) oxyhydroxides. The sulfate-reducing zones are characterized by relatively low concentrations of dissolved iron (resulting from iron-disulfide precipitation) and may be large enough to warrant water-supply development.Specific-capacity and water-quality data from wells screened in the Magothy aquifer indicate that water from biofouled wells contains higher median concentrations of total and dissolved iron and manganese, total phosphate, and dissolved sulfate, and lower median concentrations of dissolved oxygen and alkalinity, and lower pH, than does water from unaffected wells. Corresponding data from wells screened in the upper glacial aquifer indicate that water from biofouled wells contains higher median concentrations of total and dissolved manganese and dissolved sulfate, and lower pH, than does water from unaffected wells.Filamentous bacteria were detected in 31 (or 72 percent) of the 43 biofilm samples obtained from biofouled wells during reconditioning. The predominant filamentous organism was Gallionella ferruginea, a major biofouling agent in the upper glacial and Magothy aquifers throughout Suffolk County. Mineral-saturation indices indicate that most of the well-encrusting material is deposited when the wells are shut down. Furthermore, the use of treated water (which has a high pH and sometimes high concentrations of dissolved iron) for pump prelubrication when wells are shut down could greatly increase the rate of iron oxidation.

  18. The use of Fenton's system in the yeast industry wastewater treatment.

    PubMed

    Zak, S

    2005-01-01

    The paper presents the results of the research conducted with the use of hydrogen peroxide and iron (II) sulfate or chloride in the chemical pretreatment of Saccharomyces cerevisae yeast industry wastewater. It was found that the use of Fenton's system permitted a high reduction of sugar-like substances and total decolorizing of non-sugar compounds. The level of COD reduction depended on the amount and mutual proportions of COD:Fe(II):H2O2, as well as a type of the applied salt Fe(II). For iron concentrations: 1000-4000 mg l(-1) with molar excess [H2O2]:[Fe(II)] - 2-14:1 and reaction pH - 3.1-3.4, very high reproducibility of results and the COD reduction exceeding 75% were obtained. For this range of the reagent concentrations, the distribution of COD reduction values correlated with the equation: COD = - Ax4 + Bx3 - Cx2 + Dx - E (where: x = [H2O2]:[Fe(II)]). Additional neutralization with the use of lime milk made the secondary reduction of CODr(CaO) value possible, which resulted in the reduction of the total CODT above 90%. The method enabled us to consider the possibility of the preliminary chemical elimination of the wastewater load, which might increase the effectiveness of working wastewater treatment plants, especially in cases of continuous and occasional overloads above the level assumed by the project.

  19. Chemical fractionation of heavy metals in urban soils of Guangzhou, China.

    PubMed

    Lu, Ying; Zhu, Feng; Chen, Jie; Gan, Haihua; Guo, Yanbiao

    2007-11-01

    Knowledge of the total concentration of heavy metals is not enough to fully assess the environmental impact of urban soils. For this reason, the determination of metal speciation is important to evaluate their environment and the mobilization capacity. Sequential extraction technique proposed by the former European Community Bureau of Reference (BCR) was used to speciate Cd, Cu, Fe, Mn, Ni, Pb, and Zn in urban soils from Guangzhou into four operationally defined fractions: HOAc extractable, reducible, oxidizable, and residual. The Cu, Fe, Ni, and Zn were predominantly located in the residual fraction, Pb in the reducible fraction, and Cd and Mn within the HOAc extractable fraction. The order of Cd in each fraction was generally HOAc extractable > reducible > residual > oxidizable; Cu and Fe were residual > reducible > oxidizable > HOAc extractable; Mn was HOAc extractable > residual > reducible > oxidizable; Ni and Zn were residual > reducible > HOAc extractable > oxidizable; and Pb was reducible > residual > oxidizable > HOAc extractable. Cadmium was identified as being the most mobile of the elements, followed by Mn, Zn, Ni, Cu, Pb and Fe. Iron-Mn oxides can play an important role in binding Cd, Cu, Ni, Pb, and Zn and in decreasing their proportion associated with the residual fraction in the soils. With total concentrations of Cd, Cu, Ni, Pb, Zn, and Mn increase, these metals more easily release and may produce more negative effects on the urban environment.

  20. Redox speciation of dissolved iron in the northeastern atlantic ocean.

    NASA Astrophysics Data System (ADS)

    Ussher, S. J.; Achterberg, E. P.; Worsfold, P. J.

    2003-04-01

    Dissolved iron (<0.2 micron) and iron(II) (<0.2 micron) distributions were determined during the Iron from Below and Iron from Above research cruises in the North Eastern Atlantic Ocean. The cruises were part of the EU Ironages project. Iron(II) was measured on-board ship using an iron(II) specific, automated flow injection analyser with luminol chemiluminescence detection [1]. Total dissolved iron (DFe) was determined in a land-based laboratory, using the same FI technique but with prior reduction of iron(III) to iron(II) [2]. The limits of detection for the methods were 5 -15 pM and 35 pM respectively, the analysis time was 8 - 10 minutes per sample (minimum of 3 replicates). The Iron from Below expedition took place over the European Continental Shelf, 200 km South West of Brittany (France) in March 2002. A transect between 47.61°N, 4.24°W and 46.00°N, 8.01°W was completed. Over the transect, the depth increased from 100 m to 5000 m. Iron(II) concentrations ranged between 10 and 100 pM and DFe between 0.2 and 1 nM, with the higher concentrations (Fe(II) ca. > 50 pM and DFe ca. > 0.8 nM) generally found in the shallow shelf waters. These observations imply that benthic inputs and sediment resuspension may form important inputs of dissolved iron and iron(II) in the shelf waters. Iron speciation measurements were also made for underway surface and shallow cast samples during the Iron from Above cruise October 2002. Fe(II) and DFe concentrations were typically 5 to 50 pM and 0.2 to 0.6 nM, respectively. Sampling was carried out within a grid in the Canary Basin around 5 degrees W of the Canary Islands, an area assumed to be strongly influenced by the Saharan dust plume. Observed Fe(II) concentrations are compared and ratioed to the DFe concentrations, and indicate that iron(II) forms an important fraction (between 5 and 15%) of the total dissolved iron concentration in the study areas. Data plots for surface samples are presented with the corresponding physical oceanographic and solar irradiance data. The concentrations of Fe(II) observed during our studies exceed the values predicted from thermodynamic equilibrium modelling. This indicates that there is a steady supply of Fe(II) (possibly from photoreduction and/or biological origins) and/or Fe(II) is prevented from oxidation through stabilisation mechanisms (possibly by organic ligands). [1] A. R. Bowie, E. P. Achterberg, P. N. Sedwick, S. Ussher, P. J. Worsfold, Environ. Sci. Technol., 36, (2002) 4600. [2] A. R. Bowie, E. P. Achterberg, R. F. C. Mantoura, P. J. Worsfold, Anal. Chim. Acta, 377, (1998) 113.

  1. Monothioarsenate Occurrence in Bangladesh Groundwater and Its Removal by Ferrous and Zero-Valent Iron Technologies.

    PubMed

    Planer-Friedrich, Britta; Schaller, Jörg; Wismeth, Fabian; Mehlhorn, Judith; Hug, Stephan J

    2018-05-15

    In most natural groundwaters, sulfide concentrations are low, and little attention has been paid to potential occurrence of thioarsenates (As V S n -II O 4- n 3- with n = 1-4). Thioarsenate occurrence in groundwater could be critical with regard to the efficiency of iron (Fe)-based treatment technologies because previous studies reported less sorption of thioarsenates to preformed Fe-minerals compared to arsenite and arsenate. We analyzed 273 groundwater samples taken from different wells in Bangladesh over 1 year and detected monothioarsenate (MTA), likely formed via solid-phase zero-valent sulfur, in almost 50% of all samples. Concentrations ranged up to >30 μg L -1 (21% of total As). MTA removal by locally used technologies in which zero-valent or ferrous Fe is oxidized by aeration and As sorbs or coprecipitates with the forming Fe(III)hydroxides was indeed lower than for arsenate. The presence of phosphate required up to three times as much Fe(II) for comparable MTA removal. However, in contrast to previous sorption studies on preformed Fe minerals, MTA removal, even in the presence of phosphate, was still higher than that of arsenite. The more efficient MTA removal is likely caused by a combination of coprecipitation and adsorption rendering the tested Fe-based treatment technologies suitable for As removal also in the presence of MTA.

  2. In-plane/out-of-plane disorder influence on the magnetic anisotropy of Fe{sub 1−y}Mn{sub y}Pt-L1{sub 0} bulk alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuadrado, R.; Catalan Institute of Nanoscience and Nanotechnology; Liu, Kai

    2016-03-21

    The random substitution of a non-magnetic species instead of Fe atoms in FePt-L1{sub 0} bulk alloy will permit to tune the magnetic anisotropy energy of this material. We have performed by means of first principles calculations a study of Fe{sub 1−y}Mn{sub y}Pt-L1{sub 0} (y = 0.0, 0.08, 0.12, 0.17, 0.22, and 0.25) bulk alloy for a fixed Pt concentration when the Mn species have ferro-/antiferromagnetic (FM,AFM) alignment at the same(different) atomic plane(s). This substitution will promote several in-plane lattice values for a fixed amount of Mn. Charge hybridization will change compared to the FePt-L1{sub 0} bulk due to this lattice variation leadingmore » to a site resolved magnetic moment modification. We demonstrate that this translates into a total magnetic anisotropy reduction for the AFM phase and an enhancement for the FM alignment. Several geometric configurations were taken into account for a fixed Mn concentration because of different possible Mn positions in the simulation cell.« less

  3. Analysis of Metal Element Distributions in Rice (Oryza sativa L.) Seeds and Relocation during Germination Based on X-Ray Fluorescence Imaging of Zn, Fe, K, Ca, and Mn

    PubMed Central

    Lu, Lingli; Tian, Shengke; Liao, Haibing; Zhang, Jie; Yang, Xiaoe; Labavitch, John M.; Chen, Wenrong

    2013-01-01

    Knowledge of mineral localization within rice grains is important for understanding the role of different elements in seed development, as well as for facilitating biofortification of seed micronutrients in order to enhance seeds’ values in human diets. In this study, the concentrations of minerals in whole rice grains, hulls, brown rice, bran and polished rice were quantified by inductively coupled plasma mass spectroscopy. The in vivo mineral distribution patterns in rice grains and shifts in those distribution patterns during progressive stages of germination were analyzed by synchrotron X-ray microfluorescence. The results showed that half of the total Zn, two thirds of the total Fe, and most of the total K, Ca and Mn were removed by the milling process if the hull and bran were thoroughly polished. Concentrations of all elements were high in the embryo regions even though the local distributions within the embryo varied between elements. Mobilization of the minerals from specific seed locations during germination was also element-specific. High mobilization of K and Ca from grains to growing roots and leaf primordia was observed; the flux of Zn to these expanding tissues was somewhat less than that of K and Ca; the mobilization of Mn or Fe was relatively low, at least during the first few days of germination. PMID:23451212

  4. Natural vs. Anthropogenic Contribution to Atmospheric Dust at Rural Site: Potential of Environmental Magnetism

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kapicka, A.; Grison, H.; Kotlik, B.; Zboril, R.; Korbelova, Z.

    2013-05-01

    Magnetic properties of environmental samples are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can help in assessing concentration and grain-size distribution of these minerals. This information can be helpful in estimating, e.g., the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of particulate matter ( PM1, PM2.5, PM10 and TSP - total suspended particles), collected over 32-48 hours in a small settlement in south Bohemia during heating and non-heating season. The site is rather remote, with negligible traffic and industrial contributions to air pollution. Thus, the suggested seasonal effect should be dominantly due to local (domestic) heating, burning wood or coal. Our results show typical differences in PMx concentration, which is much higher in the winter (heating) sample, accompanied by SEM analyses and magnetic data oriented on concentration and grain-size distribution of magnetite/maghemite particles. While PM concentrations are significantly higher in winter, differeces between concentration of Fe-oxides in summer and winter are not that significant. In both summer and winter, more FeO was in coarser PM10 than in the finer fractions. This is in good agreement with SEM observations. Grain-size sensitive parameters are different for summer and winter PMx samples, suggesting different source of PMx. It seems that domestic heating does not produce significant amount of FeO oxides in this site, its contribution during heating season compensates for the decay from natural sources (and/or agriculture) during summer. Our results prove the high sensitivity of magnetic methods in terms of concentration of ferrimagnetic Fe-oxides. However, their potential to discriminate unambiguously their origin is still questioned. This study is supported by the Czech Science Foundation through grant #P210/10/0554.; Fig. 1. Relative enhancement (determined as (Cheat/Cnon-heat) - 1) of atmospheric dust concentration and Fe-oxides content in heating and non-heating season.

  5. PCE DNAPL degradation using ferrous iron solid mixture (ISM).

    PubMed

    Lee, Hong-Kyun; Do, Si-Hyun; Batchelor, Bill; Jo, Young-Hoon; Kong, Sung-Ho

    2009-08-01

    Ferrous iron solid mixture (ISM) containing Fe(II), Fe(III), and Cl was synthesized for degradation of tetrachloroethene (PCE) as a dense non-aqueous phase liquid (DNAPL), and an extraction procedure was developed to measure concentrations of PCE in both the aqueous and non-aqueous phases. This procedure included adding methanol along with hexane in order to achieve the high extraction efficiency, particularly when solids were present. When PCE was present as DNAPL, dechlorination of PCE was observed to decrease linearly with respect to the total PCE concentration (aqueous and non-aqueous phases) and the concentration of PCE in the aqueous phase was observed to be approximately constant. In the absence of DNAPL, the rate of PCE degradation was observed to be the first-order with respect to the concentration in the aqueous phase. A kinetic model was developed to describe these observations and it was able to fit experimental data well. Increasing the concentration of Fe(II) in ISM increased the values of rate constants, while increasing the concentration of PCE DNAPL did not affect the value of the rate constant. The reactivity of ISM for PCE dechlorination might be close to that of Friedel's salt, and the accumulation of trichloroethylene (TCE) might imply the lower reactivity of ISM for degradation of TCE or the necessity of large amount of Fe(II) in ISM. TCE (the major chlorinated intermediate), ethene (the major non-chlorinated compound), acetylene and ethane were detected, which implied that both hydrogenolysis and beta-elimination were pathways of PCE DNAPL degradation on ISM.

  6. Diagnosis of Vitality in Skin Wounds in the Ligature Marks Resulting From Suicide Hanging.

    PubMed

    Legaz Pérez, Isabel; Falcón, Maria; Gimenez, M; Diaz, F Martínez; Pérez-Cárceles, M D; Osuna, E; Nuno-Vieira, D; Luna, A

    2017-09-01

    Ascertaining the vital origin of skin wounds is one of the most challenging problems in forensic pathology. The forensic literature describes biomarkers and methods for differentiating vital and postmortem wounds, although no clear conclusions have been reached. The aim of this study was to characterize human vital wounds by analyzing the concentrations of metallic ions and the expression of P-selectin and cathepsin D in skin wounds in the ligature marks in a cohort of suicidal hangings for which vitality was previously demonstrated.A total of 71 skin wounds were analyzed within a postmortem interval of 19 to 36 hours. The concentration of Fe, Zn, Mg, and Ca and the expression of P-selectin and cathepsin D were analyzed together and separately. The majority of autopsied suicidal hangings were men (86%) with complete hanging mode (60.7%) in which there was a high frequency of subcutaneous injuries (78.3%). High concentrations of Ca and Mg compared with Fe and Zn were found. Ca and Zn concentrations decreased, and Fe concentration increased with the seriousness of the injury. A high percentage of moderately negative expression of both proteins was correlated with subcutaneous injury and low or medium concentrations of Fe.In conclusion, the joint study of metallic ions and proteins allows to characterize and to differentiate an injured vital wound of noninjured skin, especially when the damage in the tissue affects to the majority of the structures of the skin, but these results will need to be complemented with other biomarkers in time-controlled samples to further help in the differentiation of vital and postmortem wounds.

  7. Fractionation study in bioleached metallurgy wastes using six-step sequential extraction.

    PubMed

    Krasnodebska-Ostrega, Beata; Pałdyna, Joanna; Kowalska, Joanna; Jedynak, Łukasz; Golimowski, Jerzy

    2009-08-15

    The stored metallurgy wastes contain residues from ore processing operations that are characterized by relatively high concentrations of heavy metals. The bioleaching process makes use of bacteria to recover elements from industrial wastes and to decrease potential risk of environmental contamination. Wastes were treated by solutions containing bacteria. In this work, the optimized six-stage sequential extraction procedure was applied for the fractionation of Ni, Cr, Fe, Mn, Cu and Zn in iron-nickel metallurgy wastes deposited in Southern Poland (Szklary). Fractionation and total concentrations of elements in wastes before and after various bioleaching treatments were studied. Analyses of the extracts were performed by ICP-MS and FAAS. To achieve the most effective bioleaching of Zn, Cr, Ni, Cu, Mn, Fe the usage of both autotrophic and heterotrophic bacteria in sequence, combined with flushing of the residue after bioleaching is required. 80-100% of total metal concentrations were mobilized after the proposed treatment. Wastes treated according to this procedure could be deposited without any risk of environmental contamination and additionally the metals could be recovered for industrial purposes.

  8. Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Labile-Fe(II) and other trace metals

    NASA Astrophysics Data System (ADS)

    Johansen, Anne M.; Hoffmann, Michael R.

    2003-07-01

    Ambient aerosol samples were collected over the Arabian Sea during the month of March of 1997, aboard the German R/V Sonne, as part of the German Joint Global Ocean Flux Study (JGOFS) project. This is the third study in a series of analogous measurements taken over the Arabian Sea during different seasons of the monsoon. Dichotomous high-volume collector samples were analyzed for ferrous iron immediately after collection, while trace metals, anions, and cations were determined upon return to the laboratory. The main crustal component was geochemically well represented by the average crustal composition and amounted to 5.94 ± 3.08 μg m-3. An additional crustal constituent of clay-like character, rich in water-soluble Ca and Mg, was seen in the fine fraction in air masses of Arabian origin. Total ferrous iron concentrations varied from 3.9 to 17.2 ng m-3 and averaged 9.8 ± 3.4 ng m-3, with 87.2% of Fe(II) present in the fine aerosol fraction. Fe(II) concentrations accounted for on average 1.3 ± 0.5% of the total Fe. While ferrous iron in the coarse fraction appeared to be correlated with the main crustal component, the fine Fe(II) fraction exhibited a more complex behavior. The anthropogenic contribution to the aerosol, as traced by Pb, Zn, and some anions and cations, was found to be considerably larger, especially during the first 10 days of this cruise, than in previously collected samples from the inter-monsoon and southwest monsoon of 1995.

  9. Efficient photocatalytic oxidation of arsenite from contaminated water by Fe2O3-Mn2O3 nanocomposite under UVA radiation and process optimization with experimental design.

    PubMed

    Eslami, Hadi; Ehrampoush, Mohammad Hassan; Esmaeili, Abbas; Ebrahimi, Ali Asghar; Salmani, Mohammad Hossein; Ghaneian, Mohammad Taghi; Falahzadeh, Hossein

    2018-09-01

    The efficiency of photocatalytic oxidation process in arsenite (As(III)) removal from contaminated water by a new Fe 2 O 3 -Mn 2 O 3 nanocomposite under UV A radiation was investigated. The effect of nanocomposite dosage, pH and initial As(III) concentration on the photocatalytic oxidation of As(III) were studied by experimental design. The synthesized nanocomposite had a uniform and spherical morphological structure and contained 49.83% of Fe 2 O 3 and 29.36% of Mn 2 O 3 . Based on the experimental design model, in photocatalytic oxidation process, the effect of pH was higher than other parameters. At nanocomposite concentrations of more than 12 mg L -1 , pH 4 to 6 and oxidation time of 30 min, photocatalytic oxidation efficiency was more than 95% for initial As(III) concentration of less than 500 μg L -1 . By decreasing pH and increasing the nanocomposite concentration, the photocatalytic oxidation efficiency was increased. Furthermore, by increasing the oxidation time from 10 to 240 min, in addition to oxidation of As(III) to arsenate (As(V)), the residual As(V) was adsorbed on the Fe 2 O 3 -Mn 2 O 3 nanocomposite and total As concentration was decreased. Therefore, Fe 2 O 3 -Mn 2 O 3 nanocomposite as a bimetal oxide, at low doses and short time, can enhance and improve the efficiency of the photocatalytic oxidation and adsorption of As(III) from contaminated water resources. Furthermore, the energy and material costs of the UV A /Fe 2 O 3 -Mn 2 O 3 system for photocatalytic oxidation of 1  mg L -1 As(III) in the 1 L laboratory scale reactor was 0.0051 €. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill.

    PubMed

    Pleasant, Saraya; O'Donnell, Amanda; Powell, Jon; Jain, Pradeep; Townsend, Timothy

    2014-07-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Air sparging and vadose zone aeration (VZA) were evaluated as remedial approaches at a closed, unlined municipal solid waste landfill in Florida, USA. The goal of aeration was to oxidize Fe and Mn to their respective immobile forms. VZA and shallow air sparging using a partially submerged well screen were employed with limited success (Phase 1); decreases in dissolved iron were observed in three of nine monitoring wells during shallow air sparging and in two of 17 wells at VZA locations. During Phase 2, where deeper air sparging was employed, dissolved iron levels decreased in a significantly greater number of monitoring wells surrounding injection points, however no radial pattern was observed. Additionally, in wells affected positively by air sparging (mean total iron (FeTOT) <4.2mg/L, after commencement of air sparging), rising manganese concentrations were observed, indicating that the redox potential of the groundwater moved from an iron-reducing to a manganese-reducing environment. The mean FeTOT concentration observed in affected monitoring wells throughout the study was 1.40 mg/L compared to a background of 15.38 mg/L, while the mean Mn concentration was 0.60 mg/L compared to a background level of 0.27 mg/L. Reference wells located beyond the influence of air sparging areas showed little variation in FeTOT and Mn, indicating the observed effects were the result of air injection activities at study locations and not a natural phenomenon. Air sparging was found effective in intercepting plumes of dissolved Fe surrounding municipal landfills, but the effect on dissolved Mn was contrary to the desired outcome of decreased Mn groundwater concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Studies on the erythron and the ferrokinetic responses in beagles adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Beckman, D. A.; Evans, J. W.; Oyama, J.

    1978-01-01

    Red cell survival, ferrokinetics, and hematologic parameters were investigated in beagle dogs exposed to chronic hypergravity (2.6 Gx). Ineffective erythropoiesis, red cell mass, plasma volume, and Cr-51-elution were significantly increased; maximum Fe-59 incorporation was decreased; and there was no change in the mean erythrocyte life span following autologous injection of Cr-51-labeled red cells and Fe-59-labeled transferrin. Red cell count, F(cells), total body hemoglobin (Hb), susceptability to osmotic lysis, and differential reticulocyte count were increased. White blood cell count, venous blood %Hb, mean cell volume, mean cell Hb, mean cell Hb concentration, and serum iron were decreased. No changes were observed for body mass, mg Fe per g Hb, iron binding capacity, percent saturation of iron carrying capacity, or the electrophoretic mobility of purified Hb. This study indicated that chronic exposure to hypergravity induced changes in red cell size, volume, total mass, and membrane permeability.

  12. [Spatial variations of heavy metals in precipitation at Mount Taishan region].

    PubMed

    Wang, Yan; Liu, Xiao-Huan; Jin, Ling-Ren; Yue, Tai-Xing; Wang, De-Zhong; Wang, Wen-Xing

    2007-11-01

    Zn, Al, Mn, Fe, Pb, Cu, Ni, Cr, As, Cd in rain samples collected from two sites at Mount Taishan region were determined by ICP-MS, to evaluate the spatial variation characteristics of heavy metals in precipitation. Individual rain events were sampled for one whole year from Jan. to Dec. 2006. High concentrations of heavy metals were found at both sites, indicating serious heavy metal pollution. Zn was the most abundant element, accounting for 54% - 57% of the total metals concentrations. Its volume-weighted mean concentrations of precipitation at Mt-top and Mt-foot sites were 92.94 microg/L and 70.41 microg/L respectively. The following elements were Fe, Al and Mn and their concentrations were much higher than toxic heavy metals (As, Cd and Cd) except Pb (8.04 microg/L and 7.79 microg/L at two sites respectively). Comparison results between two sites suggested that heavy metal characteristics of precipitation at two sites were different, due to the influences of different ambient air conditions. Correlation analysis between two sites showed that Al, Mn, Fe, As, Cd, Pb influenced by air mass origin greatly, while Ni, Cu, Zn affected by other different factors.

  13. Diversity of the Sediment Microbial Community in the Aha Watershed (Southwest China) in Response to Acid Mine Drainage Pollution Gradients

    PubMed Central

    Sun, Weimin; Sun, Min; Dong, Yiran; Ning, Zengping; Xiao, Enzong; Tang, Song; Li, Jiwei

    2015-01-01

    Located in southwest China, the Aha watershed is continually contaminated by acid mine drainage (AMD) produced from upstream abandoned coal mines. The watershed is fed by creeks with elevated concentrations of aqueous Fe (total Fe > 1 g/liter) and SO42− (>6 g/liter). AMD contamination gradually decreases throughout downstream rivers and reservoirs, creating an AMD pollution gradient which has led to a suite of biogeochemical processes along the watershed. In this study, sediment samples were collected along the AMD pollution sites for geochemical and microbial community analyses. High-throughput sequencing found various bacteria associated with microbial Fe and S cycling within the watershed and AMD-impacted creek. A large proportion of Fe- and S-metabolizing bacteria were detected in this watershed. The dominant Fe- and S-metabolizing bacteria were identified as microorganisms belonging to the genera Metallibacterium, Aciditerrimonas, Halomonas, Shewanella, Ferrovum, Alicyclobacillus, and Syntrophobacter. Among them, Halomonas, Aciditerrimonas, Metallibacterium, and Shewanella have previously only rarely been detected in AMD-contaminated environments. In addition, the microbial community structures changed along the watershed with different magnitudes of AMD pollution. Moreover, the canonical correspondence analysis suggested that temperature, pH, total Fe, sulfate, and redox potentials (Eh) were significant factors that structured the microbial community compositions along the Aha watershed. PMID:25979900

  14. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides.

    PubMed

    Pi, Kunfu; Wang, Yanxin; Xie, Xianjun; Ma, Teng; Liu, Yaqing; Su, Chunli; Zhu, Yapeng; Wang, Zhiqiang

    2017-02-01

    Severe health problems due to elevated arsenic (As) in groundwater have made it urgent to develop cost-effective technologies for As removal. This field experimental study tested the feasibility of in-situ As immobilization via As incorporation into newly formed biogenic Fe(II) sulfides in a typical As-affected strongly reducing aquifer at the central part of Datong Basin, China. After periodic supply of FeSO 4 into the aquifer for 25 d to stimulate microbial sulfate reduction, dissolved sulfide concentrations increased during the experiment, but the supplied Fe(II) reacted quickly with sulfide to form Fe(II)-sulfides existing majorly as mackinawite as well as a small amount of pyrite-like minerals in sediments, thereby restricting sulfide build-up in groundwater. After the completion of field experiment, groundwater As concentration decreased from an initial average value of 593 μg/L to 159 μg/L, with an overall As removal rate of 73%, and it further declined to 136 μg/L adding the removal rate up to 77% in 30 d after the experiment. The arsenite/As total ratio gradually increased over time, making arsenite to be the predominant species in groundwater residual As. The good correlations between dissolved Fe(II), sulfide and As concentrations, the increased abundance of As in newly-formed Fe sulfides as well as the reactive-transport modeling results all indicate that As could have been adsorbed onto and co-precipitated with Fe(II)-sulfide coatings once microbial sulfate reduction was stimulated after FeSO 4 supply. Under the strongly reducing conditions, sulfide may facilitate arsenate reduction into arsenite and promote As incorporation into pyrite or arsenopyrite. Therefore, the major mechanisms for the in-situ As-contaminated groundwater remediation can be As surface-adsorption on and co-precipitation with Fe(II) sulfides produced during the experimental period. Copyright © 2016. Published by Elsevier Ltd.

  15. Biogeochemical transformation of Fe minerals in a petroleum-contaminated aquifer

    USGS Publications Warehouse

    Zachara, John M.; Kukkadapu, Ravi K.; Glassman, Paul L.; Dohnalkova, Alice; Fredrickson, Jim K.; Anderson, Todd

    2004-01-01

    The Bemidji aquifer in Minnesota, USA is a well-studied site of subsurface petroleum contamination. The site contains an anoxic groundwater plume where soluble petroleum constituents serve as an energy source for a region of methanogenesis near the source and bacterial Fe(III) reduction further down gradient. Methanogenesis apparently begins when bioavailable Fe(III) is exhausted within the sediment. Past studies indicate that Geobacter species and Geothrix fermentens-like organisms are the primary dissimilatory Fe-reducing bacteria at this site. The Fe mineralogy of the pristine aquifer sediments and samples from the methanogenic (source) and Fe(III) reducing zones were characterized in this study to identify microbiologic changes to Fe valence and mineral distribution, and to identify whether new biogenic mineral phases had formed. Methods applied included X-ray diffraction; X-ray fluorescence (XRF); and chemical extraction; optical, transmission, and scanning electron microscopy; and Mössbauer spectroscopy.All of the sediments were low in total Fe content (≈ 1%) and exhibited complex Fe-mineralogy. The bulk pristine sediment and its sand, silt, and clay-sized fractions were studied in detail. The pristine sediments contained Fe(II) and Fe(III) mineral phases. Ferrous iron represented approximately 50% of FeTOT. The relative Fe(II) concentration increased in the sand fraction, and its primary mineralogic residence was clinochlore with minor concentrations found as a ferroan calcite grain cement in carbonate lithic fragments. Fe(III) existed in silicates (epidote, clinochlore, muscovite) and Fe(III) oxides of detrital and authigenic origin. The detrital Fe(III) oxides included hematite and goethite in the form of mm-sized nodular concretions and smaller-sized dispersed crystallites, and euhedral magnetite grains. Authigenic Fe(III) oxides increased in concentration with decreasing particle size through the silt and clay fraction. Chemical extraction and Mössbauer analysis indicated that this was a ferrihydrite like-phase. Quantitative mineralogic and Fe(II/III) ratio comparisons between the pristine and contaminated sediments were not possible because of textural differences. However, comparisons between the texturally-similar source (where bioavailable Fe(III) had been exhausted) and Fe(III) reducing zone sediments (where bioavailable Fe(III) remained) indicated that dispersed detrital, crystalline Fe(III) oxides and a portion of the authigenic, poorly crystalline Fe(III) oxide fraction had been depleted from the source zone sediment by microbiologic activity. Little or no effect of microbiologic activity was observed on silicate Fe(III). The presence of residual “ferrihydrite” in the most bioreduced, anoxic plume sediment (source) implied that a portion of the authigenic Fe(III) oxides were biologically inaccessible in weathered, lithic fragment interiors. Little evidence was found for the modern biogenesis of authigenic ferrous-containing mineral phases, perhaps with the exception of thin siderite or ferroan calcite surface precipitates on carbonate lithic fragments within source zone sediments.

  16. Clinical and atopic parameters and airway inflammatory markers in childhood asthma: a factor analysis

    PubMed Central

    Leung, T; Wong, G; Ko, F; Lam, C; Fok, T

    2005-01-01

    Background: Recent studies have repeatedly shown weak correlations among lung function parameters, atopy, exhaled nitric oxide level (FeNO), and airway inflammatory markers, suggesting that they are non-overlapping characteristics of asthma in adults. A study was undertaken to determine, using factor analysis, whether the above features represent separate dimensions of childhood asthma. Methods: Clinically stable asthmatic patients aged 7–18 years underwent spirometric testing, methacholine bronchial challenge, blood sampling for atopy markers and chemokine levels (macrophage derived chemokine (MDC), thymus and activation regulated chemokine (TARC), and eotaxin), FeNO, and chemokines (MDC and eotaxin) and leukotriene B4 measurements in exhaled breath condensate (EBC). Results: The mean (SD) forced expiratory volume in 1 second (FEV1) and FeNO of 92 patients were 92.1 (15.9)% predicted and 87.3 (65.7) ppb, respectively. 59% of patients received inhaled corticosteroids. Factor analysis selected four different factors, explaining 55.5% of total variance. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.587. Plasma total and specific IgE levels, peripheral blood eosinophil percentage, and FeNO loaded on factor 1; plasma TARC and MDC concentrations on factor 2; MDC, eotaxin and leukotriene B4 concentrations in EBC on factor 3; and plasma eotaxin concentration together with clinical indices including body mass index and disease severity score loaded on factor 4. Post hoc factor analyses revealed similar results when outliers were excluded. Conclusions: The results suggest that atopy related indices and airway inflammation are separate dimensions in the assessment of childhood asthma, and inflammatory markers in peripheral blood and EBC are non-overlapping factors of asthma. PMID:16055623

  17. Iron-Anode Enhanced Sand Filter for Arsenic Removal from Tube Well Water.

    PubMed

    Xie, Shiwei; Yuan, Songhu; Liao, Peng; Tong, Man; Gan, Yiqun; Wang, Yanxin

    2017-01-17

    Sand filters are widely used for well water purification in endemic arsenicosis areas, but arsenic (As) removal is difficult at low intrinsic iron concentrations. This work developed an enhanced sand filter by electrochemically generated Fe(II) from an iron anode. The efficiency of As removal was tested in an arsenic burdened region in the Jianghan Plain, central China. By controlling a current of 0.6 A and a flow rate of about 12 L/h, the filter removed total As in the tube well water from 196 to 472 μg/L to below 10 μg/L, whereas the residual As was about 110 μg/L without electricity. Adsorption and subsequent oxidation on the surface of Fe(III) precipitates are the main processes controlling the removals of As and Fe. During a 30-day intermittent operation, both effluent As concentration and electrical energy consumption decreased progressively. Although filter clogging was observed, it can be alleviated by replacing the top layer of sand. Our findings suggest that dosing Fe(II) by an iron anode is an effective means to enhance As removal in a sand filter.

  18. [Effects of iron on azoreduction by Shewanella decolorationis S12].

    PubMed

    Chen, Xing-Juan; Xu, Mei-Ying; Sun, Guo-Ping

    2010-01-01

    The effects of soluble and insoluble Fe(III) on anaerobic azoreduction by Shewanella decolorationis S12 were examined in a series of experiments. Results showed that the effects of iron on anaerobic azoreduction depended on the solubility and concentration of the compounds. Azoreduction was inhibited by insoluble Fe(III) and 0.05-2 mmol/L Fe2 O3 all decelerated the azoreduction activity of 0.2 mmol/L amaranth, but the increase in the concentrations of Fe2O3 did not cause an increasing inhibition. Soluble Fe(III) of which concentration less than 0.4 mmol/L enhanced azoreduction activity of 0.2 mmol/L amaranth but there was no linear relationship between the concentration of soluble Fe(III) and azoreduction activity. Soluble Fe(III) of which concentration more than 1 mmol/L inhibited azoreduction activity of 0.2 mmol/L amaranth and an increasing concentration resulted in an increased inhibition. The inhibition was strengthened under the conditions of limited electron donor. On the other hand, soluble Fe(III) and Fe(II) could relieve the inhibition of azoreduction by dicumarol which blocked quinone cycle. It suggests that in addition to quinone cycle, there is a Fe(III) <--> Fe(II) cycle shuttling electrons in cytoplasmic and periplasmic environment. That is the reason why low concentration of soluble Fe(III) or Fe (II) can enhance azoreduction of S. decolorationis S12. It also indicates that insoluble Fe(III) and high concentration of soluble Fe(III) do compete with azo dye for electrons once it acts as electron acceptor. Thus, when iron and azo dye coexisted, iron could serve as an electron transfer agent or electron competitive inhibitor for anaerobic azoreduction under different conditions. High efficiency of azoreduction can be achieved through controlling the solubility and concentration of irons.

  19. Determining fluoride ions in ammonium desulfurization slurry using an ion selective electrode method

    NASA Astrophysics Data System (ADS)

    Luo, Zhengwei; Guo, Mulin; Chen, Huihui; Lian, Zhouyang; Wei, Wuji

    2018-02-01

    Determining fluoride ions in ammonia desulphurization slurry using a fluoride ion selective electrode (ISE) is investigated. The influence of pH was studied and the appropriate total ionic strength adjustment buffer and its dosage were optimized. The impact of Fe3+ concentration on the detection results was analyzed under preferable conditions, and the error analysis of the ISE method’s accuracy and precision for measuring fluoride ion concentration in the range of 0.5-2000 mg/L was conducted. The quantitative recovery of F- in ammonium sulfate slurry was assessed. The results showed that when pH ranged from 5.5˜6 and the Fe3+ concentration was less than 750 mg/L, the accuracy and precision test results with quantitative recovery rates of 92.0%-104.2% were obtained.

  20. Hydrochemistry and nutrient cycling in Yalgorup National Park, Western Australia

    NASA Astrophysics Data System (ADS)

    Rosen, Michael R.; Coshell, Lee; Turner, Jeffrey V.; Woodbury, Robert J.

    1996-11-01

    Lakes Clifton, Hayward, and Preston, Western Australia, are part of an east-west chain of 11 ground-water-fed lakes that make up the Clifton-Preston Lakeland system. Their hydrochemistries exhibit a large range in salinities (14-207 kg m -3 total dissolved solids (TDS)) both seasonally within each lake and among lakes. The chemistry of all the lake waters in the system is an NaClSO 4 brine, similar to seawater composition. However, all three lakes have less SO 4 Br, Sr, Mn, and probably Fe than seawater; the concentrations of Ca and HCO 3 vary seasonally. The variation of Ca and HCO 3 in all three lakes suggests that calcium carbonate is precipitated during the late summer and early autumn when evaporation is most intense. In the upper and lower water layers of Lake Hayward the concentrations of conservative ions such as Na, Cl, and K decrease in winter and increase in summer, indicating dilution by winter rain and concentration via evaporation in the summer. Concentrations of total Fe and Mn in the lower layer increase in winter, suggesting release from the sediments and/or decay of the benthic microbial mat on the lake floor. TIN (total inorganic nitrogen)/PO 4-P ratios and TN (total nitrogen)/PO 4-P ratios are high in all lakes, suggesting that P is the limiting nutrient in the system. Observed increases of the macroalgae Cladophora in Lake Clifton suggest that any potential increase in the PO 4 load to the lake will be taken up by the invigorated growth of these algae and may not be detected by measuring lake water PO 4 concentrations. The increased growth of Cladophora is detrimental to the health of the well-established microbialite community on the eastern shore of Lake Clifton.

  1. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    PubMed

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The extent of arsenic and of metal uptake by aboveground tissues of Pteris vittata and Cyperus involucratus growing in copper- and cobalt-rich tailings of the Zambian copperbelt.

    PubMed

    Kříbek, Bohdan; Mihaljevič, Martin; Sracek, Ondra; Knésl, Ilja; Ettler, Vojtěch; Nyambe, Imasiku

    2011-08-01

    The extent of arsenic (As) and metal accumulation in fronds of the As hyperaccumulator Pteris vittata (Chinese brake fern) and in leaves of Cyperus involucratus, which grow on the surface of an old flotation tailings pond in the Zambian Copperbelt province, was studied. The tailings consist of two types of material with distinct chemical composition: (1) reddish-brown tailings rich in As, iron (Fe), and other metals, and (2) grey-green tailings with a lower content of As, Fe, and other metals, apart from manganese (Mn). P. vittata accumulates from 2350 to 5018 μg g(-1) As (total dry weight [dw]) in its fronds regardless of different total and plant-available As concentrations in both types of tailings. Concentrations of As in C. involucratus leaves are much lower (0.24-30.3 μg g(-1) dw). Contents of copper (Cu) and cobalt (Co) in fronds of P. vittata (151-237 and 18-38 μg g(-1) dw, respectively) and in leaves of C. involucratus (96-151 and 9-14 μg g(-1) dw, respectively) are high, whereas concentrations of other metals (Fe, Mn, and zinc [Zn]) are low and comparable with contents of the given metals in common plants. Despite great differences in metal concentrations in the two types of deposited materials, concentrations of most metals in plant tissues are very similar. This indicates an exclusion or avoidance mechanism operating when concentrations of the metals in substrate are particularly high. The results of the investigation show that Chinese brake fern is not only a hyperaccumulator of As but has adapted itself to high concentrations of Cu and Co in flotation tailings of the Zambian Copperbelt.

  3. Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability.

    PubMed

    Tian, Tian; Blanco, Elena; Smoukov, Stoyan K; Velev, Orlin D; Velikov, Krassimir P

    2016-10-01

    Ferric pyrophosphate (FePP) is a widely used iron source in food fortification and in nutritional supplements, due to its white colour, that is very uncommon for insoluble Fe salts. Although its dissolution is an important determinant of Fe adsorption in human body, the solubility characteristics of FePP are complex and not well understood. This report is a study on the solubility of FePP as a function of pH and excess of pyrophosphate ions. FePP powder is sparingly soluble in the pH range of 3-6 but slightly soluble at pH<2 and pH>8. In the presence of pyrophosphate ions the solubility of FePP strongly increases at pH 5-8.5 due to formation a soluble complex between Fe(III) and pyrophosphate ions, which leads to an 8-10-fold increase in the total ionic iron concentration. This finding is beneficial for enhancing iron bioavailability, which important for the design of fortified food, beverages, and nutraceutical products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Impact of Fe-Ti Oxide Concentration on the Structural Rigidity of the Lower Oceanic Crust, Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Deans, J. R.; Winkler, D. A.

    2017-12-01

    Fe-Ti oxides are important components of oceanic core complexes (OCC) formed at slow-spreading ridges, since Fe-Ti oxide phases form throughout the crustal column and are weaker than silicate phases. This study investigated the predicted relationship between the presence and concentration of Fe-Ti oxides and the presence/intensity of crystal-plastic deformation in samples from Atlantis Bank, Southwest Indian Ridge (SWIR). Atlantis Bank is an OCC that formed through the exhumation of lower oceanic crust along a detachment shear zone/fault. OCCs form along slow-spreading ridges and are characterized by the complex interactions between magmatism and crustal extension, thus, making them more susceptible to crystal-plastic deformation at higher temperatures and for weaker phases like Fe-Ti oxides to preferentially partition strain. Atlantis Bank has been the focus of many scientific expeditions to various sites including; Ocean Drilling Program (ODP) Holes 735B and 1105A, and the International Oceanic Discovery Program (IODP) Hole U1473A. A total of 589 thin sections from all three holes were analyzed using the software package Fiji to calculate the Fe-Ti oxide concentration within the thin sections. The Fe-Ti oxide percentage was correlated with the crystal-plastic fabric (CPF) intensity, from 0-5 (no foliation - ultramylonite), for each thin section using the statistical software R. All three holes show a positive correlation between the abundance of Fe-Ti oxides and the CPF intensity. Specifically, 76.3% of samples with a concentration of 5% or more Fe-Ti oxides have a corresponding CPF intensity value of 2 or more (porphyroclastic foliation - ultramylonitic). The positive correlation may be explained by the Fe-Ti oxides preferentially partitioning strain, especially at temperatures below where dry plagioclase can recrystallize. This allows for a mechanism of continued slip along the shear zone or form new shear zones at amphibolite grade conditions while the lower crust is being exhumed. Additionally, IODP U1473A and ODP 1105A had similar correlation values of 0.11 (on a scale of -1 to 1), whereas ODP Hole 735B had double the correlation value of 0.24. Since ODP Hole 735B has older rocks than the other two holes, it may have recorded more deformation comparatively speaking.

  5. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.

    PubMed

    Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J

    2009-05-01

    The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.

  6. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas

    USGS Publications Warehouse

    Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2008-01-01

    Twenty one of 118 irrigation water wells in the shallow (25-30??m thick) Mississippi River Valley alluvial aquifer in the Bayou Bartholomew watershed, southeastern Arkansas had arsenic (As) concentrations (< 0.5 to 77????g/L) exceeding 10????g/L. Sediment and groundwater samples were collected and analyzed from the sites of the highest, median, and lowest concentrations of As in groundwater in the alluvial aquifers located at Jefferson County, Arkansas. A traditional five-step sequential extraction was performed to differentiate the exchangeable, carbonate, amorphous Fe and Mn oxide, organic, and hot HNO3-leachable fraction of As and other compounds in sediments. The Chao reagent (0.25??M hydroxylamine hydrochloride in 0.25??M HCl) removes amorphous Fe and Mn oxides and oxyhydroxides (present as coatings on grains and amorphous minerals) by reductive dissolution and is a measure of reducible Fe and Mn in sediments. The hot HNO3 extraction removes mostly crystalline metal oxides and all other labile forms of As. Significant total As (20%) is complexed with amorphous Fe and Mn oxides in sediments. Arsenic abundance is not significant in carbonates or organic matter. Significant (40-70????g/kg) exchangeable As is only present at shallow depth (0-1??m below ground surface). Arsenic is positively correlated to Fe extracted by Chao reagent (r = 0.83) and hot HNO3 (r = 0.85). Arsenic extracted by Chao reagent decreases significantly with depth as compared to As extracted by hot HNO3. Fe (II)/Fe (the ratio of Fe concentration in the extracts of Chao reagent and hot HNO3) is positively correlated (r = 0.76) to As extracted from Chao reagent. Although Fe (II)/Fe increases with depth, the relative abundance of reducible Fe decreases noticeably with depth. The amount of reducible Fe, as well as As complexed to amorphous Fe and Mn oxides and oxyhydroxides decreases with depth. Possible explanations for the decrease in reducible Fe and its complexed As with depth include historic flushing of As and Fe from hydrous ferric oxides (HFO) by microbially-mediated reductive dissolution and aging of HFO to crystalline phases. Hydrogeochemical data suggests that the groundwater in the area falls in the mildly reducing (suboxic) to relatively highly reducing (anoxic) zone, and points to reductive dissolution of HFO as the dominant As release mechanism. Spatial variability of gypsum solubility and simultaneous SO42- reduction with co-precipitation of As and sulfide is an important limiting process controlling the concentration of As in groundwater in the area. ?? 2008 Elsevier B.V. All rights reserved.

  7. Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs.

    PubMed

    Kerr, B J; Weber, T E; Ziemer, C J

    2015-05-01

    Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate digesta rate of passage and nutrient digestibility. Yet, the potential impact of indigestible markers on fecal microbial ecology and subsequent VFA generation is not known. Two experiments utilizing a total of 72 individually fed finishing pigs were conducted to describe the impact of dietary markers on fecal microbial ecology, fecal ammonia and VFA concentrations, nutrient digestibility, and pig performance. All pigs were fed a common diet with no marker or with 0.5% Cr2O3, Fe2O3, or TiO2. In Exp. 1, after 33 d of feeding, fresh fecal samples were collected for evaluation of microbial ecology, fecal ammonia and VFA concentrations, and nutrient digestibility, along with measures of animal performance. No differences were noted in total microbes or bacterial counts in pig feces obtained from pigs fed the different dietary markers while Archaea counts were decreased (P = 0.07) in feces obtained from pigs fed the diet containing Fe2O 3compared to pigs fed the control diet. Feeding Cr2O3, Fe2O3, or TiO2 increased fecal bacterial richness (P = 0.03, 0.01, and 0.10; respectively) when compared to pigs fed diets containing no marker, but no dietary marker effects were noted on fecal microbial evenness or the Shannon-Wiener index. Analysis of denaturing gradient gel electrophoresis gels did not reveal band pattern alterations due to inclusion of dietary markers in pig diets. There was no effect of dietary marker on fecal DM, ammonia, or VFA concentrations. Pigs fed diets containing Cr2O3 had greater Ca, Cu, Fe, and P (P ≤ 0.02), but lower Ti ( P= 0.08) digestibility compared to pigs fed the control diet. Pigs fed diets containing Fe2O3 had greater Ca (P = 0.08) but lower Ti (P = 0.01) digestibility compared to pigs fed the control diet. Pigs fed diets containing TiO2 had greater Fe and Zn (P ≤ 0.09), but lower Ti ( P= 0.01) digestibility compared to pigs fed the control diet. In Exp. 2, no effect of dietary marker on pig performance was noted. Overall, the data indicate that the inclusion of Cr2O3, Fe2O3, or TiO2 as digestibility markers have little to no impact on microbial ecology, fecal ammonia or VFA concentrations, nutrient digestibility, or pig growth performance indicating they are suitable for use in digestion studies.

  8. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].

    PubMed

    Chang, Tong-Ju; Cui, Xiao-Qiang; Ruan, Zhen; Zhao, Xiu-Lan

    2014-06-01

    A long-term experiment, conducted at Southwest University since 1990, was used to evaluate the effect of tillage methods on the total and available contents of heavy metals (Fe, Mn, Cu, Zn, Pb, Cd) in the profile of purple paddy soil and the contents of those metals in root, stem leaf and brown rice. The experiment included five tillage methods: conventional tillage, paddy-upland rotation, no-tillage and fallow in winter, ridge-no-tillage and compartments-no-tillage. The results showed that the total concentrations of Fe, Cu, Zn, Pb and Cd in the soil profile had no significant differences among five treatments, but it was found that total Mn has a significant decline in 0-20 cm under conventional tillage, paddy-upland rotation and no-tillage and fallow in winter compared with ridge-no-tillage and compartments-no-tillage. The availability of Fe, Cu, Zn, Pb and Cd decreased with the increase of soil depth in all treatments, but the availability of Mn was found to be the highest in the 20-40 cm layers except those in the paddy-upland rotation. In the ploughed layer, the contents of available Fe, Mn was the highest in paddy-upland rotation, while the contents of available Zn and Pb was the highest in conventional tillage, but tillage treatments had not significant influence to the contents of available Cu. Correlation analysis showed that available Fe was significantly negatively related to the pH values and significantly negatively related to the organic matter of soils, available Mn was significantly negatively related to the pH values and organic matter of soils, whereas the available Zn was significantly positively related to total Zn. The contents of Fe, Mn in rice root, the contents of Fe, Mn, Cu and Cd in rice straw and Cu in brown rice were higher under paddy-upland rotation, ridge-no-tillage and compartments-no-tillage than those in conventional tillage and no-tillage and fellow in winter. Paddy-upland rotation can significantly lower the migration coefficient value of Cd in brown rice, and the Pb, Cd concentration in brown rice in the treatment of paddy-upland rotation was lower than the upper limit (< 0.2 mg x kg(-1)) of the National Standard for Food Hygiene for Cd concentration. The content of Fe in root was significantly and negatively related with soil pH and significantly and positively related with soil available Fe, the content of Mn in root was significantly negatively related with soil pH and significantly positively related with soil available Mn, the content of Mn in straw was significantly negatively related with soil pH, significantly positively related with soil total Mn and significantly positively related with soil available Mn, the content of Cu in straw and brown rice was significantly negatively related with soil pH, the content of Zn was significant related with soil pH and significant related with soil CEC. The content of Fe in root, Mn in root and straw and Cd in straw was positively related with soil available Fe, Mn and Cd, respectively, but was negatively related with pH in plough layer soil, Zn in straw was also negatively related with plough layer soil pH. From the results as above, it is concluded that different tillage methods can change the values of soil pH, alter the availability of heavy metal in soils, consequently affect uptake of heavy metal by rice. Of the tillage methods, paddy-upland rotation could increase the availability of Fe and Mn, but decrease the availability of Zn, Pb and Cd in purple paddy soils. Paddy-upland rotation can also increase the contents of Fe, Mn in rice root and straw, but decrease Cd content in brown rice, and could reduce the Pb, Cd contents in brown rice in a certain extent, however, attention should be given to long-term paddy-upland rotation cause of leaching of soil surface Mn.

  9. Siderite (FeCO₃) and magnetite (Fe₃O₄) overload-dependent pulmonary toxicity is determined by the poorly soluble particle not the iron content.

    PubMed

    Pauluhn, Jürgen; Wiemann, Martin

    2011-11-01

    The two poorly soluble iron containing solid aerosols of siderite (FeCO₃) and magnetite (Fe₃O₄) were compared in a 4-week inhalation study on rats at similar particle mass concentrations of approximately 30 or 100 mg/m³. The particle size distributions were essentially identical (MMAD ≈1.4 μm). The iron-based concentrations were 12 or 38 and 22 or 66 mg Fe/m³ for FeCO₃ and Fe₃O₄, respectively. Modeled and empirically determined iron lung burdens were compared with endpoints suggestive of pulmonary inflammation by determinations in bronchoalveolar lavage (BAL) and oxidative stress in lung tissue during a postexposure period of 3 months. The objective of study was to identify the most germane exposure metrics, that are the concentration of elemental iron (mg Fe/m³), total particle mass (mg PM/m³) or particle volume (μl PM/m³) and their associations with the effects observed. From this analysis it was apparent that the intensity of pulmonary inflammation was clearly dependent on the concentration of particle-mass or -volume and not of iron. Despite its lower iron content, the exposure to FeCO₃ caused a more pronounced and sustained inflammation as compared to Fe₃O₄. Similarly, borderline evidence of increased oxidative stress and inflammation occurred especially following exposure to FeCO₃ at moderate lung overload levels. The in situ analysis of 8-oxoguanine in epithelial cells of alveolar and bronchiolar regions supports the conclusion that both FeCO₃ and Fe₃O₄ particles are effectively endocytosed by macrophages as opposed to epithelial cells. Evidence of intracellular or nuclear sources of redox-active iron did not exist. In summary, this mechanistic study supports previous conclusions, namely that the repeated inhalation exposure of rats to highly respirable pigment-type iron oxides cause nonspecific pulmonary inflammation which shows a clear dependence on the particle volume-dependent lung overload rather than any increased dissolution and/or bioavailability of redox-active iron.

  10. Atmospheric Dissolved Iron Depostiion to the Global Oceans: Effects of Oxalate-Promoted Fe Dissolution, Photochemical Redox Cycling, and Dust Mineralogy

    NASA Technical Reports Server (NTRS)

    Johnson, M. S.; Meskhidze, N.

    2013-01-01

    Mineral dust deposition is suggested to be a significant atmospheric supply pathway of bioavailable iron (Fe) to Fe-depleted surface oceans. In this study, mineral dust and dissolved Fe (Fed) deposition rates are predicted for March 2009 to February 2010 using the 3-D chemical transport model GEOS-Chem implemented with a comprehensive dust-Fe dissolution scheme. The model simulates Fed production during the atmospheric transport of mineral dust taking into account inorganic and organic (oxalate)-promoted Fe dissolution processes, photochemical redox cycling between ferric (Fe(III)) and ferrous (Fe(II)) forms of Fe, dissolution of three different Fe-containing minerals (hematite, goethite, and aluminosilicates), and detailed mineralogy of windblown dust from the major desert regions. Our calculations suggest that during the yearlong simulation is approximately 0.26 Tg (1 Tg = 1012 g) of Fed was deposited to global oceanic regions. Compared to simulations only taking into account proton-promoted Fe dissolution, the addition of oxalate to the dust-Fe mobilization scheme increased total annual model-predicted Fed deposition to global oceanic regions by approximately 75%. The implementation of Fe(II)/Fe(III) photochemical redox cycling in the model allows for the distinction between different oxidation states of deposited Fed. Our calculations suggest that during the daytime, large fractions of Fed deposited to the global oceans is likely to be in Fe(II) form, while nocturnal fluxes of Fed are largely in Fe(III) form. Model simulations also show that atmospheric fluxes of Fed can be strongly influenced by the mineralogy of Fe-containing compounds. This study shows that Fed deposition to the oceans is controlled by total dust-Fe mass concentrations, mineralogy, the surface area of dust particles, atmospheric chemical composition, cloud processing, and meteorological parameters and exhibits complex and spatiotemporally variable patterns. Our study suggests that the explicit model representation of individual processes leading to Fed production within mineral dust are needed to improve the understanding of the atmospheric Fe cycle, and quantify the effect of dust-Fe on ocean biological productivity, carbon cycle, and climate.

  11. Denitrification activity is closely linked to the total ambient Fe concentration in mangrove sediments of Goa, India

    NASA Astrophysics Data System (ADS)

    Fernandes, Sheryl Oliveira; Gonsalves, Maria-Judith; Michotey, Valérie D.; Bonin, Patricia C.; Loka, A.; Bharathi, P.

    2013-10-01

    Denitrification activity (DNT) and associated environmental parameters were examined in two mangrove ecosystems of Goa, India - the relatively unimpacted Tuvem and the anthropogenically-influenced Divar. Sampling was carried out at every 2 cm interval within the 0-10 cm depth range to determine (1) seasonal (pre-monsoon, monsoon and post-monsoon) down-core variation in DNT (2) assess the environmental factors influencing the DNT and (3) to build predictive models for benthic DNT. Denitrification generally decreased with depth and showed marked seasonal variation at both the locations. Denitrification peaked during the pre-monsoon occurring at a rate of up to 21.00 ± 12.84 nmol N2O g-1 h-1 within 0-4 cm at both the locations. Further, DNT at pre-monsoon was significantly influenced by Fe content at Tuvem and Divar suggesting Fe-mediated nitrate respiration. The influence of other limiting substrates such as NO3- and NO2- was most important during the monsoon and post-monsoon especially at Divar. The multiple regression models developed could predict 67-98% of the observed variability in DNT through the seasons. About 6-9 environmental variables were required to relatively well-predict DNT in these sediments with the complexity governing DNT decreasing from pre-monsoon to post-monsoon. Our results reveal that seasonal dynamics of DNT in tropical mangrove sediments are closely linked to the total Fe at the prevailing ambient concentration in both the systems.

  12. [The relevance of the trace elements zinc and iron in the milk fever disease of cattle].

    PubMed

    Heilig, M; Bäuml, D; Fürll, M

    2014-01-01

    The aim of this study was to analyse the concentrations of Zn and Fe as well as their relationships to metabolic parameters in milk fever cows. A total of 195 Simmental cows, downer cows and clinically healthy control animals were divided into five groups: a) control group (CG, n = 21), b) all cows with milk fever (MF) (n = 174), c) MF cows without additional diseases (n = 145), d) cows with MF and mastitis (n = 10) and e) cows with retained placenta or endometritis (n = 19). Selenium (Se), zinc (Zn), iron (Fe), calcium (Ca), inorganic phosphorus (Pi), tumour necrosis factor α (TNFα), haptoglobin (Hp), antioxidants (Trolox Equivalent Antioxidative Capacity: TEAC), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), bilirubin, urea, creatinine, glucose, cholesterol, gamma-glutamyl transferase (GGT) and alkaline phosphatase (AP) were analysed in the blood serum. The concentrations of Zn, Fe, Ca, Pi and TEAC were lower in groups b) to e) whereas Hp was higher than in the CG (p ≤ 0.05). In group c), lower Ca and Pi concentrations were found when compared to groups d) and e) (p ≤ 0.05). In group e), Zn concentrations were significantly lower than in group c) (p ≤ 0.05). Zn was negatively correlated with K (CG) and positively correlated with TEAC, Cu, Mn and Fe (groups b and c) and with Mn (group e) (p ≤ 0.05). Fe was positively correlated with Ca (group c), Pi (group c), K (groups b and c) and Mg (groups b-d) as well as with Zn, Cu and Se (groups b and c) (p ≤ 0.05). In groups b) and c), TNFα was increased and negatively correlated with Fe (p ≤ 0.05). AP activity in groups b) and e) was lower than in the CG (p ≤ 0.05). These results and literature data support the hypothesis that Zn and Fe could be engaged in bone metabolism and be involved in the pathogenesis of MF. The concentrations of Hp and TEAC support this interpretation. Control of the Zn and Fe status of cows and Zn supplementation should be included in the prevention and advanced therapy of MF.

  13. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey.

    PubMed

    Varol, Memet

    2013-10-01

    Water samples were collected at monthly intervals during 1 year of monitoring from Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin to assess the concentrations of dissolved heavy metals and to determine their spatial and seasonal variations. The results indicated that dissolved heavy metal concentrations in the reservoirs were very low, reflecting the natural background levels. The lowest total metal concentrations in the three dam reservoirs were detected at sampling sites close to the dam wall. However, the highest total concentrations were observed at sites, which are located at the entrance of the streams to the reservoirs. Fe, Cr and Ni were the most abundant elements in the reservoirs, whereas Cd and As were the less abundant. The mean concentrations of dissolved metals in the dam reservoirs never exceeded the maximum permitted concentrations established by EC (European Community), WHO and USEPA drinking water quality guidelines. All heavy metals showed significant seasonal variations. As, Cd, Cr, Cu, Fe, Ni and Pb displayed higher values in the dry season, while higher values for Zn in the wet season. Cluster analysis grouped all ten sampling sites into three clusters. Clusters 1 and 2, and cluster 3 corresponded to relatively low polluted and moderate polluted regions, respectively. PCA/FA demonstrated the dissolved metals in the dam reservoirs controlled by natural sources. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process.

    PubMed

    Monteagudo, J M; Durán, A; Aguirre, M; San Martín, I

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H(2)O(2), Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H(2)O(2) and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k(TOC), increased as initial Fe(II) and H(2)O(2) concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. OH and O(2)(-) radicals were the main oxidative intermediate species in the process, although singlet oxygen ((1)O(2)) also played a role in the mineralization reaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Competing retention pathways of uranium upon reaction with Fe(II)

    NASA Astrophysics Data System (ADS)

    Massey, Michael S.; Lezama-Pacheco, Juan S.; Jones, Morris E.; Ilton, Eugene S.; Cerrato, José M.; Bargar, John R.; Fendorf, Scott

    2014-10-01

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3·nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway's contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ∼7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14-89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ⩽50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64-89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.

  17. Competing retention pathways of uranium upon reaction with Fe(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3•nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway’s contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation statemore » of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ≤ 50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.« less

  18. Studies of Cream Seeded Carioca Beans (Phaseolus vulgaris L.) from a Rwandan Efficacy Trial: In Vitro and In Vivo Screening Tools Reflect Human Studies and Predict Beneficial Results from Iron Biofortified Beans

    PubMed Central

    Tako, Elad; Reed, Spenser; Anandaraman, Amrutha; Beebe, Steve E.; Hart, Jonathan J.; Glahn, Raymond P.

    2015-01-01

    Iron (Fe) deficiency is a highly prevalent micronutrient insufficiency predominantly caused by a lack of bioavailable Fe from the diet. The consumption of beans as a major food crop in some populations suffering from Fe deficiency is relatively high. Therefore, our objective was to determine whether a biofortified variety of cream seeded carioca bean (Phaseolus vulgaris L.) could provide more bioavailable-Fe than a standard variety using in-vivo (broiler chicken, Gallus gallus) and in-vitro (Caco-2 cell) models. Studies were conducted under conditions designed to mimic the actual human feeding protocol. Two carioca-beans, a standard (G4825; 58μg Fe/g) and a biofortified (SMC; 106μg Fe/g), were utilized. Diets were formulated to meet the nutrient requirements of Gallus gallus except for Fe (33.7 and 48.7μg Fe/g, standard and biofortified diets, respectively). In-vitro observations indicated that more bioavailable-Fe was present in the biofortified beans and diet (P<0.05). In-vivo, improvements in Fe-status were observed in the biofortified bean treatment, as indicated by the increased total-body-Hemoglobin-Fe, and hepatic Fe-concentration (P<0.05). Also, DMT-1 mRNA-expression was increased in the standard bean treatment (P<0.05), indicating an upregulation of absorption to compensate for less bioavailable-Fe. These results demonstrate that the biofortified beans provided more bioavailable Fe; however, the in vitro results revealed that ferritin formation values were relatively low. Such observations are indicative of the presence of high levels of polyphenols and phytate that inhibit Fe absorption. Indeed, we identified higher levels of phytate and quercetin 3–glucoside in the Fe biofortified bean variety. Our results indicate that the biofortified bean line was able to moderately improve Fe-status, and that concurrent increase in the concentration of phytate and polyphenols in beans may limit the benefit of increased Fe-concentration. Therefore, specific targeting of such compounds during the breeding process may yield improved dietary Fe-bioavailability. Our findings are in agreement with the human efficacy trial that demonstrated that the biofortified carioca beans improved the Fe-status of Rwandan women. We suggest the utilization of these in vitro and in vivo screening tools to guide studies aimed to develop and evaluate biofortified staple food crops. This approach has the potential to more effectively utilize research funds and provides a means to monitor the nutritional quality of the Fe-biofortified crops once released to farmers. PMID:26381264

  19. Studies of Cream Seeded Carioca Beans (Phaseolus vulgaris L.) from a Rwandan Efficacy Trial: In Vitro and In Vivo Screening Tools Reflect Human Studies and Predict Beneficial Results from Iron Biofortified Beans.

    PubMed

    Tako, Elad; Reed, Spenser; Anandaraman, Amrutha; Beebe, Steve E; Hart, Jonathan J; Glahn, Raymond P

    2015-01-01

    Iron (Fe) deficiency is a highly prevalent micronutrient insufficiency predominantly caused by a lack of bioavailable Fe from the diet. The consumption of beans as a major food crop in some populations suffering from Fe deficiency is relatively high. Therefore, our objective was to determine whether a biofortified variety of cream seeded carioca bean (Phaseolus vulgaris L.) could provide more bioavailable-Fe than a standard variety using in-vivo (broiler chicken, Gallus gallus) and in-vitro (Caco-2 cell) models. Studies were conducted under conditions designed to mimic the actual human feeding protocol. Two carioca-beans, a standard (G4825; 58 μg Fe/g) and a biofortified (SMC; 106 μg Fe/g), were utilized. Diets were formulated to meet the nutrient requirements of Gallus gallus except for Fe (33.7 and 48.7 μg Fe/g, standard and biofortified diets, respectively). In-vitro observations indicated that more bioavailable-Fe was present in the biofortified beans and diet (P<0.05). In-vivo, improvements in Fe-status were observed in the biofortified bean treatment, as indicated by the increased total-body-Hemoglobin-Fe, and hepatic Fe-concentration (P<0.05). Also, DMT-1 mRNA-expression was increased in the standard bean treatment (P<0.05), indicating an upregulation of absorption to compensate for less bioavailable-Fe. These results demonstrate that the biofortified beans provided more bioavailable Fe; however, the in vitro results revealed that ferritin formation values were relatively low. Such observations are indicative of the presence of high levels of polyphenols and phytate that inhibit Fe absorption. Indeed, we identified higher levels of phytate and quercetin 3-glucoside in the Fe biofortified bean variety. Our results indicate that the biofortified bean line was able to moderately improve Fe-status, and that concurrent increase in the concentration of phytate and polyphenols in beans may limit the benefit of increased Fe-concentration. Therefore, specific targeting of such compounds during the breeding process may yield improved dietary Fe-bioavailability. Our findings are in agreement with the human efficacy trial that demonstrated that the biofortified carioca beans improved the Fe-status of Rwandan women. We suggest the utilization of these in vitro and in vivo screening tools to guide studies aimed to develop and evaluate biofortified staple food crops. This approach has the potential to more effectively utilize research funds and provides a means to monitor the nutritional quality of the Fe-biofortified crops once released to farmers.

  20. Multielemental analysis of samples from patients with dermatological pathologies using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Soares, J. C. A. C. R.; Canellas, C. G. L.; Anjos, M. J.; Lopes, R. T.

    2014-02-01

    Using synchrotron radiation total X-ray fluorescence (SRTXRF) technique, the concentrations of trace elements were measured in four skin lesions: seborrheic keratosis, fibroepithelial polyp, cherry angioma and dermatosis papulosa nigra. The concentrations of P, S, K, Ca, Fe, Cu, Zn and Rb were evaluated in 62 pairs of lesions and healthy samples, each one having been collected from the same patient. The results revealed significant differences of P, Ca, K, Fe and Cu levels as well as a common trend in their variations between lesion and control samples among the skin diseases. This study revealed a powerful tool that can be useful for skin disorders research. The measurements were conducted at Brazilian National Synchrotron Light Laboratory (LNLS).

  1. Trace Metal Distribution and Speciation in Pore Water of Hydrothermal Sediments From the Guaymas Basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Morales-Villafuerte, M.; Ortega-Osorio, A.; Wheat, G.; Seewald, J.

    2004-12-01

    Thirteen sediment cores were collected through out direct sampling with the MBARI/ ROV "Tiburon" in the southern trough of the Guaymas Basin in March 2003. Pore water samples from regular 2.5 cm intervals of sediment cores were extracted onboard by centrifugation. The supernatants were collected in clean polystyrene vials and stored at 4° C until analytical work on shore. Dissolved Fe, Mn, Cu, Pb, Zn and Ni concentrations in extracted fluid samples were analyzed by direct injection of atomic absorption spectrometry. Four zones in the hydrothermal field were classified according to their physical characteristics. A core located away from the influence of active vents was recovered as a background site. The second zone is characterized by low temperatures (4.2-80° C) and sediments saturated in hydrocarbons. Sulfides formation and higher temperatures (4-166° C) were observed in the third zone. Precipitation of carbonates on top of the sediment characterizes the fourth zone. Concentration of trace metals at the water-sediment interface appears to be the highest, probably due to metal precipitation from the hydrothermal plume, followed by diffusion into the pore water. A decrease in concentration is observed between 5-12 cm depth, suggesting that biological activity is consuming essential metals (zone of bioturbation). Metal concentrations in zones where sulfide phases are rich, exhibit smaller values in pore water (Fe=2.4-3.8 μ mol/kg, Cu=0.6-0.8 μ mol/kg, Pb=1.2-1.5 μ mol/kg, Zn=0.4-0.5 μ mol/kg and Ni= 3.4-4.4 μ mol/kg) relative to samples located at hydrocarbon sites (Fe= 2.7-11.4, Cu= 0.7-1.0 μ mol/kg, Pb= 1.2-2.2 μ mol/kg, Zn= 0.4-0.7 μ mol/kg and Ni= 3.4-5.2 μ mol/kg). At sulfide zones, pH and Eh conditions help to precipitate their stable sulfides as opposed to the hydrocarbon areas, where conditions are not favorable for sulfide formation due to the absence of H2S. In general, Fe concentrations in pore water are lower than that of Mn, very likely due to the easier precipitation and greater stability of FeS relative to MnS. As an attempt to reconstruct predominant species and their abundance in the system, aqueous chemical models were applied. The codes EQBRM and SUPCRT92 were run with total concentrations to calculate, concentrations, activity coefficients and thermodynamic properties of aqueous species. Experimental data such as total chloride, total sulfur and measured pH were used in the model. According to the prevailing conditions in the Guaymas Basin, all metals studied form chloride complexes. Iron, lead, and zinc exist mainly as hydroxy complexes, manganese as free ion and copper as CuHS. Speciation results are well supported by the Pearson's hard-soft rule which states that soft metal ion Cu++ bonds with soft bisulfide ligand, likewise, borderline metal ions as Fe2+, Mn2+, Pb2+ and Zn2+ bond with chloride, hydroxyl or water ligands. The results reported here provide a greater insight into the behavior of trace metals in pore waters of hydrothermal sediments.

  2. Role of Trace Elements for Oxidative Status and Quality of Human Sperm.

    PubMed

    Nenkova, Galina; Petrov, Lubomir; Alexandrova, Albena

    2017-08-04

    Oxidative stress affects sperm quality negatively. To maintain the pro/antioxidant balance, some metal ions (e.g. copper, zink, iron, selenium), which are co-factors of the antioxidant enzymes, are essential. However, iron and copper could act as prooxidants inducing oxidative damage of spermatozoa. To reveal a possible correlation between the concentrations of some metal ions (iron, copper, zinc, and selenium) in human seminal plasma, oxidative stress, assessed by malondialdehyde and total glutathione levels, and semen quality, assessed by the parameters count, motility, and morphology. Descriptive study. The semen analysis for volume, count, and motility was performed according to World Health Organization (2010) guidelines, using computer-assisted semen analysis. For the determination of spermatozoa morphology, a SpermBlue staining method was applied. Depending on their parameters, the sperm samples were categorized into normozoospermic, teratozoospermic, asthenoteratozoospermic, and oligoteratozoospermic. The seminal plasma content of iron, copper, zinc, and selenium was estimated by atomic absorption spectroscopy. The malondialdehyde and total glutathione levels were quantified spectrophotometrically. In the groups with poor sperm quality, the levels of Fe were higher, whereas those of Zn and Se were significantly lower than in the normozoospermic group. In all groups with poor sperm quality, increased levels of malondialdehyde and decreased glutathione levels were detected as evidence of oxidative stress occurrence. All these differences are most pronounced in the asthenoteratozoospermic group where values differ nearly twice as much compared to the normozoospermic group. The Fe concentration correlated positively with the malondialdehyde (r=0.666, p=0.018), whereas it showed a negative correlation with the level of total glutathione (r=-0.689, p=0.013). The total glutathione level correlated positively with the sperm motility (r=0.589, p=0.044). The elevated levels of Fe and the reduced Se levels are associated with sperm damage. The changes in the concentrations of the trace elements in human seminal plasma may be related to sperm quality since they are involved in the maintenance of the pro-/antioxidative balance in ejaculate.

  3. Moessbauer Spectroscopy for Lunar Resource Assessment: Measurement of Mineralogy and Soil Maturity

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Agresti, D. G.; Shelfer, T. D.; Pimperl, M. M.; Shen, M.-H.; Gibson, M. A.; Wills, E. L.

    1992-01-01

    First-order assessment of lunar soil as a resource includes measurement of its mineralogy and maturity. Soils in which the mineral ilmenite is present in high concentrations are desirable feedstock for the production of oxygen at a lunar base. The maturity of lunar soils is a measure of their relative residence time in the upper 1 mm of the lunar surface. Increasing maturity implies increasing load of solar wind species (e.g., N, H, and He-3), decreasing mean grain size, and increasing glass content. All these physicochemical properties that vary in a regular way with maturity are important parameters for assessing lunar soil as a resource. For example, He-3 can be extracted and potentially used for nuclear fusion. A commonly used index for lunar soil maturity is I(sub s)/FeO, which is the concentration of fine-grained metal determined by ferromagnetic resonance (I(sub s)) normalized to the total iron content (as FeO). I(sub s)/FeO has been measured for virtually every soil returned by the Apollo and Luna missions to the Moon. Because the technique is sensitive to both oxidation state and mineralogy, iron Moessbauer spectroscopy (FeMS) is a viable technique for in situ lunar resource assessment. Its utility for mineralogy is apparent from examination of published FeMS data for lunar samples. From the data published, it can be inferred that FeMS data can also be used to determine soil maturity. The use of FeMS to determine mineralogy and maturity and progress on development of a FeMS instrument for lunar surface use are discussed.

  4. Essential and toxic elements in seaweeds for human consumption.

    PubMed

    Desideri, D; Cantaluppi, C; Ceccotto, F; Meli, M A; Roselli, C; Feduzi, L

    2016-01-01

    Essential elements (K, Ca, P, S, Cl, Mn, Fe, Cu, Zn, Ni, Br, and I) and nonessential or toxic elements (Al, Ti, Si, Rb, Sr, As, Cd, Sn, and Pb) were determined by energy-dispersive polarized x-ray fluorescence spectrometry in 14 seaweeds purchased in local specialty stores in Italy and consumed by humans. The differences in elements between the algae species reached up to 2-4 orders of magnitude. Lithothamnium calcareum showed the highest levels of Ca, Al, Si, Fe, and Ti. Palmaria palmata showed the highest concentrations of K, Rb, and Cl. The highest content of S was in Chondrus crispus. Laminaria digitata contained the highest concentrations of total As, Cd, Sn, Br, and I. The highest concentration of Zn was in Chlorella pyrenoidosa. Ulva lactuca displayed the highest levels of Cu, Ni, Mn, and Pb. Iodine levels ranged from 3.4 in Chlorella pyrenoidosa to 7316 mg/kg(dry) in Laminaria digitata. The nutrimental importance of essential elements was assessed using nutritional requirements. The results showed that the consumption of algae might serve as an important source of the essential elements. Health risk due to the toxic elements present in seaweed was estimated using risk estimators. Total As, Cd, and Pb concentrations ranged from <1 to 67.6, to 7.2 and to 6.7 mg/kg(dry) respectively; therefore, their contribution to total elemental intake does not appear to pose any threat to the consumers, but the concentrations of these elements should be controlled to protect the consumer against potential adverse health risks.

  5. Decontamination of industrial cyanide-containing water in a solar CPC pilot plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, A.; Monteagudo, J.M.; San Martin, I.

    2010-07-15

    The aim of this work was to improve the quality of wastewater effluent coming from an Integrated Gasification Combined-Cycle (IGCC) power station to meet with future environmental legislation. This study examined a homogeneous photocatalytic oxidation process using concentrated solar UV energy (UV/Fe(II)/H{sub 2}O{sub 2}) in a Solar Compound Parabolic Collector (CPC) pilot plant. The efficiency of the process was evaluated by analysis of the oxidation of cyanides and Total Organic Carbon (TOC). A factorial experimental design allowed the determination of the influences of operating variables (initial concentration of H{sub 2}O{sub 2}, oxalic acid and Fe(II) and pH) on the degradationmore » kinetics. Temperature and UV-A solar power were also included in the Neural Network fittings. The pH was maintained at a value >9.5 during cyanide oxidation to avoid the formation of gaseous HCN and later lowered to enhance mineralization. Under the optimum conditions ([H{sub 2}O{sub 2}] = 2000 ppm, [Fe(II)] = 8 ppm, pH = 3.3 after cyanide oxidation, and [(COOH){sub 2}] = 60 ppm), it was possible to degrade 100% of the cyanides and up to 92% of Total Organic Carbon. (author)« less

  6. Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer.

    PubMed

    He, Wanling; Shohag, M J I; Wei, Yanyan; Feng, Ying; Yang, Xiaoe

    2013-12-15

    The present study compared the effects of four different forms of foliar iron (Fe) fertilizers on Fe concentration, bioavailability and nutritional quality of polished rice. The results showed that foliar fertilisation at the anthesis stage was an effective way to promote Fe concentration and bioavailability of polished rice, especially in case of DTPA-Fe. Compared to the control, foliar application of DTPA-Fe increased sulphur concentration and the nutrition promoter cysteine content, whereas decreased phosphorus concentration and the antinutrient phytic acid content of polished rice, as a result increased 67.2% ferrtin formation in Caco-2 cell. Moreover, foliar DTPA-Fe application could maintain amylase, protein and minerals quality of polished rice. According to the current study, DTPA-Fe is recommended as an excellent foliar Fe form for Fe biofortification program. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effect of wheat dried distillers grains with solubles and fibrolytic enzymes on ruminal fermentation, digestibility, growth performance, and feeding behavior of beef cattle.

    PubMed

    He, Z X; Walker, N D; McAllister, T A; Yang, W Z

    2015-03-01

    Two experiments were conducted to evaluate the effect of wheat dried distillers grains with solubles (DDGS) and fibrolytic enzymes (FE) on ruminal fermentation, in situ ruminal and in vivo total tract digestibility, growth performance, and feeding behavior of growing beef cattle. In Exp. 1, 6 ruminally cannulated Angus heifers (average BW of 794 ± 44.2 kg) were used in a 6 × 6 Latin square design with 2 × 3 factorial arrangement of treatments. Treatments were a control diet consisting of 50% barley silage, 10% grass hay, and 40% barley grain-based concentrate (CON) and the CON with 15% DDGS substituted for barley grain (WDG) combined with either 0, 1, or 2 mL FE/kg diet DM, respectively. Inclusion of DDGS increased total tract digestibility of CP ( < 0.01), NDF ( = 0.04), and ADF ( = 0.03). Increasing FE linearly ( = 0.03) increased CP digestibility without affecting the digestibility of other nutrients. There were no effects of DDGS inclusion or FE on ruminal pH or VFA concentration except that propionate was greater ( = 0.04) with the WDG. In situ ruminal DM and NDF disappearance of barley silage was greater ( < 0.04) in heifers fed the WDG than in heifers fed the CON after 24 h of incubation. Increasing FE linearly ( = 0.03) increased in situ NDF disappearance of barley silage after 24 h of incubation. In Exp. 2, 120 weaned steers (initial BW of 289 ± 11.0 kg) were fed diets similar to those in Exp. 1. The steers fed the WDG had greater ( < 0.01) final BW, ADG, DMI, and G:F compared with steers fed the CON. Increasing FE did not alter ADG or G:F but tended ( < 0.07) to linearly decrease DMI. There were interactions ( < 0.02) between DDGS and FE on eating rate and the time spent at the feed bunk. Supplementing FE decreased ( < 0.01) time at the bunk and increased ( < 0.01) eating rate for steers fed the WDG but not for steers fed the CON. Eating rate ( < 0.01) and meal frequency ( = 0.02) were greater but eating duration was shorter ( < 0.01) for steers fed the WDG than for those fed the CON. These results indicate that inclusion of wheat DDGS in a growing diet increased total tract digestibility of NDF and CP and improved the feed efficiency of steers. Moreover, supplementation of FE in barley silage-based growing diets may also have the potential to increase profits, with the evidence of the trend for a decline on DMI without decreasing ADG when adding FE.

  8. Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific coast of Mexico): Influence of an iron mine.

    PubMed

    Marmolejo-Rodríguez, Ana Judith; Prego, Ricardo; Meyer-Willerer, Alejandro; Shumilin, Evgueni; Cobelo-García, Antonio

    2007-01-01

    Marabasco is a tropical river-estuary system comprising the Marabasco river and the Barra de Navidad Lagoon. The river is impacted by the Peña Colorada iron mine, which produces 3.5 million tons of pellets per year. Thirteen surface sediment samples were collected in May 2005 (dry season) in order to establish background levels of Al, Cd, Co, Cu, Fe, Ni, Pb, and Zn in the system and to ascertain the potential mobility of metals in the sediments. Analyses were carried out in the fraction finer than 63 microm, and labile metals extracted according the BCR procedure. Certified reference materials were used for validation of methods. Total concentrations of Cd, Co, Cu, Ni, Pb, and Zn were in the range of 0.05-0.34, 6-95, 0.7-31, 9-26, 2-18, and 53-179 mgkg(-1), respectively; Al and Fe ranges of 24-127, and 26-69 mgg(-1) correspondingly. Cadmium was found to be significantly labile in the sediments (20-100%), followed by Co (0-35%), Ni (3-16%) and Zn (0-25%), whereas the labile fraction for Cu, Fe and Pb was almost negligible (<4%). According with the total metal concentrations, background levels and normalised enrichment factors (NEF) of the metals studied, the impact of the Peña Colorada iron mine on the Marabasco system is lower than expected when compared with other similar World systems influenced by mining activities.

  9. o-Vanillin functionalized mesoporous silica - coated magnetite nanoparticles for efficient removal of Pb(II) from water

    NASA Astrophysics Data System (ADS)

    Culita, Daniela C.; Simonescu, Claudia Maria; Patescu, Rodica-Elena; Dragne, Mioara; Stanica, Nicolae; Oprea, Ovidiu

    2016-06-01

    o-Vanillin functionalized mesoporous silica - coated magnetite (Fe3O4@MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N2 adsorption-desorption technique and magnetic measurements. The capacity of Fe3O4@MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silica - coated magnetite (Fe3O4@MCM-41) and amino - modified mesoporous silica coated magnetite (Fe3O4@MCM-41-NH2). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximum adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80-90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe3O4@MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water.

  10. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms

    NASA Astrophysics Data System (ADS)

    Druschel, Gregory K.; Emerson, David; Sutka, R.; Suchecki, P.; Luther, George W., III

    2008-07-01

    Neutrophilic iron oxidizing bacteria (FeOB) must actively compete with rapid abiotic processes governing Fe(II) oxidation and as a result have adapted to primarily inhabit low-O 2 environments where they can more successfully compete with abiotic Fe(II) oxidation. The spatial distribution of these microorganisms can be observed through the chemical gradients they affect, as measured using in situ voltammetric analysis for dissolved Fe(II), Fe(III), O 2, and FeS (aq). Field and laboratory determination of the chemical environments inhabited by the FeOB were coupled with detailed kinetic competition studies for abiotic and biotic oxidation processes using a pure culture of FeOB to quantify the geochemical niche these organisms inhabit. In gradient culture tubes, the maximum oxygen levels, which were associated with growth bands of Sideroxydans lithotrophicus (ES-1, a novel FeOB), were 15-50 μM. Kinetic measurements made on S. lithotrophicus compared biotic/abiotic (killed control) Fe oxidation rates. The biotic rate can be a significant and measurable fraction of the total Fe oxidation rate below O 2 concentrations of approximately 50 μM, but biotic Fe(II) oxidation (via the biotic/abiotic rate comparison) becomes difficult to detect at higher O 2 levels. These results are further supported by observations of conditions supporting FeOB communities in field settings. Variablity in cell densities and cellular activity as well as variations in hydrous ferrous oxide mineral quantities significantly affect the laboratory kinetic rates. The microbial habitat (or geochemical niche) where FeOB are active is thus largely controlled by the competition between abiotic and biotic kinetics, which are dependent on Fe(II) concentration, P O2, temperature and pH in addition to the surface area of hydrous ferric oxide minerals and the cell density/activity of FeOB. Additional field and lab culture observations suggest a potentially important role for the iron-sulfide aqueous molecular cluster, FeS (aq), in the overall cycling of iron associated with the environments these microorganisms inhabit.

  11. Preliminary application of tapered glass capillary microbeam in MeV-PIXE mapping of longan leaf for elemental concentration distribution analysis

    NASA Astrophysics Data System (ADS)

    Natyanun, S.; Unai, S.; Yu, L. D.; Tippawan, U.; Pussadee, N.

    2017-09-01

    This study was aimed at understanding elemental concentration distribution in local longan leaf for how the plant was affected by the environment or agricultural operation. The analysis applied the MeV-microbeam particle induced X-ray emission (PIXE) mapping technique using a home-developed tapered glass capillary microbeam system at Chiang Mai University. The microbeam was 2-MeV proton beam in 130 µm in diameter. The studying interest was in the difference in the elemental concentrations distributed between the leaf midrib and lamina areas. The micro proton beam analyzed the leaf sample across the leaf midrib edge to the leaf lamina area for total 9 data requisition spots. The resulting data were colored to form a 1D-map of the elemental concentration distribution. Seven dominant elements, Al, S, Cl, K, Ca, Sc and Fe, were identified, the first six of which were found having higher concentrations in the midrib area than in the lamina area, while the Fe concentration was in an opposite trend to that of the others.

  12. Induced Phytoextraction of Lead Through Chemical Manipulation of Switchgrass and Corn; Role of Iron Supplement.

    PubMed

    Johnson, Deayne M; Deocampo, Daniel M; El-Mayas, Hanan; Greipsson, Sigurdur

    2015-01-01

    The effects of combined chemical application of benomyl, ethylenedianinetetraacetate (EDTA), and iron (Fe) (foliar and root) on lead (Pb) phytoextraction by switchgrass (Panicum virgatum) and corn (Zea mays) was examined. Switchgrass was grown in Pb-contaminated urban topsoil with the following treatments: (C) Control, (B) benomyl, (E) EDTA, (F) foliar-Fe, (BE) benomyl + EDTA, (BF) benomyl + foliar-Fe, (FE) foliar-Fe + EDTA, (BFE) benomyl + foliar-Fe + EDTA. Corn was grown in sand-culture supplemented with Pb (500 mg kg(-1)) with the following treatments: (C) control, (B) benomyl, (E) EDTA, (F) root-Fe, (BE) benomyl + EDTA, (BF) benomyl + root-Fe, (FE) root-iron + EDTA, and, (BFE) benomyl + root-Fe + EDTA. All treatments were replicated three times and pots were arranged in a completely randomized design. Plants were analyzed for element concentration (Fe, Zn, P, and Pb) using either inductively coupled plasma (argon) atomic emission spectroscopy (ICP-AES) or graphite furnace atomic absorption spectrometer. Iron supplementation (foliar and root) affected Pb-translocation in plants. Foliar-Fe treatment increased translocation ratio of Pb (TF-Pb) significantly compared to other treatments with the exception of plants treated with benomyl and BF. Root-Fe treatment in combination with EDTA (FE) increased TF-Pb significantly compared to other treatments. Phytoextraction was improved by the combined chemical application; plants treated with BFE treatment increased Pb-total-phytoextraction by 424% compared to Control plants.

  13. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  14. Characterization of iron-doped lithium niobate for holographic storage applications

    NASA Technical Reports Server (NTRS)

    Shah, R. R.; Kim, D. M.; Rabson, T. A.; Tittel, F. K.

    1976-01-01

    A comprehensive characterization of chemical and holographic properties of eight systematically chosen Fe:LiNbO3 crystals is performed in order to determine optimum performance of the crystals in holographic storage and display applications. The discussion covers determination of Fe(2+) and Fe(3+) ion concentrations in Fe:LiNbO3 system from optical absorption and EPR measurements; establishment of the relation between the photorefractive sensitivity of Fe(2+) and Fe(3+) concentrations; study of the spectral dependence, the effect of oxygen annealing, and of other impurities on the photorefractive sensitivity; analysis of the diffraction efficiency curves for different crystals and corresponding sensitivities with the dynamic theory of hologram formation; and determination of the bulk photovoltaic fields as a function of Fe(2+) concentrations. In addition to the absolute Fe(2+) concentration, the relative concentrations of Fe(2+) and Fe(3+) ions are also important in determining the photorefractive sensitivity. There exists an optimal set of crystal characteristics for which the photorefractive sensitivity is most favorable.

  15. Diversity of the Sediment Microbial Community in the Aha Watershed (Southwest China) in Response to Acid Mine Drainage Pollution Gradients.

    PubMed

    Sun, Weimin; Xiao, Tangfu; Sun, Min; Dong, Yiran; Ning, Zengping; Xiao, Enzong; Tang, Song; Li, Jiwei

    2015-08-01

    Located in southwest China, the Aha watershed is continually contaminated by acid mine drainage (AMD) produced from upstream abandoned coal mines. The watershed is fed by creeks with elevated concentrations of aqueous Fe (total Fe > 1 g/liter) and SO4 (2-) (>6 g/liter). AMD contamination gradually decreases throughout downstream rivers and reservoirs, creating an AMD pollution gradient which has led to a suite of biogeochemical processes along the watershed. In this study, sediment samples were collected along the AMD pollution sites for geochemical and microbial community analyses. High-throughput sequencing found various bacteria associated with microbial Fe and S cycling within the watershed and AMD-impacted creek. A large proportion of Fe- and S-metabolizing bacteria were detected in this watershed. The dominant Fe- and S-metabolizing bacteria were identified as microorganisms belonging to the genera Metallibacterium, Aciditerrimonas, Halomonas, Shewanella, Ferrovum, Alicyclobacillus, and Syntrophobacter. Among them, Halomonas, Aciditerrimonas, Metallibacterium, and Shewanella have previously only rarely been detected in AMD-contaminated environments. In addition, the microbial community structures changed along the watershed with different magnitudes of AMD pollution. Moreover, the canonical correspondence analysis suggested that temperature, pH, total Fe, sulfate, and redox potentials (Eh) were significant factors that structured the microbial community compositions along the Aha watershed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil)

    NASA Astrophysics Data System (ADS)

    Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.

    2014-06-01

    Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.

  17. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Sridhar, S. G. D.; Sakthivel, A. M.; Sangunathan, U.; Balasubramanian, M.; Jenefer, S.; Mohamed Rafik, M.; Kanagaraj, G.

    2017-12-01

    The assessment of groundwater quality is an obligatory pre-requisite to developing countries like India with rural-based economy. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai was analyzed to assess the acquisition process. The study area has rapid urbanization since few decades, which deteriorated the condition of the aquifer of the area. Totally 30 groundwater samples were collected during pre-monsoon (June 2014) and post-monsoon (January 2015) from the same aquifer to assess the heavy metal concentration in groundwater. Groundwater samples were analyzed for heavy metals such as Fe, Pb, Zn, Cu, Ni, Cr, Co and Mn using atomic absorption spectrophotometry (AAS). Correlation matrix revealed that there is no significant correlation between heavy metals and other parameters during pre-monsoon except EC with Cr but Fe and Zn have good positive correlation during post-monsoon.

  18. Concentric nano rings observed on Al-Cu-Fe microspheres

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang

    2016-05-01

    It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.

  19. Removal of elevated level of chromium in groundwater by the fabricated PANI/Fe3O4 nanocomposites.

    PubMed

    Ramachandran, Aruna; Prasankumar, T; Sivaprakash, S; Wiston, Biny R; Biradar, Santhosh; Jose, Sujin

    2017-03-01

    In this work, we report the reduction of chromium concentration in the polluted groundwater samples from Madurai Kamaraj University area, India, where the dissolved salts in groundwater are reported as serious health hazards for its inhabitants. The water samples have intolerable amounts of total dissolved solids (TDS) and chromium is a prominent pollutant among them. Chromium reduction was achieved by treating the polluted groundwater with PANI/Fe 3 O 4 nanocomposites synthesized by in situ polymerization method. Further experimentation showed that the nanocomposites exhibit better chromium removal characteristics upon increasing the aniline concentration during the synthesis. We were able to reduce chromium concentration in the samples from 0.295 mg L -1 to a tolerable amount of 0.144 mg L -1 . This work is expected to open doors for chromium-free groundwater in various regions of India, when improved to an industrial scale.

  20. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  1. Salivary levels of nickel, chromium, iron, and copper in patients treated with metal or esthetic fixed orthodontic appliances: A retrospective cohort study.

    PubMed

    Lages, Renata Bandeira; Bridi, Enrico Coser; Pérez, Carlos Alberto; Basting, Roberta Tarkany

    2017-03-01

    The purpose of this retrospective cohort study was to measure the salivary levels of nickel (Ni), chromium (Cr), iron (Fe) and copper (Cu) released from metal and esthetic fixed orthodontic appliances. Ninety patients were divided into three groups (n=30): control (those who had never undergone orthodontic treatment), metal appliance (stainless steel brackets and bands, and nitinol archwires) and esthetic appliance (polycarbonate brackets and tubes, and rhodium-coated nitinol archwires). Patients undergoing orthodontic treatment had used their appliances for periods between one and six months. Ni, Cr, Fe and Cu salivary concentrations were measured by the Total Reflection X-Ray Fluorescence technique. Kruskal-Wallis and Bonferroni-Dunn test showed that Ni (p=0.027) and Cr (p=0.040) concentrations were significantly higher for patients undergoing metallic orthodontic treatment than for the esthetic group. No significant difference regarding Ni and Cr (p=0.447) concentrations were observed between the metal and the control groups (p=0.464 and p=0.447, respectively) or between the esthetic and the control groups (p=0.698 and p=0.912, respectively). Ni and Cr concentrations were significantly influenced by the type of appliance used. Fe and Cu concentrations were not affected by the type or use of orthodontic appliances. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula River plume (southern Baltic Sea).

    PubMed

    Sokolowski, A; Wolowicz, M; Hummel, H

    2001-10-01

    Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.

  3. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation

    USGS Publications Warehouse

    Deng, Y.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2011-01-01

    Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1–10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006–2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3–30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F−, and major complexes (HF(aq)0">HF(aq)0, AlF2+, AlF2+">AlF2+and AlF30">AlF30) account for more than 95% of total fluoride. Occasionally, some complex species like AlF4-">AlF4-, FeF2+, FeF2+">FeF2+, MgF+ and BF2(OH)2-">BF2(OH)2- may comprise 1–10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.

  4. Determination of some enzymes and macro- and microelements in stallion seminal plasma and their correlations to semen quality.

    PubMed

    Pesch, Sandra; Bergmann, Martin; Bostedt, Hartwig

    2006-07-15

    Seminal plasma is very important for sperm metabolism as well as sperm function and survival and transport in the female genital tract. Analysis of enzyme activities and concentrations of elements can estimate integrity and function of sperm cell membranes. In man much data are available about biochemical analyses of seminal plasma. However, not many studies have been conducted in horses yet. We collected ejaculates from 72 stallions, measured the volume, obtained seminal plasma by centrifugation and examined spermatozoa with light microscopy for motility, concentration, for dead sperm and morphology. Of seminal plasma fluid, we measured activities of aspartate-amino-transferase (AST), gamma-glutamyl-transferase (GGT), alkaline phosphatase (AlP), acid phosphatase (AcP) and lactate-dehydrogenase (LDH) as well as concentrations of sodium (Na(+)), potassium (K(+)), total and ionised calcium (Ca(TOTAL)/Ca(2+)), magnesium (Mg(2+)), phosphate (P), chloride (Cl), copper (Cu), iron (Fe) and zinc (Zn). In addition, correlations among different parameters in light microscopy and seminal plasma were statistically examined by using the Spearman rank correlation coefficient. Median enzyme activities for AST, GGT, AlP, AcP and LDH were 80.0, 7,500, 30,200, 20.0, 81.0 IU/L, respectively. Concentrations of Na(+), K(+), Ca(TOTAL), Ca(2+), Mg(2+), P, Cl were 110.5, 22.1, 2.9, 1.7, 3.1, 1.1 and 114.5 mmol/L, and of microelements Cu, Fe and Zn were 17.8, 1.9 and 13.2 micromol/L, respectively. Furthermore, we found significant correlations between semen volume as well as sperm concentration and AST, GGT, AlP, AcP and LDH as well as Fe and Zn. This made us propose a primary testicular and epididymal origin of these parameters. Significant correlation between GGT and motility may be a sign for its function for cell protection against free radicals. LDH activity significantly correlates with motility and progressive motility, live:dead-ratio and pathomorphology. In our study, LDH seems to be the most predictive enzyme for semen quality. This is the first report about GGT, AcP and LDH activities as well as iron in equine seminal plasma.

  5. Initial susceptibility and viscosity properties of low concentration ɛ-Fe3 N based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wu, Jianmin; Guo, Wei; Li, Rong; Cui, Liya

    2007-03-01

    In this paper, the initial susceptibility of ɛ-Fe3N magnetic fluid at volume concentrations in the range Φ = 0.0 ˜ 0.0446 are measured. Compared with the experimental initial susceptibility, the Langevin, Weiss and Onsager susceptibility were calculated using the data obtained from the low concentration ɛ-Fe3N magnetic fluid samples. The viscosity of the ɛ-Fe3N magnetic fluid at the same concentrations is measured. The result shows that, the initial susceptibility of the low concentration ɛ-Fe3N magnetic fluid is proportional to the concentration. A linear relationship between relative viscosity and the volume fraction is observed when the concentration Φ < 0.02.

  6. Determination of ferrous and total iron in refractory spinels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amonette, James E.; Matyas, Josef

    2015-12-30

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a seriesmore » of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with published values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.05 wt% Fe) and total Fe values slightly higher than obtained by total elemental analysis. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite.« less

  7. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED DRINKING WATER TREATMENT MEDIA 1

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051, soluble, Toxicity Characteristic Leaching Procedure extractable) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two comme...

  8. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED TREATMENT MEDIA

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These re...

  9. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED DRINKING WATER TREATMENT MEDIA - JOURNAL

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051, soluble, Toxicity Characteristic Leaching Procedure extractable) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two comme...

  10. THE DISTRIBUTION AND SOLID-PHASE SPECIATION OF AS IN IRON-BASED TREATMENT MEDIA

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These r...

  11. Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes.

    PubMed

    Massas, Ioannis; Kalivas, Dionisios; Ehaliotis, Constantions; Gasparatos, Dionisios

    2013-08-01

    The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16 × 10(3) mg kg(-1), respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg kg(-1). Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.

  12. Street dust from a heavily-populated and industrialized city: Evaluation of spatial distribution, origins, pollution, ecological risks and human health repercussions.

    PubMed

    Urrutia-Goyes, R; Hernandez, N; Carrillo-Gamboa, O; Nigam, K D P; Ornelas-Soto, N

    2018-09-15

    Emissions from vehicles include particles from tire and brake wearing that can settle down and join industrial discharges into street dust. Metals present in street dust may create ecological and health threats and their analysis is of great environmental relevance. The city of Monterrey, Mexico is an industrial pillar of the country and shows an increasing fleet during the last years, which has yielded higher traffic and emissions. This study analyzes 44 street dust samples taken across the city for total element concentrations by using X-ray fluorescence. Associations and indicators are calculated to define possible origins, levels of pollution, natural or anthropogenic sources, and ecological and human health risks. High concentrations of As, Ba, Cu, Fe, Mo, Ni, Pb, Ti, and Zn were found. Main sources of metals were defined as: tire wearing for Zn and Fe; brake wearing for Ba, Cu, Fe, Pb and Zr; additional industrial sources for Mo, Ni, Pb, and Ti; and other natural sources for As. Ecological risk was found to be moderate across the city and risk due to Pb concentrations was established for children. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products.

    PubMed

    Li, Wei; Nanaboina, Venkateswarlu; Zhou, Qixing; Korshin, Gregory V

    2012-02-01

    This study examined effects of Fenton oxidation on trace level pharmaceuticals and personal care products (PPCPs) commonly occurring in wastewater. The tested PPCPs included acetaminophen, atenolol, atrazine, carbamazepine, metoprolol, dilantin, DEET, diclofenac, pentoxifylline, oxybenzone, caffeine, fluoxetine, gemfibrozil, ibuprofen, iopromide, naproxen, propranolol, sulfamethoxazole, bisphenol-A and trimethoprim. Transformations of effluent organic matter (EfOM) caused by Fenton oxidation were also quantified. All tested PPCPs, except atrazine and iopromide, were completely removed by Fenton treatment carried out using a 20mg/L Fe (II) concentration and a 2.5 H(2)O(2)/Fe (II) molar ratio. Up to 30% on the total carbon concentration was removed during Fenton treatment which was accompanied by the oxidation of EfOM molecules and formation of oxidation products such as oxalic, formic and acetic acids and, less prominently, formaldehyde, acetaldehyde, propionaldehyde and glycolaldehyde. The absorbance of EfOM treated with Fenton reagent at varying Fe (II) concentration and contact time underwent a consistent decrease. The relative decrease of EfOM absorbance was strongly and unambiguously correlated with the removal of all tested PPCPs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Total elemental composition of soils contaminated with wastewater irrigation by combining IBA techniques

    NASA Astrophysics Data System (ADS)

    Huerta, L.; Contreras-Valadez, R.; Palacios-Mayorga, S.; Miranda, J.; Calva-Vasquez, G.

    2002-04-01

    The purpose of this work was to obtain the total elemental composition of agricultural soils irrigated with well water and wastewater. The studied area is located in the Valle del Mezquital in Hidalgo State, Mexico. The studied soils were collected, every two months during one year. Particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were applied for elemental analysis. PIXE analyses gave elemental contents of major and trace elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, and Pb). Total concentrations of Na, Mg, C, N and O were obtained by RBS and NRA. PIXE analyses were carried out with 2 MeV proton beams, RBS with 2 MeV helium ions, while NRA was applied with a 1.2 MeV deuterium beam. Results indicated that heavy metal total concentrations exceed the critical soil total concentrations according to environmental regulations.

  15. Variability of phenolic content and antioxidant activity of two lettuce varieties under Fe deficiency.

    PubMed

    Msilini, Najoua; Oueslati, Samia; Amdouni, Thouraya; Chebbi, Mohamed; Ksouri, Riadh; Lachaâl, Mokhtar; Ouerghi, Zeineb

    2013-06-01

    Fe deficiency affects food growth and quality in calcareous soils. In this study, the effect of Fe deficiency on growth parameters, phenolic content and antioxidant capacities of two lettuce shoots varieties (Romaine and Vista) were investigated. Fresh matter production, pigment (chlorophyll and carotenoid) and Fe2+ content were significantly reduced by Fe deficiency in both varieties. However, restriction of these parameters was particularly pronounced in Romaine variety as compared to Vista. Moreover, Fe deficiency caused decreases in the activity of antioxidant enzymes such as catalase and guaiacol peroxidase, whereas ascorbate peroxidase and malondialdehyde concentrations were not significantly affected. On the other hand, Fe deficiency in Vista variety induced an increase in polyphenol and flavonoid content as compared to Romaine variety. In addition, total antioxidant capacity and antiradical test against DPPH radical decreased in leaves of Romaine variety after 15 days of treatment. These results suggest that the higher polyphenol content in Vista variety supports the involvement of these components in the stability of antioxidant capacities and then in its protection against oxidative damage generated by Fe deficiency in lettuce plants. © 2012 Society of Chemical Industry.

  16. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  17. Effect of NaFeEDTA-Fortified Soy Sauce on Anemia Prevalence in China: A Systematic Review and Meta-analysis of Randomized Controlled Trials.

    PubMed

    Huo, Jun Sheng; Yin, Ji Yong; Sun, Jing; Huang, Jian; Lu, Zhen Xin; Regina, Moench-Pfanner; Chen, Jun Shi; Chen, Chun Ming

    2015-11-01

    To assess the effect of sodium iron ethylenediaminetetraacetate (NaFeEDTA)-fortified soy sauce on anemia prevalence in the Chinese population. A systematic review was performed to identify potential studies by searching the electronic databases of PubMed, Cochrane Library, WHO Library, HighWire, CNKI, and other sources. The selection criteria included randomized controlled trials that compared the efficacy of NaFeEDTA-fortified soy sauce with that of non-fortified soy sauce. Anemia rates and hemoglobin levels were the outcomes of interest. Inclusion decisions, quality assessment, and data extraction were performed by two reviewers independently. A total of 16 studies met the inclusion criteria for anemia rate analysis, of which 12 studies met the inclusion criteria for hemoglobin analysis. All included studies assessed the effect of NaFeEDTA-fortified soy sauce on anemia rates and hemoglobin concentrations. After the intervention, the hemoglobin concentration increased and anemia rates decreased significantly as compared with the non-fortified soy sauce groups. For anemia rates, data from 16 studies could be pooled, and the pooled estimate odds ratio was 0.25 (95% CI 0.19-0.35). For hemoglobin concentrations, data from 12 studies could be pooled, and the pooled weighted mean difference was 8.81 g/L (95% CI 5.96-11.67). NaFeEDTA-fortified soy sauce has a positive effect on anemia control and prevention in the at-risk population. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. The fate of arsenic in sediments formed at a river confluence affected by acid mine drainage

    NASA Astrophysics Data System (ADS)

    Guerra, P. A.; Pasten, P. A.; Pizarro, G.; Simonson, K.; Escauriaza, C. R.; Gonzalez, C.; Bonilla, C.

    2012-12-01

    Fluvial confluences receiving acid mine drainage may play a critical role in a watershed as a suite of interactions between chemistry and hydrodynamics occur, determining the fate of toxic contaminants like arsenic. Solid reactive phases of iron and/or aluminum oxi-hydroxides may form or transform, ranging from iron oxide nanoparticles that aggregate and form floccules that are transported in the suspended load up to gravel and arsenic-rich rock coatings. In order to further understand the role of reactive fluvial confluences, we have studied the mixing between the Caracarani River (flow=170-640 L/s, pH 8, conductivity 1.5 mS/cm, total As<0.1 mg/L and total Fe< 5 mg/L) and the Azufre River (flow=45-245 L/s, pH<2, conductivity > 10 mS/cm, total As>2 mg/L, total Fe=35-125 mg/L), located in the Lluta watershed in northern Chile. This site is an excellent natural laboratory located in a water-scarce area, where the future construction of a dam has prompted the attention of decision makers and scientists interested in weighing the risks derived by the accumulation of arsenic-rich sediments. Suspended sediments (> 0.45 μm), riverbed sediments, and coated rocks were collected upstream and downstream from the confluence. Suspended sediments >0.45 μm and riverbed sediments were analyzed by total reflection x-ray fluorescence for metals, while coated river bed rocks were analyzed by chemical extractions and a semi-quantitative approach through portable x-ray fluorescence. Water from the Caracarani and Azufre rivers were mixed in the laboratory at different ratios and mixing velocities aiming to characterize the effect of the chemical-hydrodynamic environment where arsenic solids were formed at different locations in the confluence. Despite a wide range of iron and arsenic concentrations in the suspended sediments from the field (As=1037 ± 1372 mg/kg, Fe=21.0 ± 24.5 g/kg), we found a rather narrow As/Fe ratio, increasing from 36.5 to 55.2 mgAs/kgFe when the bulk water pH increased from 3 to 6. Sequential extraction analyses suggest that ~80% of As in the solid pahse is strongly sorbed to the sediments, whereas ~15% of As is forming co-precipitated phase. Riverbed sediments (sand and gravel) showed much lower concentrations of Fe and As (17.1 ± 3.0 g/kg and 67.5 ± 53.9 mg/kg, respectively), owing to a dilution from non-reactive phases like quartz from sand. Coated rocks showed concentrations of Fe and As of 34.8 ± 12.5 g/kg and 680 ± 401 mg/kg, respectively, suggesting the coatings are possibly constituted by As-rich particles sequestered from the flow. In the case of the laboratory mixing tests, suspended solids ranged from 10 to 60 mg/L, with higher values at lower mixing ratios or higher pHs. Our findings suggest that the spatial and temporal variability driven by the hydrodynamics of a confluence determine distinct geochemical characteristics of arsenic-rich solid phases, thus playing a role in the fate of reactive contaminants like arsenic in the watershed. Research funded by Fondecyt project 1100943.

  19. Trace metals in the Ob and Yenisei Rivers' Estuaries (the Kara Sea).

    NASA Astrophysics Data System (ADS)

    Demina, L. L.

    2014-12-01

    Behavior of some trace metals (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb) in water column (soluble <0.45 µm and particulate fractions) and bottom sediments (surface and cores) along the two transects from the Ob River and Yenisei River Estuaries to the Kara Sea was studied. The length of both transects was about 700 km. Water depth was 12-63 m, O2 dissolved :5.36-9.55 ml l-1. Along the transects salinity increased from 0.07 to 34.2 psu, while the SPM' concentration decreased from 10.31 to 0.31 mg/l. Total suspended particulate matter load is more than one order of magnitude higher in the Ob River Estuary comparing to that of the Yenisei River. It has led to a significant difference between the suspended trace metals' concentrations (µg/l) in water of the two estuaries. With salinity increase along transects Fe susp., Mn susp. and Zn susp. decreased by a factor of 100-500, that has led to a growth of a relative portion of dissolved trace metals followed by their bioaccumulation (Demina et al., 2010). A strong direct correlation between suspended Cu, Fe and SPM mass concentration was found. For the first time along the Yenisei River' Estuary -the Kara Sea transect a direct positive correlation between Cu suspended and volume concentration of SPM (mg/ml3) was found, that was attributed to contribution of phytoplankton aggregates in the SPM composition. A trend of relationship between content of suspended As and pelitic fraction (2-10 µm) of SPM was firstly found in theses basins also. Study of trace metal speciation in the bottom sediments (adsorbed, associated with Fe-Mn (oxyhydr)oxides, organic matter and fixed in the mineral lattice or refractory) has revealed the refractory fraction to be prevailing (70-95% total content) for Fe, Zn, Cu, Co, Ni, Cr, Cd and Pb. That means that toxic heavy metals were not available for bottom fauna. Mn was predominantly found in the adsorbed and (oxyhydr)oxides geochemically labile forms, reflecting the redox condition change along both transects and within the sedimentary cores. References. Demina L.L., Gordeev V.V., Galkin S.V., Kravchishina M.D. Biogeochemistry of some heavy metals and metalloids along the transect the Ob River Estuary - the Kara Sea. Oceanology, 2010, vo. 50, No 5, pp. 729- 742.

  20. A Limited Survey of Heavy Metal Concentrations in Fresh and Frozen Cuttlefish Ink and Mantle Used As Food.

    PubMed

    Conficoni, Daniele; Alberghini, Leonardo; Bissacco, Elisa; Contiero, Barbara; Giaccone, Valerio

    2018-02-01

    Cuttlefish ink is consumed as a delicacy worldwide. The current study is the first assessment of heavy metal concentrations in cuttlefish ink versus mantle under different storage methods. A total of 212 samples (64 of fresh mantle, 42 of frozen mantle, 64 of fresh ink, and 42 of frozen ink) were analyzed for the detection of the following heavy metals: arsenic (As), chromium (Cr), iron (Fe), lead (Pb), mercury (Hg), and cadmium (Cd). The median As concentrations were 12.9 mg/kg for fresh mantle, 8.63 mg/kg for frozen mantle, 10.8 mg/kg for frozen ink, and 0.41 mg/kg for fresh ink. The median Cr concentrations were 0.06 mg/kg for fresh mantle and frozen ink, 0.03 mg/kg for frozen mantle, and below the limit of quantification (LOQ) for fresh ink. The median Fe concentrations were 4.08 mg/kg for frozen ink, 1.51 mg/kg for fresh mantle, 0.73 mg/kg for frozen mantle, and below the LOQ for fresh ink. The median Pb concentrations of almost all samples were below the LOQ; only two frozen ink, one fresh ink, one frozen mantle, and one fresh mantle sample exceeded the limit stipulated by the European Union. The Hg concentrations were statistically similar among the four categories of samples; the median Hg concentrations were below the LOQ, and the maximum concentrations were found in frozen ink, at 1.62 mg/kg. The median Cd concentrations were 0.69 mg/kg for frozen ink and 0.11 mg/kg for frozen mantle, fresh mantle and fresh ink concentrations were below the LOQ, and in 11.3% of the tested samples, Cd concentrations were higher than the European Union limit. The probability of samples having a Cd concentration above the legal limit was 35.75 times higher in frozen than in fresh products. Fresh ink had significantly lower concentrations of As, Cr, Fe, and Cd, but the concentrations of Hg and Pb were not significantly different from those of other products. Frozen ink had significantly higher concentrations of Cd, Cr, and Fe, but concentrations of As were lower than those in fresh mantle, pointing out a possible role for the freezing process and for different fishing zones as risk factors for heavy metal contamination.

  1. Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction

    DOE PAGES

    Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; ...

    2015-09-21

    Ruddlesden-Popper structured oxides, general form A n+1B nO 3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo 0.5Fe 0.5O 4-δ (n = 1), La 0.3Sr 2.7CoFeO 7-δ (n = 2), and LaSr 3Co 1.5Fe 1.5O 10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO 2 of 10 -1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, andmore » were found to have increased total oxygen vacancy concentration in the order La 0.3Sr 2.7CoFeO 7-δ > LaSr 3Co 1.5Fe 1.5O 10-δ > LaSrCo 0.5Fe 0.5O 4-δ, following the trend predicted for charge compensation upon increasing Sr 2+/La 3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less

  2. Using Perls Staining to Trace the Iron Uptake Pathway in Leaves of a Prunus Rootstock Treated with Iron Foliar Fertilizers

    PubMed Central

    Rios, Juan J.; Carrasco-Gil, Sandra; Abadía, Anunciación; Abadía, Javier

    2016-01-01

    The aim of this study was to trace the Fe uptake pathway in leaves of Prunus rootstock (GF 677; Prunus dulcis × Prunus persica) plants treated with foliar Fe compounds using the Perls blue method, which detects labile Fe pools. Young expanded leaves of Fe-deficient plants grown in nutrient solution were treated with Fe-compounds using a brush. Iron compounds used were the ferrous salt FeSO4, the ferric salts Fe2(SO4)3 and FeCl3, and the chelate Fe(III)-EDTA, all of them at concentrations of 9 mM Fe. Leaf Fe concentration increases were measured at 30, 60, 90 min, and 24 h, and 70 μm-thick leaf transversal sections were obtained with a vibrating microtome and stained with Perls blue. In vitro results show that the Perls blue method is a good tool to trace the Fe uptake pathway in leaves when using Fe salts, but is not sensitive enough when using synthetic Fe(III)-chelates such as Fe(III)-EDTA and Fe(III)-IDHA. Foliar Fe fertilization increased leaf Fe concentrations with all Fe compounds used, with inorganic Fe salts causing larger leaf Fe concentration increases than Fe(III)-EDTA. Results show that Perls blue stain appeared within 30 min in the stomatal areas, indicating that Fe applied as inorganic salts was taken up rapidly via stomata. In the case of using FeSO4 a progression of the stain was seen with time toward vascular areas in the leaf blade and the central vein, whereas in the case of Fe(III) salts the stain mainly remained in the stomatal areas. Perls stain was never observed in the mesophyll areas, possibly due to the low concentration of labile Fe pools. PMID:27446123

  3. Zn0-CNTs-Fe3O4 catalytic in situ generation of H2O2 for heterogeneous Fenton degradation of 4-chlorophenol.

    PubMed

    Yang, Zhao; Gong, Xiao-Bo; Peng, Lin; Yang, Dan; Liu, Yong

    2018-06-04

    A novel Zn 0 -CNTs-Fe 3 O 4 composite was synthesized by the chemical co-precipitation combined with high sintering process at nitrogen atmosphere. The as-prepared composite was characterized by SEM, EDS, XRD, XPS, VSM and N 2 adsorption/desorption experiments. A novel heterogeneous Fenton-like system, composed of Zn 0 -CNTs-Fe 3 O 4 composite and dissolved oxygen (O 2 ) in solution, which can in situ generate H 2 O 2 and OH, was used for the degradation of 4-chlorophenol (4-CP). The influences of various operational parameters, including the initial pH, dosage of Zn 0 -CNTs-Fe 3 O 4 and initial concentration of 4-CP on the removal of 4-CP were investigated. The removal efficiencies of 4-CP and total organic carbon (TOC) were 99% and 57%, respectively, at the initial pH of 1.5, Zn 0 -CNTs-Fe 3 O 4 dosage of 2 g/L, 4-CP initial concentration of 50 mg/L and oxygen flow rate of 400 mL/min. Based on the results of the radical scavenger effect study, the hydroxyl radical was considered as the main reactive oxidants in Zn 0 -CNTs-Fe 3 O 4 /O 2 system and a possible degradation pathway of 4-CP was proposed. Copyright © 2018. Published by Elsevier Ltd.

  4. Photocatalytic water oxidation with iron oxide hydroxide (rust) nanoparticles

    NASA Astrophysics Data System (ADS)

    Shelton, Timothy L.; Bensema, Bronwyn L.; Brune, Nicholas K.; Wong, Christopher; Yeh, Max; Osterloh, Frank E.

    2017-01-01

    Hematite has attracted considerable interest as a photoanode material for water oxidation under visible illumination. Here, we explore the limits of photocatalytic water oxidation activity with iron (III) oxide hydroxide nanocrystals and NaIO4 as a sacrificial electron acceptor (E=1.63 V NHE at pH=0.5). The sol was prepared by hydrolysis of FeCl3 in boiling 0.002-M HCl solution and confirmed to mainly consist of ß-FeO(OH) (akaganéite) particles with 5 to 15 nm diameter. From a 0.01 M aqueous NaIO4 solution, the sol evolves between 4.5 and 35.2 μmol O2 h-1, depending on pH, light intensity (>400 nm, 290 to 700 mW cm-2), ß-FeO(OH), and NaIO4 concentration. The activity increases with pH, and depends linearly on light intensity and photocatalyst amount, and it varies with sacrificial electron donor concentration. Under optimized conditions, the apparent quantum efficiency is 0.19% (at 400 nm and 460 mW cm-2), and the turnover number is 2.58 based on total ß-FeO(OH). Overall, the efficiency of the ß-FeO(OH)/NaIO4 photocatalytic system is limited by electron hole recombination and by particle aggregation over longer irradiation times (24 h). Lastly, surface photovoltage measurements on ß-FeO(OH) films on fluorine doped tin oxide substrate confirm a 2.15 eV effective band gap for the material.

  5. Mineral concentrations in diets, water, and milk and their value in estimating on-farm excretion of manure minerals in lactating dairy cows.

    PubMed

    Castillo, A R; St-Pierre, N R; Silva del Rio, N; Weiss, W P

    2013-05-01

    Thirty-nine commercial dairies in Merced County, California were enrolled in the present study to (1) compare lactating cow mineral intakes (via drinking water and total mixed ration) to the National Research Council (NRC) requirements, (2) evaluate the association between dietary concentrations of minerals with and without drinking water and adjusted for mineral concentrations in milk, and (3) compare 4 different methods to estimate excretion of minerals using either assays or estimations of milk mineral outputs and total daily mineral intake per cow with or without minerals coming from drinking water. Dairies were selected to represent a range of herd milk yields and a range of water mineral contents. Samples of total mixed ration, drinking water, and bulk tank milk were taken on 2 different days, 3 to 7d apart in each farm. Across-farm medians and percentile distributions were used to analyze results. The herd median milk yield interquartile ranged (10th to 90th percentile) from less than 25 to more than 39 kg/d and the concentration of total solids in water interquartile ranged from less than 200 to more than 1,490 mg/L. Including drinking water minerals in the diets increased dietary concentrations by <4% for all minerals except for Na and Cl, which increased by 9.3 and 6.5%, respectively. Concentrations of P and K in milk were essentially the same as the NRC value to estimate lactation requirements. However, NRC milk values of Ca, Cl, and Zn were 10 to 20% greater than dairy farm values; and Na, Cu, Fe, and Mn were no less than 36% below NRC values. Estimated excretion of minerals via manure varied substantially across farms. Farms in the 10th percentile did have 2 to 3 times less estimated mineral excretions than those in the 90th percentile (depending on the mineral). Although including water minerals increased excretion of most minerals, the actual median effect of Ca, Mg, S, Cu, Fe, and Mn was less than 5%, and about 8% for Na and Cl. Replacing assayed concentrations of minerals in milk with NRC constants resulted in reduced estimated excretion of Ca, Na, Cu, Fe, and Zn, but median differences were <5% except for Na which was 7.5%. Results indicate that not including mineral intake via drinking water and not using assayed concentrations of milk minerals lead to errors in estimation manure excretion of minerals (e.g., Ca, Na, Cl, and S). Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Arsenic mobilization in the Brahmaputra plains of Assam: groundwater and sedimentary controls.

    PubMed

    Sailo, Lalsangzela; Mahanta, Chandan

    2014-10-01

    Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized in the study area. The range of As concentration in the groundwater varies from 10 to 440 μg/l with mean concentration 210 μg/l. The groundwaters are characterized by high dissolved Fe, Mn, and HCO₃(-) and low concentrations of NO₃(-) and SO₄(2-) indicating the reduced conditions prevailing in the groundwater. In order to understand the actual mobilization processes in the area, six core drilling surrounding the two target tube wells (T1 and T2) with high As concentration (three drill-cores surrounds each tube well closely) was done. The sediment was analyzed its chemical, mineralogical, and elemental compositions. A selective sequential extraction suggested that most of the As in the sediment is bound to Fe oxides fractions (32 to 50%) and the competition for adsorption site by anions (PO₄(3-)) also accounts to significant fractions of the total arsenic extracted. High variability in the extraction as well as properties of the sediment was observed due to the heterogeneity of the sediment samples with different chemical properties. The SEM and EDX results indicate the presence of Fe, Mn coating along with As for most of the sample, and the presence of As associated minerals were calculated using PHREEQC. The mobilization of As into the groundwater was anticipated to be largely controlled by the reductive dissolution of Fe oxides and partly by the competitive anions viz. PO₄(3-).

  7. Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River delta region, China--a typical industry-agriculture transition area.

    PubMed

    Wang, Cheng; Ji, Junfeng; Yang, Zhongfang; Chen, Lingxiao; Browne, Patrick; Yu, Ruilian

    2012-08-01

    In order to identify the effects of soil properties on the transfer of Cd from soil to wheat under actual field conditions, 126 pairs of topsoil and wheat samples were collected from the Yangtze River delta region, China. Relevant parameters (Cd, Ca, Mg, Fe, Mn, Zn, N, P, K, S, pH, total organic carbon, and speciation of soil Cd) in soil and wheat tissues were analyzed, and the results were treated by statistical methods. Soil samples (19.8%) and 14.3% of the wheat grain samples exceeded the relevant maximum permissible Cd concentrations in China for agricultural soil and wheat grain, respectively. The major speciations of Cd in soil were exchangeable, bound to carbonates and fulvic and humic acid fraction, and they were readily affected by soil pH, total Ca, Mg, S and P, DTPA-Fe, Ex-Ca, and Ex-Mg. Cadmium showed a strong correlation with Fe, S, and P present in the grain and the soil, whereas there was no significant correlation in the straw or root. Generally, soil pH, Ca, Mg, Mn, P, and slowly available K restricted Cd transfer from soil to wheat, whereas soil S, N, Zn, DTPA-Fe, and total organic carbon enhance Cd uptake by wheat.

  8. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    PubMed

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai

    2017-02-01

    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.

  9. Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: Effects of sediment-water interactions, sediment burial age and groundwater residence time

    NASA Astrophysics Data System (ADS)

    Sø, Helle Ugilt; Postma, Dieke; , Mai Lan, Vi; Pham, Thi Kim Trang; Kazmierczak, Jolanta; Dao, Viet Nga; Pi, Kunfu; Koch, Christian Bender; Pham, Hung Viet; Jakobsen, Rasmus

    2018-03-01

    Water-sediment interactions were investigated in arsenic contaminated Holocene aquifers of the Red River floodplain, Vietnam, in order to elucidate the origin of the spatial variability in the groundwater arsenic concentration. The investigated aquifers are spread over an 8 × 13 km field area with sediments that varied in burial age from <1 kyr to 11 kyr. The groundwater age ranged from less than 2 yr, up to a maximum near 90 yr. Groundwater As concentrations are between 0 and 6.5 μM and there are no simple correlations between the As concentration and groundwater age or aquifer sediment burial age. The aquifers are anoxic with up to 2 mM CH4 and up to 0.5 mM DOC. The downward advective DOC flux is too small to support both methanogenesis and the reduction of As-containing Fe-oxides and sedimentary carbon is therefore considered the main carbon source for the redox processes. The groundwater H2 concentration ranged between 0.1 and 4 nM. These values are intermediate between ranges characteristic for Fe-oxide reduction and methanogenesis and suggest that both processes take place simultaneously. The groundwater pe was calculated from the H2/H+ and CH4/CO2 redox couples, giving almost similar results that apparently reflects the pe of the bulk groundwater. The pe calculated for the As(III)/As(V) redox couple was found in disequilibrium with the other redox couples. Using the pe calculated from the CH4/CO2 redox couple we show that the groundwater has a reducing potential towards Fe-oxides ranging from ferrihydrite to poorly crystalline goethite, but not for well crystalline goethite or hematite. Hematite and poorly crystalline goethite were identified as the Fe-oxides present in the sediments. Reductive dissolution experiments identify two phases releasing Fe(II); one rapidly dissolving that also contains As and a second releasing Fe(II) more slowly but without As. The initial release of Fe and As occurs at a near constant As/Fe ratio that varied from site to site between 1.2 and 0.1 mmol As/mol Fe. Siderite (FeCO3) is the main sink for Fe(II), based on saturation calculations as well as the identification of siderite in the sediment. Most of the carbonate incorporated in siderite originates from the dissolution of sedimentary CaCO3. Over time the CaCO3 content of the sediments diminishes and FeCO3 appears instead. No specific secondary phases that incorporate arsenite could be identified. Alternatively, the amount of arsenic mobilized during the dissolution of reactive phases can be contained in the pool of adsorbed arsenite. Combining groundwater age with aquifer sediment age allows the calculation of the total number of pore volumes flushed through the aquifer. Comparison with groundwater chemistry shows the highest arsenic concentration to be present within the first 200 pore volumes flushed through the aquifer. These results agree with reactive transport modeling combining a kinetic description of reductive dissolution of As-containing Fe-oxide with adsorption and desorption of arsenite. Understanding variability in groundwater arsenic concentration requires appreciating the coupling of the chemical processes to both sedimentary and hydrogeological cycling.

  10. The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.

    PubMed

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan

    2015-01-01

    This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.

  11. Potential Hydrogen Yields from Ultramafic Rocks of the Coast Range Ophiolite and Zambales Ophiolite: Inferences from Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stander, A.; Nelms, M.; Wilkinson, K.; Dyar, M. D.; Cardace, D.

    2013-12-01

    The reduced status of mantle rocks is a possible controller and indicator of deep life habitat, due to interactions between water and ultramafic (Fe, Mg-rich) minerals, which, under reducing conditions, can yield copious free hydrogen, which is an energy source for rock-hosted chemosynthetic life. In this work, Mössbauer spectroscopy was used to parameterize the redox status of Fe in altering peridotites of the Coast Range Ophiolite (CRO) in California, USA and Zambales Ophiolite (ZO) in the Philippines. Fe-bearing minerals were identified and data were collected for the percentages of Fe(III)and Fe(II)and bulk Fe concentration. Thin section analysis shows that relict primary olivines and spinels generally constitute a small percentage of the ZO and CRO rock, and given satisfactory estimates of the volume of the ultramafic units of the ZO and CRO, a stoichiometric H2 production can be estimated. In addition, ZO serpentinites are ~63,000 ppm Fe in bulk samples; they contain ~41-58% Fe(III)and ~23-34% Fe(II) in serpentine and relict minerals along with ~8-30% of the total Fe as magnetite. CRO serpentinites are ~42,000 ppm Fe in bulk samples; they contain ~15-50% Fe(III), ~22-88% Fe(II) in serpentine and relict minerals, and ~0-52% of total Fe is in magnetite (Fe(II)Fe(III)2O4). Assuming stoichiometric production of H2, and given the following representation of serpentinization 2(FeO)rock + H2O → (Fe2O3)rock +H2, we calculated the maximum quantity of hydrogen released and yet to be released through the oxidation of Fe(II). Given that relatively high Fe(III)/Fetotal values can imply higher water:rock ratios during rock alteration (Andreani et al., 2013), we can deduce that ZO ultramafics in this study have experienced a net higher water:rock ratio than CRO ultramafics. We compare possible H2 yields and contrast the tectonic and alteration histories of the selected ultramafic units. (M. Andreani, M. Muñoz, C. Marcaillou, A. Delacour, 2013, μXANES study of iron redox state in serpentine during oceanic serpentinization, Lithos, Available online 20 April 2013)

  12. Photochemical Degradation of Organic Pollutants in Wastewaters

    NASA Astrophysics Data System (ADS)

    Balbayeva, Gaukhar; Yerkinova, Azat; Inglezakis, Vassilis J.; Poulopoulos, Stavros G.

    2018-01-01

    In the present work, the photochemical treatment of a synthetic wastewater in a batch recycle photochemical reactor using ultraviolet irradiation (254 nm, 6 W), hydrogen peroxide and ferric ions was studied. Reactor volume was 250 mL with 55.8 mL of irradiated volume in the annular photoreactor. The synthetic wastewater was composed mainly of organic carbon. The effect of initial total carbon (136-1080 mg L-1), initial H2O2 amount (1332-5328 mg L-1), pH, and Fe(III) presence (2-40 ppm), on total carbon (TC) removal was studied. Each experiment lasted 120 min, and the process was attended via pH and TC concentration. Direct photolysis in the absence of any oxidant had practically no effect on TC removal. Regarding the effect of initial TC concentration in the wastewater keeping the same initial hydrogen peroxide concentration (2664 mg L-1), it was observed that for 136-271 mg L-1 TC, around 60% TC removal was achieved, while when initial TC was increased at 528 mg L-1, the TC removal observed decreased to 50%. For a further increase in TC at 1080 mg L-1, TC removal dropped to 14%. Initial pH adjustment of the wastewater resulted in slight variations of the TC removals achieved. Finally, adding Fe(III) in the process was beneficial in terms of TC removal obtained. Particularly, the addition of 40 ppm Fe(III) in the presence of 2664 mg L-1 H2O2 and initial TC equal to 528 mg L-1 increased the TC removal from 50% to 72%.

  13. Environmentally safe sewage sludge disposal: the impact of liming on the behaviour of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn.

    PubMed

    Scancar, J; Milacic, R; Strazar, M; Burica, O; Bukovec, P

    2001-02-01

    Dewatered sewage sludge containing relatively high total concentrations of Cr (945 micrograms ml-1), Cu (523 micrograms ml-1), Ni (1186 micrograms ml-1) and Zn (2950 micrograms ml-1) was treated with quicklime and sawdust for sludge disinfection and post-stabilisation. The mobility of the heavy metals in the sludge samples was assessed by applying a modified five-step Tessier sequential extraction procedure. Water was added as a first step for estimation of the proportion of the easily soluble metal fractions. To check the precision of the analytical work the concentrations of heavy metals in steps 1-6 of the extraction procedure were summed and compared to the total metal concentrations. The mass balance agreed within +/- 3% for Cd, Cu, Cr, and Zn and within +/- 5% for Ni, Pb, Fe and Mn. Data from the partitioning study indicate that in the lime-treated sludge at a pH of 12 the mobility of Cu and Ni notably increased with the solubilisation of these metals from their organic and/or carbonate and Fe and Mn oxide and hydroxide fractions, respectively. Liming slightly decreased the proportion of other heavy metals in the easily soluble fractions while its impact on the partitioning between other sludge phases was almost insignificant. Due to the increased solubility of Ni and Cu as well as potential Cr oxidation at high pH, liming cannot be recommended for sludge disinfection. Addition of sawdust did not change the heavy metal partitioning.

  14. Cadmium background concentrations to establish reference quality values for soils of São Paulo State, Brazil.

    PubMed

    de Oliveira, Vinicius Henrique; de Abreu, Cleide Aparecida; Coelho, Ricardo Marques; Melo, Leônidas Carrijo Azevedo

    2014-03-01

    Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n = 191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg(-1), and the background concentration was 0.5 mg kg(-1). After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg(-1) of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg(-1)) was higher than in Ultisols (0.3 mg kg(-1)). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R (2) = 0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.

  15. Influence of eutrophication on metal bioaccumulation and oral bioavailability in oysters, Crassostrea angulata.

    PubMed

    Li, Shun-Xing; Chen, Li-Hui; Zheng, Feng-Ying; Huang, Xu-Guang

    2014-07-23

    Oysters (Crassostrea angulata) are often exposed to eutrophication. However, how these exposures influence metal bioaccumulation and oral bioavailability (OBA) in oysters is unknown. After a four month field experimental cultivation, bioaccumulation factors (BAF) of metals (Fe, Cu, As, Cd, and Pb) from seawater to oysters and metal oral bioavailability in oysters by bionic gastrointestinal tract were determined. A positive effect of macronutrient (nitrate N and total P) concentration in seawater on BAF of Cd in oysters was observed, but such an effect was not significant for Fe, Cu, Pb, and As. Only OBA of As was significantly positively correlated to N and P contents. For Fe, OBA was negatively correlated with N. The regular variation of the OBA of Fe and As may be due to the effect of eutrophication on the synthesis of metal granules and heat-stable protein in oysters, respectively.

  16. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.

    PubMed

    Baken, Stijn; Verbeeck, Mieke; Verheyen, Dries; Diels, Jan; Smolders, Erik

    2015-03-15

    Redox reactions involving iron (Fe) strongly affect the mobility of phosphorus (P) and its migration from agricultural land to freshwater. We studied the transfer of P from groundwater to open drainage ditches in an area where, due to Fe(II) rich groundwater, the sediments of these ditches contain accumulated Fe oxyhydroxides. The average P concentrations in the groundwater feeding two out of three studied drainage ditches exceeded environmental limits for freshwaters by factors 11 and 16, but after passing through the Fe-rich sediments, the P concentrations in the ditch water were below these limits. In order to identify the processes which govern Fe and P mobility in these systems, we used diffusive equilibration in thin films (DET) to measure the vertical concentration profiles of P and Fe in the sediment pore water and in the ditchwater. The Fe concentrations in the sediment pore water ranged between 10 and 200 mg L(-1) and exceeded those in the inflowing groundwater by approximately one order of magnitude, due to reductive dissolution of Fe oxyhydroxides in the sediment. The dissolved P concentrations only marginally increased between groundwater and sediment pore water. In the poorly mixed ditchwater, the dissolved Fe concentrations decreased towards the water surface due to oxidative precipitation of fresh Fe oxyhydroxides, and the P concentrations decreased more sharply than those of Fe. These observations support the view that the dynamics of Fe and P are governed by reduction reactions in the sediment and by oxidation reactions in the ditchwater. In the sediment, reductive dissolution of P-containing Fe oxyhydroxides causes more efficient solubilization of Fe than of P, likely because P is buffered by adsorption on residual Fe oxyhydroxides. Conversely, in the ditchwater, oxidative precipitation causes more efficient immobilization of P than of Fe, due to ferric phosphate formation. The combination of these processes yields a natural and highly efficient sink for P. It is concluded that, in Fe-rich systems, the fate of P at the sediment-water interface is determined by reduction and oxidation of Fe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Heavy metals content in acid mine drainage at abandoned and active mining area

    NASA Astrophysics Data System (ADS)

    Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim

    2013-11-01

    This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD appeared to be influenced by acidity and the formation of Fe, Mn oxide and hydroxide.

  18. Oxygenic photosynthesis as a protection mechanism for cyanobacteria against iron-encrustation in environments with high Fe2+ concentrations

    PubMed Central

    Ionescu, Danny; Buchmann, Bettina; Heim, Christine; Häusler, Stefan; de Beer, Dirk; Polerecky, Lubos

    2014-01-01

    If O2 is available at circumneutral pH, Fe2+ is rapidly oxidized to Fe3+, which precipitates as FeO(OH). Neutrophilic iron oxidizing bacteria have evolved mechanisms to prevent self-encrustation in iron. Hitherto, no mechanism has been proposed for cyanobacteria from Fe2+-rich environments; these produce O2 but are seldom found encrusted in iron. We used two sets of illuminated reactors connected to two groundwater aquifers with different Fe2+ concentrations (0.9 μM vs. 26 μM) in the Äspö Hard Rock Laboratory (HRL), Sweden. Cyanobacterial biofilms developed in all reactors and were phylogenetically different between the reactors. Unexpectedly, cyanobacteria growing in the Fe2+-poor reactors were encrusted in iron, whereas those in the Fe2+-rich reactors were not. In-situ microsensor measurements showed that O2 concentrations and pH near the surface of the cyanobacterial biofilms from the Fe2+-rich reactors were much higher than in the overlying water. This was not the case for the biofilms growing at low Fe2+ concentrations. Measurements with enrichment cultures showed that cyanobacteria from the Fe2+-rich environment increased their photosynthesis with increasing Fe2+ concentrations, whereas those from the low Fe2+ environment were inhibited at Fe2+ > 5 μM. Modeling based on in-situ O2 and pH profiles showed that cyanobacteria from the Fe2+-rich reactor were not exposed to significant Fe2+ concentrations. We propose that, due to limited mass transfer, high photosynthetic activity in Fe2+-rich environments forms a protective zone where Fe2+ precipitates abiotically at a non-lethal distance from the cyanobacteria. This mechanism sheds new light on the possible role of cyanobacteria in precipitation of banded iron formations. PMID:25228899

  19. Nitric oxide removal by combined urea and FeIIEDTA reaction systems.

    PubMed

    He, Feiqiang; Deng, Xianhe; Chen, Min

    2017-02-01

    (NH 2 ) 2 CO as well as Fe II EDTA is an absorbent for simultaneous desulfurization and denitrification. However, they have their own drawbacks, like the oxidation of Fe II EDTA and the low solubility of NO in urea solution. To overcome these defects, A mixed absorbent containing both (NH 2 ) 2 CO and Fe II EDTA was employed. The effects of various operating parameters (urea and Fe II EDTA concentration, temperature, inlet oxygen concentration, pH value) on NO removal were examined in the packed tower. The results indicated that the NO removal efficiency increased with the decrease of oxygen concentration as well as the increase of Fe II EDTA concentration. The NO removal efficiency had little change with a range of 25-45 °C, and sharply decreased at the temperature of above 55 °C. The NO removal efficiency initially increases up to the maximum value and then decreases with the increase of pH value as well as the raise of urea concentration. In addition, the synergistic mechanism of (NH 2 ) 2 CO and Fe II EDTA on NO removal was investigated. Results showed that urea could react with Fe II EDTA-NO to produce Fe II EDTA, N 2 , and CO 2 , and hinder oxidation of Fe II EDTA. Finally, to evaluate the effect of SO 3 2- on NO removal, a mixed absorbent containing Fe II EDTA, urea, and Na 2 SO 3 was employed to absorb NO. The mixed absorbent could maintain more than 78% for 80 min at 25 °C, pH = 7.0, (NH 2 ) 2 CO concentration of 5 wt%, Fe II EDTA concentration of 0.02 M, O 2 concentration of 7% (v/v), and Na 2 SO 3 concentration of 0.2 M. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Phosphorus contents and phosphorous sorption in soils of the Gilgel Gibe catchment, SW Ethiopia

    NASA Astrophysics Data System (ADS)

    Behn, Christian; Janssen, Manon; Geda Adela, Yalemsew; Lennartz, Bernd

    2013-04-01

    The Gilgel Gibe reservoir, located on the edge of the Ethiopian Plateau, is threatened by siltation and nutrient imports, with phosphate concentrations being more than 50-fold higher than WHO guidelines. Phosphorus reaches the reservoir mainly adsorbed to eroded soil particles. At the same time, P availability for plant production is generally limited in strongly weathered volcanic soils due to their high P sorption capacity. The objectives of this study are therefore to determine the P contents and the P sorption capacity of the soils in the catchment, and to evaluate the influence of slope position and land use. Six catenas surrounding the reservoir (120 to 440 m long), either used as pasture or as arable land, were investigated. Topsoil samples were taken at three slope positions. Parent materials were basalt and rhyolite. Soil texture was clay, the clay content ranged between 41 and 88 %. The soils were moderately to very strongly acid with pH values of 4.6 to 5.9. Plant-available P (double lactate method), total P, Fe and Al (aqua regia digestion) as well as dithionite and oxalate extractable P, Al and Fe contents were determined. Batch experiments were conducted with 7 P concentrations ranging from 0 to 500 mg/l, and the adsorption isotherms will be evaluated using Freundlich and Langmuir models. First results showed that total P contents ranged between 0.2 and 0.5 g/kg soil. Total Fe and Al contents were extremely high with values of 36 to 85 and 29 to 80 g/kg soil, respectively. P contents were significantly correlated with Fe (r=0.68) and clay (r=0.65) contents (P<0.01), which highlights the effect of the parent material. No plant-available P, however, was found in any of the soils, demonstrating the poor growth conditions. P sorption also mainly depended on the soil's Fe content. An influence of slope position or land use on either P content or P sorption capacity could not be detected.

  1. Structure and high temperature oxidation of mechanical alloyed Fe-Al coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryanto, Didik, E-mail: Didik-phys@yahoo.co.id, E-mail: didi027@lipi.go.id; Sudiro, Toto; Wismogroho, Agus S.

    2016-04-19

    The structure and high temperature oxidation resistance of Fe-Al coating on low carbon steel were investigated. The Fe-Al coating was deposited on the surface of low carbon steel using a mechanical alloying method. The coating was then annealed at 600°C for 2 hour in a vacuum of 5 Pa. The cyclic-oxidation tests of low carbon steel, Fe-Al coatings with and without annealing were performed at 600°C for up to 60h in air. The structure of oxidized samples was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy X-ray spectroscopy (EDS). The results show that the Fe-Al coatingsmore » exhibit high oxidation resistance compared to the uncoated steel. After 60 h exposure, the uncoated steel formed mainly Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} layers with the total thickness of around 75.93 µm. Fe-Al coating without annealing formed a thin oxide layer, probably (Fe,Al){sub 2}O{sub 3}. Meanwhile, for annealed sample, EDX analysis observed the formation of two Fe-Al layers with difference in elements concentration. The obtained results suggest that the deposition of Fe-Al coating on low carbon steel can improve the oxidation resistance of low carbon steel.« less

  2. Application of total-reflection X-ray fluorescence spectrometry and high-performance liquid chromatography for the chemical characterization of xylem saps of nickel contaminated cucumber plants

    NASA Astrophysics Data System (ADS)

    Mihucz, Victor G.; Tatár, Eniko; Varga, Anita; Záray, Gyula; Cseh, Edit

    2001-11-01

    Total-reflection X-ray fluorescence (TXRF) spectrometry, reversed-phase (RP) and size-exclusion (SE) high-performance liquid chromatography (HPLC) methods were applied for the characterization of low-volume xylem sap of control and nickel contaminated cucumber plants growing in hydroponics containing urea as the sole nitrogen source. In these saps collected for 1 h, Ca, K, Fe, Mn, Ni, Zn, as well as malic, citric and fumaric acids were determined. The SEC measurements showed that macromolecules were not detectable in the samples. Nickel contamination had minimum impact on the organic acid transport, however, the transport of Zn, K and Fe was reduced by 50, 22 and 11%, respectively. This observation supports the results of our earlier experiments when nitrate ions were used as the sole nitrogen form. At the same time, the fresh root weight and the volume of the collected xylem sap increased by 36 and 85%, respectively. Therefore, nickel addition seemed to decrease the urea toxicity of the plants. By pooling the eluting fractions of the SEC column, which were 10-fold concentrated by freeze-drying, the series of the resulted samples were analyzed by the TXRF spectrometry and RP-HPLC. The three organic acids could be identified in only one of the fractions, which contained Fe and, in the case of the contaminated plants, Ni in detectable concentration. However, considerable parts of these two elements and Mn, as well as practically the total amounts of Cu may be transported by unidentified organic compounds in the xylem.

  3. Stellar populations in the bulges of isolated galaxies

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Parmiggiani, M.; Corsini, E. M.; Costantin, L.; Dalla Bontà, E.; Méndez-Abreu, J.; Pizzella, A.

    2016-12-01

    We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey I-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a Sérsic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the Hβ, Mg and Fe line-strength indices are derived too. Correlations between the central values of the Mg2 and line-strength indices and the velocity dispersion are found. The mean age, total metallicity and total α/Fe enhancement of the stellar population in the centre and at the radius, where the bulge gives the same contribution to the total surface brightness as the remaining components, are obtained using stellar population models with variable element abundance ratios. We identify intermediate-age bulges with solar metallicity and old bulges with a large spread in metallicity. Most of the sample bulges display supersolar α/Fe enhancement, no gradient in age and negative gradients of metallicity and α/Fe enhancement. These findings support a formation scenario via dissipative collapse where environmental effects are remarkably less important than in the assembly of bulges of galaxies in groups and clusters.

  4. Influence of Fe substitution on structure and Raman spectra of La0.67Sr0.33MnO3: Experimental and density functional studies

    NASA Astrophysics Data System (ADS)

    Astik, Nidhi M.; Soni, Himadri; Jha, Prafulla K.; Sathe, Vasant

    2018-07-01

    We present experimental and theoretical studies on the effect of Fe doping at Mn site, on the structural, morphological, electronic and vibrational properties of La0.67Sr0.3MnO3 nanoparticle. The samples of La0.67Sr0.3MnO3 and La0.67Sr0.33Mn1-xFexO3 (x = 0.15, 0.25 and 0.35) have been prepared by ball milling route. The phase purity of these samples has been confirmed using X-ray diffraction, while compositional analysis is done using EDAX. The morphological analysis done using scanning microscope indicates the agglomeration. The vibrational analysis which is done using Raman scattering and density functional theory (DFT) calculations show a substantial shift in A1g and Eg modes with Fe doping. The Eg modes become broader with Fe doping. The UV-visible spectra were measured in the energy range of 1-5 eV and compared with DFT results. The spin polarized density functional calculations show an increase in density of states at Fermi level due to MnO6octahedra modification and significant magnetism on Fe doping. The total magnetic moment is found from 16 to 17 μB for considered concentration. The effective mass of carriers is also calculated and found increasing with increasing concentration.

  5. Pb(II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves.

    PubMed

    Zhang, Zengsheng; Wang, Xuejiang; Wang, Yin; Xia, Siqing; Chen, Ling; Zhang, Yalei; Zhao, Jianfu

    2013-05-01

    Bamboo charcoal (BC) was used as starting material to prepare iron-modified bamboo charcoal (Fe-MBC) by its impregnation in FeCl3 and HNO3 solutions simultaneously, followed by microwave heating. The material can be used as an adsorbent for Pb(II) contaminants removal in water. The composites were prepared with Fe molar concentration of 0.5, 1.0 and 2.0 mol/L and characterized by means of N2 adsorption-desorption isotherms, X-ray diffraction spectroscopy (XRD), scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDS), Fourier transform infrared (FT-IR) and point of zero charge (pH(pzc)) measurements. Nitrogen adsorption analyses showed that the BET specific surface area and total pore volume increased with iron impregnation. The adsorbent with Fe molar concentration of 2 mol/L (2Fe-MBC) exhibited the highest surface area and produced the best pore structure. The Pb(II) adsorption process of 2Fe-MBC and BC were evaluated in batch experiments and 2Fe-MBC showed an excellent adsorption capability for removal Pb(II). The adsorption of Pb(II) strongly depended on solution pH, with maximum values at pH 5.0. The ionic strength had a significant effect on the adsorption at pH < 6.0. The adsorption isotherms followed the Langmuir isotherm model well, and the maximum adsorption capacity for Pb(II) was 200.38 mg/g for 2Fe-MBC. The adsorption processes were well fitted by a pseudo second-order kinetic model. Thermodynamic parameters showed that the adsorption of Pb(II) onto Fe-MBC was feasible, spontaneous, and exothermic under the studied conditions, and the ion exchange mechanism played an significant role. These results have important implications for the design of low-cost and effective adsorbents in the removal of Pb(II) from wastewater.

  6. Factors controlling air quality in different European subway systems.

    PubMed

    Martins, Vânia; Moreno, Teresa; Mendes, Luís; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Alves, Célia A; Duarte, Márcio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier; Minguillón, María Cruz

    2016-04-01

    Sampling campaigns using the same equipment and methodology were conducted to assess and compare the air quality at three South European subway systems (Barcelona, Athens and Oporto), focusing on concentrations and chemical composition of PM2.5 on subway platforms, as well as PM2.5 concentrations inside trains. Experimental results showed that the mean PM2.5 concentrations widely varied among the European subway systems, and even among different platforms within the same underground system, which might be associated to distinct station and tunnel designs and ventilation systems. In all cases PM2.5 concentrations on the platforms were higher than those in the urban ambient air, evidencing that there is generation of PM2.5 associated with the subway systems operation. Subway PM2.5 consisted of elemental iron, total carbon, crustal matter, secondary inorganic compounds, insoluble sulphate, halite and trace elements. Of all metals, Fe was the most abundant, accounting for 29-43% of the total PM2.5 mass (41-61% if Fe2O3 is considered), indicating the existence of an Fe source in the subway system, which could have its origin in mechanical friction and wear processes between rails, wheels and brakes. The trace elements with the highest enrichment in the subway PM2.5 were Ba, Cu, Mn, Zn, Cr, Sb, Sr, Ni, Sn, Co, Zr and Mo. Similar PM2.5 diurnal trends were observed on platforms from different subway systems, with higher concentrations during subway operating hours than during the transport service interruption, and lower levels on weekends than on weekdays. PM2.5 concentrations depended largely on the operation and frequency of the trains and the ventilation system, and were lower inside the trains, when air conditioning system was operating properly, than on the platforms. However, the PM2.5 concentrations increased considerably when the train windows were open. The PM2.5 levels inside the trains decreased with the trains passage in aboveground sections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mostafa, M. G.; Uddin, S. M. Helal; Haque, A. B. M. H.

    2017-12-01

    The study was carried out to understand the hydro-geochemistry and ground water quality in the Rajshahi City of Bangladesh. A total of 240 groundwater samples were collected in 2 years, i.e., 2009 and 2010 covering the pre-monsoon, monsoon and post-monsoon seasons. Aquifer soil samples were collected from 30 locations during the monsoon in 2000. All the samples were analyzed for various physicochemical parameters according to standard methods of analysis, these includes pH, electrical conductivity, total dissolved solids, total hardness, and total alkalinity, major cations such as Na+, K+, Ca2+, Mg2+, and Fe2+, major anions such as HCO3 -, NO3 -, Cl-, and SO4 2- and heavy metals such as Mn, Zn, Cu, As, Cd and Pb. The results illustrated that the groundwater was slightly acidic to neutral in nature, total hardness observed in all samples fall under the hard to a very hard category. The bicarbonate and calcium concentration in the groundwater exceeded the permissible limits may be due to the dissolution of calcite. The concentration of calcium, iron, manganese, arsenic and lead were far above the permissible limit in most of the shallow tube well samples. The study found that the major hydrochemical facies was identified to be calcium-bicarbonate-type (CaHCO3). A higher concentration of metals including Fe, Mn, As and Pb was found indicating various health hazards. The rock-water interaction was the major geochemical process controlling the chemistry of groundwater in the study area. The study results revealed that the quality of the groundwater in Rajshahi City area was of great concern and not suitable for human consumption without adequate treatment.

  8. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).

    PubMed

    Ren, Yi; Yuan, Yue; Lai, Bo; Zhou, Yuexi; Wang, Juling

    2016-01-25

    To decompose or transform the toxic and refractory reverse osmosis (RO) concentrate and improve the biodegradability, 1stFe/Cu/air-Fenton-2ndFe/Cu/air were developed to treat RO concentrate obtained from an amino acid production plant in northern China. First, their operating conditions were optimized thoroughly. Furthermore, 5 control experiments were setup to confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and synergistic reaction between Fe/Cu/air and Fenton. The results suggest that the developed method could obtain high COD removal (65.1%) and BOD5/COD ratio (0.26) due to the synergistic reaction between Fe/Cu/air and Fenton. Under the optimal conditions, the influent and effluent of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and 5 control experiments were analyzed by using UV, FTIR, EEM and LC, which confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air. Therefore, the developed method in this study is a promising process for treatment of RO concentrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer).

    PubMed

    Adenipekun, Clementina O; Isikhuemhen, Omoanghe S

    2008-06-15

    This study was conducted to test the efficacy of an indigenous white rot fungus Lentinus squarrosulus in degrading engine oil in soil. Flasks containing sterilized garden soil (100 g) moistened with 75% distilled water (w/v) were contaminated with engine oil 1, 2.5, 5, 10, 20 and 40% w/w concentrations, inoculated with L. squarrosulus and incubated at room temperature for 90 days. Levels of organic matter, pH, total hydrocarbon and elemental content (C, Cu, Fe, K, N, Ni, Zn and available P) were determined post-fungal treatment. Results indicate that contaminated soils inoculated with L. squarrosulus had increased organic matter, carbon and available phosphorus, while the nitrogen and available potassium was reduced. A relatively high percentage degradation of Total Petroleum Hydrocarbon (TPH) was observed at 1% engine oil concentration (94.46%), which decreased to 64.05% TPH degradation at 40% engine oil contaminated soil after 90 days of incubation. The concentrations of Fe, Cu, Zn and Ni recovered from straw/fungal biomass complex increased with the increase of engine-oil contamination and bio-accumulation by the white-rot fungus. The improvement of nutrient content values as well as the bioaccumulation of heavy metals at all levels of engine oil concentrations tested through inoculations with L. squarrosulus is of importance for the bioremediation of engine-oil polluted soils.

  10. Biofortification with Iron and Zinc Improves Nutritional and Nutraceutical Properties of Common Wheat Flour and Bread.

    PubMed

    Ciccolini, Valentina; Pellegrino, Elisa; Coccina, Antonio; Fiaschi, Anna Ida; Cerretani, Daniela; Sgherri, Cristina; Quartacci, Mike Frank; Ercoli, Laura

    2017-07-12

    The effect of field foliar Fe and Zn biofortification on concentration and potential bioavailability of Fe and Zn and health-promoting compounds was studied in wholemeal flour of two common wheat varieties (old vs modern). Moreover, the effect of milling and bread making was studied. Biofortification increased the concentration of Zn (+78%) and its bioavailability (+48%) in the flour of the old variety, whereas it was ineffective in increasing Fe concentration in both varieties. However, the old variety showed higher concentration (+41%) and bioavailability (+26%) of Fe than the modern one. As regard milling, wholemeal flour had higher Fe, Zn concentration and health-promoting compounds compared to white flour. Bread making slightly change Fe and Zn concentration but greatly increased their bioavailability (77 and 70%, respectively). All these results are of great support for developing a production chain of enriched functional bread having a protective role against chronic cardio-vascular diseases.

  11. Heme iron uptake by Caco-2 cells is a saturable, temperature sensitive and modulated by extracellular pH and potassium.

    PubMed

    Arredondo, Miguel; Kloosterman, Janneke; Núñez, Sergio; Segovia, Fabián; Candia, Valeria; Flores, Sebastián; Le Blanc, Solange; Olivares, Manuel; Pizarro, Fernando

    2008-11-01

    It is known that heme iron and inorganic iron are absorbed differently. Heme iron is found in the diet mainly in the form of hemoglobin and myoglobin. The mechanism of iron absorption remains uncertain. This study focused on the heme iron uptake by Caco-2 cells from a hemoglobin digest and its response to different iron concentrations. We studied the intracellular Fe concentration and the effect of time, K+ depletion, and cytosol acidification on apical uptake and transepithelial transport in cells incubated with different heme Fe concentrations. Cells incubated with hemoglobin-digest showed a lower intracellular Fe concentration than cells grown with inorganic Fe. However, uptake and transepithelial transport of Fe was higher in cells incubated with heme Fe. Heme Fe uptake had a low Vmax and Km as compared to inorganic Fe uptake and did not compete with non-heme Fe uptake. Heme Fe uptake was inhibited in cells exposed to K+ depletion or cytosol acidification. Heme oxygenase 1 expression increased and DMT1 expression decreased with higher heme Fe concentrations in the media. The uptake of heme iron is a saturable and temperature-dependent process and, therefore, could occur through a mechanism involving both a receptor and the endocytic pathway.

  12. Urbanization and nutrient retention in freshwater riparian wetlands

    USGS Publications Warehouse

    Hogan, D.M.; Walbridge, M.R.

    2007-01-01

    Urbanization can degrade water quality and alter watershed hydrology, with profound effects on the structure and function of both riparian wetlands (RWs) and aquatic ecosystems downstream. We used freshwater RWs in Fairfax County, Virginia, USA, as a model system to examine: (1) the effects of increasing urbanization (indexed by the percentage of impervious surface cover [%ISC] in the surrounding watershed) on nitrogen (N) and phosphorus (P) concentrations in surface soils and plant tissues, soil P saturation, and soil iron (Fe) chemistry; and (2) relationships between RW soil and plant nutrient chemistries vs. the physical and biotic integrity of adjacent streams. Soil total P and NaOH-extractable P (representing P bound to aluminum [Al] and Fe hydrous oxides) varied significantly but nonlinearly with %ISC (r2 = 0.69 and 0.57, respectively); a similar pattern was found for soil P saturation but not for soil total N. Relationships were best described by second-order polynomial equations. Riparian wetlands appear to receive greater P loads in moderately (8.6-13.3% ISC) than in highly (25.1-29.1% ISC) urbanized watersheds. These observations are consistent with alterations in watershed hydrology that occur with increasing urbanization, directing water and nutrient flows away from natural RWs. Significant increases in total and crystalline soil Fe (r 2 = 0.57 and 0.53, respectively) and decreases in relative soil Fe crystallinity with increasing %ISC suggest the mobilization and deposition of terrestrial sediments in RWs, likely due to construction activities in the surrounding watershed. Increases in RW plant tissue nutrient concentrations and %ISC in the surrounding watershed were negatively correlated with standard indices of the physical and biotic integrity of adjacent streams. In combination, these data suggest that nutrient and sediment inputs associated with urbanization and storm-water management are important variables that affect wetland ecosystem services, such as water quality improvement, in urbanizing landscapes. ?? 2007 by the Ecological Society of America.

  13. Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh

    USGS Publications Warehouse

    Zahid, A.; Hassan, M.Q.; Balke, K.-D.; Flegr, M.; Clark, D.W.

    2008-01-01

    Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25-33 m) and deep (191-318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl- and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl-. Use of chemical fertilizers may cause higher concentrations of NH 4+ and PO 43- in shallow well samples. In general, most ions are positively correlated with Cl-, with Na+ showing an especially strong correlation with Cl-, indicating that these ions are derived from the same source of saline waters. The relationship between Cl-/HCO 3- ratios and Cl- also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO 3- reflect the degree of water-rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO 42- and NO 3- and high concentrations of dissolved Fe and PO 43- and NH 4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO 42- and NO 3- but correlate weakly with Mo, Fe concentrations and positively with those of P, PO 43- and NH 4+ ions. ?? 2007 Springer-Verlag.

  14. [Mechanism and promotion effect of K+ on yield of Fe(VI)].

    PubMed

    Zhang, Yan-Ping; Xu, Guo-Ren; Li, Gui-Bai

    2008-03-01

    The mechanism and promotion effects of K+ on the yield of Fe(VI) were studied during the reaction of forming ferrate. The experiment results showed that K+ is far better than Na+ for the preparation of Fe(VI) at temperatures higher than 50 degrees C. The optimal temperature for the preparation of Fe(VI) with K+ is 65 degrees C. During the reaction, the yield of ferrate increases with the concentration of K+, and the promotion effect of K+ is obviously with ferric nitrate dosage increase. The Fe(VI) concentration prepared with 4.4 mol/L KOH is 0.05 mol/L at 85 g/L ferric nitrate; and which achieves 0.15 mol/L when added 2 mol/L K+. The promotion effect of K+ on the yield of ferrate is remarkable when ferric nitrate dosage is higher than 75 g/L, reaction temperature is below 55 degrees C and ClO(-) concentration is lower than 1.16 mol/L. The K+ can substitute for partly alkalinity and reduce the concentration of OH(-) in the reaction solution. During the reaction, the K+ can enwrap around FeO4(2-) that can reduce the contact between Fe(3+) and FeO4(2-), and decrease the catalysis effect of Fe(3+) on FeO4(2-). At the same time, K+ can react with FeO4(2-) to form solid K4FeO4, whichwill lower the Fe(VI) concentration, decrease the decomposition rate of Fe(VI), enhance the stability and improve the yield of Fe(VI).

  15. Determination of some heavy metals (Fe, Cu, Zn and Pb) in blood by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Bounakhla, M.; Doukkali, A.; Lalaoui, K.; Aguenaou, H.; Mokhtar, N.; Attrassi, B.

    2003-05-01

    The main purpose of this study is the interaction between nutrition (micronutrients heavy metals: Fe, Zn, Cu) and toxic heavy metals such as Pb in blood of children living in Gharb region of Morocco. This region receives all pollution carried by the Sebou river coming mainly from industrial activities. A rapid and simple analytical procedure was used for the determination of Fe, Cu and Zn trace amounts in blood by total-reflection X-ray fluorescence technique. This method is an energy dispersive XRF technique in a special geometry of primary beam, sample and detector. The sample is deposited on a plane polished surface of a suitable reflector material. It is presented as a few drops (25 μl) from a solution of blood digested in a mixture of HNO3 and H2O2 using a microwaves accelerated reaction system. The accuracy of measurements has been investigated by using certified materials. The concentration of Cu was found to be normal in all samples (\\cong1 ppm) which ruled out any interaction between this element and the others. On the other hand, amounts of Fe and Zn are very variables, suggesting an interaction between Fe and Zn. However, amounts of Pb in blood are inferior to 50 ppb, suggesting that no interaction exist with this metal and micronutrients.

  16. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.

    PubMed

    de Figueiredo, Marislaine A; Boldrin, Paulo F; Hart, Jonathan J; de Andrade, Messias J B; Guilherme, Luiz R G; Glahn, Raymond P; Li, Li

    2017-02-01

    Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds. Published by Elsevier Masson SAS.

  17. Elemental concentration analysis in brain structures from young, adult and old Wistar rats by total reflection X-ray fluorescence with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Serpa, R. F. B.; de Jesus, E. F. O.; Anjos, M. J.; do Carmo, M. G. T.; Moreira, S.; Rocha, M. S.; Martinez, A. M. B.; Lopes, R. T.

    2006-11-01

    The knowledge of the spatial distribution and the local concentration of trace elements in tissues are of great importance since trace elements are involved in a number of metabolic and physiological processes in the human body, and their deficiency and excess may lead to different metabolic disorders. In this way, the main goal of this work is to compare the elemental concentration in different brain structures, namely temporal cortex, entorhinal cortex, visual cortex and hippocampus, from Wistar female rats ( n = 15) with different ages: 2, 8 and 48 weeks. The measurements were performed at the Synchrotron Light Brazilian Laboratory, Campinas, São Paulo, Brazil. In the entorhinal cortex, the following elements decreased with age: Zn, S, Cl, K, Ca and Br. In the temporal cortex, Ca, Fe and Br levels increased with aging and on the other hand, P, S, Cl, K and Rb levels decreased with aging. In the visual cortex almost all the elements decreased with aging: Cl, Ca, Fe, Ni and Zn. In the hippocampus, in turn, most of the elements identified, increased with aging: Al, P, S, K, Fe, Cu, Zn and Rb. The increase of Fe with aging in the hippocampus is an important fact that will be studied, since it is involved in oxidative stress. It is believed that oxidative stress is the one of the main causes responsible for neuronal death in Parkinson's disease.

  18. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    USGS Publications Warehouse

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation–reduction reaction.

  19. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    NASA Astrophysics Data System (ADS)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J. K.

    2017-01-01

    Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation-reduction reaction.

  20. Fe implantation effect in the 6H-SiC semiconductor investigated by Mössbauer spectrometry

    NASA Astrophysics Data System (ADS)

    Diallo, M. L.; Diallo, L.; Fnidiki, A.; Lechevallier, L.; Cuvilly, F.; Blum, I.; Viret, M.; Marteau, M.; Eyidi, D.; Juraszek, J.; Declémy, A.

    2017-08-01

    P-doped 6H-SiC substrates were implanted with 57Fe ions at 380 °C or 550 °C to produce a diluted magnetic semiconductor with an Fe homogeneous concentration of about 100 nm thickness. The magnetic properties were studied with 57Fe Conversion Electron Mössbauer Spectrometry at room temperature (RT). Results obtained by this technique on annealed samples prove that ferromagnetism in 57Fe-implanted SiC for Fe concentrations close to 2% and 4% is mostly due to Fe atoms diluted in the matrix. In contrast, for Fe concentrations close to 6%, it also comes from Fe in magnetic phase nano-clusters. This study allows quantifying the Fe amount in the interstitial and substitutional sites and the nanoparticles and shows that the majority of the diluted Fe atoms are substituted on Si sites inducing ferromagnetism up to RT.

  1. Iron, Manganese and Copper Release from Synthetic Hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, Douglas W.

    1999-01-01

    Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn>Cu>Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn>Cu>Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.

  2. Iron cycling at corroding carbon steel surfaces.

    PubMed

    Lee, Jason S; McBeth, Joyce M; Ray, Richard I; Little, Brenda J; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media.

  3. Iron cycling at corroding carbon steel surfaces

    PubMed Central

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  4. Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage.

    PubMed

    Skrivan, M; Skrivanová, V; Marounek, M

    2005-10-01

    An experiment was conducted to evaluate the effect of dietary content and combinations of Zn, Fe, and Cu on deposition of these elements in egg components, liver, and excreta. Excreta were applied as a manure to a lawn, and 3 mo later soil and herbage samples were taken and analyzed. The experiment comprised 144 hens in 8 groups. The basal diet contained Zn, Fe, and Cu at 63.4, 92.8, and 9.0 mg/kg, respectively. It was supplemented with 1, 2, or 3 trace elements (inorganic forms) at 80 mg of Zn/kg, 120 mg of Fe/kg, and 25 mg of Cu/kg. Recovery of Zn, Fe, and Cu in eggs of hens fed the basal diet was 10.7, 9.8, and 4.4% of the alimentary intake, respectively. A Zn-Cu antagonism was observed; deposition of Zn in the yolk was significantly decreased by Cu addition and vice versa (P < 0.01). Supplementation of the basal diet with Fe increased Fe concentration in egg yolk and white by 6.3 and 2.2%, respectively. The combination of Fe with Zn and Cu, however, increased Fe concentration in the yolk and white by 36.7 and 34.9%, respectively (P < 0.01). The enrichment of eggs with the other elements was marginal (Cu) or absent (Zn). Effects of Zn, Fe, and Cu of the basal diet on liver concentrations of these elements were relatively small, and no antagonism between Zn and Cu was apparent. Supplementation of the basal diet with the combination of Zn and Fe, however, significantly decreased hepatic concentration of Cu. On the other hand, Cu supplementation significantly increased Fe concentration in livers of hens fed the Fe-supplemented diet (P < 0.01). Concentrations of Zn, Fe, and Cu in excreta were related to their dietary content. High concentrations of Zn, Fe, and Cu in excreta corresponded with limited deposition of the 3 elements in eggs and liver. Concentrations of Zn, Fe, and Cu in herbage correlated significantly with the supply of these elements by hen excreta into soil. The Zn supplied by hen excreta was more stable than Fe and Cu; thus Zn could accumulate in the soil.

  5. Physical-chemical characterization of the textile dye Azo Ab52 degradation by corona plasma

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Torres-Arenas, A. J.; Vergara-Sánchez, J.; Torres, C.; Reyes, P. G.; Martínez, H.; Saldarriaga-Noreña, Hugo

    2017-10-01

    This work characterizes the degradation of the textile dye azo Acid Black 52 by measuring several physical and chemical parameters. A corona plasma was created at atmospheric pressure and applied on the liquid-air interface of water samples containing the dye. 1.0 mM of ferrous sulfate (FeSO4) was added to 1.0 mM dye solution, for a total volume of 250 mL. For each treatment, a number of parameters were quantified. These were voltage, current, temperature, loss of volume, pH, electrical conductivity, concentration, optical mission spectra, chemical oxygen demand (COD), total organic carbon (TOC), and the removal ratio. Because of the increase in the sample temperature, the volume lost by evaporation was explored. The results show that the efficiency of the dye degradation by plasma is a function of treatment time. Moreover, the reactive concentration of FeSO4 and the exposition time of the plasma were varied at a constant volume, leading to the determination of the concentrations and optimal times. Considering the degradation and removal parameters, at the maximum treated time of 80 min, it found that COD was of 96.36%, TOC of 93.93%, and the removal ratio of 97.47%.

  6. Environmental Growing Conditions in Five Production Systems Induce Stress Response and Affect Chemical Composition of Cocoa (Theobroma cacao L.) Beans.

    PubMed

    Niether, Wiebke; Smit, Inga; Armengot, Laura; Schneider, Monika; Gerold, Gerhard; Pawelzik, Elke

    2017-11-29

    Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.

  7. [Characterization and optimization of the NaOH-EDTA extracts for solution 31P-NMR analysis of organic phosphorus in river sediments].

    PubMed

    Zhang, Wen-Qiang; Shan, Bao-Qing; Zhang, Hong; Tang, Wen-Zhong

    2014-01-01

    Optimization and mechanism of NaOH-EDTA extraction solutions were studied in phosphorus (P) pollution river sediments, which were Fe, Al-rich sediment, by solution 31P nuclear magnetic resonance spectroscopy (31P-NMR). Different proportions of NaOH and EDTA showed different extraction efficiency on total P (TP) and organic P (Po) in the sediment. The concentration of Po in NaOH + EDTA extract was higher than that in NaOH extract. The mechanism was that the TP and Po were released under the conditions of EDTA chelating with Fe and Al. The concentration of TP and Po were the highest in 1.00 mol x L(-1) NaOH +75 mmol x L(-1) EDTA extract and 0.25 mol x L(-1) NaOH + 50 mmol x L(-1) EDTA extract, which were 3.88 mg x g(-1) and 0.24 mg x g(-1), respectively. The extractions of Fe, Mn, Ca, Mg, Al were increasing as the EDTA increased under the same NaOH concentration. Extraction efficiency of Fe, Mn, Ca showed negative correlation with the pH of the extracting solution (P < 0.01). Exponential relationship was found between the extraction of Al and the pH of the extraction solution (P < 0.01) because of the AlO2- and EDTA-Al complex. The quality of spectra of NaOH-EDTA extract was better than that of NaOH extract. Six P species were detected in different extractions, including phosphonates, orthophosphate, pyrophosphate, orthophosphate monoesters, phospholipids and deoxyribonucleic acids. Therefore, 0. 25 mol x L(-1) NaOH + 50 mmol x L(-1) EDTA was the optimization extraction solution for Po analysis in Fe and Al-rich river sediment by 31P-NMR.

  8. Minor element distribution in iron disulfides in coal: a geochemical review

    USGS Publications Warehouse

    Kolker, Allan

    2012-01-01

    Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to the environment through coal mining and use, as well as for potential reduction by coal preparation, and for delineating diagenetic compositional changes throughout and after coal formation.

  9. Ewe's diet (pasture vs grain-based feed) affects volatile profile of cooked meat from light lamb.

    PubMed

    Almela, Elisabeth; Jordán, María José; Martínez, Cristina; Sotomayor, José Antonio; Bedia, Mario; Bañón, Sancho

    2010-09-08

    The effects of ewe's diet during gestation and lactation on the volatile compounds profile in cooked meat from light lamb were compared. Two lamb groups from ewes that had been fed pasture (PA) or grain-based concentrate (FE) were tested. Cooked loin mixed with saliva was analyzed by solid phase microextraction, gas chromatography, and mass spectrometry. The fiber coating used was divinylbenzene-carboxen-polydimethylsiloxane. The volatiles detected and quantified were aldehydes, alcohols, ketones, phenols, indole, and sulfur compounds. The ewe's diet strongly affected the volatile compounds profile of the cooked meat. The total volatiles concentration was higher in PA (409 mg kg(-1)) than in FE (201 mg kg(-1)). The major volatiles in PA were phenol, 4-methylphenol, and hexanoic acid, while the major volatile in FE was 3-hydroxy-2-butanone. No branched C8-C9 fatty acids responsible for mutton flavor were detected in either group. The findings suggest that nutritional strategies can be use during gestation and lactation to modify the aroma of light lamb meat in the light of consumer preferences.

  10. Acetone sensors based on microsheet-assembled hierarchical Fe2O3 with different Fe3+ concentrations

    NASA Astrophysics Data System (ADS)

    Wang, Han; Yan, Lei; Li, Shuo; Li, Yu; Liu, Li; Du, Liting; Duan, Haojie; Cheng, Yali

    2018-02-01

    Several different morphologies of microsheet-assembled Fe2O3 have been fabricated by hydrothermal method using diverse concentrations of Fe3+ precursor solutions (0.025, 0.020, 0.015, 0.010 mol/L Fe3+). The as-synthesized materials have been characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The SEM images reflect that the morphologies of as-synthesized materials are affected by the concentrations of Fe3+ in precursor solutions. The less concentration of Fe3+, the more porous of Fe2O3 microflowers, and thinner of slices distributed on the surface. Furthermore, gas sensors based on these Fe2O3 microflowers manufactured and tested to various common gases. The optimum response value to 100 ppm acetone is 52 at the working temperature of 220 °C. Meanwhile, the Fe2O3 microflower sensors possess ultrafast response-recovery speed, which are 8 and 19 s, respectively. The possible sensing mechanism was mainly attributed to the high surface area, three-dimensional porous structure.

  11. Simple and Precise Quantification of Iron Catalyst Content in Carbon Nanotubes Using UV/Visible Spectroscopy.

    PubMed

    Agustina, Elsye; Goak, Jeungchoon; Lee, Suntae; Seo, Youngho; Park, Jun-Young; Lee, Naesung

    2015-10-01

    Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red-orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.

  12. Sorption of As(V) on aluminosilicates treated with Fe(II) nanoparticles.

    PubMed

    Dousová, Barbora; Grygar, Tomás; Martaus, Alexandr; Fuitová, Lucie; Kolousek, David; Machovic, Vladimír

    2006-10-15

    Adsorption of arsenic on clay surfaces is important for the natural and simulated removal of arsenic species from aqueous environments. In this investigation, three samples of clay minerals (natural metakaoline, natural clinoptilolite-rich tuff, and synthetic zeolite) in both untreated and Fe-treated forms were used for the sorption of arsenate from model aqueous solution. The treatment of minerals consisted of exposing them to concentrated solution of Fe(II). Within this process the mineral surface has been laden with Fe(III) oxi(hydroxides) whose high affinity for the As(V) adsorption is well known. In all investigated systems the sorption capacity of Fe(II)-treated sorbents increased significantly in comparison to the untreated material (from about 0.5 to >20.0 mg/g, which represented more than 95% of the total As removal). The changes of Fe-bearing particles in the course of treating process and subsequent As sorption were investigated by the diffuse reflectance spectroscopy and the voltammetry of microparticles. IR spectra of treated and As(V)-saturated solids showed characteristic bands caused by Fe(III)SO(4), Fe(III)O, and AsO vibrations. In untreated As(V)-saturated solids no significant AsO vibrations were observed due to the negligible content of sorbed arsenate.

  13. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.).

    PubMed

    Jin, Chong-Wei; Liu, Yue; Mao, Qian-Qian; Wang, Qian; Du, Shao-Ting

    2013-06-15

    It is of great practical importance to improve yield and quality of vegetables in soilless cultures. This study investigated the effects of iron-nutrition management on yield and quality of hydroponic-cultivated spinach (Spinacia oleracea L.). The results showed that mild Fe-deficient treatment (1 μM FeEDTA) yielded a greater biomass of edible parts than Fe-omitted treatment (0 μM FeEDTA) or Fe-sufficient treatments (10 and 50 μM FeEDTA). Conversely, mild Fe-deficient treatment had the lowest nitrate concentration in the edible parts out of all the Fe treatments. Interestingly, all the concentrations of soluble sugar, soluble protein and ascorbate in mild Fe-deficient treatments were higher than Fe-sufficient treatments. In addition, both phenolic concentration and DPPH scavenging activity in mild Fe-deficient treatments were comparable with those in Fe-sufficient treatments, but were higher than those in Fe-omitted treatments. Therefore, we concluded that using a mild Fe-deficient nutrition solution to cultivate spinach not only would increase yield, but also would improve quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The preparation of Fe2O3-ZSM-5 catalysts by metal-organic chemical vapour deposition method for catalytic wet peroxide oxidation of m-cresol.

    PubMed

    Yang, Yi; Zhang, Huiping; Yan, Ying

    2018-03-01

    Fe 2 O 3 -ZSM-5 catalysts (0.6 wt% Fe load) prepared by metal-organic chemical vapour deposition (MOCVD) method were evaluated in the catalytic wet peroxide oxidation (CWPO) of m -cresol in a batch reactor. The catalysts have a good iron dispersion and small iron crystalline size, and exhibit high stability during reaction. In addition, the kinetics of the reaction were studied and the initial oxidation rate equation was given. Catalysts were first characterized by N 2 adsorption-desorption isotherms, scanning electronic microscopy, energy-dispersive spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Results show that extra-framework Fe 3+ species (presenting in the form of Fe 2 O 3 ) are successfully loaded on ZSM-5 supports by MOCVD method. Performances of catalysts were tested and effects of different temperature, stirring rate, catalyst amount on hydrogen peroxide, m -cresol, total organic carbon (TOC) conversion and Fe leaching concentration were studied. Results reveal that catalytic activity increased with higher temperature, faster stirring rate and larger catalyst amount. In all circumstances, m -cresol conversion could reach 99% in 0.5-2.5 h, and the highest TOC removal (80.5%) is obtained after 3 h under conditions of 60°C, 400 r.p.m. and catalyst amount of 2.5 g l -1 . The iron-leaching concentrations are less than 1.1 mg l -1 under all conditions. The initial oxidation rate equation [Formula: see text] is obtained for m -cresol degradation with Fe 2 O 3 -ZSM-5 catalysts.

  15. Effects of waterborne Fe(II) on juvenile turbot Scophthalmus maximus: analysis of respiratory rate, hematology and gill histology

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; You, Feng; Liu, Hongjun; Liu, Mengxia; Li, Jun; Zhang, Peijun

    2012-03-01

    The concentration of Fe(II) is high in some groundwater supplies used in turbot culture, and the toxicity of waterborne Fe(II) is unknown. We investigated the stress responses of juvenile turbot, Scophthalmus maximus, exposed to Fe(II) of different concentrations (0.01, 0.05, 0.1, 0.5, 1, and 2 mg/L) for 1, 7, 14, and 28 d, under the same ambient conditions of other parameters. Changes in respiratory rate, hematological parameters, and gill structure were determined. The results show that waterborne Fe(II) did not cause severe hematological perturbation to turbot. A low-medium Fe(II) concentration (lower than 0.1 mg/L) could boost the respiratory rate, and caused no or very limited damage to fish. A high Fe(II) concentration (0.1 mg/L or higher), however, caused gill damage, such as vacuoles in branchial lamellae, epithelial necrosis, and hypertrophy of epithelial cells, and even death after extended exposure time. Therefore, excess waterborne Fe(II) and long-term exposure to Fe(II) could be responsible for poor growth and high mortality of turbot in culture. The concentration of waterborne Fe(II) in turbot culture should be kept below 0.1 mg/L.

  16. Chlorbromuron urea herbicide removal by electro-Fenton reaction in aqueous effluents.

    PubMed

    Martínez, Susana Silva; Bahena, Cristina Lizama

    2009-01-01

    The removal of low concentration of chlorbromuron herbicide in aqueous systems was carried out by electro-Fenton process comprised of three-electrode divided and undivided cell with a reticulated vitreous carbon cathode and platinum anode. The electro-Fenton was also carried out in a two-electrode undivided cell in which ferrous ion forms from a sacrificial iron anode. It was observed that the total organic carbon (TOC) removal efficiency was influenced by the cell voltage, the pH of the solution and initial herbicide concentration during the electro-Fenton treatment with a stainless steel anode. The Fe(2+)/Fe(3+) activity in the Fenton chemistry (regardless if it is hydroxyl radical or ferryl ion) was improved by the electrochemical catalysis leading to a TOC analysis below the detection limit (0.2 mg l(-1)) corresponding to a TOC removal over 98%. It was found that TOC removal during chlorbromuron degradation followed apparent first order kinetics. The rate constant was increased by decreasing the initial concentration of chlorbromuron.

  17. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    PubMed

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.

  18. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  19. Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chin Yik, E-mail: cy_lin_ars@hotmail.com; Abdullah, Mohd. Harun; Musta, Baba

    2011-03-15

    A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and themore » lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH){sub 3} and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn{sup 2+} and Fe{sup 2+} under suboxic condition and very close to the FeS/Fe{sup 2+} stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.« less

  20. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    USGS Publications Warehouse

    Fabisch, Maria; Beulig, Felix; Akob, Denise M.; Küsel, Kirsten

    2013-01-01

    We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic “Ferrovum myxofaciens” was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and “Ferrovum myxofaciens” revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.

  1. o-Vanillin functionalized mesoporous silica – coated magnetite nanoparticles for efficient removal of Pb(II) from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culita, Daniela C., E-mail: danaculita@yahoo.co.uk; Simonescu, Claudia Maria; Patescu, Rodica-Elena

    2016-06-15

    o-Vanillin functionalized mesoporous silica – coated magnetite (Fe{sub 3}O{sub 4}@MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N{sub 2} adsorption–desorption technique and magnetic measurements. The capacity of Fe{sub 3}O{sub 4}@MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silica – coated magnetite (Fe{sub 3}O{sub 4}@MCM-41) and amino – modified mesoporous silica coated magnetite (Fe{sub 3}O{sub 4}@MCM-41-NH{sub 2}). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximummore » adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80–90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe{sub 3}O{sub 4}@MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water. - Graphical abstract: A novel magnetic adsorbent based on o-vanillin functionalized mesoporous silica – coated magnetite was synthesized and fully characterized and its adsorption capacity for Pb(II) ions in aqueous solutions was evaluated. The maximum adsorption capacity for Pb(II) ions was determined to be 155.71 mg g{sup −1}. The adsorption rate was very high at the beginning of the adsorption process, 90% of the total amount of Pb(II) being removed within the first 60 min. Display Omitted.« less

  2. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat.

    PubMed

    Barunawati, Nunun; Giehl, Ricardo F Hettwer; Bauer, Bernhard; von Wirén, Nicolaus

    2013-01-01

    The fortification of cereal grains with metal micronutrients is a major target to combat human malnutrition of Fe and Zn. Based on recent studies showing that N fertilization can promote Fe and Zn accumulation in cereal grains, we investigated here the influence of nitrate- or ammonium-based N fertilization on the accumulation of Fe, Zn, and Cu as well as metal chelator pools in flag leaves and grains of winter wheat. Fertilization with either N form increased the concentrations of N and of the metal chelator nicotianamine (NA) in green leaves, while 2'-deoxymugineic acid (DMA) remained unaffected. Despite the differential response to N fertilization of NA and DMA levels in flag leaves, N fertilization remained without any significant effect on the net export of these metals during flag leaf senescence, which accounted for approximately one third of the total Fe, Zn, or Cu content in leaves. The significant increase in the accumulation of Fe, Zn, and Cu found in the grains of primarily ammonium-fertilized plants was unrelated to the extent of metal retranslocation from flag leaves. These results indicate that an increased N nutritional status of flag leaves promotes the accumulation of Fe, Zn, and Cu in flag leaves, which is accompanied by an increased pool of NA but not of DMA. With regard to the far higher concentrations of DMA relative to NA in leaves and leaf exudates, DMA may be more relevant for the mobilization and retranslocation of these metals in high-yielding wheat production.

  3. Chemical Fluxes from a Recently Erupted Submarine Volcano on the Mariana Arc

    NASA Astrophysics Data System (ADS)

    Buck, N. J.; Resing, J. A.; Lupton, J. E.; Larson, B. I.; Walker, S. L.; Baker, E. T.

    2016-12-01

    While hydrothermal circulation is paramount to the geochemical budget for a wide array of elements, relatively few flux estimates exist in the literature. To date most studies have concentrated on constraining global and vent-field scale inputs originating from ocean spreading ridges. The goal of this study is to directly measure the chemical flux from an active submarine volcano injecting hydrothermal fluids into the surface ocean. Ahyi Seamount, a submarine intraoceanic arc volcano located in the Northern Mariana Islands, has a summit depth <100 m and erupted in May 2014. In November 2014 a hydrothermal plume originating from Ahyi was sampled aboard the R/V Roger Revelle during the Submarine Ring of Fire 2014 Ironman Expedition. Shipboard hull mounted Acoustic Doppler Current Profile data was collected to provide current vector measurements to be used in combination with continuous and discrete CTD data. Towed CTD sections were conducted perpendicular to the current direction - a sampling strategy that optimizes chemical flux estimate calculations by reducing complexities introduced by temporal variability in the speed and direction of plume dispersion. The Ahyi plume had a significant optical backscatter signal accompanied by evidence of reduced chemical species and a lowered pH. It was sampled for He isotopes, CH4, H2, H2S, total CO2, nutrients, TSM and total and dissolved Fe and Mn. Laboratory analyses found enriched concentrations of H2, 3He, CO2 and Fe, consistent with a recent eruption. Preliminary flux calculations estimate a Fe input of 16 mmol s-1. This indicates shallow submarine arc volcanoes are capable of supplying appreciable quantities of Fe into the surface ocean. Further laboratory analyses and calculations to characterize and constrain the fluxes of other chemical constituents are underway.

  4. Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China).

    PubMed

    Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun

    2016-09-01

    Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across sediment-water interface by enhancing release of redox-sensitive phosphate, and thereby facilitating phytoplankton growth in water column.

  5. Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Kang, Xuming; Song, Jinming; Yuan, Huamao; Shi, Xin; Yang, Weifeng; Li, Xuegang; Li, Ning; Duan, Liqin

    2017-03-01

    Phosphorus (P) is an important macronutrient that can limit primary productivity in coastal marine ecosystems. In this study, four sediment cores were collected in the Jiaozhou Bay to study the phosphorus forms and their bioavailability, including exchangeable or loosely sorbed P (Ex-P), iron-bound P (Fe-P), authigenic P (Ca-P), detrital P (De-P) and organic P (OP), which were separated and quantified using a sequential extraction method (SEDEX). The results showed that the concentration of total P (TP) in core sediments ranged from 6.23 to 10.46 μmol/g, and inorganic P (IP) was the dominated P form. Fe-P and De-P were the main chemical forms of IP in core sediments. The profile variation of OP presented the most significant among the phosphorus forms. Whereas the concentrations of Ex-P, Fe-P, and Ca-P varied slightly with depth, indicating that the transformation of Ex-P, Fe-P, Ca-P, and OP could occur during sedimentary P burial. Moreover, the distribution of P species was influenced by many factors, including terrigenous input, biological processes, organic matter degradation and increasing human activities. High total organic carbon (TOC)/OP ratio occurred in the Jiaozhou Bay, ranging from 73 to 472 (average, 180 ± 81) in core sediments, which was caused by the increasing terrestrial organic matter. The ratio of TOC/Preactive ranged from 24 to 101 (average 46 ± 15) in core sediments (lower than the Redfield ratio), implying a surplus of sedimentary reactive P compared with TOC. Potential bioavailable P (BAP) accounted for about 28.2-60.8% (average, 47.1 ± 7.4%) of TP in core sediments, and presented an increasing trend since 1980s, which might be responsible for the shift of phytoplankton community composition during these decades.

  6. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean

    PubMed Central

    Fitzsimmons, Jessica N.; Boyle, Edward A.; Jenkins, William J.

    2014-01-01

    Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209–212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (<0.4 µm) measurements from the abyssal southeast and southwest Pacific Ocean, where dFe of 1.0–1.5 nmol/kg near 2,000 m depth (0.4–0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial 3He and dissolved Mn (dFe:3He of 0.9–2.7 × 106). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (<0.02 µm) and colloidal (0.02–0.4 µm) phases with increasing distance from the vents indicate that dFe transformations continue to occur far from the vent source. This study confirms that although the southern East Pacific Rise only leaks 0.02–1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (≥3% of global aerosol dFe input). PMID:25349389

  7. Chemical constituents in the Peedee and Castle Hayne aquifers: Porters Neck area, New Hanover County, North Carolina

    USGS Publications Warehouse

    Roberts, T.L.; Harris, W.B.

    2004-01-01

    Concerns about overuse and potential contamination of major aquifers in the southeastern part of North Carolina resulted in the initiation of a subsurface water quality study in February 2001. The focus of this study was to examine variations in nutrients (NO3-, TRP, SO42- Cl-, NH4+) and total dissolved Fe in the Cretaceous Peedee and Tertiary Castle Hayne Limestone aquifers of northeastern New Hanover County. Water samples were collected monthly for one year from sixteen wells located in the Porters Neck area (west of the Intracoastal Waterway and south of Futch Creek) and four springs located on the south side of Futch Creek. Variations in selective nutrient concentrations were measured between and within each aquifer. Concentrations of NH4+ and Fe increased in the Peedee sandstone aquifer during the warmer summer and early fall months. In late summer to early fall, Fe, NO 3-, NH4+, and TRP concentrations in the Castle Hayne Limestone aquifer were significantly higher than in the spring and winter months. Chloride and SO 42- concentrations for the Castle Hayne Limestone aquifer both increased during the warmer months, probably as a result of saltwater intrusion. Factors considered for nutrient and Fe variance include: temperature variation, anaerobic conditions, subsurface stratigraphy/structure, recharge locations, site location and surface fertilization. The shallower Castle Hayne Limestone aquifer showed seasonal variability in the study area, whereas the Peedee sandstone aquifer showed little to no seasonal variability. Increases in NO3- and TRP lagged slightly behind periods of high fertilization and were more prevalent down-dip of a major golf course. Nutrient content and seasonal variation of Futch Creek springs indicated that they originate from the Castle Hayne Limestone aquifer.

  8. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides - Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyton, Brent M.; Timothy, Ginn R.; Sani, Rajesh K.

    2013-08-14

    Subsurface bacteria including sulfate reducing bacteria (SRB) reduce soluble U(VI) to insoluble U(IV) with subsequent precipitation of UO 2. We have shown that SRB reduce U(VI) to nanometer-sized UO 2 particles (1-5 nm) which are both intra- and extracellular, with UO 2 inside the cell likely physically shielded from subsequent oxidation processes. We evaluated the UO 2 nanoparticles produced by Desulfovibrio desulfuricans G20 under growth and non-growth conditions in the presence of lactate or pyruvate and sulfate, thiosulfate, or fumarate, using ultrafiltration and HR-TEM. Results showed that a significant mass fraction of bioreduced U (35-60%) existed as a mobile phasemore » when the initial concentration of U(VI) was 160 µM. Further experiments with different initial U(VI) concentrations (25 - 900 M) in MTM with PIPES or bicarbonate buffers indicated that aggregation of uraninite depended on the initial concentrations of U(VI) and type of buffer. It is known that under some conditions SRB-mediated UO 2 nanocrystals can be reoxidized (and thus remobilized) by Fe(III)-(hydr)oxides, common constituents of soils and sediments. To elucidate the mechanism of UO 2 reoxidation by Fe(III) (hydr)oxides, we studied the impact of Fe and U chelating compounds (citrate, NTA, and EDTA) on reoxidation rates. Experiments were conducted in anaerobic batch systems in PIPES buffer. Results showed EDTA significantly accelerated UO 2 reoxidation with an initial rate of 9.5 M day-1 for ferrihydrite. In all cases, bicarbonate increased the rate and extent of UO 2 reoxidation with ferrihydrite. The highest rate of UO 2 reoxidation occurred when the chelator promoted UO 2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO 2 dissolution did not occur, UO 2 reoxidation likely proceeded through an aqueous Fe(III) intermediate as observed for both NTA and citrate. To complement to these laboratory studies, we collected U-bearing samples from a surface seep at the Rifle field site and have measured elevated U concentrations in oxic iron-rich sediments. To translate experimental results into numerical analysis of U fate and transport, a reaction network was developed based on Sani et al. (2004) to simulate U(VI) bioreduction with concomitant UO 2 reoxidation in the presence of hematite or ferrihydrite. The reduction phase considers SRB reduction (using lactate) with the reductive dissolution of Fe(III) solids, which is set to be microbially mediated as well as abiotically driven by sulfide. Model results show the oxidation of HS– by Fe(III) directly competes with UO 2 reoxidation as Fe(III) oxidizes HS– preferentially over UO 2. The majority of Fe reduction is predicted to be abiotic, with ferrihydrite becoming fully consumed by reaction with sulfide. Predicted total dissolved carbonate concentrations from the degradation of lactate are elevated (log(pCO 2) ~ –1) and, in the hematite system, yield close to two orders-of-magnitude higher U(VI) concentrations than under initial carbonate concentrations of 3 mM. Modeling of U(VI) bioreduction with concomitant reoxidation of UO 2 in the presence of ferrihydrite was also extended to a two-dimensional field-scale groundwater flow and biogeochemically reactive transport model for the South Oyster site in eastern Virginia. This model was developed to simulate the field-scale immobilization and subsequent reoxidation of U by a biologically mediated reaction network.« less

  9. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Lightmore » Source.« less

  10. Analysis of inflammatory markers and metals in nasal lavage fluid of welders.

    PubMed

    Raulf, Monika; Weiss, Tobias; Lotz, Anne; Lehnert, Martin; Hoffmeyer, Frank; Liebers, Verena; Van Gelder, Rainer; Udo Käfferlein, Heiko; Hartwig, Andrea; Pesch, Beate; Brüning, Thomas

    2016-01-01

    Welding fumes may produce adverse health effects in the respiratory tract. To assess the relationship between exposure to welding fumes and inflammation in the upper airways, 190 male welders were examined from the WELDOX study (median age 40 yr, 54.7% smokers, and 32.9% atopics). Inhalable welding fumes were collected in the breathing zone of welders during a single shift. Chromium (Cr), nickel (Ni), manganese (Mn), and iron (Fe) were measured in the welding-fume samples and in postshift nasal lavage fluid (NALF). In addition, the numbers of particles and inflammatory biomarkers, including total and differential cell counts, interleukin (IL)-8, leukotriene (LT) B 4 , 8-isoprostane (8-iso-PGF 2α ), tissue inhibitor of metalloproteinase-1 (TIMP-1), and immunoreactive matrix metalloproteinase (MMP)-9, were determined. Metal concentrations in NALF correlated with airborne concentrations. No significant association was found between airborne metal concentrations and biomarkers of inflammation in NALF, whereas increasing metal concentrations in NALF resulted in increased concentrations of total protein, IL-8, MMP-9, and TIMP-1. LTB 4 and 8-iso PGF 2α were elevated at higher concentrations of Cr or Ni in NALF. The same was true for Fe, although the effects were less pronounced and of borderline significance. In conclusion, our results showed a significant association between the concentrations of metals and soluble inflammatory markers in the NALF of welders. The noninvasive collection of NALF is applicable in field studies, where it may serve as a suitable matrix to simultaneously assess biomarkers of exposure and effect in the upper respiratory tract in workers who are occupationally exposed to airborne hazardous substances.

  11. Fractionation and risk assessment of Fe and Mn in surface sediments from coastal sites of Sonora, Mexico (Gulf of California).

    PubMed

    Jara-Marini, Martín E; García-Camarena, Raúl; Gómez-Álvarez, Agustín; García-Rico, Leticia

    2015-07-01

    The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual > Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.

  12. Arsenic release from Fe/Mn oxide-rich (model) soils/sediments - A comparison of single extraction procedures

    NASA Astrophysics Data System (ADS)

    Vanek, A.; Komarek, M.; Galuskova, I.

    2012-04-01

    Arsenic extractability in As-modified Fe(III) and Mn(III,IV) oxide-coated sands was tested using five widely used 2-h single extraction procedures: deionised water, 0.01 M CaCl2, 1 M NH4NO3, 0.1 M Na2HPO4 and 0.005 DTPA. In general, the highest As recoveries reaching 39-50% of total As concentration were observed for all extracting media in the birnessite (delta-MnO2) system, indicating relatively weak adsorption of As onto the Mn oxides. The Na2HPO4 extracts from the Fe oxide systems (i.e., associated with ferrihydrite and goethite) were highest in As, accounting for up to 34% of total As amount. Surprisingly, comparable recoveries of As (14-20%) yielded deionised water, CaCl2, NH4NO3, DTPA as extracting media for both ferrihydrite and goethite coatings. Deionised water and Na2HPO4 extractions are suggested for quick estimation of easily soluble, exchangeable and/or specifically adsorbed As in real soil/sediment samples.

  13. No effect of H2O degassing on the oxidation state of hydrous rhyolite magmas: a comparison of pre- and post-eruptive Fe2+ concentrations in six obsidian samples from the Mexican and Cascade arcs

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.

    2011-12-01

    The extent to which degassing affects the oxidation state of arc magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of magmas, and it has been proposed that degassing may induce either oxidation or reduction depending on the initial oxidation state. A commonly proposed oxidation reaction is related to H2O degassing: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt). Another mechanism by which H2O degassing can affect the iron redox state is if dissolved water affects the activity of ferrous and/or ferric iron in the melt. Although Moore et al. (1995) presented experiments showing no evidence of an affect of dissolved water on the activity of the ferric-ferrous ratio in silicate melts, other experimental results (e.g., Baker and Rutherford, 1996; Gaillard et al., 2001; 2003) indicate that there may be such an effect in rhyolite liquids. It has long been understood that rhyolites, owing to their low total iron concentrations, are more sensitive than other magma types to degassing-induced change in redox state. Therefore, a rigorous test of whether H2O degassing affects the redox state of arc magmas is best evaluated on rhyolites. In this study, a comparison is made between the pre-eruptive (pre-degassing) Fe2+ concentrations in six, phenocryst-poor (<5%), fresh, glassy obsidian samples with their post-eruptive (post-degassing) Fe2+ concentrations. Near-liquidus co-precipitation of two Fe-Ti oxides allows the pre-eruptive oxygen fugacity and temperature to be calculated in each rhyolite using the oxygen barometer and thermometer of Ghiorso and Evans (2008). Temperatures range from 793 (± 19) to 939 (± 15) °C, and ΔNNO values (log10fO2 of sample - log10fO2 of Ni-NiO buffer) range from -0.4 to +1.4. These ΔNNO values allow the ferric-ferrous ratio in the liquid to be calculated, using the experimental calibration of Kress and Carmichael (1991), which relates melt composition (not including dissolved water), oxygen fugacity and temperature to melt ferric-ferrous ratios. With temperature known, the plagioclase-liquid hygrometer of Lange et al. (2009) was applied and maximum melt water concentrations range from 4.2 to 7.5 wt%. Both the oxidation state and water concentration are known prior to eruption, at the time of phenocryst growth. After eruption, the rhyolites lost nearly all of their volatiles, as indicated by the low loss on ignition values (LOI ≤ 0.7 wt%). In order to test how much oxidation of ferrous iron occurred as a consequence of that degassing, we measured the ferrous iron concentration in the bulk samples by titration, using the Wilson (1960) method, which was successfully tested again three USGS and one Canadian Geological Survey standards. Our results indicate no detectable change within analytical error between pre- and post-eruptive FeO concentrations, with an average deviation of 0.09 wt% and a maximum deviation of 0.15 wt%. Our results show that H2O degassing has no effect on the redox state of rhyolite magmas, which requires that dissolved water has no resolvable affect on the activity ratio of the iron oxide components in melt.

  14. Distinguishing iron-reducing from sulfate-reducing conditions

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  15. Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river mouth wetland.

    PubMed

    Huang, Wei; Chen, Qiuwen; Ren, Kuixiao; Chen, Kaining

    2015-03-01

    Wetland vegetation can improve water quality through several processes including direct assimilation and the indirect effects of sedimentation and mineralization. This research takes the Zhucao River mouth of Daxi reservoir as a study case to investigate the vertical distribution of nitrogen and phosphorus in the soil of a natural wetland covered by different plants prior to any restoration action. There are four native emergent macrophytes (Typha latifolia L., Polygonum hydropiper L., Juncus effuses L., Phragmites communis L.) in the wetland. The total nitrogen (TN) and nitrate contents decreased with the soil depth for all vegetation types, and the mean TN and nitrate concentrations were higher in vegetative soil than in bare ground. The maximum TN concentration was found in the surface soil (0-2 cm) covered by P. communis. Ammonium decreased with the soil depth in vegetative areas, while it increased with soil depth in bare ground. The rank order of P fractions was organic P (OP) > P associated with Ca (Ca-P) > P associated with Fe/Al (Fe/Al-P). Total phosphorus (TP) and OP showed vertical profiles similar to that of TN. The mean concentrations of TP, Ca-P and Fe/Al-P were higher in vegetative soil than in bare ground. The maximum mean TP was also found in soil covered by P. communis. Loss on ignition (LOI) was significantly correlated with TN and TP (P < 0.05). Organic matter accumulation may be the main pathway to retain nitrogen and phosphorus in the wetland. Nitrogen and phosphorus sequestration in P. communis soil was the highest of the four dominant plants. The results could support the restoration of other degraded river mouth wetlands of the reservoir.

  16. Sources of variability in livestock water quality over 5 years in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Mineral content of livestock water grazing rangelands can be a source of minerals affecting health and drinkability. To estimate yearly variation in water mineral concentrations, 11 indicators of quality were measured (Ca, Cl, Fe, Fl, Mg, Mn, Na, NO3-N, pH, SO4, total dissolved solids (TDS) and temp...

  17. Elemental distribution in seaweed, Gelidium abbottiorum along the KwaZulu-Natal Coastline, South Africa.

    PubMed

    Misheer, Natasha; Kindness, Andrew; Jonnalagadda, Sreekanth B

    2006-01-01

    The total concentrations of 7 selected metals, namely manganese, iron, zinc, titanium, boron, arsenic and mercury, were monitored for one annual cycle covering four seasons in the seaweed, Gelidium abbottiorum, at four sampling sites at Zinkwasi, Ballito, Treasure beach and Park Rynie along the South-East coastline of KwaZulu-Natal, South Africa to assess the current status of the marine environment. Inductively Coupled Plasma Optical Emission Spectrophotometry, Mercury Cold Vapour AAS, and Hydride Generation AAS were used for the determination of metal concentrations. Mn concentrations were particularly high in the G. abbottiorum species, followed by Fe, As and B concentrations which were in the 3-8 ppm range. Ti and Zn were in the 100-400 ppb range, while Hg was low and below 100 ppb. A typical sample of G. abbottiorum at Treasure beach, a site close to Durban metropolis in winter had Mn (8.6 ppm), Fe (4.6 ppm), As (5.6 ppm), B (3.0 ppm), Ti (420 ppb), Zn (167 ppb) and Hg (7.5 ppb). All metals recorded a decrease in concentrations from winter to spring with the exception of Hg. The Hg levels increased considerably from winter to spring.

  18. Treatment of iron(II)-rich acid mine water with limestone and oxygen.

    PubMed

    Mohajane, G B; Maree, J P; Panichev, N

    2014-01-01

    The main components of acid mine water are free acid, sulphate, and Fe²⁺. Limestone is the most cost-effective alkali that can be used for neutralization. The purpose of this investigation was to identify conditions where Fe²⁺ is removed with limestone and simultaneously oxidized with oxygen to Fe³⁺, in a polyvinyl chloride pipe under pressure. Gypsum scaling is prevented by passing rubber balls through the pipe of the so-called Oxygen-Pipe-Neutralization (OPeN) process pilot plant. Two synthetic waters were treated: (A) acid mine water containing 123 mg L⁻¹ Fe²⁺ representing gold mine water, and (B) acid mine water containing 6,032 mg L⁻¹ Fe²⁺ representing coal mine water. Batch studies were carried out in a pipe reactor and showed that the rate of Fe²⁺ oxidation depended on the Fe²⁺ concentration, oxygen pressure, amount of recycled sludge, limestone dosage and the mixing rate. Continuous studies in an OPeN process pilot plant resulted in 100% removal of total acidity from synthetic coal mine water and a 98% removal from synthetic gold mine water. Fe²⁺ was removed completely as precipitated Fe(OH)₃ from both synthetic coal and gold mine water at around pH 7 at 200 and 100 kPa oxygen pressure, respectively.

  19. Rapid removal of ultra-high-concentration p-nitrophenol in aqueous solution by microwave-enhanced Fe/Cu bimetallic particle (MW-Fe/Cu) system.

    PubMed

    Ren, Yi; Zhou, Jinfan; Pan, Zhicheng; Lai, Bo; Yuan, Donghai

    2017-10-10

    Ultra-high-concentration PNP-contained wastewaters are produced sometimes due to the wide application of this nitrophenolic compound in the chemical industry. However, there is a lack of appropriate technologies to rapidly pretreat the ultra-high-concentration wastewater. Therefore, a new microwave-enhanced Fe/Cu bimetallic particles (MW-Fe/Cu) system was developed to rapidly remove ultra-high-concentration PNP. First, the priority of the determinative parameters was obtained by orthogonal experiment. Based on this result, the effects of initial pH, microwave power, Fe/Cu dosage and initial PNP concentration on PNP removal were optimized thoroughly. Under the optimal conditions (i.e. initial pH = 1.0, MW power = 385 W, Fe/Cu dosage = 30 g/L and initial PNP concentration = 4000 mg/L), four control treatment systems (i.e. MW-Fe 0 , heating-Fe/Cu, MW alone and Fe/Cu alone system) were set up to compare with the MW-Fe/Cu system. The results suggest that high PNP removal (more than 99% with 2.5 min, k 1 /k 2  = 1.18/6.91 min -1 ) and COD removal (26.6% with 5 min treatment) could be obtained by the MW-Fe/Cu system, which were much superior to those obtained using the MW-Fe 0 (k 1 /k 2  = 0.62/2.21 min -1 ) and the heating-Fe/Cu system (k 1 /k 2  = 0.53/1.52 min -1 ). Finally, the determination of the intermediates of PNP degradation by HPLC indicated that the MW assistance process did not change the degradation pathway of PNP. This concludes that the new MW-Fe/Cu system was the promising technology for pretreatment of wastewater containing ultra-high-concentration toxic and refractory pollutants at a fairly short treatment time.

  20. Leachable particulate iron in the Columbia River, estuary, and near-field plume

    NASA Astrophysics Data System (ADS)

    Lippiatt, Sherry M.; Brown, Matthew T.; Lohan, Maeve C.; Berger, Carolyn J. M.; Bruland, Kenneth W.

    2010-03-01

    This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004-2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.

  1. Statistical theory of diffusion in concentrated bcc and fcc alloys and concentration dependencies of diffusion coefficients in bcc alloys FeCu, FeMn, FeNi, and FeCr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaks, V. G.; Khromov, K. Yu., E-mail: khromov-ky@nrcki.ru; Pankratov, I. R.

    2016-07-15

    The statistical theory of diffusion in concentrated bcc and fcc alloys with arbitrary pairwise interatomic interactions based on the master equation approach is developed. Vacancy–atom correlations are described using both the second-shell-jump and the nearest-neighbor-jump approximations which are shown to be usually sufficiently accurate. General expressions for Onsager coefficients in terms of microscopic interatomic interactions and some statistical averages are given. Both the analytical kinetic mean-field and the Monte Carlo methods for finding these averages are described. The theory developed is used to describe sharp concentration dependencies of diffusion coefficients in several iron-based alloy systems. For the bcc alloys FeCu,more » FeMn, and FeNi, we predict the notable increase of the iron self-diffusion coefficient with solute concentration c, up to several times, even though values of c possible for these alloys do not exceed some percent. For the bcc alloys FeCr at high temperatures T ≳ 1400 K, we show that the very strong and peculiar concentration dependencies of both tracer and chemical diffusion coefficients observed in these alloys can be naturally explained by the theory, without invoking exotic models discussed earlier.« less

  2. Chemical Composition of Selected Commercial Herbal Remedies in Relation to Geographical Origin and Inter-Species Diversity.

    PubMed

    Konieczynski, Pawel; Viapiana, Agnieszka; Lysiuk, Roman; Wesolowski, Marek

    2018-03-01

    Infusions prepared from medicinal herbs that are rich in flavonoids are very popular herbal remedies in societies of Eastern Europe. Therefore, the content of essential elements together with total flavonoids was analyzed in 65 commercially available samples of herbal drugs originating from Ukraine, Romania, and Belarus. The results showed that metallic elements (in mg kg -1 d.w.) have occurred in the following order: Fe > Mn > Zn > Cu, both for total and water-extractable species. Total flavonoids were determined in the range from 10.0 to 191.8 mg g -1 d.w. Several significant correlations have been found between the analytes, especially among water-extractable Fe with other metals, and total flavonoids and Fe, Zn, and Mn. Analysis of variance has revealed significant differences among studied samples due to their origin from different countries, especially between Belarussian samples and others. Differences owing to belonging to various plant species were also found, as it was noticed in the case of Polygoni aviculare herba in comparison with other botanical plant species. Moreover, multivariate statistical techniques, such as cluster analysis (CA) and principal component analysis (PCA) were used to gather herbal drugs based on similarity of chemical composition. CA grouped the samples into clusters with similar level of elements and total flavonoid contents, and PCA has indicated Hyperici herba, Tiliae flores, and Crataegi fructus as herbal remedies with close concentration of studied elements and flavonoids.

  3. The concentration of manganese, iron and strontium in bone of red fox Vulpes vulpes (L. 1758).

    PubMed

    Budis, Halina; Kalisinska, Elzbieta; Lanocha, Natalia; Kosik-Bogacka, Danuta I

    2013-12-01

    The aims of the study were to determine manganese (Mn), iron (Fe) and strontium (Sr) concentrations in fox bone samples from north-western Poland and to examine the relationships between the bone Mn, Fe and Sr concentrations and the sex and age of the foxes. In the studied samples of fox cartilage, cartilage with adjacent compact bone, compact bone and spongy bone, the concentrations of the analysed metals had the following descending order: Fe > Sr > Mn. The only exception was in compact bone, in which the concentrations were arranged in the order Sr > Fe > Mn. Manganese concentrations were significantly higher in cartilage, compact bone and cartilage with compact bone than in spongy bone. Iron concentrations were higher in cartilage and spongy bone compared with compact bone. Strontium concentrations were greater in compact bone than in cartilage and spongy bone. The manganese, iron and strontium concentrations in the same type of bone material in many cases correlated with each other, with the strongest correlation (r > 0.70) between Mn and Fe in almost all types of samples. In addition, concentrations of the same metals in different bone materials were closely correlated for Mn and Fe in cartilage and cartilage with adjacent compact bone, and for Sr in compact bone and cartilage with compact bone. In the fox from NW Poland, there were no statistically significant differences in Mn, Fe and Sr in any of the types of bone material between the sexes and immature and adult foxes.

  4. Petrology of iron-rich magmatic segregations associated with strongly peraluminous trondhjemite in the Cornucopia stock, northeastern Oregon

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Barnes, C. G.; Browning, J. M.; Karlsson, H. R.

    The Middle Cretaceous Cornucopia stock in the Blue Mountains of northeastern Oregon is a small composite intrusion consisting of hornblende biotite tonalite, biotite trondhjemite, and three cordierite two mica trondhjemite units. Unusual magnetite + biotite-rich tonalitic rocks are associated with the Crater Lake cordierite trondhjemite, the youngest of the intrusions. Oxide-rich tonalites are characterized by high Fe ( 47-68 wt% total Fe as FeO), low SiO2 (<36 wt%), and enrichments in HFSE and REE (La(N)=361-903). Oxide-rich tonalites appear in a variety of forms, including composite dikes and sheets, in which they are associated with leucocratic tonalite. Leucotonalite is lower in SiO2 (60-72 wt%) than Crater Lake trondhjemite, and generally has ΣREE contents and Eu anomalies intermediate between the oxide-rich tonalite and Crater Lake compositions. Oxide-rich tonalites crosscut, and are crosscut by, shear zones in the host trondhjemite, indicating their emplacement late in the pluton's crystallization history. Granitic dikes crosscut the composite dikes in all localities. Geochemical considerations and sedimentary-like structures, such as load casts and bedding of magnetite-rich assemblages in the composite dikes and sheets, are suggestive of crystal settling from an Fe-rich parental magma. The Fe-rich liquid parental to the oxide-rich tonalite-leucotonalite pairs formed by extensive, in-situ, plagioclase + quartz-dominated crystallization of strongly peraluminous trondhjemite. Early magnetite saturation in the trondhjemite was suppressed, either because the parental trondhjemitic magma had a lower initial total Fe content or because it had a lower ferric-ferrous ratio, possibly reflecting a lower oxygen fugacity. Accumulation of magnetite from Fe-rich residual magma is a viable mechanism for the concentration of iron, and the subsequent formation of Fe-rich rocks, in calcic siliceous intrusions. Apparently, Fe-enrichment can occur locally in calcic magmas, and is not restricted to rocks of mafic tholeiitic or anorthositic affinity.

  5. Petrology of iron-rich magmatic segregations associated with strongly peraluminous trondhjemite in the Cornucopia stock, northeastern Oregon

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Barnes, C. G.; Browning, J. M.; Karlsson, H. R.

    2001-11-01

    The Middle Cretaceous Cornucopia stock in the Blue Mountains of northeastern Oregon is a small composite intrusion consisting of hornblende biotite tonalite, biotite trondhjemite, and three cordierite two mica trondhjemite units. Unusual magnetite + biotite-rich tonalitic rocks are associated with the Crater Lake cordierite trondhjemite, the youngest of the intrusions. Oxide-rich tonalites are characterized by high Fe ( 47-68 wt% total Fe as FeO), low SiO2 (<36 wt%), and enrichments in HFSE and REE (La(N)=361-903). Oxide-rich tonalites appear in a variety of forms, including composite dikes and sheets, in which they are associated with leucocratic tonalite. Leucotonalite is lower in SiO2 (60-72 wt%) than Crater Lake trondhjemite, and generally has ΣREE contents and Eu anomalies intermediate between the oxide-rich tonalite and Crater Lake compositions. Oxide-rich tonalites crosscut, and are crosscut by, shear zones in the host trondhjemite, indicating their emplacement late in the pluton's crystallization history. Granitic dikes crosscut the composite dikes in all localities. Geochemical considerations and sedimentary-like structures, such as load casts and bedding of magnetite-rich assemblages in the composite dikes and sheets, are suggestive of crystal settling from an Fe-rich parental magma. The Fe-rich liquid parental to the oxide-rich tonalite-leucotonalite pairs formed by extensive, in-situ, plagioclase + quartz-dominated crystallization of strongly peraluminous trondhjemite. Early magnetite saturation in the trondhjemite was suppressed, either because the parental trondhjemitic magma had a lower initial total Fe content or because it had a lower ferric-ferrous ratio, possibly reflecting a lower oxygen fugacity. Accumulation of magnetite from Fe-rich residual magma is a viable mechanism for the concentration of iron, and the subsequent formation of Fe-rich rocks, in calcic siliceous intrusions. Apparently, Fe-enrichment can occur locally in calcic magmas, and is not restricted to rocks of mafic tholeiitic or anorthositic affinity.

  6. Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions.

    PubMed

    Baik, Min Hoon; Lee, Seung Yeop; Jeong, Jongtae

    2013-12-01

    The sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions were investigated as a function of pH, Se(IV) concentration, and Fe(II) concentration under an anoxic condition. The sorption of Se(IV) onto chlorite surfaces followed the Langmuir isotherm regardless of the presence of Fe(II) ions in the solution. The Se(IV) sorption was observed to be very low at all pH values when the solution was Fe(II)-free or the concentration of Fe(II) ions was as low as 0.5 mg/L. However, the Se(IV) sorption was enhanced at a pH > 6.5 when the Fe(II) concentration was higher than 5 mg/L because of the increased sorption of Fe(II) onto the chlorite surfaces. XANES (X-ray absorption near edge structure) spectra of the Se K-edge showed that most of the sorbed Se(IV) was reduced to Se(0) by Fe(II) sorbed onto the chlorite surfaces, especially at pH > 9. The combined results of field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) also showed that elemental selenium and goethite were formed and precipitated on the chlorite surfaces during the sorption of selenite. Consequently it can be concluded that Se(IV) can be reduced to Se(0) in the presence of Fe(II) ions by the surface catalytic oxidation of Fe(II) into Fe(III) and the formation of goethite at neutral and particularly alkaline conditions. Thus the mobility of selenite in groundwater is expected to be reduced by the presence of a relatively higher concentration of Fe(II) in subsurface environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Content and distribution of macro- and micro-elements in the body of pasture-fed young horses.

    PubMed

    Grace, N D; Pearce, S G; Firth, E C; Fennessy, P F

    1999-03-01

    To determine the content and distribution of Na, K, Ca, P, Mg, S, Cu, Mn, Fe and Zn in the body of pasture-fed young horses and then use a factorial model to calculate the dietary mineral requirements for growth. Twenty-one foals were killed at about 150 days of age and the organs, soft tissues, skin and bones and a sample of muscle were dissected out and weighted. The mineral concentrations of elements in all soft tissues and bones were measured by inductively coupled emission spectrometry. The total mineral element composition associated with a tissue was determined from the weight of tissue and its mineral element concentration. Expressed as a percent of total body mineral elements, muscle contained 20% Na, 78% K, 32% Mg, 62% Cu, 36% Mn and 57% Zn, bone contained 47% Na, 99% Ca, 81% P, 62% Mg, 30% Mn and 28% Zn while the organs accounted for a smaller percentage ranging from 0.06% for Ca to 26% for Fe. In liver Cu accounted for 9.2% of total body Cu. Each kilogram of empty body weight was associated with 1.0 g Na, 2.5 g K, 17.1 g Ca, 10.1 g P, 0.4 g Mg, 1.1 mg Cu, 0.39 mg Mn, 52.5 mg Fe and 21.4 mg Zn. The mineral element content of body weight gain is a component used in the factorial model to determine dietary mineral element requirements for growth. The calculated dietary mineral requirements, expressed per kg dry matter, for a 200 kg horse gaining 1.0 kg/day were 1.0 g Na, 2.1 g K, 4.6 g Ca, 3.5 g P, 0.7 g Mg, 4.5 mg Cu and 25 mg Zn.

  8. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  9. Elemental Redistribution at the Onset of Soil Genesis from Basalt as Measured in a Soil Lysimeter System

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Umanzor, M.; Alves Meira Neto, A.; Sengupta, A.; Amistadi, M. K.; Root, R.; Troch, P.; Chorover, J.

    2017-12-01

    Elemental translocation, resulting in enrichment or depletion relative to parent rock, is a consequence of mineral dissolution and precipitation reactions of soil genesis. Accurate measurement of translocation in natural systems is complicated by factors such as parent material heterogeneity and dust deposition. In the present work, a fully controlled and monitored 10° sloping soil lysimeter with known homogeneous initial conditions, was utilized to investigate initial stages of soil genesis from 1 m3 of crushed basalt. Throughout the two-year experiment, periodic irrigation coupled with sensor measurements enabled monitoring of changes in internal moisture states. A total 15-meter water influx resulted in distinct efflux patterns, wetting and drying cycles, as well as high volume water storage. Biological changes, such as algal and grass emergence, were visible on the soil surface, and microbial colonization throughout the profile was measured in a companion study, suggesting that biogeochemical hotspots may have formed. Forensic excavation and sampling of 324 voxels captured the final state heterogeneity of the lysimeter with respect to length and depth. Total elemental concentrations and a five-step sequential extraction (SE) scheme quantified elemental redistributions into operationally-defined pools including exchangeable, poorly-crystalline (hydr)oxides, and crystalline (hydr)oxides. Data were correlated to water flux and storage that was determined from sensor and tracer data over the two years of rock-water interaction; then used to map 2D cross-sections and identify geochemical hotspots. Total and SE Fe concentrations were used to establish a governing mass balance equation, and sub mass balance equations with unique partitioning coefficients of Fe were developed for each SE pool, respectively. The results help to explain elemental (e.g., Fe) lability and redistribution due to physical and geochemical weathering during the initial stages of soil genesis.

  10. Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal

    PubMed Central

    Podder, Rajib; M. DellaValle, Diane; T. Tyler, Robert; P. Glahn, Raymond; Tako, Elad; Vandenberg, Albert

    2018-01-01

    Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g−1) and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA), and relative Fe bioavailability (RFeB%). Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g−1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g−1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant (p ≤ 0.01) Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency. PMID:29543712

  11. Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal.

    PubMed

    Podder, Rajib; M DellaValle, Diane; T Tyler, Robert; P Glahn, Raymond; Tako, Elad; Vandenberg, Albert

    2018-03-15

    Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g -1 ) and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA), and relative Fe bioavailability (RFeB%). Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g -1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g -1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant ( p ≤ 0.01) Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.

  12. Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water.

    PubMed

    Cai, Chun; Zhang, Hui; Zhong, Xin; Hou, Liwei

    2014-12-01

    Mesoporous silica SBA-15 supported iron and cobalt catalysts (Fe-Co/SBA-15) were prepared and used in the electrochemical (EC) enhanced heterogeneous activation of peroxydisulfate (PDS, S2O8(2-)) process for the removal of Orange II. The effects of some important reaction parameters such as initial pH, current density, PDS concentration and dosage of Fe-Co/SBA-15 catalysts were investigated. The results showed that the decolorization efficiency was not significantly affected by the initial pH value, and it did increase with the higher PDS concentration, current density and Fe-Co/SBA-15 dosage. Both the sulfate radical (SO4(·-)) and the hydroxyl radical (OH) are considered as the primary reactive oxidants for the Orange II decolorization. The Fe-Co/SBA-15 catalyst maintained its high activity during repeated batch experiments. The intermediate products were identified by GC-MS analysis and a plausible degradation pathway is proposed accordingly. The removal efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 52.1% and 31.9%, respectively after 60 min of reaction time but reached 82.9% and 51.5%, respectively when the reaction time was extended to 24 h. Toxicity tests with activated sludge indicated that the toxicity of the solution increased during the first 30 min and then decreased as the oxidation proceeded. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Immobilization of Eu and Ho from synthetic acid mine drainage by precipitation with Fe and Al (hydr)oxides.

    PubMed

    Barcelos, Gisely S; Veloso, Renato Welmer; de Mello, Jaime W V; Gasparon, Massimo

    2018-04-30

    Use of lime to mitigate acid mine drainage is, in general, accompanied by precipitation of iron (Fe) and aluminium (Al) (hydr)oxides which may increase the removal of trace elements from water. This work aimed to evaluate the precipitation of Fe/Al (hydr)oxides to remove rare earth elements (REE) from contaminated water and the stability of precipitates. Two sets of 60-day syntheses were carried out using different Fe/Al/REE molar ratios, for europium (Eu) and holmium (Ho). The pH was periodically adjusted to 9.0, and the stability of the resulting precipitates was evaluated by water-soluble and BCR extractable phases, namely (1) acid soluble, extracted by 0.11 mol L -1 acetic acid; (2) reducible, extracted with 0.5 mol L -1 hydroxylamine hydrochloride; and (3) oxidisable, extracted with 8.8 mol L -1 hydrogen peroxide efficiencies of the water treatments for both Eu and Ho that were higher than 99.9% irrespective to the Fe/Al/REE molar ratios. Water-soluble phases of Eu and Ho were lower than 0.01% of the total contents in the precipitates. Recoveries from precipitates by Bureau Communautaire de Référence (BCR) sequential extractions increased with increasing concentrations of Eu and Ho. Acetic acid extracted higher amounts of REE, but Eu recovery was superior to Ho. Lepidocrocite was formed as Eu concentration increased which decreased its stability in the precipitates.

  14. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico.

    PubMed

    Labastida, I; Armienta, M A; Lara-Castro, R H; Aguayo, A; Cruz, O; Ceniceros, N

    2013-11-15

    An experimental study to evaluate the potential of using indigenous limestones in a passive system to treat acid mine drainage, at a mining zone of Mexico was carried out. Chemical and mineralogical characteristics of four types of native rocks (KIT1, KIT2, KSS, QZ) showed distinct CaCO3 contents. Synthetic aqueous leachates from an old tailings impoundment had a pH of 2.18, 34 mg/L As, 705 mg/L Fetotal, and 3975 mg/L SO4(2-). To evaluate dissolution behavior of rocks, kinetic batch experiments with an acid Fe-rich solution were performed. Decaying kinetic constants adjusting H(+) concentration to a first order exponential process were: KIT1 (k = 2.89), KIT2 (k = 0.89) and KSS (k = 0.47). Infrared spectrum and XRD of precipitates showed schwertmannite formation. To determine As and heavy metals (Fe, Cd, Zn, Al) removal from the synthetic leachates, batch experiments using KIT1 were developed. Arsenic decreased from 34.00 mg/L to 0.04 mg/L, Fe and Al were totally removed, and concentrations of Zn and Cd decreased 88% and 91% respectively. Analyses by IR and SEM-EDS indicate that co-precipitation with Fe-Hydroxides formed upon leachate interaction with limestone is the main As removal process. Chamosite, identified by XRD may participate in the removal of Al, SiO2 and a fraction of Fe. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Magnetic Moments and Hyperfine Parameters of Fe3-xCrxAl0.5Si0.5

    NASA Astrophysics Data System (ADS)

    Rećko, Katarzyna; Go, Anna; Satuła, Dariusz; Biernacka, Maria; Dobrzyński, Ludwik; Waliszewski, Janusz; Milczarek, Jacek J.; Szymański, Krzysztof

    2012-04-01

    Results of X-ray, neutron, magnetization and Mössbauer measurements on polycrystalline samples of Fe3-xCrx Al0.5Si0.5 (x=0, 0.125, 0.250, 0.375, and 0.5) alloys, crystallizing in DO3 type of structure, are presented. X-ray and neutron diffraction confirmed the phase homogeneity of all the samples. The unit cell volume has been proved to be independent of the chromium content. Neutron and Mössbauer measurements disclosed that Cr atoms occupy preferentially B-sites, while D-sites are almost entirely occupied by Al and Si. The total magnetisation as well as the individual magnetic moments μFe(A,C), μFe(B) and μCr(B,D) have been found to vary linearly with chromium concentration. Influence of local environments on the formation of magnetic moments in Fe3Al0.5Si0.5 when chromium is substituted for iron was examined using self-consistent spin-polarized tight-binding linear muffin-tin orbital method (TB-LMTO).

  16. Migration and transformation of different phosphorus forms in rainfall runoff in bioretention system.

    PubMed

    Song, Yujia; Song, Shoufa

    2018-06-04

    Artificial bioretention system consisting of Ophiopogon japonicus infiltration medium was used to simulate an infiltration experiment of rainfall runoff. Continuous extraction method was used to detect contents of inorganic phosphorus (P) under exchangeable state (Ex-P) and aluminium phosphate (Al-P) and iron phosphate (Fe-P) at different depths (0, 5, 15 and 35 cm) of soil infiltration medium in bioretention system. Effluent total P (TP) concentration of the system was also monitored. Results indicated that the adsorption of inorganic P, Al-P and Fe-P by soil infiltration medium was implemented layer by layer from top to bottom and gradually weakened. Moreover, Ex-P was gradually transformed into Al-P and Fe-P, whereas Al-P was gradually transformed into Fe-P; thus, Ex-P content reduced layer by layer, whereas Al-P and Fe-P gradually accumulated. The TP removal rate in runoff rainwater by the system was more than 90%, where the TP that was not used by plants was under dynamic equilibrium in water-soil-root system/biological system.

  17. The bioavailability of manganese in welders in relation to its solubility in welding fumes.

    PubMed

    Ellingsen, Dag G; Zibarev, Evgenij; Kusraeva, Zarina; Berlinger, Balazs; Chashchin, Maxim; Bast-Pettersen, Rita; Chashchin, Valery; Thomassen, Yngvar

    2013-02-01

    Blood and urine samples for determination of manganese (Mn) and iron (Fe) concentrations were collected in a cross-sectional study of 137 currently exposed welders, 137 referents and 34 former welders. Aerosol samples for measurements of personal air exposure to Mn and Fe were also collected. The aerosol samples were assessed for their solubility using a simulated lung lining fluid (Hatch solution). On average 13.8% of the total Mn mass (range 1-49%; N = 237) was soluble (Hatch sol), while only 1.4% (<0.1-10.0%; N = 237) of the total Fe mass was Hatch sol. The welders had statistically significantly higher geometric mean concentrations of Mn in whole blood (B-Mn 12.8 vs. 8.0 μg L (-1)), serum (S-Mn 1.04 vs. 0.77 μg L(-1)) and urine (U-Mn 0.36 vs. 0.07 μg g (-1) cr.) than the referents. Statistically significant univariate correlations were observed between exposure to Hatch sol Mn in the welding aerosol and B-Mn, S-Mn and U-Mn respectively. Pearson's correlation coefficient between mean Hatch sol Mn of two days preceding the collection of biological samples and U-Mn was 0.46 (p < 0.001). The duration of employment as a welder in years was also associated with B-Mn and S-Mn, but not with U-Mn. Statistically significantly higher U-Mn and B-Mn were observed in welders currently exposed to even less than 12 and 6 μg m (-3) Hatchsol Mn, respectively. When using the 95(th) percentile concentration among the referents as a cut-point, 70.0 and 64.5% of the most highly exposed welders exceeded this level with respect to B-Mn and U-Mn. The concentrations of B-Mn, S-Mn and U-Mn were all highly correlated in the welders, but not in the referents.

  18. Retention and loss of water extractable carbon in soils: effect of clay properties.

    PubMed

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  19. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases.

    PubMed

    Senger, Moritz; Mebs, Stefan; Duan, Jifu; Shulenina, Olga; Laun, Konstantin; Kertess, Leonie; Wittkamp, Florian; Apfel, Ulf-Peter; Happe, Thomas; Winkler, Martin; Haumann, Michael; Stripp, Sven T

    2018-01-31

    The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe-4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN - ) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN - vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one-electron reduced state Hred' represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred' was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN - infrared band patterns favored a cysteine ligand of the [4Fe-4S] cluster as the protonation site in HoxH and Hred'. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe-4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe-4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases.

  20. Spatiotemporal evaluation of the groundwater quality in Gharbiya Governorate, Egypt.

    PubMed

    Masoud, Alaa A; El Bouraie, Mohamed M; El-Nashar, Wafaa; Mashaly, Hamdy

    2017-03-01

    Groundwater quality indicators were monitored over 6 years (2007-2012) from 55 drinking water supply wells in Gharbiya Governorate (Egypt). The prime objective was to characterize, for the first time, the governorate-wide significant and sustained trends in the concentrations of the groundwater pollutants. Quality indicators included turbidity, pH, total dissolved solid (TDS), electric conductivity (EC), Cl - , SO 4 2- , Na + , total alkalinity, hardness (total, Mg, and Ca), Fe 2+ , Mn 2+ , Cu 2+ , Zn 2+ , F - , NH 4 + , NO 2 - , NO 3 - , PO 4 3- , dissolved oxygen (DO), and SiO 2 contents. Detection and estimation of trends and magnitude were carried out applying the non-parametric Mann-Kendall and Thiel-Sen trend statistical tests, respectively. Factor analysis was applied to identify significant sources of quality variation and their loads. Violation of groundwater quality standards clarified emergence of Mn 2+ (46%), Fe 2+ (35%), and NH 4 + (33%). Out of the 55 wells, notable upward trends (deterioration) were significant (>95% level) for TDS (89%), NO 3 - (85), PO 4 3- (75%), NH 4 + (65%), total alkalinity (62%), Fe 2+ (58%), NO 2 - (47%), Mg hardness (36%), turbidity (25%), and Mn 2+ (24%). Ranges of attenuation rates (mg/l/year) varied for TDS (24.3, -0.7), Mg hardness (3.8, -0.85), total alkalinity (1.4, -1.2), NO 3 - (0.52, -0.066), PO 4 3- (0.069, -0.064), NH 4 + (0.038, -0.019), Mn 2+ (0.015, -0.044), Fe 2+ (0.006, -0.014), and NO 2 - (0.006, -0.00003). Highest rates marked Tanta (total alkalinity and Fe 2+ ), Al-Mehala Al-Kubra (TDS, Mg hardness, and NO 3 - ), Kafr Al-Zayat (NH 4 + ), Zifta (Mn 2+ ), Bassyun (NO 2 - ), and Qutur (PO 4 3- ). Precision of the trend estimate varied in goodness of fit, for TDS (86%), Mg hardness (76%), total alkalinity (73%), PO 4 3- (67.4%), NH 4 + (66.8%), Mn 2+ (55%), and Fe 2+ (49.6%), arranged in decreasing order. Two main varimax-rotated factors counted for more than 55% of the quality variance and, in particular, significant loads of salinity (TDS, EC, Cl - , Na + , and SO 4 2- ), followed by the alkalinity, hardness, redox potentials (Mn 2+ and Fe 2+ ), and NH 4 + , in decreasing order were identified. The spatial-temporal variation in pollutants originated from organic matter degradation, either naturally from the aquifer peaty sediments or anthropogenic due to improper well head protection in the urban centers or from the agricultural drains in low relief areas. Considering the latest contents of indicators and their rate of increase, the time that the permissible limits would be reached can be accurately estimated and alleviative actions could be effectively set.

  1. In-situ arsenic remediation by aquifer iron coating: Field trial in the Datong basin, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xianjun; Pi, Kunfu; Liu, Yaqing

    2016-01-01

    In situ As removal from groundwater used for water supply has been performed in Daying village of Shanyin County where mild alkaline groundwater contains high dissolved As concentration. The objective of this study was to evaluate in situ As treatment by aquifer Fe coating technology. The groundwater in the studied aquifer contains As dominated by aqueous As(III) and low dissolved Fe(II) concentration, which are unfavorable conditions for forming Fe-oxides/hydroxides for As removal. In addition, high As(III) concentration limits As adsorption onto Fe-oxides/hydroxides. Accordingly, dissolved Fe(II) (5mM) and NaClO (5mM) were injected into the studied aquifer to form Fe-oxides/hydroxides and oxidizemore » As(III) to As(V), creating favorable conditions for As removal via adsorption and/or co-precipitation. During alternatively cycled injection of Fe(II) and NaClO, the As concentration in groundwater from the pumping well significantly decreased to below drinking water standard. The developed approach can be applied similarly in many parts of the world containing high As concentrations.« less

  2. A new insight into black blooms: Synergies between optical and chemical factors

    NASA Astrophysics Data System (ADS)

    Duan, Hongtao; Loiselle, Steven Arthur; Li, Zuochen; Shen, Qiushi; Du, Yingxun; Ma, Ronghua

    2016-06-01

    Black blooms have been associated with fish-kills and the loss of benthic fauna as well as closure of potable water supplies. Their frequency and duration has increased in recent decades in rivers, inland lakes and reservoirs, and has often been associated with the decay and release of organic matter (planktonic algae, aquatic macrophytes, sediment release, etc.). However, the interactions between microbial, chemical, hydrodynamic and optical conditions necessary for black blooms are poorly understood. The present study combines field investigations and laboratory mesocosm studies to show that black blooms are caused by a combination of high CDOM (chromophoric dissolved organic matter) absorption, the formation of CDOM-Fe complexes and low backscattering. Mesocosm experiments showed that black bloom conditions occur after 4 days, with a significant increase in the concentrations of Fe2+ and ∑S2-. Total absorption (excluding absorption due to water) at 440 nm increased by 30% over this time to 7.3 m-1. In addition, the relative contribution of CDOM absorption to the non-water total absorption increased from 18% to 50%. Regression analyses between chemical and bio-optical data in both field and mesocosm experiments indicated that the concentrations of Fe2+ co-varied positively with CDOM absorption ag(440) (R2 > 0.70), and the specific CDOM absorption (ag(440)/DOC). Conditions that favored the development of black blooms were elevated algal or macrophyte biomass and limited water column mixing.

  3. Trace metal concentrations in single specimens of the intestinal broad flatworm ( Diphyllobothrium latum), compared to their fish host ( Oncorhynchus mykiss) measured by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Woelfl, Stefan; Mages, Margarete; Torres, Patricio

    2008-12-01

    The aim of this study was to investigate (1) whether intestine endoparasites ( Diphyllobothrium latum) accumulate trace elements related to its body size and (2) whether parasites bioconcentrate more trace elements than their host. Freshwater fish (rainbow trout Oncorhynchus mykiss) were sampled in the deep, oligotrophic and uncontaminated Lake Riñihue in Southern Chile. The element concentration of different organs (intestine, muscle, liver) and of the intestine endoparasites were analyzed using total reflection X-ray fluorescence spectrometry. The results showed that the mass fraction for Mn, Fe, Ni, Cu, and Pb decreased significantly with the body size (dry weight) of the endoparasite. Only Zn did not reveal such a relationship. Small parasites accumulated up to 80 times more Fe, Ni, Mn, Pb, and Cu than large parasites. Compared to the fish organs, small parasites accumulated in maximum 35 to 307 times more Mn, 5 to 255 times more Fe, 98 to 220 times more Ni, 3 to 175 times more Cu, and 0.4 to 12 times more Zn than the fish. Lead was only found in the endoparasite, but not in the fish organs. We conclude that (1) D. latum is a good indicator for trace element accumulation in fishes and that (2) small endoparasites are more sensitive as bioindicators because they showed higher bioconcentrations of trace metals than larger parasites.

  4. Cytotoxicity of corrosion products of degradable Fe-based stents: relevance of pH and insoluble products.

    PubMed

    Fagali, Natalia S; Grillo, Claudia A; Puntarulo, Susana; Fernández Lorenzo de Mele, Mónica A

    2015-04-01

    Fe-based biodegradable metallic materials (Fe-BMMs) have been proposed for cardiovascular applications and are expected to disappear via corrosion after an appropriate period. However, in vivo studies showed that Fe ions release leads to accumulation of orange and brownish insoluble products at the biomaterial/cell interface. As an additional consequence, sharp changes in pH may affect the biocompatibility of these materials. In the present work, the experimental protocols were designed with the aim of evaluating the relative importance that these factors have on biocompatibility evaluation of BMMs. Mitochondrial activity (MTT assay) and thiobarbituric acid reactive substances (TBARS) assay on mammalian cells, exposed to 1-5 mM of added Fe3+ salt, were assessed and compared with results linked exclusively to pH effects. Soluble Fe concentration in culture medium and intracellular Fe content were also determined. The results showed that: (i) mitochondrial activity was affected by pH changes over the entire range of concentrations of added Fe3+ assayed, (ii) at the highest added Fe3+ concentrations (≥3 mM), precipitation was detected and the cells were able to incorporate the precipitate, that seems to be linked to cell damage, (iii) the extent of precipitation depends on the Fe/protein concentration ratio; and (iv) lipid peroxidation products were detected over the entire range of concentrations of added Fe3+. Hence, a new approach opens in the biocompatibility evaluation of Fe-based BMMs, since the cytotoxicity would not be solely a function of released (and soluble) ions but of the insoluble degradation product amount and the pH falling at the biomaterial/cell interface. The concentration of Fe-containing products at the interface depends on diffusional conditions in a very complex way that should be carefully analyzed in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Elemental composition and nutritional value of the edible fruits of Harpephyllum caffrum and impact of soil quality on their chemical characteristics.

    PubMed

    Moodley, Roshila; Koorbanally, Neil; Jonnalagadda, Sreekanth B

    2013-01-01

    Harpephyllum caffrum is a medicinal plant and common street tree distributed throughout the eastern part of South Africa. The elemental concentration in the edible fruit of H. caffrum was determined to assess for nutritional value and health impact. Concentrations of metals in the fruit and growth soil were determined from samples acquired from eight different sites in eastern KwaZulu-Natal, South Africa, to evaluate the impact of soil parameters on elemental distribution in the fruit. Typical elemental concentrations (μg g⁻¹, dry mass) in soil (Exchangeable/Total) and fruit samples, at Umhlanga, north of Durban, were Ca (1221/696 and 3333), Co (2.5/2.1 and 0.16), Cr (35/0.8 and 5.8), Cu (14/9 and 21), Fe (9424/394 and 116), Mg (199/139 and 915), Mn (268/187 and 13), Ni (2.8/0.51 and 3.4), Pb (36/32 and 1.2), and Zn (26/21 and 15). The analytical results showed that metal interactions in soil influenced their availability, but uptake was to a greater extent controlled by the plant. The concentrations of elements in the fruits were found to be in the order of Ca > Mg > Fe > Cu > Zn > Mn > Cr > Ni > Pb > Co. The concentrations of toxic metals, arsenic and lead were low. The fruits can contribute to the health and nutritional needs of individuals for most elements. It has potential to improve the Fe status and contribute towards a balanced diet.

  6. Removal of phosphonates from industrial wastewater with UV/FeII, Fenton and UV/Fenton treatment.

    PubMed

    Rott, Eduard; Minke, Ralf; Bali, Ulusoy; Steinmetz, Heidrun

    2017-10-01

    Phosphonates are an important group of phosphorus-containing compounds due to their increasing industrial use and possible eutrophication potential. This study involves investigations into the methods UV/Fe II , Fenton and UV/Fenton for their removal from a pure water matrix and industrial wastewaters. It could be shown that the degradability of phosphonates by UV/Fe II (6 kWh/m 3 ) in pure water crucially depended on the pH and was higher the less phosphonate groups a phosphonate contains. The UV/Fe II method is recommended in particular for the treatment of concentrates with nitrogen-free phosphonates, only little turbidity and a low content of organic compounds. Using Fenton reagent, the degradation of polyphosphonates was relatively weak in a pure water matrix (<20% transformation to o-PO 4 3- ). By means of the Photo-Fenton method (6 kWh/m 3 ), those phosphonates with the smallest numbers of phosphonate groups were easier degraded as well at pH 3.5 in a pure water matrix (o-PO 4 3- formation rates of up to 80%). Despite an incomplete transformation of organically bound phosphorus to o-PO 4 3- with Fenton reagent in an organically highly polluted wastewater (max. 15%), an almost total removal of the total P occurred. The most efficient total P elimination rates were achieved in accordance with the following Fenton implementation: reaction → sludge separation (acidic) → neutralization of the supernatant → sludge separation (neutral). Accordingly, a neutralization directly after the reaction phase led to a lower total P removal extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.

    PubMed

    Li, Yujie; Wang, Wanyu; Zhou, Liqiang; Liu, Yuanyuan; Mirza, Zakaria A; Lin, Xiang

    2017-02-01

    Carboxymethyl cellulose (CMC) stabilized microscale iron sulfide (FeS) particles were synthesized and applied to remediate hexavalent chromium (Cr(VI)) spiked soil. The effects of parameters including dosage of FeS particles, soil moisture, and natural organic matter (NOM) in soil were investigated with comparison to iron sulfate (FeSO 4 ). The results show that the stabilized FeS particles can reduce Cr(VI) and immobilize Cr in soil quickly and efficiently. The soil moisture ranging from 40% to 70% and NOM in soil had no significant effects on Cr(VI) remediation by FeS particles. When molar ratio of FeS to Cr(VI) was 1.5:1, about 98% of Cr(VI) in soil was reduced by FeS particles in 3 d and Cr(VI) concentration decreased from 1407 mg kg -1 to 16 mg kg -1 . The total Cr and Cr(VI) in Toxicity Characteristic Leaching Procedure (TCLP) leachate were reduced by 98.4% and 99.4%, respectively. In FeS particles-treated soil, the exchangeable Cr fraction was mainly converted to Fe-Mn oxides bound fraction because of the precipitation of Cr(III)-Fe(III) hydroxides. The physiologically based extraction test (PBET) bioaccessibility of Cr was decreased from 58.67% to 6.98%. Compared to FeSO 4 , the high Cr(VI) removal and Cr immobilization efficiency makes prepared FeS particles a great potential in field application of Cr(VI) contaminated soil remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cermet anode compositions with high content alloy phase

    DOEpatents

    Marschman, Steven C.; Davis, Norman C.

    1989-01-01

    Cermet electrode compositions comprising NiO-NiFe.sub.2 O.sub.4 -Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe.sub.2 O.sub.4 oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm.sup.-1 cm.sup.-1. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  9. Cermet anode compositions with high content alloy phase

    DOEpatents

    Marschman, S.C.; Davis, N.C.

    1989-10-03

    Cermet electrode compositions comprising NiO-NiFe[sub 2]O[sub 4]-Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe[sub 2]O[sub 4] oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm[sup [minus]1] cm[sup [minus]1]. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  10. Concentrations and elemental composition of particulate matter in the Buenos Aires underground system

    NASA Astrophysics Data System (ADS)

    Murruni, L. G.; Solanes, V.; Debray, M.; Kreiner, A. J.; Davidson, J.; Davidson, M.; Vázquez, M.; Ozafrán, M.

    Total suspended particulate (TSP) samples have been collected at six stations in the C and B lines of the Buenos Aires underground system and, almost simultaneously, at six ground level sites outside and nearby the corresponding underground stations, in the Oct 2005/Oct 2006 period. All these samples were analyzed for mass and elemental Fe, Cu, and Zn concentrations by using the Particle Induced X-ray Emission (PIXE) technique. Mostly, TSP concentrations were found to be between 152 μg m -3 (25% percentile) and 270 μg m -3 (75% percentile) in the platform of the stations, while those in outside ambient air oscillated from 55 μg m -3 (25% percentile) to 137 μg m -3 (75% percentile). Moreover, experimental results indicate that TSP levels are comparable to those measured for other underground systems worldwide. Statistical results demonstrate that subway TSP levels are about 3 times larger on average than those for urban ambient air. The TSP levels inside stations and outdoors are poorly correlated, indicating that TSP levels in the metro system are mainly influenced by internal sources. Regarding metal concentrations, the most enriched element in TSP samples was Fe, the levels of which ranged from 36 (25% percentile) to 86 μg m -3 (75% percentile) in Line C stations, while in Line B ones they varied between 8 μg m -3 (25% percentile) and 46 μg m -3 (75% percentile). As a comparison, Fe concentrations in ambient air oscillated between 0.7 μg m -3 (25% percentile) and 1.2 μg m -3 (75% percentile). Other enriched elements include Cu and Zn. With regard to their sources, Fe and Cu have been related to processes taking place inside the subway system, while Zn has been associated with outdoor vehicular traffic. Additionally, concerns about possible health implications based on comparisons to various indoor air quality limits and available toxicological information are discussed.

  11. Oxic limestone drains for treatment of dilute, acidic mine drainage

    USGS Publications Warehouse

    Cravotta, Charles A.

    1998-01-01

    Limestone treatment systems can be effective for remediation of acidic mine drainage (AMD) that contains moderate concentrations of dissolved O2 , Fe3+ , or A13+ (1‐5 mg‐L‐1 ). Samples of water and limestone were collected periodically for 1 year at inflow, outflow, and intermediate points within underground, oxic limestone drains (OLDs) in Pennsylvania to evaluate the transport of dissolved metals and the effect of pH and Fe‐ and Al‐hydrolysis products on the rate of limestone dissolution. The influent was acidic and relatively dilute (pH <4; acidity < 90 mg‐L‐1 ) but contained 1‐4 mg‐L‐1 Of O2 , Fe3+ , A13+ , and Mn2+ . The total retention time in the OLDs ranged from 1.0 to 3.1 hours. Effluent remained oxic (02 >1 mg‐L‐1 ) but was near neutral (pH = 6.2‐7.0); Fe and Al decreased to less than 5% of influent concentrations. As pH increased near the inflow, hydrous Fe and Al oxides precipitated in the OLDs. The hydrous oxides, nominally Fe(OH)3 and AI(OH)3, were visible as loosely bound, orange‐yellow coatings on limestone near the inflow. As time elapsed, Fe(OH)3 and AI(OH)3 particles were transported downflow. During the first 6 months of the experiment, Mn 2+ was transported conservatively through the OLDs; however, during the second 6 months, concentrations of Mn in effluent decreased by about 50% relative to influent. The accumulation of hydrous oxides and elevated pH (>5) in the downflow part of the OLDs promoted sorption and coprecipitation of Mn as indicated by its enrichment relative to Fe in hydrous‐oxide particles and coatings on limestone. Despite thick (~1 mm) hydrous‐oxide coatings on limestone near the inflow, CaCO3 dissolution was more rapid near the inflow than at downflow points within the OLD where the limestone was not coated. The rate of limestone dissolution decreased with increased residence time, pH, and concentrations of Ca2+ and HCO3‐ and decreased PCO2. The following overall reaction shows alkalinity as an ultimate product of the iron hydrolysis reaction in an OLD:Fe2+ + 0.25 O2 +CaCO3 + 2.5 H2O --> Fe(OH)3 + 2 Ca2+ + 2 HCO3-where 2 moles of CaCO3 dissolve for each mole of Fe(OH)3 produced. Hence, in an OLD, rapidly dissolving limestone surfaces are not stable substrates for Fe(OH)3 attachment and armoring. Because overall efficiency is increased by combining neutralization and hydrolysis reactions, an OLD followed by a settling pond requires less land area than needed for a two‐stage treatment system consisting of an anoxic limestone drain an oxidation‐settling pond or wetland. To facilitate removal of hydrous‐oxide sludge, a perforated‐pipe subdrain can be installed within an OLD.

  12. Effect of CoCl(2) treatment on major and trace elements metabolism and protein concentration in mice.

    PubMed

    Zaksas, Nataliya; Gluhcheva, Yordanka; Sedykh, Sergey; Madzharova, Maria; Atanassova, Nina; Nevinsky, Georgy

    2013-01-01

    Cobalt (Co) is a transition metal and an essential trace element, required for vitamin B(12) biosynthesis, enzyme activation and other biological processes, but toxic in high concentrations. There is lack of data for the effect of long-term Co(II) treatment on the concentrations of other trace elements. We estimate the influence of cobalt chloride (CoCl(2)) on the relative content of different metals in mouse plasma using two-jet arc plasmatron atomic emission and on the total protein content. On average, the content of different elements in the plasma of 2-month-old balb/c mice (control group) decreased in the order: Ca>Mg>Si>Fe>Zn>Cu≥Al≥B. The treatment of mice for 60 days with CoCl(2) (daily dose 125 mg/kg) did not appreciably change the relative content of Ca, Cu, and Zn, while a 2.4-fold statistically significant decrease in the content of B and significant increase in the content of Mg (1.4-fold), Al and Fe (2.0-fold) and Si (3.2-fold) was found. A detectable amount of Mo was observed only for two control mice, while the plasma of 9 out of 16 mice of the treated group contained this metal. The administration of Co made its concentration detectable in the plasma of all mice of the treated group, but the relative content varied significantly. The treatment led to a 2.2-fold decrease in the concentration of the total plasma protein. Chronic exposure to CoCl(2) affects homeostasis as well as the concentrations and metabolism of other essential elements, probably due to competition of Co ions for similar binding sites within cells, altered signal transduction and protein biosynthesis. Long-term treatment also leads to significant weight changes and reduces the total protein concentration. The data may be useful for an understanding of Co toxicity, its effect on the concentration of other metal ions and different physiological processes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Accumulation of Metals in Juvenile Carp (Cyprinus carpio) Exposed to Sublethal Levels of Iron and Manganese: Survival, Body Weight and Tissue.

    PubMed

    Harangi, Sándor; Baranyai, Edina; Fehér, Milán; Tóth, Csilla Noémi; Herman, Petra; Stündl, László; Fábián, István; Tóthmérész, Béla; Simon, Edina

    2017-05-01

    Many oxbows are contaminated by Fe and Mn as a consequence of the elemental concentration of sediment and water originating from the Upper Tisza Region of Hungary. The phenomenon is partly caused by anthropogenic activities and mainly due to the geochemical characteristics of the region. The effects of Fe and Mn on the aquatic ecosystem of these wetlands were investigated in a model experiments in this study. Survival, individual body weight and the elemental concentrations of organs were determined in common carp (Cyprinus carpio) juveniles reared in Fe and Mn contaminated media (treatment 1: Fe 0.57 mg L -1 , Mn 0.29 mg L -1 , treatment 2: Fe 0.57 mg L -1 , Mn 0.625 mg L -1 , treatment 3: Fe 1.50 mg L -1 , Mn 0.29 mg L -1 , treatment 4: Fe 1.50 mg L -1 , Mn 0.625 mg L -1 and control: Fe 0.005 mg L -1 , Mn 0.003 mg L -1 ), for rearing time of 49 days. The treatment with Fe and Mn did not have any effect on the survival data and individual body weight in the levels tested. The highest concentration of Fe and Mn was found in the liver and brain of carp juveniles, while the lowest concentration of these elements occurred in the muscular tissue and gills. The treatment where Fe and Mn were applied in the highest concentrations resulted in a statistically higher level of these elements in the brain, grills and muscle tissues. The treatment where only Mn was present in the highest concentration caused increased level of Mn only in the liver. We found metal accumulation in almost every organ; however, the applied concentrations and exposure time did not affect the survival and average body weight of carp juveniles.

  14. Experimental determination of carbon solubility in Fe-Ni-S melts

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Hastings, Patrick; Von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    To investigate the effect of metal/sulfide and Ni/Fe ratio on the C storage capacity of sulfide melts, we determine carbon solubility in Fe-Ni-S melts with various (Fe + Ni)/S and Ni/Fe via graphite-saturated high-pressure experiments from 2-7 GPa and 1200-1600 °C. Consistent with previous results, C solubility is high (4-6 wt.%) in metal-rich sulfide melts and diminishes with increasing S content. Melts with near M/S = 1 (XS > 0.4) have <0.5 wt.% C in equilibrium with graphite. C solubility is diminished modestly with increased Ni/Fe ratio, but the effect is most pronounced for S-poor melts, and becomes negligible in near-monosulfide compositions. Immiscibility between S-rich and C-rich melts is observed in Ni-poor compositions, but above ∼18 wt.% Ni there is complete miscibility. Because mantle sulfide compositions are expected to have high Ni concentrations, sulfide-carbide immiscibility is unlikely in natural mantle melts. An empirical parameterization of C solubility in Ni-Fe-S melts as a function of S and Ni contents allows estimation of the C storage capacity of sulfide in the mantle. Importantly, as the metal/sulfide (M/S) ratio of the melt increases, C storage increases both because C solubility increases and because the mass fraction of melt is enhanced by addition of metal from surrounding silicates. Under comparatively oxidized conditions where melts are near M/S = 1, as prevails at <250 km depth, bulk C storage is <3 ppm. In the deeper, more reduced mantle where M/S increases, up to 200 ppm C in typical mantle with 200 ± 100 ppm S can be stored in Fe-Ni-S melts. Thus, metal-rich sulfide melts are the principal host of carbon in the deep upper mantle and below. Residual carbon is present either as diamond or, if conditions are highly reduced and total C concentrations are low, solid alloy.

  15. Mapping Quantitative Trait Loci Controlling High Iron and Zinc Content in Self and Open Pollinated Grains of Pearl Millet [Pennisetum glaucum (L.) R. Br.

    PubMed Central

    Kumar, Sushil; Hash, Charles T.; Thirunavukkarasu, Nepolean; Singh, Govind; Rajaram, Vengaldas; Rathore, Abhishek; Senapathy, Senthilvel; Mahendrakar, Mahesh D.; Yadav, Rattan S.; Srivastava, Rakesh K.

    2016-01-01

    Pearl millet is a multipurpose grain/fodder crop of the semi-arid tropics, feeding many of the world’s poorest and most undernourished people. Genetic variation among adapted pearl millet inbreds and hybrids suggests it will be possible to improve grain micronutrient concentrations by selective breeding. Using 305 loci, a linkage map was constructed to map QTLs for grain iron [Fe] and zinc [Zn] using replicated samples of 106 pearl millet RILs (F6) derived from ICMB 841-P3 × 863B-P2. The grains of the RIL population were evaluated for Fe and Zn content using atomic absorption spectrophotometer. Grain mineral concentrations ranged from 28.4 to 124.0 ppm for Fe and 28.7 to 119.8 ppm for Zn. Similarly, grain Fe and Zn in open pollinated seeds ranged between 22.4–77.4 and 21.9–73.7 ppm, respectively. Mapping with 305 (96 SSRs; 208 DArT) markers detected seven linkage groups covering 1749 cM (Haldane) with an average intermarker distance of 5.73 cM. On the basis of two environment phenotypic data, two co-localized QTLs for Fe and Zn content on linkage group (LG) 3 were identified by composite interval mapping (CIM). Fe QTL explained 19% phenotypic variation, whereas the Zn QTL explained 36% phenotypic variation. Likewise for open pollinated seeds, the QTL analysis led to the identification of two QTLs for grain Fe content on LG3 and 5, and two QTLs for grain Zn content on LG3 and 7. The total phenotypic variance for Fe and Zn QTLs in open pollinated seeds was 16 and 42%, respectively. Analysis of QTL × QTL and QTL × QTL × environment interactions indicated no major epistasis. PMID:27933068

  16. Investigation of Some Metals in Leaves and Leaf Extracts of Lippia javanica: Its Daily Intake

    PubMed Central

    Florence, Kunsamala

    2017-01-01

    Consumption of plant extracts can be a source of essential elements or a route of human exposure to toxicants. Metal concentrations in leaves, leaf brew, and infusion of L. javanica collected from five sites were determined by atomic absorption spectrometry after acid and aqueous extraction. Estimated daily intakes of metals in extracts were compared with recommended dietary allowances. Total metal concentrations in leaves varied with sampling sites (p < 0.05): Mn > Fe > Cu > Cr > Pb for sites SS2–SS5. The highest metal concentrations in leaves were recorded for SS3 (Cu: 15.32 ± 4.53 and Mn: 734.99 ± 105.49), SS5 (Fe: 210.27 ± 17.17), SS2 (Pb: 3.11 ± 0.21), and SS4 (Cr: 4.40 ± 0.75 mg/kg). Leaf infusion appeared to release higher Cu and Mn concentrations in leaves across sites (Cu: 21.65; Mn: 28.01%) than leaf brew (Cu: 11.95; Mn: 19.74%). Lead was not detected in leaf extracts. Estimated dietary intakes of Cr, Cu, Fe, and Mn were below recommended dietary allowances. A 250 ml cup of leaf infusion contributed 0.30–1.18% Cu and 4.46–13.83% Mn to the recommended dietary allowances of these elements per day. Lead did not pose any potential hazard when consumed in tea beverage made from brew and infusion of leaves of L. javanica. PMID:28781598

  17. Photochemical-biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone.

    PubMed

    Sarria, V; Parra, S; Invernizzi, M; Peringer, P; Pulgarin, C

    2001-01-01

    5-amino-6-methyl-2-benzimidazolone (AMBI), used in the manufacture of dyes, was characterised as a biorecalcitrant compound by means of different biodegradability tests. In order to enhance the biodegradability of this important pollutant, the application of Advanced Oxidation Process (AOPs) as a pretreatment was explored. Some experiments were addressed to find the most efficient AOP. The systems H2O2/hv, TiO2/H2O2/hv, Fe3+/hv, Fe3+/H2O2 and Fe3+/H2O2/hv were compared. The photo-Fenton system was the most efficient and the optimal conditions (AMBI, Fe3+, H2O2 concentrations) for the degradation of AMBI were found. During the photo-Fenton degradation, experiments were also made to obtain information concerning the evolution of: (a) organic carbon and initial compound concentration; (b) the oxidation state; (c) the toxicity; (d) the biodegradability; and (e) the chemical nature of the intermediates. These analyses show that the solution resulting from the treatment of AMBI is biologically compatible and complete mineralisation can be performed by biological means. A combined photochemical (Fenton) and biological flow reactor for the degradation of AMBI was successfully operated in continuous mode at laboratory scale. 100% of the initial concentration of AMBI and 80.3% of Dissolved Organic Carbon (DOC) were removed in 3.5 hours of total residence time. Finally, some field experiments under direct sunlight carried out at the Plataforma Solar de Almeria, Spain, demonstrated that this solar catalytic system is an effective treatment for this kind of industrial wastewater.

  18. Feeding ferric ammonium citrate to decrease the risk of sulfur toxicity: effects on trace mineral absorption and status of beef steers.

    PubMed

    Pogge, D J; Drewnoski, M E; Hansen, S L

    2014-09-01

    The objective of this study was to determine the effects of adding ferric ammonium citrate (FAC; 300 mg ferric Fe/kg DM) to a 0.51% S diet on diet digestibility, mineral balance, and 56-d performance of steers fed a high concentrate diet. Angus-crossbred steers (n = 18) were randomly assigned to 1 of 3 treatments: 1) control diet (0.21% S; CON), 2) CON + sodium sulfate (0.51% S; high S [HS]), and 3) the HS diet + 300 mg of ferric Fe from FAC/kg DM (0.51% S; HS+Fe). This study included 2 phases, 1) a metabolism trial (d -1 to 20) and 2) a 56-d feedlot trial (d 22 to 79). In phase 1, 2 groups of 9 steers (370 ± 9.5 kg) were adapted to diet (10 d) and metabolism stalls (5 d), and following the adaptation period, a 5-d total collection of feces and urine was conducted. Feed offered and refused was recorded daily, and diet digestibility and retention of Cu, Fe, Mn, and Zn was determined. In phase 2, steers (384 ± 11.9 kg) were individually fed their respective diet in feedlot pens for 56 d and ADG was determined. From each steer, jugular blood and a liver biopsy were collected on d -1, 41, and 72 and d -1 and 72, respectively, for mineral content. Ruminal hydrogen sulfide concentrations (n = 18) were determined on d -1, 9, 23, 31, 41, 51, 61, and 72. In phase 1, DMI (P = 0.02), fecal output (P = 0.06), and intake of Cu, Mn, and Zn (P ≤ 0.04) were less in steers consuming the high S diets than CON, but DM and OM digestibility and urine excretion of minerals were not different (P ≥ 0.12) due to treatment. As a percent of intake, urinary excretion of Cu tended (P = 0.07) to be greater in the HS steers than the CON and HS+Fe steers, which did not differ (P = 0.74). In phase 2, BW, ADG, and G:F were not different (P ≥ 0.29) due to treatment, but DMI was lesser (P < 0.01) in the HS+Fe steers than CON and HS steers, which did not differ (P = 0.13). Ruminal hydrogen sulfide concentrations were greater (P < 0.01) in the steers fed high S diets than CON but were not different (P = 0.86) among the high S diets. Plasma Cu, Fe, and Zn concentrations were not different (P ≥ 0.27) due to treatment on all days. Final liver Cu concentrations were lesser (P < 0.01) in the steers fed high S diets compared with the CON, while liver Fe, Mn, and Zn concentrations did not differ (P ≥ 0.28) among treatments. In conclusion, adding Fe to a high S diet did not affect DM or OM digestibility or trace mineral absorption and status of steers relative to the HS diet alone.

  19. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  20. Influence of extractable soil manganese on oxidation capacity of different soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun

    2008-08-01

    We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).

  1. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration.

    PubMed

    Haase, S; Rothe, A; Kania, A; Wasaki, J; Römheld, V; Engels, C; Kandeler, E; Neumann, G

    2008-01-01

    Elevated atmospheric CO2 treatments stimulated biomass production in Fe-sufficient and Fe-deficient barley plants, both in hydroponics and in soil culture. Root/shoot biomass ratio was increased in severely Fe-deficient plants grown in hydroponics but not under moderate Fe limitation in soil culture. Significantly increased biomass production in high CO2 treatments, even under severe Fe deficiency in hydroponic culture, indicates an improved internal Fe utilization. Iron deficiency-induced secretion of PS in 0.5 to 2.5 cm sub-apical root zones was increased by 74% in response to elevated CO2 treatments of barley plants in hydroponics but no PS were detectable in root exudates collected from soil-grown plants. This may be attributed to suppression of PS release by internal Fe concentrations above the critical level for Fe deficiency, determined at final harvest for soil-grown barley plants, even without additional Fe supply. However, extremely low concentrations of easily plant-available Fe in the investigated soil and low Fe seed reserves suggest a contribution of PS-mediated Fe mobilization from sparingly soluble Fe sources to Fe acquisition of the soil-grown barley plants during the preceding culture period. Higher Fe contents in shoots (+52%) of plants grown in soil culture without Fe supply under elevated atmospheric CO2 concentrations may indicate an increased efficiency for Fe acquisition. No significant influence on diversity and function of rhizosphere-bacterial communities was detectable in the outer rhizosphere soil (0-3 mm distance from the root surface) by DGGE of 16S rRNA gene fragments and analysis of marker enzyme activities for C-, N-, and P-cycles.

  2. Optimal copper supply is required for normal plant iron deficiency responses

    PubMed Central

    Waters, Brian M; Armbrust, Laura C

    2013-01-01

    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity. PMID:24084753

  3. Optimal copper supply is required for normal plant iron deficiency responses.

    PubMed

    Waters, Brian M; Armbrust, Laura C

    2013-01-01

    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity.

  4. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa)

    PubMed Central

    Wang, Baolan; Wei, Haifang; Xue, Zhen

    2017-01-01

    Background and aims Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. Methods To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant (eui1) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI. Key Results Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA1 and GA4, the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. Conclusions The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. PMID:28065924

  5. Iron chemistry of Hawaiian rainforest soil solution: Biogeochemical implications of multiple Fe redox cycles

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Chorover, J.; Chadwick, O.

    2003-12-01

    Iron (Fe)-oxides are important sorbents for nutrients, pollutants and natural organic matter (NOM). When flucutations in soil oxygen status exist, Fe can cycle through reduced and oxidized forms and thus greatly affect the aqueous conc. of nutrients and metals. We are examining the influence of oscillating oxic/anoxic conditions on Fe-oxide formation and biogeochemical processes (microbial community composition, and carbon, nutrient and trace metal availability). Our work makes use of a natural rainfall gradient ranging from 2.2 to 4.2 m mean annual precipitation (MAP) on the island of Maui, Hawaii, USA. All sites developed on a 400ky basaltic lava flow and comprise soils under similar vegetation. Solid phase Fe concentration and oxidation state vary systematically across this rainfall gradient with a sharp decrease in pedogenic Fe between 2.8 m and 3.5 m MAP that corresponds with an Eh of 330 mV (1-yr ave.). Fe isotopic composition and Fe-oxide associated rare earth elements (REE) also suggest a shift from ligand-promoted to redutive Fe dissolution with increasing rainfall. To examine the effects of multiple Fe oxidation/reduction cycles, we constructed a set of redox-stat reactors that maintain Eh values within a set range by small Eh-triggered additions of oxygen. Triplicate soil slurry reactors are subjected to redox (Eh) oscillations such that Fe is repeatedly cycled from oxidized to reduced forms. During our current experiment, we measure pH and Eh dynamics and monitor the distribution of Fe(II) and Fe(III), major ion and anion concentrations, a range of trace metals including the REE, and total organic carbon (TOC) in three Stokes-effective particle size fractions (<0.45 mm, <0.1 mm, and <0.02 mm) by cascade centrifugation and a <3000 MW fraction isolated via ultra-filtration. Each sample is then sequentially extracted in dilute (0.5 M) HCl and acid-ammonium oxalate. Concurrently, CO2 release is measured and DNA fingerprinting is used to track changes in the microbial community. Prior to implementing the rigorous sampling procedure above, we completed two preliminary reactor experiments focusing only on Fe distribution between aqueous, HCl, and oxalate extractions. These experiments illustrated (1) a distinct threshold for Fe oxidation at ~ 350 mV in the soils (pH 5) and (2) multiple redox cycles increased the HCl-extractable Fe(III) fraction relative to initial conditions. Unexpectedly, this increase occurred predominantly during reducing cycles-perhaps indicating a weakening of Fe-oxide structures during initiation of reducing conditions or oxidation of Fe(II) by NO3. By integrating Fe analysis with trace metal and microbial characterization in triplicate reactors, we will verify this increase in HCl-extractable Fe(III), and assess the impacts of Fe redox oscillation on biogeochemical processes.

  6. Elemental concentration analysis in prostate tissues using total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Leitão, R. G.; Palumbo, A.; Souza, P. A. V. R.; Pereira, G. R.; Canellas, C. G. L.; Anjos, M. J.; Nasciutti, L. E.; Lopes, R. T.

    2014-02-01

    Prostate cancer (PCa) currently represents the second most prevalent malignant neoplasia in men, representing 21% of all cancer cases. Benign Prostate Hyperplasia (BPH) is an illness prevailing in men above the age of 50, close to 90% after the age of 80. The prostate presents a high zinc concentration, about 10-fold higher than any other body tissue. In this work, samples of human prostate tissues with cancer, BPH and normal tissue were analyzed utilizing total reflection X-ray fluorescence spectroscopy using synchrotron radiation technique (SR-TXRF) to investigate the differences in the elemental concentrations in these tissues. SR-TXRF analyses were performed at the X-ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, São Paulo. It was possible to determine the concentrations of the following elements: P, S, K, Ca, Fe, Cu, Zn and Rb. By using Mann-Whitney U test it was observed that almost all elements presented concentrations with significant differences (α=0.05) between the groups studied.

  7. Electrodeposited Fe-Co films prepared from a citric-acid-based plating bath

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Uto, H.; Shimokawa, T.; Nakano, M.; Fukunaga, H.; Suzuki, K.

    2013-06-01

    Electrodeposited Fe-Co films are commonly prepared in a boric-acid-based bath. In this research, we applied citric acid instead of boric acid for the plating of Fe-Co films because boron in the waste bath is restricted by environmental-protection regulations in Japan. We evaluated the effect of citric acid on the magnetic and structural properties of the films. The saturation magnetization of the Fe-Co films slightly increased while the Fe content in the Fe-Co films decreased with increasing citric acid concentration. The lowest coercivity value of 240 A/m was obtained at a citric acid concentration of 100 g/L. The plating bath with this citric acid concentration enabled us to obtain Fe-Co films with high saturation magnetizations and smooth surface morphologies.

  8. Mechanical properties of Fe rich Fe-Si alloys: ab initio local bulk-modulus viewpoint

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Somesh Kr; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori; Saengdeejing, Arkapol; Chen, Ying; Mohri, Tetsuo

    2017-11-01

    Fe-rich Fe-Si alloys show peculiar bulk-modulus changes depending on the Si concentration in the range of 0-15 at.%Si. In order to clarify the origin of this phenomenon, we have performed density-functional theory calculations of supercells of Fe-Si alloy models with various Si concentrations. We have applied our recent techniques of ab initio local energy and local stress, by which we can obtain a local bulk modulus of each atom or atomic group as a local constituent of the cell-averaged bulk modulus. A2-phase alloy models are constructed by introducing Si substitution into bcc Fe as uniformly as possible so as to prevent mutual neighboring, while higher Si concentrations over 6.25 at.%Si lead to contacts between SiFe8 cubic clusters via sharing corner Fe atoms. For 12.5 at.%Si, in addition to an A2 model, we deal with partial D03 models containing local D03-like layers consisting of edge-shared SiFe8 cubic clusters. For the cell-averaged bulk modulus, we have successfully reproduced the Si-concentration dependence as a monotonic decrease until 11.11 at.%Si and a recovery at 12.5 at.%Si. The analysis of local bulk moduli of SiFe8 cubic clusters and Fe regions is effective to understand the variations of the cell-averaged bulk modulus. The local bulk moduli of Fe regions become lower for increasing Si concentration, due to the suppression of bulk-like d-d bonding states in narrow Fe regions. For higher Si concentrations till 11.11 at.%Si, corner-shared contacts or 1D chains of SiFe8 clusters lead to remarkable reduction of local bulk moduli of the clusters. At 12 at.%Si, on the other hand, two- or three-dimensional arrangements of corner- or edge-shared SiFe8 cubic clusters show greatly enhanced local bulk moduli, due to quite different bonding nature with much stronger p-d hybridization. The relation among the local bulk moduli, local electronic and magnetic structures, and local configurations such as connectivity of SiFe8 clusters and Fe-region sizes has been analyzed. The ab initio local stress has opened the way for obtaining accurate local elastic properties reflecting local valence-electron behaviors.

  9. First principles study of the magnetic properties and charge transfer of Ni-doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Sun, Zhenghao; Wei, Ren; Huang, Yuxin; Wang, Lili; Leng, Jing; Xiang, Peng; Lan, Min

    2018-03-01

    We present a first-principles study of electronic structures and magnetic properties in Ni-doped BiFeO3 using the density functional theory + U methods. The BiNixFe1-xO3 (x = 0.125, 0.25, 0.5) multiferroic ceramics represent ferromagnetic properties due to the ferrimagnetic order in Ni-O-Fe, and the magnetic moment rises with increase in Ni doping concentration agreeing well with experimental results. Ni atoms prefer to occupy the diagonal positions in the quasi-plane Ni-O-Fe eight-membered ring. Charge transfer from Bi 6s state to Ni 3d state through O 2p orbital lead to the 2+ oxidation state of Ni, indicating high Néel temperatures of BiNixFe1-xO3, and the electronic state of the system can be described as Bi4+xBi3+1-xNi2+xFe3+1-xO3. The spin polarization of Bi 6s state and O 2p state near the Fermi level contributes to the total magnetic moment. A spin-polarized acceptor level of about 0.4 eV constituted by Bi 6s state and O 2p state is found, which is responsible for the increase in leakage current of Ni-doped BiFeO3.

  10. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  11. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xie, Guo-Jun; Ren, Nan-Qi

    2014-10-01

    Effects of Fe(3+) (0-0.12 g/L), Mg(2+) (0-0.73 g/L) and Ca(2+) (0-0.98 g/L) on the biomass and lipid accumulation of heterotrophic microalgae were investigated in dark environment. The biomass and lipid production exhibited an increasing trend with increasing the concentrations of metal ions. In cultures with 1.2 × 10(-3) g/L Fe(3+), 7.3 × 10(-3) g/L Mg(2+) and 9.8 × 10(-4) g/L Ca(2+), the maximum biomass, total lipid content and lipid productivity reached 3.49 g/L, 47.4% and 275.7 mg/L/d, respectively. More importantly, EDTA addition (1.0 × 10(-3) g/L) could enhance the solubility of metal ions (iron and calcium) and increase their availability by microalgae, which evidently promote the lipid accumulation. Compared with the control, the total lipid content and lipid productivity increased 28.2% and 29.7%, respectively. These show that appropriate concentrations of metal ions and EDTA in the culture medium were beneficial to lipid accumulation of heterotrophic Scenedesmus sp. cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. High bioavailability iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus).

    PubMed

    Tako, Elad; Hoekenga, Owen A; Kochian, Leon V; Glahn, Raymond P

    2013-01-04

    Iron (Fe) deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L.) lines with contrasting Fe bioavailability (ie. Low and High). Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb) synthesis and to improve the Fe status of Fe deficient broiler chickens. We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w) maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate). Chicks (Gallus gallus) were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME) and total body Hb Fe values were used to estimate Fe bioavailability from the diets. DMT-1, DcytB and ferroportin expressions were higher (P<0.05) in the "Low Fe" group than in the "High Fe" group (no added Fe), indicating lower Fe status and adaptation to less Fe-bioavailability. At times, Hb concentrations (d 21,28,35), HME (d 21), Hb-Fe (as from d 14) and liver ferritin were higher in the "High Fe" than in the "Low Fe" groups (P<0.05), indicating greater Fe absorption from the diet and improved Fe status. We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable Fe maize to reduce Fe deficiency.

  13. High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus)

    PubMed Central

    2013-01-01

    Background Iron (Fe) deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L.) lines with contrasting Fe bioavailability (ie. Low and High). Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb) synthesis and to improve the Fe status of Fe deficient broiler chickens. Methods We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w) maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate). Chicks (Gallus gallus) were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME) and total body Hb Fe values were used to estimate Fe bioavailability from the diets. Results DMT-1, DcytB and ferroportin expressions were higher (P < 0.05) in the "Low Fe" group than in the "High Fe" group (no added Fe), indicating lower Fe status and adaptation to less Fe-bioavailability. At times, Hb concentrations (d 21,28,35), HME (d 21), Hb-Fe (as from d 14) and liver ferritin were higher in the "High Fe" than in the "Low Fe" groups (P < 0.05), indicating greater Fe absorption from the diet and improved Fe status. Conclusions We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable Fe maize to reduce Fe deficiency. PMID:23286295

  14. [Determination of Total Iron and Fe2+ in Basalt].

    PubMed

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  15. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  16. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    USGS Publications Warehouse

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water with acceptably low concentrations of dissolved Fe could be extracted than was injected. Scenarios with larger amounts of pyrite in aquifer sediments generally resulted in less goethite precipitation, increased acidity, and increased concentrations of dissolved Fe in extracted water. In these pyritic scenarios, the lower amounts of goethite precipitated and the lower pH during the extraction phase resulted in decreased sorption of Fe2+ and a decreased amount of extractable water with acceptably low concentrations of dissolved Fe (5.4??10-6M). A linear decrease in recovery efficiency with respect to dissolved Fe concentrations is caused by pyrite dissolution and the associated depletion of dissolved O2 (DO) and increase in acidity. Simulations with more than 0.0037M of pyrite, which is the maximum amount dissolved in the baseline scenario, had just over a 50% recovery efficiency. The precipitation of ferric hydroxide minerals (goethite) at the well screen, and a possible associated decrease in specific capacity of the ASR well, was not apparent during the extraction phase of ASR simulations, but the model does not incorporate the microbial effects and biofouling associated with ferric hydroxide precipitation.The host groundwater chemistry in calcite-poor Cretaceous aquifers of the NYC area consists of low alkalinity and moderate to low pH. The dissolution of goethite in scenarios with unbuffered injectate indicates that corrosion of the well could occur if the injectate is not buffered. Simulations with buffered injectate resulted in greater precipitation of goethite, and lower concentrations of dissolved Fe, in the extracted water. Dissolved Fe concentrations in extracted water were highest in simulations of aquifers (1) in which pyrite and siderite in the aquifer were in equilibrium, and (2) in coastal areas affected by saltwater intrusion, where high dissolved-cation concentrations provide a greater exchange of Fe2+ (FeX2). Results indicate that ASR in pyrite-beari

  17. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  19. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  20. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    NASA Astrophysics Data System (ADS)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  1. The Contribution of Opal-Associated Phosphorus to Bioavailable Phosphorus in Surface and Core Sediments in the East China Sea

    NASA Astrophysics Data System (ADS)

    Li, Huanxin; He, Huijun; Yang, Shifeng; Liu, Yanli; Che, Hong; Li, Mujian; Zhang, Jing

    2018-06-01

    To improve the burial flux calculations of bioavailable phosphorus (P) and study opal-associated P (Opal-P) in the East China Sea (ECS), surface and core sediments were collected in the Changjiang Estuary (CE) and the south of the Cheju Island. In this study, sedimentary P was operationally divided into seven different forms using modified sedimentary extraction (SEDEX) technique: LSor-P (exchangeable or loosely sorbed P), Fe-P (easily reducible or reactive ferric Fe-bound P), CFA-P (authigenic carbonate fluorapatite and biogenic apatite and CaCO3-bound P), Detr-P (detrital apatite), Org-P (organic P), Opal-P and Ref-P (refractory P). The data revealed that the concentrations of the seven different P forms rank as Detr-P > CFA-P > Org-P > Ref-P > Opal-P > Fe-P > LSor-P in surface sediments and CFA-P > Detr-P > Org-P > Ref-P > Fe-P > Opal-P > LSor-P in core sediments. The distributions of the total phosphorus (TP), TIP, CFA-P, Detr-P are similar and decrease from the CE to the south of the Cheju Island. Meanwhile, Org-P and Opal-P exhibit different distribution trends; this may be affected by the grain size and TOM. The concentrations of potentially bioavailable P are 9.6-13.0 μmol g-1 and 10.0-13.6 μmol g-1, representing 61%-70% and 41%-64% of the TP in surface and core sediments, respectively. The concentrations of Opal-P are 0.6-2.3 μmol g-1 and 0.6-1.4 μmol g-1 in surface and core sediments, accounting for 5.3%-19.8% and 4.2%-10.6% of bioavailable P, respectively. The total burial fluxes of Opal-P and bioavailable P are 1.4×109 mol yr-1 and 1.1×1010 mol yr-1 in the ECS, respectively. Opal-P represents about 12.7% of potentially bioavailable P, which should be recognized when studying P cycling in marine ecosystems.

  2. Building Towards a Conceptual Model for Phosphorus Transport in Lowland Catchments

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Griffioen, J.; Oste, L.

    2016-12-01

    The release of P to surface water following P leaching from heavily fertilized agricultural fields to groundwater and the extent of P retention at the redox interphase are of major importance for surface water quality. We studied the role of biogeochemical and hydrological processes during exfiltration of groundwater and their impact on phosphorus transport in lowland catchments in the Netherlands. Our study showed that the mobility and ecological impact of P in surface waters in lowland catchments or polders like in the Netherlands is strongly controlled by the exfiltration of anoxic groundwater containing ferrous iron. Chemical precipitates derived from groundwater-associated Fe(II) seeping into the overlying surface water contribute to immobilization of dissolved phosphate and, therefore, reduces its bioavailability. Aeration experiments with Fe(II) and phosphate-containing synthetic solutions and natural groundwater showed that Fe(II) oxidation in presence of phosphate leads initially to formation of Fe(III) hydroxyphosphates precipitates until phosphate is near-depleted from solution. A field campaign on P specation in surface waters draining agricultural land showed, additionally, that the total-P concentration is strongly dominated by iron-bound. Between 75 and 95% of the total-P concentration in the water samples was iron-bound particulate P. After the turnover of dissolved P to iron-bound particulate P, the P transport in catchments or polders is controlled by sedimentation and erosion of suspended sediments in the water body. Shear flow-induced surface erosion of sediment beds upon natural discharge events or generated by pumping stations is thus an important mechanism for P transport in catchments or polders. The flow velocities in headwaters like drainage ditches are generally low and not high enough to cause a bed shear stress that exceed the critical shear stress. Transport of particulate P that originates from groundwater and (agricultural) drains discharge is strongly retained but particulate P can be remobilized due to biogeochemical processes in the sediment layer at other moments. This makes it difficult to link agricultural practice to P concentrations in the surface water and this should be accounted for when judging measures to reduce P loads from agriculture.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comar, C.L.; Lengemann, F.W.; Wasserman, R.H. et al

    Research activities during the past 6 years are reviewed. Results are reported for recent studies on adaptation to increased dietary Ca by dairy cows as a factor in the reduction of Sr/sup 90/ content of milk; the testing of a theoretical model of alkaline earth absorption in rats by a comparison of biological discrimination among Ca/sup 47/, Sr/sup 85/, and Ba/sup 133/ in the presence of glucose, lactose, and lysine; the effects of lactose on the intestinal absorption of Ca in rats; a comparison of the ileal absorption of Ca/ sup 47/ and Sr/sup 85/ by rats from solutions withmore » high and low concentrations of stable Ca; determinatione of the Ca, Mg, and total alkaline earth content in mucosal tissue and plasma of normally fed rats, fasted rats, and rats fed a lactose solution; an investigation of non-exchangeable Ca compartments in the plasma of sheep; the effect of lactose and vitamin D on calcification in the rachitic chick; the metabolism and milk content of I/sup 131/ of dairy cows after long-term daily administration of I/sup 131/; the absorption of Fe/sup 59/ in sheep; the development of a method for the estimation of parasitic blood loss in sheep by whole-body counting of Fe/sup 59/ retention; the development of a method for the simultaneous measurement of erythrocyte and plasma volume in sheep using Fe/sup 59/ as a tracer; the concentration of Na/sup 22/, Cl/sup 36/, and C/sup 14/ inulin in rat kidney and counter-current mechanisms for the production of concentrated urine in mammals; the effects of diuretics on the distribution of Na/ sup 22/, Fe/sup 59/-labeled erythrocytes, and I/sup 131/labeled albumin in rat kidneys; the effects of thiamine on nervous response to ultraviolet radiation in frogs and lobsters; the effects of gamma radiation on reproductive capabilities of young male rabbits; and an evaluation of the contamination of the food chain by fallout fission products, with emphasis on Sr/sup 90/, Cs/sup 137/, and I/sup 131/ intake from total diet and individual food items. A list is included of publications resulting from research conducted under this contract. (C.H.)« less

  4. Effect of Fe doping concentration on photocatalytic activity of ZnO nanosheets under natural sunlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khokhra, Richa; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in

    2015-05-15

    A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnOmore » nanosheets depends upon the presence of surface oxygen vacancies.« less

  5. Growth performance, haematological traits, meat variables, and effects of treadmill and transport stress in veal calves supplied different amounts of iron.

    PubMed

    Lindt, F; Blum, J W

    1994-06-01

    Effects of serum iron (Fe), haematological variables and on blood lactate levels before and after treadmill exercise or transport to the slaughterhouse, on meat traits, and on growth performance of feeding milk replacer (MR), planned to contain 10, 20, 30, 40, 50 or 80 mg Fe/kg, were studied in veal calves. If supplied less than 50 mg Fe/kg MR, calves developed hypoferraemia and anaemia, the degree of which was dependent on Fe intake. Serum Fe concentration, saturation of transferrin with Fe and the degree of anaemia in calves fed 20 or 10 mg Fe/kg MR were nearly identical. Serum Fe concentration and haematological traits barely changed in calves fed 50 mg Fe/kg MR during the growth trail, but serum Fe concentration increased when MR contained 80 mg Fe/kg in calves fed 50 or more Fe/kg MR. Growth performance was smaller in calves fed 10 mg Fe/kg MR than in those fed greater amounts of Fe/kg MR. Carcass taxation was inversely related to Fe intake. In conclusion, MR containing only 10 mg Fe/kg caused marked anaemia and reduced growth performance. Feeding MR with only 20 mg Fe/kg is not necessarily sufficient to prevent development of severe anaemia. Feeding MR with 50 mg Fe/kg would seem to be physiologically the most appropriate amount of Fe for veal calves, but was too high for acceptable carcass taxation.

  6. Iron Redox Transformations And Phosphorous Cycling In Tropical Soils

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T.; Sposito, G.

    2003-12-01

    We are investigating the hypothesis that in highly weathered tropical soils iron oxidation-reduction reactions may mediate phosphorous solubility. In these soils phosphorous may be removed from the plant-available soil pool by sorption to Fe(III) oxides and by precipitation with Fe(III) to form insoluble minerals. The reduction of iron during episodic anoxic conditions has the potential to release phosphorous in a plant available form. We aim to explore the factors controlling Fe reduction and to evaluate the role of Fe reduction in P solubilization. Soil samples were collected along a toposequence (ridge-slope-valley) in the Luquillo Experimental Forest, Puerto Rico. Besides precipitation, the valley soils receive additional water through subsurface and upland runoff. These soils are poorly-drained and, therefore, periodically saturated with water, which creates anoxic conditions. Two series of incubation experiments were carried out on air-dried and freshly-sampled valley soils. During a 14-day incubation period, increasing production of Fe(II) was detected in both types of soil sample. We also found positive correlations between the concentrations of soluble Fe(II), pH, and soluble P. In general, the total amounts of Fe(II) and P produced were higher in the air-dried soil, mainly due to differences in microbial activity. To examine further the factors controlling Fe reduction and P solubilization, we are performing soil incubation experiments in the presence of "electron shuttle" compound (AQDS). SEM and STXM techniques will be applied to detect the formation of Fe(II) secondary minerals.

  7. Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific).

    PubMed

    Bustamante, P; Garrigue, C; Breau, L; Caurant, F; Dabin, W; Greaves, J; Dodemont, R

    2003-01-01

    Liver, muscle and blubber tissues of two short-finned pilot whales (Globicephala macrorhynchus) and two pygmy sperm whales(Kogia breviceps) stranded on the coast of New Caledonia have been analysed for 12 trace elements (Al, Cd, Co, Cr, Cu. Fe, organic and total Hg, Mn, Ni, Se, V, and Zn). Liver was shown to be the most important accumulating organ for Cd, Cu, Fe, Hg, Se, and Zn in both species, G. macrorhynchus having the highest Cd, Hg, Se and Zn levels. In this species, concentrations of total Hg are particularly elevated, reaching up to 1452 microg g(-1) dry wt. Only a very low percentage of the total Hg was organic. In both species,the levels of Hg are directly related to Se in liver. Thus, a molar ratio of Hg:Se close to 1.0 was found for all specimens, except for the youngest K. breviceps. Our results suggest that G. macrorhynchus have a physiology promoting the accumulation of high levels of naturally occurring toxic elements. Furthermore, concentrations of Ni, Cr and Co are close to or below the detection limit in the liver and muscles of all specimens. This suggests that mining activity in New Caledonia, which typically elevates the levels of these contaminants in the marine environment, does not seem to be a significant source of contamination for these pelagic marine mammals.

  8. Pollution Characteristics and Possible Sources of Seldom Monitored Trace Elements in Surface Sediments Collected from Three Gorges Reservoir, China

    PubMed Central

    Gao, Bo; Wei, Xin; Zhou, Huaidong; Lu, Jin; Hao, Hong; Wan, Xiaohong

    2014-01-01

    A geochemical study of Three Gorges Reservoir (TGR) sediments was carried out to analyze the concentrations, distribution, accumulation, and potential sources of the seldom monitored trace elements (SMTEs). The mean concentrations of Li, B, Be, Bi, V, Co, Ga, Sn, Sb, and Tl were 47.08, 2.47, 59.15, 0.50, 119.20, 17.83, 30.31, 3.25, 4.14, and 0.58 mg/kg, respectively. The concentrations of total SMTEs, together with their spatial distribution, showed that the SMTEs were mainly due to anthropogenic inputs in the region of TGR. The assessment by Geoaccumulation Index indicates that Tl, Be, V, Co, and Fe are at the unpolluted level; Bi, Li, Ga, and Sn were at the “uncontaminated to moderately contaminated” level. However, B was classified as “moderately contaminated” level and Sb was ranked as “strongly contaminated” level. The pollution level of the SMTEs is Sb > B > Bi > Li > Ga > Sn > Tl > Be > V > Co > Fe. The results of Correlation Analysis and Principal Component Analysis indicated Be, V, Co, Ga, Sn, Tl, Bi, and Fe in sediments have a natural source. B and Li were positively correlated with each other and mainly attributed into similar anthropogenic input. In addition, Sb has less relationship with other SMTEs, indicating that Sb has another kind of anthropogenic source. PMID:25136647

  9. The suitability of the simplified method of the analysis of coffee infusions on the content of Ca, Cu, Fe, Mg, Mn and Zn and the study of the effect of preparation conditions on the leachability of elements into the coffee brew.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2013-12-01

    A fast and straightforward method of the analysis of coffee infusions was developed for measurements of total concentrations of Ca, Cu, Fe, Mg, Mn and Zn by flame atomic absorption spectrometry. Its validity was proved by the analysis of spiked samples; recoveries of added metals were found to be within 98-104% while the precision was better than 4%. The method devised was used for the analysis of re-distilled water infusions of six popular ground coffees available in the Polish market. Using the mud coffee preparation it was established that percentages of metals leached in these conditions varied a lot among analysed coffees, especially for Ca (14-42%), Mg (6-25%) and Zn (1-24%). For remaining metals, the highest extractabilities were assessed for Mn (30-52%) while the lowest for Fe (4-16%) and Cu (2-12%). In addition, it was found that the water type and the coffee brewing preparation method influence the concentration of studied metals in coffee infusions the most. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide.

    PubMed

    Chang, Fangfang; Qu, Jiuhui; Liu, Ruiping; Zhao, Xu; Lei, Pengju

    2010-01-01

    A treatment unit packed by granular adsorbent of Fe-Mn binary oxide incorporated into diatomite (FMBO(1:1)-diatomite) was studied to remove arsenic from anaerobic groundwater without any pre-treatment or post-treatment. The raw anaerobic groundwater containing 35-45 microg/L of arsenic was collected from suburb of Beijing. Arsenic (III) constituted roughly 60%-80% of the total arsenic content. Approximately 7,000 bed volumes (ratio of effluent volume to adsorbent volume) treated water with arsenic concentration below 10 microg/L were produced in the operation period of four months. The regeneration of FMBO (1:1)-diatomite had been operated for 15 times. In the first stage, the regeneration process significantly improved the adsorption capacity of FMBO (1:1)-diatomite. With increased loading amount of Fe-Mn binary oxide, the adsorption capacity for arsenic decreased 20%-40%. Iron and manganese in anaerobic groundwater were oxidized and adsorptive filtrated by FMBO (1:1)-diatomite efficiently. The final concentrations of iron and manganese in effluents were nearly zero. The continued safe performance of the treatment units proved that adsorbent FMBO (1:1)-diatomite had high oxidation ability and exhibited strong adsorptive filtration.

  11. Pathways of organic carbon oxidation in three continental margin sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  12. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE PAGES

    Tong, Yang; Jin, Ke; Bei, Hongbin; ...

    2018-05-26

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  13. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Jin, Ke; Bei, Hongbin

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  14. Phase transition of Fe oxides under reducing condition and its relation with the As behavior

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Kim, S. H.; Jeong, G. Y.; Kim, K.

    2014-12-01

    Fe oxides are very common in the earth's crust and easily transform into other minerals such as magnetite and siderite under reducing conditions by microbial reactions. It is well known that As concentrations in groundwater is strongly regulated by adsorption onto Fe oxides. Even though some studies have suggested that the formation of siderite can also control the As concentration, direct evidences are not sufficient. In this study, we performed microbial incubation experiments to see the phase transition of As-rich Fe oxides under anoxic condition and to see how the water As concentrations are controlled accordingly. Three experiments were performed by changing organic carbon concentrations. Natural groundwaters and yeast extracts were used for the sources of microorganisms and organic carbon. Seven reactors were prepared for each experiment and opened one by one to observe the changes of the water chemistry and solid phases for 60 days. The formation of magnetite was observed at the early stage of each experiment. Siderite was formed at the later stage only when the dissolved organic carbon concentrations were high (donor/accepter molar ratio = 1.5). Goethite and hematite, instead of siderite, were formed from the experiment using low organic carbon concentration (donor/accepter molar ratio = 0.75). It is likely that dissolved ferrous ion adsorbs onto the Fe oxides and recrystallizes into hematite and goethite when the DOC concentration was low. As concentrations were generally very low in the water (normally 10 ug/L) and we could not find any relations with the Fe minerals formed by anoxic microbial reactions, maybe due to high Fe oxide/water ratio of our experiments. The sequential extraction analysis indicated that most of the As in solids are mostly associated with Fe-oxides and organic matters. The As bound to carbonates were very low even in the precipitates containing siderite due to low As concentrations in the water where the siderite formed. Further experiments precipitating siderite in the water with high As concentrations are required.

  15. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).

    PubMed

    Wang, Baolan; Wei, Haifang; Xue, Zhen; Zhang, Wen-Hao

    2017-04-01

    Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant ( eui1 ) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI . Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA 1 and GA 4 , the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Vertical distribution of heavy metals associated with the coarse and medium sand fraction in the forest soils of European Russia

    NASA Astrophysics Data System (ADS)

    Samonova, Olga; Aseyeva, Elena

    2015-04-01

    To accurately model metal behavior in soils, studies on possible geochemical changes occurring within a specific grain-size fraction during pedogenesis are needed. In the present study we analyze concentrations and vertical distributions of heavy metals associated with the coarse and medium sand fraction (1-0.25mm) for soils in the middle Protva basin, situated in the mixed forest zone of European Russia. Two soil types were analyzed: well-differentiated sod-podzolic soils (podzoluvisols) with AEBtC-profile, the major soil type in the study area occupying the interfluve's sub-horizontal surfaces and gentle slopes; and poorly differentiated soddy soils of subordinate positions: soddy soils, soddy gleyic soils and soddy soils with buried fluvial soil horizons. In total 27 samples, collected from 4 soil profiles, were analyzed for Fe, Ti, Mn, Cu, Ni, Co, Cr, Zn, Pb and Zr contents in the partitioned coarse and medium sand fraction. The median concentrations calculated are for Fe - 4%, for Mn - 760 ppm; for Ti - 980 ppm; for Zr - 130 ppm; for Zn - 30 ppm; and for Cu, Pb, Co, Cr, Ni - 67, 13, 11, 38, 33 ppm, respectively. The metal concentrations in total sample population vary differently, with the variation coefficients diminishing from Mn (171%) and Fe (112%) to Zr, Ni and Pb (53%). Comparing the chemical composition of coarse and medium sand fractions in the vertical sequence of horizons within a soil profile showed that in the sod-podzolic soil developed on mantle loam metals are enriched in the sand fraction of the upper A and AE horizons. The second but less distinct maximum levels for Cu, Ni, Fe, Cr, Mn and Co were found in the subsoil with gleyic features (Cg horizon). In soddy soils developed on diluvium on the steep section of the slope the studied sand fraction generally showed larger amounts of metals in A and AC horizons. In similar soils with gleyic features the concentrations of Fe, Cr, Co, Ni, Cu are the highest in the uppermost horizon, while the levels of Mn, Pb, Ti, Zr are higher in the ACg horizon. In the genetically heterogeneous soil profile combining horizons typical for contemporary soddy soils and buried fluvial soils the metal concentrations depend on the genesis of the sand fraction, with higher concentrations found in the contemporary soil horizons and lower concentrations in the buried fluvial soils. Thus, our results imply that during soil formation, under the influence of soil and geochemical processes conditioned by a humid temperate climate, the composition of the sand fraction in relation to metal contents changes. In most cases the enrichment of the sand fraction with a wide spectrum of metals was found in upper soil horizons of the studied soil types where humus accumulation, active biogeochemical processes and sand grain weathering takes place. Periodic saturation of the soils with water might also have contributed to metal accumulation in the sand fraction through the formation of iron and manganese compounds which can serve as sinks for metals.

  17. Lack of synchronization between iron uptake and cell growth leads to iron overload in Saccharomyces cerevisiae during post-exponential growth modes

    PubMed Central

    Park, Jinkyu; McCormick, Sean P.; Chakrabarti, Mrinmoy; Lindahl, Paul A.

    2014-01-01

    Fermenting cells growing exponentially on rich (YPAD) medium transitioned to a slow-growing state as glucose levels declined and their metabolism shifted to respiration. During exponential growth, Fe import and cell growth rates were matched, affording an approximately invariant cellular Fe concentration. During the transitionary period, the high-affinity Fe import rate declined slower than the cell growth rate declined, causing Fe to accumulate, initially as FeIII oxyhydroxide nanoparticles but eventually as mitochondrial and vacuolar Fe. Once in slow-growth mode, Fe import and cell growth rates were again matched, and the cellular Fe concentration was again approximately invariant. Fermenting cells grown on minimal medium (MM) grew more slowly during exponential phase and transitioned to a true stationary state as glucose levels declined. The Fe concentration of MM cells that just entered stationary state was similar to that of YPAD cells, but MM cells continued to accumulate Fe in stationary state. Fe initially accumulated as nanoparticles and high-spin FeII species, but vacuolar FeIII also eventually accumulated. Surprisingly, Fe-packed 5-day-old MM cells suffered no more ROS damage than younger cells, suggesting that Fe concentration alone does not accurately predict the extent of ROS damage. The mode and rate of growth at the time of harvesting dramatically affected cellular Fe content. A mathematical model of Fe metabolism in a growing cell was developed. The model included Fe import via a regulated high-affinity pathway and an unregulated low-affinity pathway. Fe import from the cytosol into vacuoles and mitochondria, and nanoparticle formation were also included. The model captured essential trafficking behavior, demonstrating that cells regulate Fe import in accordance with their overall growth rate and that they misregulate Fe import when nanoparticles accumulate. The lack of regulation of Fe in yeast is perhaps unique compared to the tight regulation of other cellular metabolites. This phenomenon likely derives from the unique chemistry associated with Fe nanoparticle formation. PMID:24344915

  18. Mobilization of metals from Eau Claire siltstone and the impact of oxygen under geological carbon dioxide sequestration conditions

    NASA Astrophysics Data System (ADS)

    Shao, Hongbo; Kukkadapu, Ravi K.; Krogstad, Eirik J.; Newburn, Matt K.; Cantrell, Kirk J.

    2014-09-01

    To investigate the impact of O2 as an impurity co-injected with CO2 on geochemical interactions, especially trace metal mobilization from a geological CO2 sequestration (GCS) reservoir rock, batch studies were conducted with Eau Claire siltstone collected from CO2 sequestration sites. The rock was reacted with synthetic brines in contact with either 100% CO2 or a mixture of 95 mol% CO2-5 mol% O2 at 10.1 MPa and 75 °C. Both microscopic and spectroscopic measurements, including 57Fe-Mössbauer spectroscopy, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, powder X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, and chemical extraction were combined in this study to investigate reaction mechanisms. The Eau Claire siltstone contains quartz (52 wt%), fluorapatite (40%), and aluminosilicate (5%) as major components, and dolomite (2%), pyrite (1%), and small-particle-/poorly-crystalline Fe-oxides as minor components. With the introduction of CO2 into the reaction vessel containing rock and brine, the leaching of small amounts of fluorapatite, aluminosilicate, and dolomite occurred. Trace metals of environmental concern, including Pb, As, Cd, and Cu were detected in the leachate with concentrations up to 400 ppb in the CO2-brine-rock reaction system within 30 days. In the presence of O2, the oxidation of Fe(II) and the consequent changes in the reaction system, including a reduction in pH, significantly enhanced the mobilization of Pb, Cd, and Cu, whereas As concentrations decreased, compared with the reaction system without O2. The presence of O2 resulted in the formation of secondary Fe-oxides which appear to be Fe(II)-substituted P-containing ferrihydrite. Although the rock contained only 1.04 wt% total Fe, oxidative dissolution of pyrite, leaching and oxidation of structural Fe(II) in fluorapatite, and precipitation of Fe-oxides significantly decreased the pH in brine with O2 (pH 3.3-3.7), compared with the reaction system without O2 (pH 4.2-4.4). In the CO2-rock-brine system without O2, the majority of As remained in the rock, with about 1.1% of the total As being released from intrinsic Fe-oxides to the aqueous phase. The release behavior of As to solution was consistent with competitive adsorption between phosphate/fluoride and As on Fe-oxide surfaces. In the presence of O2 the mobility of As was reduced due to enhanced adsorption onto both intrinsic and secondary Fe-oxide surfaces. When O2 was present, the dominant species in solution was the less toxic As(V). This work will advance our understanding of the geochemical reaction mechanisms that occur under GCS conditions and help to evaluate the risks associated with geological CO2 sequestration.

  19. Trace of heavy metals in maternal and umbilical cord blood samples in association with birth outcomes in Baghdad, Iraq

    NASA Astrophysics Data System (ADS)

    Hasan Rhaif Al-Sahlanee, Mayyadah; Maizan Ramli, Ramzun; Abdul Hassan Ali, Miami; Fadhil Tawfiq, Nada; Zahirah Noor Azman, Nurul; Abdul Rahman, Azhar; Shahrim Mustafa, Iskandar; Noor Ashikin Nik Abdul Razak, Nik; Zakiah Yahaya, Nor; Mohammed Al-Marri, Hana; Syuhada Ayob, Nur; Zakaria, Nabela

    2017-10-01

    Trace elements are essential nutritional components in humans and inconvenient tissue content that have a significant influence on infant size. The aim of this study is to evaluate the effects of concentration of elements (uranium (U), lead (Pb) and iron (Fe)) and absorption of Pb and Fe on maternal and umbilical cord blood samples. The concentration and absorption of Pb and Fe in blood samples were determined by using atomic absorption spectrophotometry device, while the uranium concentration was determined by using CR-39 detector. Fifty women of age 16-44 years are involved in this study. Results show that the maximum and minimum values of both concentration and absorption in the maternal samples were for Pb and Fe, respectively. In addition, for umbilical cord, the maximum values of concentration and absorption were for Fe and the minimum concentration and absorption were for U and Pb, respectively. A significant correlation between maternal and umbilical cord blood samples was found. This indicates that the Pb, U and Fe elements can easily transfer from maternal to the fetal body which impacts the growth of fetus.

  20. Chemical analyses of hot springs, pools, geysers, and surface waters from Yellowstone National Park, Wyoming, and vicinity, 1974-1975

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.; Vivit, Davison V.

    1998-01-01

    This report presents all analytical determinations for samples collected from Yellowstone National Park and vicinity during 1974 and 1975. Water temperature, pH, Eh, and dissolved O2 were determined on-site. Total alkalinity and F were determined on the day of sample collection. Flame atomic-absorption spectrometry was used to determine concentrations of Li, Na, K, Ca, and Mg. Ultraviolet/visible spectrophotometry was used to determine concentrations of Fe(II), Fe(III), As(III), and As(V). Direct-current plasma-optical-emission spectrometry was used to determine the concentrations of B, Ba, Cd, Cs, Cu, Mn, Ni, Pb, Rb, Sr, and Zn. Two samples collected from Yellowstone Park in June 1974 were used as reference samples for testing the plasma analytical method. Results of these tests demonstrate acceptable precision for all detectable elements. Charge imbalance calculations revealed a small number of samples that may have been subject to measurement errors in pH or alkalinity. These data represent some of the most complete analyses of Yellowstone waters available.

  1. Iron Redox Cycling Drives Decomposition of Mineral-Associated C in Humid Tropical Forest Soils

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Mcnicol, G.; Silver, W. L.

    2013-12-01

    The stabilization of soil carbon (C) by reactive minerals and an inhibition of decomposition due to oxygen (O2) limitation (reducing conditions) have been proposed as drivers of the high soil C concentrations characteristic of humid tropical forests, which constitute a major terrestrial C reservoir. Here, we examined relationships between these factors and spatial patterns of C concentrations and C turnover (using radiocarbon modeling) in surface soils of the Luquillo Experimental Forest, Puerto Rico. We used concentrations of reduced iron (Fe(II)) as an index of reducing conditions given the importance of Fe reduction to anaerobic metabolism in these soils. Concentrations of Fe(II), reactive iron and aluminum (Al) minerals, interactions between Fe(II) and Al, and live fine root biomass explained most variation in C concentrations across the landscape (pseudo R2 = 0.84). Carbon increased with chelatable "poorly crystalline" Fe, in agreement with previous research, but C decreased with citrate/ascorbate extractable Fe, an index of Fe oxides susceptible to microbial reduction. We suggest that availability of Fe oxides to sustain anaerobic respiration partially offsets soil C accumulation in these ecosystems, despite the role of a subset of reactive Fe in promoting C stabilization. We estimated decomposition rates of mineral-associated C using 14C content of the heavy soil density fraction from a subset of samples. Turnover times averaged 108 years but decreased with Fe(II) concentrations. Thus, our data suggest that Fe redox cycling in soil microsites is associated with increased turnover of mineral-associated C in this fluctuating-oxygen environment, implying that the capacity of reactive metals to stabilize C may be partially contingent on O2 dynamics. Our results suggest a multifaceted role for reactive minerals in soil C cycling, emphasizing the importance of ecosystem-scale interactions among geochemical, physical, and biological factors.

  2. Contamination of the Conchos River in Mexico: does it pose a health risk to local residents?

    PubMed

    Rubio-Arias, Hector; Quintana, César; Jimenez-Castro, Jorge; Quintana, Ray; Gutierrez, Melida

    2010-05-01

    Presently, water contamination issues are of great concern worldwide. Mexico has not escaped this environmental problem, which negatively affects aquifers, water bodies and biodiversity; but most of all, public health. The objective was to determine the level of water contamination in six tributaries of the Conchos River and to relate their levels to human health risks. Bimonthly samples were obtained from each location during 2005 and 2006. Physical-chemical variables (temperature, pH, electrical conductivity (EC), Total solids and total nitrogen) as well as heavy metals (As, Cr, Cu, Fe, Mn, Ni, V, Zn, and Li) were determined. The statistical analysis considered yearly, monthly, and location effects, and their interactions. Temperatures differed only as a function of the sampling month (P < 0.001) and the pH was different for years (P = 0.006), months (P < 0.001) and the interaction years x months (P = 0.018). The EC was different for each location (P < 0.001), total solids did not change and total nitrogen was different for years (P < 0.001), months (P < 0.001) and the interaction years x months (P < 0.001). The As concentration was different for months (P = 0.008) and the highest concentration was detected in February samples with 0.11 mg L(-1). The Cr was different for months (P < 0.001) and the interaction years x months (P < 0.001), noting the highest value of 0.25 mg L(-1). The Cu, Fe, Mn, Va and Zn were different for years, months, and their interaction. The highest value of Cu was 2.50 mg L(-1); for Fe, it was 16.36 mg L(-1); for Mn it was 1.66 mg L(-1); V was 0.55 mg L(-1); and Zn was 0.53 mg L(-1). For Ni, there were differences for years (P = 0.030), months (P < 0.001), and locations (P = 0.050), with the highest Ni value being 0.47 mg L(-1). The Li level was the same for sampling month (P < 0.001). This information can help prevent potential health risks in the communities established along the river watershed who use this natural resource for swimming and fishing. Some of the contaminant concentrations found varied from year to year, from month to month and from location to location which necessitated a continued monitoring process to determine under which conditions the concentrations of toxic elements surpass existing norms for natural waters.

  3. Contamination of the Conchos River in Mexico: Does It Pose a Health Risk to Local Residents?

    PubMed Central

    Rubio-Arias, Hector; Quintana, César; Jimenez-Castro, Jorge; Quintana, Ray; Gutierrez, Melida

    2010-01-01

    Presently, water contamination issues are of great concern worldwide. Mexico has not escaped this environmental problem, which negatively affects aquifers, water bodies and biodiversity; but most of all, public health. The objective was to determine the level of water contamination in six tributaries of the Conchos River and to relate their levels to human health risks. Bimonthly samples were obtained from each location during 2005 and 2006. Physical-chemical variables (temperature, pH, electrical conductivity (EC), Total solids and total nitrogen) as well as heavy metals (As, Cr, Cu, Fe, Mn, Ni, V, Zn, and Li) were determined. The statistical analysis considered yearly, monthly, and location effects, and their interactions. Temperatures differed only as a function of the sampling month (P < 0.001) and the pH was different for years (P = 0.006), months (P < 0.001) and the interaction years x months (P = 0.018). The EC was different for each location (P < 0.001), total solids did not change and total nitrogen was different for years (P < 0.001), months (P < 0.001) and the interaction years x months (P < 0.001). The As concentration was different for months (P = 0.008) and the highest concentration was detected in February samples with 0.11 mg L−1. The Cr was different for months (P < 0.001) and the interaction years x months (P < 0.001), noting the highest value of 0.25 mg L−1. The Cu, Fe, Mn, Va and Zn were different for years, months, and their interaction. The highest value of Cu was 2.50 mg L−1; for Fe, it was 16.36 mg L−1; for Mn it was 1.66 mg L−1; V was 0.55 mg L−1; and Zn was 0.53 mg L−1. For Ni, there were differences for years (P = 0.030), months (P < 0.001), and locations (P = 0.050), with the highest Ni value being 0.47 mg L−1. The Li level was the same for sampling month (P < 0.001). This information can help prevent potential health risks in the communities established along the river watershed who use this natural resource for swimming and fishing. Some of the contaminant concentrations found varied from year to year, from month to month and from location to location which necessitated a continued monitoring process to determine under which conditions the concentrations of toxic elements surpass existing norms for natural waters. PMID:20623012

  4. Characterization of As-polluted soils by laboratory X-ray-based techniques coupled with sequential extractions and electron microscopy: the case of Crocette gold mine in the Monte Rosa mining district (Italy).

    PubMed

    Allegretta, Ignazio; Porfido, Carlo; Martin, Maria; Barberis, Elisabetta; Terzano, Roberto; Spagnuolo, Matteo

    2018-06-24

    Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200 mg/kg. XRPD analysis evidenced the presence of jarosite and the absence of any As-bearing mineral, suggesting a high weathering grade and strong oxidative conditions. However, small domains of Fe arsenate were identified by combining μXRF with FE-SEM-EDX. SEP results revealed that As was mainly associated to amorphous Fe oxides/hydroxides or hydroxysulfates (50-80%) and the combination of XRPD and FE-SEM-EDX suggested that this phase could be attributed to schwertmannite. On the basis of the reported results, As is scarcely mobile, even if a consistent As fraction (1-3 g As/kg of soil) is still potentially mobilizable. In general, the proposed combination of laboratory X-ray techniques could be successfully employed to unravel environmental issues related to metal(loid) pollution in soil and sediments.

  5. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.

    PubMed

    Liu, Houjun; Zhang, Junling; Christie, Peter; Zhang, Fusuo

    2008-05-15

    Iron plaque is ubiquitously formed on the root surfaces of rice. However, little is known about the role of iron plaque in Cd movement from soil to the plant aboveground parts. A pot experiment was conducted to investigate the influence of iron plaque in Cd uptake and accumulation by rice seedlings in soil. Rice seedlings were pre-cultivated in solution culture for 16 days. Two seedlings were transplanted in a nylon bag containing no substrate but surrounded by soil amended with Fe and Cd combined at rates of 0, 1, or 2 g Fe kg(-1) and 0, 2.0, or 10 mg Cd kg(-1) soil. Fe was added to induce different amounts of iron plaque, and Cd to simulate Cd-polluted soils. Plants were grown for a further 43 days and then harvested. The length of the longest leaf and SPAD values of the newly mature leaves were measured during plant growth. Fe and Cd concentrations were determined in dithionite-citrate-bicarbonate (DCB) soil extracts and in plant roots and shoots. Shoot and root dry weights were significantly affected by Fe supply level but not by added Cd. Root dry weight declined with increasing Fe supply but shoot dry weight decreased at 2 g Fe kg(-1) and increased at 1 g Fe kg(-1) (except at 2 mg Cd kg(-1)). The length of the longest leaf and SPAD values of the newly mature leaves were significantly affected by plant growth stage and added Fe and Cd. Fe tended to diminish the negative effect of Cd on these two parameters. Cd concentrations in DCB extracts increased with increasing Cd and Fe supply. In contrast, external Fe supply markedly reduced shoot and root Cd concentrations and there was generally no significant difference between the two Fe supply levels. Shoot and root Cd concentrations increased with increasing Cd addition. Root Cd concentrations were negatively correlated with root Fe concentrations. The proportion of Cd in DCB extracts was significantly lower than in roots or shoots. The results indicate that enhanced Fe uptake by plants can diminish the negative effects of Cd to some extent and that iron plaque on root surfaces is of little significance in affecting uptake and accumulation of Cd by rice plants.

  6. Free Fe(3+)/Fe(2+) improved the biomass resource recovery and organic matter removal in Rhodobacter sphaeroides purification of sewage.

    PubMed

    Liu, Rijia; Wu, Pan; Lang, Lang; Xu, Changru; Wang, Yanling

    2016-01-01

    The enhancement in biomass production and organic matter removal of Rhodobacter sphaeroides (R. sphaeroides) through iron ions in soybean protein wastewater treatment was investigated. Different dosages of ferric ions were introduced in the reactors under light-anaerobic conditions. Free ferric and ferrous ions in wastewater were formed and their concentrations were the optimal for the growth of R. sphaeroides when the total Fe dosage was 20 mg/L. At the optimal dosage, biomass production (4000 mg/L) and protease activity improved by 50% and 48% when compared to the controls, respectively. The organic matter and protein removal reached above 90% and hydraulic retention time was shortened from 96 to 72 h. A mechanism analysis indicated that iron ions can effectively improve the adenosine triphosphate production, which may furthermore encourage the synthesis of protease and the cellular material.

  7. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH.

    PubMed

    Lee, Ying Ping; Fujii, Manabu; Kikuchi, Tetsuro; Terao, Koumei; Yoshimura, Chihiro

    2017-01-01

    Oxidation and reduction kinetics of iron (Fe) and proportion of steady-state Fe(II) concentration relative to total dissolved Fe (steady-state Fe(II) fraction) were investigated in the presence of various types of standard humic substances (HS) with particular emphasis on the photochemical and thermal reduction of Fe(III) and oxidation of Fe(II) by dissolved oxygen (O2) and hydrogen peroxide (H2O2) at circumneutral pH (pH 7-8). Rates of Fe(III) reduction were spectrophotometrically determined by a ferrozine method under the simulated sunlight and dark conditions, whereas rates of Fe(II) oxidation were examined in air-saturated solution using luminol chemiluminescence technique. The reduction and oxidation rate constants were determined to substantially vary depending on the type of HS. For example, the first-order rate constants varied by up to 10-fold for photochemical reduction and 7-fold for thermal reduction. The degree of variation in Fe(II) oxidation was larger for the H2O2-mediated reaction compared to the O2-mediated reaction (e.g., 15- and 3-fold changes for the former and latter reactions, respectively, at pH 8). The steady-state Fe(II) fraction under the simulated sunlight indicated that the Fe(II) fraction varies by up to 12-fold. The correlation analysis indicated that variation of Fe(II) oxidation is significantly associated with aliphatic content of HS, suggesting that Fe(II) complexation by aliphatic components accelerates Fe(II) oxidation. The reduction rate constant and steady-state Fe(II) fractions in the presence of sunlight had relatively strong positive relations with free radical content of HS, possibly due to the reductive property of radical semiquinone in HS. Overall, the findings in this study indicated that the Fe reduction and oxidation kinetics and resultant Fe(II) formation are substantially influenced by chemical properties of HS.

  8. Competition between surface chemisorption and cage formation in Fe12O12 clusters

    NASA Astrophysics Data System (ADS)

    Gutsev, G. L.; Weatherford, C. A.; Jena, P.; Johnson, E.; Ramachandran, B. R.

    2013-01-01

    The electronic and geometrical structures of the clusters composed of 12 iron and 12 oxygen atoms are obtained using all-electron density functional theory. It is found that the states with geometrical structures corresponding to oxygen chemisorbed on the ground-state Fe12 cluster surface (Fe12O12) are close in total energy to the states whose geometrical configurations are hollow cages (FeO)12. The lowest total energy state is the ferrimagnetic triplet state of Fe12O12. A ferrimagnetic nonet state of (FeO)12 is only marginally higher in total energy. The clusters are rich in nearly degenerate isomers. Oxygen adsorption dramatically quenches the spin of Fe12 clusters.

  9. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.

    PubMed

    Jayaweera, Mahesh W; Kasturiarachchi, Jagath C; Kularatne, Ranil K A; Wijeyekoon, Suren L J

    2008-05-01

    Severe contamination of water resources including groundwater with iron (Fe) due to various anthropogenic activities has been a major environmental problem in industrial areas of Sri Lanka. Hence, the use of the obnoxious weed, water hyacinth (Eichhornia crassipes (Mart.) Solms) in constructed wetlands (floating aquatic macrophyte-based plant treatment systems) to phytoremediate Fe-rich wastewaters seems to be an appealing option. Although several studies have documented that hyacinths are good metal-accumulating plants none of these studies have documented the ability of this plant grown under different nutrient conditions to remove heavy metals from wastewaters. This paper, therefore, reports the phytoremediation efficiencies of water hyacinth grown under different nutrient conditions for Fe-rich wastewaters in batch-type constructed wetlands. This study was conducted for 15 weeks after 1-week acclimatization by culturing young water hyacinth plants (average height of 20+/-2cm) in 590L capacity fiberglass tanks under different nutrient concentrations of 1-fold [28 and 7.7mg/L of total nitrogen (TN) and total phosphorous (TP), respectively], 2-fold, 1/2-fold, 1/4-fold and 1/8-fold with synthetic wastewaters containing 9.27Femg/L. Another set-up of hyacinths containing only Fe as a heavy metal but without any nutrients (i.e., 0-fold) was also studied. A mass balance was carried out to investigate the phytoremediation efficiencies and to determine the different mechanisms governing Fe removal from the wastewaters. Fe removal was largely due to phytoremediation mainly through the process of rhizofiltration and chemical precipitation of Fe2O3 and FeOH3 followed by flocculation and sedimentation. However, chemical precipitation was more significant especially during the first 3 weeks of the study. Plants grown in the 0-fold set-up showed the highest phytoremediation efficiency of 47% during optimum growth at the 6th week with a highest accumulation of 6707Femg/kg dry weight. Active effluxing of Fe back to the wastewater at intermittent periods and with time was a key mechanism of avoiding Fe phytotoxicity in water hyacinth cultured in all set-ups. Our study elucidated that water hyacinth grown under nutrient-poor conditions are ideal to remove Fe from wastewaters with a hydraulic retention time of approximately 6 weeks.

  10. Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions.

    PubMed

    Quici, Natalia; Litter, Marta I

    2009-07-01

    UV/TiO(2)-heterogeneous photocatalysis was tested as a process to degrade gallic acid (Gal) in oxygenated solutions at pH 3. In the absence of oxidants other than oxygen, decay followed a zero order rate at different concentrations and was slow at concentrations higher than 0.5 mM. Addition of Fe(3+), H(2)O(2) and the combination Fe(3+)/H(2)O(2) improved Gal degradation. In the absence of H(2)O(2), an optimal Fe : Gal molar ratio of 0.33 : 1 was found for the photocatalytic decay, beyond which addition of Fe(3+) was detrimental and even worse in comparison with the system in the absence of Fe(3+). TiO(2) addition was beneficial compared with the same system in the absence of the photocatalyst if Fe(3+) was added at low concentration (0.33 : 1 Fe : Gal molar ratio), while at high concentration (1 : 1 Fe : Gal molar ratio) TiO(2) did not exert any significant effect. H(2)O(2) addition (1 : 0.33 Gal : H(2)O(2) molar ratio, absence of Fe(iii)) also enhanced the heterogeneous photocatalytic reaction. Simultaneous addition of Fe(3+) and H(2)O(2) was more effective than the addition of the separate oxidants. This system was compared with Fenton and photo-Fenton systems. At low H(2)O(2) concentration (0.33 : 1 : 0.2 Fe : Gal : H(2)O(2) molar ratio), the presence of TiO(2) also enhanced the reaction. The influence of the thermal charge transfer reaction between Gal and Fe(iii), which leads to an important Gal depletion in the dark with formation of quinones, was analysed. The mechanisms taking place in these complex systems are proposed, paying particular attention to the important charge transfer reaction of the Fe(iii)-Gal complex operative in dark conditions.

  11. Dissolved iron and iron(II) distributions beneath the pack ice in the East Antarctic (120°E) during the winter/spring transition

    NASA Astrophysics Data System (ADS)

    Schallenberg, Christina; van der Merwe, Pier; Chever, Fanny; Cullen, Jay T.; Lannuzel, Delphine; Bowie, Andrew R.

    2016-09-01

    Distributions of dissolved iron (dFe) and its reduced form, Fe(II), to a depth of 1000 m were investigated under the seasonal pack ice off East Antarctica during the Sea Ice Physics and Ecosystem experiment (SIPEX-2) sea-ice voyage in September-October 2012. Concentrations of dFe were elevated up to five-fold relative to Southern Ocean background concentrations and were spatially variable. The mean dFe concentration was 0.44±0.4 nM, with a range from 0.09 to 3.05 nM. Profiles of dFe were more variable within and among stations than were macronutrients, suggesting that coupling between these biologically-essential elements was weak at the time of the study. Brine rejection and drainage from sea ice are estimated to be the dominant contributors to elevated dFe concentrations in the mixed layer, but mass budget considerations indicate that estimated dFe fluxes from brine input alone are insufficient to account for all observed dFe. Melting icebergs and shelf sediments are suspected to provide the additional dFe. Fe(II) was mostly below the detection limit but elevated at depth near the continental shelf, implying that benthic processes are a source of reduced Fe in bottom waters. The data indicate that dFe builds up under the seasonal sea-ice cover during winter and that reduction of Fe may be hampered in early spring by several factors such as lack of electron donors, low biological productivity and inadequate light below the sea ice. The accumulated dFe pool in the mixed layer is expected to contribute to the formation of the spring bloom as the ice retreats.

  12. Organic Exudates Enhance Iron Bioavailability to Trichodesmium (IMS101) by Modifying Fe Speciation

    NASA Astrophysics Data System (ADS)

    Tohidi Farid, H.; Rose, A.; Schulz, K.

    2016-02-01

    Although ferrous iron (Fe (II)) is believed to be the most readily absorbed form of Fe by cells, under alkaline and oxygenated conditions typical of marine environments, the thermodynamically stable Fe(III) state dominates. In marine environments, this Fe(III) is primarily presents as organic Fe(III)L complexes whose bioavailability is highly variable. However, it has been demonstrated that some eukaryotic marine algae are able to release organic ligands into their surrounding environments that change Fe bioavailability through complexation and/or redox reactions. Nevertheless, it is unclear how Fe(II) oxidation and Fe(III) reduction rates might be modified by these exudates and how this might increase or decrease iron bioavailability to microorganisms. Here, the role of natural organic ligands excreted by the cyanobacterium Trichodesmium erythraeum on the oxidation kinetics of Fe(II) was studied using the luminol chemiluminescence technique. The oxidation kinetics of Fe(II) were examined at nanomolar Fe concentrations in presence of different concentrations of EDTA and dissolved organic carbon exuded by Trichodesmium cells. The results indicated that an increase in the concentration of exuded organic matter, and consequently L:Fe(II) ratio, resulted in decreasing rates of Fe(II) oxidation by oxygen, primarily due to formation of Fe(II) complexes. Moreover, the results demonstrated that the exudates from Trichodesmium may be able to reduce Fe(III) to the more bioavailable Fe(II) state under some circumstances. This study therefore supports the ability of microorganisms to manipulate Fe bioavailability by releasing organic compounds into the extracellular environment that retard Fe(II) oxidation rates or reducing Fe(III) species to Fe(II). It also provides new insight into the potential mechanism(s) by which Trichdesmium may acquire Fe under conditions where Fe bioavailability is otherwise limited.

  13. [Effects of exogenous iron on lead accumulation in Typha latifolia from a lead-contaminated soil].

    PubMed

    Zhong, Shun-Qing; Xu, Jian-Ming

    2013-01-01

    A pot experiment was conducted to study the effects of adding 100 and 500 mg x kg(-1) of exogenous iron (Fe) on the lead (Pb) accumulation in Typha latifolia growing on a soil with 0, 100, 500 and 1000 mg x kg(-1) of Pb, respectively. In treatment 500 mg Fe x kg(-1), the Pb concen tration in T. latifolia shoots and roots was higher, compared with that in treatment 100 mg Fe x kg(-1). When the soil Pb concentration was 1000 mg x kg(-1), the Pb concentration in T. lati folia shoots and roots in treatment 500 mg Fe x kg(-1) increased by 33.7% and 50.5%, respectively, compared with that in treatment 100 mg Fe x kg(-1). The exchangeable Pb concentration in rhizosphere soil was 77.0% -114.6% higher in treatment 500 mg Fe x kg(-1) than in treatment 100 mg Fe x kg(-1). When the soil Pb concentration was 0, 100 and 1000 mg x kg(-1), the root dry mass in treatment 500 mg Fe x kg(-1) had a significant decrease, compared with that in treatment 100 mg Fe x kg(-1). It was suggested that adding appropriate amount of Fe to Pb-contaminated wetland soil could increase the availability of soil Pb and improve the Pb accumulation in plants.

  14. Size Dependent Cation Channel in Nanoporous Prussian Blue Lattice

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Igarashi, Kazuhiro; Kim, Jungeun; Tanaka, Hiroshi

    2009-08-01

    Cation and/or molecule transfer within nanoporous materials can be utilized in, for example, electrochromic devices, hydrogen storage, molecular sensors, and molecular filters. Here, we investigated the mobilities of cations, Na+, K+, and Rb+, in vacancy-controlled Prussian blue film, NaxCo[Fe(CN)6]1-vzH2O (v is vacancy concentration) with a jungle gym structure. We found that only the smallest Na+ ions pass through the cubic planes of the lattice, while the larger cations, i.e., K+ and Rb+, take a detour channel along the [Fe(CN)6] vacancy. The size-dependent cation channel is well understood in terms of the potential curve derived by an ab initio total energy calculation.

  15. Intravenous iron-dextran: studies on unsaturated iron-binding capacity

    PubMed Central

    Cox, J. S. G.; Moss, G. F.; Bremner, I.; Reason, Janet

    1968-01-01

    A method is described for measuring the plasma unsaturated iron-binding capacity in the presence of very high concentrations of iron as iron-dextran. The procedure utilizes 59Fe to label the apotransferrin with subsequent separation of ionic iron from transferrin-bound iron on an ion exchange or Sephadex G.25 column. The unsaturated iron-binding capacity has been measured in rabbits and dogs after intravenous injection of iron-dextran and in human subjects after total dose infusion of iron-dextran. No evidence of saturation of the unsaturated iron-binding capacity was found even when the plasma iron values were greater than 40,000 μg Fe/100 ml. PMID:5697365

  16. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Fox, P.M.

    2004-01-01

    We examined the chemical reactions influencing dissolved concentrations, speciation, and transport of naturally occurring arsenic (As) in a shallow, sand and gravel aquifer with distinct geochemical zones resulting from land disposal of dilute sewage effluent. The principal geochemical zones were: (1) the uncontaminated zone above the sewage plume [350 ??M dissolved oxygen (DO), pH 5.9]; (2) the suboxic zone (5 ??M DO, pH 6.2, elevated concentrations of sewage-derived phosphate and nitrate); and (3) the anoxic zone [dissolved iron(II) 100-300 ??M, pH 6.5-6.9, elevated concentrations of sewage-derived phosphate]. Sediments are comprised of greater than 90% quartz but the surfaces of quartz and other mineral grains are coated with nanometer-size iron (Fe) and aluminum (Al) oxides and/or silicates, which control the adsorption properties of the sediments. Uncontaminated groundwater with added phosphate (620 ??M) was pumped into the uncontaminated zone while samples were collected 0.3 m above the injection point. Concentrations of As(V) increased from below detection (0.005 ??M) to a maximum of 0.07 ??M during breakthrough of phosphate at the sampling port; As(III) concentrations remained below detection. These results are consistent with the hypothesis that naturally occurring As(V) adsorbed to constituents of the coatings on grain surfaces was desorbed by phosphate in the injected groundwater. Also consistent with this hypothesis, vertical profiles of groundwater chemistry measured prior to the tracer test showed that dissolved As(V) concentrations increased along with dissolved phosphate from below detection in the uncontaminated zone to approximately 0.07 and 70 ??M, respectively, in the suboxic zone. Concentrations of As(III) were below detection in both zones. The anoxic zone had approximately 0.07 ??M As(V) but also had As(III) concentrations of 0.07-0.14 ??M, suggesting that release of As bound to sediment grains occurred by desorption by phosphate, reductive dissolution of Fe oxides, and reduction of As(V) to As(III), which adsorbs only weakly to the Fe-oxide-depleted material in the coatings. Results of reductive extractions of the sediments suggest that As associated with the coatings was relatively uniformly distributed at approximately 1 nmol/g of sediment (equivalent to 0.075 ppm As) and comprised 20%-50% of the total As in the sediments, determined from oxidative extractions. Quartz sand aquifers provide high-quality drinking water but can become contaminated when naturally occurring arsenic bound to Fe and Al oxides or silicates on sediment surfaces is released by desorption and dissolution of Fe oxides in response to changing chemical conditions. ?? 2004 American Institute of Physics.

  17. Effect of precursor concentration on the electrical properties of LiFePO{sub 4} prepared by solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabbani, Ahmad Yasin; Fakhri, Hafizh A.; Arifin, Muhammad

    2016-02-08

    Lithium iron phosphate (LiFePO{sub 4}) is frequently used for Li-ion battery cathode. LiFePO{sub 4} has the high specific capacity at 170 mAhg{sup −1}, stable voltage at 3.45 V, stable structure, cheap, and low toxicity. The objective of this research is investigating the effect of precursor concentration on the electrical properties of LiFePO{sub 4} prepared by solvothermal method. LiOH, FeSO{sub 4}, H{sub 3}PO{sub 4}, and citric acid were used as the precursors. The LiOH concentration was varied from 0.3 M to 1.8 M. The Fourier Transform Infrared Spectroscopy (FTIR) measurement identified the Fe-O, O-P-O, and P-O bonds which corresponding to LiFePO{sub 4}.more » The result of 4-point probe measurement shows that, among the prepared samples, the sample from the precursor concentration of 1.8 M has the highest electrical conductivity.« less

  18. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu; Dai, Qilin

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  19. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  20. Increasing Fe0-mediated HMX destruction in highly contaminated soil with didecyldimethylammonium bromide surfactant.

    PubMed

    Park, Jeong; Comfort, Steve D; Shea, Patrick J; Kim, Jong Sung

    2005-12-15

    Mixtures of energetic compounds pose a remediation problem for munitions-contaminated soil. Although treatment with zerovalent iron (Fe0) can be effective, RDX and TNT are more readily destroyed than HMX. Adding didecyldimethylammonium bromide (didecyl) at 2% w/v with 3% (w/v) Fe0 to a 20% slurry of Los Alamos National Laboratory soil containing solid-phase HMX (45 000 mg/kg) resulted in >80% destruction within 6 days. Because the HMX concentration did not increase in solution and the didecyl equilibrium concentration was well below the critical micelle concentration, we conclude thatthe solution primarily contained didecyl monomers. The adsorption isotherm for didecyl on iron is consistent with electrostatic adsorption of monomers and some hydrophobic partitioning at low equilibrium concentrations. Fe0 pretreated with didecyl was superior to Fe0 alone or mixed with didecyl in removing HMX from solution, but it was less effective than Fe0 + didecyl when solid-phase HMX was present. Reseeding HMX to mimic dissolution indicated an initial high reactivity of didecyl-pretreated Fe0, but the reaction slowed with each HMX addition. In contrast, reaction rates were lower but reactivity was maintained when Fe0 and didecyl were added together and didecyl was included in fresh HMX solutions. Destruction of solid-phase HMX requires low didecyl concentrations in solution so that hydrophobic patches are maintained on the iron surface.

  1. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations

    USGS Publications Warehouse

    Cravotta, C.A.

    2008-01-01

    Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.

  2. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey.

    PubMed

    Sanliyuksel Yucel, Deniz; Balci, Nurgul; Baba, Alper

    2016-05-01

    A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59-3.79) and high electrical conductivity values (1040-6430 μS/cm), in addition to high sulfate (594-5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ(34) [Formula: see text] and δ(34) [Formula: see text] values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development.

  3. [Effects of micronutrient fertilizer application on yield and quality of Aconitum carmichaeli].

    PubMed

    Luo, Yi; Chen, Xingfu; Liu, Sha; Xiang, Dabing; Li, Jia; Shu, Guangming; Xia, Yanli

    2011-01-01

    To study the effects of Fe, Zn, B and Mn fertilizer with different ratio on the yield and quality of Aconitum carmichaeli. Field experiment with the uniform design was applied, the yield and the contents of the total alkaloids and diester-alkaloids were measured. Fe, Zn, B and Mn fertilizer of appropriate ratio could promote the growth of vegetative organs, increase the biomass, the content of alkaloids and the yield of Aconite significantly. Fe, Zn fertilizer of highly concentrated ratio increased the proportion of first sub-roots, but inhibited the growth of other vegetative organs, the number of roots was less than that with other treatments, so it was not conducive to the formation of production. High concentration of Mn was not conducive to the growth of underground of Aconite, its number of sub-roots was fewer, but the number of third sub-roots was more than that with other treatments, the yield was low. The yield treated with low concentration of B was 10% higher than that with high concentration, and the high concentration of B was not conducive to increase the content of the alkaloids. Among these treatments, The fourth treatment was the optimal combination, of which the volume of sub-roots was the largest and the most homogeneous, the growth of the vegetative organs was better and the accumulation of dry matters was more, the yield of this treatment was 10,754.7 kg x hm(-2), which was increased by 14.9%, and the content of alkaloid was increased by 13.9%. The ratio of 4 is the best treatment for high yield and quality cultivation of Aconite.

  4. Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration.

    PubMed

    Villegas-Guzman, Paola; Silva-Agredo, Javier; Florez, Oscar; Giraldo-Aguirre, Ana L; Pulgarin, Cesar; Torres-Palma, Ricardo A

    2017-04-01

    To provide new insights toward the selection of the most suitable AOP for isoxazolyl penicillins elimination, the degradation of dicloxacillin, a isoxazolyl penicillin model, was studied using different advanced oxidation processes (AOPs): ultrasound (US), photo-Fenton (UV/H 2 O 2 /Fe 2+ ) and TiO 2 photocatalysis (UV/TiO 2 ). Although all processes achieved total removal of the antibiotic and antimicrobial activity, and increased the biodegradability level of the solutions, significant differences concerning the mineralization extend, the pH of the solution, the pollutant concentration and the chemical nature of additives were found. UV/TiO 2 reached almost complete mineralization; while ∼10% mineralization was obtained for UV/H 2 O 2 /Fe 2+ and practically zero for US. Effect of initial pH, mineral natural water and the presence of organic (glucose, 2-propanol and oxalic acid) were then investigated. UV/H 2 O 2 /Fe 2+ and US processes were improved in acidic media, while natural pH favored UV/TiO 2 system. According to both the nature of the added organic compound and the process, inhibition, no effect or enhancement of the degradation rate was observed. The degradation in natural mineral water showed contrasting results according to the antibiotic concentration: US process was enhanced at low concentration of dicloxacillin followed by detrimental effects at high substrate concentrations. A contrary effect was observed during photo-Fenton, while UV/TiO 2 was inhibited in all of cases. Finally, a schema illustrating the enhancement or inhibiting effects of water matrix is proposed as a tool for selecting the best process for isoxazolyl penicillins degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Phosphorus Release to Floodwater from Calcareous Surface Soils and Their Corresponding Subsurface Soils under Anaerobic Conditions.

    PubMed

    Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D

    2016-07-01

    Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Structure and magnetic properties of Fe-Co nanoparticles prepared by polyol method

    NASA Astrophysics Data System (ADS)

    Lam, Nguyen Mau; Thi, Tran Minh; Thanh, Pham Thi; Yen, Nguyen Hai; Dan, Nguyen Huy

    2018-03-01

    Fe100-xCox (x = 25 - 45) nanoparticles have been successfully prepared from FeCl2 and Co(C2H3O2)2 by thermal decomposition process in solution of polyethylene glycol and NaOH (polyol method). The influence of pH level and Co concentration on structure and magnetic properties of the Fe-Co nanoparticles were investigated. The X-Ray Diffraction (XRD) results confirm the formation of a body centered cubic single phase of the Fe(Co) nanoparticles. The Scanning Electron Microscopy (SEM) images show the grain size of the samples is about 60 nm. Saturation magnetization the Fe-Co nanoparticles strongly depends on the Co concentration and pH level in the fabrication process. The optimal pH level and Co concentration for the Fe-Co nanoparticles were found to be 7 and 35 at%, respectively. A quite high saturation magnetization of 228 emu/g has been achieved for the Fe-Co nanoparticles.

  7. Layered Double Hydroxides: Potential Release-on-Demand Fertilizers for Plant Zinc Nutrition.

    PubMed

    López-Rayo, Sandra; Imran, Ahmad; Bruun Hansen, Hans Chr; Schjoerring, Jan K; Magid, Jakob

    2017-10-11

    A novel zinc (Zn) fertilizer concept based on Zn-doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthesized, their chemical composition was analyzed, and their nutrient release was studied in buffered solutions with different pH values. Uptake of Zn by barley (Hordeum vulgare cv. Antonia) was evaluated in short- (8 weeks), medium- (11 weeks), and long-term (28 weeks) experiments in quartz sand and in a calcareous soil enriched with Zn-doped Mg-Fe-LDHs. The Zn release rate of the Zn-doped Mg-Fe-LDHs was described by a first-order kinetics equation showing maximum release at pH 5.2, reaching approximately 45% of the total Zn content. The Zn concentrations in the plants receiving the LDHs were between 2- and 9.5-fold higher than those in plants without Zn addition. A positive effect of the LDHs was also found in soil. This work documents the long-term Zn release capacity of LDHs complying with a release-on-demand behavior and serves as proof-of-concept that Zn-doped Mg-Fe-LDHs can be used as Zn fertilizers.

  8. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less

  9. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong

    Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less

  10. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces

    DOE PAGES

    Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong; ...

    2017-09-26

    Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less

  11. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam

    NASA Astrophysics Data System (ADS)

    Postma, Dieke; Pham, Thi Kim Trang; Sø, Helle Ugilt; Hoang, Van Hoan; , Mai Lan, Vi; Nguyen, Thi Thai; Larsen, Flemming; Pham, Hung Viet; Jakobsen, Rasmus

    2016-12-01

    Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content.

  12. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam

    PubMed Central

    Trang, Pham Thi Kim; Sø, Helle Ugilt; Van Hoan, Hoang; Lan, Vi Mai; Thai, Nguyen Thi; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus

    2016-01-01

    Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content. PMID:27867210

  13. Effects of Iron on Physical and Mechanical Properties, and Osteoblast Cell Interaction in β-Tricalcium Phosphate

    PubMed Central

    Vahabzadeh, Sahar; Bose, Susmita

    2017-01-01

    Iron (Fe) is a vital element and its deficiency causes abnormal bone metabolism. We investigated the effects of Fe and its concentration in β-tricalcium phosphate (β-TCP) on physicomechanical properties and in vitro proliferation and differentiation of osteoblasts. Our results showed that Fe addition at concentrations of 0.5 wt. % (0.5 Fe-TCP) and 1.0 wt. % (1.0 Fe-TCP) inhibits the β-TCP to α-TCP phase transformation at sintering temperature of 1250 °C. Addition of 0.25 wt. % Fe (0.25 Fe-TCP) increased the compressive strength of β-TCP from 167.27±16.2 MPa to 227.10±19.3 MPa. After 3 days of culture, surfaces of 0.5 Fe-TCP and 1.0 Fe-TCP samples were covered by osteoblast cells, compared to that of pure and 0.25 Fe-TCP. Cells grew to confluency on all Fe-doped samples after 7 days of culture and monolayer sheetlike cellular structure was found at 11 days. Optical cell density and alkaline phosphatase activity were significantly higher on Fe-doped samples and the highest values were found in 0.5 Fe-TCP samples. Our results show that Fe concentration had significant effect on physical and mechanical properties of TCP ceramics, and also on the in vitro osteoblast cellular interactions in TCP ceramics. PMID:27896489

  14. Lipid peroxidation, antioxidant enzymes and glutathione levels in human erythrocytes exposed to colloidal iron hydroxide in vitro.

    PubMed

    Ferreira, A L; Machado, P E; Matsubara, L S

    1999-06-01

    The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 microM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37 degrees C, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 +/- 0.27 microM/g Hb; b) GSSG = 0.17 +/- 0.03 microM/g Hb; c) GSH-Px = 19.60 +/- 1.96 IU/g Hb; d) GSH-Rd = 3.13 +/- 0.17 IU/g Hb; e) catalase = 394.9 +/- 22.8 IU/g Hb; f) SOD = 5981 +/- 375 IU/g Hb. The addition of 1 to 100 microM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 microM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.

  15. Preliminary Reactive Geochemical Transport Modeling Study on Changes in Water Chemistry Induced by CO2 Injection at Frio Pilot Test Site

    NASA Astrophysics Data System (ADS)

    Xu, T.; Kharaka, Y.; Benson, S.

    2006-12-01

    A total of 1600 tons of CO2 were injected into the Frio ~{!0~}C~{!1~} sandstone layer at a depth of 1500 m over a period of 10 days. The pilot, located near Dayton, Texas, employed one injection well and one observation well, separated laterally by about 30 m. Each well was perforated over 6 m in the upper portion of the 23-m thick sandstone. Fluid samples were taken from both wells before, during, and after the injection. Following CO2 breakthrough, observations indicate drops in pH (6.5 to 5.7), pronounced increases in concentrations of HCO3- (100 to 3000 mg/L), in Fe (30 to 1100), and dissolved organic carbon. Numerical modeling was used in this study to understand changes of aqueous HCO3- and Fe caused by CO2 injection. The general multiphase reactive geochemical transport simulator TOUGHREACT was used, which includes new fluid property module ECO2N with an accurate description of the thermophysical properties of mixtures of water, brine, and CO2 at conditions of interest for CO2 storage. A calibrated 1-D radial well flow model was employed for the present reactive geochemical transport simulations. Mineral composition used was taken from literatures relevant to Frio sandstone. Increases in HCO3- concentration were well reproduced by an initial simulation. Several scenarios were used to capture increases in Fe concentration including (1) dissolution of carbonate minerals, (2) dissolution of iron oxyhydroxides, (3) de-sorption of previously coated Fe. Future modeling, laboratory and field investigations are proposed to better understand the CO2-brine-mineral interactions at the Frio site. Results from this study could have broad implication for subsurface storage of CO2 and potential water quality impacts.

  16. Vertical Geochemical Variations and Speciation Studies of As, Fe, Mn, Zn, and Cu in the Sediments of the Central Gangetic Basin: Sequential Extraction and Statistical Approach

    PubMed Central

    Ramanathan, AL.

    2018-01-01

    A geochemical and speciation study of As, Fe, Mn, Zn, and Cu was performed using sequential extraction and statistical approaches in the core sediments taken at two locations—Rigni Chhapra and Chaube Chhapra—of the central Gangetic basin (India). A gradual increase in the grain size (varying from clay to coarse sands) was observed in both the core profiles up to 30.5 m depth. The concentrations of analyzed elements ranged as follows: 6.9–14.2 mg/kg for As, 13,849–31,088 mg/kg for Fe, 267–711 mg/kg for Mn, 45–164 mg/kg for Cu for Rigni Chhapra while for Chaube Chhapra the range was 7.5–13.2 mg/kg for As, 10,936–37,052 mg/kg for Fe, 267–1052 mg/kg for Mn, 60–198 mg/kg for Zn and 60–108 mg/kg for Cu. Significant amounts (53–95%) of all the fractionated elemental concentrations were bound within the crystal structure of the minerals as a residual fraction. The reducible fraction was the second most dominant fraction for As (7% and 8%), Fe (3%), Mn (20% and 26%), and Cu (7% and 6%) respectively for both the cores. It may be released when aquifers subjected to changing redox conditions. The acid soluble fraction was of most interest because it could quickly mobilize into the water system which formed the third most dominating among all three fractions. Four color code of sediments showed an association with total As concentration and did not show a relation with any fraction of all elements analyzed. The core sediment was observed enriched with As and other elements (Cu, Fe, Mn, and Zn). However, it fell under uncontaminated to moderately contaminate which might exhibit a low risk in prevailing natural conditions. X-ray diffraction analyses indicated the availability of siderite and magnetite minerals in the core sediments in a section of dark grey with micaceous medium sand with organic matter (black). PMID:29360767

  17. Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity.

    PubMed

    Li, Yang; Niu, Junfeng; Shang, Enxiang; Crittenden, John Charles

    2016-07-01

    The effect of humic acid (HA) or fulvic acid (FA) on reactive oxygen species (ROS) generation by six metal-oxide nanoparticles (NPs) and their toxicities toward Escherichia coli was investigated under UV irradiation. Dissolved organic matter (DOM) decreased OH generation by TiO2, ZnO, and Fe2O3, with FA inhibiting OH generation more than HA. The generated OH in NPs/DOM mixtures was higher than the measured concentrations because DOM consumes OH faster than its molecular probe. None of NPs/FA mixtures produced O2(-). The generated O2(-) concentrations in NPs/HA mixtures (except Fe2O3/HA) were higher than the sum of O2(-) concentrations that produced as NPs and HA were presented by themselves. Synergistic O2(-) generation in NPs/HA mixtures resulted from O2 reduction by electron transferred from photoionized HA to NPs. DOM increased (1)O2 generation by TiO2, CuO, CeO2, and SiO2, and FA promoted (1)O2 generation more than HA. Enhanced (1)O2 generation resulted from DOM sensitization of NPs. HA did not increase (1)O2 generation by ZnO and Fe2O3 primarily because released ions quenched (1)O2 precursor ((3)HA*). Linear correlation was developed between total ROS concentrations generated by NPs/DOM mixtures and bacterial survival rates (R(2) ≥ 0.80). The results implied the necessity of considering DOM when investigating the photoreactivity of NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparison of the solar photocatalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) on 2,4-D degradation in a CPC reactor.

    PubMed

    Maya-Treviño, M L; Villanueva-Rodríguez, M; Guzmán-Mar, J L; Hinojosa-Reyes, L; Hernández-Ramírez, A

    2015-03-01

    In this work a comparative study of the catalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) 0.5 wt% materials was carried out in the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) as a commercial formulation Hierbamina®, using a compound parabolic collector (CPC) reactor. The catalysts were synthesized by the sol-gel method and characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The textural properties of solids were determined from N2 adsorption isotherms using the Brunauer-Emmett-Teller (BET) method. The incorporation of Fe(0) onto ZnO was demonstrated by X-ray photoelectron spectroscopy analysis. The photocatalytic tests were performed at pH 7, using 10 mg L(-1) of herbicide and 0.5 g L(-1) of catalyst loading. The decay in herbicide concentration was followed by reversed-phase chromatography. A complete degradation of 2,4-D was achieved using ZnO-Fe(0) while 47% of herbicide removal was attained with ZnO-Fe2O3 mixed oxide for an accumulated energy QUV ≈ 2 kJ L(-1). The removal percentage of total organic carbon (TOC) during the solar photocatalytic process was superior using ZnO-Fe(0), achieving 45% compared to the 15% obtained with the mixed oxide catalyst.

  19. Selected heavy metals speciation in chemically stabilised sewage sludge

    NASA Astrophysics Data System (ADS)

    Wiśniowska, Ewa; Włodarczyk-Makuła, Marła

    2017-11-01

    Selected heavy metals (Pb, Ni, Cd) were analysed in soil, digested sewage sludge as well as in the sludge stabilised with CaO or Fenton's reagent. The dose of Fenton's reagent was as follows: Fe2+ = 1g.L-1, Fe2+/H2O2=1:100; stabilisation lasted for 2 h. Dose of CaO was equal to 1 g CaO.g d.m.-1 Total concentration of all metals in the digested sewage sludge was higher than in the soil. Chemical stabilisation of sludge with Fenton's reagent increased total metal content in the sludge as a result of total solids removal. Opposite effect was stated when the sludge was mixed with CaO. Also chemical fractions of heavy metals were identified (exchangeable, carbonate bound, iron oxides bound, organic and residual). The results indicate that stabilisation of the sludge with Fenton's reagent increased mobility of heavy metals compared to the digested sludge. Amendment of CaO increased percent share of examined metals in residual fraction, thus immobilised them and decreased their bioavailability.

  20. Association between predominantly plant-based diets and iron status in Chinese adults: a cross-sectional analysis.

    PubMed

    He, Jingjing; Shen, Xin; Fang, Aiping; Song, Jie; Li, He; Guo, Meihan; Li, Keji

    2016-11-01

    Current evidence of the relationship between diets and Fe status is mostly derived from studies in developed countries with Western diets, which may not be translatable to Chinese with a predominantly plant-based diet. We extracted data that were nationally sampled from the 2009 wave of China Health and Nutrition Survey; dietary information was collected using 24-h recalls combined with a food inventory for 3 consecutive days. Blood samples were collected to quantify Fe status, and log-ferritin, transferrin receptor and Hb were used as Fe status indicators. In total, 2905 (1360 males and 1545 females) adults aged 18-50 years were included for multiple linear regression and stratified analyses. The rates of Fe deficiency and Fe-deficiency anaemia were 1·6 and 0·7 % for males and 28·4 and 10·7 % for females, respectively. As red meat and haem Fe consumption differed about fifteen to twenty times throughout the five groups, divided by quintiles of animal protein intake per 4·2 MJ/d, only Fe status as indicated by log-ferritin (P=0·019) and transferrin receptor (P=0·024) concentrations in males was shown to be higher as intakes of animal foods increased. Log-ferritin was positively associated with intakes of red meat (B=0·3 %, P=0·01) and haem Fe (B=12·3 %, P=0·010) in males and with intake of non-haem Fe in females (B=2·2 %, P=0·024). We conclude that diet has a very limited association with Fe status in Chinese adults consuming a traditional Chinese diet, and a predominantly plant-based diet may not be necessarily responsible for poor Fe status.

  1. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole.

    PubMed

    Niu, Hongyun; Zhang, Di; Zhang, Shengxiao; Zhang, Xiaole; Meng, Zhaofu; Cai, Yaqi

    2011-06-15

    Humic acid coated Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)/HA) were prepared for the removal of sulfathiazole from aqueous media. Fe(3)O(4)/HA exhibited high activity to produce hydroxyl (OH) radicals through catalytic decomposition of H(2)O(2). The degradation of sulfathiazole was strongly temperature-dependent and favored in acidic solution. The catalytic rate was increased with Fe(3)O(4)/HA dosage and H(2)O(2) concentration. When 3 g L(-1) of Fe(3)O(4)/HA and 0.39 M of H(2)O(2) were introduced to the aqueous solution, most sulfathiazole was degraded within 1h, and >90% of total organic carbon (TOC) were removed in the reaction period (6h). The major final products were identified as environmentally friendly ions or inorganic molecules (SO(4)(2-), CO(2), and N(2)). The corresponding degradation rate (k) of sulfathiazole and TOC was 0.034 and 0.0048 min(-1), respectively. However, when 3 g L(-1) of bare Fe(3)O(4) were used as catalyst, only 54% of TOC was eliminated, and SO(4)(2-) was not detected within 6h. The corresponding degradation rate for sulfathiazole and TOC was 0.01 and 0.0016 min(-1), respectively. The high catalytic ability of Fe(3)O(4)/HA may be caused by the electron transfer among the complexed Fe(II)-HA or Fe(III)-HA, leading to rapid regeneration of Fe(II) species and production of OH radicals. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    USGS Publications Warehouse

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  3. [Heavy metal concentration in Nanjing urban soils and their affecting factors].

    PubMed

    Lu, Ying; Gong, Zitong; Zhang, Ganlin; Zhang, Bo

    2004-01-01

    The concentration and source of heavy metals in Nanjing urban soils and their relationships with soil properties were studied. The results indicated that the soils in Nanjing urban were not obviously polluted by Fe, Ni, Co and V, but polluted by Mn, Cr, Cu, Zn, and Pb to a certain extent. The heavy metals were irregularly distributed in soil profiles. Fe, Ni, Co, and V were originated from soil materials, but Cu, Zn, Pb, and Cr were anthropogenic input. Probably, Mn had different origins in different soils. There were positive correlations among Fe, Cr, Ni, Co, and V concentration, and among Cu, Zn, Pb, and Cr concentration. The Fe, Co, V, and Ni concentration were positively correlated with soil clay content and CEC, and the Cu, Zn and Pb concentration were negatively correlated with clay content. There were positive correlations between Cu, Zn, Pb and Cr concentration and organic C content, and between Pb concentration and soil pH.

  4. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    USGS Publications Warehouse

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by sorption.

  5. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect.

    PubMed

    Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco

    2017-12-01

    Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (<2.5μm, 2.5-10μm and 10-200μm) have been studied using aqua regia extraction and the Simple Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the <2.5μm fraction, where it most likely has an industrial origin. Elemental distribution across soils is dependent on land use, with Zn, Ni, Cu and Pb being present in higher concentrations at traffic sites. In addition, Fe, Ni and Cr feature greater bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the <2.5μm fraction, while for Mn, Ni, Sb, Fe and Cr, values vary from 76% to 5%. In the 2.5-10μm fraction, the values were 89% for Pb, 67% for Zn and 60% for Cu. These results make the evaluation of the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Air pollution profile of Bursa.

    PubMed

    Ozer, U; Cebe, M; Güneş, M; Aydin, R

    1996-01-01

    Rapid urbanization and industrial development are the most important causes of air pollution in Bursa. Smoke and sulfur dioxide concentrations were measured at five stations over a period of 20 months between 1986 and 1987; the concentrations of the total suspended particles were determined in the samples collected at two stations in June and October 1986. Some of the trace elements (Fe, Pb, Cd, Zn) were measured in October 1988 by atomic absorption spectroscopy of 28 samples from two stations. The first-order regression equations were calculated in order to find the relationship between the concentrations of smoke, sulfur dioxide, and meteorological conditions. The trends in the concentrations of measured air pollutants were compared by the long- and short-term limit values, as specified in the regulation.

  7. Metals in sediments and fish from Sea Lots and Point Lisas harbors, Trinidad and Tobago

    USGS Publications Warehouse

    Mohammed, Azad; May, Thomas; Echols, Kathy; Walther, Mike; Manoo, Anton; Maraj, Dexter; Agard, John; Orazio, Carl

    2012-01-01

    Concentrations of heavy metals were determined in nearshore marine sediments and fish tissue from Sea Lots area on the west coast, at Caroni Lagoon National Park, and in the Point Lisas harbor, Trinidad. The most dominant metals found in sediments were Al, Fe and Zn with mean concentrations highest at Sea Lots (Al-39420 μg/g; Fe-45640 μg/g; Zn-245 μg/g), when compared to sediments from Point Lisas (Al-11936 μg/g; Fe-30171 μg/g; Zn-69 μg/g) and Caroni (Al-0400 μg/g; Fe-19000 μg/g; Zn-32 μg/g), High concentration of Cu, Al, Fe and Zn were also detected in fish tissue from Point Lisas and Caroni. Metal concentrations in fish tissue showed significant correlation with sediment metals concentration, which suggests that tissue levels are influenced by sediment concentration. Of the metals, only Zn, Hg and Cu had a bioaccumulation factor (BAF) greater than one, which suggests a high bioaccumulation potential for these metals.

  8. Temporal variability of dissolved iron species in the mesopelagic zone at Ocean Station PAPA

    NASA Astrophysics Data System (ADS)

    Schallenberg, Christina; Ross, Andrew R. S.; Davidson, Ashley B.; Stewart, Gillian M.; Cullen, Jay T.

    2017-08-01

    Deposition of atmospheric aerosols to the surface ocean is considered an important mechanism for the supply of iron (Fe) to remote ocean regions, but direct observations of the oceanic response to aerosol deposition are sparse. In the high nutrient, low chlorophyll (HNLC) subarctic Pacific Ocean we observed a dissolved Fe and Fe(II) anomaly at depth that is best explained as the result of aerosol deposition from Siberian forest fires in May 2012. Interestingly, there was no evidence of enhanced dFe concentrations in surface waters, nor was there a detectable phytoplankton bloom in response to the suspected aerosol deposition. Dissolved Fe (dFe) and Fe(II) showed the strongest enhancement in the subsurface oxygen deficient zone (ODZ), where oxygen concentrations <50 μmol kg-1 are prevalent. In the upper 200 m, dFe concentrations were at or below historic background levels, consistent with a short residence time of aerosol particles in surface waters and possible scavenging loss of dFe. Aerosol toxicity and/or dominance of particle scavenging over dissolution of Fe in the upper water column may have contributed to the lack of a strong phytoplankton response.

  9. Carbothermic reduction behaviors of Ti-Nb-bearing Fe concentrate from Bayan Obo ore in China

    NASA Astrophysics Data System (ADS)

    Wang, Guang; Du, Ya-xing; Wang, Jing-song; Xue, Qing-guo

    2018-01-01

    To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the Ti-Nb-bearing Fe concentrate/coal composite pellet was reduced at temperatures greater than 1100°C. The addition of CaCO3 improved the reduction rate when the slag basicity was less than 1.0 and inhibited the formation of the liquid phase. Mechanical milling obviously increased the metallization degree compared with that of the standard pellet when reduced under the same conditions. Evolution of the mineral phase composition and microstructure of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet at 1100°C were analyzed by X-ray diffraction and scanning electron microscopy-energy-dispersive spectroscopy. The volume shrinkage value of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet with a basicity of 1.0 was approximately 35.2% when the pellet was reduced at 1100°C for 20 min, which enhanced the external heat transfer to the lower layers when reduced in a practical rotary hearth furnace. The present work provides key parameters and mechanism understanding for the development of carbothermic reduction technology of a Ti-Nb-bearing Fe concentrate incorporated in a pyrometallurgical utilization flow sheet.

  10. Role of oxygen defects on the magnetic properties of ultra-small Sn1-xFexO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dodge, Kelsey; Chess, Jordan; Eixenberger, Josh; Alanko, Gordon; Hanna, Charles B.; Punnoose, Alex

    2013-05-01

    Although the role of oxygen defects in the magnetism of metal oxide semiconductors has been widely discussed, it is been difficult to directly measure the oxygen defect concentration of samples to verify this. This work demonstrates a direct correlation between the photocatalytic activity of Sn1-xFexO2 nanoparticles and their magnetic properties. For this, a series of ˜2.6 nm sized, well characterized, single-phase Sn1-xFexO2 crystallites with x = 0-0.20 were synthesized using tin acetate, urea, and appropriate amounts of iron acetate. X-ray photoelectron spectroscopy confirmed the concentration and 3+ oxidation state of the doped Fe ions. The maximum magnetic moment/Fe ion, μ, of 1.6 × 10-4 μB observed for the 0.1% Fe doped sample is smaller than the expected spin-only contribution from either high or low spin Fe3+ ions, and μ decreases with increasing Fe concentration. This behavior cannot be explained by the existing models of magnetic exchange. Photocatalytic studies of pure and Fe-doped SnO2 were used to understand the roles of doped Fe3+ ions and of the oxygen vacancies and defects. The photocatalytic rate constant k also showed an increase when SnO2 nanoparticles were doped with low concentrations of Fe3+, reaching a maximum at 0.1% Fe, followed by a rapid decrease of k for further increase in Fe%. Fe doping presumably increases the concentration of oxygen vacancies, and both Fe3+ ions and oxygen vacancies act as electron acceptors to reduce e--h+ recombination and promote transfer of electrons (and/or holes) to the nanoparticle surface, where they participate in redox reactions. This electron transfer from the Fe3+ ions to local defect density of states at the nanoparticle surface could develop a magnetic moment at the surface states and leads to spontaneous ferromagnetic ordering of the surface shell under favorable conditions. However, at higher doping levels, the same Fe3+ ions might act as recombination centers causing a decrease of both k and magnetic moment μ.

  11. Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Kargel, J.S.

    2003-01-01

    Major uncertainties exist with respect to the aqueous geochemical evolution of the Martian surface. Considering the prevailing cryogenic climates and the abundance of salts and iron minerals on Mars, any attempt at comprehensive modeling of Martian aqueous chemistry should include iron chemistry and be valid at low temperatures and high solution concentrations. The objectives of this paper were to (1) estimate ferrous iron Pitzer-equation parameters and iron mineral solubility products at low temperatures (from < 0 ??C to 25 ??C), (2) incorporate these parameters and solubility products into the FREZCHEM model, and (3) use the model to simulate the surficial aqueous geochemical evolution of Mars. Ferrous iron Pitzer-equation parameters were derived in this work or taken from the literature. Six new iron minerals [FeCl2??4H2O, FeCl2??6H2O, FeSO4??H2O, FeSO4??7H2O, FeCO3, and Fe(OH)3] were added to the FREZCHEM model bringing the total solid phases to 56. Agreement between model predictions and experimental data are fair to excellent for the ferrous systems: Fe-Cl, Fe-SO4, Fe-HCO3, H-Fe-Cl, and H-Fe-SO4. We quantified a conceptual model for the aqueous geochemical evolution of the Martian surface. The five stages of the conceptual model are: (1) carbonic acid weathering of primary ferromagnesian minerals to form an initial magnesium-iron-bicarbonate-rich solution; (2) evaporation and precipitation of carbonates, including siderite (FeCO3), with evolution of the brine to a concentrated NaCl solution; (3) ferrous/ferric iron oxidation; (4) either evaporation or freezing of the brine to dryness; and (5) surface acidification. What began as a dilute Mg-Fe-HCO3 dominated leachate representing ferromagnesian weathering evolved into an Earth-like seawater composition dominated by NaCl, and finally into a hypersaline Mg-Na-SO4-Cl brine. Weathering appears to have taken place initially under conditions that allowed solution of ferrous iron [low O2(g)], but later caused oxidation of iron [high O2(g)]. Surface acidification and/or sediment burial can account for the minor amounts of Martian surface carbonates. This model rests on a large number of assumptions and is therefore speculative. Nevertheless, the model is consistent with current understanding concerning surficial salts and minerals based on Martian meteorites, Mars lander data, and remotely-sensed spectral analyses. ?? 2003 Elsevier Ltd.

  12. Evaluation of the combined solar TiO2/photo-Fenton process using multivariate analysis.

    PubMed

    Nogueira, R F P; Trovó, A G; Paterlini, W C

    2004-01-01

    The effect of combining the photocatalytic processes using TiO2 and the photo-Fenton reaction with Fe3+ or ferrioxalate as a source of Fe2+ was investigated in the degradation of 4-chlorophenol (4CP) and dichloroacetic acid (DCA) using solar irradiation. Multivariate analysis was used to evaluate the role of three variables: iron, H2O2 and TiO2 concentrations. The results show that TiO2 plays a minor role when compared to iron and H2O2 in the solar degradation of 4CP and DCA in the studied conditions. However, its presence can improve TOC removal when H2O2 is totally consumed. Iron and peroxide play major roles, especially when Fe(NO3)3 is used in the degradation of 4CP. No significant synergistic effect was observed by the addition of TiO2 in this process. On the other hand, synergistic effects were observed between FeOx and TiO2 and between H2O2 and TiO2 in the degradation of DCA.

  13. PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model.

    PubMed

    Kfoury, Adib; Ledoux, Frédéric; Roche, Cloé; Delmaire, Gilles; Roussel, Gilles; Courcot, Dominique

    2016-02-01

    The constrained weighted-non-negative matrix factorization (CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM2.5 (particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque, Northern France. Semi-diurnal PM2.5 samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma--atomic emission spectrometry (ICP-AES), ICP--mass spectrometry (ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO3(-), SO4(2-), NH4(+) and total carbon are the main PM2.5 constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them, secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM2.5 concentration. The steelwork facilities contribute in about 2% of the total PM2.5 concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn. Copyright © 2015. Published by Elsevier B.V.

  14. Nutritional attributes of ash (Fraxinus spp.) outer bark and phloem and their relationships to resistance against the emerald ash borer.

    PubMed

    Hill, Amy L; Whitehill, Justin G A; Opiyo, Stephen O; Phelan, P Larry; Bonello, Pierluigi

    2012-12-01

    The emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an alien, invasive wood-boring insect that is responsible for killing millions of ash trees since its discovery in North America in 2002. All North American ash species (Fraxinus spp.) that EAB has encountered have shown various degrees of susceptibility, while Manchurian ash (Fraxinus mandshurica Ruprecht), which shares a co-evolutionary history with this insect, is resistant. Recent studies have looked into constitutive resistance mechanisms in Manchurian ash, concentrating on the secondary phloem, which is the feeding substrate for the insect. In addition to specialized metabolism and defense-related components, primary metabolites and nutritional summaries can also be important to understand the feeding behavior of insect herbivores. Here, we have compared the nutritional characteristics (water content, total protein, free amino acids, total soluble sugars and starch, percent carbon and nitrogen, and macro- and micronutrients) of outer bark and phloem from black, green, white and Manchurian ash to determine their relevance to resistance or susceptibility to EAB. Water content and concentrations of Al, Ba, Cu, Fe, K, Li, tryptophan and an unknown compound were found to separate black and Manchurian ash from green and white ash in a principal component analysis (PCA), confirming their phylogenetic placements into two distinct clades. The traits that distinguished Manchurian ash from black ash in the PCA were water content and concentrations of total soluble sugars, histidine, lysine, methionine, ornithine, proline, sarcosine, tyramine, tyrosol, Al, Fe, K, Na, V and an unknown compound. However, only proline, tyramine and tyrosol were significantly different, and higher, in Manchurian ash than in black ash.

  15. Mineral Content and Biochemical Variables of Aloe vera L. under Salt Stress

    PubMed Central

    Murillo-Amador, Bernardo; Córdoba-Matson, Miguel Víctor; Villegas-Espinoza, Jorge Arnoldo; Hernández-Montiel, Luis Guillermo; Troyo-Diéguez, Enrique; García-Hernández, José Luis

    2014-01-01

    Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study. PMID:24736276

  16. Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil.

    PubMed

    Ramzani, Pia Muhammad Adnan; Khan, Waqas-Ud-Din; Iqbal, Muhammad; Kausar, Salma; Ali, Shafaqat; Rizwan, Muhammad; Virk, Zaheer Abbas

    2016-09-01

    Rice ( Oryza sativa L.) is one of the main staple food crops which is inherently low in micronutrients, especially iron (Fe), and can lead to severe Fe deficiency in populations having higher consumption of rice. Soils polluted with nickel (Ni) can cause toxicity to rice and decreased Fe uptake by rice plants. We investigated the potential role of biochar (BC) and gravel sludge (GS), alone and in combination, for in situ immobilization of Ni in an industrially Ni-contaminated soil at original and sulfur-amended altered soil pH. Our further aim was to increase Fe bioavailability to rice plants by the exogenous application of ferrous sulfate to the Ni-immobilized soil. Application of the mixture of both amendments reduced grain Ni concentration, phytate, Phytate/Fe, Phyt/Zn molar ratios, and soil DTPA-extractable Ni. In addition, the amendment mixture increased 70 % Fe and 229 % ferritin concentrations in rice grains grown in the soil at original pH. The Fe and ferritin concentrations in S-treated soil was increased up to 113 and 383 % relative to control respectively. This enhanced Fe concentration and corresponding ferritin in rice grains can be attributed to Ni/Fe antagonism where Ni has been immobilized by GS and BC mixture. This proposed technique can be used to enhance growth, yield, and Fe biofortification in rice by reducing soil pH while in parallel in situ immobilizing Ni in polluted soil.

  17. First principles investigations of Fe2CrSi Heusler alloys by substitution of Co at Fe site

    NASA Astrophysics Data System (ADS)

    Jain, Rakesh; Lakshmi, N.; Jain, Vivek Kumar; Chandra, Aarti R.

    2018-04-01

    Electronic structure and magnetic properties of Fe2-xCoxCrSi Heusler alloys have been investigated by varying Co concentration from x = 0 to 2. On increasing Co concentration, lattice constant and magnetic moment of Fe2-xCoxCrSi alloys increase. These alloys show true half metallic Ferromagnetic behavior with 100% spin polarization. Band gap of the alloys also increase from 0.54 eV to 0.85 eV on increasing Co concentration making these alloys promising materials for spintronics based device applications.

  18. A Global Atmospheric Model of Meteoric Iron

    NASA Technical Reports Server (NTRS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  19. Ferritin contains less iron (59Fe) in cells when the protein pores are unfolded by mutation.

    PubMed

    Hasan, Mohammad R; Tosha, Takehiko; Theil, Elizabeth C

    2008-11-14

    Ferric minerals in ferritins are protected from cytoplasmic reductants and Fe2+ release by the protein nanocage until iron need is signaled. Deletion of ferritin genes is lethal; two critical ferritin functions are concentrating iron and oxidant protection (consuming cytoplasmic iron and oxygen in the mineral). In solution, opening/closing (gating) of eight ferritin protein pores controls reactions between external reductant and the ferritin mineral; pore gating is altered by mutation, low heat, and physiological urea (1 mm) and monitored by CD spectroscopy, protein crystallography, and Fe2+ release rates. To study the effects of a ferritin pore gating mutation in living cells, we cloned/expressed human ferritin H and H L138P, homologous to the frog open pore model that was unexpressable in human cells. Human ferritin H L138P behaved like the open pore ferritin model in vitro as follows: (i) normal protein cage assembly and mineralization, (ii) increased iron release (t1/2) decreased 17-fold), and (iii) decreased alpha-helix (8%). Overexpression (> 4-fold), in HeLa cells, showed for ferritin H L138P equal protein expression and total cell 59Fe but increased chelatable iron, 16%, p < 0.01 (59Fe in the deferoxamine-containing medium), and decreased 59Fe in ferritin, 28%, p < 0.01, compared with wild type. The coincidence of decreased 59Fe in open pore ferritin with increased chelatable 59Fe in cells expressing the ferritin open pore mutation suggests that ferritin pore gating influences to the amount of iron (59Fe) in ferritin in vivo.

  20. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology.

    PubMed

    Shao, GuoSheng; Chen, MingXue; Wang, DanYing; Xu, ChunMei; Mou, RenXiang; Cao, ZhaoYun; Zhang, XiuFu

    2008-03-01

    Effects of two kinds of iron fertilizer, FeSO4 and EDTA.Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA.Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA.Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA.Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA.Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.

  1. Hydroxyl Radical Formation in Solutions of Fe(III) and Hydrogen Peroxide - Impact of Freezing and Thawing Process

    NASA Astrophysics Data System (ADS)

    Arakaki, T.; Kinjo, M.; Shiroma, K.; Shibata, M.; Miyake, T.; Hirakawa, T.; Sakugawa, H.

    2003-12-01

    Hydroxyl radical formation was studied by detecting concentration of formate in solutions of hydrated formaldehyde, HOOH, and Fe(III) or Cu(II). Oxidation of hydrated formaldehyde by OH radical is known to form formate. Formate formation increased by about 4 times when the solution underwent freezing and thawing. Although the reaction mechanisms are not clearly understood, we believe that the concentration effect of freezing enhanced the catalytic reactions between HOOH and Fe(III) or Cu(II) and the reduction of transition metals, i.e., Fe(III) to Fe(II) and Cu(II) to Cu(I). The concentration effect also enhanced reactions between Fe(II) and HOOH or Cu(I) and HOOH, which generated OH radical (freeze-Fenton reaction). Study of the effects of pH showed that formate formation was the highest at pH = 4.0, indicating that the speciation of Fe(III) affected the formation of formate. Concentration-dependent experiments demonstrated that Fe is probably the limiting agent under typical atmospheric conditions. Our results suggested that the freezing process could be an important source of hydroxyl radical in high cloud, winter fog, rime ice and freezing acidic rain, and more importantly, a potentially additional oxidation mechanism in the atmosphere.

  2. Normal cadmium uptake in microcytic anemia mk/mk mice suggests that DMT1 is not the only cadmium transporter in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Tomohito; Momoi, Kanae; Hosoyamada, Makoto

    2008-03-15

    Divalent metal transporter 1 (DMT1) is a mammalian iron (Fe) transporter and also transports Cadmium (Cd) in vitro. This study compared Cd absorption in DMT1-dysfunctional MK/Rej-{sup mk}/{sub mk} mice (mk/mk mice) and in DMT1-functional, Fe-deficient wild-type (WT) mice, to clarify the role of DMT1 in intestinal Cd absorption in vivo. Mice were given 1 ppm CdCl{sub 2} aq in drinking water for 2 weeks, and the concentrations of Cd and Fe in liver, kidney, and intestinal epithelium were subsequently determined. The Fe concentration in intestinal epithelia of WT mice was decreased in proportion to the level of dietary Fe limitation,more » while Cd accumulation under the same conditions was increased. DMT1 mRNA expression in the small intestine of Fe-deficient WT mice was clearly increased compared to that in Fe-sufficient WT mice. Iron deficiency resulted in up-regulation of Cd uptake in the intestine of Fe-deficient WT mice. The mk/mk mice have a mutation in DMT1 and loss of its function led to decreased intestinal Fe concentration. However, intestinal Cd accumulation was the same as in WT mice and it was also increased in Fe-deficient situation. There is the possibility that an unknown Cd pathway has taken a role on Cd intestinal absorption in vivo and that this pathway is regulated by food Fe concentrations. Therefore, DMT1 is not the sole transporter of intestinal cadmium absorption in vivo.« less

  3. Magnetism from Fe2O3 nanoparticles embedded in amorphous SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Sendil Kumar, A.; Bhatnagar, Anil K.

    2018-02-01

    Fe2O3 nanoparticles are embedded in amorphous SiO2 matrix by coprecipitation method with varying concentrations. Conditions are optimized to get almost monodispersed Fe2O3 nanoparticles with high chemical stability. Microstructure of synthesized nanoparticles is well characterized and found that Fe2O3 is in nanocrystalline form and embedded uniformly in amorphous SiO2 matrix. Enhanced surface reactivity is found for nanoparticles which influences physical properties of the SiO2 supported Fe2O3 system due to adsorption. In oxide nanoparticles, significant number of defect sites at the surface is expected but when supported medium such as SiO2 it reduces this defect concentration. Field- and temperature-dependent magnetisation studies on these samples show superparamagnetic behaviour. Superparamagnetic behaviour is seen in all the concentration systems but the coercivity observed in the lower concentration systems is found to be anomalous compared to that of higher concentrations. The observed magnetic behaviour comes from either unsaturated bond existing due to the absence of anions at the surface of nanoparticles or reconstruction of atomic orbitals taking place at interface of Fe2O3-SiO2 system.

  4. Mobilization of lead and other trace elements following shock chlorination of wells

    USGS Publications Warehouse

    Seiler, R.L.

    2006-01-01

    Many owners of domestic wells shock chlorinate their wells to treat for bacterial contamination or control bad odors from sulfides. Analysis of well water with four wells from Fallon, Nevada, showed that following recommended procedures for shock chlorinating wells can cause large, short-lasting increases in trace-element concentrations in ground water, particularly for Cu, Fe, Pb, and Zn. Lead concentrations increased up to 745 fold between samples collected just before the well was shock chlorinated and the first sample collected 22-24??h later; Zn concentrations increased up to 252 fold, Fe concentrations increased up to 114 fold, and Cu concentrations increased up to 29 fold. Lead concentrations returned to near background levels following pumping of about one casing volume, however, in one well an estimated 120??mg of excess Pb were pumped before concentrations returned to prechlorination levels. Total Pb concentrations were much greater than filtered (0.45????m) concentrations, indicating the excess Pb is principally particulate. Recommended procedures for purging treated wells following shock chlorination may be ineffective because a strong NaOCl solution can remain in the casing above the pump even following extended pumping. Only small changes in gross alpha and beta radioactivity occurred following shock chlorination. USEPA has not promulgated drinking-water standards for 210Pb, however, measured 210Pb activities in the study area typically were less than the Canadian Maximum Acceptable Concentration of 100??mBq/L. By consuming well water shortly after shock chlorination the public may inadvertently be exposed to levels of Pb, and possibly 210Pb, that exceed drinking-water standards.

  5. A Nanoparticulate Ferritin-Core Mimetic Is Well Taken Up by HuTu 80 Duodenal Cells and Its Absorption in Mice Is Regulated by Body Iron12

    PubMed Central

    Latunde-Dada, Gladys O; Pereira, Dora IA; Tempest, Bethan; Ilyas, Hibah; Flynn, Angela C; Aslam, Mohamad F; Simpson, Robert J; Powell, Jonathan J

    2014-01-01

    Background: Iron (Fe) deficiency anemia remains the largest nutritional deficiency disorder worldwide. How the gut acquires iron from nano Fe(III), especially at the apical surface, is incompletely understood. Objective: We developed a novel Fe supplement consisting of nanoparticulate tartrate-modified Fe(III) poly oxo-hydroxide [here termed nano Fe(III)], which mimics the Fe oxide core of ferritin and effectively treats iron deficiency anemia in rats. Methods: We determined transfer to the systemic circulation of nano Fe(III) in iron-deficient and iron-sufficient outbread Swiss mouse strain (CD1) mice with use of 59Fe-labeled material. Iron deficiency was induced before starting the Fe-supplementation period through reduction of Fe concentrations in the rodent diet. A control group of iron-sufficient mice were fed a diet with adequate Fe concentrations throughout the study. Furthermore, we conducted a hemoglobin repletion study in which iron-deficient CD1 mice were fed for 7 d a diet supplemented with ferrous sulfate (FeSO4) or nano Fe(III). Finally, we further probed the mechanism of cellular acquisition of nano Fe(III) by assessing ferritin formation, as a measure of Fe uptake and utilization, in HuTu 80 duodenal cancer cells with targeted inhibition of divalent metal transporter 1 (DMT1) and duodenal cytochrome b (DCYTB) before exposure to the supplemented iron sources. Differences in gene expression were assessed by quantitative polymerase chain reaction. Results: Absorption (means ± SEMs) of nano Fe(III) was significantly increased in iron-deficient mice (58 ± 19%) compared to iron-sufficient mice (18 ± 17%) (P = 0.0001). Supplementation of the diet with nano Fe(III) or FeSO4 significantly increased hemoglobin concentrations in iron-deficient mice (170 ± 20 g/L, P = 0.01 and 180 ± 20 g/L, P = 0.002, respectively). Hepatic hepcidin mRNA expression reflected the nonheme-iron concentrations of the liver and was also comparable for both nano Fe(III)– and FeSO4-supplemented groups, as were iron concentrations in the spleen and duodenum. Silencing of the solute carrier family 11 (proton-coupled divalent metal ion transporter), member 2 (Slc11a2) gene (DMT1) significantly inhibited ferritin formation from FeSO4 (P = 0.005) but had no effect on uptake and utilization of nano Fe(III). Inhibiting DCYTB with an antibody also had no effect on uptake and utilization of nano Fe(III) but significantly inhibited ferritin formation from ferric nitrilotriacetate chelate (Fe-NTA) (P = 0.04). Similarly, cellular ferritin formation from nano Fe(III) was unaffected by the Fe(II) chelator ferrozine, which significantly inhibited uptake and utilization from FeSO4 (P = 0.009) and Fe-NTA (P = 0.005). Conclusions: Our data strongly support direct nano Fe(III) uptake by enterocytes as an efficient mechanism of dietary iron acquisition, which may complement the known Fe(II)/DMT1 uptake pathway. PMID:25342699

  6. Breaking The Enzymatic Latch: Do Anaerobic Conditions Constrain Decomposition In Humid Tropical Forest Soil?

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Silver, W. L.

    2011-12-01

    Anaerobic conditions have been proposed to impose a "latch" on soil organic matter decomposition by inhibiting the activity of extracellular enzymes that catalyze the transformation of organic polymers into monomers for microbial assimilation. Here, we tested the hypothesis that anaerobiosis inhibits soil hydrolytic enzyme activity in a humid tropical forest ecosystem in Puerto Rico. We sampled surface and sub-surface soil from each of 59 plots (n = 118) stratified across distinct topographical zones (ridges, slopes, and valleys) known to vary in soil oxygen (O2) concentrations, and measured the potential activity of five hydrolytic enzymes that decompose carbon (C), nitrogen (N), and phosphorus (P) substrates. We measured reduced iron (Fe (II)) concentrations in soil extractions to provide a spatially and temporally integrated index of anaerobic microbial activity, since iron oxides constitute the dominant anaerobic terminal electron acceptor in this ecosystem. Surprisingly, we observed positive relationships between Fe (II) concentrations and the activity of all enzymes that we assayed. Linear mixed effects models that included Fe (II) concentration, topographic position, and their interaction explained between 30 to 70 % of the variance of enzyme activity of β-1,4-glucosidase, β-cellobiohydrolase, β-xylosidase, N-acetylglucosaminidase, and acid phosphatase. Soils from ridges and slopes contained between 10 and 800 μg Fe (II) g-1 soil, and exhibited consistently positive relationships (p < 0.0001) between Fe (II) and enzyme activity. Valley soils did not display significant relationships between enzyme activity and Fe (II), although they displayed variation in soil Fe (II) concentrations similar to ridges and slopes. Overall, valleys exhibited lower enzyme activity and lower Fe (II) concentrations than ridges or slopes, possibly related to decreased root biomass and soil C. Our data provide no indication that anaerobiosis suppresses soil enzyme activity, but rather that high rates of decomposition induce a higher proportion of anaerobiosis soil microsites. The spatial patterns of Fe (II) concentrations that we observed also support this hypothesis. Soil Fe (II) concentrations were significantly greater in ridges than in slopes or valleys, in spite of the fact that slopes and valleys tend to experience higher soil moisture and lower bulk soil O2 concentrations. In our samples, Fe (II) concentrations correlated only weakly with ambient soil moisture, suggesting the importance of biological demand in controlling O2 availability as opposed to physical limitations on O2 diffusion imposed by soil moisture. In sum, our data suggest that anaerobic conditions do not necessarily constrain enzyme activity in humid tropical forest soils, and may not provide a proximate control on soil C storage in these ecosystems as has been recently proposed.

  7. The air pollution caused by the burning of fireworks during the lantern festival in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhuang, Guoshun; Xu, Chang; An, Zhisheng

    The effects of the burning of fireworks on air quality in Beijing was firstly assessed from the ambient concentrations of various air pollutants (SO 2, NO 2, PM 2.5, PM 10 and chemical components in the particles) during the lantern festival in 2006. Eighteen ions, 20 elements, and black carbon were measured in PM 2.5 and PM 10, and the levels of organic carbon could be well estimated from the concentrations of dicarboxylic acids. Primary components of Ba, K, Sr, Cl -, Pb, Mg and secondary components of C 5H 6O 42-, C 3H 2O 42-, C 2O 42-, C 4H 4O 42-, SO 42-, NO 3- were over five times higher in the lantern days than in the normal days. The firework particles were acidic and of inorganic matter mostly with less amounts of secondary components. Primary aerosols from the burning of fireworks were mainly in the fine mode, while secondary formation of acidic anions mainly took place on the coarse particles. Nitrate was mainly formed through homogeneous gas-phase reactions of NO 2, while sulfate was largely from heterogeneous catalytic transformations of SO 2. Fe could catalyze the formation of nitrate through the reaction of α-Fe 2O 3 with HNO 3, while in the formation of sulfate, Fe is not only the catalyst, but also the oxidant. A simple method using the concentration of potassium and a modified method using the ratio of Mg/Al have been developed to quantify the source contribution of fireworks. It was found that over 90% of the total mineral aerosol and 98% of Pb, 43% of total carbon, 28% of Zn, 8% of NO 3-, and 3% of SO 42- in PM 2.5 were from the emissions of fireworks on the lantern night.

  8. U(VI) adsorption on aquifer sediments at the Hanford Site.

    PubMed

    Um, Wooyong; Serne, R Jeffrey; Brown, Christopher F; Last, George V

    2007-08-15

    Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.

  9. Chromated copper arsenate-treated fence posts in the agronomic landscape: soil properties controlling arsenic speciation and spatial distribution.

    PubMed

    Schwer Iii, Donald R; McNear, David H

    2011-01-01

    Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (∼8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  11. Benthic iron and phosphorus release from river dominated shelf sediments under varying bottom water O2 concentrations.

    NASA Astrophysics Data System (ADS)

    Ghaisas, N. A.; Maiti, K.; White, J. R.

    2017-12-01

    Phosphorus (P) cycling in coastal ocean is predominantly controlled by river discharge and biogeochemistry of the sediments. In coastal Louisiana, sediment biogeochemistry is strongly influenced by seasonally fluctuating bottom water O2, which, in turn transitions the shelf sediments from being a sink to source of P. Sediment P-fluxes were 9.73 ± 0.76 mg / m2 /d and 0.67±0.16 mg/m2/d under anaerobic and aerobic conditions respectively, indicating a 14 times higher P-efflux from oxygen deprived sediments. A high sedimentary oxygen consumption rate of 889 ± 33.6 mg/m2/d was due to organic matter re-mineralization and resulted in progressively decreasing the water column dissolved O2 , coincident with a P-flux of 7.2 ± 5.5 mg/m2/d from the sediment. Corresponding water column flux of Fe total was 19.7 ± 7.80 mg/m2/d and the sediment-TP decreased from 545 mg/Kg to 513 mg/Kg. A simultaneous increase in pore water Fe and P concentrations in tandem with a 34.6% loss in sedimentary Fe-bound P underscores the importance of O2 on coupled Fe- P biogeochemistry. This study suggests that from a 14,025 sq. km hypoxia area, Louisiana shelf sediments can supply 1.33x105 kg P/day into the water column compared to 0.094 x 105 kg P/day during the fully aerobic water column conditions.

  12. Spectroscopic studies on the antioxidant activity of p-coumaric acid.

    PubMed

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  14. Mössbauer Study and Modeling of Iron Import and Trafficking in Human Jurkat Cells

    PubMed Central

    Jhurry, Nema D.; Chakrabarti, Mrinmoy; McCormick, Sean P.; Gohil, Vishal M.; Lindahl, Paul A.

    2014-01-01

    The Fe content of Jurkat cells grown on transferrin-bound iron (TBI) and FeIII citrate (FC) was characterized using Mössbauer, EPR, and UV-vis spectroscopies, electron microscopy, and ICP-MS. Isolated mitochondria were similarly characterized. Fe-limited cells contained ∼ 100 μM of essential Fe, mainly as mitochondrial Fe and non-mitochondrial nonheme high-spin (NHHS) FeII. Fe-replete cells also contained ferritin-bound Fe and FeIII oxyhydroxide nanoparticles. Only 400 ± 100 Fe ions were loaded per ferritin complex, regardless of the growth medium Fe concentration. Ferritin regulation thus appears more complex than is commonly assumed. The magnetic/structural properties of Jurkat nanoparticles differed from those in yeast mitochondria. They were smaller and may be located in the cytosol. The extent of nanoparticle formation scaled nonlinearly with the concentration of Fe in the medium. Nanoparticle formation was not strongly correlated with ROS damage. Cells could utilize nanoparticle Fe, converting such aggregates into essential Fe forms. Cells grown on galactose rather than glucose respired faster, grew slower, exhibited more ROS damage and generally contained more nanoparticles. Cells grown with TBI rather than FC contained lower Fe concentrations, more ferritin and fewer nanoparticles. Cells in which transferrin receptor expression was increased contained more ferritin Fe. Frataxin-deficient cells contained more nanoparticles than comparable WT cells. Data were analyzed by a chemically-based mathematical model. Although simple, it captured essential features of Fe import, trafficking and regulation. TBI import was highly regulated but FC import was not. Nanoparticle formation was not regulated but the rate was third-order in cytosolic Fe. PMID:24180611

  15. Antioxidant activity of taxifolin: an activity-structure relationship.

    PubMed

    Topal, Fevzi; Nar, Meryem; Gocer, Hulya; Kalin, Pınar; Kocyigit, Umit M; Gülçin, İlhami; Alwasel, Saleh H

    2016-08-01

    Taxifolin is a kind of flavanonol, whose biological ability. The objectives of this study were to investigate the antioxidants and antiradical activities of taxifolin by using different in vitro bioanalytical antioxidant methods including DMPD√(+), ABTS√(+), [Formula: see text], and DPPH√-scavenging effects, the total antioxidant influence, reducing capabilities, and Fe(2+)-chelating activities. Taxifolin demonstrated 81.02% inhibition of linoleic acid emulsion peroxidation at 30 µg/mL concentration. At the same concentration, standard antioxidants including trolox, α-tocopherol, BHT, and BHA exhibited inhibitions of linoleic acid emulsion as 88.57, 73.88, 94.29, and 90.12%, respectively. Also, taxifolin exhibited effective DMPD√(+), ABTS√(+), [Formula: see text], and DPPH√-scavenging effects, reducing capabilities, and Fe(2+)-chelating effects. The results obtained from this study clearly showed that taxifolin had marked antioxidant, reducing ability, radical scavenging and metal-chelating activities. Also, this study exhibits a scientific shore for the significant antioxidant activity of taxifolin and its structure-activity insight.

  16. Cyanide speciation at four gold leach operations undergoing remediation

    USGS Publications Warehouse

    Johnson, Craig A.; Grimes, David J.; Leinz, Reinhard W.; Rye, Robert O.

    2008-01-01

    Analyses have been made of 81 effluents from four gold leach operations in various stages of remediation to identify the most-persistent cyanide species. Total cyanide and weak acid-dissociable (WAD) cyanide were measured using improved methods, and metals known to form stable cyanocomplexes were also measured. Typically, total cyanide greatly exceeded WAD indicating that cyanide was predominantly in strong cyanometallic complexes. Iron was generally too low to accommodate the strongly complexed cyanide as Fe(CN)63- or Fe(CN)64-, but cobalt was abundant enough to implicate Co(CN)63- or its dissociation products (Co(CN)6-x(H2O)x(3-x)-). Supporting evidence for cobalt-cyanide complexation was found in tight correlations between cobalt and cyanide in some sample suites. Also, abundant free cyanide was produced upon UV illumination. Iron and cobalt cyanocomplexes both photodissociate; however, the iron concentration was insufficient to have carried the liberated cyanide, while the cobalt concentration was sufficient. Cobalt cyanocomplexes have not previously been recognized in cyanidation wastes. Their identification at four separate operations, which had treated ores that were not especially rich in cobalt, suggests that cobalt complexation may be a common source of cyanide persistence. There is a need for more information on the importance and behavior of cobalt cyanocomplexes in ore-processing wastes at gold mines.

  17. Cyanide speciation at four gold leach operations undergoing remediation.

    PubMed

    Johnson, Craig A; Grimes, David J; Leinz, Reinhard W; Rye, Robert O

    2008-02-15

    Analyses have been made of 81 effluents from four gold leach operations in various stages of remediation to identify the most -persistent cyanide species. Total cyanide and weak acid-dissociable (WAD) cyanide were measured using improved methods, and metals known to form stable cyanocomplexes were also measured. Typically, total cyanide greatly exceeded WAD indicating that cyanide was predominantly in strong cyanometallic complexes. Iron was generally too low to accommodate the strongly complexed cyanide as Fe(CN)6s3- or Fe(CN)6(4-), but cobalt was abundant enough to implicate Co(CN)6(3-) or its dissociation products (Co(CN)(6-x)(H2O)x((3-x)-)). Supporting evidenceforcobalt-cyanide complexationwas found in tight correlations between cobalt and cyanide in some sample suites. Also, abundant free cyanide was produced upon UV illumination. Iron and cobalt cyanocomplexes both photodissociate; however, the iron concentration was insufficient to have carried the liberated cyanide, while the cobalt concentration was sufficient. Cobalt cyanocomplexes have not previously been recognized in cyanidation wastes. Their identification atfour separate operations, which had treated ores that were not especially rich in cobalt, suggests that cobalt complexation may be a common source of cyanide persistence. There is a need for more information on the importance and behavior of cobalt cyanocomplexes in ore-processing wastes at gold mines.

  18. Mineral elements and essential trace elements in blood of seals of the North Sea measured by total-reflection X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Griesel, S.; Mundry, R.; Kakuschke, A.; Fonfara, S.; Siebert, U.; Prange, A.

    2006-11-01

    Mineral and essential trace elements are involved in numerous physiological processes in mammals. Often, diseases are associated with an imbalance of the electrolyte homeostasis. In this study, the concentrations of mineral elements (P, S, K, Ca) and essential trace elements (Fe, Cu, Zn, Se, Rb, Sr) in whole blood of harbor seals ( Phoca vitulina) were determined using total-reflection X-ray fluorescence spectrometry (TXRF). Samples from 81 free-ranging harbor seals from the North Sea and two captive seals were collected during 2003-2005. Reference ranges and element correlations for health status determination were derived for P, S, K, Ca, Fe, Cu, and Zn level in whole blood. Grouping the seals by age, gender and sample location the concentration levels of the elements were compared. The blood from two captive seals with signs of diseases and four free-ranging seals showed reduced element levels of P, S, and Ca and differences in element correlation of electrolytes were ascertained. Thus, simultaneous measurements of several elements in only 500 μL volumes of whole blood provide the possibility to obtain information on both, the electrolyte balance and the hydration status of the seals. The method could therefore serve as an additional biomonitoring tool for the health assessment.

  19. Tetravalent uranium extraction by HDEHP in kerosene from phosphate medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daoud, J.A.; Zeid, M.M.; Aly, H.F.

    1997-03-01

    The extraction of U(IV) by di-2-ethylhexyl phosphoric acid (HDEHP) in kerosene from phosphoric acid was measured spectrophotometrically. The effect of extractant, phosphoric acid, uranium, Fe(II) and Fe(III) concentrations on the extraction process were separately investigated. The effect of different reagents and temperature on the stripping of U(IV) were also tested. The results obtained showed that the extraction increases with the increase in HDEHP and Fe(III) concentrations while it decreases with the increase in phosphoric acid, uranium and Fe(II) concentration. The use of high phosphoric acid concentration as strip solutions at low temperature was found to give good stripping results. 11more » refs., 8 figs., 2 tabs.« less

  20. Temporal variation and the effect of rainfall on metals flux from the historic Beatson mine, Prince William Sound, Alaska, USA

    USGS Publications Warehouse

    Stillings, L.L.; Foster, A.L.; Koski, R.A.; Munk, L.; Shanks, Wayne C.

    2008-01-01

    Several abandoned Cu mines are located along the shore of Prince William Sound, AK, where the effect of mining-related discharge upon shoreline ecosystems is unknown. To determine the magnitude of this effect at the former Beatson mine, the largest Cu mine in the region and a Besshi-type massive sulfide ore deposit, trace metal concentration and flux were measured in surface run-off from remnant, mineralized workings and waste. Samples were collected from seepage waters; a remnant glory hole which is now a pit lake; a braided stream draining an area of mineralized rock, underground mine workings, and waste piles; and a background location upstream of the mine workings and mineralized rock. In the background stream pH averaged ???7.3, specific conductivity (SC) was ???40 ??S/cm, and the aqueous components indicative of sulfide mineral weathering, SO4 and trace metals, were at detection limits or lower. In the braided stream below the mine workings and waste piles, pH usually varied from 6.7 to 7.1, SC varied from 40 to 120 ??S/cm, SO4 had maximum concentrations of 32 mg/L, and the trace metals Cu, Ni, Pb, and Zn showed maximum total acid extractable concentrations of 186, 5.9, 6.2 and 343 ??g/L, respectively. With an annual rainfall of ???340 cm (estimated from the 2006 water year) it was expected that rain water would have a large effect on the chemistry of the braided stream draining the mine site. A linear mixing model with two end members, seepage water from mineralized rock and background water, estimated that the braided stream contained 10-35% mine drainage. After rain events the braided stream showed a decrease in pH, SC, Ca + Mg, SO4, and alkalinity, due to dilution. The trace metals Ni and Zn followed this same pattern. Sodium + K and Cl did not vary between the background and braided stream, nor did they vary with rainfall. At approximately 2 and 3 mg/L, respectively, these concentrations are similar to concentrations found in rainfall on the coasts of North America. High concentrations of total acid extractable Al and Fe were found at near-neutral pH in most of the waters collected at the site. Equilibrium solubility simulations, performed with PHREEQC, show that the stream waters are saturated with respect to Al, Fe and SiO2 solid phases. Because the "dissolved" sample fractions (acid preserved and filtered to 0.45 ??m) show significant concentrations of Al and Fe it is presumed that these are present as colloids. The relationship between concentrations of Al and Fe, and rainfall was the opposite of that observed for the major ions Ca + Mg, SO4, and alkalinity, in that Al and Fe concentrations increased with increasing rainfall. Concentrations of Cu and Pb followed the same pattern. Adsorption calculations were performed with Visual MINTEQ, using the diffuse double layer electrostatic model and surface complexation constants for the ferrihydrite surface. These results suggest that 30-93% of Cu and 58-97% of Pb was adsorbed to ferrihydrite precipitates in the stream waters. Ni and Zn showed little adsorption in this pH range. Flux calculations show that the total mass of trace metals transported from the mine site, during the 60 day study period, was ranked as Zn (196 kg) > Cu (87 kg) > Pb(1.9 kg) ??? Ni(1.9 kg). Nickel and Zn were transported mostly as dissolved species while Cu and Pb were transported mostly as adsorbed species. pH control on adsorption was evident when Cu and Pb isotherms were normalized by ferrihydrite flux. Decreased stream water pH due to periods of frequent and high volume rain events would cause desorption of Cu and Pb from the ferrihydrite surface, thus changing not only their speciation in solution but also their mechanism of transport. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Phosphorus in waters from sewage sludge amended lysimeters.

    PubMed

    Hinesly, T D; Jones, R L

    1990-01-01

    In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.

  2. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.

    PubMed

    Wang, Ning; Xue, Xi-Mei; Juhasz, Albert L; Chang, Zhi-Zhou; Li, Hong-Bo

    2017-01-01

    Previous studies have shown that biochar enhances microbial reduction of iron (Fe) oxyhydroxide under anaerobic incubation. However, there is a lack of data on its influence on arsenic (As) release from As-contaminated paddy soils. In this study, paddy soil slurries (120 mg As kg -1 ) were incubated under anaerobic conditions for 60 days with and without the addition of biochar (3%, w/w) prepared from rice straw at 500 °C. Arsenic release, Fe reduction, and As fractionation were determined at 1, 10, 20, 30, and 60 d, while Illumina sequencing and real-time PCR were used to characterize changes in soil microbial community structure and As transformation function genes. During the first month of incubation, As released into soil solution increased sharply from 27.9 and 55.9 to 486 and 630 μg kg -1 in unamended and biochar amended slurries, with inorganic trivalent As (As III ) being the dominant specie (52.7-91.0% of total As). Compared to unamended slurries, biochar addition increased As and ferrous ion (Fe 2+ ) concentrations in soil solution but decreased soil As concentration in the amorphous Fe/Al oxide fraction (F3). Difference in released As between biochar and unamended treatments (ΔAs) increased with incubation time, showing strong linear relationships (R 2  = 0.23-0.33) with ΔFe 2+ and ΔF3, confirming increased As release due to enhanced Fe reduction. Biochar addition increased the abundance of Fe reducing bacteria such as Clostridum (27.3% vs. 22.7%), Bacillus (3.34% vs. 2.39%), and Caloramator (4.46% vs. 3.88%). In addition, copy numbers in biochar amended slurries of respiratory As reducing (arrA) and detoxifying reducing genes (arsC) increased 19.0 and 1.70 fold, suggesting microbial reduction of pentavalent As (As V ) adsorbed on Fe oxides to As III , further contributing to increased As release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Important role of the non-uniform Fe distribution for the ferromagnetism in group-IV-based ferromagnetic semiconductor GeFe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakabayashi, Yuki K.; Ohya, Shinobu; Ban, Yoshisuke

    2014-11-07

    We investigate the growth-temperature dependence of the properties of the group-IV-based ferromagnetic semiconductor Ge{sub 1−x}Fe{sub x} films (x = 6.5% and 10.5%), and reveal the correlation of the magnetic properties with the lattice constant, Curie temperature (T{sub C}), non-uniformity of Fe atoms, stacking-fault defects, and Fe-atom locations. While T{sub C} strongly depends on the growth temperature, we find a universal relationship between T{sub C} and the lattice constant, which does not depend on the Fe content x. By using the spatially resolved transmission-electron diffractions combined with the energy-dispersive X-ray spectroscopy, we find that the density of the stacking-fault defects and the non-uniformitymore » of the Fe concentration are correlated with T{sub C}. Meanwhile, by using the channeling Rutherford backscattering and particle-induced X-ray emission measurements, we clarify that about 15% of the Fe atoms exist on the tetrahedral interstitial sites in the Ge{sub 0.935}Fe{sub 0.065} lattice and that the substitutional Fe concentration is not correlated with T{sub C}. Considering these results, we conclude that the non-uniformity of the Fe concentration plays an important role in determining the ferromagnetic properties of GeFe.« less

  4. Soil pollution in Central district of Saint-Petersburg (Russia)

    NASA Astrophysics Data System (ADS)

    Terekhina, Natalia; Ufimtseva, Margarita

    2015-04-01

    Analysis of soil samples of upper horizon for the content of chemical elements (Fe, Mn, Cu, Zn, Pb, Ni, Cr, Co, Cd, Ba, Sr) was carried out by atomic emission with inductively coupled plasma. A relative indicator of soil contamination degree is a concentration coefficient, representing the ratio of metal content in tested soil samples to the local background value of the corresponding element. Total pollution index is calculated by the concentration coefficients, which are greater than 1, taking into account the hazard class of metals (1 class - Zn, Pb ,Cd; 2 - class Cr, Ni, Cu ,Со; 3 class - Fe, Mn, Sr, Ba). Analysis of trace element of urban soils demonstrated mosaic patterns of pollution for Central district. The method of correlation sets constructing and factor analysis revealed three groups of chemical elements having a strong and significant association with each other: Pb-Cu-Cd-Zn-Ba, Ni-Cr-Co, Fe-Mn. Elements of the first group are characterized by high values of concentration coefficient and are the main pollutants - their average content is 3-11 times higher than background values. Strontium does not have strong correlation with the other elements, and its lowest concentration coefficient indicates that the element can not be regarded as a pollutant. The spatial distribution of the total pollution index identified several sources of pollution, the origin of which may be different. The main reason is probably the impact of vehicle emissions, although local pollution of soil is possible (the soils, contaminated during reconstruction of lawns, dumping of construction materials, etc.). Differentiated assessment of database shows that 48% of samples refer to dangerous pollution category, 37% - to moderately dangerous category, 15% - to allowable category. Thus, almost half of the district is characterized as dangerous in terms of soil contamination. Solution of the problem of soil contamination is recommended in three ways: reducing the intensity of vehicular traffic through the historic center of the city, improving the quality of transport emissions, removal of contaminated soil layers in particularly polluted areas and the introduction of clean soil, optimization of verdurization of the urban environment, as a means of reducing the flow of atmospheric pollutants in soil.

  5. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.).

    PubMed

    Izquierdo, Paulo; Astudillo, Carolina; Blair, Matthew W; Iqbal, Asif M; Raatz, Bodo; Cichy, Karen A

    2018-05-11

    Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.

  6. A Re-evaluation of the Ferrozine Method for Dissolved Iron: The Effect of Organic Interferences

    NASA Astrophysics Data System (ADS)

    Balind, K.; Barber, A.; Gelinas, Y.

    2016-12-01

    Among the most commonly used analytical methods in geochemistry is the ferrozine method for determining dissolved iron concentration in water (1). This cheap and easy-to-use spectrophotometric method involves a complexing agent (ferrozine), a reducing agent (hydroxylamine-HCl) and buffer (ammonium acetate with ammonium hydroxide). Previous studies have demonstrated that complex organic matter (OM) originating from the Suwannee River did not lead to a significantly underestimation of the measured iron content in OM amended iron solutions (2). The authors concluded that this method could be used even in organic rich (i.e., 25 mg/L) waters. Here we compare the concentration of Fe measured using this spectrophotometric method to the total Fe as measured by ICP-MS in the presence/absence of specific organic molecules to ascertain if they interfere with the ferrozine method. We show that certain molecules with hydroxyl and carboxyl functional groups as well as multi-dentate chelating species have a significant effect on the measured iron concentrations. Two possible mechanisms likely are responsible for the inefficiency of this method in the presence of specific organic molecules; 1) incomplete reduction of Fe(III) bound to organic molecules, or 2) competition between the OM and ferrozine for the available iron. We address these possibilities separately by varying the experimental conditions. These methodological artifacts may have far reaching implications due to the extensive use of this method. Stookey, L. L., Anal. Chem., 42, 779 (1970). Viollier, E., et al., Applied Geochem., 15, 785 (2000).

  7. Structure and magnetic properties of Fe12X clusters

    NASA Astrophysics Data System (ADS)

    Gutsev, G. L.; Johnson, L. E.; Belay, K. G.; Weatherford, C. A.; Gutsev, L. G.; Ramachandran, B. R.

    2014-02-01

    The electronic and geometrical structures of a Fe12X family of binary clusters Fe12Al, Fe12Sc, Fe12Ti, Fe12V, Fe12Cr, Fe12Mn, Fe12Co, Fe12Ni, Fe12Cu, Fe12Zn, Fe12Y, Fe12Zr, Fe12Nb, Fe12Mo, Fe12Tc, Fe12Ru, Fe12Rh, Fe12Pd, Fe12Ag, Fe12Cd, and Fe12Gd are studied using density functional theory within generalized gradient approximation. It is found that the geometrical structures corresponding to the lowest total energy states found for the Fe12X clusters possess icosahedral shape with the substituent atom occupying the central or a surface site. The only exception presents Fe12Nb where a squeezed cage structure is the energetically most favorable. The substitution of an atom in the Fe13 cluster results in the decrease of its total spin magnetic moment of 44 μB, except for Fe12Mn and Fe12Gd. The Fe12X clusters are more stable than the parent Fe13 cluster when X = Al, Sc, Ti, V, Co, Y, Zr, Nb, Mo, Tc, Ru, and Rh.

  8. Dechlorination of trichloroethylene formed from 1,1,2,2-tetrachloroethane by dehydrochlorination in Portland cement slurry including Fe(II).

    PubMed

    Jung, Bahngmi; Batchelor, Bill

    2008-03-01

    Transformation of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) by Fe(II) in 10% cement slurries was characterized using a batch reactor system. 1,1,2,2-TeCA was completely converted to trichloroethylene (TCE) within 1h in all experiments, even in controls with cement that did not include Fe(II). Therefore, complete degradation of 1,1,2,2-TeCA depends on the behavior of TCE. The half-life of TCE was observed to be 15d when concentrations of Fe(II) and 1,1,2,2-TeCA were 98mM and 0.245mM, respectively. The kinetics of TCE removal was observed to be dependent on Fe(II) dose, pH and initial substrate concentration. Pseudo-first-order rate constants linearly increased with Fe(II) dose up to 198mM when initial target concentration was 0.245mM. Pseudo-first-order kinetics generally described the degradation reactions of TCE at a specific initial concentration, but a modified Langmuir-Hinshelwood model was necessary to describe the degradation kinetics of TCE over a wide range of initial concentrations. A surface reaction of TCE on active solids, which were formed from Fe(II) and products of cement hydration appears to control observed TCE degradation kinetics.

  9. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon.

    PubMed

    Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen

    2017-02-14

    Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines ( Vitis vinifera ) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di ( o -hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3- O -glucoside, delphinidin-3- O -glucoside, and cyanidin-3- O -(6- O -coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O -methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  10. Analysis of the Glass-Forming Ability of Fe-Er Alloys, Based on Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; El'nyakov, D. D.; Shaposhnikov, N. G.

    2018-05-01

    The Fe-Er phase diagram and thermodynamic properties of all its phases are assessed by means of self-consistent analysis. To refine the data on phase equilibria in the Fe-Er system, an investigation is performed in the 10-40 at % range of Er concentrations. The temperature-concentration dependences of the thermodynamic properties of a melt are presented using the model of ideal associated solutions. Thermodynamic parameters of each phase are obtained, and the calculated results are in agreement with available experimental data. The correlation between the thermodynamic properties of liquid Fe-Er alloys and their tendency toward amorphization are studied. It is shown that compositions of amorphous alloys prepared by melt quenching coincide with the ranges of concentration with the predominance of Fe3Er and FeEr2 associative groups that have large negative entropies of formation.

  11. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics

    PubMed Central

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Ángeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. “Orbis”) grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs. PMID:24478782

  12. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics.

    PubMed

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Angeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

  13. Heavy metals in soils and sediments from Dongting Lake in China: occurrence, sources, and spatial distribution by multivariate statistical analysis.

    PubMed

    Zhang, Yaxin; Tian, Ye; Shen, Maocai; Zeng, Guangming

    2018-05-01

    Heavy metal contamination in soils/sediments and its impact on human health and ecological environment have aroused wide concerns. Our study investigated 30 samples of soils and sediments around Dongting Lake to analyze the concentration of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the samples and to distinguish the natural and anthropogenic sources. Also, the relationship between heavy metals and the physicochemical properties of samples was studied by multivariate statistical analysis. Concentration of Cd at most sampling sites were more than five times that of national environmental quality standard for soil in China (GB 15618-1995), and Pb and Zn levels exceeded one to two times. Moreover, Cr in the soil was higher than the national environmental quality standards for one to two times while in sediment was lower than the national standard. The investigation revealed that the accumulations of As, Cd, Mn, and Pb in the soils, and sediments were affected apparently by anthropogenic activities; however, Cr, Fe, and Ni levels were impacted by parent materials. Human activities around Dongting Lake mainly consisted of industrial activities, mining and smelting, sewage discharges, fossil fuel combustion, and agricultural chemicals. The spatial distribution of heavy metal in soil followed the rule of geographical gradient, whereas in sediments, it was significantly affected by the river basins and human activities. The result of principal component analysis (PCA) demonstrated that heavy metals in soils were associated with pH and total phosphorus (TP), while in sediments, As, Cr, Fe, and Ni were closely associated with cation exchange capacity (CEC) and pH, where Pb, Zn, and Cd were associated with total nitrogen (TN), TP, total carbon (TC), moisture content (MC), soil organic matter (SOM), and ignition lost (IL). Our research provides comprehensive approaches to better understand the potential sources and the fate of contaminants in lakeshore soils and sediments.

  14. Effects of Co doping on the metamagnetic states of the ferromagnetic fcc Fe-Co alloy.

    PubMed

    Ortiz-Chi, Filiberto; Aguayo, Aarón; de Coss, Romeo

    2013-01-16

    The evolution of the metamagnetic states in the ferromagnetic face centered cubic (fcc) Fe(1-x)Co(x) alloy as a function of Co concentration has been studied by means of first-principles calculations. The ground state properties were obtained using the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The alloying was modeled using the virtual crystal approximation and the magnetic states were obtained from the calculations of the total energy as a function of the spin moment, using the fixed spin moment method. For ferromagnetic fcc Fe, the binding-energy curve shows metamagnetic behavior, with two minima corresponding to a small-volume, low-spin (LS) state and a large-volume, high-spin (HS) state, which are separated by a small energy (E(LS) ≲ E(HS)). The evolution of the magnetic moment, the exchange integral (J), and the binding-energy curve is analyzed in the whole range of Co concentrations (x). The magnetic moment corresponding to the HS state decreases monotonically from 2.6 μ(B)/atom in fcc Fe to 1.7 μ(B)/atom in fcc Co. In contrast, the exchange integral for the HS state shows a maximum at around x = 0.45. The thermal dependence of the lattice parameter is evaluated with a method based on statistical mechanics using the binding-energy curve as an effective potential. It is observed that the behavior of the lattice parameter with temperature is tuned by Co doping, from negative thermal expansion in fcc Fe to positive thermal expansion in fcc Co, through the modification of the energetics of the metamagnetic states.

  15. Hydrothermal sediments are a source of water column Fe and Mn in the Bransfield Strait, Antarctica

    NASA Astrophysics Data System (ADS)

    Aquilina, Alfred; Homoky, William B.; Hawkes, Jeffrey A.; Lyons, Timothy W.; Mills, Rachel A.

    2014-07-01

    Short sediment cores were collected from ∼1100 m water depth at the top of Hook Ridge, a submarine volcanic edifice in the Central Basin of the Bransfield Strait, Antarctica, to assess Fe and Mn supply to the water column. Low-temperature hydrothermal fluids advect through these sediments and, in places, subsurface H2S is present at high enough concentrations to support abundant Sclerolinum sp., an infaunal tubeworm that hosts symbiotic thiotrophic bacteria. The water column is fully oxic, and oxygen penetration depths at all sites are 2-5 cmbsf. Pore water Fe and Mn content is high within the subsurface ferruginous zone (max. 565 μmol Fe L-1, >3-7 cmbsf)-14-18 times higher than values measured at a nearby, background site of equivalent water depth. Diffusion and advection of pore waters supply significant Fe and Mn to the surface sediment. Sequential extraction of the sediment demonstrates that there is a significant enrichment in a suite of reactive, authigenic Fe minerals in the upper 0-5 cm of sediment at one site characterised by weathered crusts at the seafloor. At a site with only minor authigenic mineral surface enrichment we infer that leakage of pore water Fe and Mn from the sediment leads to enriched total dissolvable Fe and Mn in bottom waters. An Eh sensor mounted on a towed package mapped a distinct Eh signature above this coring site which is dispersed over several km at the depth of Hook Ridge. We hypothesise that the main mechanism for Fe and Mn efflux from the sediment is breach of the surface oxic layer by the abundant Sclerolinum sp., along with episodic enhancements by physical mixing and resuspension of sediment in this dynamic volcanic environment. We propose that Hook Ridge sediments are an important source of Fe and Mn to the deep waters of the Central Basin in the Bransfield Strait, where concentrations are sustained by the benthic flux, and Fe is stabilised in the water column as either colloidal phases or ligand-bound dissolved species. Entrainment of this water mass into the Drake Passage and thereby the Antarctic Circumpolar Current could provide a significant metal source to this HNLC region of the Southern Ocean if mixing and upwelling occurs before removal of this metal pool to underlying sediments. Sediment-covered volcanic ridges are common within rifted margins and may play a previously overlooked role in the global Fe cycle.

  16. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: an iron isotope approach

    USGS Publications Warehouse

    Guo, Huaming; Liu, Chen; Lu, Hai; Wanty, Richard B.; Wang, Jun; Zhou, Yinzhu

    2013-01-01

    High As groundwater is widely distributed all over the world, which has posed a significant health impact on millions of people. Iron isotopes have recently been used to characterize Fe cycling in aqueous environments, but there is no information on Fe isotope characteristics in the groundwater. Since groundwater As behavior is closely associated with Fe cycling in the aquifers, Fe isotope signatures may help to characterize geochemical processes controlling As concentrations of shallow groundwaters. This study provides the first observation of Fe isotope fractionation in high As groundwater and evaluation of Fe cycling and As behaviors in shallow aquifers in terms of Fe isotope signatures. Thirty groundwater samples were taken for chemical and isotopic analysis in the Hetao basin, Inner Mongolia. Thirty-two sediments were sampled as well from shallow aquifers for Fe isotope analysis. Results showed that groundwater was normally enriched in isotopically light Fe with δ56Fe values between −3.40‰ and 0.58‰ and median of −1.14‰, while heavier δ56Fe values were observed in the sediments (between −1.10‰ and 0.75‰, median +0.36‰). In reducing conditions, groundwaters generally had higher δ56Fe values, in comparison with oxic conditions. High As groundwaters, generally occurring in reducing conditions, had high δ56Fe values, while low As groundwaters normally had low δ56Fe values. Although sediment δ56Fe values were generally independent of lithological conditions, a large variation in sediment δ56Fe values was observed in the oxidation–reduction transition zone. Three pathways were identified for Fe cycling in shallow groundwater, including dissimilatory reduction of Fe(III) oxides, re-adsorption of Fe(II), and precipitation of pyrite and siderite. Dissimilatory reduction of Fe(III) oxides resulted in light δ56Fe values (around −1.0‰) and high As concentration (>50 μg/L) in groundwater in anoxic conditions. Re-adsorption of isotopically heavy Fe(II) produced by microbially mediated reduction of Fe(III) oxides led to further enrichment of isotopically light Fe in groundwater (up to −3.4‰ of δ56Fe) in anoxic–suboxic conditions. Arsenic re-adsorption was expected to occur along with Fe(II) re-adsorption, decreasing groundwater As concentrations. In strongly reducing conditions, precipitation of isotopically light Fe-pyrite and/or siderite increased groundwater δ56Fe values, reaching +0.58‰ δ56Fe, with a subsequent decrease in As concentrations via co-precipitation. The mixed effect of those pathways would regulate As and Fe cycling in most groundwaters.

  17. Lentil (Lens culinaris L) as a candidate crop for iron biofortification: Is there a genetic potential for iron bioavailability?

    USDA-ARS?s Scientific Manuscript database

    Iron (Fe) deficiency is the most prevalent nutrient deficiency worldwide. Biofortification of staple food crops, such as the lentil (Lens culinaris L.), may be an effective solution. We analyzed the iron (Fe) concentration, Fe bioavailability, and phytic acid (PA) concentration of 23 lentil genotype...

  18. Analysis of single-breath profiles of exhaled nitric oxide in children with allergy and asthma: guideline-derived plateau concentrations compared to results of automatic evaluation by two analyzers.

    PubMed

    Chládková, Jirina; Havlínová, Zuzana; Chyba, Tomás; Krcmová, Irena; Chládek, Jaroslav

    2008-11-01

    Current guidelines recommend the single-breath measurement of fractional concentration of exhaled nitric oxide (FE(NO)) at the expiratory flow rate of 50 mL/s as a gold standard. The time profile of exhaled FE(NO) consists of a washout phase followed by a plateau phase with a stable concentration. This study performed measurements of FE(NO) using a chemiluminescence analyzer Ecomedics CLD88sp and an electrochemical monitor NIOX MINO in 82 children and adolescents (44 males) from 4.9 to 18.7 years of age with corticosteroid-treated allergic rhinitis (N = 58) and/or asthma (N = 59). Duration of exhalation was 6 seconds for children less than 12 years of age and 10 seconds for older children. The first aim was to compare the evaluation of FE(NO)-time profiles from Ecomedics by its software in fixed intervals of 7 to 10 seconds (older children) and 2 to 4 seconds (younger children) since the start of exhalation (method A) with the guideline-based analysis of plateau concentrations at variable time intervals (method B). The second aim was to assess the between-analyzer agreement. In children over 12 years of age, the median ratio of FE(NO) concentrations of 1.00 (95% CI: 0.99-1.02) indicated an excellent agreement between the methods A and B. Compared with NIOX MINO, the Ecomedics results were higher by 11% (95% CI: 1-22) (method A) and 14% (95% CI: 4-26) (method B), respectively. In children less than 12 years of age, the FE(NO) concentrations obtained by the method B were 34% (95% CI: 21-48) higher and more reproducible (p < 0.02) compared to the method A. The Ecomedics results of the method A were 11% lower (95% CI: 2-20) than NIOX MINO concentrations while the method B gave 21% higher concentrations (95% CI: 9-35). We conclude that in children less than 12 years of age, the guideline-based analysis of FE(NO)-time profiles from Ecomedics at variable times obtains FE(NO) concentrations that are higher and more reproducible than those from the fixed interval of 2 to 4 seconds and higher than NIOX MINO concentrations obtained during a short exhalation (6 seconds). The Ecomedics FE(NO) concentrations of children more than 12 years of age calculated in the interval of 7 to 10 seconds represent plateau values and agree well with NIOX MINO results obtained during a standard 10-second exhalation.

  19. Evolution of irradiation-induced strain in an equiatomic NiFe alloy

    DOE PAGES

    Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...

    2017-07-10

    Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 10 13 to 1 × 10 14 cm -2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strainmore » occurs at higher doses, when large defect clusters, like dislocation loops, dominate.« less

  20. Controllable synthesis of iron oxide nanoparticles in porous NaCl matrix

    NASA Astrophysics Data System (ADS)

    Kurapov, Yury A.; E Litvin, Stanislav; Romanenko, Sergey M.; Didikin, Gennadii G.; Oranskaya, Elena I.

    2017-03-01

    The paper gives the results of studying the structure of porous condensates of Fe + NaCl composition, chemical and phase compositions and dimensions of nanoparticles produced from the vapor phase by EB-PVD. Iron nanoparticles at fast removal from the vacuum oxidize in air and possess significant sorption capacity relative to oxygen and moisture. At heating in air, reduction of porous condensate weight occurs right to the temperature of 650 °C, primarily, due to desorption of physically sorbed moisture. Final oxidation of Fe3O4 to Fe2O3 proceeds in the range of 380 °C-650 °C, due to the remaining fraction of physically adsorbed oxygen. At iron concentrations of up to 10-15 at%, condensate sorption capacity is markedly increased with increase of iron concentration, i.e. of the quantity of fine particles. Increase of condensation temperature is accompanied by increase of nanoparticle size, resulting in a considerable reduction of the total area of nanoparticle surface, and, hence of their sorption capacity. In addition to condensation temperature, the size and phase composition of nanoparticles can also be controlled by heat treatment of initial condensate, produced at low condensation temperatures. Magnetite nanoparticles can be transferred into stable colloid systems.

Top