Sample records for total fixed nitrogen

  1. [Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China].

    PubMed

    Li, Gang; Wang, Li-Juan; Li, Yu-Jie; Qiao, Jiang; Zhang, Hai-Fang; Song, Xiao-Long; Yang, Dian-Lin

    2013-06-01

    By using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequence analysis, this paper studied the nifH gene diversity and community structure of soil nitrogen-fixing microbes in Hulunbeier sandy land of Inner Mongolia under four years management of five vegetation restoration modes, i. e., mixed-planting of Agropyron cristatum, Hedysarum fruticosum, Caragana korshinskii, and Elymus nutans (ACHE) and of Agropyron cristatum and Hedysarum fruticosum (AC), and mono-planting of Caragana korshinskii (UC), Agropyron cristatum (UA), and Hedysarum fruticosum (UH), taking the bare land as the control (CK). There existed significant differences in the community composition of nitrogen-fixing microbes among the five vegetation restoration patterns. The Shannon index of the nifH gene was the highest under ACHE, followed by under AC, UC, UA, and UH, and the lowest in CK. Except that UH and CK had less difference in the Shannon index, the other four vegetation restoration modes had a significantly higher Shannon index than CK (P < 0.05). The phylogenetic analysis showed that the soil nitrogen-fixing microbes under UA, UH, and UC were mainly of cyanobacteria, but the soil nitrogen-fixing microbes under AC and ACHE changed obviously, mainly of proteobacteria, and also of cyanobacteria. The canonical correlation analysis showed that the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen contents under the five vegetation restoration modes had significant effects on the nitrogen-fixing microbial communities, and there existed significant correlations among the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen. It was suggested that the variations of the community composition of soil nitrogen-fixing microbes under the five vegetation restoration modes were resulted from the interactive and combined effects of the soil physical and chemical factors.

  2. Soil nitrogen accretion along a floodplain terrace chronosequence in northwest Alaska: Influence of the nitrogen-fixing shrub Shepherdia Canadensis

    Treesearch

    Charles Rhoades; Dan Binkley; Hlynur Oskarsson; Robert Stottlemyer

    2008-01-01

    Nitrogen enters terrestrial ecosystems through multiple pathways during primary succession. We measured accumulation of total soil nitrogen and changes in inorganic nitrogen (N) pools across a 300-y sequence of river terraces in northwest Alaska and assessed the contribution of the nitrogen-fixing shrub Shepherdia canadensis. Our work compared 5...

  3. A role for the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, in nitrogen cycling for CELSS applications.

    PubMed

    Schneegurt, M A; Sherman, L A

    1996-01-01

    Simple calculations show that fixed nitrogen regeneration in a CELSS may not be as efficient as stowage and resupply of fixed nitrogen compounds. However, fixed nitrogen regeneration may be important for the sustainability and safety of a deployed CELSS. Cyanothece sp. strain ATCC 51142, a unicellular, aerobic, diazotrophic cyanobacterium, with high growth rates and a robust metabolism, is a reasonable candidate organism for a biological, fixed nitrogen regeneration system. In addition, Cyanothece sp. cultures may be used to balance gas exchange ratio imparities between plants and humans. The regeneration of fixed nitrogen compounds by cyanobacterial cultures was examined in the context of a broad computer model/simulation (called CELSS-3D). When cyanothece sp. cultures were used to balance gas exchange imparities, the biomass harvested could supply as much as half of the total fixed nitrogen needed for plant biomass production.

  4. Is nitrogen the next carbon?

    NASA Astrophysics Data System (ADS)

    Battye, William; Aneja, Viney P.; Schlesinger, William H.

    2017-09-01

    Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.

  5. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region.

    PubMed

    Liang, Yueming; Pan, Fujing; He, Xunyang; Chen, Xiangbi; Su, Yirong

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play important roles in plant growth and recovery in degraded ecosystems. The desertification in karst regions has become more severe in recent decades. Evaluation of the fungal and bacterial diversity of such regions during vegetation restoration is required for effective protection and restoration in these regions. Therefore, we analyzed relationships among AM fungi and nitrogen-fixing bacteria abundances, plant species diversity, and soil properties in four typical ecosystems of vegetation restoration (tussock (TK), shrub (SB), secondary forest (SF), and primary forest (PF)) in a karst region of southwest China. Abundance of AM fungi and nitrogen-fixing bacteria, plant species diversity, and soil nutrient levels increased from the tussock to the primary forest. The AM fungus, nitrogen-fixing bacterium, and plant community composition differed significantly between vegetation types (p < 0.05). Plant richness and pH were linked to the community composition of fungi and nitrogen-fixing bacteria, respectively. Available phosphorus, total nitrogen, and soil organic carbon levels and plant richness were positively correlated with the abundance of AM fungi and nitrogen-fixing bacteria (p < 0.05). The results suggested that abundance of AM fungi and nitrogen-fixing bacteria increased from the tussock to the primary forest and highlight the essentiality of these communities for vegetation restoration.

  6. Increase in Dry Weight and Total Nitrogen Content in Zea mays and Setaria italica Associated with Nitrogen-fixing Azospirillum spp. 1

    PubMed Central

    Cohen, Efraim; Okon, Yaacov; Kigel, Jaime; Nur, Israel; Henis, Yigal

    1980-01-01

    The association between nitrogen-fixing bacteria from the genus Azospirillum and the grasses Zea mays and Setaria italica was investigated in sterilized Leonard-jar assemblies. Nitrogen-fixing bacteria isolated from Cynodon dactylon roots in Israel and Azospirillum brasilense (Sp-7, Sp-80, and Cd) were examined. C2H2 reduction activity was detected in systems containing 0.0 to 0.08 but not in those containing 0.16 gram per liter NH4NO3. The organisms tested significantly increased plant dry weight (50-100%), total N content of leaves (50-100%) and C2H4 production (300-1000 nanomoles C2H4 per plant per hour). Highest C2H2 reduction activities were obtained above 30 C and with high light intensities. Significant increases in S. italica dry weight (DW) and nitrogen (N) content were observed in sand (DW = 80%, N = 150%), sandy loam soil (DW = 80%, N = 75%) and loess (DW = 37%, N = 25%). The results obtained in this work clearly demonstrate the potential benefit of inoculating grasses with Azospirillum. PMID:16661514

  7. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    PubMed

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  8. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer.

    PubMed

    Giri, S; Pati, B R

    2004-01-01

    A number of nitrogen fixing bacteria has been isolated from forest phyllosphere on the basis of nitrogenase activity. Among them two best isolates are selected and identified as Corynebacterium sp. AN1 & Flavobacterium sp. TK2 able to reduce 88 and 132 n mol of acetylene (10(8)cells(-1)h(-1)) respectively. They were grown in large amount and sprayed on the phyllosphere of maize plants as a substitute for nitrogenous fertilizer. Marked improvements in growth and total nitrogen content of the plant have been observed by the application of these nitrogen-fixing bacteria. An average 30-37% increase in yield was obtained, which is nearer to chemical fertilizer treatment. Comparatively better effect was obtained by application of Flavobacterium sp.

  9. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes.

    PubMed

    Xia, Xinghui; Wu, Qiong; Zhu, Baotong; Zhao, Pujun; Zhang, Shangwei; Yang, Lingyan

    2015-08-01

    We applied a mixing model based on stable isotopic δ(13)C, δ(15)N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two (210)Pb and (137)Cs dated sediment cores. The results showed that during the past 50years, average contributions of soil and fertilizer, submerged macrophytes, N2-fixing phytoplankton, and non-N2-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N2-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N2-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Soil nitrogen accretion along a floodplain terrace chronosequence in northwest Alaska: Influence of the nitrogen-fixing shrub Shepherdia canadensis

    USGS Publications Warehouse

    Rhoades, Charles; Binkley, Dan; Oskarsson, Hlynur; Stottlemyer, Robert

    2008-01-01

    Nitrogen enters terrestrial ecosystems through multiple pathways during primary succession. We measured accumulation of total soil nitrogen and changes in inorganic nitrogen (N) pools across a 300-y sequence of river terraces in northwest Alaska and assessed the contribution of the nitrogen-fixing shrub Shepherdia canadensis. Our work compared 5 stages of floodplain succession, progressing from a sparsely vegetated silt cap to dense shrubby vegetation, balsam poplar-dominated (Populus balsamifera) and white spruce-dominated (Picea glauca) mixed forests, and old-growth white spruce forest. Total soil N (0–30 cm depth) increased throughout the age sequence, initially by 2.4 g N·m−2·y−1 during the first 120 y of terrace development, then by 1.6 g N·m−2·y−1 during the subsequent 2 centuries. Labile soil N, measured by anaerobic incubation, increased most rapidly during the first 85 y of terrace formation, then remained relatively constant during further terrace development. On recently formed terraces, Shepherdia shrubs enriched soil N pools several-fold compared to soil beneath Salix spp. shrubs or intercanopy sites. Total and labile soil N accretion was proportional to Shepherdia cover during the first century of terrace development, and mineral soil δ15N content indicated that newly formed river terraces receive substantial N through N-fixation. About half the 600 g total N·m−2 accumulated across the river terrace chronosequence occurred during the 120 y when S. canadensis was dominant. Sediment deposited by periodic flooding continued to add N to terrace soils after the decline in Shepherdia abundance and may have contributed 25% of the total N found in the floodplain terrace soils.

  11. Interannual Variations in Global Net Carbon Production in the Absence of Fixed Nitrogen: Implication of New Production Supported by Dinitrogen Fixing Microorganisms

    NASA Astrophysics Data System (ADS)

    Lee, K.; Ko, Y. H.

    2016-12-01

    In the ocean without the measurable levels of nitrate, new production, i.e. the amount of carbon transported from the sunlit upper water to deep water, was estimated by summing the seasonal reduction in the total dissolved inorganic carbon (NCT = CT x 35/S) concentration in the surface mixed layer. Total reduction in the mixed layer NCT inventory in each 4o latitude by 5o longitude was calculated using an annual cycle of NCT, which was deduced from global monthly records of partial pressure of CO2 (based on more than 6.5 million data) and total alkalinity fields using thermodynamic models. The estimation of total NCT reduction for each pixel was then corrected for small changes caused by atmospheric nitrogen deposition and net air-sea CO2 exchange. This novel method yields 0.8 ± 0.3 petagrams of global new production per year (Pg C yr, Pg = 1015 grams), which is likely to be mediated exclusively by dinitrogen (N2) fixing microorganisms. These organisms utilize the inexhaustible pool of dissolved N2 and thereby circumvent nitrate limitation, particularly in the oligotrophic tropical and subtropical ocean.

  12. A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation1[W][OA

    PubMed Central

    Pislariu, Catalina I.; D. Murray, Jeremy; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; A. Benedito, Vagner; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E.; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S.; Chen, Rujin; Udvardi, Michael K.

    2012-01-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging. PMID:22679222

  13. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea.

    PubMed

    Vahtera, Emil; Conley, Daniel J; Gustafsson, Bo G; Kuosa, Harri; Pitkänen, Heikki; Savchuk, Oleg P; Tamminen, Timo; Viitasalo, Markku; Voss, Maren; Wasmund, Norbert; Wulff, Fredrik

    2007-04-01

    Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.

  14. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    PubMed

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of the study as suspended solids discharge improved. Nitrogen fixation was demonstrated throughout the study using an acetylene reduction assay. Based on nitrogen balances around the plant, there was a 55, 354 and 98% increase in nitrogen during Phases 1, 2 and 3 respectively. There was a significant decrease in phosphorus between Phases 1 and 2, and Phase 3 of the study, as well as a significant increase in nitrogen between Phases 2 and 3 which masked the effect of changing the dissolved oxygen. Operation at low dissolved oxygen appeared to confer a competitive advantage to the nitrogen-fixing bacteria.

  15. Microbiological characteristics of a sandy loam soil exposed to tebuconazole and lambda-cyhalothrin under laboratory conditions.

    PubMed

    Cycoń, M; Piotrowska-Seget, Z; Kaczyńska, A; Kozdrój, J

    2006-11-01

    Changes in microbiological properties of a sandy loam soil in response to the addition of different concentrations of fungicide tebuconazole and pyrethroid insecticide lambda-cyhalothrin were assessed under laboratory conditions. To ascertain these changes, the potentially active soil microbial biomass, concentrations of ammonium and nitrate ions, numbers of total culturable bacteria, fungi, nitrogen-fixing bacteria, nitrifying and denitrifying bacteria were determined. Substrate-induced respiration (SIR) increased with time in both control (ranged from 13.7 to 23.7 mg/O(2)/kg(-1)/dry soil/h(-1)) and pesticide treated soil portions. For both pesticides, SIR values ranged from 12-13 to 23-25 mg/O(2)/kg(-1)/dry soil/h(-1) on days 1 and 28, respectively. Also, concentrations of nitrate and ammonium ions, numbers of total culturable bacteria, denitrifying bacteria, nitrogen-fixing bacteria (for the insecticide) and fungi (for the insecticide) were either unaffected or even stimulated by the pesticide treatments. The adverse impacts of the pesticides were observed for nitrate concentrations (on days 1 or 7), numbers of nitrifying bacteria (on day 1), denitrifying bacteria (for the insecticide on days 1 and 14), nitrogen-fixing bacteria (for tebuconazole on day 1) as well as numbers of fungi in tebuconazole-treated soil (on days 1 and 14).

  16. Influence of a native legume on soil N and plant response following prescribed fire in sagebrush steppe

    Treesearch

    Erin M. Goergen; Jeanne C. Chambers

    2009-01-01

    Woodland expansion affects grasslands and shrublands on a global scale. Prescribed fire is a potential restoration tool, but recovery depends on nutrient availability and species responses after burning. Fire often leads to longterm losses in total nitrogen, but presence of native legumes can influence recovery through addition of fixed nitrogen.We examined the effects...

  17. PHYSIOLOGY OF NITROGEN FIXATION BY BACILLUS POLYMYXA

    PubMed Central

    Grau, F. H.; Wilson, P. W.

    1962-01-01

    Grau, F. H. (University of Wisconsin, Madison) and P. W. Wilson. Physiology of nitrogen fixation by Bacillus polymyxa. J. Bacteriol. 83:490–496. 1962.—Of 17 strains of Bacillus polymyxa tested for fixation of molecular nitrogen, 15 fixed considerable quantities (30 to 150 μg N/ml). Two strains of the closely related B. macerans did not use N2, but possibly other members of this species may do so. Confirmation of fixation was obtained by showing incorporation of N15 into cell material. Both iron and molybdenum are specifically required for fixation; without the addition of these metals to the nitrogen-free medium, the growth rate and the total nitrogen fixed were reduced about 30 to 50%. No requirement for added molybdenum could be shown when ammonia was the nitrogen source, and the absence of iron caused only a slight decrease in growth. Washed-cell suspensions of B. polymyxa containing an active hydrogenase readily incorporated N15 into cell materials when provided with mannitol, glucose, or pyruvate but not when formate was the substrate. Hydrogen is a specific inhibitor of fixation, reducing both the rate and final amount of nitrogen fixed; it did not reduce growth on ammonia. Fixation was strictly anaerobic, 1% oxygen in the gas phase being sufficient to stop fixation. Arsenate is a powerful inhibitor of fixation of N2 by washed-cell suspensions of B. polymyxa, indicating that high-energy phosphate may be significant for this process. PMID:13901244

  18. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations.

    PubMed

    Ju, Chao; Xu, Jun; Wu, Xiaohu; Dong, Fengshou; Liu, Xingang; Zheng, Yongquan

    2016-01-01

    A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg(-1) soil [T1]; 1.2 mg kg(-1) soil [T3]; and 4 mg kg(-1) soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO(-)3-N and NH(+)4-N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH(+)4-N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO(-)3-N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH(+)4-N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO(-)3-N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nod factor supply under water stress conditions modulates cytokinin biosynthesis and enhances nodule formation and N nutrition in soybean.

    PubMed

    Prudent, Marion; Salon, Christophe; Smith, Donald L; Emery, R J Neil

    2016-09-01

    Nod factors (NF) are molecules produced by rhizobia which are involved in the N 2 -fixing symbiosis with legume plants, enabling the formation of specific organs called nodules. Under drought conditions, nitrogen acquisition by N 2 -fixation is depressed, resulting in low legume productivity. In this study, we evaluated the effects of NF supply on nitrogen acquisition and on cytokinin biosynthesis of soybean plants grown under drought. NF supply to water stressed soybeans increased the CK content of all organs. The profile of CK metabolites also shifted from t-Z to cis-Z and an accumulation of nucleotide and glucoside conjugates. The changes in CK coincided with enhanced nodule formation with sustained nodule specific activity, which ultimately increased the total nitrogen fixed by the plant.

  20. Seabird nutrient subsidies benefit non-nitrogen fixing trees and alter species composition in South American coastal dry forests.

    PubMed

    Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena

    2014-01-01

    Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not.

  1. Seabird Nutrient Subsidies Benefit Non-Nitrogen Fixing Trees and Alter Species Composition in South American Coastal Dry Forests

    PubMed Central

    Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena

    2014-01-01

    Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not. PMID:24466065

  2. Using biologically-fixed nitrogen by native plants to enhance growth of hardwood saplings

    Treesearch

    J.W. Van Sambeek; Nadia E. Navarrete-Tindall

    2013-01-01

    Available soil nitrogen is frequently low in old-field plantings. Underplanting forage legumes and interplanting nitrogen-fixing shrubs can improve growth of hardwood saplings, especially black walnut and pecan. Most of the nitrogen-fixing shrubs and forbs have been introduced, and several are now considered invasive species. Research trials have been established on...

  3. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground

    PubMed Central

    Kouchi, Hiroshi; Imaizumi-Anraku, Haruko; Hayashi, Makoto; Hakoyama, Tsuneo; Nakagawa, Tomomi; Umehara, Yosuke; Suganuma, Norio; Kawaguchi, Masayoshi

    2010-01-01

    The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant–microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant–microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes. PMID:20660226

  4. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    NASA Astrophysics Data System (ADS)

    Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.

    2017-10-01

    The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  5. Genome-wide transcriptome profiling of nitrogen fixation in Paenibacillus sp. WLY78.

    PubMed

    Shi, Hao-wen; Wang, Li-ying; Li, Xin-xin; Liu, Xiao-meng; Hao, Tian-yi; He, Xiao-juan; Chen, San-feng

    2016-03-01

    Diazotrophic (nitrogen-fixing) Gram-positive and endospore-formed Paenibacillus spp. have potential uses as a bacterial fertilizer in agriculture. The transcriptional analysis of nitrogen fixation in Paenibacillus is lacking, although regulation mechanisms of nitrogen fixation have been well studied in Gram-negative diazotrophs. Here we report a global transcriptional profiling analysis of nitrogen fixation in Paenibacillus sp. WLY78 cultured under N2-fixing condition (without O2 and NH4(+)) and non-N2-fixing condition (air and 100 mM NH4(+)). The nif (nitrogen fixation) gene operon composed of 9 genes (nifBHDKENXhesAnifV) in this bacterium was significantly up-regulated in N2-fixing condition compared to non-N2-fixing condition, indicating that nif gene transcription is strictly controlled by NH4(+) and O2. qRT-PCR confirmed that these nif genes were differently expressed. Non-nif genes specifically required in nitrogen fixation, such as mod, feoAB and cys encoding transporters of Mo, Fe and S atoms, were coordinately transcribed with nif genes in N2-fixing condition. The transcript abundance of suf operon specific for synthesis of Fe-S cluster was up-regulated in N2-fixing condition, suggesting that Sul system, which takes place of nifS and nifU, plays important role in the synthesis of nitrogenase. We discover potential specific electron transporters which might provide electron from Fe protein to MoFe protein of nitrogenase. The glnR whose predicted protein might mediate nif transcription regulation by NH4(+) is significantly up-regulated in N2-fixing condition. The transcription levels of nitrogen metabolism and anaerobic respiration were also analyzed. The nif gene operon (nifBHDKENXhesAnifV) in Paenibacillus sp. WLY78 is significantly up-regulated in N2-fixing condition compared to non-N2-fixing condition. Non-nif genes specifically required in nitrogen fixation were also significantly up-regulated in N2-fixing condition. Fur and Fnr which are involved in anaerobic regulation and GlnR which might mediate nif gene transcription regulation by NH4(+) were significantly up-regulated in N2-fixing condition. This study provides valuable insights into nitrogen fixation process and regulation in Gram-positive firmicutes.

  6. The contribution of nitrogen fixation by cyanobacteria to particulate organic nitrogen in a constructed wetland

    NASA Astrophysics Data System (ADS)

    Zhang, X.; PAN, X.; MA, M.; Li, W.; Cui, L.

    2016-12-01

    N-fixing cyanobacteria can create extra nitrogen for aquatic ecosystems. Previous studies reported inconsistence patterns of the contribution of biological nitrogen fixation to the nitrogen pools in aquatic ecosystems. However, there were few studies concerning the effect of fixed nitrogen by cyanobacteria on the nitrogen removal efficiency in constructed wetlands. This study was performed at the Beijing Wildlife Rescue and Rehabilitation Centre, where a constructed lake for the habitation of waterfowls and a constructed wetland for purifying sewage from the lake are located. The composition of phytoplankton communities, the concentrations of particulate organic nitrogen (PON) and nitrogen fixation rates (Rn) in the constructed lake and the constructed wetland were compared throughout a growing season. We counted the densities of genus Anabaena and Microcystis cells, and explored their relationships with PON and Rn in water. The proportions of PON from various sources, including the ambient N2, waterfowl faeces, wetland sediments and the nitrates, were calculated by the natural abundance of 15N with the IsoSource software. The result revealed that the constructed lake was alternately dominated by Anabaena and Microcystis throughout the growing season, and the Rn was positively correlated with PON and the cell density of Anabaena (P < 0.05). This implied that the fixed nitrogen by N-fixing Anabaena might be utilized by non-N-fixing Microcystis, maintaining the fixed nitrogen with PON form. The ambient N2 composed 0.5 82% and 50.0 84.7% to the PON in the constructed lake and wetland respectively during the growing season. The proportions of PON from N2 increased to more than 80% when the Rn reached the highest in September. The result demonstrated that the nitrogen fixed by Anabaena might be utilized by non-N-fixing Microcystis which formed water blooms in summer. Therefore, the decline of the removal efficiency of PON in the constructed wetland in summer might indirectly result from the nitrogen fixation, since the proliferated algal were difficult to sediment in surface flow wetlands.

  7. Nodulation and Delayed Nodule Senescence: Strategies of Two Bradyrhizobium Japonicum Isolates with High Capacity to Fix Nitrogen.

    PubMed

    López, Silvina M Y; Sánchez, Ma Dolores Molina; Pastorino, Graciela N; Franco, Mario E E; García, Nicolás Toro; Balatti, Pedro A

    2018-03-15

    The purpose of this work was to study further two Bradyrhizobium japonicum strains with high nitrogen-fixing capacity that were identified within a collection of approximately 200 isolates from the soils of Argentina. Nodulation and nitrogen-fixing capacity and the level of expression of regulatory as well as structural genes of nitrogen fixation and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene of the isolates were compared with that of E109-inoculated plants. Both isolates of B. japonicum, 163 and 366, were highly efficient to fix nitrogen compared to commercial strain E109. Isolate 366 developed a higher number and larger biomass of nodules and because of this fixed more nitrogen. Isolate 163 developed the same number and nodule biomass than E109. However, nodules developed by isolate 163 had red interiors for a longer period, had a higher leghemoglobin content, and presented high levels of expression of acdS gene, that codes for an ACC deaminase. In conclusion, naturalized rhizobia of the soils of Argentina hold a diverse population that might be the source of highly active nitrogen-fixing rhizobia, a process that appears to be based on different strategies.

  8. Draft Genome sequence of Frankia sp. Strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Arnab; Beauchemin, Nicholas; Bruce, David

    Members of actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. stain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida.

  9. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    PubMed

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-12-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus, with minimal or zero inputs.

  10. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    PubMed

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-09-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

  11. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper.

    PubMed

    Islam, Md Rashedul; Sultana, Tahera; Joe, M Melvin; Yim, Woojong; Cho, Jang-Cheon; Sa, Tongmin

    2013-12-01

    As a suitable alternative to chemical fertilizers, the application of plant growth-promoting rhizobacteria has been increasing in recent years due to their potential to be used as biofertilizers. In the present work, 13 nitrogen-fixing bacterial strains belonging to 11 different genera were tested for their PGP attributes. All of the strains were positive for 1-aminocyclopropane-1-carboxylate deaminase (ACCD), indole-3-acetic acid (IAA), salicylic acid, and ammonia production while negative for cellulase, pectinase, and hydrocyanic acid production. The strains Pseudomonas sp. RFNB3 and Serratia sp. RFNB14 were the most effective in solubilizing both tri-calcium phosphate and zinc oxide. In addition, all strains except Pseudomonas sp. RFNB3 were able to oxidize sulfur, and six strains were positive for siderophore synthesis. Each strain tested in this study possesses at least four PGP properties in addition to nitrogen fixation. Nine strains were selected based on their multiple PGP potential, particularly ACCD and IAA production, and evaluated for their effects on early growth of tomato and red pepper under gnotobiotic conditions. Bacterial inoculation considerably influenced root and shoot length, seedling vigor, and dry biomass of the two crop plants. Three strains that demonstrated substantial effects on plant performance were further selected for greenhouse trials with red pepper, and among them Pseudomonas sp. RFNB3 resulted in significantly higher plant height (26%) and dry biomass (28%) compared to control. The highest rate of nitrogen fixation, as determined by acetylene reduction assay, occurred in Novosphingobium sp. RFNB21 inoculated red pepper root (49.6 nM of ethylene/h/g of dry root) and rhizosphere soil (41.3 nM of ethylene/h/g of dry soil). Inoculation with nitrogen-fixing bacteria significantly increased chlorophyll content, and the uptake of different macro- and micro-nutrient contents enhancing also in red pepper shoots, in comparison with uninoculated controls. The population estimation studies showed that nitrogen-fixing as well as total heterotrophic bacteria were also noticeably increased in soil and plant samples. The findings of this study suggest that certain nitrogen-fixing strains possessing multiple PGP traits could be applied in the development of biofertilizers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of the Symbiotic Performance of Bradyrhizobium japonicum USDA 110 and Its Derivative I-110 and Discovery of a New Mannitol-Utilizing, Nitrogen-Fixing USDA 110 Derivative.

    PubMed

    Mathis, J N; Israel, D W; Barbour, W M; Jarvis, B D; Elkan, G H

    1986-07-01

    Previously, Bradyrhizobium japonicum USDA 110 was shown to contain colony morphology variants which differed in nitrogen-fixing ability. Mannitol-utilizing derivatives L1-110 and L2-110 have been shown to be devoid of symbiotic nitrogen fixation ability, and non-mannitol-utilizing derivatives I-110 and S-110 have been shown to be efficient at nitrogen fixation. The objectives of this study were to determine the effect of media carbon sources on the symbiotic N(2)-fixing ability of strain USDA 110 and to compare the effectiveness of strain USDA 110 and derivative I-110. Based on acetylene reduction activity and the nitrogen content of 41-day-old soybean plants, neither derivative I-110 nor cultures of USDA 110 grown in media favoring non-mannitol-using derivatives had symbiotic nitrogen fixation that was statistically superior to that of cultures of USDA 110 grown in media favoring mannitol-using derivatives. In another experiment 200 individual nodules formed by strain USDA 110 grown in yeast extract gluconate were screened for colony morphology of occupying variant(s) and acetylene reduction activity. Nodules occupied by mannitol-using derivatives (large colony type on 0.1% yeast extract-0.05% K(2)HPO(4)-0.08% MgSO(4) . 7H(2)O-0.02% NaCl-0.001% FeCl(3) . 6H(2)O [pH 6.7] with 1% mannitol [YEM] plates) had a mean acetylene reduction activity equal to that of nodules occupied by non-mannitol-using derivatives (small colony type on YEM plates). A total of 20 large colonial derivatives and 10 small colonial derivatives (I-110-like) were isolated and purified by repeated culture in YEM and YEG (same as YEM except 1% gluconate instead of 1% mannitol) media, respectively, followed by dilution in solutions containing 0.05% Tween 40. After 25 days of growth, soybean plants inoculated with the large colony isolates had mean whole-plant acetylene reduction activity, whole-plant dry weight, and whole-plant nitrogen contents equal to or better than those of plants inoculated with either the small colony isolates (I-110-like) or the I-110 (non-mannitol-using) derivative. Hence, the existence of a mannitol-utilizing derivative that fixes nitrogen in a culture of strain USDA 110 obtained from the U.S. Department of Agriculture, Beltsville, Md., was established. This new USDA 110 derivative was designated as MN-110 because it was a mannitol-utilizing nitrogen-fixing USDA 110 derivative. This derivative was morphologically indistinguishable from the non-nitrogen-fixing derivative L2-110 found in cultures obtained earlier from the U.S. Department of Agriculture, Beltsville. DNA-DNA homology and restriction enzyme analyses indicated that MN-110 is genetically related to other USDA 110 derivatives that have been characterized previously.

  13. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R; Haselkorn, Robert

    2015-08-11

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein.

  14. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that diazotroph-mediated 15N labeling is a viable technique for tracking nitrogen flow without altering form and concentration of native nitrogen pools in a nitrogen limited ecosystem.

  15. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    NASA Technical Reports Server (NTRS)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  16. Treatment performance, nitrous oxide production and microbial community under low-ammonium wastewater in a CANON process.

    PubMed

    Mi, Weixing; Zhao, Jianqiang; Ding, Xiaoqian; Ge, Guanghuan; Zhao, Rixiang

    2017-12-01

    To investigate the characteristics of anaerobic ammonia oxidation for treating low-ammonium wastewater, a continuous-flow completely autotrophic nitrogen removal over nitrite (CANON) biofilm reactor was studied. At a temperature of 32 ± 1 °C and a pH between 7.5 and 8.2, two operational experiments were performed: the first one fixed the hydraulic retention time (HRT) at 10 h and gradually reduced the influent ammonium concentrations from 210 to 50 mg L -1 ; the second one fixed the influent ammonium concentration at 30 mg L -1 and gradually decreased the HRT from 10 to 3 h. The results revealed that the total nitrogen removal efficiency exceeded 80%, with a corresponding total nitrogen removal rate of 0.26 ± 0.01 kg N m -3 d -1 at the final low ammonium concentration of 30 mg L -1 . Small amounts of nitrous oxide (N 2 O) up to 0.015 ± 0.004 kg m -3 d -1 at the ammonium concentration of 210 mg L -1 were produced in the CANON process and decreased with the decrease in the influent ammonium loads. High-throughput pyrosequencing analysis indicated that the dominant functional bacteria 'Candidatus Kuenenia' under high influent ammonium levels were gradually succeeded by Armatimonadetes_gp5 under low influent ammonium levels.

  17. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor.

    PubMed

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin

    2018-07-01

    The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effects of oxytetracycline on the abundance and community structure of nitrogen-fixing bacteria during cattle manure composting.

    PubMed

    Sun, Jiajun; Qian, Xun; Gu, Jie; Wang, Xiaojuan; Gao, Hua

    2016-09-01

    The effects of oxytetracycline (OTC) on nitrogen-fixing bacterial communities were investigated during cattle manure composting. The abundance and community structure of nitrogen-fixing bacteria were determined by qPCR and denaturing gradient gel electrophoresis (DGGE), respectively. The matrix was spiked with OTC at four levels: no OTC, 10mg/kg dry weight (DW) OTC (L), 60mg/kg DW OTC (M), and 200mg/kg DW OTC (H). The high temperature period of composting was shorter with M and H, and the decline in temperature during the cooling stage was accelerated by OTC. OTC had a concentration-dependent inhibitory effect on the nitrogenase activity during early composting, and the nifH gene abundance declined significantly during the later composting stage. The DGGE profile and statistical analysis showed that OTC changed the nitrogen-fixing bacterial community succession and reduced the community richness and dominance. The nitrogen-fixing bacterial community structure was affected greatly by the high level of OTC. Copyright © 2016. Published by Elsevier Ltd.

  19. Growth and foliar nitrogen concentrations of interplanted native woody legumes and pecan

    Treesearch

    J.W. Van Sambeek; Nadia E. Navarrete-Tindall; Kenneth L. Hunt

    2008-01-01

    The interplanting and underplanting of nodulated nitrogen-fixing plants in tree plantings can increase early growth and foliage nitrogen content of hardwoods, especially black walnut and pecan. Recent studies have demonstrated that some non-nodulated woody legumes may be capable of fixing significant levels of atmospheric nitrogen. The following nine nurse crop...

  20. Effect of mineral phosphates on growth and nitrogen fixation of diazotrophic cyanobacteria Anabaena variabilis and Westiellopsis prolifica.

    PubMed

    Yandigeri, Mahesh S; Yadav, Arvind K; Meena, Kamlesh Kumar; Pabbi, Sunil

    2010-03-01

    The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.

  1. Carbon Metabolism of Prochlorococcus sp. Under Nitrogen Limitation

    NASA Astrophysics Data System (ADS)

    Szul, M.

    2016-02-01

    Phytoplankton growth rates are limited by nutrient availability in the world's euphotic oligotrophic oceans. In these vast biomes, convergent evolutions of the dominant planktonic populations suggest traits such as small genome and cell size provide selective advantages. While these traits have been shown to improve both thrift and competition for scarce nutrients, how fitness is manifest through reductive evolution on metabolisms remains poorly understood. To develop a better understanding of carbon fate and flux under nutrient limitation, we grew axenic Prochlorococcus under nitrogen-limited and nitrogen-replete conditions and measured metabolite pools, the flux of carbon through these pools as well as photosynthesis, photosystem health and efficiency. Our data show cells under nitrogen limitation reduce rates of both metabolite flux and total carbon fixation while maintaining elevated metabolite pool levels and releasing a larger proportion of total fixed carbon to the environment. Accounting for these observations, potential metabolic mechanisms that contribute to the fitness of Prochlorococcus in the nutrient limited oceans will be discussed.

  2. Nutrient removal of effluent from quail farm through cultivation of Wolffia arrhiza.

    PubMed

    Suppadit, T

    2011-08-01

    The objective of this work was to study the nutrient removal using the Wolffiaarrhiza during the treatment of laying quails farm effluent. The relationship between W. arrhiza biomass and treatment time, the change in water qualities, and nitrogen-balance (N-balance) were evaluated. The results showed that a biomass of 12.0g of W. arrhiza per liter of effluent and a treatment period of 30 days were found to provide the best conditions for W. arrhiza's growth and the quality of the treated effluent in terms of biological oxygen demand, suspended solids, total phosphorus, nitrate, total ammonia nitrogen and total Kjeldahl nitrogen. The pH and salinity were similar for each level of biomass. The W. arrhiza biomasses of 4.00-12.0g/l of effluent were suitable for W. arrhiza survival over time. Since W. arrhiza can fix N in the atmosphere, it can grow very well in effluent containing a low level of N. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effect of mineral fertilizers on microbiological and biochemical characteristics of agrochernozem.

    NASA Astrophysics Data System (ADS)

    Tkhakakhova, Azida; Vasilenko, Elena; Kutovaya, Olga

    2013-04-01

    The problem of reproduction of soil fertility of chernozems are solved with integrated action, the ecological condition of the soil can be assessed by the activity of physiological groups of microorganisms. Microorganisms are the most important in the transformation of compounds of biogenic elements and therefore it is very interesting to study the nature of the relationship of some biochemical parameters with the development of microflora and micromycetes eco-trophic groups. Agrochemical researches have been conducted at agroecological station "Stone Steppe" in central Russia. Experiment variants: 1 - Control (without fertilizer); 2 - N10,5 P10,5 K10,5; 3 - N56,5 P56,5 K56,5; 4 - deposit soil. Mobile forms of humic substances (mobile carbon and carbon water extract) have changed during the cultivation of the chernozem soil. Amount of mobile humus has doubled in the variants with the use of mineral fertilizers. It's just mobile humus which determines the soil response to any impact, especially ecological. Water extract carbon - organic matter contained in the soil solution and the subject of assimilation of plants and microorganisms. It increased in agricultural soils. The total nitrogen and nitrate nitrogen amount in the variants of agricultural use is higher than in the deposit soil. This is probably because of the soil aeration, the release of nitrogen from the labile humus due to biological activity and nitrification. Amount of ammonia nitrogen has increased in the variant with the use of high doses of fertilizers. Deposit soil (40 years without agricultural use) has a lower, but more stable microbial activity. Process of anoxic decomposition of plant remains develops more active than others, due to the natural structure of the soil anaerobiosis in the spring time. Processes of nitrogen cycle (nitrogen accumulation - fixation of atmospheric nitrogen, nitrogen losses - denitrification) are progressing very intensively in agricultural soil with fertilizer. Content of humic substances in the soil affects all groups of microorganisms, except actinomycetes and cellulolytices. These microorganisms have an active system of hydrolytic enzymes that taking action on hard organic materials. Movable carbon largely affects the anaerobic microorganisms nitrogen cycle and inverse relationship takes place during with the developing of actinomycetes. Correlation between the aqueous extract carbon with cellulolitic bacteria, aerobic nitrogen-fixing bacteria and amylolytic microorganisms using mineral nitrogen is the highest. Organic material of the soil solution in the growing season associated with NO3-. The content of total nitrogen and nitrate associated with anaerobic denitrifying bacteria, nitrogen-fixing bacteria and amylolytic microorganisms. The content of ammonia nitrogen N-NH4+ renders very strong influence on soil microorganisms. A positive correlation is observed with ammonifiers, nitrogen-fixing bacteria, denitrifying bacteria. There is inverse relationship with actinomycetes (R = - 0,96) and anaerobic cellulolitic bacteria (R = - 0,80). Representatives of these microorganisms are active participants in the carbon cycle; their development in the presence of the ammonium form of nitrogen is possibly suspended. There is a complicated relationship of biochemical indicators of the development of soil microorganisms in the black earth. The problem preserving stable humus and physiologically active mobile forms that affect plant growth can only be achieved while maintaining the living organisms in it.

  4. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean

    PubMed Central

    Muñoz, N; Qi, X; Li, M-W; Xie, M; Gao, Y; Cheung, M-Y; Wong, F-L; Lam, H-M

    2016-01-01

    Biological nitrogen fixation (BNF) in soybeans is a complex process involving the interplay between the plant host and the symbiotic rhizobia. As nitrogen supply has a crucial role in growth and development, higher nitrogen fixation capacity would be important to achieve bigger plants and larger seeds, which were important selection criteria during plant domestication by humans. To test this hypothesis, we monitored the nitrogen fixation-related performance in 31 cultivated and 17 wild soybeans after inoculation with the slow-growing Bradyrhizobium diazoefficiens sp. nov. USDA110 and the fast-growing Sinorhizobium (Ensifer) fredii CCBAU45436. Our results showed that, in general, cultivated soybeans gave better performance in BNF. Electron microscopic studies indicated that there was an exceptionally high accumulation of poly-β-hydroxybutyrate bodies in bacteroids in the nodules of all wild soybeans tested, suggesting that the C/N balance in wild soybeans may not be optimized for nitrogen fixation. Furthermore, we identified new quantitative trait loci (QTLs) for total ureides and total nodule fresh weight by employing a recombinant inbred population composed of descendants from a cross between a cultivated and a wild parent. Using nucleotide diversity (θπ), divergence index (Fst) and distribution of fixed single-nucleotide polymorphisms as parameters, we found that some regions in the total ureides QTL on chromosome 17 and the total nodule fresh weight QTL on chromosome 12 exhibited very low diversity among cultivated soybeans, suggesting that these were traits specially selected during the domestication and breeding process. PMID:27118154

  5. Tracing the evolutionary path to nitrogen-fixing crops.

    PubMed

    Delaux, Pierre-Marc; Radhakrishnan, Guru; Oldroyd, Giles

    2015-08-01

    Nitrogen-fixing symbioses between plants and bacteria are restricted to a few plant lineages. The plant partner benefits from these associations by gaining access to the pool of atmospheric nitrogen. By contrast, other plant species, including all cereals, rely only on the scarce nitrogen present in the soil and what they can glean from associative bacteria. Global cereal yields from conventional agriculture are dependent on the application of massive levels of chemical fertilisers. Engineering nitrogen-fixing symbioses into cereal crops could in part mitigate the economic and ecological impacts caused by the overuse of fertilisers and provide better global parity in crop yields. Comparative phylogenetics and phylogenomics are powerful tools to identify genetic and genomic innovations behind key plant traits. In this review we highlight recent discoveries made using such approaches and we discuss how these approaches could be used to help direct the engineering of nitrogen-fixing symbioses into cereals. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Comparative Genomic Analysis of N2-Fixing and Non-N2-Fixing Paenibacillus spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes

    PubMed Central

    Xie, Jian-Bo; Du, Zhenglin; Bai, Lanqing; Tian, Changfu; Zhang, Yunzhi; Xie, Jiu-Yan; Wang, Tianshu; Liu, Xiaomeng; Chen, Xi; Cheng, Qi; Chen, Sanfeng; Li, Jilun

    2014-01-01

    We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe–S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation. PMID:24651173

  7. Arctic shelves as platforms for biogeochemical activity: Nitrogen and carbon transformations in the Chukchi Sea, Alaska

    NASA Astrophysics Data System (ADS)

    Hardison, Amber K.; McTigue, Nathan D.; Gardner, Wayne S.; Dunton, Kenneth H.

    2017-10-01

    Continental shelves comprise <5% of global ocean area but may account for a disproportionate 30% of primary production, 80% of organic matter burial, and >50% of marine denitrification. The Hanna Shoal region, part of the continental shelf system in the northeast Chukchi Sea, Alaska, is recognized for its high biodiversity and productivity. We investigated the role of sediments in organic matter decomposition and nutrient cycling at five stations on the shallow Hanna Shoal. In particular, we asked (1) how much sediment organic matter is remineralized in the Chukchi Sea, and what factors drive this degradation, (2) do sediments function as a net source for fixed nitrogen (thus fueling primary production in the overlying water), or as a net sink for fixed nitrogen (thereby removing it from the system), and (3) what is the balance between sediment NH4+ uptake and regeneration, and what factors drive NH4+ cycling? We conducted dark sediment core incubations to measure sediment O2 consumption, net N2 and nutrient (NH4+, NO3-, NO2-, PO43-) fluxes, and rates of sediment NH4+ cycling, including uptake and regeneration. Rates of sediment O2 consumption and NH4+ and PO43- efflux suggest that high organic matter remineralization rates occurred in these cold (-2 °C) sediments. We estimated that total organic carbon remineralization accounted for 20-57% of summer export production measured on the Chukchi Shelf. Net N2 release was the dominant nitrogen flux, indicating that sediments acted as a net sink for bioavailable nitrogen via denitrification. Organic carbon remineralization via denitrification accounted for 6-12% of summer export production, which made up 25% of the total organic carbon oxidized in Hanna Shoal sediments. These shallow, productive Arctic shelves are ;hotspots; for organic matter remineralization.

  8. Beneficial effects of aluminum enrichment on nitrogen-fixing cyanobacteria in the South China Sea.

    PubMed

    Liu, Jiaxing; Zhou, Linbin; Ke, Zhixin; Li, Gang; Shi, Rongjun; Tan, Yehui

    2018-04-01

    Few studies focus on the effects of aluminum (Al) on marine nitrogen-fixing cyanobacteria, which play important roles in the ocean nitrogen cycling. To examine the effects of Al on the nitrogen-fixing cyanobacteria, bioassay experiments in the oligotrophic South China Sea (SCS) and culture of Crocosphaera watsonii in the laboratory were conducted. Field data showed that 200 nM Al stimulated the growth and the nitrogenase gene expression of Trichodesmium and unicellular diazotrophic cyanobacterium group A, and the nitrogen fixation rates of the whole community. Laboratory experiments demonstrated that Al stimulated the growth and nitrogen fixation of C. watsonii under phosphorus limited conditions. Both field and laboratory results indicated that Al could stimulate the growth of diazotrophs and nitrogen fixation in oligotrophic oceans such as the SCS, which is likely related to the utilization of phosphorus, implying that Al plays an important role in the ocean nitrogen and carbon cycles by influencing nitrogen fixation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. METHOD OF FIXING NITROGEN FOR PRODUCING OXIDES OF NITROGEN

    DOEpatents

    Harteck, P.; Dondes, S.

    1959-08-01

    A method is described for fixing nitrogen from air by compressing the air, irradiating the compressed air in a nuclear reactor, cooling to remove NO/ sub 2/, compressing the cooled gas, further cooling to remove N/sub 2/O and recirculating the cooled compressed air to the reactor.

  10. The nitrogen cycle on Mars

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  11. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    DOE PAGES

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; ...

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogeneticmore » distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.« less

  12. Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology.

    PubMed

    Liu, Wu-Jun; Zeng, Fan-Xin; Jiang, Hong; Yu, Han-Qing

    2011-02-01

    Fast pyrolysis of three wetland plants (Alligator weed, Oenanthe javanica and Typha angustifolia) in a vertical drop fixed bed reactor was investigated in this study. The experiments were carried out at different pyrolysis temperatures, and the maximum bio-oil yields achieved were 42.3%, 40.2% and 43.6% for Alligator weed, Oenanthe javanica and Typha angustifolia, respectively. The elemental composition of the bio-oil and char were analyzed, and the results show that a low temperature was appropriate for the nitrogen and phosphorus enrichment in char. GC-MS analysis shows that nitrogenous compounds, phenols and oxygenates were the main categories in the bio-oil. A series of leaching tests were carried out to examine the recovery of the nitrogen and phosphorus in the char, and the results indicate that significant fractions of nitrogen and phosphorus could be recovered by leaching process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.

    PubMed

    Rogers, Christian; Oldroyd, Giles E D

    2014-05-01

    Nitrogen is abundant in the earth's atmosphere but, unlike carbon, cannot be directly assimilated by plants. The limitation this places on plant productivity has been circumvented in contemporary agriculture through the production and application of chemical fertilizers. The chemical reduction of nitrogen for this purpose consumes large amounts of energy and the reactive nitrogen released into the environment as a result of fertilizer application leads to greenhouse gas emissions, as well as widespread eutrophication of aquatic ecosystems. The environmental impacts are intensified by injudicious use of fertilizers in many parts of the world. Simultaneously, limitations in the production and supply of chemical fertilizers in other regions are leading to low agricultural productivity and malnutrition. Nitrogen can be directly fixed from the atmosphere by some bacteria and Archaea, which possess the enzyme nitrogenase. Some plant species, most notably legumes, have evolved close symbiotic associations with nitrogen-fixing bacteria. Engineering cereal crops with the capability to fix their own nitrogen could one day address the problems created by the over- and under-use of nitrogen fertilizers in agriculture. This could be achieved either by expression of a functional nitrogenase enzyme in the cells of the cereal crop or through transferring the capability to form a symbiotic association with nitrogen-fixing bacteria. While potentially transformative, these biotechnological approaches are challenging; however, with recent advances in synthetic biology they are viable long-term goals. This review discusses the possibility of these biotechnological solutions to the nitrogen problem, focusing on engineering the nitrogen symbiosis in cereals.

  14. Placing an upper limit on cryptic marine sulphur cycling.

    PubMed

    Johnston, D T; Gill, B C; Masterson, A; Beirne, E; Casciotti, K L; Knapp, A N; Berelson, W

    2014-09-25

    A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, 'cryptic' sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.

  15. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria.

    PubMed

    Omairi-Nasser, Amin; Haselkorn, Robert; Austin, Jotham

    2014-07-01

    Cyanobacteria, formerly called blue-green algae, are abundant bacteria that carry out green plant photosynthesis, fixing CO2 and generating O2. Many species can also fix N2 when reduced nitrogen sources are scarce. Many studies imply the existence of intracellular communicating channels in filamentous cyanobacteria, in particular, the nitrogen-fixing species. In a species such as Anabaena, growth in nitrogen-depleted medium, in which ∼10% of the cells differentiate into anaerobic factories for nitrogen fixation (heterocysts), requires the transport of amino acids from heterocysts to vegetative cells, and reciprocally, the transport of sugar from vegetative cells to heterocysts. Convincing physical evidence for such channels has been slim. Using improved preservation of structure by high-pressure rapid freezing of samples for electron microscopy, coupled with high-resolution 3D tomography, it has been possible to visualize and measure the dimensions of channels that breach the peptidoglycan between vegetative cells and between heterocysts and vegetative cells. The channels appear to be straight tubes, 21 nm long and 14 nm in diameter for the latter and 12 nm long and 12 nm in diameter for the former.-Omairi-Nasser, A., Haselkorn, R., Austin, J. II. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria. © FASEB.

  16. New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehr, J.P.; Mellon, M.T.; Zani, S.

    1998-09-01

    Oligotrophic oceanic waters of the central ocean gyres typically have extremely low dissolved fixed inorganic nitrogen concentrations, but few nitrogen-fixing microorganisms from the oceanic environment have been cultivated. Nitrogenase gene (nifH) sequences amplified directly from oceanic waters showed that the open ocean contains more diverse diazotrophic microbial populations and more diverse habitats for nitrogen fixers than previously observed by classical microbiological techniques. Nitrogenase genes derived from unicellular and filamentous cyanobacteria, as well as from the {alpha} and {gamma} subdivisions of the class Proteobacteria, were found in both the Atlantic and Pacific oceans. nifH sequences that cluster phylogenetically with sequences frommore » sulfate reducers or clostridia were found associated with planktonic crustaceans. Nitrogenase sequence types obtained from invertebrates represented phylotypes distinct from the phylotypes detected in the picoplankton size fraction. The results indicate that there are in the oceanic environment several distinct potentially nitrogen-fixing microbial assemblages that include representatives of diverse phylotypes.« less

  17. Insights into the history of the legume-betaproteobacterial symbiosis.

    PubMed

    Angus, Annette A; Hirsch, Ann M

    2010-01-01

    The interaction between legumes and rhizobia has been well studied in the context of a mutualistic, nitrogen-fixing symbiosis. The fitness of legumes, including important agricultural crops, is enhanced by the plants' ability to develop symbiotic associations with certain soil bacteria that fix atmospheric nitrogen into a utilizable form, namely, ammonia, via a chemical reaction that only bacteria and archaea can perform. Of the bacteria, members of the alpha subclass of the protebacteria are the best-known nitrogen-fixing symbionts of legumes. Recently, members of the beta subclass of the proteobacteria that induce nitrogen-fixing nodules on legume roots in a species-specific manner have been identified. In this issue, Bontemps et al. reveal that not only are these newly identified rhizobia novel in shifting the paradigm of our understanding of legume symbiosis, but also, based on symbiotic gene phylogenies, have a history that is both ancient and stable. Expanding our understanding of novel plant growth promoting rhizobia will be a valuable resource for incorporating alternative strategies of nitrogen fixation for enhancing plant growth.

  18. Application of a Chemiluminescence Detector for the Measurement of Total Oxides of Nitrogen and Ammonia in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.

    1971-01-01

    By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.

  19. Biogeochemistry and biodiversity interact to govern N2 fixers (Fabaceae) across Amazon tropical forests

    NASA Astrophysics Data System (ADS)

    Batterman, Sarah; Hedin, Lars; Lloyd, Jon; Quesada, Beto

    2015-04-01

    Dinitrogen (N2)-fixing trees in the Fabaceae fulfill a central role in tropical rainforests by supplying nitrogen from the atmosphere, yet whether they will support a forest CO2 sink in the future by alleviating nitrogen limitation may depend on whether and how they are controlled by local environmental conditions. Theory predicts that soil nutrients govern the function of N2 fixers, yet there have been no large-scale field-based tests of this idea. Moreover, recent findings indicate that N2-fixing species behave differently in biogeochemical cycles, suggesting that any environmental control may differ by species, and that the diversity of N2-fixing trees may be critical for ensuring tropical forest function. In this talk, we will use the RAINFOR dataset of 108 (~1.0 ha) lowland tropical rainforest plots from across the Amazon Basin to test whether the abundance and diversity of N2-fixing trees are controlled by soil nutrient availability (i.e., increasing with phosphorus and decreasing with nitrogen), or if fixer abundance and diversity simply follow the dynamics of all tree species. We also test an alternative - but not mutually exclusive - hypothesis that the governing factor for fixers is forest disturbance. Results show a surprising lack of control by local nutrients or disturbance on the abundance or diversity of N2 fixers. The dominant driver of fixer diversity was the total number of tree species, with fixers comprising 10% of all species in a forest plot (R2 = 0.75, linear regression). When considering the dominant taxa of N2 fixers (Inga, Swartzia, Tachigali) alone, environmental factors (nitrogen, phosphorus and disturbance) became important and clearly governed their abundance. These taxa, which contain >60% of N2-fixing trees in the data set, appear to have evolved to specialize in different local environmental conditions. The strong biogeochemistry-by-biodiversity interaction observed here points to a need to consider individual species or taxa of N2 fixers and their differential constraints and roles in biogeochemical cycles across tropical forests. Such an individual-based perspective may improve our understanding of the ability of N2 fixers to overcome any future nitrogen constraints as CO2 levels rise in the atmosphere.

  20. Greater Soil Carbon Sequestration under Nitrogen-fixing Trees Compared with Eucalyptus Species.

    Treesearch

    Sigrid C. Resh; Dan Binkley

    2002-01-01

    Forests with nitrogen-fixing trees (N–fixers) typically accumulate more carbon (C) in soils than similar forests without N–fixing trees. This difference may develop from fundamentally different processes, with either greater accumulation of recently fixed C or reduced decomposition of older soil C. We compared the soil C pools under N–fixers with Eucalyptus (non–N–...

  1. Nutrient co-limited Trichodesmium as nitrogen source or sink in a future ocean.

    PubMed

    Walworth, Nathan G; Fu, Fei-Xue; Lee, Michael D; Cai, Xiaoni; Saito, Mak A; Webb, Eric A; Hutchins, David A

    2017-11-27

    Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen-fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally-important N 2 -fixer Trichodesmium fundamentally shifts nitrogen metabolism towards organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)-limitation. Global shifts in transcripts and proteins under high CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically-important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation towards organic nitrogen scavenging and away from N 2 -fixation may reduce new-nitrogen inputs by Trichodesmium , while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open ocean ecosystems. Importance Trichodesmium is among the most biogeochemically-significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open ocean food webs. We used Trichodesmium cultures adapted to high CO 2 for 7 years followed by additional exposure to iron and/or phosphorus (co)-limitation. We show that 'future ocean' conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation, and instead towards upregulation of organic-nitrogen scavenging pathways. We show that Trichodesmium's responses to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes, coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift towards organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO 2 ocean, with potential global implications for ocean carbon and nitrogen cycling. Copyright © 2017 American Society for Microbiology.

  2. Nitrogen management and the future of food: Lessons from the management of energy and carbon

    PubMed Central

    Socolow, Robert H.

    1999-01-01

    The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized. PMID:10339531

  3. ATMOSPHERIC NITROGEN FIXATION BY METHANE-OXIDIZING BACTERIA

    PubMed Central

    Davis, J. B.; Coty, V. F.; Stanley, J. P.

    1964-01-01

    Davis, J. B. (Socony Mobil Oil Co., Inc., Dallas, Tex.), V. F. Coty, and J. P. Stanley. Atmospheric nitrogen fixation by methane-oxidizing bacteria. J. Bacteriol. 88:468–472. 1964.—Methane-oxidizing bacteria capable of fixing atmospheric nitrogen were isolated from garden soil, pond mud, oil field soil, and soil exposed to natural gas, indicating a rather wide prevalence in nature. This may explain the high concentration of organic nitrogen commonly found in soils exposed to gas leakage from pipelines or natural-gas seeps. Added molybdenum was a requirement for growth in a nitrogen-free mineral salts medium. All nitrogen-fixing, methane-oxidizing bacteria isolated were gram-negative, nonsporeforming, usually motile rods. Colonies were light yellow, yellow, or white. The most common isolate, which formed light-yellow colonies, is referred to as Pseudomonas methanitrificans sp. n., and is distinguished from Pseudomonas (Methanomonas) methanica by nitrogen-fixing ability and a preponderance of poly-β-hydroxybutyrate in the cellular lipid fraction. Images PMID:14203365

  4. Iron depletion affects nitrogenase activity and expression of nifH and nifA genes in Herbaspirillum seropedicae.

    PubMed

    Rosconi, Federico; Souza, Emanuel M; Pedrosa, Fabio O; Platero, Raúl A; González, Cecilia; González, Marcela; Batista, Silvia; Gill, Paul R; Fabiano, Elena R

    2006-05-01

    Herbaspirillum seropedicae Z67 is a nitrogen-fixing bacterium able to colonize the rhizosphere and the interior of several plants. As iron is a key element for nitrogen fixation, we examined the response of this microorganism to iron deficiency under nitrogen fixing conditions. We identified a H. seropedicae exbD gene that was induced in response to iron limitation and is involved in iron homeostasis. We found that an exbD mutant grown in iron-chelated medium is unable to fix nitrogen. Moreover, we provide evidence that expression of the nifH and nifA genes is iron dependent in a H. seropedicae genetic background.

  5. Rapid analysis of fertilizers by the direct-reading thermometric method.

    PubMed

    Sajó, I; Sipos, B

    1972-05-01

    The authors have developed rapid methods for the determination of the main components of fertilizers, namely phosphate, potassium and nitrogen fixed in various forms. In the absence of magnesium ions phosphate is precipitated with magnesia mixture; in the presence of magnesium ions ammonium phosphomolybdate is precipitated and the excess of molybdate is reacted with hydrogen peroxide. Potassium is determined by precipitation with silico-fluoride. For nitrogen fixed as ammonium salts the ammonium ions are condensed in a basic solution with formalin to hexamethylenetetramine; for nitrogen fixed as carbamide the latter is decomposed with sodium nitrite; for nitrogen fixed as nitrate the latter is reduced with titanium(III). In each case the temperature change of the test solution is measured. Practically all essential components of fertilizers may be determined by direct-reading thermometry; with this method and special apparatus the time of analysis is reduced to at most about 15 min for any determination.

  6. Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia

    NASA Astrophysics Data System (ADS)

    Dekas, Anne E.; Poretsky, Rachel S.; Orphan, Victoria J.

    2009-10-01

    Nitrogen-fixing (diazotrophic) microorganisms regulate productivity in diverse ecosystems; however, the identities of diazotrophs are unknown in many oceanic environments. Using single-cell-resolution nanometer secondary ion mass spectrometry images of 15N incorporation, we showed that deep-sea anaerobic methane-oxidizing archaea fix N2, as well as structurally similar CN-, and share the products with sulfate-reducing bacterial symbionts. These archaeal/bacterial consortia are already recognized as the major sink of methane in benthic ecosystems, and we now identify them as a source of bioavailable nitrogen as well. The archaea maintain their methane oxidation rates while fixing N2 but reduce their growth, probably in compensation for the energetic burden of diazotrophy. This finding extends the demonstrated lower limits of respiratory energy capable of fueling N2 fixation and reveals a link between the global carbon, nitrogen, and sulfur cycles.

  7. Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-Oxidizing Bacteria

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1998-01-01

    The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-β-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments. PMID:9726896

  8. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interation

    USDA-ARS?s Scientific Manuscript database

    A nitrogen-fixing alfalfa-nodulating microsymbiont, Sinorhizobium meliloti, has a genome consisting of a 3.5 Mbp circular chromosome and two megaplasmids totaling 3.0 Mbp, one a 1.3 Mbp pSymA carrying nonessential ‘accessory’ genes including nif, nod and others involved in plant interaction. Predict...

  9. Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.

    PubMed

    Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil

    2017-04-01

    In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.

  10. The Nitrogen Cycle Before the Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Ward, L. M.; Hemp, J.; Fischer, W. W.

    2016-12-01

    The nitrogen cycle on Earth today is driven by a complex network of microbially-mediated transformations. Atmospheric N2 is fixed into biologically available forms that can either be incorporated into biomass or utilized for bioenergetic redox reactions. The cycle is kept in balance by the return of fixed nitrogen to the atmospheric N2 pool by anammox and denitrification. The early evolution and history of the nitrogen cycle is not well resolved, particularly before the evolution of oxygenic photosynthesis and rise of atmospheric oxygen ca. 2.3 Gya. Ammonia oxidation is a biochemically difficult reaction requiring activation of ammonia using O2 or oxidized nitrogen species that are produced using O2. Before the rise of oxygen, when O2 was largely unavailable, nitrification could not proceed, trapping fixed nitrogen in reduced forms such as ammonia and biomass. Without production of nitrite and nitrate, anammox and denitrification could not occur, preventing return of fixed nitrogen to the N2 pool and leaving the nitrogen cycle unclosed. While it has been hypothesized that ammonia oxidation could be driven anaerobically by processes such as phototrophy or iron reduction, these metabolisms have not been recovered in extant microorganisms, and would require complex unknown biochemical mechanisms. Furthermore, phylogenetic data for the key organisms and biochemical pathways involved in denitrification and anammox suggest that these metabolisms postdate the rise of oxygen. This is particularly clear for steps utilizing enzymes in the Heme-Copper Oxidoreductase superfamily, which appear to have originally evolved for O2 reduction at non-negligible substrate concentrations. Together, this suggests that the Archean nitrogen cycle was not closed, and that nitrogen fixed to reduced forms—either through biological nitrogen fixation or abiotic processes—was not easily returned to the atmospheric N2 pool. In principle, this could have stripped the atmosphere of N2 over timescales of hundreds of Myr, which is consistent with recent paleopressure estimates that suggest < 0.5 bar by late Archean time. The modern, N2-rich atmosphere and (largely) closed biological nitrogen cycle may therefore not have evolved until Proterozoic time, after the rise of oxygen.

  11. Small eukaryotic phytoplankton communities in tropical waters off Brazil are dominated by symbioses between Haptophyta and nitrogen-fixing cyanobacteria.

    PubMed

    Gérikas Ribeiro, Catherine; Lopes Dos Santos, Adriana; Marie, Dominique; Pereira Brandini, Frederico; Vaulot, Daniel

    2018-05-01

    Symbioses between eukaryotic algae and nitrogen-fixing cyanobacteria have been recognized in recent years as a key source of new nitrogen in the oceans. We investigated the composition of the small photosynthetic eukaryote communities associated with nitrogen-fixing cyanobacteria in the Brazilian South Atlantic Bight using a combination of flow cytometry sorting and high throughput sequencing of two genes: the V4 region of 18S rRNA and nifH. Two distinct eukaryotic communities were often encountered, one dominated by the Mamiellophyceae Bathycoccus and Ostreococcus, and one dominated by a prymnesiophyte known to live in symbiosis with the UCYN-A1 nitrogen-fixing cyanobacterium. Among nifH sequences, those from UCYN-A1 were most abundant but three other UCYN-A clades (A2, A3, A4) were also found. Network analysis confirmed the relation between A1 and A2 clades and their hypothesized hosts and pointed out to the potential association between novel clade A4 with Braarudosphaera bigelowii, previously hypothesized to host A2.

  12. High-quality forage production under salinity by using a salt-tolerant AtNXH1-expressing transgenic alfalfa combined with a natural stress-resistant nitrogen-fixing bacterium.

    PubMed

    Stritzler, Margarita; Elba, Pagano; Berini, Carolina; Gomez, Cristina; Ayub, Nicolás; Soto, Gabriela

    2018-06-20

    Alfalfa, usually known as the "Queen of Forages", is the main source of vegetable protein to meat and milk production systems worldwide. This legume is extremely rich in proteins due to its highly efficient symbiotic association with nitrogen-fixing strains. In the last years, alfalfa culture has been displaced to saline environments by other important crops, including major cereals, a fact that has reduced its biomass production and symbiotic nitrogen fixation. In this short communication, we report the high forage production and nutrient quality of alfalfa under saline conditions by alfalfa transformation with the AtNHX1 Na + /H + antiporter and inoculation with the stress-resistant nitrogen-fixing strain Sinorhizobium meliloti B401. Therefore, the incorporation of transgenic traits into salt-sensitive legumes in association with the inoculation with natural stress-resistant isolates could be a robust approach to improve the productivity and quality of these important nitrogen-fixing crops. Copyright © 2018. Published by Elsevier B.V.

  13. Volcano fixes nitrogen into plant-available forms

    USGS Publications Warehouse

    Huebert, B.; Vitousek, P.; Sutton, J.; Elias, T.; Heath, J.; Coeppicus, S.; Howell, S.; Blomquist, B.

    1999-01-01

    Hawaiian montane ecosystems developing on recent tephra deposits contain more fixed nitrogen than conventional sources can explain. Heath and Huebert (1999) demonstrated that cloud water interception is the mechanism by which this extra nitrogen is deposited, but could not identify its source. We show here that atmospheric dinitrogen is fixed at the surface of active lava flows, producing concentrations of NO which are higher than those found in most urban rush hour air pollution. Over a period of hours this NO is blown away from the island and oxidized to nitrate. Interruptions in the trade wind flow can return this nitrate to the island to be deposited in cloud water. Thus, fixation on active lava flows is able to provide nitrogen to developing ecosystems on flows emplaced earlier.

  14. Patterns of nitrogen accumulation and cycling in riparian floodplain ecosystems along the Green and Yampa rivers

    USGS Publications Warehouse

    Carol E., Adair; Binkley, Dan; Andersen, Douglas C.

    2004-01-01

    Patterns of nitrogen (N) accumulation and turnover in riparian systems in semi-arid regions are poorly understood, particularly in those ecosystems that lack substantial inputs from nitrogen fixing vegetation. We investigated sources and fluxes of N in chronosequences of riparian forests along the regulated Green River and the free-flowing Yampa River in semi-arid northwestern Colorado. Both rivers lack significant inputs from N-fixing vegetation. Total soil nitrogen increased through time along both rivers, at a rate of about 7.8 g N m−2 year−1 for years 10–70, and 2.7 g N m−2year−1 from years 70–170. We found that the concentration of N in freshly deposited sediments could account for most of the soil N that accumulated in these floodplain soils. Available N (measured by ion exchange resin bags) increased with age along both rivers, more than doubling in 150 years. In contrast to the similar levels of total soil N along these rivers, N turnover rates, annual N mineralization, net nitrification rates, resin-N, and foliar N were all 2–4 times higher along the Green River than the Yampa River. N mineralization and net nitrification rates generally increased through time to steady or slightly declining rates along the Yampa River. Along the Green River, rates of mineralization and nitrification were highest in the youngest age class. The high levels of available N and N turnover in young sites are not characteristic of riparian chronosequences and could be related to changes in hydrology or plant community composition associated with the regulation of the Green River.

  15. Inhibition of nitrogen-fixing activity of the cyanobiont affects the localization of glutamine synthetase in hair cells of Azolla.

    PubMed

    Uheda, Eiji; Maejima, Kazuhiro

    2009-10-15

    In the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.2) in hair cells, which are specialized cells protruding into the leaf cavity. In order to clarify the regulatory mechanism underlying ammonium assimilation in the Azolla-Anabaena association, Azolla plants were grown under an argon environment (Ar), in which the nitrogen-fixing activity of the cyanobiont was inhibited specifically and completely. The localization of GS in hair cells was determined by immunoelectron microscopy and quantitative analysis of immunogold labeling. Azolla plants grew healthily under Ar when nitrogen sources, such as NO(3)(-) and NH(4)(+), were provided in the growth medium. Both the number of cyanobacterial cells per leaf and the heterocyst frequency of the plants under Ar were similar to those of plants in a nitrogen environment (N(2)). In hair cells of plants grown under Ar, regardless of the type of nitrogen source provided, only weak labeling of GS was observed in the cytoplasm and in chloroplasts. In contrast, in hair cells of plants grown under N(2), abundant labeling of GS was observed in both sites. These findings indicate that specific inhibition of the nitrogen-fixing activity of the cyanobiont affects the localization of GS isoenzymes. Ammonium fixed and released by the cyanobiont could stimulate GS synthesis in hair cells. Simultaneously, the abundant GS, probably GS1, in these cells, could assimilate ammonium rapidly.

  16. Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions.

    PubMed

    Alagesan, Swathi; Gaudana, Sandeep B; Sinha, Avinash; Wangikar, Pramod P

    2013-11-01

    Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several "proof of principle" studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by (13)C metabolic flux analysis ((13)C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report (13)C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of (12)C and (13)C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism's preferred mode under nitrogen-fixing conditions. The (13)C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism's distinct metabolic features under nitrogen-fixing and -non-fixing conditions.

  17. Tn5-Mob transposon mediated transfer of salt tolerance and symbiotic characteristics between Rhizobia genera.

    PubMed

    Yang, S; Wu, Z; Gao, W; Li, J

    1993-01-01

    Rhizobium meliloti 042B is a fast-growing, salt-tolerant and high efficiency nitrogen-fixing symbiont with alfalfa. Bradyrhizobium japonicum USDA110 grows slowly, and cannot grow in YMA medium containing 0.1M NaCl, but nodulates and fixed nitrogen efficiently with soybean. Eighty-six transconjugants, called SR, were obtained by inserting Tn5-Mob randomly into genomes of 042B using pSUP5011 and helper plasmid RP4. Selecting 4 SR strains randomly and introducing DNA fragment of SR into USDA110 with helper plasmid R68.45 by triparental mating, 106 transconjugants, called BSR, were constructed. Most of BSR strains had the fast-growing phenotype and could tolerate 0.3-0.5M NaCl generally. Some of them produced melanine. When soybean and alfalfa were inoculated with these transconjugants BSR, 47 out of 90 BSR were found to nodulate in both of these plants, but no nitrogenase activity was observed with alfalfa; 26 strains could only nodulate and fix nitrogen in soybean; 13 strains could nodulate in alfalfa but did not fix nitrogen; 4 strains failed to nodulate in either soybean or alfalfa. Among them, 4 transconjugants which tolerated and fixed nitrogen efficiently in soybean were constructed.

  18. Nitrogen fixation and nifH diversity in human gut microbiota

    PubMed Central

    Igai, Katsura; Itakura, Manabu; Nishijima, Suguru; Tsurumaru, Hirohito; Suda, Wataru; Tsutaya, Takumi; Tomitsuka, Eriko; Tadokoro, Kiyoshi; Baba, Jun; Odani, Shingo; Natsuhara, Kazumi; Morita, Ayako; Yoneda, Minoru; Greenhill, Andrew R.; Horwood, Paul F.; Inoue, Jun-ichi; Ohkuma, Moriya; Hongoh, Yuichi; Yamamoto, Taro; Siba, Peter M.; Hattori, Masahira; Minamisawa, Kiwamu; Umezaki, Masahiro

    2016-01-01

    It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A 15N2 incorporation assay showed significant enrichment of 15N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance. PMID:27554344

  19. Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia.

    PubMed

    Carro, Lorena; Pujic, Petar; Alloisio, Nicole; Fournier, Pascale; Boubakri, Hasna; Hay, Anne E; Poly, Franck; François, Philippe; Hocher, Valerie; Mergaert, Peter; Balmand, Severine; Rey, Marjolaine; Heddi, Abdelaziz; Normand, Philippe

    2015-08-01

    Actinorhizal plant growth in pioneer ecosystems depends on the symbiosis with the nitrogen-fixing actinobacterium Frankia cells that are housed in special root organs called nodules. Nitrogen fixation occurs in differentiated Frankia cells known as vesicles. Vesicles lack a pathway for assimilating ammonia beyond the glutamine stage and are supposed to transfer reduced nitrogen to the plant host cells. However, a mechanism for the transfer of nitrogen-fixation products to the plant cells remains elusive. Here, new elements for this metabolic exchange are described. We show that Alnus glutinosa nodules express defensin-like peptides, and one of these, Ag5, was found to target Frankia vesicles. In vitro and in vivo analyses showed that Ag5 induces drastic physiological changes in Frankia, including an increased permeability of vesicle membranes. A significant release of nitrogen-containing metabolites, mainly glutamine and glutamate, was found in N2-fixing cultures treated with Ag5. This work demonstrates that the Ag5 peptide is central for Frankia physiology in nodules and uncovers a novel cellular function for this large and widespread defensin peptide family.

  20. Two MicroRNAs Linked to Nodule Infection and Nitrogen-Fixing Ability in the Legume Lotus japonicus1[W

    PubMed Central

    De Luis, Ana; Markmann, Katharina; Cognat, Valérie; Holt, Dennis B.; Charpentier, Myriam; Parniske, Martin; Stougaard, Jens; Voinnet, Olivier

    2012-01-01

    Legumes overcome nitrogen shortage by developing root nodules in which symbiotic bacteria fix atmospheric nitrogen in exchange for host-derived carbohydrates and mineral nutrients. Nodule development involves the distinct processes of nodule organogenesis, bacterial infection, and the onset of nitrogen fixation. These entail profound, dynamic gene expression changes, notably contributed to by microRNAs (miRNAs). Here, we used deep-sequencing, candidate-based expression studies and a selection of Lotus japonicus mutants uncoupling different symbiosis stages to identify miRNAs involved in symbiotic nitrogen fixation. Induction of a noncanonical miR171 isoform, which targets the key nodulation transcription factor Nodulation Signaling Pathway2, correlates with bacterial infection in nodules. A second candidate, miR397, is systemically induced in the presence of active, nitrogen-fixing nodules but not in that of noninfected or inactive nodule organs. It is involved in nitrogen fixation-related copper homeostasis and targets a member of the laccase copper protein family. These findings thus identify two miRNAs specifically responding to symbiotic infection and nodule function in legumes. PMID:23071252

  1. Biological nitrogen fixation in non-legume plants.

    PubMed

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  2. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece

    PubMed Central

    Brauer, Verena S; Stomp, Maayke; Rosso, Camillo; van Beusekom, Sebastiaan AM; Emmerich, Barbara; Stal, Lucas J; Huisman, Jef

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of argumentation for the globally important group of unicellular diazotrophic cyanobacteria, and pose the following two hypotheses: (i) nitrogen fixation is limited by nitrogenase activity at low temperature and by oxygen diffusion at high temperature, which is manifested by a shift from strong to weak temperature dependence of nitrogenase activity, and (ii) high respiration rates are required to maintain very low levels of oxygen for nitrogenase, which results in enhanced respiratory cost per molecule of fixed nitrogen at low temperature. We tested these hypotheses in laboratory experiments with the unicellular cyanobacterium Cyanothece sp. BG043511. In line with the first hypothesis, the specific growth rate increased strongly with temperature from 18 to 30 °C, but leveled off at higher temperature under nitrogen-fixing conditions. As predicted by the second hypothesis, the respiratory cost of nitrogen fixation and also the cellular C:N ratio rose sharply at temperatures below 21 °C. In addition, we found that low temperature caused a strong delay in the onset of the nocturnal nitrogenase activity, which shortened the remaining nighttime available for nitrogen fixation. Together, these results point at a lower temperature limit for unicellular nitrogen-fixing cyanobacteria, which offers an explanation for their (sub)tropical distribution and suggests expansion of their biogeographical range by global warming. PMID:23823493

  3. Algal community characteristics and response to nitrogen and phosphorus concentrations in streams in the Ozark Plateaus, Southern Missouri, 1993-95 and 2006-07

    USGS Publications Warehouse

    Femmer, Suzanne R.

    2012-01-01

    Nutrient and algae data were collected in the 1990s and 2000s by the U.S. Geological Survey for the National Water- Quality Assessment program in the Ozark Highlands, southern Missouri. These data were collected at sites of differing drainage area, land use, nutrient concentrations, and physiography. All samples were collected at sites with a riffle/pool structure and cobble/gravel bed material. A total of 60 samples from 45 sites were available for analyses to determine relations between nutrient concentrations and algal community structure in this region. This information can be used by the Missouri Department of Natural Resources to develop the State's nutrient criteria plan. Water samples collected for this study had total nitrogen concentrations ranging from 0.07 to 4.41 milligram per liter (mg/L) with a median of 0.26 mg/L, and total phosphorus concentrations ranging from 0.003 to 0.78 mg/L with a median of 0.007 mg/L. These nutrient concentrations were transformed into nutrient categories consisting of varying percentiles of data. Algal community data were entered into the U.S. Geological Survey's Algae Data Analysis System for the computation of more than 250 metrics. These metrics were correlated with nutrient categories, and four metrics with the strongest relation with the nutrient data were selected. These metrics were Organic Nitrogen Tolerance, Oxygen Tolerance, Bahls Pollution Class, and the Saprobien index with the 25th and 80th percentile nutrient categories. These data indicate that near the 80th percentile (Total Nitrogen = 0.84 mg/L, Total Phosphorus = 0.035 mg/L) the algae communities significantly changed from nitrogen-fixing species dominance to those species more tolerant of eutrophic conditions.

  4. Improving the Sustainability of Oak Woodland Forage and Productivity in San Diego County Through the Exploration for and Introduction of Nitrogen Fixing Annual Legumes

    Treesearch

    Walter L. Graves; Melvin D. Rumbaugh; Wesley M. Jarrell

    1991-01-01

    The oak woodlands of San Diego County are below their potential productivity due to the low levels of the most needed plant nutrient, nitrogen, associated with the common soils of this zone. Atmospheric nitrogen fixing legumes could address this deficiency. However, because of limiting environmental constraints, adapted commercial legume cultivars have not been...

  5. Screening and Selection of Maize to Enhance Associative Bacterial Nitrogen Fixation 1

    PubMed Central

    Ela, Stephen W.; Anderson, Mary Ann; Brill, Winston J.

    1982-01-01

    The ability of maize (corn, Zea mays L.) to support bacterial nitrogen fixation in or on maize roots has been increased, through screening and selection. Isotopic N fixed from 15N2 was found on the roots. The nitrogen-fixing association was found in germplasm from tropical maize, but this activity can be transferred to maize currently used in midwestern United States agriculture. PMID:16662718

  6. Transcriptome analysis of two recombinant inbred lines of common bean contrasting for symbiotic nitrogen fixation

    PubMed Central

    Kamfwa, Kelvin; Zhao, Dongyan; Kelly, James D.

    2017-01-01

    Common bean (Phaseolus vulgaris L.) fixes atmospheric nitrogen (N2) through symbiotic nitrogen fixation (SNF) at levels lower than other grain legume crops. An understanding of the genes and molecular mechanisms underlying SNF will enable more effective strategies for the genetic improvement of SNF traits in common bean. In this study, transcriptome profiling was used to identify genes and molecular mechanisms underlying SNF differences between two common bean recombinant inbred lines that differed in their N-fixing abilities. Differential gene expression and functional enrichment analyses were performed on leaves, nodules and roots of the two lines when grown under N-fixing and non-fixing conditions. Receptor kinases, transmembrane transporters, and transcription factors were among the differentially expressed genes identified under N-fixing conditions, but not under non-fixing conditions. Genes up-regulated in the stronger nitrogen fixer, SA36, included those involved in molecular functions such as purine nucleoside binding, oxidoreductase and transmembrane receptor activities in nodules, and transport activity in roots. Transcription factors identified in this study are candidates for future work aimed at understanding the functional role of these genes in SNF. Information generated in this study will support the development of gene-based markers to accelerate genetic improvement of SNF in common bean. PMID:28192540

  7. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales.

    PubMed

    Carvalho, Fabíola M; Souza, Rangel C; Barcellos, Fernando G; Hungria, Mariangela; Vasconcelos, Ana Tereza R

    2010-02-08

    Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in common stages of host infection. The phylogenetic analysis for many distinct operons involved in these processes emphasizes the relevance of horizontal gene transfer events in the symbiotic and pathogenic similarity.

  8. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    PubMed

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1-5.

    PubMed

    Li, Yating; Wang, Yanru; Fu, Lin; Gao, Yizhan; Zhao, Haixia; Zhou, Weizhi

    2017-04-01

    An aerobic marine bacterium Vibrio sp. Y1-5 was screened to achieve efficient nitrate and ammonium removal simultaneously and fix nitrogen in cells without N loss. Approximately 98.0% of nitrate (100mg/L) was removed in 48h through assimilatory nitrate reduction and nitrate reductase was detected in the cytoplasm. Instead of nitrification, the strain assimilated ammonium directly, and it could tolerate as high as 1600mg/L ammonium concentration while removing 844.6mg/L. In addition, ammonium assimilation occurred preferentially in the medium containing nitrate and ammonium with a total nitrogen (TN) removal efficiency of 80.4%. The results of nitrogen balance and Fourier infrared spectra illustrated that the removed nitrogen was all transformed to protein or stored as organic nitrogen substances in cells and no N was lost in the process. Toxicological studies with the brine shrimp species Artemia naupliia indicated that Vibrio sp. Y1-5 can be applied in aquatic ecosystems safely. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation.

    PubMed

    Petersen, Jillian M; Kemper, Anna; Gruber-Vodicka, Harald; Cardini, Ulisse; van der Geest, Matthijs; Kleiner, Manuel; Bulgheresi, Silvia; Mußmann, Marc; Herbold, Craig; Seah, Brandon K B; Antony, Chakkiath Paul; Liu, Dan; Belitz, Alexandra; Weber, Miriam

    2016-10-24

    Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity.

  11. Denitrification and nitrogen transport in a coastal aquifer receiving wastewater discharge

    USGS Publications Warehouse

    DeSimone, L.A.; Howes, B.L.

    1996-01-01

    Denitrification and nitrogen transport were quantified in a sandy glacial aquifer receiving wastewater from a septage-treatment facility on Cape Cod, MA. The resulting groundwater plume contained high concentrations of NO3- (32 mg of NL-1), total dissolved nitrogen (40.5 mg of N L-1), and dissolved organic carbon (1.9 mg of C L-1) and developed a central anoxic zone after 17 months of effluent discharge. Denitrifying activity was measured using four approaches throughout the major biogeochemical zones of the plume. Three approaches that maintained the structure of aquifer materials yielded comparable rates: acetylene block in intact sediment cores, 9.6 ng of N cm-3 d-1 (n = 61); in situ N2 production, 3.0 ng of N cm-3 d-1 (n = 11); and in situ NO3- depletion, 7.1 ng of N cm-3 d-1 (n = 3). In contrast, the mixing of aquifer materials using a standard slurry method yielded rates that were more than 15-fold higher (150 ng of N cm-3 d-1, n = 16) than other methods. Concentrations and ??15N of groundwater and effluent N2, NO3-, and NH4+ were consistent with the lower rates of denitrification determined by the intact-core or in situ methods. These methods and a plumewide survey of excess N2 indicate that 2-9% of the total mass of fixed nitrogen recharged to the anoxic zone of the plume was denitrified during the 34-month study period. Denitrification was limited by organic carbon (not NO3-) concentrations, as evidenced by a nitrate and carbon addition experiment, the correlation of denitrifying activity with in situ concentrations of dissolved organic carbon, and the assessments of available organic carbon in plume sediments. Carbon limitation is consistent with the observed conservative transport of 85-96% of the nitrate in the anoxic zone. Although denitrifying activity removed a significant amount (46250 kg) of fixed nitrogen during transport, the effects of aquifer denitrification on the nitrogen load to receiving ecosystems are likely to be small (<10%).

  12. Carbon and nitrogen stable isotopes of leaves, litter and soils of the coastal Atlantic Forest of Southeast Brazil along an altitudinal range

    NASA Astrophysics Data System (ADS)

    Lins, S. M.; Della Coletta, L.; Ravagnani, E.; Gragnani, J. G.; Antonio, J.; Mazzi, E. A.; Martinelli, L. A.

    2012-12-01

    In this study the carbon and nitrogen concentrations, and stable carbon (δ13C) and stable nitrogen (δ15N) isotopic composition were determined in samples of Fabaceae and non Fabaceae leaves, litter, and soil samples in two different altitudes (Lowland and Montane Forests) of the coastal Atlantic Forest situated in the Southeast region of Brazil. In both altitudes there were two main differences between Fabaceae and non Fabaceae specimens. Fabaceae had a higher foliar nitrogen content and lower foliar δ15N than non Fabaceae specimens. As a consequence it seems that most of the Fabaceae specimens are fixing nitrogen from the atmosphere in both altitudes. This fact is contrary to most of other studies that found that most Fabaceae are not fixing nitrogen in tropical forests. We speculate that the main reason that Fabaceae are actively fixing nitrogen in the coastal Atlantic Forest is the steepness of the terrain that leads to frequent landslides, causing frequent disturbances of the nitrogen cycle, fostering nitrogen fixation. The main difference between the Lowland and the Montane Forest plots was the higher δ15N in the former in comparison with the later. We speculated that this difference is caused by larger losses of nitrogen by denitrification and riverine output, leading an enriched 15N substrate.

  13. Algal-mediated ecosystem exchanges in the Eel River drainage network: towards photogrammetric mapping of color to function

    NASA Astrophysics Data System (ADS)

    Power, M. E.; Welter, J.; Furey, P.; Lowe, R.; Finlay, J. C.; Hondzo, M.; Limm, M.; Bode, C.; Dietrich, W. E.

    2009-12-01

    Seasonal algal proliferations in river networks are typically short-lived (weeks-months) but spatially extensive. They mediate important ecological and biogeochemical exchanges within and between ecosystems. We are investigating correspondence of assemblage color with ecosystem function in the nitrogen-limited Eel River of northern California. During summer base flow following winter floods, Eel algal assemblages are dominated by the green macroalga Cladophora glomerata. New growths are green, but blooms turn yellow as Cladophora filaments are colonized by epiphytic diatoms (Cocconeis spp.). Later, proliferations turn rust colored as epiphytic assemblages became dominated by Epithemia spp., diatoms that contain nitrogen-fixing cyanobacterial endosymbionts. Epithemia-encrusted Cladophora occurs at and downstream of reaches draining > 100 km2 (where summer inundated average channel widths > 25 m), coinciding with a threshold increase in concentration of total dissolved nitrogen. Areal nitrogen fixation rates are 14x higher in rusty algal proliferations than in green, and 3-4x higher than in yellow Cladophora mats. Corresponding increases in insect emergence suggest that nitrogen fixed by cyanobacterial endosymbionts is highly edible. Rates of biomass emergence from rusty Cladophora mats are 12-17 times greater than from green mats, and 8-10 times greater from rusty than from yellow Cladophora mats, because larger taxa emerge from rusty mats (Chironominae versus Ceratopogonidae in yellow mats). Photogrammetric detection of spatial coverage and color changes in algal proliferations may help us track nitrogen fluxes they mediate (riverine loading from the atmosphere via fixation, river to the watershed return via insect emergence) that link riverine to aerial, watershed, and potentially nearshore marine ecosystems at reach to basin scales.

  14. Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert.

    PubMed

    Arndt, Stefan K; Kahmen, Ansgar; Arampatsis, Christina; Popp, Marianne; Adams, Mark

    2004-11-01

    The Central Asian Taklamakan desert is characterized by a hyperarid climate with less than 50 mm annual precipitation but a permanent shallow groundwater table. The perched groundwater (2-16 m) could present a reliable and constant source of nitrogen throughout the growing season and help overcome temporal nitrogen limitations that are common in arid environments. We investigated the importance of groundwater and nitrogen fixation in the nitrogen metabolism of desert plants by assessing the possible forms and availability of soil N and atmospheric N and the seasonal variation in concentration as well as isotopic composition of plant N. Water availability was experimentally modified in the desert foreland through simulated flooding to estimate the contribution of surface water and temporally increased soil moisture for nutrient uptake and plant-water relations. The natural vegetation of the Taklamakan desert is dominated by plants with high foliar nitrogen concentrations (2-3% DM) and leaf nitrate reductase activity (NRA) (0.2-1 micromol NO2- g(-1) FW h(-1)). There is little evidence that nitrogen is a limiting resource as all perennial plants exhibited fast rates of growth. The extremely dry soil conditions preclude all but minor contributions of soil N to total plant N so that groundwater is suggested as the dominant source of N with concentrations of 100 microM NO3-. Flood irrigation had little beneficial effect on nitrogen metabolism and growth, further confirming the dependence on groundwater. Nitrogen fixation was determined by the 15N natural abundance method and was a significant component of the N-requirement of the legume Alhagi, the average contribution of biologically fixed nitrogen in Alhagi was 54.8%. But nitrogen fixing plants had little ecological advantage owing to the more or less constant supply of N available from groundwater. From our data we conclude that the perennial species investigated have adapted to the environmental conditions through development of root systems that access groundwater to satisfy demands for both water and nutrients. This is an ecologically favourable strategy since only groundwater is a predictable and stable resource.

  15. An Energy Balance Model to Predict Chemical Partitioning in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; DesMarais, David J.

    2006-01-01

    Studies of biosignature formation in photosynthetic microbial mat communities offer potentially useful insights with regards to both solar and extrasolar astrobiology. Biosignature formation in such systems results from the chemical transformation of photosynthetically fixed carbon by accessory microorganisms. This fixed carbon represents a source not only of reducing power, but also energy, to these organisms, so that chemical and energy budgets should be coupled. We tested this hypothesis by applying an energy balance model to predict the fate of photosynthetic productivity under dark, anoxic conditions. Fermentation of photosynthetically fixed carbon is taken to be the only source of energy available to cyanobacteria in the absence of light and oxygen, and nitrogen fixation is the principal energy demand. The alternate fate for fixed carbon is to build cyanobacterial biomass with Redfield C:N ratio. The model predicts that, under completely nitrogen-limited conditions, growth is optimized when 78% of fixed carbon stores are directed into fermentative energy generation, with the remainder allocated to growth. These predictions were compared to measurements made on microbial mats that are known to be both nitrogen-limited and populated by actively nitrogen-fixing cyanobacteria. In these mats, under dark, anoxic conditions, 82% of fixed carbon stores were diverted into fermentation. The close agreement between these independent approaches suggests that energy balance models may provide a quantitative means of predicting chemical partitioning within such systems - an important step towards understanding how biological productivity is ultimately partitioned into biosignature compounds.

  16. Biological nitrogen fixation in non-legume plants

    PubMed Central

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-01-01

    Background Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Scope Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Conclusions Understanding the molecular mechanism of BNF outside the legume–rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops. PMID:23478942

  17. Quantifying the contribution of single microbial cells to nitrogen assimilation in aquatic environments

    NASA Astrophysics Data System (ADS)

    Musat, N.; Kuypers, M. M. M.

    2009-04-01

    Nitrogen is a primary productivity-limiting nutrient in the ocean. The nitrogen limitation of productivity may be overcome by organisms capable of converting dissolved N2 into fixed nitrogen available to the ecosystem. In many oceanic regions, growth of phytoplankton is nitrogen limited because fixation of N2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, NO3-) by anaerobic microbial processes. The amount of available fixed nitrogen in the ocean can be changed by the biological processes of heterotrophic denitrification, anaerobic ammonium oxidation and nitrogen fixation. For a complete understanding of nitrogen cycling in the ocean a link between the microbial and biogeochemical processes at the single cell level and their role in global biogeochemical cycles is essential. Here we report a recently developed method, Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS) and its potential application to study the nitrogen-cycle processes in the ocean. The method allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. It uses horseradish-peroxidase-labeled oligonucleotide probes and fluorine-containing tyramides for the identification of microorganisms in combination with stable-isotope-labeling experiments for analyzing the metabolic function of single microbial cells. HISH-SIMS was successfully used to study nitrogen assimilation and nitrogen fixation by anaerobic phototrophs in a meromictic alpine lake. The HISH-SIMS method enables studies of the ecophysiology of individual, phylogenetically identified microorganisms involved in the N-cycle and allows us to track the flow of nitrogen within microbial communities.

  18. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes

    PubMed Central

    Mus, Florence; Crook, Matthew B.; Garcia, Kevin; Garcia Costas, Amaya; Geddes, Barney A.; Kouri, Evangelia D.; Paramasivan, Ponraj; Ryu, Min-Hyung; Oldroyd, Giles E. D.; Poole, Philip S.; Udvardi, Michael K.; Voigt, Christopher A.

    2016-01-01

    Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology. PMID:27084023

  19. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

    PubMed Central

    Stern, Jennifer C.; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P.; Archer, P. Douglas; Buch, Arnaud; Brunner, Anna E.; Coll, Patrice; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.; Mahaffy, Paul R.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; - Torres, F. Javier Martín; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d’Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2015-01-01

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544

  20. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars.

    PubMed

    Stern, Jennifer C; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P; Archer, P Douglas; Buch, Arnaud; Brunner, Anna E; Coll, Patrice; Eigenbrode, Jennifer L; Fairen, Alberto G; Franz, Heather B; Glavin, Daniel P; Kashyap, Srishti; McAdam, Amy C; Ming, Douglas W; Steele, Andrew; Szopa, Cyril; Wray, James J; Martín-Torres, F Javier; Zorzano, Maria-Paz; Conrad, Pamela G; Mahaffy, Paul R

    2015-04-07

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.

  1. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia

    PubMed Central

    Zhang, Xinning; Sigman, Daniel M.; Morel, François M. M.; Kraepiel, Anne M. L.

    2014-01-01

    Biological nitrogen fixation constitutes the main input of fixed nitrogen to Earth’s ecosystems, and its isotope effect is a key parameter in isotope-based interpretations of the N cycle. The nitrogen isotopic composition (δ15N) of newly fixed N is currently believed to be ∼–1‰, based on measurements of organic matter from diazotrophs using molybdenum (Mo)-nitrogenases. We show that the vanadium (V)- and iron (Fe)-only “alternative” nitrogenases produce fixed N with significantly lower δ15N (–6 to –7‰). An important contribution of alternative nitrogenases to N2 fixation provides a simple explanation for the anomalously low δ15N (<–2‰) in sediments from the Cretaceous Oceanic Anoxic Events and the Archean Eon. A significant role for the alternative nitrogenases over Mo-nitrogenase is also consistent with evidence of Mo scarcity during these geologic periods, suggesting an additional dimension to the coupling between the global cycles of trace elements and nitrogen. PMID:24639508

  2. Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria

    PubMed Central

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A.; Pakrasi, Himadri B.

    2011-01-01

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. PMID:21972240

  3. Construction of Signature-tagged Mutant Library in Mesorhizobium loti as a Powerful Tool for Functional Genomics

    PubMed Central

    Shimoda, Yoshikazu; Mitsui, Hisayuki; Kamimatsuse, Hiroko; Minamisawa, Kiwamu; Nishiyama, Eri; Ohtsubo, Yoshiyuki; Nagata, Yuji; Tsuda, Masataka; Shinpo, Sayaka; Watanabe, Akiko; Kohara, Mitsuyo; Yamada, Manabu; Nakamura, Yasukazu; Tabata, Satoshi; Sato, Shusei

    2008-01-01

    Rhizobia are nitrogen-fixing soil bacteria that establish endosymbiosis with some leguminous plants. The completion of several rhizobial genome sequences provides opportunities for genome-wide functional studies of the physiological roles of many rhizobial genes. In order to carry out genome-wide phenotypic screenings, we have constructed a large mutant library of the nitrogen-fixing symbiotic bacterium, Mesorhizobium loti, by transposon mutagenesis. Transposon insertion mutants were generated using the signature-tagged mutagenesis (STM) technique and a total of 29 330 independent mutants were obtained. Along with the collection of transposon mutants, we have determined the transposon insertion sites for 7892 clones, and confirmed insertions in 3680 non-redundant M. loti genes (50.5% of the total number of M. loti genes). Transposon insertions were randomly distributed throughout the M. loti genome without any bias toward G+C contents of insertion target sites and transposon plasmids used for the mutagenesis. We also show the utility of STM mutants by examining the specificity of signature tags and test screenings for growth- and nodulation-deficient mutants. This defined mutant library allows for genome-wide forward- and reverse-genetic functional studies of M. loti and will serve as an invaluable resource for researchers to further our understanding of rhizobial biology. PMID:18658183

  4. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.V.

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was foundmore » to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.« less

  5. The Nitrogen Cycle During the Transition to Euxinia

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Kump, L. R.; Ridgwell, A.

    2008-12-01

    Nitrogen and phosphorous are essential to life, and their biological availability is hypothesized to regulate marine productivity on short and geologic timescales. The nature of primary production during recurrent intervals of Phanerozoic anoxia is of particular interest because of the redox control of nutrient and trace metal availability. Dissolved phosphate likely increased during transitions from oxic to euxinic marine conditions, while nitrogen availability may have decreased due to extensive denitrification as low-oxygen waters spread. Because nitrogen fixation is both metabolically and trace-metal intensive, a key question in the transition to euxinia is whether nitrogen fixation can "keep pace" with denitrification. If denitrification exceeds nitrogen fixation, diminished export production and oxygen demand in an N-limited ocean would pose a negative feedback that may prevent euxinia altogether or initiate the shift back to oxic conditions. Here we use the GENIE-1 Earth system model to address the biogeochemistry of the oxic-euxinic transition characteristic of some Phanerozoic oceanic anoxic events. As previously demonstrated with box models, phosphate accumulation stimulates both nitrogen fixation and denitrification. While there is an initial transient loss of total fixed nitrogen from the ocean, nitrogen inputs eventually exceed losses, and the marine nitrogen reservoir grows with that of phosphate to significantly exceed its modern value. Nitrogen buildup also corresponds with a shift in ecology of the surface ocean and the unexpected initiation of non-Redfieldian stoichiometry in the chemistry of the deep ocean.

  6. CONCENTRATIONS AND ESTIMATED LOADS OF NITROGEN CONTRIBUTED BY TWO ADJACENT WETLAND STREAMS WITH DIFFERENT FLOW-SOURCE TERMS IN WATKINSVILLE, GA

    EPA Science Inventory

    Inorganic, fixed nitrogen from agricultural settings often is introduced to first-order streams via surface runoff and shallow ground-water flow. Best management practices for limiting the flux of fixed N to surface waters often include buffers such as wetlands. However, the eff...

  7. Nitrogen-fixing nodule characterization and morphology of four species in the northern Intermountain Region

    Treesearch

    Lee Walls; Benjamin A. Zamora

    2001-01-01

    Purshia tridentata (antelope bitterbrush), Ceanothus velutinus (snowbrush), Ceanothus sanguenius (redstem ceanothus), and Shepherdia canadensis (buffaloberry) are native shrubs of the Northern Intermountain Region that are generally characterized as nitrogen-fixing species. These species occupy a range of habitats from steppe to alpine environments. Nodulation of these...

  8. CONCENTRATIONS AND ESTIMATED LOADS OF NITROGEN CONTRIBUTED BY TWO ADJACENT WETLAND STREAMS WITH DIFFERENT FLOW-SOURCE TERMS IN WATKINSVILLE, GEORGIA

    EPA Science Inventory

    Inorganic, fixed nitrogen from agricultural settings often is introduced to first-order streams via surface runoff and shallow ground-water flow. Best management practices for limiting the flux of fixed N to surface waters often include buffers such as wetlands. However, the eff...

  9. Occurrence, structure, and function of the nitrogen-fixing microsymbiont Frankia from nodules of Arizona alder [Abstract

    Treesearch

    J. O. Dawson; G. J. Gottfried; D. Hahn

    2005-01-01

    Actinorhizal plants are nodulated by the symbiotic, nitrogen-fixing actinomycete Frankia. The genus Alnus in the family Betulaceae is one of the 25 genera in 8 families of angiospermous plants that are actinorhizal. Arizona alder (Alnus oblongifolia Torr.) occurs in isolated populations associated with the...

  10. Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria

    PubMed Central

    Lema, Kimberley A.; Willis, Bette L.

    2012-01-01

    The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium. PMID:22344646

  11. Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth.

    PubMed

    Zhao, Yonggui; Fang, Yang; Jin, Yanling; Huang, Jun; Bao, Shu; Fu, Tian; He, Zhiming; Wang, Feng; Zhao, Hai

    2014-07-01

    The application potential of duckweed (Lemna japonica 0234) and water hyacinth (Eichhornia crassipes) were compared in two pilot-scale wastewater treatment systems for more than one year. The results indicated duckweed had the same total nitrogen (TN) recovery rate as water hyacinth (0.4 g/m(2)/d) and a slightly lower total phosphorus (TP) recovery rate (approximately 0.1g/m(2)/d) even though its biomass production was half that of water hyacinth. The higher content of crude protein (33.34%), amino acids (25.80%), starch (40.19%), phosphorus (1.24%), flavonoids (2.91%) and lower fiber content provided duckweed with more advantages in resource utilization. Additionally, microbial community discovered by 454 pyrosequencing indicated that less nitrifying bacteria and more nitrogen-fixing bacteria in rhizosphere of duckweed provided it with higher nitrogen recovery efficiency (60%) than water hyacinth (47%). Under the presented condition, duckweed has more application advantages than water hyacinth because it more effectively converted the wastewater nutrients into valuable biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Sources and sinks of atmospheric N2O and the possible ozone reduction due to industrial fixed nitrogen fertilizers

    NASA Technical Reports Server (NTRS)

    Liu, S. C.; Cicerone, R. J.; Donahue, T. M.; Chameides, W. L.

    1977-01-01

    The terrestrial and marine nitrogen cycles are examined in an attempt to clarify how the atmospheric content of N2O is controlled. We review available data on the various reservoirs of fixed nitrogen, the transfer rates between the reservoirs, and estimate how the reservoir contents and transfer rates can change under man's influence. It is seen that sources, sinks and lifetime of atmospheric N2O are not understood well. Based on our limited knowledge of the stability of atmospheric N2O we conclude that future growth in the usage of industrial fixed nitrogen fertilizers could cause a 1% to 2% global ozone reduction in the next 50 years. However, centuries from now the ozone layer could be reduced by as much as 10% if soils are the major source of atmospheric N2O.

  13. Current-biased potentiometric NOx sensor for vehicle emissions

    DOEpatents

    Martin, Louis Peter [Castro Valley, CA; Pham, Ai Quoc [San Jose, CA

    2006-12-26

    A nitrogen oxide sensor system for measuring the amount of nitrogen oxide in a gas. A first electrode is exposed to the gas. An electrolyte is positioned in contact with the first electrode. A second electrode is positioned in contact with the electrolyte. A means for applying a fixed current between the first electrode and the second electrode and monitoring the voltage required to maintain the fixed current provides a measurement of the amount of nitrogen oxide in the gas.

  14. Nitrogen fixation is not the only trait that determines the success of tropical legumes during secondary succession

    NASA Astrophysics Data System (ADS)

    Gei, Maria G.; Powers, Jennifer S.

    2017-04-01

    Legumes trees are well represented throughout the entire precipitation gradient of tropical forests. Many of these species are able to fix atmospheric dinitrogen through symbiosis and offer a mechanism to overcome nitrogen limitation typical of initial stages of secondary forest succession. While it is often assumed the success of legumes is linked to their fixation ability, the variation of other functional traits within this large group has received considerably less attention. Here we assessed legume abundance in secondary forest plots in 42 Neotropical chronosequences (the 2ndFOR network) that span a broad gradient of precipitation regimes and identified those traits that are favored in distinct successional environments. Our main finding is that in young secondary dry forests (5-20 years), legumes that have the potential to fix nitrogen and have small leaflet size become exceptionally abundant (up to 17-99% relative basal area). We suggest that in those species, reduced leaf area could help regulate leaf temperature and minimize water loss, and the cost of reduced total leaf area may be compensated by high photosynthetic rates maximized with nitrogen obtained through fixation. Overall, our study underscores great functional heterogeneity within tropical legumes, which likely translates into diverse biogeochemical cycles. In addition, these results provide a useful framework for active restoration of degraded areas, as it identifies a group of species that accumulate carbon at fast rates under warm and dry environments, conditions that are expected to become more common in the tropics.

  15. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    NASA Astrophysics Data System (ADS)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum hosts, in which a sheltered environment apparently outweighs the less favorable environmental conditions. We conclude that microbial activity is still nitrogen limited under eutrophic conditions because dissolved nitrogen is being monopolized by Sphagnum. Moreover, the fact that diazotrophic activity can significantly be upregulated by increased phosphorus addition and acid buffering, while Sphagnum spp. do not benefit, reveals remarkable differences in optimal conditions for both symbiotic partners and calls into question the regulation of nitrogen fixation by Sphagnum under these eutrophic conditions. The high nitrogen fixation rates result in high additional nitrogen loading of 6 kg ha-1 yr-1 on top of the high nitrogen deposition in these ecosystems.

  16. Diurnal variation in the functioning of cowpea nodules.

    PubMed

    Rainbird, R M; Atkins, C A; Pate, J S

    1983-06-01

    Nitrogenase (EC 1.7.99.2) activity of nodules of cowpea (Vigna unguiculata [L.] Walp), maintained under conditions of a 12-hour day at 30 degrees C and 800 to 1,000 microeinsteins per square meter per second (photosynthetically active radiation) and a 12-hour night at 20 degrees C, showed a marked diurnal variation with the total electron flux through the enzyme at night being 60% of that in the photoperiod. This diurnal pattern was, however, due to changes in hydrogen evolution. The rate of nitrogen fixation, measured by short-term (15)N(2) assimilation or estimated from the difference in hydrogen evolution in air or Ar:O(2) (80:20; v/v), showed no diurnal variation. Carbon dioxide released from nodules showed a diurnal variation synchronized with that of nitrogenase functioning and, as a consequence, the apparent ;respiratory cost' of nitrogen fixation in the photoperiod was almost double that at night (9.74 +/- 0.38 versus 5.70 +/- 0.90 moles CO(2) evolved per mole N(2) fixed). Separate carbon and nitrogen balances constructed for nodules during the photoperiod and dark period showed that, at night, nodule functioning required up to 40% less carbohydrate to achieve the same level of nitrogen fixation as during the photoperiod (2.4 versus 1.4 moles hexose per mole N(2) fixed).Stored reserves of nonstructural carbohydrate of the nodule only partly satisfied the requirement for carbon at night, and fixation was dependent on continued import of translocated assimilates at all times. Measurements of the soluble nitrogen pools of the nodule together with (15)N studies indicated that, both during the day and night, nitrogenous products of fixation were effectively translocated to all organs of the host plant despite low rates of transpiration at night. Reduced fluxes of water through the plant at night were apparently counteracted by increased concentration of nitrogen, especially as ureides, in the xylem stream.

  17. Prediction of urinary nitrogen and urinary urea nitrogen excretion by lactating dairy cattle in northwestern Europe and North America: a meta-analysis.

    PubMed

    Spek, J W; Dijkstra, J; van Duinkerken, G; Hendriks, W H; Bannink, A

    2013-07-01

    A meta-analysis was conducted on the effect of dietary and animal factors on the excretion of total urinary nitrogen (UN) and urinary urea nitrogen (UUN) in lactating dairy cattle in North America (NA) and northwestern Europe (EU). Mean treatment data were used from 47 trials carried out in NA and EU. Mixed model analysis was used with experiment included as a random effect and all other factors, consisting of dietary and animal characteristics, included as fixed effects. Fixed factors were nested within continent (EU or NA). A distinction was made between urinary excretions based on either urine spot samples or calculated assuming a zero N balance, and excretions that were determined by total collection of urine only. Moreover, with the subset of data based on total collection of urine, a new data set was created by calculating urinary N excretion assuming a zero N balance. Comparison with the original subset of data allowed for examining the effect of such an assumption on the relationship established between milk urea N (MUN) concentration and UN. Of all single dietary and animal factors evaluated to predict N excretion in urine, MUN and dietary crude protein (CP) concentration were by far the best predictors. Urinary N excretion was best predicted by the combination of MUN, CP, and dry matter intake, whereas UUN was best predicted by the combination of MUN and CP. All other factors did not improve or only marginally improved the prediction of UN or UUN. The relationship between UN and MUN differed between NA and EU, with higher estimated regression coefficients for MUN for the NA data set. Precision of UN and UUN prediction improved substantially when only UN or UUN data based on total collection of urine were used. The relationship between UN and MUN for the NA data set, but not for the EU data set, was substantially altered when UN was calculated assuming a zero N balance instead of being based on the total collection of urine. According to results of the present meta-analysis, UN and UUN are best predicted by the combination of MUN and CP and that, in regard to precision and accuracy, prediction equations for UN and UUN should be derived from the total collection of urine. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants

    PubMed Central

    Fox, Jennifer E.; Gulledge, Jay; Engelhaupt, Erika; Burow, Matthew E.; McLachlan, John A.

    2007-01-01

    Unprecedented agricultural intensification and increased crop yield will be necessary to feed the burgeoning world population, whose global food demand is projected to double in the next 50 years. Although grain production has doubled in the past four decades, largely because of the widespread use of synthetic nitrogenous fertilizers, pesticides, and irrigation promoted by the “Green Revolution,” this rate of increased agricultural output is unsustainable because of declining crop yields and environmental impacts of modern agricultural practices. The last 20 years have seen diminishing returns in crop yield in response to increased application of fertilizers, which cannot be completely explained by current ecological models. A common strategy to reduce dependence on nitrogenous fertilizers is the production of leguminous crops, which fix atmospheric nitrogen via symbiosis with nitrogen-fixing rhizobia bacteria, in rotation with nonleguminous crops. Here we show previously undescribed in vivo evidence that a subset of organochlorine pesticides, agrichemicals, and environmental contaminants induces a symbiotic phenotype of inhibited or delayed recruitment of rhizobia bacteria to host plant roots, fewer root nodules produced, lower rates of nitrogenase activity, and a reduction in overall plant yield at time of harvest. The environmental consequences of synthetic chemicals compromising symbiotic nitrogen fixation are increased dependence on synthetic nitrogenous fertilizer, reduced soil fertility, and unsustainable long-term crop yields. PMID:17548832

  19. Potential effects of an invasive nitrogen-fixing tree on a Hawaiian stream food web

    Treesearch

    Trisha B. Atwood; Tracy N. Wiegner; Jason P. Turner; Richard A. MacKenzie

    2010-01-01

    Falcataria moluccana (albizia) is an exotic nitrogen (N)-fixing tree currently invading riparian forests in Hawai'i, U.S.A. This study examined how this invasion is impacting stream ecosystems by using naturally occurring stable isotopes of carbon (C) and N to compare food web structure between a noninvaded and an albizia-invaded...

  20. Leaf-litter inputs from an invasive nitrogen-fixing tree influence organic-matter dynamics and nitrogen inputs in a Hawaiian river

    Treesearch

    Richard A. MacKenzie; Tracy N. Wiegner; Frances Kinslow; Nicole Cormier; Ayron M. Strauch

    2013-01-01

    Abstract. We examined how invasion of tropical riparian forests by an exotic N-fixing tree (Falcataria moluccana) affects organic-matter dynamics in a Hawaiian river by comparing early stages of leaf-litter breakdown between the exotic F. moluccana and native Metrosideros polymorpha trees. We examined early...

  1. Burkholderia vietnamiensis isolated from root tissues of Nipa Palm (Nypa fruticans) in Sarawak, Malaysia, proved to be its major endophytic nitrogen-fixing bacterium.

    PubMed

    Tang, Sui-Yan; Hara, Shintaro; Melling, Lulie; Goh, Kah-Joo; Hashidoko, Yasuyuki

    2010-01-01

    Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.

  2. Interaction of GlnK with the GAF domain of Herbaspirillum seropedicae NifA mediates NH₄⁺-regulation.

    PubMed

    Oliveira, Marco A S; Aquino, Bruno; Bonatto, Ana Claudia; Huergo, Luciano F; Chubatsu, Leda S; Pedrosa, Fábio O; Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A

    2012-04-01

    Nitrogen fixation in Herbaspirillum seropedicae is transcriptionally regulated by NifA, a σ(54) transcriptional activator with three structural domains: an N-terminal GAF domain, a catalytic AAA+ domain and a C-terminal DNA-binding domain. NifA is only active in H. seropedicae when cultures are grown in the absence of fixed nitrogen and at low oxygen tensions. There is evidence that the inactivation of NifA in response to fixed nitrogen is mediated by the regulatory GAF domain. However, the mechanism of NifA repression by the GAF domain, as well as the transduction of nitrogen status to NifA, is not understood. In order to study the regulation of NifA activity by fixed nitrogen independently of oxygen regulation, we constructed a chimeric protein containing the GAF domain of H. seropedicae NifA fused to the AAA+ and C-terminal domains of Azotobacter vinelandii NifA. This chimeric protein (NifAQ1) lacks the cysteine motif found in oxygen sensitive NifA proteins and is not oxygen responsive in vivo. Our results demonstrate that NifAQ1 responds to fixed nitrogen and requires GlnK protein for activity, a behavior similar to H. seropedicae NifA. In addition, protein footprinting analysis indicates that this response probably involves a protein-protein contact between the GAF domain and the GlnK protein. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant.

    PubMed

    Horváth, Beatrix; Domonkos, Ágota; Kereszt, Attila; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D; Udvardi, Michael K; Kondorosi, Éva; Kaló, Péter

    2015-12-08

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.

  4. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant

    PubMed Central

    Horváth, Beatrix; Domonkos, Ágota; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D.; Udvardi, Michael K.; Kondorosi, Éva; Kaló, Péter

    2015-01-01

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula. PMID:26401023

  5. Effect of insecticides and phenolics on nitrogen fixation by Nostoc linckia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megharaj, M.; Venkateswarlu, K.; Rao, A.S.

    1988-08-01

    The nitrogen-fixing blue-green algae (cyanobacteria) significantly influence the nitrogen economy of temperate and tropical soils. Although the genera Nostoc and Tolypothrix have been particularly implicated in the fixation of significantly large amounts of atmospheric nitrogen, these diazotrophs received little attention in relation to insecticide treatment and the available few reports do not indicate a permanent deleterious effect of insecticides on their nitrogenase activity. As it has been well established that the effect of insecticides on nitrogen fixation by cyanobacteria is independent of that on growth, an attempt was, therefore, made to determine the influence of four insecticides (monocrotophos, quinalphos, cypermethrinmore » and fenvalerate) and four phenolics (p-nitrophenol (PNP), m-nitrophenol (MNP), 2,4-dinitrophenol (DNP) and catechol) on nitrogen-fixing capacity of N.linckia, isolated from a black soil.« less

  6. Elevated CO(2) and nitrogen effects on a dominant N(2)- fixing shrub

    NASA Astrophysics Data System (ADS)

    Wallace, Alison Marie

    The responses of N2-fixing species to global change are likely to be an important component in predicting the existence and direction of feedbacks between carbon and nitrogen cycles, as both are radically changing at an unprecedented pace. Increased carbon storage may be more likely in ecosystems not limited by available nitrogen, such as those with abundant N2-fixing species. If elevated CO2 affects growth and N2-fixation of dominant N2-fixers, then non-fixers in the system may experience indirect effects through changes in competitive interactions and nitrogen availability. The goal of this research was to investigate these effects on the growth, competitive ability, leaf and litter chemistry, and litter decomposition of Lupinus arboreus, a N2-fixing evergreen shrub, and to test the central hypothesis that an increase in growth and competitive ability would occur at low nitrogen and high CO2. In a growth chamber experiment, three CO2 levels, 350, 500, and 650 ppm were crossed with two nitrogen levels. Lupins were grown alone or in competition with an introduced annual grass, Bromus diandrus. Contrary to findings from previous studies of positive growth and competition responses by N2-fixers, Lupinus seedlings demonstrated no significant responses to CO2. Nitrogen was far more important than CO2 in affecting relative competitive ability. Nitrogen, alkaloids, and C:N ratios in fresh foliage did not change with CO2 or nitrogen. Carbon and biomass increased slightly in lupins at 500 ppm only, suggesting an early but limited growth response. Nitrogen did decrease in lupin litter at elevated CO2, but there were no effects on litter decomposition rates in the field. Simulations by the CENTURY surface litter decomposition model predicted the litter decomposition rates of field-grown litter nearly perfectly, and predicted the general direction but underestimated the rate of litter from the greenhouse grown at different CO2 levels. Very low or high nitrogen decreased growth and competitive ability of lupin seedlings in an additional greenhouse experiment. Slight increases of nitrogen in the field did not affect lupin aboveground biomass. In conclusion, it is unlikely that Lupinus abundance or rate of its nitrogen inputs will be affected by elevated CO2 and/or changes in nitrogen availability.

  7. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture

    PubMed Central

    2018-01-01

    Rhizosphere microbiome which has been shown to enhance plant growth and yield are modulated or influenced by a few environmental factors such as soil type, plant cultivar, climate change and anthropogenic activities. In particular, anthropogenic activity, such as the use of nitrogen-based chemical fertilizers, is associated with environmental destruction and this calls for a more ecofriendly strategy to increase nitrogen levels in agricultural land. This feat is attainable by harnessing nitrogen-fixing endophytic and free-living rhizobacteria. Rhizobium, Pseudomonas, Azospirillum and Bacillus, have been found to have positive impacts on crops by enhancing both above and belowground biomass and could therefore play positive roles in achieving sustainable agriculture outcomes. Thus, it is necessary to study this rhizosphere microbiome with more sophisticated culture-independent techniques such as next generation sequencing (NGS) with the prospect of discovering novel bacteria with plant growth promoting traits. This review is therefore aimed at discussing factors that can modulate rhizosphere microbiome with focus on the contributions of nitrogen fixing bacteria towards sustainable agricultural development and the techniques that can be used for their study. PMID:29570619

  8. QTL analysis of symbiotic nitrogen fixation in a black bean RIL population

    USDA-ARS?s Scientific Manuscript database

    Dry bean (Phaseolus vulgaris L) acquires nitrogen (N) from the atmosphere through symbiotic nitrogen fixation (SNF) but it has a low efficiency to fix nitrogen. The objective of this study is to map the genes controlling nitrogen fixation in common bean. A mapping population consisting of 122 recomb...

  9. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    PubMed

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  10. Where is the nitrogen on Mars?

    NASA Astrophysics Data System (ADS)

    Mancinelli, Rocco L.; Banin, Amos

    2003-07-01

    Nitrogen is an essential element for life. Specifically, fixed nitrogen (i.e. NH3, NH4+, NOx or N that is chemically bound to either inorganic or organic molecules and can be released by hydrolysis to form NH3 or NH4+) is useful to living organisms. Nitrogen on present-day Mars has been analysed only in the atmosphere. The inventory is a small fraction of the amount of nitrogen presumed to have been received by the planet during its accretion. Where is the missing nitrogen? Answering this question is crucial for understanding the probability of the origin and evolution of life on Mars, and for its future astrobiological exploration. The two main processes that could have removed nitrogen from the atmosphere include: (1) non-thermal escape of N atoms to space and (2) burial within the regolith as nitrates and ammonium salts. Nitrate would probably be stable in the highly oxidized surface soil of Mars and could have served as an NO3[minus sign] sink. Such accumulations are observed in certain desert environments on Earth. Some NH4+ nitrogen may also be fixed and stabilized in the soil by inclusion as a structural cation in the crystal lattices of certain phyllosilicates replacing K+. Analysis of the Martian soil for traces of NO3[minus sign] and NH4+ during future missions will provide important information regarding the nitrogen abundance on Mars. We hypothesize that Mars soil, as typical of extremely dry desert soils on Earth, is likely to contain at least some of the missing nitrogen as nitrate salts and some fixed ammonium bound to aluminosilicate minerals.

  11. New and modified techniques for studying nitrogen-fixing bacteria in small mammal droppings.

    Treesearch

    C.Y. Li; Chris Maser

    1986-01-01

    Nitrogen-fixing bacteria in small mammal droppings are potentially important to forest productivity. As we study this phenomenon, however, we continually find unknowns, such as bacteria that we cannot isolate and purify because we do not know which techniques to use. For example, we have recently observed acetylene reduction in the droppings of the tundra vole (

  12. MASS LOSS AND NITROGEN DYNAMICS DURING THE DECOMPOSITION OF A N-LABELED N2-FIXING EPOPHYTIC LICHEN, LOBARIA OREGANA (TUCK.) MULL. ARG.

    EPA Science Inventory

    We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...

  13. Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta.

    PubMed

    Elliott, Geoffrey N; Chen, Wen-Ming; Chou, Jui-Hsing; Wang, Hui-Chun; Sheu, Shih-Yi; Perin, Liamara; Reis, Veronica M; Moulin, Lionel; Simon, Marcelo F; Bontemps, Cyril; Sutherland, Joan M; Bessi, Rosana; de Faria, Sergio M; Trinick, Michael J; Prescott, Alan R; Sprent, Janet I; James, Euan K

    2007-01-01

    * The ability of Burkholderia phymatum STM815 to effectively nodulate Mimosa spp., and to fix nitrogen ex planta, was compared with that of the known Mimosa symbiont Cupriavidus taiwanensis LMG19424. * Both strains were equally effective symbionts of M. pudica, but nodules formed by STM815 had greater nitrogenase activity. STM815 was shown to have a broader host range across the genus Mimosa than LMG19424, nodulating 30 out of 31 species, 21 of these effectively. LMG19424 effectively nodulated only nine species. GFP-marked variants were used to visualise symbiont presence within nodules. * STM815 gave significant acetylene reduction assay (ARA) activity in semisolid JMV medium ex planta, but no ARA activity was detected with LMG19424. 16S rDNA sequences of two isolates originally from Mimosa nodules in Papua New Guinea (NGR114 and NGR195A) identified them as Burkholderia phymatum also, with nodA, nodC and nifH genes of NGR195A identical to those of STM815. * B. phymatum is therefore an effective Mimosa symbiont with a broad host range, and is the first reported beta-rhizobial strain to fix nitrogen in free-living culture.

  14. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis

    PubMed Central

    Clúa, Joaquín; Roda, Carla

    2018-01-01

    The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems. PMID:29495432

  15. Improved TNT detoxification by starch addition in a nitrogen-fixing Methylophilus-dominant aerobic microbial consortium.

    PubMed

    Khan, Muhammad Imran; Lee, Jaejin; Yoo, Keunje; Kim, Seonghoon; Park, Joonhong

    2015-12-30

    In this study, a novel aerobic microbial consortium for the complete detoxification of 2,4,6-trinitrotoluene (TNT) was developed using starch as a slow-releasing carbon source under nitrogen-fixing conditions. Aerobic TNT biodegradation coupled with microbial growth was effectively stimulated by the co-addition of starch and TNT under nitrogen-fixing conditions. The addition of starch with TNT led to TNT mineralization via ring cleavage without accumulation of any toxic by-products, indicating improved TNT detoxification by the co-addition of starch and TNT. Pyrosequencing targeting the bacterial 16S rRNA gene suggested that Methylophilus and Pseudoxanthomonas population were significantly stimulated by the co-addition of starch and TNT and that the Methylophilus population became predominant in the consortium. Together with our previous study regarding starch-stimulated RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) degradation (Khan et al., J. Hazard. Mater. 287 (2015) 243-251), this work suggests that the co-addition of starch with a target explosive is an effective way to stimulate aerobic explosive degradation under nitrogen-fixing conditions for enhancing explosive detoxification. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Rhizospheric fungi and their link with the nitrogen-fixing Frankia harbored in host plant Hippophae rhamnoides L.

    PubMed

    Zhou, Xue; Tian, Lei; Zhang, Jianfeng; Ma, Lina; Li, Xiujun; Tian, Chunjie

    2017-12-01

    Sea buckthorn (Hippophae rhamnoides L.) is a pioneer plant used for land reclamation and an appropriate material for studying the interactions of symbiotic microorganisms because of its nitrogen-fixing root nodules and mycorrhiza. We used high-throughput sequencing to reveal the diversities and community structures of rhizospheric fungi and their link with nitrogen-fixing Frankia harbored in sea buckthorn collected along an altitude gradient from the Qinghai Tibet Plateau to interior areas. We found that the fungal diversities and compositions varied between different sites. Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla. The distribution of sea buckthorn rhizospheric fungi was driven by both environmental factors and the geographic distance. Among all examined soil characteristics, altitude, AP, and pH were found to have significant (p < 0.05) effect on the rhizospheric fungal community. The rhizospheric fungal communities became more distinct as the distance increased. Moreover, co-inertia analysis identified significant co-structures between Frankia and AMF communities in the rhizosphere of sea buckthorn. We conclude that at the large scale, there are certain linkages between nitrogen-fixing bacteria and the AMF expressed in the distributional pattern. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Can evolutionary constraints explain the rarity of nitrogen-fixing trees in high-latitude forests?

    PubMed

    Menge, Duncan N L; Crews, Timothy E

    2016-09-01

    Contents 1195 I. 1195 II. 1196 III. 1196 IV. 1200 1200 References 1200 SUMMARY: The rarity of symbiotic nitrogen (N)-fixing trees in temperate and boreal ('high-latitude') forests is curious. One explanation - the evolutionary constraints hypothesis - posits that high-latitude N-fixing trees are rare because few have evolved. Here, we consider traits necessary for high-latitude N-fixing trees. We then use recent developments in trait evolution to estimate that > 2000 and > 500 species could have evolved from low-latitude N-fixing trees and high-latitude N-fixing herbs, respectively. Evolution of N-fixing from nonfixing trees is an unlikely source of diversity. Dispersal limitation seems unlikely to limit high-latitude N-fixer diversity. The greater number of N-fixing species predicted to evolve than currently inhabit high-latitude forests suggests a greater role for ecological than evolutionary constraints. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea.

    PubMed

    Dutta, Debasree; Gachhui, Ratan

    2006-08-01

    The four nitrogen-fixing bacteria so far described in the family Acetobacteraceae belong to the genera Gluconacetobacter and Acetobacter. Nitrogen-fixing bacterial strain RG1(T) was isolated from Kombucha tea and, based on the phylogenetic analysis of 16S rRNA gene sequence which is supported by a high bootstrap value, was found to belong to the genus Acetobacter. Strain RG1(T) differed from Acetobacter aceti, the nearest member with a 16S rRNA gene sequence similarity of 98.2 %, and type strains of other Acetobacter species with regard to several characteristics of growth features in culture media, growth in nitrogen-free medium, production of gamma-pyrone from glucose and dihydroxyacetone from glycerol. Strain RG1(T) utilized maltose, glycerol, sorbitol, fructose, galactose, arabinose and ethanol, but not methanol as a carbon source. These results, along with electrophoretic mobility patterns of nine metabolic enzymes, suggest that strain RG1(T) represents a novel nitrogen-fixing species. The ubiquinone present was Q-9 and DNA G+C content was 64.1 mol%. Strain RG1(T) exhibited a low value of 2-24 % DNA-DNA relatedness to the type strains of related acetobacters, which placed it as a separate taxon. On the basis of this data, the name Acetobacter nitrogenifigens sp. nov. is proposed, with the type strain RG1(T) (=MTCC 6912(T)=LMG 23498(T)).

  19. Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus

    PubMed Central

    Dolman, Andrew M.; Rücker, Jacqueline; Pick, Frances R.; Fastner, Jutta; Rohrlack, Thomas; Mischke, Ute; Wiedner, Claudia

    2012-01-01

    The importance of nitrogen (N) versus phosphorus (P) in explaining total cyanobacterial biovolume, the biovolume of specific cyanobacterial taxa, and the incidence of cyanotoxins was determined for 102 north German lakes, using methods to separate the effects of joint variation in N and P concentration from those of differential variation in N versus P. While the positive relationship between total cyanobacteria biovolume and P concentration disappeared at high P concentrations, cyanobacteria biovolume increased continually with N concentration, indicating potential N limitation in highly P enriched lakes. The biovolumes of all cyanobacterial taxa were higher in lakes with above average joint NP concentrations, although the relative biovolumes of some Nostocales were higher in less enriched lakes. Taxa were found to have diverse responses to differential N versus P concentration, and the differences between taxa were not consistent with the hypothesis that potentially N2-fixing Nostocales taxa would be favoured in low N relative to P conditions. In particular Aphanizomenon gracile and the subtropical invasive species Cylindrospermopsis raciborskii often reached their highest biovolumes in lakes with high nitrogen relative to phosphorus concentration. Concentrations of all cyanotoxin groups increased with increasing TP and TN, congruent with the biovolumes of their likely producers. Microcystin concentration was strongly correlated with the biovolume of Planktothrix agardhii but concentrations of anatoxin, cylindrospermopsin and paralytic shellfish poison were not strongly related to any individual taxa. Cyanobacteria should not be treated as a single group when considering the potential effects of changes in nutrient loading on phytoplankton community structure and neither should the N2-fixing Nostocales. This is of particular importance when considering the occurrence of cyanotoxins, as the two most abundant potentially toxin producing Nostocales in our study were found in lakes with high N relative to P enrichment. PMID:22719937

  20. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus.

    PubMed

    Dolman, Andrew M; Rücker, Jacqueline; Pick, Frances R; Fastner, Jutta; Rohrlack, Thomas; Mischke, Ute; Wiedner, Claudia

    2012-01-01

    The importance of nitrogen (N) versus phosphorus (P) in explaining total cyanobacterial biovolume, the biovolume of specific cyanobacterial taxa, and the incidence of cyanotoxins was determined for 102 north German lakes, using methods to separate the effects of joint variation in N and P concentration from those of differential variation in N versus P. While the positive relationship between total cyanobacteria biovolume and P concentration disappeared at high P concentrations, cyanobacteria biovolume increased continually with N concentration, indicating potential N limitation in highly P enriched lakes. The biovolumes of all cyanobacterial taxa were higher in lakes with above average joint NP concentrations, although the relative biovolumes of some Nostocales were higher in less enriched lakes. Taxa were found to have diverse responses to differential N versus P concentration, and the differences between taxa were not consistent with the hypothesis that potentially N(2)-fixing Nostocales taxa would be favoured in low N relative to P conditions. In particular Aphanizomenon gracile and the subtropical invasive species Cylindrospermopsis raciborskii often reached their highest biovolumes in lakes with high nitrogen relative to phosphorus concentration. Concentrations of all cyanotoxin groups increased with increasing TP and TN, congruent with the biovolumes of their likely producers. Microcystin concentration was strongly correlated with the biovolume of Planktothrix agardhii but concentrations of anatoxin, cylindrospermopsin and paralytic shellfish poison were not strongly related to any individual taxa. Cyanobacteria should not be treated as a single group when considering the potential effects of changes in nutrient loading on phytoplankton community structure and neither should the N(2)-fixing Nostocales. This is of particular importance when considering the occurrence of cyanotoxins, as the two most abundant potentially toxin producing Nostocales in our study were found in lakes with high N relative to P enrichment.

  1. Ammoniacal nitrogen and COD removal from semi-aerobic landfill leachate using a composite adsorbent: fixed bed column adsorption performance.

    PubMed

    Halim, Azhar Abdul; Aziz, Hamidi Abdul; Johari, Megat Azmi Megat; Ariffin, Kamar Shah; Adlan, Mohd Nordin

    2010-03-15

    The performance of a carbon-mineral composite adsorbent used in a fixed bed column for the removal of ammoniacal nitrogen and aggregate organic pollutant (COD), which are commonly found in landfill leachate, was evaluated. The breakthrough capacities for ammoniacal nitrogen and COD adsorption were 4.46 and 3.23 mg/g, respectively. Additionally, the optimum empty bed contact time (EBCT) was 75 min. The column efficiency for ammoniacal nitrogen and COD adsorption using fresh adsorbent was 86.4% and 92.6%, respectively, and these values increased to 90.0% and 93.7%, respectively, after the regeneration process. (c) 2009 Elsevier B.V. All rights reserved.

  2. The effects of increased CO[sub 2] on the competitive ability of Lupinus arboreus, a dominant nitrogen-fixing shrub

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.M.

    Plant responses to increased atmospheric CO[sub 2] have been shown to be both species-specific and dependent on other environmental factors, potentially changing competitive interactions and altering community structure. The competitive response of a dominant nitrogen-fixing shrub to an introduced annual (Bromus diandrus) and a native perennial grass (Bromus carinatus) was measured under ambient and high CO[sub 2] and two nitrogen levels. These species coexist in a generally nitrogen-limited coastal grassland reserve besieged with alien species. The relative competitive ability of the lupin increased with CO[sub 2] for all treatments, with the largest difference occurring at low nitrogen in competition withmore » the introduced annual. This study provides a global change perspective for those interested in conserving native Californian grassland species, as well as the first data on the competitive response of nitrogen-fixers to high CO[sub 2].« less

  3. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  4. Bacteria and the Nitrogen Economy.

    ERIC Educational Resources Information Center

    Ayanaba, A.

    1982-01-01

    Biological nitrogen fixation accounts for almost 70 percent of nitrogen for plant growth. If food is to keep abreast of population growth, even more nitrogen must be fixed. For this international research institutes continue the search for natural variants in the bacterial population while also pursuing novel genetic engineering methods. (Author)

  5. Effects of Water and Nitrogen Availability on Nitrogen Contribution by the Legume, Lupinus argenteus Pursh.

    USDA-ARS?s Scientific Manuscript database

    Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentr...

  6. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age.

    PubMed

    Sherwood, Owen A; Guilderson, Thomas P; Batista, Fabian C; Schiff, John T; McCarthy, Matthew D

    2014-01-02

    The North Pacific subtropical gyre (NPSG) plays a major part in the export of carbon and other nutrients to the deep ocean. Primary production in the NPSG has increased in recent decades despite a reduction in nutrient supply to surface waters. It is thought that this apparent paradox can be explained by a shift in plankton community structure from mostly eukaryotes to mostly nitrogen-fixing prokaryotes. It remains uncertain, however, whether the plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. Here we analyse records of bulk and amino-acid-specific (15)N/(14)N isotopic ratios (δ(15)N) preserved in the skeletons of long-lived deep-sea proteinaceous corals collected from the Hawaiian archipelago; these isotopic records serve as a proxy for the source of nitrogen-supported export production through time. We find that the recent increase in nitrogen fixation is the continuation of a much larger, centennial-scale trend. After a millennium of relatively minor fluctuation, δ(15)N decreases between 1850 and the present. The total shift in δ(15)N of -2 per mil over this period is comparable to the total change in global mean sedimentary δ(15)N across the Pleistocene-Holocene transition, but it is happening an order of magnitude faster. We use a steady-state model and find that the isotopic mass balance between nitrate and nitrogen fixation implies a 17 to 27 per cent increase in nitrogen fixation over this time period. A comparison with independent records suggests that the increase in nitrogen fixation might be linked to Northern Hemisphere climate change since the end of the Little Ice Age.

  7. Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus.

    PubMed

    Kalloniati, Chrysanthi; Krompas, Panagiotis; Karalias, Georgios; Udvardi, Michael K; Rennenberg, Heinz; Herschbach, Cornelia; Flemetakis, Emmanouil

    2015-09-01

    We combined transcriptomic and biochemical approaches to study rhizobial and plant sulfur (S) metabolism in nitrogen (N) fixing nodules (Fix(+)) of Lotus japonicus, as well as the link of S-metabolism to symbiotic nitrogen fixation and the effect of nodules on whole-plant S-partitioning and metabolism. Our data reveal that N-fixing nodules are thiol-rich organs. Their high adenosine 5'-phosphosulfate reductase activity and strong (35)S-flux into cysteine and its metabolites, in combination with the transcriptional upregulation of several rhizobial and plant genes involved in S-assimilation, highlight the function of nodules as an important site of S-assimilation. The higher thiol content observed in nonsymbiotic organs of N-fixing plants in comparison to uninoculated plants could not be attributed to local biosynthesis, indicating that nodules are an important source of reduced S for the plant, which triggers whole-plant reprogramming of S-metabolism. Enhanced thiol biosynthesis in nodules and their impact on the whole-plant S-economy are dampened in plants nodulated by Fix(-) mutant rhizobia, which in most respects metabolically resemble uninoculated plants, indicating a strong interdependency between N-fixation and S-assimilation. © 2015 American Society of Plant Biologists. All rights reserved.

  8. Ecophysiological and foliar nitrogen concentration responses of understorey Acacia spp. and Eucalyptus sp. to prescribed burning.

    PubMed

    Ma, Ling; Rao, Xingquan; Lu, Ping; Bai, Shahla Hosseini; Xu, Zhihong; Chen, Xiaoyang; Blumfield, Timothy; Xie, Jun

    2015-07-01

    Eucalyptus spp. is a dominant tree genus in Australia and most Eucalyptus spp. are canopy dominant species. In Australian natural forests, Eucalyptus spp. commonly are associated with understorey legumes which play a crucial role for ecological restoration owing to their nitrogen (N) fixing ability for replenishing the soil N lost after frequent prescribed burning. This study aimed to explore to what extent physiological responses of these species differ 7 and 12 years after last fire. Two most common understorey Acacia spp., Acacia leiocalyx and A. disparrima, as well as one non-leguminous Eucalyptus resinifera, were studied due to their dominance in the forest. Both A. leiocalyx and A. disparrima showed higher carbon (C) assimilation capacity, maximum photosynthetic capacity, and moderate foliar C/N ratio compared with E. resinifera. A. leiocalyx showed various advantages compared to A. disparrima such as higher photosynthetic capacity, adaptation to wider light range and higher foliar total N (TNmass). A. leiocalyx also relied on N2-fixing ability for longer time compared to A. disparrima. The results suggested that the two Acacia spp. were more beneficial to C and N cycles for the post burning ecosystem than the non-N2-fixing species E. resinifera. A. leiocalyx had greater contribution to complementing soil N cycle long after burning compared to A. disparrima.

  9. Duelling 'CyanoHABs': unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2 -fixing harmful cyanobacteria.

    PubMed

    Paerl, Hans W; Otten, Timothy G

    2016-02-01

    Eutrophication often manifests itself by increased frequencies and magnitudes of cyanobacterial harmful algal blooms (CyanoHABs) in freshwater systems. It is generally assumed that nitrogen-fixing cyanobacteria will dominate when nitrogen (N) is limiting and non-N2 fixers dominate when N is present in excess. However, this is rarely observed in temperate lakes, where N2 fixers often bloom when N is replete, and non-fixers (e.g. Microcystis) dominate when N concentrations are lowest. This review integrates observations from previous studies with insights into the environmental factors that select for CyanoHAB groups. This information may be used to predict how nutrient reduction strategies targeting N, phosphorus (P) or both N and P may alter cyanobacterial community composition. One underexplored concern is that as N inputs are reduced, CyanoHABs may switch from non-N2 fixing to diazotrophic taxa, with no net improvement in water quality. However, monitoring and experimental observations indicate that in eutrophic systems, minimizing both N and P loading will lead to the most significant reductions in total phytoplankton biomass without this shift occurring, because successional patterns appear to be strongly driven by physical factors, including temperature, irradiance and hydrology. Notably, water temperature is a primary driver of cyanobacterial community succession, with warming favouring non-diazotrophic taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Simulating changes in ecosystem structure and composition in response to climate change: a case study focused on tropical nitrogen-fixing trees (Invited)

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Levy, J.; Xu, X.; Batterman, S. A.; Hedin, L.

    2013-12-01

    Ecosystems, by definition, involve a community of organisms. These communities generally exhibit heterogeneity in their structure and composition as a result of local variations in climate, soil, topography, disturbance history, and other factors. Climate-driven shifts in ecosystems will likely include an internal re-organization of community structure and composition and as well as the introduction of novel species. In terms of vegetation, this ecosystem heterogeneity can occur at relatively small scales, sometimes of the order of tens of meters or even less. Because this heterogeneous landscape generally has a variable and nonlinear response to environmental perturbations, it is necessary to carefully aggregate the local competitive dynamics between individual plants to the large scales of tens or hundreds of kilometers represented in climate models. Accomplishing this aggregation in a computationally efficient way has proven to be an extremely challenging task. To meet this challenge, the Ecosystem Demography 2 (ED2) model statistically characterizes a distribution of local resource environments, and then simulates the competition between individuals of different sizes and species (or functional groupings). Within this framework, it is possible to explicitly simulate the impacts of climate change on ecosystem structure and composition, including both internal re-organization and the introduction of novel species or functional groups. This presentation will include several illustrative applications of the evolution of ecosystem structure and composition under climate change. One application pertains to the role of nitrogen-fixing species in tropical forests. Will increasing CO2 concentrations increase the demand for nutrients and perhaps give a competitive edge to nitrogen-fixing species? Will potentially warmer and drier conditions make some tropical forests more water-limited, reducing the demand for nitrogen, thereby giving a competitive advantage to non-nitrogen-fixing species? Will the response of nitrogen-fixing species to climate change be sensitive to local disturbance histories?

  11. Association of N2-fixing cyanobacteria and plants: towards novel symbioses of agricultural importance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhai, Jeff

    2001-06-25

    Some nitrogen-fixing cyanobacteria are able to form symbioses with a wide variety of plants. Nostoc 2S9B is unusual in its ability to infect the roots of wheat, raising the prospect of a productive association with an important crop plant. The goal of the project was to lay the groundwork for the use of novel associations between Nostoc and crops of agronomic importance, thereby reducing our reliance on nitrogenous fertilizer. Nostoc 2S9B was found to enter roots through mechanical damage of roots and reside primarily in intercellular spaces. The strain could also be incorporated into wheat calli grown in tissue culture.more » In both cases, the rate of nitrogen fixation by the cyanobacterium was higher than that of the same strain grown with no plant present. Artificial nodules induced by the action of hormone 2,4D were readily infected by Nostoc 2S9B, and the cyanobacteria within such nodules fixed nitrogen under fully aerobic conditions. The nitrogen fixed was shown to be incorporated into the growing wheat seedlings. Nostoc thus differs from other bacteria in its ability to fix nitrogen in para-nodules without need for artificially microaerobic conditions. It would be useful to introduce foreign DNA into Nostoc 2S9B in order to make defined mutations to understand the genetic basis of its ability to infect wheat and to create strains that might facilitate the study of the infection process. Transfer of DNA into the cyanobacterium appears to be limited by the presence of four restriction enzymes, with recognition sequences the same as BamHI, BglI, BsaHI, and Tth111I. Genes encoding methyltransferases that protect DNA against these four enzymes have been cloned into helper plasmids to allow transfer of DNA from E. coli to Nostoc 2S9B.« less

  12. The kinetics of the reduction of isocyanides, acetylenes and the cyanide ion by nitrogenase preparation from Azotobacter chroococcum and the effects of inhibitors

    PubMed Central

    Kelly, M.

    1968-01-01

    1. Nitrogen-fixing preparations from Azotobacter chroococcum reduced substrates with the following Km values: methyl isocyanide, 1·8×10−4m; ethyl isocyanide, 2·5×10−2m; cyanide ion, 1·4×10−3m; acetylene, 1·2×10−4m. 2. Nitrogen, carbon monoxide or hydrogen competitively inhibited isocyanide reduction with the following Ki values: hydrogen, 1·3×10−3m; carbon monoxide, 6·8×10−6m; nitrogen, 4·3×10−4m. 3. Living nitrogen-fixing bacteria, and isolated clover nodules, formed methane from methyl isocyanide. 4. These results are discussed in relation to other work and possible mechanisms of nitrogen fixation. PMID:5642620

  13. Trade, Diplomacy, and Warfare: The Quest for Elite Rhizobia Inoculant Strains

    PubMed Central

    Checcucci, Alice; DiCenzo, George C.; Bazzicalupo, Marco; Mengoni, Alessio

    2017-01-01

    Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides an important source of fixed nitrogen input into the soil ecosystem. The improvement of symbiotic nitrogen fixation is one of the main challenges facing agriculture research. Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the development of sustainable agriculture practices to deal with the increasing global human population. Sociomicrobiological studies of rhizobia have become a model for the study of the evolution of mutualistic interactions. The exploitation of the wide range of social interactions rhizobia establish among themselves, with the soil and root microbiota, and with the host plant, could constitute a great advantage in the development of a new generation of highly effective rhizobia inoculants. Here, we provide a brief overview of the current knowledge on three main aspects of rhizobia interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication and possible synergistic effects; and warfare, as antagonism and plant control over symbiosis. Then, we propose new areas of investigation and the selection of strains based on the combination of the genetic determinants for the relevant rhizobia symbiotic behavioral phenotypes. PMID:29170661

  14. Trade, Diplomacy, and Warfare: The Quest for Elite Rhizobia Inoculant Strains.

    PubMed

    Checcucci, Alice; DiCenzo, George C; Bazzicalupo, Marco; Mengoni, Alessio

    2017-01-01

    Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides an important source of fixed nitrogen input into the soil ecosystem. The improvement of symbiotic nitrogen fixation is one of the main challenges facing agriculture research. Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the development of sustainable agriculture practices to deal with the increasing global human population. Sociomicrobiological studies of rhizobia have become a model for the study of the evolution of mutualistic interactions. The exploitation of the wide range of social interactions rhizobia establish among themselves, with the soil and root microbiota, and with the host plant, could constitute a great advantage in the development of a new generation of highly effective rhizobia inoculants. Here, we provide a brief overview of the current knowledge on three main aspects of rhizobia interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication and possible synergistic effects; and warfare, as antagonism and plant control over symbiosis. Then, we propose new areas of investigation and the selection of strains based on the combination of the genetic determinants for the relevant rhizobia symbiotic behavioral phenotypes.

  15. Evaluating the role of Actinobacteria in the gut of wood-feeding termites (Reticulitermes spp.)

    Treesearch

    Rachel A. Arango; Frederick Green III; Vina W. Yang; Joliene R. Lindholm; Nathaniel P. Chotlos; Kenneth F. Raffa

    2017-01-01

    Nitrogen has been shown to be a limiting nutrient across a range of xylophagous insects. These insects often rely on symbiotic microorganisms in the gut for nitrogen acquisition, via fixation of atmospheric nitrogen or break down of other available nitrogenous substances. In phylogenetically lower, wood-feeding termites, the role of nitrogen fixing bacteria has been...

  16. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion.

    PubMed

    Saravanan, V S; Madhaiyan, M; Osborne, Jabez; Thangaraju, M; Sa, T M

    2008-01-01

    Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N(2)-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N(2) fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.

  17. Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus

    PubMed Central

    Kalloniati, Chrysanthi; Krompas, Panagiotis; Udvardi, Michael K.; Flemetakis, Emmanouil

    2015-01-01

    We combined transcriptomic and biochemical approaches to study rhizobial and plant sulfur (S) metabolism in nitrogen (N) fixing nodules (Fix+) of Lotus japonicus, as well as the link of S-metabolism to symbiotic nitrogen fixation and the effect of nodules on whole-plant S-partitioning and metabolism. Our data reveal that N-fixing nodules are thiol-rich organs. Their high adenosine 5′-phosphosulfate reductase activity and strong 35S-flux into cysteine and its metabolites, in combination with the transcriptional upregulation of several rhizobial and plant genes involved in S-assimilation, highlight the function of nodules as an important site of S-assimilation. The higher thiol content observed in nonsymbiotic organs of N-fixing plants in comparison to uninoculated plants could not be attributed to local biosynthesis, indicating that nodules are an important source of reduced S for the plant, which triggers whole-plant reprogramming of S-metabolism. Enhanced thiol biosynthesis in nodules and their impact on the whole-plant S-economy are dampened in plants nodulated by Fix− mutant rhizobia, which in most respects metabolically resemble uninoculated plants, indicating a strong interdependency between N-fixation and S-assimilation. PMID:26296963

  18. Linking Landscape Characteristics and High Stream Nitrogen in the Oregon Coast Range: Red Alder Complicates Use of Nutrient Criteria

    EPA Science Inventory

    Red alder (a nitrogen-fixing tree) and sea salt inputs can strongly influence stream nitrogen concentrations in western Oregon and Washington. We compiled a database of stream nitrogen and landscape characteristics in the Oregon Coast Range. Basal area of alder, expressed as a ...

  19. Effects of water and nitrogen availability on nitrogen contribution by the legume, Lupinus argenteus Pursh

    Treesearch

    Erin Goergen; Jeanne C. Chambers; Robert Blank

    2009-01-01

    Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentration, nodulation, nodule activity, and rhizodeposition of ...

  20. Biological invasion by Myrica faya alters ecosystem development in Hawaii

    NASA Technical Reports Server (NTRS)

    Vitousek, Peter M.; Walker, Lawrence R.; Whiteaker, Louis D.; Mueller-Dombois, Dieter; Matson, Pamela A.

    1987-01-01

    The exotic nitrogen-fixing tree Myrica faya invades young volcanic sites where the growth of native plants is limited by a lack of nitrogen. Myrica quadruples the amount of nitrogen entering certain sites and increases the overall biological availability of nitrogen, thereby altering the nature of ecosystem development after volcanic eruptions.

  1. Stimulation of nitrogen fixation in soddy-podzolic soils with fungi

    NASA Astrophysics Data System (ADS)

    Kurakov, A. V.; Prokhorov, I. S.; Kostina, N. V.; Makhova, E. G.; Sadykova, V. S.

    2006-09-01

    Stimulation of nitrogen fixation in soddy-podzolic soils is related to the hydrolytic activity of fungi decomposing plant polymers. It was found that the rate of nitrogen fixation upon the simultaneous inoculation of the strains of nitrogen-fixing bacteria Bacillus cereus var. mycoides and the cellulolytic fungus Trichoderma asperellum into a sterile soil enriched with cellulose or Jerusalem artichoke residues is two to four times higher than upon the inoculation of the strains of Bacillus cereus var. mycoides L1 only. The increase in the nitrogen fixation depended on the resistance of the substrates added into the soil to fungal hydrolysis. The biomass of the fungi decomposing plant polymers increased by two-four times. The nitrogen-fixing activity of the soil decreased when the growth of the fungi was inhibited with cycloheximide, which attested to a close correlation between the intensity of the nitrogen fixation and the decomposition of the plant polymers by fungi. The introduction of an antifungal antibiotic, together with starch or with plant residues, significantly (by 60-90%) decreased the rate of nitrogen fixation in the soll.

  2. Amplicon restriction patterns associated with nitrogenase activity of root nodules for selection of superior Myrica seedlings.

    PubMed

    Yanthan, Mhathung; Misra, Arvind K

    2013-11-01

    Trees of Myrica sp. grow abundantly in the forests of Meghalaya, India. These trees are actinorhizal and harbour nitrogen-fixing Frankia in their root nodules and contribute positively towards the enhancement of nitrogen status of forest areas. They can be used in rejuvenation of mine spoils and nitrogen-depleted fallow lands generated due to slash and burn agriculture practiced in the area. We have studied the association of amplicon restriction patterns (ARPs) of Myrica ribosomal RNA gene and internal transcribed spacer (ITS) region and nitrogenase activity of its root nodules. We found that ARPs thus obtained could be used as markers for early screening of seedlings that could support strains of Frankia that fix atmospheric nitrogen more efficiently.

  3. Global nitrogen overload problem grows critical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, A.S.

    1998-02-13

    This article discusses a global problem due to man`s intervention in the biosphere resulting from an increased production and usage of products producing nitrogen compounds which can be fixed in ecosystems. This problem was recognized on small scales even in the 1960`s, but recent studies on a more global scale show that the amount of nitrogen compounds in river runoff is strongly related to the use of synthetic fertilizers, fossil-fuel power plants, and automobile emissions. The increased fixed nitrogen load is exceeding the ability of some ecosystems to use or break the compounds down, resulting in a change in themore » types of flora and fauna which are found to inhabit the ecosystems, and leading to decreased biodiversity.« less

  4. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    NASA Astrophysics Data System (ADS)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  5. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession.

    PubMed

    Batterman, Sarah A; Hedin, Lars O; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J; Hall, Jefferson S

    2013-10-10

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  6. Modeling Ocean Ecosystems: The PARADIGM Program

    DTIC Science & Technology

    2006-03-01

    of biological reality: the wonderful com- 2. Nitrogen-fixing bacteria and archaea our concept of a species (e.g., Venter et plexity of ocean...ecosystems will never be ( diazotrophs ), which convert atmo- al., 2004; Doney et al., 2004; DeLong and fully described with numerical models of spheric...applying ocean inventory of nitrogen nutrients. numerical models, we are confronted Specifying "Functional Groups" Some diazotrophs fix both CO 2 and with

  7. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene.

    PubMed

    da Mota, F F; Gomes, E A; Paiva, E; Rosado, A S; Seldin, L

    2004-01-01

    To avoid the limitations of 16S rRNA-based phylogenetic analysis for Paenibacillus species, the usefulness of the RNA polymerase beta-subunit encoding gene (rpoB) was investigated as an alternative to the 16S rRNA gene for taxonomic studies. Partial rpoB sequences were generated for the type strains of eight nitrogen-fixing Paenibacillus species. The presence of only one copy of rpoB in the genome of P. graminis strain RSA19(T) was demonstrated by denaturing gradient gel electrophoresis and hybridization assays. A comparative analysis of the sequences of the 16S rRNA and rpoB genes was performed and the eight species showed between 91.6-99.1% (16S rRNA) and 77.9-97.3% (rpoB) similarity, allowing a more accurate discrimination between the different species using the rpoB gene. Finally, 24 isolates from the rhizosphere of different cultivars of maize previously identified as Paenibacillus spp. were assigned correctly to one of the nitrogen-fixing species. The data obtained in this study indicate that rpoB is a powerful identification tool, which can be used for the correct discrimination of the nitrogen-fixing species of agricultural and industrial importance within the genus Paenibacillus.

  8. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  9. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  10. Natural Endophytic Occurrence of Acetobacter diazotrophicus in Pineapple Plants.

    PubMed

    Tapia-Hernández; Bustillos-Cristales; Jiménez-Salgado; Caballero-Mellado; Fuentes-Ramírez

    2000-01-01

    The presence of endophytic Acetobacter diazotrophicus was tested for pineapple plants (Ananas comosus [L.] Merr.) grown in the field. Diazotrophic bacteria were isolated from the inner tissues of surface sterilized roots, stems, and leaves of pineapple plants. Phenotypic tests permitted the selection of presumptive nitrogen-fixing A. diazotrophicus isolates. Restriction fragment length polymorphisms (RFLPs) of small subunit (SSU) rDNA using total DNA digested with endonuclease SphI and with endonuclease NcoI, hybridizations of RNA with an A. diazotrophicus large subunit (LSU) rRNA specific probe, as well as patterns in denaturing protein electrophoresis (SDS-PAGE) and multilocus enzyme tests allowed the identification of A. diazotrophicus isolates. High frequencies of isolation were obtained from propagative buds that had not been nitrogen-fertilized, and lower frequencies from 3-month-old plants that had been nitrogen-fertilized. No isolates were recovered from 5- to 7-month-old nitrogen-fertilized plants. All the A. diazotrophicus isolates recovered from pineapple plants belonged to the multilocus genotype which shows the most extensive distribution among all host species previously analyzed.

  11. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part I--water quality issues.

    PubMed

    Cromar, N J; Sweeney, D G; O'Brien, M J; Fallowfield, H J

    2005-01-01

    This paper describes changes in effluent quality occurring before and after an upgrade to the Bolivar Wastewater Treatment Plant in South Australia. Trickling filters (TF) were replaced with an activated sludge (AS) plant, prior to tertiary treatment using waste stabilisation ponds (WSPs). The water quality in the WSPs following the upgrade was significantly improved. Reductions in total and soluble BOD, COD, TKN, suspended solids and organic nitrogen were recorded and the predominant form of inorganic nitrogen changed from NH(4)-N to NO(2)/NO(3)-N. The reduction in ammonium and potentially toxic free ammonia removed a control upon the growth of zooplankton, which may have contributed to decreases in algal biomass in the final ponds and consequently lower dissolved oxygen. Additionally, changes in inorganic nitrogen speciation contributed to a slightly elevated pH which reduced numbers of faecal coliforms in WSPs. The AS pretreated influent recorded significantly lower inorganic molar N:P ratio (10-4:1) compared to those fed with TF effluent (17-13:1). Algae within the WSPs may now be nitrogen limited, a condition which may favour the growth of nitrogen-fixing cyanobacteria. The decrease in algal biomass and in dissolved oxygen levels may enhance sedimentary denitrification, further driving the system towards nitrogen limitation.

  12. Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece.

    PubMed

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A; Pakrasi, Himadri B

    2011-01-01

    The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of this cyanobacterial group, we analyzed the genome sequences of five additional Cyanothece strains from different geographical habitats, exhibiting diverse morphological and physiological attributes. These strains exhibit high rates of N(2) fixation and H(2) production under aerobic conditions. They can generate copious amounts of carbohydrates that are stored in large starch-like granules and facilitate energy-intensive processes during the dark, anoxic phase of the cells. The genomes of some Cyanothece strains are quite unique in that there are linear elements in addition to a large circular chromosome. Our study provides novel insights into the metabolism of this class of unicellular nitrogen-fixing cyanobacteria.

  13. High-Precision Measurements of 15N15N, 14N15N, and 14N2 in N2 and Potential Applications to Oceanic Nitrogen Cycle Research

    NASA Astrophysics Data System (ADS)

    Li, S.; Yeung, L.; Young, E. D.; Ostrom, N. E.; Haslun, J. A.

    2016-02-01

    The balance of nitrogen fixation and nitrogen loss in the oceans is uncertain. For example, anaerobic ammonia oxidation could account for 50% or more of marine N2 production, although its global importance is still poorly known. Isotopic ratios in fixed nitrogen species (e.g., δ15N and δ18O values of NO2- and NO3-) are widely used to trace preservation and removal of N-bearing compounds and/or isotopic variations of their different sources. However, these approaches in general probe only one side of the nitrogen mass balance—the "fixed" nitrogen reservoir—so they offer few constraints on the ultimate loss of nitrogen from that pool as N2. The rare isotopologue ratio 15N15N/14N2 in N2may provide information about those nitrogen-loss processes directly. We will report the first measurements of Δ30 (the abundance of 15N15N relative to that predicted by chance alone), made on a unique high-resolution mass spectrometer (the Nu Instruments Panorama), and we will discuss the potential utility of Δ30 as an independent tracer of the nitrogen cycle. The parameter Δ30 is insensitive to the bulk 15N/14N isotopic ratio of the reservoir; instead, it reflects isotopic ordering in N2, which is altered when N-N bonds are made or broken. Our preliminary measurements of N2 from denitrifying soils and pure cultures of denitrifiers indicate large kinetic isotopic effects during N-N bond formation that favor 15N15N production during denitrification. We also observed a nonstochastic excess of 15N15N in tropospheric N2 [Δ30 = +19.05 ± 0.12‰ (1σ)]. This excess likely comes from fixed-nitrogen loss processes in the biosphere. Variations in Δ30 of N2 from pure culture experiments (+16.96 to +18.95‰) probably reflect the different isotopic signatures of the enzymes that catalyze denitrification. So, enzyme-specific Δ30 values of dissolved N2 should provide information about the importance of different biochemical pathways of fixed-nitrogen loss (e.g., denitrification vs. anammox) in the oceans.

  14. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale.

    PubMed

    Bengtsson, Simon; Karlsson, Anton; Alexandersson, Tomas; Quadri, Luca; Hjort, Markus; Johansson, Peter; Morgan-Sagastume, Fernando; Anterrieu, Simon; Arcos-Hernandez, Monica; Karabegovic, Lamija; Magnusson, Per; Werker, Alan

    2017-03-25

    A process was developed for biological treatment of municipal wastewater for carbon and nitrogen removal while producing added-value polyhydroxyalkanoates (PHAs). The process comprised steps for pre-denitrification, nitrification and post-denitrification and included integrated fixed-film activated sludge (IFAS) with biofilm carrier media to support nitrification. In a pilot-scale demonstration (500-800L), wastewater treatment performance, in line with European standards, were achieved for total chemical oxygen demand (83% removal) and total nitrogen (80% removal) while producing a biomass that was able to accumulate up to 49% PHA of volatile suspended solids with acetic acid or fermented organic residues as substrates. Robust performance in wastewater treatment and enrichment of PHA-producing biomass was demonstrated under realistic conditions including influent variability during 225days of operation. The IFAS system was found to be advantageous since maintaining nitrification on the biofilm allowed for a relatively low (2days) solids retention time (SRT) for the suspended biomass in the bulk phase. Lower SRT has advantages in higher biomass yield and higher active fraction in the biomass which leads to higher PHA productivity and content. The outcomes show that production of added-value biopolymers may be readily integrated with carbon and nitrogen removal from municipal wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Legume-rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness.

    PubMed

    Keet, Jan-Hendrik; Ellis, Allan G; Hui, Cang; Le Roux, Johannes J

    2017-06-01

    The ability to fix atmospheric nitrogen is thought to play an important role in the invasion success of legumes. Interactions between legumes and nitrogen-fixing bacteria (rhizobia) span a continuum of specialization, and promiscuous legumes are thought to have higher chances of forming effective symbioses in novel ranges. Using Australian Acacia species in South Africa, it was hypothesized that widespread and highly invasive species will be more generalist in their rhizobial symbiotic requirements and more effective in fixing atmospheric nitrogen compared with localized and less invasive species. To test these hypotheses, eight localized and 11 widespread acacias were examined using next-generation sequencing data for the nodulation gene, nodC , to compare the identity, species richness, diversity and compositional similarity of rhizobia associated with these acacias. Stable isotope analysis was also used to determine levels of nitrogen obtained from the atmosphere via symbiotic nitrogen fixation. No differences were found in richness, diversity and community composition between localized and widespread acacias. Similarly, widespread and localized acacias did not differ in their ability to fix atmospheric nitrogen. However, for some species by site comparisons, significant differences in δ15N isotopic signatures were found, indicating differential symbiotic effectiveness between these species at specific localities. Overall, the results support recent findings that root nodule rhizobial diversity and community composition do not differ between acacias that vary in their invasiveness. Differential invasiveness of acacias in South Africa is probably linked to attributes such as differences in propagule pressure, reasons for (e.g. forestry vs. ornamental) and extent of, plantings in the country. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Study on the effect of magnetic field treatment of newly isolated Paenibacillus sp.

    PubMed

    Li, Jie; Yi, Yanli; Cheng, Xilei; Zhang, Dageng; Irfan, Muhammad

    2015-12-01

    Symbiotic nitrogen fixation in plants occurs in roots with the help of some bacteria which help in soil nitrogen fertility management. Isolation of significant environment friendly bacteria for nitrogen fixation is very important to enhance yield in plants. In this study effect of different magnetic field intensity and treatment time was studied on the morphology, physiology and nitrogen fixing capacity of newly isolated Paenibaccilus sp. from brown soil. The bacterium was identified by 16S rDNA sequence having highest similarity (99%) with Paenibacillus sp as revealed by BLAST. Different magnetic intensities such as 100mT, 300mT and 500mT were applied with processing time of 0, 5, 10, 20 and 30 minutes. Of all these treatment 300mT with processing time of 10 minutes was found to be most suitable treatment. Results revealed that magnetic treatment improve the growth rate with shorter generation time leading to increased enzyme activities (catalase, peroxidase and superoxide dismutase) and nitrogen fixing efficiencies. High magnetic field intensity (500mT) caused ruptured cell morphology and decreased enzyme activities which lead to less nitrogen fixation. It is concluded that appropriate magnetic field intensity and treatment time play a vital role in the growth of soil bacteria which increases the nitrogen fixing ability which affects the yield of plant. These results were very helpful in future breading programs to enhance the yield of soybean.

  17. The identification of novel loci required for appropriate nodule development in Medicago truncatula.

    PubMed

    Domonkos, Agota; Horvath, Beatrix; Marsh, John F; Halasz, Gabor; Ayaydin, Ferhan; Oldroyd, Giles E D; Kalo, Peter

    2013-10-11

    The formation of functional symbiotic nodules is the result of a coordinated developmental program between legumes and rhizobial bacteria. Genetic analyses in legumes have been used to dissect the signaling processes required for establishing the legume-rhizobial endosymbiotic association. Compared to the early events of the symbiotic interaction, less attention has been paid to plant loci required for rhizobial colonization and the functioning of the nodule. Here we describe the identification and characterization of a number of new genetic loci in Medicago truncatula that are required for the development of effective nitrogen fixing nodules. Approximately 38,000 EMS and fast neutron mutagenized Medicago truncatula seedlings were screened for defects in symbiotic nitrogen fixation. Mutant plants impaired in nodule development and efficient nitrogen fixation were selected for further genetic and phenotypic analysis. Nine mutants completely lacking in nodule formation (Nod-) represented six complementation groups of which two novel loci have been identified. Eight mutants with ineffective nodules (Fix-) represented seven complementation groups, out of which five were new monogenic loci. The Fix- M. truncatula mutants showed symptoms of nitrogen deficiency and developed small white nodules. Microscopic analysis of Fix- nodules revealed that the mutants have defects in the release of rhizobia from infection threads, differentiation of rhizobia and maintenance of persistence of bacteria in nodule cells. Additionally, we monitored the transcriptional activity of symbiosis specific genes to define what transcriptional stage of the symbiotic process is blocked in each of the Fix- mutants. Based on the phenotypic and gene expression analysis a functional hierarchy of the FIX genes is proposed. The new symbiotic loci of M. truncatula isolated in this study provide the foundation for further characterization of the mechanisms underpinning nodulation, in particular the later stages associated with bacterial release and nodule function.

  18. Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations.

    PubMed

    Menard, Aymeric; Monnez, Claire; Estrada de Los Santos, Paulina; Segonds, Christine; Caballero-Mellado, Jesus; Lipuma, John J; Chabanon, Gerard; Cournoyer, Benoit

    2007-05-01

    Burkholderia vietnamiensis is the third most prevalent species of the Burkholderia cepacia complex (Bcc) found in cystic fibrosis (CF) patients. Its ability at fixing nitrogen makes it one of the main Bcc species showing strong filiations with environmental reservoirs. In this study, 83% (29 over 35) of the B. vietnamiensis CF isolates and 100% of the environmental ones (over 29) were found expressing the dinitrogenase complex (encoded by the nif cluster) which is essential in N(2) fixation. Among the deficient strains, two were found growing with ammonium chloride suggesting that they were defective in N(2) fixation, and four with amino acids supplements suggesting that they were harbouring auxotrophic mutations. To get insights about the genetic events that led to the emergence of the N(2)-fixing defective strains, a genetic analysis of B. vietnamiensis nitrogen-fixing property was undertaken. A 40-kb-long nif cluster and nif regulatory genes were identified within the B. vietnamiensis strain G4 genome sequence, and analysed. Transposon mutagenesis and nifH genetic marker exchanges showed the nif cluster and several other genes like gltB (encoding a subunit of the glutamate synthase) to play a key role in B. vietnamiensis ability at growing in nitrogen-free media. nif cluster DNA probings of restricted genomic DNA blots showed a full deletion of the nif cluster for one of the N(2)-fixing defective strain while the other one showed a genetic organization similar to the one of the G4 strain. For 17% of B. vietnamiensis clinical strains, CF lungs appeared to have favoured the selection of mutations or deletions leading to N(2)-fixing deficiencies.

  19. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.

  20. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-07-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.

  1. [Nutrient contents and microbial populations of aeolian sandy soil in Sanjiangyuan region of Qinghai Province].

    PubMed

    Lin, Chao-feng; Chen, Zhan-quan; Xue, Quan-hong; Lai, Hang-xian; Chen, Lai-sheng; Zhang, Deng-shan

    2007-01-01

    Sanjiangyuan region (the headstream of three rivers) in Qinghai Province of China is the highest and largest inland alpine wetland in the world. The study on the nutrient contents and microbial populations of aeolian sandy soils in this region showed that soil organic matter content increased with the evolution of aeolian sand dunes from un-stabilized to stabilized state, being 5.9 and 3.8 times higher in stabilized sand dune than in mobile and semi-stabilized sand dunes, respectively. Soil nitrogen and phosphorus contents increased in line with the amount of organic matter, while potassium content and pH value varied slightly. The microbial populations changed markedly with the development of vegetation, fixing of mobile sand, and increase of soil nutrients. The quantities of soil bacteria, fungi and actinomycetes were 4.0 and 2.8 times, 19.6 and 6.3 times, and 12.4 and 2.6 times higher in stabilized and semi-stabilized sand dunes than in mobile sand dune, respectively, indicating that soil microbial bio-diversity was increased with the evolution of aeolian sand dunes from mobile to stabilized state. In addition, the quantities of soil microbes were closely correlated with the contents of soil organic matter, total nitrogen, and available nitrogen and phosphorus, but not correlated with soil total phosphorus, total and available potassium, or pH value.

  2. Effect of Nitrogen on Cellular Production and Release of the Neurotoxin Anatoxin-A in a Nitrogen-Fixing Cyanobacterium

    PubMed Central

    Gagnon, Alexis; Pick, Frances R.

    2012-01-01

    Anatoxin-a (ANTX) is a neurotoxin produced by several freshwater cyanobacteria and implicated in lethal poisonings of domesticated animals and wildlife. The factors leading to its production in nature and in culture are not well understood. Resource availability may influence its cellular production as suggested by the carbon-nutrient hypothesis, which links the amount of secondary metabolites produced by plants or microbes to the relative abundance of nutrients. We tested the effects of nitrogen supply (as 1, 5, and 100% N of standard cyanobacterial medium corresponding to 15, 75, and 1500 mg L−1 of NaNO3 respectively) on ANTX production and release in a toxic strain of the planktonic cyanobacterium Aphanizomenon issatschenkoi (Nostocales). We hypothesized that nitrogen deficiency might constrain the production of ANTX. However, the total concentration and more significantly the cellular content of anatoxin-a peaked (max. 146 μg/L and 1683 μg g−1 dry weight) at intermediate levels of nitrogen supply when N-deficiency was evident based on phycocyanin to chlorophyll a and carbon to nitrogen ratios. The results suggest that the cellular production of anatoxin-a may be stimulated by moderate nitrogen stress. Maximal cellular contents of other cyanotoxins have recently been reported under severe stress conditions in another Nostocales species. PMID:22701451

  3. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges.

    PubMed

    Bhattacharjee, Rumpa Biswas; Singh, Aqbal; Mukhopadhyay, S N

    2008-08-01

    The potential of nitrogen-fixing (NF) bacteria to form a symbiotic relationship with leguminous plants and fix atmospheric nitrogen has been exploited in the field to meet the nitrogen requirement of the latter. This phenomenon provides an alternative to the use of the nitrogenous fertiliser whose excessive and imbalanced use over the decades has contributed to green house emission (N2O) and underground water leaching. Recently, it was observed that non-leguminous plants like rice, sugarcane, wheat and maize form an extended niche for various species of NF bacteria. These bacteria thrive within the plant, successfully colonizing roots, stems and leaves. During the association, the invading bacteria benefit the acquired host with a marked increase in plant growth, vigor and yield. With increasing population, the demand of non-leguminous plant products is growing. In this regard, the richness of NF flora within non-leguminous plants and extent of their interaction with the host definitely shows a ray of hope in developing an ecofriendly alternative to the nitrogenous fertilisers. In this review, we have discussed the association of NF bacteria with various non-leguminous plants emphasizing on their potential to promote host plant growth and yield. In addition, plant growth-promoting traits observed in these NF bacteria and their mode of interaction with the host plant have been described briefly.

  4. Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia.

    PubMed

    Lardi, Martina; Pessi, Gabriella

    2018-05-18

    Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).

  5. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop.

    PubMed

    Bhuvaneshwari, K; Singh, Pawan Kumar

    2015-08-01

    The water fern Azolla harbors nitrogen-fixing cyanobacterium Anabaena azollae as symbiont in its dorsal leaves and is known as potent N 2 fixer. Present investigation was carried out to study the influence of fresh Azolla when used as basal incorporation in soil and as dual cropped with rice variety Mahsoori separately and together with and without chemical nitrogen fertilizer in pots kept under net house conditions. Results showed that use of Azolla as basal or dual or basal plus dual influenced the rice crop positively where use of fern as basal plus dual was superior and served the nitrogen requirement of rice. There was marked increase in plant height, number of effective tillers, dry mass and nitrogen content of rice plants with the use of Azolla and N-fertilizers alone and other combinations. The use of Azolla also increased organic matter and potassium contents of the soil.

  6. 16S Ribosomal DNA Characterization of Nitrogen-Fixing Bacteria Isolated from Banana (Musa spp.) and Pineapple (Ananas comosus (L.) Merril)

    PubMed Central

    Magalhães Cruz, Leonardo; Maltempi de Souza, Emanuel; Weber, Olmar Baler; Baldani, José Ivo; Döbereiner, Johanna; de Oliveira Pedrosa, Fábio

    2001-01-01

    Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria. PMID:11319127

  7. Environmental Fate and tTransport of a New Energetic Material CL-20

    DTIC Science & Technology

    2006-02-01

    the study suggest indirectly that availability of their respective food sources, bacteria and fungi, were also unaffected, or increased in soil CL-20...was placed inside each pot at the bottom in order to prevent soil loss during testing. Alfalfa seeds were inoculated with nitrogen-fixing bacteria ...prior to sowing (Southern States Alfalfa-Clover Nitrogen Fixing Bacteria , lot no. 3092002, expiration date 07/2004 [Alfalfa toxicity tests were

  8. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.

  9. Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: A mass balance approach

    USGS Publications Warehouse

    Desimone, Leslie A.; Howes, Brian L.

    1998-01-01

    Nitrogen transport and transformations were followed over the initial 3 years of development of a plume of wastewater-contaminated groundwater in Cape Cod, Massachusetts. Ammonification and nitrification in the unsaturated zone and ammonium sorption in the saturated zone were predominant, while loss of fixed nitrogen through denitrification was minor. The major effect of transport was the oxidation of discharged organic and inorganic forms to nitrate, which was the dominant nitrogen form in transit to receiving systems. Ammonification and nitrification in the unsaturated zone transformed 16–19% and 50–70%, respectively, of the total nitrogen mass discharged to the land surface during the study but did not attenuate the nitrogen loading. Nitrification in the unsaturated zone also contributed to pH decrease of 2 standard units and to an N2O increase (46–660 µg N/L in the plume). Other processes in the unsaturated zone had little net effect: Ammonium sorption removed <1% of the total discharged nitrogen mass; filtering of particulate organic nitrogen was less than 3%; ammonium and nitrate assimilation was less than 6%; and ammonia volatilization was less than 0.25%. In the saturated zone a central zone of anoxic groundwater (DO ≤ 0.05 mg/L) was first detected 17 months after effluent discharge to the aquifer began, which expanded at about the groundwater-flow velocity. Although nitrate was dominant at the water table, the low, carbon-limited rates of denitrification in the anoxic zone (3.0–9.6 (ng N/cm3)/d) reduced only about 2% of the recharged nitrogen mass to N2. In contrast, ammonium sorption in the saturated zone removed about 16% of the recharged nitrogen mass from the groundwater. Ammonium sorption was primarily limited to anoxic zone, where nitrification was prevented, and was best described by a Langmuir isotherm in which effluent ionic concentrations were simulated. The initial nitrogen load discharged from the groundwater system may depend largely on the growth and stability of the sorbed ammonium pool, which in turn depends on effluent-loading practices, subsurface microbial processes, and saturation of available exchange sites.

  10. Seasonal Patterns of Nitrogen and Phosphorus Limitation in Four German Lakes and the Predictability of Limitation Status from Ambient Nutrient Concentrations

    PubMed Central

    Kolzau, Sebastian; Wiedner, Claudia; Rücker, Jacqueline; Köhler, Jan; Köhler, Antje; Dolman, Andrew M.

    2014-01-01

    To identify the seasonal pattern of nitrogen (N) and phosphorus (P) limitation of phytoplankton in four different lakes, biweekly experiments were conducted from the end of March to September 2011. Lake water samples were enriched with N, P or both nutrients and incubated under two different light intensities. Chlorophyll a fluorescence (Chla) was measured and a model selection procedure was used to assign bioassay outcomes to different limitation categories. N and P were both limiting at some point. For the shallow lakes there was a trend from P limitation in spring to N or light limitation later in the year, while the deep lake remained predominantly P limited. To determine the ability of in-lake N:P ratios to predict the relative strength of N vs. P limitation, three separate regression models were fit with the log-transformed ratio of Chla of the P and N treatments (Response ratio = RR) as the response variable and those of ambient total phosphorus:total nitrogen (TN:TP), dissolved inorganic nitrogen:soluble reactive phosphorus (DIN:SRP), TN:SRP and DIN:TP mass ratios as predictors. All four N:P ratios had significant positive relationships with RR, such that high N:P ratios were associated with P limitation and low N:P ratios with N limitation. The TN:TP and DIN:TP ratios performed better than the DIN:SRP and TN:SRP in terms of misclassification rate and the DIN:TP ratio had the highest R2 value. Nitrogen limitation was predictable, frequent and persistent, suggesting that nitrogen reduction could play a role in water quality management. However, there is still uncertainty about the efficacy of N restriction to control populations of N2 fixing cyanobacteria. PMID:24755935

  11. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs

    PubMed Central

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N2-fixing legume shrubs and non-N2-fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N2-fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N2-fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N2-fixing shrubs. N concentrations were positively correlated among three tissue types for non-N2-fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N2-fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N2-fixing shrubs, implying that legume shrubs were more P limited than non-N2-fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N2-fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N2-fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care of during management according to our results. PMID:29018468

  12. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs.

    PubMed

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N 2 -fixing legume shrubs and non-N 2 -fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N 2 -fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated among three tissue types for non-N 2 -fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N 2 -fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N 2 -fixing shrubs, implying that legume shrubs were more P limited than non-N 2 -fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N 2 -fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N 2 -fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care of during management according to our results.

  13. Nitrogen-fixing bacteria in Eucalyptus globulus plantations.

    PubMed

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.

  14. In silico characterization and transcriptomic analysis of nif family genes from Anabaena sp. PCC7120.

    PubMed

    Singh, Shilpi; Shrivastava, Alok Kumar

    2017-10-01

    In silico approaches in conjunction with morphology, nitrogenase activity, and qRT-PCR explore the impact of selected abiotic stressor such as arsenic, salt, cadmium, copper, and butachlor on nitrogen fixing (nif family) genes of diazotrophic cyanobacterium Anabaena sp. PCC7120. A total of 19 nif genes are present within the Anabaena genome that is involved in the process of nitrogen fixation. Docking studies revealed the interaction between these nif gene-encoded proteins and the selected abiotic stressors which were further validated through decreased heterocyst frequency, fragmentation of filaments, and downregulation of nitrogenase activity under these stresses indicating towards their toxic impact on nitrogen fixation potential of filamentous cyanobacterium Anabaena sp. PCC7120. Another appealing finding of this study is even though having similar binding energy and similar interacting residues between arsenic/salt and copper/cadmium to nif-encoded proteins, arsenic and cadmium are more toxic than salt and copper for nitrogenase activity of Anabaena which is crucial for growth and yield of rice paddy and soil reclamation.

  15. Bioconversion of sugar cane crop residues with white-rot fungiPleurotus sp.

    PubMed

    Ortega, G M; Martínez, E O; Betancourt, D; González, A E; Otero, M A

    1992-07-01

    Four mushroom strains ofPleurotus spp. were cultivated on sugar cane crop residues for 30 days at 26°C. Biochemical changes affected the substrate as a result of fungal growth, in terms of nitrogen, lignin, cellulose and hemicellulose contents. All strains showed a strong ligninolytic activity together with variable cellulolytic and xylanolytic action.Pleurotus sajor-caju attacked lignin and cellulose at the same rate, showing a degradation of 47% and 55%, respectively. A better balance was shown by theP. ostreatus-P. pulmonarius hybrid, which exhibited the poorest cellulolytic action (39%) and the highest ligninolytic activity (67%). The average composition of mushroom fruit bodies, in terms of nitrogen, carbohydrates, fats and amino acid profiles, was determined. Crude protein and total carbohydrate varied from 23% to 33% and 36% to 68% of dry matter, respectively. Fat ranged from 3.3% to 4.7% and amino acid content from 12.2% to 22.2%. Slight evidence for a nitrogen fixing capability was encountered in the substrate to fruit body balance.

  16. Nitrogen-Fixing Bacteria in Eucalyptus globulus Plantations

    PubMed Central

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover. PMID:25340502

  17. Sedimentary Nitrogen Stable Isotopes and Variations in Nutrient Cycling in the Holocene Black Sea

    NASA Astrophysics Data System (ADS)

    Fulton, J. M.; Arthur, M. A.

    2004-12-01

    Interpreting the evolution of organic matter production and preservation in anoxic basins such as the Holocene Black Sea depends on developing an understanding of changes in nutrient cycling within the water column with time. The organic fraction of sediments may preserve evidence of such changes in nutrient utilization. One model proposes changes in phosphorus availability as a driver for changes in algal productivity in the Black Sea. Nitrogen, the other macronutrient commonly considered to limit algal growth, is the focus of this study as we examine the nitrogen content and stable isotope variations of Black Sea sediments to determine what role it may have played in temporal changes in productivity and organic matter accumulation. High-resolution samples from five gravity cores collected by the RV Knorr 1988 expedition were analyzed for δ 15N-total and δ 13C-organic as well as their percent composition of organic carbon and total nitrogen. One core, GC71, was subjected to sequential extractions with KCl and hydrogen peroxide to remove exchangeable ammonia and labile organic matter respectively. The KCl extraction did not remove a statistically significant amount of ammonia, having no measurable effect on the percent nitrogen or δ 15N of the solid samples. The hydrogen peroxide extraction removed ca. 95% of the organic carbon and 85% of the nitrogen, leaving a relatively nitrogen-enriched residual material, probably due to ammonium fixed within the clay lattice. The fixed nitrogen has a minimal effect on the bulk nitrogen isotope values, suggesting the bulk nitrogen values are similar to the organic nitrogen signal. All cores examined were from below the modern Black Sea chemocline and are thought to have remained under anoxic bottom water continuously since soon after the incursion of saline Mediterranean water ca. 7800 years ago. Water depths for these cores range from 411 meters along the south margin of the sea to 2088 meters in the eastern Black Sea basin, and the samples analyzed span the past 10,000 years. This study incorporates new nitrogen isotopic data, higher resolution carbon isotopic data, and C/N ratios with previously published bulk organic carbon, Rock-Eval pyrolysis, regional climate, and molecular organic geochemical data from other sources. The results of this study reveal three intervals in sedimentary units I, IIa, and IIb, preserved in multiple cores, with less enriched δ 15N values from +0.3 to +1.5 permil, separated by positive excursions with δ 15N values between +3 and +4.5 permil. These intervals are the result of basin-wide processes as they occurred synchronously across the Black Sea. δ 13C values suggest a primarily marine source for organic matter throughout units I and II, and fluctuations of δ 15N do not seem to correlate with regional vegetation or precipitation changes; thus, assuming a relatively constant δ 15N for inorganic and organic nitrogen riverine influx, changes in δ 15N are due primarily to marine activity. We believe the lower δ 15N values in units I and IIa were caused by decreases in water column denitrification due to a deeper chemocline and greater oxygen availability for respiration. The lower δ 15N values in unit IIb may be due to nitrogen fixation caused by the release of excess phosphorus from the sediments due to the bottom water anoxia.

  18. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    PubMed

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  19. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    PubMed Central

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  20. Modeling reactive nitrogen in North America: recent ...

    EPA Pesticide Factsheets

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. The bulk of nitrogen in the environment is tightly bound as non-reactive N2. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media (Galloway et al., 2003). Human activity has perturbed this cycle through the combustion of fossil fuels and synthesis of fertilizers. The anthropogenic contribution to this cycle is now larger than natural sources in the United States and globally (Galloway et al., 2004). Reactive nitrogen enters the biosphere primarily from emissions of oxidized nitrogen to the atmosphere from combustion sources, as inorganic fertilizer applied to crops as reduced nitrogen fixed from atmospheric N2 through the Haber-Bosch process, as organic fertilizers such as manure, and through the cultivation of nitrogen fixing crops (Canfield et al., 2010). Both the United States (US) Clean Air Act and the Canadian Environmental Protection Act (CEPA) have substantially reduced the emissions of oxidized nitrogen in North America through NOx controls on smokestacks and exhaust pipes (Sickles and Shadwick, 2015; AQA, 2015). However, reduced nitrogen emissions have remained constant during the last few decades of emission reductions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) c

  1. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner

    PubMed Central

    Domonkos, Ágota; Kovács, Szilárd; Gombár, Anikó; Kiss, Ernő; Horváth, Beatrix; Kováts, Gyöngyi Z.; Farkas, Attila; Tóth, Mónika T.; Ayaydin, Ferhan; Bóka, Károly; Fodor, Lili; Endre, Gabriella; Kaló, Péter

    2017-01-01

    Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules. PMID:29240711

  2. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner.

    PubMed

    Domonkos, Ágota; Kovács, Szilárd; Gombár, Anikó; Kiss, Ernő; Horváth, Beatrix; Kováts, Gyöngyi Z; Farkas, Attila; Tóth, Mónika T; Ayaydin, Ferhan; Bóka, Károly; Fodor, Lili; Ratet, Pascal; Kereszt, Attila; Endre, Gabriella; Kaló, Péter

    2017-12-14

    Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules.

  3. Characterization of biochars to evaluate recalcitrance and agronomic performance.

    PubMed

    Enders, Akio; Hanley, Kelly; Whitman, Thea; Joseph, Stephen; Lehmann, Johannes

    2012-06-01

    Biochars (n=94) were found to have ash contents from 0.4% to 88.2%, volatile matter from 13.2% to 70.0%, and fixed carbon from 0% to 77.4% (w/w). Greater pyrolysis temperature for low-ash biochars increased fixed carbon, but decreased it for biochars with more than 20% ash. Nitrogen recovery varied depending on feedstock used to a greater extent (12-68%) than organic (25-45%) or total C (41-76%) at a pyrolysis temperature of 600 °C. Fixed carbon production ranged from no enrichment in poultry biochar to a 10-fold increase in corn biochar (at 600 °C). Prediction of biochar stability was improved by a combination of volatile matter and H:C ratios corrected for inorganic C. In contrast to stability, agronomic utility of biochars is not an absolute value, as it needs to meet local soil constraints. Woody feedstock demonstrated the greatest versatility with pH values ranging from 4 to 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The effects of acid rain on nitrogen fixation in Western Washington coniferous forests

    Treesearch

    Robert Denison; Bruce Caldwell; Bernard Bormann; Lindell Eldred; Cynthia Swanberg; Steven Anderson

    1976-01-01

    We investigated both the current status of nitrogen fixation in Western Washington forests, and the potential effects of acid rain on this vital process. Even the low concentrations of sulfur dioxide presently found in the Northwest are thought to have an adverse effect on nitrogen fixation by limiting the distribution of the epiphytic nitrogen-fixing lichen, ...

  5. The nitrate-reduction gene cluster components exert lineage-dependent contributions to optimization of Sinorhizobium symbiosis with soybeans.

    PubMed

    Liu, Li Xue; Li, Qin Qin; Zhang, Yun Zeng; Hu, Yue; Jiao, Jian; Guo, Hui Juan; Zhang, Xing Xing; Zhang, Biliang; Chen, Wen Xin; Tian, Chang Fu

    2017-12-01

    Receiving nodulation and nitrogen fixation genes does not guarantee rhizobia an effective symbiosis with legumes. Here, variations in gene content were determined for three Sinorhizobium species showing contrasting symbiotic efficiency on soybeans. A nitrate-reduction gene cluster absent in S. sojae was found to be essential for symbiotic adaptations of S. fredii and S. sp. III. In S. fredii, the deletion mutation of the nap (nitrate reductase), instead of nir (nitrite reductase) and nor (nitric oxide reductase), led to defects in nitrogen-fixation (Fix - ). By contrast, none of these core nitrate-reduction genes were required for the symbiosis of S. sp. III. However, within the same gene cluster, the deletion of hemN1 (encoding oxygen-independent coproporphyrinogen III oxidase) in both S. fredii and S. sp. III led to the formation of nitrogen-fixing (Fix + ) but ineffective (Eff - ) nodules. These Fix + /Eff - nodules were characterized by significantly lower enzyme activity of glutamine synthetase indicating rhizobial modulation of nitrogen-assimilation by plants. A distant homologue of HemN1 from S. sojae can complement this defect in S. fredii and S. sp. III, but exhibited a more pleotropic role in symbiosis establishment. These findings highlighted the lineage-dependent optimization of symbiotic functions in different rhizobial species associated with the same host. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. N-ViroTech--a novel process for the treatment of nutrient limited wastewaters.

    PubMed

    Slade, A H; Gapes, D J; Stuthridge, T R; Anderson, S M; Dare, P H; Pearson, H G W; Dennis, M

    2004-01-01

    As pulp and paper wastewaters are mostly deficient in nitrogen and phosphorus, historical practice has dictated that they cannot be effectively treated using microbiological processes without the addition of supplementary nutrients, such as urea and phosphoric acid. Supplementation is a difficult step to manage efficiently, requiring extensive post-treatment monitoring and some degree of overdosing to ensure sufficient nutrient availability under all conditions. As a result, treated wastewaters usually contain excess amounts of both nutrients, leading to potential impacts on the receiving waters such as eutrophication. N-ViroTech is a highly effective alternative treatment technology which overcomes this nutrient deficiency/excess paradox. The process relies on communities of nitrogen-fixing bacteria, which are able to directly fix nitrogen from the atmosphere, thus satisfying their cellular nitrogen requirements. The process relies on manipulation of growth conditions within the biological system to maintain a nitrogen-fixing population whilst achieving target wastewater treatment performance. The technology has significant advantages over conventional activated sludge operation, including: Improved environmental performance. Nutrient loadings in the final treated effluent for selected nitrogen and phosphorus species (particularly ammonium and orthophosphate) may be reduced by over 90% compared to conventional systems; Elimination of nitrogen supplementation, and minimisation of phosphorus supplementation, thus achieving significant chemical savings and resulting in between 25% and 35% savings in operational costs for a typical system; Self-regulation of nutrient requirements, as the bacteria only use as much nitrogen as they require, allowing for substantially less operator intervention and monitoring. This paper will summarise critical performance outcomes of the N-ViroTech process utilising results from laboratory-, pilot-scale and recent alpha-adopter, full-scale trials.

  7. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important?

    PubMed Central

    Sirová, Dagmara; Šantrůček, Jiří; Adamec, Lubomír; Bárta, Jiří; Borovec, Jakub; Pech, Jiří; Owens, Sarah M.; Šantrůčková, Hana; Schäufele, Rudi; Štorchová, Helena; Vrba, Jaroslav

    2014-01-01

    Background and Aims Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant–microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. Methods 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following 15N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. Key Results Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 μmol N g–1 d. mass d–1. Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised <0·01 % of the total prokaryotic transcripts. Conclusions It is hypothesized that the reason for limited N2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0–4·3 mg L–1) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant–microbe system can supply nitrogen in the order of hundreds of mg m–2 into the nutrient-limited littoral zone, where it may thus represent an important N source. PMID:24817095

  8. Linking landscape characteristics and stream nitrogen in the Oregon Coast Range: Empirical modeling of water quality monitoring data

    EPA Science Inventory

    Background sources of nitrogen (N) provide a challenge for setting stream nutrient criteria in the Pacific Northwest US. Red alder (Alnus rubra), an early successional nitrogen fixing tree, and sea salt inputs can strongly influence stream N concentrations observed in individual...

  9. Transcriptome analysis of two recombinant inbred lines of common bean contrasting for symbiotic nitrogen fixation

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris L.) is able to fix atmospheric nitrogen (N2) through symbiotic nitrogen fixation (SNF). Effective utilization of existing variability for SNF in common bean for genetic improvement requires an understanding of underlying genes and molecular mechanisms. The utility of ...

  10. Heterotrophic N2-fixation contributes to nitrogen economy of a common wetland sedge, Schoenoplectus californicus.

    PubMed

    Rejmánková, Eliška; Sirová, Dagmara; Castle, Stephanie T; Bárta, Jiří; Carpenter, Heather

    2018-01-01

    A survey of the ecological variability within 52 populations of Schoenoplectus californicus (C.A. Mey.) Soják across its distributional range revealed that it is commonly found in nitrogen (N) limited areas, but rarely in phosphorus limited soils. We explored the hypothesis that S. californicus supplements its nitrogen demand by bacterial N2-fixation processes associated with its roots and rhizomes. We estimated N2-fixation of diazotrophs associated with plant rhizomes and roots from several locations throughout the species' range and conducted an experiment growing plants in zero, low, and high N additions. Nitrogenase activity in rhizomes and roots was measured using the acetylene reduction assay. The presence of diazotrophs was verified by the detection of the nifH gene. Nitrogenase activity was restricted to rhizomes and roots and it was two orders of magnitude higher in the latter plant organs (81 and 2032 nmol C2H4 g DW-1 d-1, respectively). Correspondingly, 40x more nifH gene copies were found on roots compared to rhizomes. The proportion of the nifH gene copies in total bacterial DNA was positively correlated with the nitrogenase activity. In the experiment, the contribution of fixed N to the plant N content ranged from 13.8% to 32.5% among clones from different locations. These are relatively high values for a non-cultivated plant and justify future research on the link between N-fixing bacteria and S. californicus production.

  11. Estimates of N2O, NO and NH3 Emissions From Croplands in East, Southeast and South Asia

    NASA Astrophysics Data System (ADS)

    Yan, X.; Ohara, T.; Akimoto, H.

    2002-12-01

    Agricultural activities have greatly altered the global nitrogen cycle and produced nitrogenous gases of environmentally significance. More than half of the global chemical nitrogen fertilizer is used for crop production in East, Southeast and South Asia where rice the center of nutrition. Emissions of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from croplands in this region were estimated by considering both background emission and emissions resulted from nitrogen added to croplands, including chemical nitrogen, animal manure used as fertilizer, biological fixed nitrogen and nitrogen in crop residue returned to field. Background emission fluxes of N2O and NO from croplands were estimated at 1.16 and 0.52 kg N ha-1yr-1, respectively. A fertilizer-induced N2O emission factor of 1.25% for upland was adopted from IPCC guidelines, and a factor of 0.25% was derived for paddy field from measurements. Total N2O emission from croplands in the region was estimated at 1.16 Tg N yr-1, with 41% contributed by background emission which was not considered in previous global estimates. However, the average fertilizer-induced N2O emission is only 0.93%, lower than the default IPCC value of 1.25% due to the low emission factor from paddy field. A fertilizer-induced NO emission factor of 0.66% for upland was derived from field measurements, and a factor of 0.13% was assumed for paddy field. Total NO emission was 572 Gg N yr-1 in the region, with 38% due to background emission. Average fertilizer-induce NO emission factor was 0.48%. Extrapolating this estimate to global scale will result in a global NO emission from cropland of 1.6 Tg N yr-1, smaller than other global estimates. Total NH3 emission was estimated at 11.8 Tg N yr-1. The use of urea and ammonium bicarbonate and the cultivation of rice lead to a high average NH3 loss rate of chemical fertilizer in the region. Emissions were distributed at 0.5° grid by using a global landuse database.

  12. Changes in Nitrogen Cycling in a Shrub-Encroached Dryland

    NASA Astrophysics Data System (ADS)

    Turpin-Jelfs, T. C.; Michaelides, K.; Biederman, J. A.; Evershed, R. P.; Anesio, A. M.

    2017-12-01

    Land degradation is estimated to have occurred in 10-20% of Earth's drylands, where the environmental and socioeconomic consequences have affected 250 million people. The prevailing form of land degradation in drylands over the past ca. 150 years has been the encroachment of woody plants into arid and semi-arid grasslands. The density of mesquite (Prosopis spp.), a significant nitrogen (N)-fixing woody encroacher, has increased within the arid and semi-arid grasslands of the southwestern US by >400% over the past 30 years to occupy an area of >38 Mha. However, the impacts of an increasing density of N-fixing shrubs on the cycling and spatial variability of N within these ecosystems remains poorly understood. Here, we quantify how concentrations of N (ammonium-N, nitrate-N, organic N), as well as carbon (C; total C and organic C) and phosphorous (P; loosely-bound P, iron- and aluminium-bound P, apatite P and calcite-bound P, and residual P), and the structure of the microbial community (phospholipid fatty acids), change in the soils underneath and between shrub canopies along a gradient of shrub-encroachment for a semiarid grassland in the Santa Rita Experimental Range (SRER) Arizona, US. This gradient of encroachment was comprised of five sites that ranged from a grass dominated state to a shrub-dominated state characterised by mosaics of shrub patches and bare-soil interspaces. Our results show that the organic C and total N content of soils between shrubs decreased by >50% between grass dominant and shrub dominant end-member sites. Conversely, the organic C and total N content of soils beneath shrub canopies remained relatively constant along the encroachment gradient.

  13. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil

    PubMed Central

    Battenberg, Kai; Wren, Jannah A.; Hillman, Janell; Edwards, Joseph; Huang, Liujing

    2016-01-01

    ABSTRACT The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient via root nodule symbioses, which represent evolutionarily and ecologically specialized mutualistic associations. Frankia spp. (Actinobacteria), especially cluster II Frankia spp., have an extremely broad host range, yet comparatively little is known about the soil ecology of these organisms in relation to the host plants and their rhizosphere microbiomes. This study reveals a strong influence of the host plant on soil distribution of cluster II Frankia spp. PMID:27795313

  14. The impact of simulated chronic nitrogen deposition on the biomass and N₂-fixation activity of two boreal feather moss-cyanobacteria associations.

    PubMed

    Gundale, Michael J; Bach, Lisbet H; Nordin, Annika

    2013-01-01

    Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N₂, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N₂-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N₂-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N₂-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N₂ fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.

  15. Selected papers in the hydrologic sciences, 1986

    USGS Publications Warehouse

    Subitzky, Seymour

    1987-01-01

    Water-quality data from long-term (24 years), fixed- station monitoring at the Cape Fear River at Lock 1 near Kelly, N.C., and various measures of basin development are correlated. Subbasin population, number of acres of cropland in the subbasin, number of people employed in manufacturing, and tons of fertilizer applied in the basin are considered as measures of basinwide development activity. Linear correlations show statistically significant posi- tive relations between both population and manufacturing activity and most of the dissolved constituents considered. Negative correlations were found between the acres of harvested cropland and most of the water-quality measures. The amount of fertilizer sold in the subbasin was not statistically related to the water-quality measures considered in this report. The statistical analysis was limited to several commonly used measures of water quality including specific conductance, pH, dissolved solids, several major dissolved ions, and a few nutrients. The major dissolved ions included in the analysis were calcium, sodium, potassium, magnesium, chloride, sulfate, silica, bicarbonate, and fluoride. The nutrients included were dissolved nitrite plus nitrate nitrogen, dissolved ammonia nitrogen, total nitrogen, dissolved phosphates, and total phosphorus. For the chemicals evaluated, manufacturing and population sources are more closely associated with water quality in the Cape Fear River at Lock 1 than are agricultural variables.

  16. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  17. Water-quality assessment of the eastern Iowa basins- nitrogen, phosphorus, suspended sediment, and organic carbon in surface water, 1996-98

    USGS Publications Warehouse

    Becher, Kent D.; Kalkhoff, Stephen J.; Schnoebelen, Douglas J.; Barnes, Kimberlee K.; Miller, Von E.

    2001-01-01

    Synoptic samples collected during low and high base flow had nitrogen, phosphorus, and organic-carbon concentrations that varied spatially and seasonally. Comparisons of water-quality data from six basic-fixed sampling sites and 19 other synoptic sites suggest that the water-quality data from basic-fixed sampling sites were representative of the entire study unit during periods of low and high base flow when most streamflow originates from ground water.

  18. Association of N 2-fixing Cyanobacteria and Plants: Towards Novel Symbioses of Agricultural Importance. Final report, 1 April 1996 to 31 May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantar, Miroslav

    1999-03-01

    The goal of this project is to characterize an association that takes place between the roots of wheat and the nitrogen-fixing cyanobacterium Nostoc 2S9. By understanding how the association takes place and the extent to which it permits the growth of the plant without exogenous nitrogenous fertilizer, it may prove possible to increase the benefits of the association and to extend them to other plants of agrinomic importance.

  19. Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture.

    PubMed

    Li, Shutian; He, Ping; Jin, Jiyun

    2013-03-30

    Understanding the nitrogen (N) use efficiency and N input/output balance in the agricultural system is crucial for best management of N fertilisers in China. In the last 60 years, N fertiliser consumption correlated positively with grain production. During that period the partial factor productivity of N (PFPN ) declined greatly from more than 1000 kg grain kg⁻¹ N in the 1950s to nearly 30 kg grain kg⁻¹ N in 2008. This change in PFPN could be largely explained by the increase in N rate. The average agronomic efficiency of fertiliser N (AEN ) for rice, wheat and maize during 2000-2010 was 12.6, 8.3 and 11.5 kg kg⁻¹ respectively, which was similar to that in the early 1980s but lower than that in the early 1960s. Estimation based on statistical data showed that a total of 49.16 × 10⁶ t of N was input into Chinese agriculture, of which chemical N, organic fertiliser N, biological fixed N and other sources accounted for 58.2, 24.3, 10.5 and 7.0% respectively. Nitrogen was surplus in all regions, the total N surplus being 10.6 × 10⁶ t (60.6 kg ha⁻¹). The great challenge is to balance the use of current N fertilisers between regions and crops to improve N use efficiency while maintaining or increasing crop production under the high-intensity agricultural system of China. © 2012 Society of Chemical Industry.

  20. Long-term natural attenuation of carbon and nitrogen within a groundwater plume after removal of the treated wastewater source

    USGS Publications Warehouse

    Repert, D.A.; Barber, L.B.; Hess, K.M.; Keefe, S.H.; Kent, D.B.; LeBlanc, D.R.; Smith, R.L.

    2006-01-01

    Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m-2) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m-2) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.

  1. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    NASA Astrophysics Data System (ADS)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P<0.05). In addition, the percentage of soil aggregates with diameter > 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  2. Swivel Joint For Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  3. Diversity and antifungal activity of endophytic diazotrophic bacteria colonizing sugarcane in Egypt

    USDA-ARS?s Scientific Manuscript database

    The price of nitrogen continues to increase and is a major input in sugarcane production. Sugarcane grown in Egypt was screened for the presence of nitrogen-fixing bacteria. Nitrogen-free medium LGI-P was used to isolate bacteria from cane stalks. Among the 52 isolates subjected to acetylene redu...

  4. A simplified version of the total Kjeldahl nitrogen method using an ammonia extraction ultrasound-assisted purge-and-trap system and ion chromatography for analyses of geological samples.

    PubMed

    Pontes, Fernanda V M; Carneiro, Manuel C; Vaitsman, Delmo S; da Rocha, Genilda P; da Silva, Lílian I D; Neto, Arnaldo A; Monteiro, Maria Inês C

    2009-01-26

    The total Kjeldahl nitrogen (TKN) method was simplified by using a manifold connected to a purge-and-trap system immersed into an ultrasonic (US) bath for simultaneous ammonia (NH(3)) extraction from many previously digested samples. Then, ammonia was collected in an acidic solution, converted to ammonium (NH(4)(+)), and finally determined by ion chromatography method. Some variables were optimized, such as ultrasonic irradiation power and frequency, ultrasound-assisted NH(3) extraction time, NH(4)(+) mass and sulfuric acid concentration added to the NH(3) collector flask. Recovery tests revealed no changes in the pH values and no conversion of NH(4)(+) into other nitrogen species during the irradiation of NH(4)Cl solutions with 25 or 40 kHz ultrasonic waves for up to 20 min. Sediment and oil free sandstone samples and soil certified reference materials (NCS DC 73319, NCS DC 73321 and NCS DC 73326) with different total nitrogen concentrations were analysed. The proposed method is faster, simpler and more sensitive than the classical Kjeldahl steam distillation method. The time for NH(3) extraction by the US-assisted purge-and-trap system (20 min) was half of that by the Kjeldahl steam distillation (40 min) for 10 previously digested samples. The detection limit was 9 microg g(-1)N, while for the Kjeldahl classical/indophenol method was 58 microg g(-1)N. Precision was always better than 13%. In the proposed method, carcinogenic reagents are not used, contrarily to the indophenol method. Furthermore, the proposed method can be adapted for fixed-NH(4)(+) determination.

  5. Soil N retention and nitrate leaching in three types of dunes in the Mu Us desert of China.

    PubMed

    Jin, Zhao; Zhu, Yajuan; Li, Xiangru; Dong, Yunshe; An, Zhisheng

    2015-09-15

    A large reservoir of soil nitrate in desert subsoil zones has been demonstrated in previous studies; however, information on the subsoil nitrate reservoir and its distribution characteristics in the deserts of China is still limited. This study investigated the distribution patterns of soil total nitrogen (N), nitrate, ammonium, and stable isotopic ratios of (15)N (δ(15)N) in shallow (1 m) and subsoil (5 m) profiles in three types of dunes in the Mu Us desert of China. We found that soil N retention of the fixed and semi-fixed dunes followed a progressive nutrient depletion pattern in shallow soil profiles, whereas the subsoil nitrate of the fixed, semi-fixed and mobile dunes maintained a conservative accumulation pattern. The results indicate that the subsoil of the Mu Us desert may act as a reservoir of available nitrate. Furthermore, a soil δ(15)N analysis indicate that the nitrate content of the fixed dune is likely derived from soil nitrification, whereas the nitrate content in the mobile dune is derived from atmospheric nitrate deposition. Within the context of looming climate change and intensifying human activities, the subsoil nitrate content in the deserts of northern China could become mobilized and increase environmental risks to groundwater.

  6. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    PubMed

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  7. Contrasted Reactivity to Oxygen Tensions in Frankia sp. Strain CcI3 throughout Nitrogen Fixation and Assimilation

    PubMed Central

    Ghodhbane-Gtari, Faten; Hezbri, Karima; Ktari, Amir; Sbissi, Imed; Beauchemin, Nicholas; Gtari, Maher; Tisa, Louis S.

    2014-01-01

    Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection. PMID:24987692

  8. Nutrient and organic matter inputs to Hawaiian anchialine ponds: influences of n-fixing and non-n-fixing trees

    Treesearch

    Kehauwealani K. Nelson-Kaula; Rebecca Ostertag; R. Flint Hughes; Bruce D. Dudley

    2016-01-01

    Invasive nitrogen-fixing plants often increase energy and nutrient inputs to both terrestrial and aquatic ecosystems via litterfall, and these effects may be more pronounced in areas lacking native N2-fixers. We examined organic matter and nutrient inputs to and around anchialine ponds...

  9. Differences in Plant Traits among N-fixing Trees in Hawaii Affect Understory Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    August-Schmidt, E.; D'Antonio, C. M.

    2016-12-01

    Nitrogen (N) fixing trees are frequently used to restore soil functions to degraded ecosystems because they can increase soil organic matter and N availability. Although N-fixers are lumped into a single functional group, the quality and quantity of the plant material they produce and the rate at which they accrete and add N to the cycling pool likely vary. This talk will focus on the questions: (1) How does N-cycling differ among N-fixing tree species? And (2) Which plant traits are most important in distinguishing the soil N environment? To address these questions, we investigated planted stands of two Hawaiian native N-fixing trees (Acacia koa and Sophora chrysophylla) and `natural' stands of an invasive N-fixing tree (Morella faya) in burned seasonal submontane woodlands in Hawaii Volcanoes National Park. We measured the relative availability of nitrogen in the soil pool and understory plant community as well as characterizing the rate and amount of N cycling in these stands both in the field and using long term soil incubations in the laboratory. We found that N is cycled very differently under these three N-fixers and that this correlates with differences in their leaf traits. S. chrysophylla had the highest foliar %N and highest specific leaf area, and stands of these trees are associated with faster N-cycling, resulting in greater N availability compared to all other site types. Incubated S. chrysophylla soils mineralized almost twice as much N as any other soil type over the course of the experiment. The comparatively high-N environment under S. chrysophylla suggests that litter quality may be more important than litter quantity in determining nitrogen availability to the understory community.

  10. Culture Bottle Investigations of Nutrient Enriched Oligotrophic Phytoplankton Communities Challenge Contemporary Beliefs

    NASA Astrophysics Data System (ADS)

    Harrison, D. P.

    2016-02-01

    Humankind has fundamentally altered the global nitrogen cycle, such that today as much nitrogen is fixed from the atmosphere anthropogenically, as is fixed naturally by terrestrial and aquatic systems. 70% of this alteration is in the form of nitrogenous fertilizers, and Haber-Bosh production of urea now accounts for 20% of total global nitrogen fixation (anthropogenic and natural). Cultural eutrophication has long been implicated in an apparent increase in the number and severity of harmful algal blooms (HAB). More recently the form of introduced nitrogen has been receiving attention, with urea in particular singled out as a potential causative agent, yet this deduction seems to largely rely on observed correlations rather than establishment of a direct link. An alternative hypothesis is that environmental factors rather than the form of nitrogen exert a controlling influence on the nature of phytoplankton response to nutrient enrichment. Here I present the results of a series of eight repeated experiments conducted over an annual cycle in 2013-2014 using oligotrophic coastal phytoplankton assemblages to asses the effect of urea and nitrate enrichment on size distribution, speciation, and biochemistry. Experiments were conducted at one location offshore Sydney, Australia but had very different oceanographic starting conditions. The result of enrichment (+8 μM N & +0.5 μM P) using both nitrate and urea was a greater abundance of diatoms than dinoflagellates in all cases. Overall species composition was not significantly different (at 0.05 level) for nitrate and urea as revealed by multidimensional scaling and permutational ANOVA. However in some cases, contrary to published speculation, nitrate rather than urea resulted in increased abundance of dinoflagellates. A generalized mixed modeling approach identified aspects of the water column which appear to be associated with the presence of the East Australian Current as being influential. These results imply that greater caution should be applied when extrapolating observed correlations and laboratory measurements of individual cultured species to predict the reaction of planktonic communities to nutrient enrichment. Given that urea production is expected to double by 2050 understanding its influence in diverse marine environments is critical.

  11. Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii▿†

    PubMed Central

    Hamilton, Trinity L.; Ludwig, Marcus; Dixon, Ray; Boyd, Eric S.; Dos Santos, Patricia C.; Setubal, João C.; Bryant, Donald A.; Dean, Dennis R.; Peters, John W.

    2011-01-01

    Most biological nitrogen (N2) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandiicultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N2fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N2fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo. PMID:21724999

  12. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling.

    PubMed

    Cui, Li; Yang, Kai; Li, Hong-Zhe; Zhang, Han; Su, Jian-Qiang; Paraskevaidi, Maria; Martin, Francis L; Ren, Bin; Zhu, Yong-Guan

    2018-04-17

    Nitrogen (N) fixation is the conversion of inert nitrogen gas (N 2 ) to bioavailable N essential for all forms of life. N 2 -fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15 N 2 stable isotope probing (SIP) was developed to discern N 2 -fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N 2 -fixing bacteria), along with a marked 15 N 2 -induced Cyt c band shift, generated a highly distinguishable biomarker for N 2 fixation. 15 N 2 -induced shift was consistent well with 15 N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N 2 -fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15 N 2 percentage allowed quantification of N 2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.

  13. Fixation of nitrogen in the presence of water vapor

    DOEpatents

    Harteck, Paul

    1984-01-01

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  14. Indigenous Fixed Nitrogen on Mars: Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C. P.; Freissinet, C.; Archer, D., Jr.; Eigenbrode, J. L.; Mahaffy, P. R.; Conrad, P. G.

    2015-12-01

    Nitrate has been detected in Mars surface sediments and aeolian deposits by the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory Curiosity rover (Stern et al., 2015). This detection is significant because fixed nitrogen is necessary for life, a requirement that drove the evolution of N-fixing metabolism in life on Earth. The question remains as to the extent to which a primitive N cycle ever developed on Mars, and whether N is currently being deposited on the martian surface at a non-negligible rate. It is also necessary to consider processes that could recycle oxidized N back into the atmosphere, and how these processes may have changed the soil inventory of N over time. The abundance of fixed nitrogen detected as NO from thermal decomposition of nitrate is consistent with both delivery of nitrate via impact generated thermal shock early in martian history and dry deposition from photochemistry of thermospheric NO, occurring in the present. Processes that could recycle N back into the atmosphere may include nitrate reduction by Fe(II) in aqueous environments on early Mars, impact decomposition, and/or UV photolysis. In order to better understand the history of nitrogen fixation on Mars, we look to cycling of N in Mars analog environments on Earth such as the Atacama Desert and the Dry Valleys of Antarctica. In particular, we examine the ratio of nitrate to perchlorate (NO3-/ClO4-) in these areas compared to those calculated from data acquired on Mars.

  15. Identification of symbiotic nitrogen-fixing bacteria from three African leguminous trees in Gorongosa National Park.

    PubMed

    Teixeira, Helena; Rodríguez-Echeverría, Susana

    2016-07-01

    The symbiosis between leguminous plants and symbiotic nitrogen-fixing bacteria is a key component of terrestrial ecosystems. Woody legumes are well represented in tropical African forests but despite their ecological and socio-economic importance, they have been little studied for this symbiosis. In this study, we examined the identity and diversity of symbiotic-nitrogen fixing bacteria associated with Acacia xanthophloea, Faidherbia albida and Albizia versicolor in the Gorongosa National Park (GNP) in Mozambique. To the best of our knowledge, this is the first report on the identity of symbiotic-nitrogen fixing bacteria in this region. 166 isolates were obtained and subjected to molecular identification. BOX-A1R PCR was used to discriminate different bacterial isolates and PCR-sequencing of 16S rDNA, and two housekeeping genes, glnII and recA, was used to identify the obtained bacteria. The gene nifH was also analyzed to assess the symbiotic capacity of the obtained bacteria. All isolates from F. albida and Al. versicolor belonged to the Bradyrhizobium genus whereas isolates from Ac. xanthophloea clustered with Mesorhizobium, Rhizobium or Ensifer strains. Soil chemical analysis revealed significant differences between the soils occupied by the three studied species. Thus, we found a clear delimitation in the rhizobial communities and soils associated with Ac. xanthophloea, F. albida and Al. versicolor, and higher rhizobial diversity for Ac. xanthophloea than previously reported. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Budgets of fixed nitrogen in the Orinoco Savannah Region: Role of pyrodenitrification

    NASA Astrophysics Data System (ADS)

    Sanhueza, Eugenio; Crutzen, Paul J.

    1998-12-01

    Human activities have strongly altered the amount of fixed nitrogen that cycles in many regions of the industrialized world, with serious environmental consequences. Past studies conducted at the Orinoco savannahs of Venezuela offer a unique possibility for reviewing the cycling of nitrogen species in a tropical environment. The available information for the Orinoco savannahs is critically reviewed, and, despite many uncertainties, we present a budget analysis of both the fixed N in the soil-vegetation system and atmospheric NOy. Analysis of the data indicates that nitrogen fixation, especially by legumes, and ammonia emission from vegetation and animal wastes needs considerable attention in future research efforts. In contrast with many regions of the world, in the studied region, nonindustrial sources, foremost biomass burning, dominate the soil-vegetation and atmospheric budgets of fixed N. In general, N cycling is mainly driven by biomass burning. The resulting pyrodenitrification in the soil-vegetation system is the largest single process that, during the following wet season, may promote biological fixation to compensate for the N losses from fires during the burning season. However, a gradual impoverishment of the N status of the savannah ecosystems cannot be excluded. During the dry season, biomass burning is also the main source of atmospheric NOy, which is largely exported, mainly in the direction of the Amazon forest. Together with other nutrients, a "fertilization" of the Amazon forest due to biomass burning in the savannah may be the result. These issues require further scientific analysis.

  17. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates

    PubMed Central

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-01-01

    Colonies of N2-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. 15N-isotope labelling experiments and nutrient analyses revealed that N2 fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N2 were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO3−-depleted, fully oxygenated (surface) waters. In NO3−-enriched (>1.5 μM), O2-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes. PMID:25575306

  18. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    PubMed

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO(3)(-)-depleted, fully oxygenated (surface) waters. In NO(3)(-)-enriched (>1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  19. Nitrogen and Martian Habitability: Insights from Five Years of Curiosity Measurements

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C.; Ming, D. W.; Mahaffy, P. R.; Archer, D., Jr.; Franz, H. B.; Freissinet, C.; Jackson, W. A.; Conrad, P. G.; Glavin, D. P.; Trainer, M. G.; Malespin, C.; McAdam, A.; Eigenbrode, J. L.; Teinturier, S.; Manning, C.

    2017-12-01

    The detection of "fixed" N on Mars in the form of nitrate by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover [1] has major implications for martian habitability. "Follow the nitrogen" has been proposed as a strategy in the search for both extant and extinct life on Mars [e.g., 2]. Nitrogen is so crucial to life on Earth that life developed metabolic pathways to break the triple bond of N2 and "fix" atmospheric nitrogen to more biologically available molecules for use in proteins and informational polymers. Sequestration of nitrate in regolith has long been predicted to contribute to the removal of N from the martian atmosphere [e.g., 3], and our detections confirm that nitrogen fixation was occurring on ancient Mars. Detections of fixed nitrogen, particularly within the context of the habitable environment in Yellowknife Bay characterized by the MSL payload, are an important tool to assess whether life ever could have existed on ancient Mars. We present 5 years of analyses and interpretation of nitrate in solid martian drilled and scooped samples by SAM on MSL. Nitrate abundance reported by SAM in situ measurements ranges from non-detection to 681 ± 304 mg/kg [1,4] in the samples examined to date. The measured abundances are consistent with nitrogen fixation via impact generated thermal shock on ancient Mars and/or dry deposition from photochemistry of thermospheric NO. We review the integration of SAM data with terrestrial Mars analog work in order to better understand the timing of nitrogen fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts, such as perchlorate, may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars [4]. Finally, we present a comparison of isotopic composition (δ15N) of nitrate with δ15N of atmospheric nitrogen (δ15N ≈ 574‰, [5]), which can be used to constrain atmospheric loss of N2 and model the evolution of the atmosphere on Mars.

  20. The role of symbiotic nitrogen fixation in nitrogen availability, competition and plant invasion into the sagebrush steppe

    Treesearch

    Erin M. Goergen

    2009-01-01

    In the semi-arid sagebrush steppe of the Northeastern Sierra Nevada, resources are both spatially and temporally variable, arguably making resource availability a primary factor determining invasion success. N fixing plant species, primarily native legumes, are often relatively abundant in sagebrush steppe and can contribute to ecosystem nitrogen budgets. ...

  1. Evolution of root endosymbiosis with bacteria: How novel are nodules?

    PubMed

    Markmann, Katharina; Parniske, Martin

    2009-02-01

    Plants form diverse symbioses with nitrogen-fixing bacteria to gain access to ammonium, a product of the prokaryote-exclusive enzyme nitrogenase. Improving the symbiotic effectiveness of crop plants like maize, wheat or rice is a highly topical challenge and could help reduce the need for energy-intense nitrogen fertilizer in staple food production. Root nodule symbiosis (RNS) constitutes one of the most productive nitrogen-fixing systems, but it is restricted to a small group of related angiosperms. Here, we review the genetic regulation of RNS and its interconnections with other plant symbiosis or plant developmental programs. Since RNS uses genetic programs that are widely conserved in land plants, we evaluate the prospects for a transfer to plants that are currently non-nodulating.

  2. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites

    PubMed Central

    Desai, Mahesh S; Brune, Andreas

    2012-01-01

    Although it is well documented that the lack of nitrogen in the diet of wood-feeding termites is compensated by the nitrogen-fixing capacity of their gut microbiota, the bacteria responsible for this activity are largely unknown. Here, we analyzed the diversity and expression of nitrogenase genes (homologs of nifH) in four species of dry-wood termites (Kalotermitidae), which thrive on a particularly nitrogen-poor resource. Although each species harbored a highly diverse suite of termite-specific homologs in their microliter-sized hindgut, only a core set related to nifH genes of Treponema and Azoarcus spp., ‘Azobacteroides pseudotrichonymphae', the first member of the Bacteroidales identified as a diazotroph, and termite-gut-specific anfH genes of hitherto unknown origin were preferentially expressed. Transcription patterns corroborated that the populations of active diazotrophs differ fundamentally between termite genera. Capillary-picked suspensions of the flagellates Devescovina arta and Snyderella tabogae revealed that their bacterial ectosymbionts each possess two paralogs of nifH, which apparently have been acquired consecutively during evolution of Bacteroidales, but only one of them (anfH) is actively expressed. Transcription patterns correlated neither with the molybdenum content of the diet nor with intestinal hydrogen concentrations, measured with microsensors. We propose that the nitrogen-fixing community in different dry-wood termites is shaped by the symbionts of their specific flagellate populations. Our findings suggest that the diazotrophic nature of ‘Armantifilum devescovinae' has an important role in the nitrogen metabolism of dry-wood termites and is the driving force of co-evolution with its flagellate host. PMID:22189498

  3. ENGINEERING BULLETIN: ROTATING BIOLOGICAL CONTACTORS

    EPA Science Inventory

    Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...

  4. Statistical, graphical, and trend summaries of selected water-quality and streamflow data from the Trinity River near Crockett, Texas, 1964-85

    USGS Publications Warehouse

    Goss, Richard L.

    1987-01-01

    As part of the statistical summaries, trend tests were conducted. Several small uptrends were detected for total nitrogen, total organic nitrogen, total ammonia nitrogen, total nitrite nitrogen, total nitrate nitrogen, total organic plus ammonia nitrogen, total nitrite plus nitrate nitrogen, and total phosphorus. Small downtrends were detected for biochemical oxygen demand and dissolved magnesium.

  5. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    PubMed

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and development.

  6. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    PubMed Central

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  7. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida.

    PubMed

    Prasad, Rishi; Hochmuth, George J

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010-2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the strategies to reduce N losses must focus on managing the crop residues, using recommended fertilizer rates, and avoiding late-season application of nitrogen.

  8. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida

    PubMed Central

    Prasad, Rishi; Hochmuth, George J.

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010–2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the strategies to reduce N losses must focus on managing the crop residues, using recommended fertilizer rates, and avoiding late-season application of nitrogen. PMID:27907130

  9. Biological Nitrogen Fixation In Tropical Dry Forests Of Costa Rica

    NASA Astrophysics Data System (ADS)

    Gei, M. G.; Powers, J. S.

    2012-12-01

    Evidence suggests that tropical dry forests (TDF) are not nitrogen (N) deficient. This evidence includes: high losses of gaseous nitrogen during the rainy season, high ecosystem soil N stocks and high N concentrations in leaves and litterfall. Its been commonly hypothesized that biological nitrogen fixation is responsible for the high availability of N in tropical soils. However, the magnitude of this flux has rarely if ever been measured in tropical dry forests. Because of the high cost of fixing N and the ubiquity of N fixing legume trees in the TDF, at the individual tree level symbiotic fixation should be a strategy down-regulated by the plant. Our main goal was to determine the rates of and controls over symbiotic N fixation. We hypothesized that legume tree species employ a facultative strategy of nitrogen fixation and that this process responds to changes in light availability, soil moisture and nutrient supply. We tested this hypothesis both on naturally established trees in a forest and under controlled conditions in a shade house by estimating the quantities of N fixed annually using the 15N natural abundance method, counting nodules, and quantifying (field) or manipulating (shade house) the variation in important environmental variables (soil nutrients, soil moisture, and light). We found that in both in our shade house experiment and in the forest, nodulation varied among different legume species. For both settings, the 15N natural abundance approach successfully detected differences in nitrogen fixation among species. The legume species that we studied were able to regulate fixation depending on the environmental conditions. They showed to have different strategies of nitrogen fixation that follow a gradient of facultative to obligate fixation. Our data suggest that there exists a continuum of nitrogen fixation strategies among species. Any efforts to define tropical legume trees as a functional group need to incorporate this variation.

  10. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment.

    PubMed

    Chen, Chongjun; Huang, Xiaoxiao; Lei, Chenxiao; Zhang, Tian C; Wu, Weixiang

    2013-11-01

    Anaerobic ammonium-N removal from modified greenhouse turtle breeding wastewater with different chemical oxygen demand (COD) strengths (194.0-577.8 mg L(-1)) at relatively fixed C/N ratios (≈ 2) was investigated using a lab-scale up-flow anaerobic sludge blanket (UASB) anammox reactor. During the entire experiment, the total nitrogen (TN) removal efficiency was about 85% or higher, while the average COD removal efficiency was around 56.5 ± 7.9%. Based on the nitrogen and carbon balance, the nitrogen removal contribution was 79.6 ± 4.2% for anammox, 12.7 ± 3.0% for denitrification+denitritation and 7.7 ± 4.9% for other mechanisms. Denaturing gradient gel electrophoresis (DGGE) analyses revealed that Planctomycete, Proteobacteria and Chloroflexi bacteria were coexisted in the reactor. Anammox was always dominant when the reactor was fed with different COD concentrations, which indicated the stability of the anammox process with the coexistence of the denitrification process in treating greenhouse turtle breeding wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. [Rice endogenous nitrogen fixing and growth promoting bacterium Herbaspirillum seropedicae DX35].

    PubMed

    Wang, Xiucheng; Cao, Yanhua; Tang, Xue; Ma, Xiaotong; Gao, Jusheng; Zhang, Xiaoxia

    2014-03-04

    To screen efficient nitrogen fixation endophytes from rice and to analyze their growth-promoting properties. We isolated strains from the roots of rice in the field where it has a rice-rice-green manure rotation system for 30 years. Efficient strains were screened by acetylene reduction assay. Phylogenetic analysis is based on 16S rRNA gene, nifH gene and the composition of fatty acid. In addition, we also detected the ability of indole acetic acid secretion through the Salkowski colorimetric method, measured the production of siderophore through the blue plate assay and detected phosphate solubilization, to analyze the growth-promoting properties. A total of 48 strains were isolated, in which DX35 has the highest nitrogenase activity. It belongs to Herbaspirillum seropedicae after identification. Its nitrogenase activity (181.21 nmol C2H4/(mg protein x h)) was 10 times as much as the reference strain Azotobacter chroococcum ACCC10006. In addition, it also can secrete siderophore and solubilize phosphorus. Strain DX35, belonging to Herbaspirillum seropedicae, is an efficient nitrogen fixation endophytes.

  12. Numerical model simulations of nitrate concentrations in groundwater using various nitrogen input scenarios, mid-Snake region, south-central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.; Rupert, Michael G.

    2012-01-01

    As part of the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) program nitrate transport in groundwater was modeled in the mid-Snake River region in south-central Idaho to project future concentrations of nitrate. Model simulation results indicated that nitrate concentrations would continue to increase over time, eventually exceeding the U.S. Environmental Protection Agency maximum contaminant level for drinking water of 10 milligrams per liter in some areas. A subregional groundwater model simulated the change of nitrate concentrations in groundwater over time in response to three nitrogen input scenarios: (1) nitrogen input fixed at 2008 levels; (2) nitrogen input increased from 2008 to 2028 using the same rate of increase as the average rate of increase during the previous 10 years (1998 through 2008); after 2028, nitrogen input is fixed at 2028 levels; and (3) nitrogen input related to agriculture completely halted, with only nitrogen input from precipitation remaining. Scenarios 1 and 2 project that nitrate concentrations in groundwater continue to increase from 10 to 50 years beyond the year nitrogen input is fixed, depending on the location in the model area. Projected nitrate concentrations in groundwater increase by as much as 2–4 milligrams per liter in many areas, with nitrate concentrations in some areas reaching 10 milligrams per liter. Scenario 3, although unrealistic, estimates how long (20–50 years) it would take nitrate in groundwater to return to background concentrations—the “flushing time” of the system. The amount of nitrate concentration increase cannot be explained solely by differences in nitrogen input; in fact, some areas with the highest amount of nitrogen input have the lowest increase in nitrate concentration. The geometry of the aquifer and the pattern of regional groundwater flow through the aquifer greatly influence nitrate concentrations. The aquifer thins toward discharge areas along the Snake River which forces upward convergence of good-quality regional groundwater that mixes with the nitrate-laden groundwater in the uppermost parts of the aquifer, which results in lowered nitrate concentrations. A new method of inputting nitrogen to the subregional groundwater model was used that prorates nitrogen input by the probability of detecting nitrate concentrations greater than 2 mg/L. The probability map is based on correlations with physical factors, and prorates an existing nitrogen input dataset providing an estimate of nitrogen flux to the water table that accounts for new factors such as soil properties. The effectiveness of this updated nitrogen input method was evaluated using the software UCODE_2005.

  13. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle?

    PubMed Central

    Coba de la Peña, Teodoro; Fedorova, Elena; Pueyo, José J.; Lucas, M. Mercedes

    2018-01-01

    In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle. PMID:29403508

  14. Real-scale comparison between simple and composite raw sewage sampling

    NASA Astrophysics Data System (ADS)

    Sergio Scalize, Paulo; Moraes Frazão, Juliana

    2018-06-01

    The present study performed a qualitative and quantitative characterization of the raw sewage collected at the entrance of the sewage treatment station of the city of Itumbiara, state of Goiás. Samples were collected every two hours over a period of seven consecutive days. Characterization of both point samples and composite samples was performed. The parameters analyzed were: temperature, pH, alkalinity, chemical oxygen demand, oil and grease, electric conductivity, total phosphorus, settleable solids, ammoniacal nitrogen, total suspended solids, volatile suspended solids, fixed suspended solids and turbidity. These results allowed us to verify that it is possible to perform the collection and analysis of a point sample, instead of a composite sample, as a way of monitoring the efficiency of a sewage treatment plant.

  15. Patterns in understory woody diversity and soil nitrogen across native- and non-native-urban tropical forests

    Treesearch

    D.F. Cusack; T.L. McCleery; NO-VALUE

    2014-01-01

    Urban expansion is accelerating in the tropics, and may promote the spread of introduced plant species into urban-proximate forests. For example, soil disturbance can deplete the naturally high soil nitrogen pools in wet tropical soils, favoring introduced species with nitrogen-fixing capabilities. Also, forest fragmentation and canopy disturbance are likely to favor...

  16. Proteomic analysis of Herbaspirillum seropedicae reveals ammonium-induced AmtB-dependent membrane sequestration of PII proteins.

    PubMed

    Huergo, Luciano F; Noindorf, Lilian; Gimenes, Camila; Lemgruber, Renato S P; Cordellini, Daniela F; Falarz, Lucas J; Cruz, Leonardo M; Monteiro, Rose A; Pedrosa, Fábio O; Chubatsu, Leda S; Souza, Emanuel M; Steffens, Maria B R

    2010-07-01

    This study was aimed at describing the spectrum and dynamics of proteins associated with the membrane in the nitrogen-fixing bacterium Herbaspirillum seropedicae according to the availability of fixed nitrogen. Using two-dimensional electrophoresis we identified 79 protein spots representing 45 different proteins in the membrane fraction of H. seropedicae. Quantitative analysis of gel images of membrane extracts indicated two spots with increased levels when cells were grown under nitrogen limitation in comparison with nitrogen sufficiency; these spots were identified as the GlnK protein and as a conserved noncytoplasmic protein of unknown function which was encoded in an operon together with GlnK and AmtB. Comparison of gel images of membrane extracts from cells grown under nitrogen limitation or under the same regime but collected after an ammonium shock revealed two proteins, GlnB and GlnK, with increased levels after the shock. The P(II) proteins were not present in the membrane fraction of an amtB mutant. The results reported here suggest that changes in the cellular localization of P(II) might play a role in the control of nitrogen metabolism in H. seropedicae.

  17. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer.

    PubMed

    Coelho, Marcia Reed Rodrigues; de Vos, Marjon; Carneiro, Newton Portilho; Marriel, Ivanildo Evódio; Paiva, Edilson; Seldin, Lucy

    2008-02-01

    The diversity of nitrogen-fixing bacteria was assessed in the rhizospheres of two cultivars of sorghum (IS 5322-C and IPA 1011) sown in Cerrado soil amended with two levels of nitrogen fertilizer (12 and 120 kg ha(-1)). The nifH gene was amplified directly from DNA extracted from the rhizospheres, and the PCR products cloned and sequenced. Four clone libraries were generated from the nifH fragments and 245 sequences were obtained. Most of the clones (57%) were closely related to nifH genes of uncultured bacteria. NifH clones affiliated with Azohydromonas spp., Ideonella sp., Rhizobium etli and Bradyrhizobium sp. were found in all libraries. Sequences affiliated with Delftia tsuruhatensis were found in the rhizosphere of both cultivars sown with high levels of nitrogen, while clones affiliated with Methylocystis sp. were detected only in plants sown under low levels of nitrogen. Moreover, clones affiliated with Paenibacillus durus could be found in libraries from the cultivar IS 5322-C sown either in high or low amounts of fertilizer. This study showed that the amount of nitrogen used for fertilization is the overriding determinative factor that influenced the nitrogen-fixing community structures in sorghum rhizospheres cultivated in Cerrado soil.

  18. Anaerobic Nitrogen Fixers on Mars

    NASA Astrophysics Data System (ADS)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  19. Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests.

    PubMed

    Taylor, Benton N; Chazdon, Robin L; Bachelot, Benedicte; Menge, Duncan N L

    2017-08-15

    More than half of the world's tropical forests are currently recovering from human land use, and this regenerating biomass now represents the largest carbon (C)-capturing potential on Earth. How quickly these forests regenerate is now a central concern for both conservation and global climate-modeling efforts. Symbiotic nitrogen-fixing trees are thought to provide much of the nitrogen (N) required to fuel tropical secondary regrowth and therefore to drive the rate of forest regeneration, yet we have a poor understanding of how these N fixers influence the trees around them. Do they promote forest growth, as expected if the new N they fix facilitates neighboring trees? Or do they suppress growth, as expected if competitive inhibition of their neighbors is strong? Using 17 consecutive years of data from tropical rainforest plots in Costa Rica that range from 10 y since abandonment to old-growth forest, we assessed how N fixers influenced the growth of forest stands and the demographic rates of neighboring trees. Surprisingly, we found no evidence that N fixers facilitate biomass regeneration in these forests. At the hectare scale, plots with more N-fixing trees grew slower. At the individual scale, N fixers inhibited their neighbors even more strongly than did nonfixing trees. These results provide strong evidence that N-fixing trees do not always serve the facilitative role to neighboring trees during tropical forest regeneration that is expected given their N inputs into these systems.

  20. Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria.

    PubMed

    Garcia, Nathan S; Fu, Feixue; Sedwick, Peter N; Hutchins, David A

    2015-01-01

    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles.

  1. Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops.

    PubMed

    Liu, Huawei; Zhang, Lei; Meng, Aihua; Zhang, Junbiao; Xie, Miaomiao; Qin, Yaohong; Faulk, Dylan Chase; Zhang, Baohong; Yang, Shushen; Qiu, Li

    2017-01-01

    Ten strains of endophytic diazotroph were isolated and identified from the plants collected from three different agricultural crop species, wheat, rice and maize, using the nitrogen-free selective isolation conditions. The nitrogen-fixing ability of endophytic diazotroph was verified by the nifH-PCR assay that showed positive nitrogen fixation ability. These identified strains were classified by 879F-RAPD and 16S rRNA sequence analysis. RAPD analyses revealed that the 10 strains were clustered into seven 879F-RAPD groups, suggesting a clonal origin. 16S rRNA sequencing analyses allowed the assignment of the 10 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Paenibacillus, Enterobacter, Klebsiella and Pantoea. These representative genus are not endophytic diazotrophs in the conventional sense. They may have obtained nitrogen fixation ability through lateral gene transfer, however, the evolutionary forces of lateral gene transfer are not well known. Molecular identification results from 16S rRNA analyses were also confirmed by morphological and biochemical data. The test strains SH6A and MZB showed positive effect on the growth of plants.

  2. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  3. USE OF 15N IN THE STUDY OF FIXATION OF ATMOSPHERIC NITROGEN BY NON- NODULATED SEED PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, G.

    1959-10-31

    Both from observation of non-leguminous plants growing under natural conditions and also from measurements made of plot experiments with grasses it has been found that large amounts of nitrogen, of the order of 50-lb N/acre/year, accumulate both in the soil and in plant material. Measurements of the contribution made by nonsymbiotic nitrogen-fixing bacteria are only of the order of 2 to 3 lb N/acre/year, so that it appears likely that some other mechanism operates which leads to fixation of nitrogen with the growth of many nonleguminous plants. Experiments were carried out with the following species which grow well in Newmore » Zealand under poor nutrient conditions, especially as regards nitrogen: Pinus radiata, Coprosma robusta, Epilobium erectum and Dactylis glomerata. Plants have been grown in sand watered with a nitrogen-free nutrient solution when they have shown signs of nitrogen starvation, but, nevertheless, they have made considerable growth. Some plants have been exposed to an isotopically enriched atmosphere for periods of 7 to 14 days, and significant amounts of nitrogen-15 have been recovered from the combined nitrogen in the plants indicating that fixation of molecular nitrogen has occurred. The effect is not due to any of the known nonsymbiotic nitrogen-fixing bacteria which were shown to be absent from the sand cultures. Two possible explanations considered are that the effect may be due to microorganisms present in or on the plants, and that the effect may be due to some activity of the plants themselves. (auth)« less

  4. Effects of Iron and Nitrogen Limitation on Sulfur Isotope Fractionation during Microbial Sulfate Reduction

    PubMed Central

    Ono, Shuhei; Bosak, Tanja

    2012-01-01

    Sulfate-reducing microbes utilize sulfate as an electron acceptor and produce sulfide that is depleted in heavy isotopes of sulfur relative to sulfate. Thus, the distribution of sulfur isotopes in sediments can trace microbial sulfate reduction (MSR), and it also has the potential to reflect the physiology of sulfate-reducing microbes. This study investigates the relationship between the availability of iron and reduced nitrogen and the magnitude of S-isotope fractionation during MSR by a marine sulfate-reducing bacterium, DMSS-1, a Desulfovibrio species, isolated from salt marsh in Cape Cod, MA. Submicromolar levels of iron increase sulfur isotope fractionation by about 50% relative to iron-replete cultures of DMSS-1. Iron-limited cultures also exhibit decreased cytochrome c-to-total protein ratios and cell-specific sulfate reduction rates (csSRR), implying changes in the electron transport chain that couples carbon and sulfur metabolisms. When DMSS-1 fixes nitrogen in ammonium-deficient medium, it also produces larger fractionation, but it occurs at faster csSRRs than in the ammonium-replete control cultures. The energy and reducing power required for nitrogen fixation may be responsible for the reverse trend between S-isotope fractionation and csSRR in this case. Iron deficiency and nitrogen fixation by sulfate-reducing microbes may lead to the large observed S-isotope effects in some euxinic basins and various anoxic sediments. PMID:23001667

  5. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses.

    PubMed

    van Velzen, Robin; Holmer, Rens; Bu, Fengjiao; Rutten, Luuk; van Zeijl, Arjan; Liu, Wei; Santuari, Luca; Cao, Qingqin; Sharma, Trupti; Shen, Defeng; Roswanjaya, Yuda; Wardhani, Titis A K; Kalhor, Maryam Seifi; Jansen, Joelle; van den Hoogen, Johan; Güngör, Berivan; Hartog, Marijke; Hontelez, Jan; Verver, Jan; Yang, Wei-Cai; Schijlen, Elio; Repin, Rimi; Schilthuizen, Menno; Schranz, M Eric; Heidstra, Renze; Miyata, Kana; Fedorova, Elena; Kohlen, Wouter; Bisseling, Ton; Smit, Sandra; Geurts, Rene

    2018-05-15

    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION ( NIN ) and RHIZOBIUM-DIRECTED POLAR GROWTH ( RPG ). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN , RPG , and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants. Copyright © 2018 the Author(s). Published by PNAS.

  6. An Alternative Approach to "Identification of Unknowns": Designing a Protocol to Verify the Identities of Nitrogen Fixing Bacteria.

    PubMed

    Martinez-Vaz, Betsy M; Denny, Roxanne; Young, Nevin D; Sadowsky, Michael J

    2015-12-01

    Microbiology courses often include a laboratory activity on the identification of unknown microbes. This activity consists of providing students with microbial cultures and running biochemical assays to identify the organisms. This approach lacks molecular techniques such as sequencing of genes encoding 16S rRNA, which is currently the method of choice for identification of unknown bacteria. A laboratory activity was developed to teach students how to identify microorganisms using 16S rRNA polymerase chain reaction (PCR) and validate microbial identities using biochemical techniques. We hypothesized that designing an experimental protocol to confirm the identity of a bacterium would improve students' knowledge of microbial identification techniques and the physiological characteristics of bacterial species. Nitrogen-fixing bacteria were isolated from the root nodules of Medicago truncatula and prepared for 16S rRNA PCR analysis. Once DNA sequencing revealed the identity of the organisms, the students designed experimental protocols to verify the identity of rhizobia. An assessment was conducted by analyzing pre- and posttest scores and by grading students' verification protocols and presentations. Posttest scores were higher than pretest scores at or below p = 0.001. Normalized learning gains (G) showed an improvement of students' knowledge of microbial identification methods (LO4, G = 0.46), biochemical properties of nitrogen-fixing bacteria (LO3, G = 0.45), and the events leading to the establishment of nitrogen-fixing symbioses (LO1&2, G = 0.51, G = 0.37). An evaluation of verification protocols also showed significant improvement with a p value of less than 0.001.

  7. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses

    PubMed Central

    Holmer, Rens; Bu, Fengjiao; Rutten, Luuk; van Zeijl, Arjan; Liu, Wei; Santuari, Luca; Cao, Qingqin; Sharma, Trupti; Shen, Defeng; Roswanjaya, Yuda; Wardhani, Titis A. K.; Kalhor, Maryam Seifi; Jansen, Joelle; van den Hoogen, Johan; Güngör, Berivan; Hartog, Marijke; Hontelez, Jan; Verver, Jan; Schijlen, Elio; Repin, Rimi; Schilthuizen, Menno; Heidstra, Renze; Miyata, Kana; Fedorova, Elena; Kohlen, Wouter; Bisseling, Ton; Smit, Sandra

    2018-01-01

    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION. Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants. PMID:29717040

  8. The impact of simulated chronic nitrogen deposition on the biomass and N2-fixation activity of two boreal feather moss–cyanobacteria associations

    PubMed Central

    Gundale, Michael J.; Bach, Lisbet H.; Nordin, Annika

    2013-01-01

    Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N2, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N2-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N2-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N2-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N2 fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems. PMID:24196519

  9. An aeration control strategy for oxidation ditch processes based on online oxygen requirement estimation.

    PubMed

    Zhan, J X; Ikehata, M; Mayuzumi, M; Koizumi, E; Kawaguchi, Y; Hashimoto, T

    2013-01-01

    A feedforward-feedback aeration control strategy based on online oxygen requirements (OR) estimation is proposed for oxidation ditch (OD) processes, and it is further developed for intermittent aeration OD processes, which are the most popular type in Japan. For calculating OR, concentrations of influent biochemical oxygen demand (BOD) and total Kjeldahl nitrogen (TKN) are estimated online by the measurement of suspended solids (SS) and sometimes TKN is estimated by NH4-N. Mixed liquor suspended solids (MLSS) and temperature are used to estimate the required oxygen for endogenous respiration. A straightforward parameter named aeration coefficient, Ka, is introduced as the only parameter that can be tuned automatically by feedback control or manually by the operators. Simulation with an activated sludge model was performed in comparison to fixed-interval aeration and satisfying result of OR control strategy was obtained. The OR control strategy has been implemented at seven full-scale OD plants and improvements in nitrogen removal are obtained in all these plants. Among them, the results obtained in Yumoto wastewater treatment plant were presented, in which continuous aeration was applied previously. After implementing intermittent OR control, the total nitrogen concentration was reduced from more than 5 mg/L to under 2 mg/L, and the electricity consumption was reduced by 61.2% for aeration or 21.5% for the whole plant.

  10. Significance of Herbaspirillum seropedicae inoculation and/or straw amendment on growth and dinitrogen fixation of wheat using 15N-dilution method.

    PubMed

    el-Komy, H M; Saad, O A; Hetta, A M

    2003-01-01

    The effect of Herbaspirillum seropedicae inoculation and/or maize straw (0, 5 and 10 Mg/hm2) amendment on the growth and N2 fixation of wheat was determined in pot experiments using 15N-dilution method. Inoculation resulted in accumulation of fixed nitrogen, and % N from atmosphere being 24.6 and 26.5% in wheat shoot and grain, respectively. Straw amendment reduced % Natm to 16.1 and 20.2% at high straw level (10 Mg/hm2). Rational nitrogen fertilization (180 kg N/hm2) completely inhibited N2 fixation by H. seropedicae inoculation. Bacterial inoculation increased dry shoot and grain yield up to 23 and 31%, respectively. The highest levels of shoot and grain dry mass (46.5 and 42.4%) were obtained by N-fertilization in both inoculated and uninoculated plants. Total shoot and grain N-yield increased irrespective of organic matter amendment by inoculation up to 9 and 25%, respectively. N-fertilized plants recorded a maximum increase in N-yield (57 and 51%). H. seropedicae was reisolated from inoculated wheat histosphere after harvesting (90 d from sowing). Neither organic matter nor mineral nitrogen applications had any marked effect on bacterial total counts colonizing wheat histosphere. Moreover, no symptoms of mottled stripe disease were observed on leaves and stems of inoculated plants.

  11. Fine-scale Phenology and Nitrogen-Fixing Microbes at a GLORIA Site in Southwestern Montana, USA

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Prince, J.; Morales, S.; Apple, C.; Gallagher, J.

    2010-12-01

    Global climate change is predicted to have a major impact on alpine environments and plants, including changes in the phenology of alpine plants in western North America. The GLORIA( Global Research Initiative in Alpine Environments) project is an international network of alpine sites for long-term monitoring of naturally-occurring alpine plants in the context of climate change. We established a GLORIA site in southwestern Montana in 2008 with four sub-summits of ascending elevation from treeline to the upper alpine with surveys of plants in quadrats at each cardinal direction and installed -20° to 50° C temperature loggers (Onset TB132). This GLORIA site is immediately east of the Continental Divide at Mt. Fleecer, (45°49”36.06”N, 112°48’08.18”W), a 2873 m (9425 ft.) peak situated between the Pintlar and Pioneer Mts., and at Mt. Keokirk, 2987.3 m, (9801 ft.), 45°35’37.94” N, 112°57”03.89” W, south of Mt. Fleecer in the Pioneer Mts. Phenology is an important aspect of life in the mountains. Herbaceous plants appear at different times throughout the growing season but can be virtually undetectable at other times. To determine when particular species can be detected, we constructed a time-series of photographs of plants at the 3m2 and 1m2 quadrats at the sub-summits at Mt. Fleecer in the summer of 2010, with the first set of photographs taken on July 9, just after snowmelt and the final set taken on August 28, just before snowfall. The photographs demonstrate that apparently new species are found when early and late season images are compared. Data on the timing intervals of vegetative growth, anthesis, fruiting, and seed dispersal as well as visualizations of the seasonal appearance and disappearance of the aboveground parts of different species can be extracted from the photographs in the time series. As a result of this study, several new species will be added to the Southwestern Montana GLORIA species list, including Gentiana calycosa and Gentiana amarella, which were in bloom at the treeline site in September 2010 but were not evident during the baseline survey in July 2008. Because nitrogen fixation is a critical process in alpine environments, the lives of alpine plants are intricately linked to those of nitrogen-fixing, and often symbiotic, microbes. Therefore, it is not only the plants that may be affected by changes in climate but also the nitrogen-fixing microbes. To develop an understanding of the distribution of nitrogen-fixers, we initiated a survey of these microbes by searching for them in lichens, legumes, and cryptogamic crusts. Lichens from Mt. Fleecer contained photosynthetic green algae but did not contain nitrogen-fixing cyanobacteria. We have found root nodules with nitrogen-fixing bacteria in Lupinus sp. but not in Oxytropis campestris, another abundant legume from Mt. Fleecer. In addition, we are using microscopy to examine cryptogamic crusts of soils from meadows near the treeline and lower alpine sub-summits of Mt. Fleecer to determine whether nitrogen-fixing cyanobacteria are present and thus likely contributing nitrogen to the alpine ecosystem.

  12. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere

    PubMed Central

    Li, Hai-Bi; Singh, Rajesh K.; Singh, Pratiksha; Song, Qi-Qi; Xing, Yong-Xiu; Yang, Li-Tao; Li, Yang-Rui

    2017-01-01

    The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL−1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg−1 h−1. For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C2H2 h−1 mL−1). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 (Pseudomonas koreensis) and CN11 (Pseudomonas entomophila) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog phenotypic profiling, which comprised utilization of C and N sources, and tolerance to osmolytes and pH, revealed the metabolic versatility of the selected strains. The colonization ability of the selected strains was evaluated by genetically tagging them with a constitutively expressing GFP-pPROBE-pTetr-OT plasmid. qRT-PCR results showed that both strains had the ability to express the nifH gene at 90 and 120 days, as compared to a control, in both sugarcane varieties GT11 and GXB9. Therefore, our isolated strains, P. koreensis and P. entomophila may be used as inoculums or in biofertilizer production for enhancing growth and nutrients, as well as for improving nitrogen levels, in sugarcane and other crops. The present study, to the best of our knowledge, is the first report on the diversity of Pseudomonas spp. associated with sugarcane in Guangxi, China. PMID:28769881

  13. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere.

    PubMed

    Li, Hai-Bi; Singh, Rajesh K; Singh, Pratiksha; Song, Qi-Qi; Xing, Yong-Xiu; Yang, Li-Tao; Li, Yang-Rui

    2017-01-01

    The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL -1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg -1 h -1 . For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C 2 H 2 h -1 mL -1 ). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 ( Pseudomonas koreensis ) and CN11 ( Pseudomonas entomophila ) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog phenotypic profiling, which comprised utilization of C and N sources, and tolerance to osmolytes and pH, revealed the metabolic versatility of the selected strains. The colonization ability of the selected strains was evaluated by genetically tagging them with a constitutively expressing GFP-pPROBE-pTet r -OT plasmid. qRT-PCR results showed that both strains had the ability to express the nifH gene at 90 and 120 days, as compared to a control, in both sugarcane varieties GT11 and GXB9. Therefore, our isolated strains, P. koreensis and P. entomophila may be used as inoculums or in biofertilizer production for enhancing growth and nutrients, as well as for improving nitrogen levels, in sugarcane and other crops. The present study, to the best of our knowledge, is the first report on the diversity of Pseudomonas spp. associated with sugarcane in Guangxi, China.

  14. Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean.

    PubMed

    Robidart, Julie C; Church, Matthew J; Ryan, John P; Ascani, François; Wilson, Samuel T; Bombar, Deniz; Marin, Roman; Richards, Kelvin J; Karl, David M; Scholin, Christopher A; Zehr, Jonathan P

    2014-06-01

    Nitrogen-fixing microorganisms (diazotrophs) are keystone species that reduce atmospheric dinitrogen (N2) gas to fixed nitrogen (N), thereby accounting for much of N-based new production annually in the oligotrophic North Pacific. However, current approaches to study N2 fixation provide relatively limited spatiotemporal sampling resolution; hence, little is known about the ecological controls on these microorganisms or the scales over which they change. In the present study, we used a drifting robotic gene sensor to obtain high-resolution data on the distributions and abundances of N2-fixing populations over small spatiotemporal scales. The resulting measurements demonstrate that concentrations of N2 fixers can be highly variable, changing in abundance by nearly three orders of magnitude in less than 2 days and 30 km. Concurrent shipboard measurements and long-term time-series sampling uncovered a striking and previously unrecognized correlation between phosphate, which is undergoing long-term change in the region, and N2-fixing cyanobacterial abundances. These results underscore the value of high-resolution sampling and its applications for modeling the effects of global change.

  15. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyes, Andrew B.; Kueppers, Lara M.; Pett-Ridge, Jennifer

    Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine ( Pinus flexilis) and potential N 2-fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N.

  16. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer

    DOE PAGES

    Moyes, Andrew B.; Kueppers, Lara M.; Pett-Ridge, Jennifer; ...

    2016-02-01

    Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine ( Pinus flexilis) and potential N 2-fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N.

  17. The Role of Nitrogen-Fixing Symbionts in Primary Succession on the Juneau Icefield

    NASA Astrophysics Data System (ADS)

    Walker-Andrews, T.; Cooley, S.; Veitz, M.; White, C.

    2017-12-01

    The glaciers of the Juneau icefield will likely continue to retreat in the coming years, leaving behind a rocky landscape. As this land is exposed, colonizing organisms will begin the process of primary succession and soil formation. As student researchers with the Juneau Icefield Research Program, we are studying the relationship between abundance and diversity of nitrogen-fixing symbionts on the Juneau Icefield and the rate of primary succession and soil development on recently deglaciated areas. We will survey three representative plots in a variety of vegetation zones at various sample sites; collecting data on soil profiles, as well as abundance and diversity of plants and lichens. We expect to find a positive correlation between the diversity of plants and lichens­- especially of nitrogen-fixing symbionts - and the level of soil development. The data will improve understanding of plant diversity on the Juneau Icefield and how the processes of primary succession transform the new environment. This work will contribute to on-going research on the process of primary succession on the Juneau Icefield.

  18. Restoration of soils affected by oil exploitation activities based in functional diversity studies

    NASA Astrophysics Data System (ADS)

    Villacis, Jaime; Casanoves, Fernando; Hang, Susana; Armas, Cristina

    2017-04-01

    The functional characteristics of 25 forest species used in the restoration of areas affected by oil extraction activities were determined and species functional groups were constructed. Subsequently, the functional characteristics of the groups were related with performance variables of the species obtained in complementary studies, to make use recommendations. Three functional groups of species with similar responses and / or performance were characterized that showed significant differences between them for quantitative and qualitative traits. The first group formed by all shrubs and the rest of trees, most do not fix nitrogen, have single leaves and all species are evergreen and characterized by having lower values of specific foliar area, foliar nitrogen, dry matter leaf content and wood density, was denominated as intermediate acquisitions. The second group composed only for trees that do not fix nitrogen and with deciduous leaves and characterized by having the highest values of dry matter leaf content and foliar tensile force and intermediate values of specific foliar area and foliar nitrogen, was denominated as low conservative. Finally the third group formed only by trees that fix nitrogen, composed of leaves and mostly evergreen and characterized by having higher values of specific foliar area, foliar nitrogen, foliar phosphorus and lower foliar tensile force, was denominated as acquisitive. The intermediary acquisitions species Apeiba membranacea, Myrcia aff. fallax and Zygia longifolia, and the acquisitive species Cedrelinga cateniformis, Inga densiflora, Myroxylon balsamum, Piptadenia pteroclada and Platymiscium pinnatum, which showed excellent performance in nursery and / or field, represent the most suitable species to be used in reforestation programs of the sites affected by oil extraction activities in the Amazon region of Ecuador, because they have greater potential to protect soil and recycle nutrients in the initial stages of planting.

  19. Bulk vs. amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic

    NASA Astrophysics Data System (ADS)

    Mompeán, Carmen; Bode, Antonio; Gier, Elizabeth; McCarthy, Matthew D.

    2016-08-01

    A comparative analysis of natural abundance of stable N isotopes (δ15N) in individual amino acids and bulk organic matter of size-fractionated plankton revealed the differential impact of nitrogen fixation through the food web in a transect across the subtropical North Atlantic. All δ15N measurements showed low values in the central region, followed by the western zone, while maximum δ15N values were found in the eastern zone. These results were consistent with the prevalence of nitrogen fixation in the central and western zones, and the influence of the west Africa upwelling in the eastern zone. Use of compound-specific amino acid isotope data (CSI-AA) revealed relatively low variability in the impact of diazotrophic nitrogen within the different plankton size fractions, while δ15N of bulk organic matter showed high variability with size. Explicit CSI-AA trophic position estimates showed a small increase with mean plankton size class and varied in a relatively narrow range 1.8-2.5), with the lowest values in the central zone. High correlations between bulk plankton δ15N and individual amino acids (in particular Phe and Thr), as well as reconstructed total protein δ15N values, suggest a set of new relationships that may be important to tracing direct plankton contributions to nitrogen recycling in the ocean, including detrital organic nitrogen pools. Overall, these new results represent the most detailed investigation of CSI-AA data in plankton size classes to date, and indicated a greater importance of diazotrophic N than suggested by concurrent measurements of bulk δ15N, abundance of large nitrogen fixing organisms or nitrogen fixation rates.

  20. Methane-Stimulated Benthic Marine Nitrogen Fixation at Deep-Sea Methane Seeps

    NASA Astrophysics Data System (ADS)

    Dekas, A. E.; Orphan, V.

    2011-12-01

    Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. Although current measurements of N2 production and consumption in the oceans indicate that the nitrogen cycle is not balanced, recent findings on the limits of nitrogen fixation suggest that the perceived imbalance is an artifact of an incomplete assessment of marine diazotrophy. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. In the present study we investigate the distribution and magnitude of benthic marine diazotrophy at several active deep-sea methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). Using 15N2 and 15NH4 sediment incubation experiments followed by single-cell (FISH-NanoSIMS) and bulk isotopic analysis (EA-IRMS), we observed total protein synthesis (15N uptake from 15NH4) and nitrogen fixation (15N update from 15N2). The highest rates of nitrogen fixation observed in the methane seep sediment incubation experiments were over an order of magnitude greater than those previously published from non-seep deep-sea sediments (Hartwig and Stanley, Deep-Sea Research, 1978, 25:411-417). However, methane seep diazotrophy appears to be highly spatially variable, with sediments exhibiting no nitrogen fixation originating only centimeters away from sediments actively incorporating 15N from 15N2. The greatest spatial variability in diazotrophy was observed with depth in the sediment, and corresponded to steep gradients in sulfate and methane. The maximum rates of nitrogen fixation were observed within the methane-sulfate transition zone, where organisms mediating the anaerobic oxidation of methane are typically in high abundance. Additionally, incubation experiments without added methane were observed to have little to no nitrogen fixation activity. In previous work, we demonstrated the capability of uncultured methanotrophic archaea (ANME-2) to fix nitrogen when associated with sulfate reducing bacterial symbionts. These new results suggest that these microbes may be the dominant nitrogen-fixing organisms in methane seep sediment. Intriguingly, characterization of the diversity of nifH genes from our sediment incubations as well as published nifH sequences reported from other seep habitats suggest the potential for other diazotrophic microorganisms in addition to the ANME-2 archaea. To further explore this possibility, FISH-NanoSIMS analyses were conducted on two dominant free-living sulfate-reducing lineages from seep incubations demonstrating nitrogen fixation activity. Preliminary results from this analysis suggest that single cells belonging to the Desulfobulbaceae may also be involved in nitrogen fixation in methane seeps. Despite this demonstrated potential, the extent of methane-independent diazotrophy by non-ANME diazotrophs appears to be low within the methane seep environment. Further studies are necessary to assess the greater diversity and activity of diazotrophs in other deep-sea sedimentary habitats.

  1. Testing Associations of Plant Functional Diversity with Carbon and Nitrogen Storage along a Restoration Gradient of Sandy Grassland

    PubMed Central

    Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Zhao, Xueyong; Zhang, Jing; Wang, Shaokun; Yue, Xiyuan

    2016-01-01

    The trait-based approach shows that ecosystem function is strongly affected by plant functional diversity as reflected by the traits of the most abundant species (community-weighted mean, CWM) and functional dispersion (FDis). Effects of CWM and FDis individually support the biomass ratio hypothesis and the niche complementarity hypothesis. However, there is little empirical evidence on the relative roles of CWM traits and FDis in explaining the carbon (C) and nitrogen (N) storage in grassland ecosystems. We measured plant functional traits in the 34 most abundant species across 24 sites along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. Thereafter, we calculated the CWM traits, the functional divergence of each single trait (FDvar) and the trait dispersion of multiple traits (FDis). We also measured the C and N storage in plant, litter, root, and soil. Using a stepwise multiple regression analysis, we further assessed which of the functional diversity components best explained C and N storage in the sandy grassland restoration. We found consistent links between C or N storage and leaf traits related to plant resource use strategy. However, the CWM of plant height was retained as an important predictor of C and N storage in plant, litter, soil, and total ecosystem in the final multiple models. CWMs of specific leaf area and plant height best predicted soil C and N storage and total ecosystem N storage. FDis was one of good predictors of litter C and N storage as well as total ecosystem C storage. These results suggest that ecosystem C and N pools in the sandy grassland restoration are primarily associated with the traits of the most abundant species in communities, thereby supporting the biomass ratio hypothesis. The positive associations of FDis with C storage in litter and total ecosystem provide evidence to support the niche complementarity hypothesis. Both functional traits of dominant species and traits’ dispersion in plant communities could contribute to explaining total ecosystem C storage. Thus, single- and multi-trait indices of functional composition play a crucial role in predicting C storage in sandy grasslands. PMID:26925089

  2. Evidence for the Importance of Atmospheric Nitrogen Deposition to Eutrophic Lake Dianchi, China

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Bo, Y.; Zhou, F.; Liu, X.; Paerl, H. W.; Shen, J.; Wang, R.; Li, F. R.; Tao, S.; Yanjun, D.; Tang, X.

    2017-12-01

    Elevated atmospheric nitrogen (N) deposition has significantly influenced aquatic ecosystems, especially with regard to their N budgets and phytoplankton growth potentials. Compared to a considerable number of studies on oligotrophic lakes and oceanic waters, little evidence for the importance of N deposition has been generated for eutrophic lakes, even though emphasis has been placed on reducing external N inputs to control eutrophication in these lakes. Our high-resolution observations of atmospheric depositions and riverine inputs of biologically reactive N species into eutrophic Lake Dianchi (the sixth largest freshwater lake in China) shed new light onto the contribution of N deposition to total N loads. Annual N deposition accounted for 15.7% to 16.6% of total N loads under variable precipitation conditions, 2-fold higher than previous estimates (7.6%) for the Lake Dianchi. The proportion of N deposition to total N loads further increased to 27-48% in May and June when toxic blooms of the ubiquitous non-N2 fixing cyanobacteria Microcystis spp. are initiated and proliferate. Our observations reveal that reduced N (59%) contributes a greater amount than oxidized N to total N deposition, reaching 56-83% from late spring to summer. Progress toward mitigating eutrophication in Lake Dianchi and other bloom-impacted eutrophic lakes will be difficult without reductions in ammonia emissions and subsequent N deposition.

  3. Rhizobacterial population density and nitrogen fixation in seagrass community of Gulf of Mannar, India.

    PubMed

    Raja, S; Thangaradjou, T; Sivakumar, K; Kannan, L

    2012-11-01

    Seagrass rhizosphere generally supports high bacterial population density which plays a major role in determining the nutrient cycles of the sea. Higher densities of total heterotrphic bacteria (26.3 x 10(6) CFU g(-1)), nitrogen fixing (27.3 x 10(3) CFUg(-1), ammonifying (44.66 x 10(6) MPN g(-1)) and nitrifying bacteria (42.33 X 10(6) MPN g(-1)) have been registered in the seagrass areas than the non seagrass area. In particular, all these rhizosphere microbial population was higher in Thalassia hemprichii. The rates of nitrogen fixation was recorded in the different species of seagrasses such as Enhalus acoroides (1.166 n mol g(-1) d(-1)), Halophila ovalis (0.166 n mol g(-1) d(-1)), Thalassia hemprichii(18.5 n mol g(-1) d(-1)), Cymodocea serrulata (10.5 n mol g(-1) d(-1)), Halodule uninervis (5.375 n mol g(-1) d(-1)) and Syringodium isoetifolium (0.666 n mol g(-1) d(-1)) using gas chromatography. The average nitrogen fixation by the seagrasses of Gulf of Mannar alone was estimated to be 7640.58 n mol m(-2) d(-1) and the contributions from the rhizosphere microbes will increase the quantity to many fold.

  4. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  5. Net Anthropogenic Nitrogen Inputs in the Seattle, WA Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Larson, E. K.; Alberti, M.

    2014-12-01

    Nitrogen loading has been identified as a potential stressor to marine ecosystems of the Puget Sound in the Pacific Northwest, and the Washington State Department of Ecology has estimated that anthropogenic sources of dissolved inorganic nitrogen to the Sound are 2.7 times higher than natural loads (Mohamedali et al. 2011). The Seattle urban area, situated in the southeast of the Sound, has the largest population in the northwestern US. Heavily urbanized along the coast, the 4 counties comprising the region (Snohomish, King, Pierce, and Kitsap) also include forests and agriculture. Urban and agricultural areas tend to have substantial anthropogenic N loading due to fertilizer application, presence of N-fixing vegetation, N atmospheric deposition, and human and other animal waste. To determine the relative contribution of urban vs. rural agricultural activities to N loads from the Seattle region to the Puget Sound, we used the Net Anthropogenic Nitrogen Inputs (NANI) calculator developed by Hong et al. (2011) for the watersheds of this region. The NANI calculator uses nationally available datasets to calculate NANI as the sum of oxidized N deposition, fertilizer application, agricultural N fixation, net food and feed inputs, and net animal and human N consumption. We found that NANI ranged from approximately 100 to 1500 kg m-2 y-1, with some of the highest rates in watersheds with high impervious surface or agricultural areas with N-fixing crops or large fertilizer additions. Many of the agricultural watersheds have intervening low-NANI watershed between themselves and the coast, thus it is likely that agricultural NANI is attenuated before entering the Puget Sound. The urban areas in the region do not have these attenuating watersheds, and so are likely to be the main contributor to the observed total aquatic N yield. This information is helpful for developing policies to reduce N loading to the Sound.

  6. Effect of initial soil properties on six-year growth of 15 tree species in tropical restoration plantings.

    PubMed

    Martínez-Garza, Cristina; Campo, Julio; Ricker, Martin; Tobón, Wolke

    2016-12-01

    In restoration plantings in degraded pastures, initial soil nutrient status may lead to differential growth of tropical tree species with diverse life history attributes and capacity for N 2 fixation. In 2006, we planted 1,440 seedlings of 15 native tree species in 16 fenced plots (30 × 30 m) in a 60-year-old pasture in Los Tuxtlas, Veracruz, Mexico, in two planting combinations. In the first year, we evaluated bulk density, pH, the concentration of organic carbon (C), total nitrogen (N), ammonia (NO3-), nitrate (NH4+), and total phosphorus (P) in the upper soil profile (0-20 cm in depth) of all plots. The first two axes of two principal component analyses explained more than 60% of the variation in soil variables: The axes were related to increasing bulk density, NO3-, NH4+, total N concentration, and pH. Average relative growth rates in diameter at the stem base of the juvenile trees after 6 years were higher for pioneer (45.7%) and N 2 -fixing species (47.6%) than for nonpioneer (34.7%) and nonfixing species (36.2%). Most N 2 -fixing species and those with the slowest growth rates did not respond to soil attributes. Tree species benefited from higher pH levels and existing litter biomass. The pioneers Ficus yoponensis , Cecropia obtusifolia , and Heliocarpus appendiculatus , and the N 2 -fixing nonpioneers Cojoba arborea , Inga sinacae , and Platymiscium dimorphandrum were promising for forest restoration on our site, given their high growth rates.

  7. Regime Shift by an Exotic Nitrogen-Fixing Shrub Mediates Plant Facilitation in Primary Succession

    PubMed Central

    Stinca, Adriano; Chirico, Giovanni Battista; Incerti, Guido; Bonanomi, Giuliano

    2015-01-01

    Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv.) DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy). Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years), has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can limit the spread and impacts of this species. PMID:25835015

  8. Phylogenetic constraints do not explain the rarity of nitrogen-fixing trees in late-successional temperate forests.

    PubMed

    Menge, Duncan N L; DeNoyer, Jeanne L; Lichstein, Jeremy W

    2010-08-06

    Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The 'phylogenetic constraints hypothesis' states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the 'selective constraints hypothesis' states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis. Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the 'potentially N-fixing clade' (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile. These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon.

  9. Phylogenetic Constraints Do Not Explain the Rarity of Nitrogen-Fixing Trees in Late-Successional Temperate Forests

    PubMed Central

    Menge, Duncan N. L.; DeNoyer, Jeanne L.; Lichstein, Jeremy W.

    2010-01-01

    Background Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The ‘phylogenetic constraints hypothesis’ states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the ‘selective constraints hypothesis’ states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis. Methodology/Principal Findings Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the ‘potentially N-fixing clade’ (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile. Conclusions/Significance These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon. PMID:20700466

  10. Synthesis and review: Tackling the nitrogen management challenge: from global to local scales

    NASA Astrophysics Data System (ADS)

    Reis, Stefan; Bekunda, Mateete; Howard, Clare M.; Karanja, Nancy; Winiwarter, Wilfried; Yan, Xiaoyuan; Bleeker, Albert; Sutton, Mark A.

    2016-12-01

    One of the ‘grand challenges’ of this age is the anthropogenic impact exerted on the nitrogen cycle. Issues of concern range from an excess of fixed nitrogen resulting in environmental pressures for some regions, while for other regions insufficient fixed nitrogen affects food security and may lead to health risks. To address these issues, nitrogen needs to be managed in an integrated fashion, at a variety of scales (from global to local). Such management has to be based on a thorough understanding of the sources of reactive nitrogen released into the environment, its deposition and effects. This requires a comprehensive assessment of the key drivers of changes in the nitrogen cycle both spatially, at the field, regional and global scale and over time. In this focus issue, we address the challenges of managing reactive nitrogen in the context of food production and its impacts on human and ecosystem health. In addition, we discuss the scope for and design of management approaches in regions with too much and too little nitrogen. This focus issue includes several contributions from authors who participated at the N2013 conference in Kampala in November 2013, where delegates compiled and agreed upon the ‘Kampala Statement-for-Action on Reactive Nitrogen in Africa and Globally’. These contributions further underline scientifically the claims of the ‘Kampala Statement’, that simultaneously reducing pollution and increasing nitrogen available in the food system, by improved nitrogen management offers win-wins for environment, health and food security in both developing and developed economies. The specific messages conveyed in the Kampala Statement focus on improving nitrogen management (I), including the reduction of nitrogen losses from agriculture, industry, transport and energy sectors, as well as improving waste treatment and informing individuals and institutions (II). Highlighting the need for innovation and increased awareness among stakeholders (III) and the identification of policy and technology solutions to tackle global nitrogen management issues (IV), this will enable countries to fulfil their regional and global commitments.

  11. Changes to soil organic N dynamics with leguminous woody plant encroachment into grasslands

    USDA-ARS?s Scientific Manuscript database

    The encroachment of nitrogen-fixing trees and shrubs into grasslands and savannas occurs worldwide. In the Rio Grande Plains region of southern Texas, previous studies have shown that woody encroachment by leguminous Prosopis glandulosa (mesquite) trees increases soil and microbial biomass nitrogen ...

  12. Gene Deletions Resulting in Increased Nitrogen Release by Azotobacter vinelandii: Application of a Novel Nitrogen Biosensor

    PubMed Central

    Eberhart, Lauren J.; Ohlert, Janet M.; Knutson, Carolann M.; Plunkett, Mary H.

    2015-01-01

    Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes. PMID:25888177

  13. Characterization of Novel Plant Symbiosis Mutants Using a New Multiple Gene-Expression Reporter Sinorhizobium meliloti Strain

    PubMed Central

    Lang, Claus; Smith, Lucinda S.; Haney, Cara H.; Long, Sharon R.

    2018-01-01

    The formation of nitrogen fixing root nodules by Medicago truncatula and Sinorhizobium meliloti requires communication between both organisms and coordinated differentiation of plant and bacterial cells. After an initial signal exchange, the bacteria invade the tissue of the growing nodule via plant-derived tubular structures, called infection threads. The bacteria are released from the infection threads into invasion-competent plant cells, where they differentiate into nitrogen-fixing bacteroids. Both organisms undergo dramatic transcriptional, metabolic and morphological changes during nodule development. To identify plant processes that are essential for the formation of nitrogen fixing nodules after nodule development has been initiated, large scale mutageneses have been conducted to discover underlying plant symbiosis genes. Such screens yield numerous uncharacterized plant lines with nitrogen fixation deficient nodules. In this study, we report construction of a S. meliloti strain carrying four distinct reporter constructs to reveal stages of root nodule development. The strain contains a constitutively expressed lacZ reporter construct; a PexoY-mTFP fusion that is expressed in infection threads but not in differentiated bacteroids; a PbacA-mcherry construct that is expressed in infection threads and during bacteroid differentiation; and a PnifH-uidA construct that is expressed during nitrogen fixation. We used this strain together with fluorescence microscopy to study nodule development over time in wild type nodules and to characterize eight plant mutants from a fast neutron bombardment screen. Based on the signal intensity and the localization patterns of the reporter genes, we grouped mutants with similar phenotypes and placed them in a developmental context. PMID:29467773

  14. Characterization of Novel Plant Symbiosis Mutants Using a New Multiple Gene-Expression Reporter Sinorhizobium meliloti Strain.

    PubMed

    Lang, Claus; Smith, Lucinda S; Long, Sharon R

    2018-01-01

    The formation of nitrogen fixing root nodules by Medicago truncatula and Sinorhizobium meliloti requires communication between both organisms and coordinated differentiation of plant and bacterial cells. After an initial signal exchange, the bacteria invade the tissue of the growing nodule via plant-derived tubular structures, called infection threads. The bacteria are released from the infection threads into invasion-competent plant cells, where they differentiate into nitrogen-fixing bacteroids. Both organisms undergo dramatic transcriptional, metabolic and morphological changes during nodule development. To identify plant processes that are essential for the formation of nitrogen fixing nodules after nodule development has been initiated, large scale mutageneses have been conducted to discover underlying plant symbiosis genes. Such screens yield numerous uncharacterized plant lines with nitrogen fixation deficient nodules. In this study, we report construction of a S. meliloti strain carrying four distinct reporter constructs to reveal stages of root nodule development. The strain contains a constitutively expressed lacZ reporter construct; a P exoY -mTFP fusion that is expressed in infection threads but not in differentiated bacteroids; a P bacA -mcherry construct that is expressed in infection threads and during bacteroid differentiation; and a P nifH -uidA construct that is expressed during nitrogen fixation. We used this strain together with fluorescence microscopy to study nodule development over time in wild type nodules and to characterize eight plant mutants from a fast neutron bombardment screen. Based on the signal intensity and the localization patterns of the reporter genes, we grouped mutants with similar phenotypes and placed them in a developmental context.

  15. EMMC process for combined removal of organics, nitrogen and an odor producing substance.

    PubMed

    Yang, P Y; Su, R; Kim, S J

    2003-12-01

    In order to improve the process performance regarding the removal of organics, nitrogen, and an odor-causing compound (sulfide) contained in domestic wastewater, an entrapped-mixed-microbial cell (EMMC) with and without humic substances for both fixed and moving carrier reactors and conventional suspended growth culture (i.e. conventional activated sludge process) were investigated simultaneously. Both synthetic (simulated to the organics concentration of general domestic sewage) and actual domestic wastewater were investigated under operational conditions of 12 h of hydraulic retention time (HRT) with 1 h of aeration and 1 h of non-aeration, and 6 h of HRT with continuous aeration, at a room temperature of 25 +/- 2 degrees C. It was found that entrapping humic substances in the EMMC carriers had no impact on the removal of organics, nitrogen, and the odor-producing compound. Additionally, the performance of the EMMC moving carrier system for the removal of these pollutants is similar to that of the EMMC fixed carrier system. In general, the EMMC associated systems which provide high solids retention time achieve a better removal of chemical oxygen demand (COD), nitrogen, and the odor-producing substance than the suspended growth system for both HRTs of 6 h (continuous aeration) and 12 h (1 h of aeration and 1 h of non-aeration). Both the fixed and moving carrier EMMC processes, therefore, have the potential for improvement or replacement of the existing conventional activated sludge process with regard to improving the effluent qualities (such as COD, nitrogen and odor-producing compound) for reuse/disposal.

  16. Integrated roles of BclA and DD-carboxypeptidase 1 in Bradyrhizobium differentiation within NCR-producing and NCR-lacking root nodules.

    PubMed

    Barrière, Quentin; Guefrachi, Ibtissem; Gully, Djamel; Lamouche, Florian; Pierre, Olivier; Fardoux, Joël; Chaintreuil, Clémence; Alunni, Benoît; Timchenko, Tatiana; Giraud, Eric; Mergaert, Peter

    2017-08-22

    Legumes harbor in their symbiotic nodule organs nitrogen fixing rhizobium bacteria called bacteroids. Some legumes produce Nodule-specific Cysteine-Rich (NCR) peptides in the nodule cells to control the intracellular bacterial population. NCR peptides have antimicrobial activity and drive bacteroids toward terminal differentiation. Other legumes do not produce NCR peptides and their bacteroids are not differentiated. Bradyrhizobia, infecting NCR-producing Aeschynomene plants, require the peptide uptake transporter BclA to cope with the NCR peptides as well as a specific peptidoglycan-modifying DD-carboxypeptidase, DD-CPase1. We show that Bradyrhizobium diazoefficiens strain USDA110 forms undifferentiated bacteroids in NCR-lacking soybean nodules. Unexpectedly, in Aeschynomene afraspera nodules the nitrogen fixing USDA110 bacteroids are hardly differentiated despite the fact that this host produces NCR peptides, suggesting that USDA110 is insensitive to the host peptide effectors and that nitrogen fixation can be uncoupled from differentiation. In agreement with the absence of bacteroid differentiation, USDA110 does not require its bclA gene for nitrogen fixing symbiosis with these two host plants. Furthermore, we show that the BclA and DD-CPase1 act independently in the NCR-induced morphological differentiation of bacteroids. Our results suggest that BclA is required to protect the rhizobia against the NCR stress but not to induce the terminal differentiation pathway.

  17. Kinetics of nif Gene Expression in a Nitrogen-Fixing Bacterium

    PubMed Central

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos

    2014-01-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs. PMID:24244007

  18. Kinetics of Nif gene expression in a nitrogen-fixing bacterium.

    PubMed

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M

    2014-02-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.

  19. Glyphosate Use Predicts ADHD Hospital Discharges in the Healthcare Cost and Utilization Project Net (HCUPnet): A Two-Way Fixed-Effects Analysis

    PubMed Central

    Fluegge, Keith R.; Fluegge, Kyle R.

    2015-01-01

    There has been considerable international study on the etiology of rising mental disorders, such as attention-deficit hyperactivity disorder (ADHD), in human populations. As glyphosate is the most commonly used herbicide in the world, we sought to test the hypothesis that glyphosate use in agriculture may be a contributing environmental factor to the rise of ADHD in human populations. State estimates for glyphosate use and nitrogen fertilizer use were obtained from the U.S. Geological Survey (USGS). We queried the Healthcare Cost and Utilization Project net (HCUPNET) for state-level hospitalization discharge data in all patients for all-listed ADHD from 2007 to 2010. We used rural-urban continuum codes from the USDA-Economic Research Service when exploring the effect of urbanization on the relationship between herbicide use and ADHD. Least squares dummy variable (LSDV) method and within method using two-way fixed effects was used to elucidate the relationship between glyphosate use and all-listed ADHD hospital discharges. We show that a one kilogram increase in glyphosate use, in particular, in one year significantly positively predicts state-level all-listed ADHD discharges, expressed as a percent of total mental disorders, the following year (coefficient = 5.54E-08, p<.01). A study on the effect of urbanization on the relationship between glyphosate and ADHD indicates that the relationship is marginally significantly positive after multiple comparison correction only in urban U.S. counties (p<.025). Furthermore, total glyphosate use is strongly positively associated with total farm use of nitrogen fertilizers from 1992 to 2006 (p<.001). We present evidence from the biomedical research literature of a plausible link among glyphosate, nitrogen dysbiosis and ADHD. Glyphosate use is a significant predictor of state hospitalizations for all-listed ADHD hospital discharges, with the effect concentrated in urban U.S. counties. This effect is seen even after controlling for individual state characteristics, strong correlations over time, and other significant associations with ADHD in the literature. We draw upon the econometric results to propose unique mechanisms, borrowing principles from soil and atmospheric sciences, for how glyphosate-based herbicides may be contributing to the rise of ADHD in all populations. PMID:26287729

  20. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima

    PubMed Central

    Zhang, Fan; Vicente, Jan; Hill, Russell T.

    2014-01-01

    Sponges that harbor microalgal or, cyanobacterial symbionts may benefit from photosynthetically derived carbohydrates, which are rich in carbon but devoid of nitrogen, and may therefore encounter nitrogen limitation. Diazotrophic communities associated with two Caribbean sponges, Ircinia strobilina and Mycale laxissima were studied in a time series during which three individuals of each sponge were collected in four time points (5:00 AM, 12:00 noon, 5:00 PM, 10:00 PM). nifH genes were successfully amplified from the corresponding gDNA and cDNA pools and sequenced by high throughput 454 amplicon sequencing. In both sponges, over half the nifH transcripts were classified as from cyanobacteria and the remainder from heterotrophic bacteria. We found various groups of bacteria actively expressing the nifH gene during the entire day-night cycle, an indication that the nitrogen fixation potential was fully exploited by different nitrogen fixing bacteria groups associated with their hosts. This study showed for the first time the dynamic changes in the activity of the diazotrophic bacterial communities in marine sponges. Our study expands understanding of the diazotrophic groups that contribute to the fixed nitrogen pool in the benthic community. Sponge bacterial community-associated diazotrophy may have an important impact on the nitrogen biogeochemical cycle in the coral reef ecosystem. PMID:25389420

  1. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima.

    PubMed

    Zhang, Fan; Vicente, Jan; Hill, Russell T

    2014-01-01

    Sponges that harbor microalgal or, cyanobacterial symbionts may benefit from photosynthetically derived carbohydrates, which are rich in carbon but devoid of nitrogen, and may therefore encounter nitrogen limitation. Diazotrophic communities associated with two Caribbean sponges, Ircinia strobilina and Mycale laxissima were studied in a time series during which three individuals of each sponge were collected in four time points (5:00 AM, 12:00 noon, 5:00 PM, 10:00 PM). nifH genes were successfully amplified from the corresponding gDNA and cDNA pools and sequenced by high throughput 454 amplicon sequencing. In both sponges, over half the nifH transcripts were classified as from cyanobacteria and the remainder from heterotrophic bacteria. We found various groups of bacteria actively expressing the nifH gene during the entire day-night cycle, an indication that the nitrogen fixation potential was fully exploited by different nitrogen fixing bacteria groups associated with their hosts. This study showed for the first time the dynamic changes in the activity of the diazotrophic bacterial communities in marine sponges. Our study expands understanding of the diazotrophic groups that contribute to the fixed nitrogen pool in the benthic community. Sponge bacterial community-associated diazotrophy may have an important impact on the nitrogen biogeochemical cycle in the coral reef ecosystem.

  2. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?

    PubMed

    Stal, Lucas J

    2009-07-01

    Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed almost exclusively to cyanobacteria. This is remarkable firstly because diazotrophic cyanobacteria are found in other environments irrespective of temperature and secondly because primary production in temperate and cold oceans is generally limited by nitrogen. Cyanobacteria are oxygenic phototrophic organisms that evolved a variety of strategies protecting nitrogenase from oxygen inactivation. Free-living diazotrophic cyanobacteria in the ocean are of the non-heterocystous type, namely the filamentous Trichodesmium and the unicellular groups A-C. I will argue that warm water is a prerequisite for these diazotrophic organisms because of the low-oxygen solubility and high rates of respiration allowing the organism to maintain anoxic conditions in the nitrogen-fixing cell. Heterocystous cyanobacteria are abundant in freshwater and brackish environments in all climatic zones. The heterocyst cell envelope is a tuneable gas diffusion barrier that optimizes the influx of both oxygen and nitrogen, while maintaining anoxic conditions inside the cell. It is not known why heterocystous cyanobacteria are absent from the temperate and cold oceans and seas.

  3. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis.

    PubMed

    Carro, Lorena; Spröer, Cathrin; Alonso, Pilar; Trujillo, Martha E

    2012-03-01

    It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems.

    PubMed

    Rousk, Kathrin; Jones, Davey L; Deluca, Thomas H

    2013-01-01

    The biological fixation of atmospheric nitrogen (N) is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50% to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation.

  6. Large Fractions of CO2-Fixing Microorganisms in Pristine Limestone Aquifers Appear To Be Involved in the Oxidation of Reduced Sulfur and Nitrogen Compounds

    PubMed Central

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds. PMID:25616797

  7. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate nitrogen during soil development. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling.

    PubMed

    Lee, Michael D; Webb, Eric A; Walworth, Nathan G; Fu, Fei-Xue; Held, Noelle A; Saito, Mak A; Hutchins, David A

    2018-01-01

    Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between Trichodesmium and its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with Trichodesmium . Copyright © 2017 American Society for Microbiology.

  9. Recent advances in the preparation of antirabies vaccines containing inactivated virus.

    PubMed

    POWELL, H M; CULBERTSON, C G

    1954-01-01

    This paper describes experiments undertaken to determine the usefulness of 15 nitrogen-mustard and mustard-like drugs in inactivating fixed rabies virus for the preparation of experimental antirabies vaccines. One or more of the five agents eventually selected gives promise of practical value in rendering rabbit-brain fixed rabies virus and duck-embryo fixed rabies virus noninfective for mice, at the same time allowing of successful antirabies immunization.

  10. ROLE OF RED ALDER IN NITROGEN LOSSES FROM FORESTED WATERSHEDS IN THE OREGON COAST RANGE

    EPA Science Inventory

    Variations in plant community composition across the landscape may have strong impacts on nutrient losses from small forested watersheds. One extreme example of this impact is the role of the nitrogen-fixing tree, red alder, in the biogeochemistry of forested watersheds in the P...

  11. What Is the True Nitrogenase Reaction? A Guided Approach

    ERIC Educational Resources Information Center

    Ipata, Piero L.; Pesi, Rossana

    2015-01-01

    Only diazotrophic bacteria, called "Rizhobia," living as symbionts in the root nodules of leguminous plants and certain free-living prokaryotic cells can fix atmospheric N[subscript 2]. In these microorganisms, nitrogen fixation is carried out by the nitrogenase protein complex. However, the reduction of nitrogen to ammonia has an…

  12. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest.

    PubMed

    Mirza, Babur S; Potisap, Chotima; Nüsslein, Klaus; Bohannan, Brendan J M; Rodrigues, Jorge L M

    2014-01-01

    The Amazon rainforest, the largest equatorial forest in the world, is being cleared for pasture and agricultural use at alarming rates. Tropical deforestation is known to cause alterations in microbial communities at taxonomic and phylogenetic levels, but it is unclear whether microbial functional groups are altered. We asked whether free-living nitrogen-fixing microorganisms (diazotrophs) respond to deforestation in the Amazon rainforest, using analysis of the marker gene nifH. Clone libraries were generated from soil samples collected from a primary forest, a 5-year-old pasture originally converted from primary forest, and a secondary forest established after pasture abandonment. Although diazotroph richness did not significantly change among the three plots, diazotroph community composition was altered with forest-to-pasture conversion, and phylogenetic similarity was higher among pasture communities than among those in forests. There was also 10-fold increase in nifH gene abundance following conversion from primary forest to pasture. Three environmental factors were associated with the observed changes: soil acidity, total N concentration, and C/N ratio. Our results suggest a partial restoration to initial levels of abundance and community structure of diazotrophs following pasture abandonment, with primary and secondary forests sharing similar communities. We postulate that the response of diazotrophs to land use change is a direct consequence of changes in plant communities, particularly the higher N demand of pasture plant communities for supporting aboveground plant growth.

  13. Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes.

    PubMed

    De Meyer, Sofie E; Briscoe, Leah; Martínez-Hidalgo, Pilar; Agapakis, Christina M; de-Los Santos, Paulina Estrada; Seshadri, Rekha; Reeve, Wayne; Weinstock, George; O'Hara, Graham; Howieson, John G; Hirsch, Ann M

    2016-08-01

    Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.

  14. Water-quality assessment of Steiner Branch basin, Lafayette County, Wisconsin

    USGS Publications Warehouse

    Field, Stephen J.; Lidwin, R.A.

    1982-01-01

    Most of the nutrient load of the stream was transported during runoff: total organic nitrogen, 80 percent; ammonia nitrogen, 80 percent; total phosphorus, 84 percent; and total orthophosphorus, 77 percent. Transport of nitrite plus nitrate nitrogen and total nitrogen occurred primarily during baseflow conditions, with 75 and 56 percent, respectively, of the total load for the study period being transported during these conditions. The time distribution of total phosphorus, total orthophosphorus, ammonia nitrogen, and total organic nitrogen transport was very similar to suspended-sediment transport in Steiner Branch.

  15. Bacterial gene abundances as indicators of greenhouse gas emission in soils.

    PubMed

    Morales, Sergio E; Cosart, Theodore; Holben, William E

    2010-06-01

    Nitrogen fixing and denitrifying bacteria, respectively, control bulk inputs and outputs of nitrogen in soils, thereby mediating nitrogen-based greenhouse gas emissions in an ecosystem. Molecular techniques were used to evaluate the relative abundances of nitrogen fixing, denitrifying and two numerically dominant ribotypes (based on the > or =97% sequence similarity at the 16S rRNA gene) of bacteria in plots representing 10 agricultural and other land-use practices at the Kellogg biological station long-term ecological research site. Quantification of nitrogen-related functional genes (nitrite reductase, nirS; nitrous oxide reductase, nosZ; and nitrogenase, nifH) as well as two dominant 16S ribotypes (belonging to the phyla Acidobacteria, Thermomicrobia) allowed us to evaluate the hypothesis that microbial community differences are linked to greenhouse gas emissions under different land management practices. Our results suggest that the successional stages of the ecosystem are strongly linked to bacterial functional group abundance, and that the legacy of agricultural practices can be sustained over decades. We also link greenhouse gas emissions with specific compositional responses in the soil bacterial community and assess the use of denitrifying gene abundances as proxies for determining nitrous oxide emissions from soils.

  16. Lipopolysaccharides in diazotrophic bacteria

    PubMed Central

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure. PMID:25232535

  17. Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana

    Treesearch

    Steven D. Allison; Caroline Nielsen; R. Flint Hughes

    2006-01-01

    Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across...

  18. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria

    PubMed Central

    Bauersachs, Thorsten; Speelman, Eveline N.; Hopmans, Ellen C.; Reichart, Gert-Jan; Schouten, Stefan; Damsté, Jaap S. Sinninghe

    2010-01-01

    N2-fixing cyanobacteria play an essential role in sustaining primary productivity in contemporary oceans and freshwater systems. However, the significance of N2-fixing cyanobacteria in past nitrogen cycling is difficult to establish as their preservation potential is relatively poor and specific biological markers are presently lacking. Heterocystous N2-fixing cyanobacteria synthesize unique long-chain glycolipids in the cell envelope covering the heterocyst cell to protect the oxygen-sensitive nitrogenase enzyme. We found that these heterocyst glycolipids are remarkably well preserved in (ancient) lacustrine and marine sediments, unambiguously indicating the (past) presence of N2-fixing heterocystous cyanobacteria. Analysis of Pleistocene sediments of the eastern Mediterranean Sea showed that heterocystous cyanobacteria, likely as epiphytes in symbiosis with planktonic diatoms, were particularly abundant during deposition of sapropels. Eocene Arctic Ocean sediments deposited at a time of large Azolla blooms contained glycolipids typical for heterocystous cyanobacteria presently living in symbiosis with the freshwater fern Azolla, indicating that this symbiosis already existed in that time. Our study thus suggests that heterocystous cyanobacteria played a major role in adding “new” fixed nitrogen to surface waters in past stratified oceans. PMID:20966349

  19. The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the 15N Haber-Bosch effect

    NASA Astrophysics Data System (ADS)

    Yang, Simon; Gruber, Nicolas

    2016-10-01

    Over the last 100 years, anthropogenic emissions have led to a strong increase of atmospheric nitrogen deposition over the ocean, yet the resulting impacts and feedbacks are neither well understood nor quantified. To this end, we run a suite of simulations with the ocean component of the Community Earth System Model v1.2 forced with five scenarios of nitrogen deposition over the period from 1850 through 2100, while keeping all other forcings unchanged. Even though global oceanic net primary production increases little in response to this fertilization, the higher export and the resulting expansion of the oxygen minimum zones cause an increase in pelagic and benthic denitrification and burial by about 5%. In addition, the enhanced availability of fixed nitrogen in the surface ocean reduces global ocean N2 fixation by more than 10%. Despite the compensating effects through these negative feedbacks that eliminate by the year 2000 about 60% of the deposited nitrogen, the anthropogenic nitrogen input forced the upper ocean N budget into an imbalance of between 9 and 22 Tg N yr-1 depending on the deposition scenario. The excess nitrogen accumulates to highly detectable levels and causes in most areas a distinct negative trend in the δ15N of the oceanic fixed nitrogen pools—a trend we refer to as the 15N Haber-Bosch effect. Changes in surface nitrate utilization and the nitrogen feedbacks induce further changes in the δ15N of NO3-, making it a good but complex recorder of the overall impact of the changes in atmospheric deposition.

  20. Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems II: evaluation.

    PubMed

    Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian; Elenter, Deborah

    2009-06-01

    A steady-state model presented by Boltz, Johnson, Daigger, and Sandino (2009) describing integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor (MBBR) systems has been demonstrated to simulate, with reasonable accuracy, four wastewater treatment configurations with published operational data. Conditions simulated include combined carbon oxidation and nitrification (both IFAS and MBBR), tertiary nitrification MBBR, and post denitrification IFAS with methanol addition as the external carbon source. Simulation results illustrate that the IFAS/MBBR model is sufficiently accurate for describing ammonia-nitrogen reduction, nitrate/nitrite-nitrogen reduction and production, biofilm and suspended biomass distribution, and sludge production.

  1. Control of autogenous activation of Herbaspirillum seropedicae nifA promoter by the IHF protein.

    PubMed

    Wassem, Roseli; Pedrosa, Fábio O; Yates, Marshall G; Rego, Fabiane G M; Chubatsu, Leda S; Rigo, Liu U; Souza, Emanuel M

    2002-07-02

    Analysis of the expression of the Herbaspirillum seropedicae nifA promoter in Escherichia coli and Herbaspirillum seropedicae, showed that nifA expression is primarily dependent on NtrC but also required NifA for maximal expression under nitrogen-fixing conditions. Deletion of the IHF (integration host factor)-binding site produced a promoter with two-fold higher activity than the native promoter in the H. seropedicae wild-type strain but not in a nifA strain, indicating that IHF controls NifA auto-activation. IHF is apparently required to prevent overexpression of the NifA protein via auto-activation under nitrogen-fixing conditions in H. seropedicae.

  2. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions.

    PubMed

    Bourcy, Marie; Brocard, Lysiane; Pislariu, Catalina I; Cosson, Viviane; Mergaert, Peter; Tadege, Millon; Mysore, Kirankumar S; Udvardi, Michael K; Gourion, Benjamin; Ratet, Pascal

    2013-03-01

    Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells. © 2012 CNRS. New Phytologist © 2012 New Phytologist Trust.

  3. Influence of an experimental herbicide on soil nitrogen-fixing bacteria and other microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, L.M. Jr.; Hedrick, H.G.

    Influence of an experimental herbicide on two isolates of soil nitrogen-fixing bacteria Rhizobium japonicum 3I1b110 and Azotobacter vinelandii ATCC 12837, was determined using a bioresponse assay, thin-layer chromatographic analysis, and changes in viable cells on the herbicide as the sole source of organic carbon. Seven bacterial and nine fungus isolates were also found by a soil enrichment technique to show utilization of the herbicide. A. vinelandii showed stimulation of growth in the first 4 days of exposure on the herbicide at 1,000 ppM. The herbicide then became toxic or was metabolized into toxic by-products. R. japonicum showed utilization of themore » herbicide by changes in growth rate as influenced by the inoculum concentration, the thoroughness of inoculum washing, and the concentration of herbicide. Using TLC assay techniques, the herbicide was found to be depleted in laboratory experiments by R. japonicum following 10 days of growth, without detectable nonmetabolic by-products. These findings suggested that the addition of the experimental herbicide to soils planted with bean crops could possibly influence the metabolic activity of R. japonicum as a symbiotic nitrogen-fixing bacterium. 5 figures, 1 table.« less

  4. Quantifying nitrogen-fixation in feather moss carpets of boreal forests.

    PubMed

    DeLuca, Thomas H; Zackrisson, Olle; Nilsson, Marie-Charlotte; Sellstedt, Anita

    2002-10-31

    Biological nitrogen (N) fixation is the primary source of N within natural ecosystems, yet the origin of boreal forest N has remained elusive. The boreal forests of Eurasia and North America lack any significant, widespread symbiotic N-fixing plants. With the exception of scattered stands of alder in early primary successional forests, N-fixation in boreal forests is considered to be extremely limited. Nitrogen-fixation in northern European boreal forests has been estimated at only 0.5 kg N ha(-1) yr(-1); however, organic N is accumulated in these ecosystems at a rate of 3 kg N ha(-1) yr(-1) (ref. 8). Our limited understanding of the origin of boreal N is unacceptable given the extent of the boreal forest region, but predictable given our imperfect knowledge of N-fixation. Herein we report on a N-fixing symbiosis between a cyanobacterium (Nostoc sp.) and the ubiquitous feather moss, Pleurozium schreberi (Bird) Mitt. that alone fixes between 1.5 and 2.0 kg N ha(-1) yr(-1) in mid- to late-successional forests of northern Scandinavia and Finland. Previous efforts have probably underestimated N-fixation potential in boreal forests.

  5. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium.

    PubMed

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar

    2017-01-01

    Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD 50 dose), following 3h exposure to 75μM and 200μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi

    PubMed Central

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa. PMID:24505405

  7. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    PubMed

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  8. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    PubMed

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  9. Evaluation of Toxic Effects of Aeration and Trichloroethylene Oxidation on Methanotrophic Bacteria Grown with Different Nitrogen Sources

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1999-01-01

    In this study we evaluated specific and nonspecific toxic effects of aeration and trichloroethylene (TCE) oxidation on methanotrophic bacteria grown with different nitrogen sources (nitrate, ammonia, and molecular nitrogen). The specific toxic effects, exerted directly on soluble methane monooxygenase (sMMO), were evaluated by comparing changes in methane uptake rates and naphthalene oxidation rates following aeration and/or TCE oxidation. Nonspecific toxic effects, defined as general cellular damage, were examined by using a combination of epifluorescent cellular stains to measure viable cell numbers based on respiratory activity and measuring formate oxidation activities following aeration and TCE transformation. Our results suggest that aeration damages predominantly sMMO rather than other general cellular components, whereas TCE oxidation exerts a broad range of toxic effects that damage both specific and nonspecific cellular functions. TCE oxidation caused sMMO-catalyzed activity and respiratory activity to decrease linearly with the amount of substrate degraded. Severe TCE oxidation toxicity resulted in total cessation of the methane, naphthalene, and formate oxidation activities and a 95% decrease in the respiratory activity of methanotrophs. The failure of cells to recover even after 7 days of incubation with methane suggests that cellular recovery following severe TCE product toxicity is not always possible. Our evidence suggests that generation of greater amounts of sMMO per cell due to nitrogen fixation may be responsible for enhanced TCE oxidation activities of nitrogen-fixing methanotrophs rather than enzymatic protection mechanisms associated with the nitrogenase enzymes. PMID:9925614

  10. Influence of pulsed-light irradiation on the productivity and nitrogen-fixing ability of blue-green algae nostoc muscorum Ag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umarov, G.Ya.; Kuchkarova, M.A.; Maksudov, T.U.

    1975-01-01

    The utilization of pulsed concentrated sunlight to improve the productivity of nostoc muscorum Ag. algae was investigated. In laboratory experiments the greatest accumulation of biomass was found after 5-min irradiation; there was a 10 percent increase in nitrogen fixation. For cultivation under the open sky productivity and nitrogen fixation rose after 10- and 20-min irradiation by pulsed concentrated sunlight.

  11. Interactions between nitrogen cycling and methane oxidation in the pelagic waters of the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Joye, S. B.; Weber, S.; Battles, J.; Montoya, J. P.

    2014-12-01

    Methane is an important greenhouse gas that plays a critical role in climate variation. Although a variety of marine methane sources and sinks have been identified, key aspects of the fate of methane in the ocean remain poorly constrained. At cold seeps in the Gulf of Mexico and elsewhere, methane is introduced into the overlying water column via fluid escape from the seabed. We quantified the fate of methane in the water column overlying seafloor cold seeps, in a brine basin, and at several control sites. Our goals were to determine the factors that regulated methane consumption and assimilation and to explore how these controlling factors varied among and between sites. In particular, we examined the impact of nitrogen availability on methane oxidation and studied the ability of methane oxidizing bacteria to fix molecular nitrogen. Methane oxidation rates were highest in the methane rich bottom waters of natural hydrocabron seeps. At these sites, inorganic nitrogen addition stimulated methane oxidation in laboratory experiments. In vitro shipboard experiments revealed that rates of methane oxidation and nitrogen fixation were correlated strongly, suggesting that nitrogen fixation may have been mediated by methanotrophic bacteria. The highest rates of methane oxidation and nitrogen fixation were observed in the deepwater above at natural hydrocarbon seeps. Rates of methane oxidation were substantial along the chemocline of a brine basin but in these ammonium-rich brines, addition of inorganic nitrogen had little impact on methane oxidation suggesting that methanotrophy in these waters were not nitrogen limited. Control sites exhibited the lowest methane concentrations and methane oxidation rates but even these waters exhibited substantial potential for methane oxidation when methane and inorganic nitrogen concentrations were increased. Together, these data suggest that the availability of inorganic nitrogen plays a critical role in regulating methane oxidation in pelagic ocean waters. Some methanotrophs may obtain a competitive advantage in nitrogen-limited oceanic environments by fixing molecular nitrogen. The importance of such "methano-diazotrophy" on a global scale warrants further investigation.

  12. Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils.

    PubMed

    Cotta, Simone Raposo; Dias, Armando Cavalcante Franco; Marriel, Ivanildo Evódio; Andreote, Fernando Dini; Seldin, Lucy; van Elsas, Jan Dirk

    2014-10-01

    The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Expression of the nifH Gene of a Herbaspirillum Endophyte in Wild Rice Species: Daily Rhythm during the Light-Dark Cycle

    PubMed Central

    You, Mu; Nishiguchi, Tomohiro; Saito, Asami; Isawa, Tsuyoshi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2005-01-01

    The expression of nitrogenase genes of Herbaspirillum sp. B501 associated in shoot (leaf and stem) of wild rice, Oryza officinalis, was studied by means of reverse transcription-PCR (RT-PCR) targeted at the nifH gene. RT-PCR analyses indicate that nifH transcript was detected exclusively from nitrogen-fixing cells of gfp-tagged strain B501gfp1 in both free-living and endophytic states by using a constitutive gfp gene transcript as a positive control. Transcription of nifH and nitrogen fixation in free-living cells were induced maximally at a 2% O2 concentration and repressed in free air (21% O2). nifH transcription was monitored in the endophytic cells by using total RNA extracted from B501gfp1-inoculated wild rice plants during daily light-dark cycles. The level of nifH transcription in planta varied dramatically, with a maximum during the light period. Moreover, the light radiation enhanced nifH expression even in free-living cells grown in culture. These results suggest that in planta nitrogen fixation by the endophyte shows a daily rhythm determined by the plant's light environment. PMID:16332801

  14. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa?

    PubMed

    Paerl, Hans W; Xu, Hai; Hall, Nathan S; Zhu, Guangwei; Qin, Boqiang; Wu, Yali; Rossignol, Karen L; Dong, Linghan; McCarthy, Mark J; Joyner, Alan R

    2014-01-01

    Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China's third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible.

  15. Controlling Cyanobacterial Blooms in Hypertrophic Lake Taihu, China: Will Nitrogen Reductions Cause Replacement of Non-N2 Fixing by N2 Fixing Taxa?

    PubMed Central

    Paerl, Hans W.; Xu, Hai; Hall, Nathan S.; Zhu, Guangwei; Qin, Boqiang; Wu, Yali; Rossignol, Karen L.; Dong, Linghan; McCarthy, Mark J.; Joyner, Alan R.

    2014-01-01

    Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China’s third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible. PMID:25405474

  16. Mechanism of Mo-Dependent Nitrogenase

    PubMed Central

    Seefeldt, Lance C.; Hoffman, Brian M.; Dean, Dennis R.

    2010-01-01

    Nitrogen-fixing bacteria catalyze the reduction of dinitrogen (N2) to two ammonia molecules (NH3), the major contribution of fixed nitrogen into the biogeochemical nitrogen cycle. The most widely studied nitrogenase is the Mo-dependent enzyme. The reduction of N2 by this enzyme involves the transient interaction of two component proteins, designated the Fe protein and the MoFe protein, and minimally requires sixteen MgATP, eight protons, and eight electrons. The current state of knowledge on how these proteins and small molecules together effect the reduction of N2 to ammonia is reviewed. Included is a summary of the roles of the Fe protein and MgATP hydrolysis, information on the roles of the two metal clusters contained in the MoFe protein in catalysis, insights gained from recent success in trapping substrates and inhibitors at the active site metal cluster FeMo-cofactor, and finally, considerations of the mechanism of N2 reduction catalyzed by nitrogenase. PMID:19489731

  17. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    PubMed

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions.

    PubMed

    Wang, Qi; Liu, Jinge; Zhu, Hongyan

    2018-01-01

    Legumes are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia. The result of this symbiosis is to form nodules on the plant root, within which the bacteria can convert atmospheric nitrogen into ammonia that can be used by the plant. Establishment of a successful symbiosis requires the two symbiotic partners to be compatible with each other throughout the process of symbiotic development. However, incompatibility frequently occurs, such that a bacterial strain is unable to nodulate a particular host plant or forms nodules that are incapable of fixing nitrogen. Genetic and molecular mechanisms that regulate symbiotic specificity are diverse, involving a wide range of host and bacterial genes/signals with various modes of action. In this review, we will provide an update on our current knowledge of how the recognition specificity has evolved in the context of symbiosis signaling and plant immunity.

  19. Biomass characteristics of two types of submerged membrane bioreactors for nitrogen removal from wastewater.

    PubMed

    Liang, Zhihua; Das, Atreyee; Beerman, Daniel; Hu, Zhiqiang

    2010-06-01

    Biomass characteristics and microbial community diversity between a submerged membrane bioreactor with mixed liquor recirculation (MLE/MBR) and a membrane bioreactor with the addition of integrated fixed biofilm medium (IFMBR) were compared for organic carbon and nitrogen removal from wastewater. The two bench-scale MBRs were continuously operated in parallel at a hydraulic retention time (HRT) of 24h and solids retention time (SRT) of 20d. Both MBRs demonstrated good COD removal efficiencies (>97.7%) at incremental inflow organic loading rates. The total nitrogen removal efficiencies were 67% for MLE/MBR and 41% for IFMBR. The recirculation of mixed liquor from aerobic zone to anoxic zone in the MLE/MBR resulted in higher microbial activities of heterotrophic (46.96mgO(2)/gVSSh) and autotrophic bacteria (30.37mgO(2)/gVSSh) in the MLE/MBR compared to those from IFMBR. Terminal Restriction Fragment Length Polymorphism analysis indicated that the higher nitrifying activities were correlated with more diversity of nitrifying bacterial populations in the MLE/MBR. Membrane fouling due to bacterial growth was evident in both the reactors. Even though the trans-membrane pressure and flux profiles of MLE/MBR and IFMBR were different, the patterns of total membrane resistance changes had no considerable difference under the same operating conditions. The results suggest that metabolic selection via alternating anoxic/aerobic processes has the potential of having higher bacterial activities and improved nutrient removal in MBR systems. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Recent advances in the preparation of antirabies vaccine containing inactivated virus

    PubMed Central

    Powell, H. M.; Culbertson, C. G.

    1954-01-01

    This paper describes experiments undertaken to determine the usefulness of 15 nitrogen-mustard and mustard-like drugs in inactivating fixed rabies virus for the preparation of experimental antirabies vaccines. One or more of the five agents eventually selected gives promise of practical value in rendering rabbit-brain fixed rabies virus and duck-embryo fixed rabies virus noninfective for mice, at the same time allowing of successful antirabies immunization. PMID:13182604

  1. Annual Nutrient Loadings, Primary Productivity, and Trophic State of Lake Koocanusa, Montana and British Columbia, 1972-80

    USGS Publications Warehouse

    Woods, Paul F.

    1982-01-01

    Limnological data collected at Lake Koocanusa were used to investigate the relationship of nutrient loadings, primary productivity, and trophic state of the reservoir during 1972-80. The reservoir, on the Kootenai River, was impounded by Libby Dam on March 21, 1972. Manipulation of the 7.16-cubic-kilometer reservoir for flood control, its primary function, created large fluctuations in reservoir volume and produced annual lake-filling times that ranged from 0.14 to 0.66 year. Loadings of nitrogen and phosphorus prior to and following impoundment of Lake Koocanusa were found to be large enough to predict eutrophic conditions. Beginning in 1976, total phosphorus loadings, but not total nitrogen loadings, were substantially reduced following improvements in waste-water treatment at a fertilizer plant located upstream from the reservoir. The closure of Libby Dam substantially reduced loadings of nitrogen and phosphorus downstream from Lake Koocanusa. On the average, the reservoir retained 63 percent of its influent loading of total phosphorus and 25 percent of its influent loading of total nitrogen. Daily areal and volumetric primary productivity varied widely in each year at four sampled limnological stations. During the 9 years studied, daily areal primary productivity, in milligrams of carbon fixed per square meter, ranged from 0.4 to 420.0; the mean of the 313 sampled days was 128.5. Annual areal primary productivity ranged from 23.2 to 38.5 grams of carbon fixed per square meter and thereby categorized Lake Koocanusa as oligotrophic. The relationship of annual areal primary productivity and 12 selected environmental variables was determined by multiple regression analysis. One of the models that was derived used two variables-annual euphotic zone depth and annual areal phosphorus loading-and accounted for 62.0 percent of the variation in annual areal primary productivity. The distribution of chlorophyll a within the water column indicated that, on the average, more than one-half of the phytoplankton in the reservoir was beneath the euphotic zone. These results support the hypothesis that the reservoir's weak thermal structure had allowed circulation of phytoplankton out of the euphotic zone. The trophic state of Lake Koocanusa was categorized as eutrophic when based on the relationship of the nutrient loadings and the reservoir's ratio of mean depth to hydraulic-residence time. This result conflicted with the oligotrophic ranking the reservoir received based on its areal primary productivity. The discrepancy in trophic state was attributed mainly to the failure of nutrient loading models to adequately account for physical processes within reservoirs. Part of the nutrient loading that entered Lake Koocanusa was unavailable to phytoplankton because the nutrients were carried beneath the euphotic zone by large volumes of interflow and underflow. Another part of the nutrient loading was adsorbed to suspended sediment and removed from the water column. Thus, phytoplankton primary productivity was controlled not only by nutrients, but also by other limno logical processes.

  2. Recent developments in the structural organization and regulation of nitrogen fixation genes in Herbaspirillum seropedicae.

    PubMed

    Pedrosa, F O; Benelli, E M; Yates, M G; Wassem, R; Monteiro, R A; Klassen, G; Steffens, M B; Souza, E M; Chubatsu, L S; Rigo, L U

    2001-10-04

    Herbaspirillum seropedicae is a nitrogen-fixing bacterium found in association with economically important gramineae. Regulation of nitrogen fixation involves the transcriptional activator NifA protein. The regulation of NifA protein and its truncated mutant proteins is described and compared with that of other nitrogen fixation bacteria. Nitrogen fixation control in H. seropedicae, of the beta-subgroup of Proteobacteria, has regulatory features in common with Klebsiella pneumoniae, of the gamma-subgroup, at the level of nifA expression and with rhizobia and Azospirillum brasilense, of the alpha-subgroup, at the level of control of NifA by oxygen.

  3. From the lab bench: Mixtures of grasses and legumes for extending the grazing season

    USDA-ARS?s Scientific Manuscript database

    A column was written to discuss how clovers and warm-season legumes, such as alfalfa and birdsfoot trefoil, in mixture with grasses can enhance the overall nutritive value of the overall forage, increase dry matter yield, and contribute nitrogen to the soil via the nitrogen fixing Rhizobia bacteria ...

  4. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    PubMed

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  5. Plant growth promoting potential and phylogenetic characteristics of a lichenized nitrogen fixing bacterium, Enterobacter cloacae.

    PubMed

    Swamy, Chidanandamurthy Thippeswamy; Gayathri, Devaraja; Devaraja, Thimmalapura Neelakantaiah; Bandekar, Mandar; D'Souza, Stecy Elvira; Meena, Ram Murti; Ramaiah, Nagappa

    2016-12-01

    Lichens are complex symbiotic association of mycobionts, photobionts, and bacteriobionts, including chemolithotropic bacteria. In the present study, 46 lichenized bacteria were isolated by conventional and enrichment culture methods on nitrogen-free bromothymol blue (NFb) medium. Only 11 of the 46 isolates fixed nitrogen on NFb and had reduced acetylene. All these 11 isolates had also produced siderophore and 10 of them the IAA. Further, ammonia production was recorded from nine of these nitrogen fixers (NF). On molecular characterization, 16 S rRNA sequencing recorded that, nine NF belonged to Proteobacteria, within Gammaproteobacteria, and were closely related to Enterobacter sp. with a maximum similarity to Enterobacter cloacae. Each one of our NF isolates was aligned closely to Enterobacter pulveris strain E443, Cronobacter sakazakii strain PNP8 and Providencia rettgeri strain ALK058. Notably, a few strains we examined found to possess plant growth promoting properties. This is the first report of Enterobacter sp. from lichens which may be inhabit lichen thalli extrinsically or intrinsically. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration

    PubMed Central

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency. PMID:24987690

  7. Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization.

    PubMed

    Gomes, Marcelo Pedrosa; de Brito, Júlio César Moreira; Carvalho Carneiro, Marília Mércia Lima; Ribeiro da Cunha, Mariem Rodrigues; Garcia, Queila Souza; Figueredo, Cleber Cunha

    2018-01-01

    We investigated the ability of the aquatic fern Azolla to take up ciprofloxacin (Cipro), as well as the effects of that antibiotic on the N-fixing process in plants grown in medium deprived (-N) or provided (+N) with nitrogen (N). Azolla was seen to accumulate Cipro at concentrations greater than 160 μg g -1 dry weight when cultivated in 3.05 mg Cipro l -1 , indicating it as a candidate for Cipro recovery from water. Although Cipro was not seen to interfere with the heterocyst/vegetative cell ratios, the antibiotic promoted changes with carbon and nitrogen metabolism in plants. Decreased photosynthesis and nitrogenase activity, and altered plant's amino acid profile, with decreases in cell N concentrations, were observed. The removal of N from the growth medium accentuated the deleterious effects of Cipro, resulting in lower photosynthesis, N-fixation, and assimilation rates, and increased hydrogen peroxide accumulation. Our results shown that Cipro may constrain the use of Azolla as a biofertilizer species due to its interference with nitrogen fixation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  9. Constitutive expression of the nifA gene activates associative nitrogen fixation of Enterobacter gergoviae 57-7, an opportunistic endophytic diazotroph.

    PubMed

    An, Q; Dong, Y; Wang, W; Li, Y; Li, J

    2007-09-01

    This study was undertaken to investigate whether a nitrogen-fixing bacterium Enterobacter gergoviae 57-7, which was isolated from surface-sterilized maize (Zea mays L.) roots, can colonize in roots and whether constitutive expression of the nifA gene encoding the transcriptional activator of nitrogenase genes can activate nif gene expression in planta. Maize seedlings grown in an agar medium were inoculated with Ent. gergoviae strains containing the green fluorescent protein reporter gene. Root colonization and expression of the dinitrogenase reductase gene (nifH) by Ent. gergoviae were observed by confocal laser scanning microscopy. gfp-tagged Ent. gergoviae was observed to colonize predominantly in cortical aerenchyma of primary and lateral roots and in stellar parenchyma cells and xylem vessels of primary roots. In planta nifH :: gfp expression was not detected but after a constitutively expressed nifA gene was introduced into Ent. gergoviae. Enterobacter gergoviae 57-7 is an opportunistic endophyte because it can live in soil and colonize in maize roots in the gnotobiotic agar culture. In agreement with previous (15)N-dilution evidence that Ent. gergoviae 57-7 did not fix N(2) in association with maize in pots whereas a derivative E7 containing a constitutively expressed nifA gene promoted plant growth partly through associative nitrogen fixation, constitutive expression of the nifA gene can activate bacterial nif gene expression in planta. This study and our previous studies suggest that manipulation of the promoter of the nifA gene in a nitrogen-fixing bacterium having a high colonization competence is a practical and promising approach to achieve a stable associative nitrogen fixation for cereals.

  10. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal.

    PubMed

    Das, Amal Chandra; Debnath, Anjan

    2006-11-01

    A field experiment has been conducted with four systemic herbicides viz., butachlor [N-(butoxymethyl)-2-chloro-2',6'-diethyl-acetanilide], fluchloralin [N-(2-chloroethyl)-(2,6-dinitro-N-propyl-4-trifluoromethyl) aniline], oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopro poxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at their recommended field rates (2.0, 1.5, 0.4 and 0.12kga.i.ha(-1), respectively) to investigate their effects on growth and activities of aerobic non-symbiotic N(2)-fixing bacteria and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in the rhizosphere soils as well as yield of the rice crop (Oryza sativa L cv. IR-36). Application of herbicides, in general, highly stimulated the population and activities of the target microorganisms, which resulted in a greater amount of atmospheric nitrogen fixation and phosphate solubilization in the rhizosphere soils of the test crop. The greater microbial activities subsequently augmented the mineralization and availability of nitrogen and phosphorus in the soil solution, which in turn increased the yield of the crop. Among the herbicides, oxyfluorfen was most stimulative followed by fluchloralin and oxadiazon in augmenting the microbial activities in soil. Butachlor also accentuated the mineralization and availability of nitrogen due to higher incitement of non-symbiotic N(2)-fixing bacteria in paddy soil. The grain and straw yields of the crop were also significantly increased due to the application of oxyfluorfen (20.2% and 21%) followed by fluchloralin (13.1% and 15.4%) and butachlor (9.1% and 10.2%), respectively.

  11. NITROGEN EXPORT FROM FORESTED WATERSHEDS IN THE OREGON COAST RANGE: THE ROLE OF N2-FIXING RED ALDER

    EPA Science Inventory

    Variations in plant community composition across the landscape can influence nutrient retention and loss at the watershed scale. A striking example of plant species influence is the role of N2-fixing red alder (Alnus rubra) in the biogeochemistry of Pacific Northwest forests. T...

  12. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution.

    PubMed

    Havens, Karl E; James, R Thomas; East, Therese L; Smith, Val H

    2003-01-01

    A long-term (28-year) data set was used to investigate historical changes in concentrations of phosphorus (P), nitrogen (N), N:P ratios, and Secchi disk transparency in a shallow subtropical lake (Lake Okeechobee, Florida, USA). The aim was to evaluate changes in the risk of N2-fixing cyanobacterial blooms, which have infrequently occurred in the lake's pelagic zone. Predictions regarding bloom risk were based on previously published N:P ratio models. Temporal trends in the biomass of cyanobacteria were evaluated using phytoplankton data collected in 1974, 1989-1992, and 1997-2000. Concentrations of pelagic total P increased from near 50 microg l-1 in the mid-1970s to over 100 microg l-1 in the late 1990s. Coincidentally, the total N:P (mass) ratio decreased from 30:1 to below 15:1, and soluble N:P ratio decreased from 15:1 to near 6:1, in the lake water. Published empirical models predict that current conditions favor cyanobacteria. The observations confirm this prediction: cyanobacteria presently account for 50-80% of total phytoplankton biovolume. The historical decrease in TN:TP ratio in the lake can be attributed to a decreased TN:TP ratio in the inflow water and to a decline in the lake's assimilation of P, relative to N. Coincident with these declines in total and soluble N:P ratios, Secchi disk transparency declined from 0.6 m to near 0.3 m, possibly due to increased mineral turbidity in the lake water. Empirical models predict that under the turbid, low irradiance conditions that prevail in this lake, non-heterocystous cyanobacteria should dominate the phytoplankton. Our observations confirmed this prediction: non-N2-fixing taxa (primarily Oscillatoria and Lyngbya spp.) typically dominated the cyanobacteria community during the last decade. The only exception was a year with very low water levels, when heterocystous N2-fixing Anabaena became dominant. In the near-shore regions of this shallow lake, low N:P ratios potentially favor blooms of N2-fixing cyanobacteria, but their occurrence in the pelagic zone is restricted by low irradiance and lack of stable stratification.

  13. Percentile Distributions of Median Nitrite Plus Nitrate as Nitrogen, Total Nitrogen, and Total Phosphorus Concentrations in Oklahoma Streams, 1973-2001

    USGS Publications Warehouse

    Haggard, Brian E.; Masoner, Jason R.; Becker, Carol J.

    2003-01-01

    Nutrients are one of the primary causes of water-quality impairments in streams, lakes, reservoirs, and estuaries in the United States. The U.S. Environmental Protection Agency has developed regional-based nutrient criteria using ecoregions to protect streams in the United States from impairment. However, nutrient criteria were based on nutrient concentrations measured in large aggregated nutrient ecoregions with little relevance to local environmental conditions in states. The Oklahoma Water Resources Board is using a dichotomous process known as Use Support Assessment Protocols to define nutrient criteria in Oklahoma streams. The Oklahoma Water Resources Board is modifying the Use Support Assessment Protocols to reflect nutrient informa-tion and environmental characteristics relevant to Oklahoma streams, while considering nutrient information grouped by geographic regions based on level III ecoregions and state boundaries. Percentile distributions of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorous concentrations were calculated from 563 sites in Oklahoma and 4 sites in Arkansas near the Oklahoma and Arkansas border to facilitate development of nutrient criteria for Oklahoma streams. Sites were grouped into four geographic regions and were categorized into eight stream categories by stream slope and stream order. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations were greater in the Ozark Highland ecoregion and were less in the Ouachita Mountains ecoregion when compared to other geographic areas used to group sites. The 50th percentiles of median concentrations of nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus were least in first, second, and third order streams. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen and total phosphorus concentrations in the Ozark Highland and Ouachita Mountains ecoregions were least in first, second, and third order streams with streams slopes greater than 17 feet per mile. Nitrite plus nitrate as nitrogen and total nitrogen criteria determined by the U.S. Environmental Protection Agency for the Ozark Highland ecoregion were less than the 25th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations in the Ozark Highland ecoregion calculated for this report. Nitrite plus nitrate as nitrogen and total nitrogen criteria developed by the U.S. Environmental Protection Agency for the Ouachita Mountains ecoregion were similar to the 25th percentiles of median nitrite plus nitrate as nitrogen and total nitrogen concentrations in the Ouachita Mountains ecoregion calculated for this report. Nitrate as nitrogen and total phosphorus concentrations currently (2002) used in the Use Support Assessment Protocols for Oklahoma were greater than the 75th percentiles of median nitrite plus nitrate as nitrogen and total phosphorus concentrations calculated for this report.

  14. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods

    PubMed Central

    van der Sleen, Peter; Vlam, Mart; Groenendijk, Peter; Anten, Niels P. R.; Bongers, Frans; Bunyavejchewin, Sarayudh; Hietz, Peter; Pons, Thijs L.; Zuidema, Pieter A.

    2015-01-01

    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated 15N abundance (δ15N) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of 15N-depleted nitrate from the soil, following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests, we measured long-term δ15N values in trees from Bolivia, Cameroon, and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pith to the bark across the stem of 28 large trees (the “radial” method). In the second, δ15N values were compared across a fixed diameter (the “fixed-diameter” method). We sampled 400 trees that differed widely in size, but measured δ15N in the stem around the same diameter (20 cm dbh) in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ15N values over time with an explicit control for potential size-effects on δ15N values. We found a significant increase of tree-ring δ15N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ15N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ15N values within trees reflect tree ontogeny (size development). However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ15N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ15N values can be properly interpreted. PMID:25914707

  15. (15)N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods.

    PubMed

    van der Sleen, Peter; Vlam, Mart; Groenendijk, Peter; Anten, Niels P R; Bongers, Frans; Bunyavejchewin, Sarayudh; Hietz, Peter; Pons, Thijs L; Zuidema, Pieter A

    2015-01-01

    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated (15)N abundance (δ(15)N) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of (15)N-depleted nitrate from the soil, following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests, we measured long-term δ(15)N values in trees from Bolivia, Cameroon, and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pith to the bark across the stem of 28 large trees (the "radial" method). In the second, δ(15)N values were compared across a fixed diameter (the "fixed-diameter" method). We sampled 400 trees that differed widely in size, but measured δ(15)N in the stem around the same diameter (20 cm dbh) in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ(15)N values over time with an explicit control for potential size-effects on δ(15)N values. We found a significant increase of tree-ring δ(15)N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ(15)N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ(15)N values within trees reflect tree ontogeny (size development). However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ(15)N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ(15)N values can be properly interpreted.

  16. Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses.

    PubMed

    Ininbergs, Karolina; Bay, Guillaume; Rasmussen, Ulla; Wardle, David A; Nilsson, Marie-Charlotte

    2011-10-01

    Recent studies have revealed that nitrogen fixation by cyanobacteria living in association with feather mosses is a major input of nitrogen to boreal forests. We characterized the community composition and diversity of cyanobacterial nifH phylotypes associated with each of two feather moss species (Pleurozium schreberi and Hylocomium splendens) on each of 30 lake islands varying in ecosystem properties in northern Sweden. Nitrogen fixation was measured using acetylene reduction, and nifH sequences were amplified using general and cyanobacterial selective primers, separated and analyzed using density gradient gel electrophoresis (DGGE) or cloning, and further sequenced for phylogenetic analyses. Analyses of DGGE fingerprinting patterns revealed two host-specific clusters (one for each moss species), and sequence analysis showed five clusters of nifH phylotypes originating from heterocystous cyanobacteria. For H. splendens only, N(2) fixation was related to both nifH composition and diversity among islands. We demonstrated that the cyanobacterial communities associated with feather mosses show a high degree of host specificity. However, phylotype composition and diversity, and nitrogen fixation, did not differ among groups of islands that varied greatly in their availability of resources. These results suggest that moss species identity, but not extrinsic environmental conditions, serves as the primary determinant of nitrogen-fixing cyanobacterial communities that inhabit mosses. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  17. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Jingfeng; Chung, Shi-Wei; Wen, Liang-Saw; Liu, Kon-Kee; Chen, Yuh-Ling Lee; Chen, Houng-Yung; Karl, David M.

    2003-03-01

    Dissolved inorganic phosphorus (DIP) concentrations in the oligotrophic surface waters of the South China Sea decrease from ˜20 nM in March 2000 to ˜5 nM in July 2000, in response to seasonal water column stratification. These minimum DIP concentrations are one order of magnitude higher than those in the P-limited, iron-replete stratified surface waters of the western North Atlantic, suggesting that the ecosystem in the South China Sea may be limited by bioavailable nitrogen or some trace nutrient rather than DIP. Nutrient enrichment experiments using either nitrate, phosphate or both indicate that nitrogen limits the net growth of phytoplankton in the South China Sea, at least during March and July 2000. The fixed nitrogen limitation may result from the excess phosphate (N:P<16) transported into the South China Sea from the North Pacific relative to microbial population needs, or from iron control of nitrogen fixation. The iron-limited nitrogen fixation hypothesis is supported by the observation of low population densities of Trichodesmium spp. (<48 × 103 trichomes/m3), the putative N2 fixing cyanobacterium, and with low concentrations of dissolved iron (˜0.2-0.3 nM) in the South China Sea surface water. Our results suggest that nitrogen fixation can be limited by available iron even in regions with a high rate of atmospheric dust deposition such as in the South China Sea.

  18. A Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 71201[CC-BY

    PubMed Central

    Steuer, Ralf

    2017-01-01

    Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocysts, is postulated to depend on metabolic exchange of electrons, carbon, and fixed nitrogen. In this study, we compile and evaluate a comprehensive curated stoichiometric model of this two-cell system, with the objective function based on the growth of the filament under diazotrophic conditions. The predicted growth rate under nitrogen-replete and -deplete conditions, as well as the effect of external carbon and nitrogen sources, was thereafter verified. Furthermore, the model was utilized to comprehensively evaluate the optimality of putative metabolic exchange reactions between heterocysts and vegetative cells. The model suggested that optimal growth requires at least four exchange metabolites. Several combinations of exchange metabolites resulted in predicted growth rates that are higher than growth rates achieved by only considering exchange of metabolites previously suggested in the literature. The curated model of the metabolic network of Anabaena sp. PCC 7120 enhances our ability to understand the metabolic organization of multicellular cyanobacteria and provides a platform for further study and engineering of their metabolism. PMID:27899536

  19. Does nitrogen affect the interaction between a native hemiparasite and its native or introduced leguminous hosts?

    PubMed

    Cirocco, Robert M; Facelli, José M; Watling, Jennifer R

    2017-01-01

    Associations between plants and nitrogen (N)-fixing rhizobia intensify with decreasing N supply and come at a carbon cost to the host. However, what additional impact parasitic plants have on their leguminous hosts' carbon budget in terms of effects on host physiology and growth is unknown. Under glasshouse conditions, Ulex europaeus and Acacia paradoxa either uninfected or infected with the hemiparasite Cassytha pubescens were supplied (high nitrogen (HN)) or not (low nitrogen (LN)) with extra N. The photosynthetic performance and growth of the association were measured. Cassytha pubescens significantly reduced the maximum electron transport rates and total biomass of U. europaeus but not those of A. paradoxa, regardless of N. Infection significantly decreased the root biomass of A. paradoxa only at LN, while the significant negative effect of infection on roots of U. europaeus was less severe at LN. Infection had a significant negative impact on host nodule biomass. Ulex europaeus supported significantly greater parasite biomass (also per unit host biomass) than A. paradoxa, regardless of N. We concluded that rhizobia do not influence the effect of a native parasite on overall growth of leguminous hosts. Our results suggest that C. pubescens will have a strong impact on U. europaeus but not A. paradoxa, regardless of N in the field. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane.

    PubMed

    Loiret, F G; Ortega, E; Kleiner, D; Ortega-Rodés, P; Rodés, R; Dong, Z

    2004-01-01

    To isolate and identify endophytic nitrogen-fixing bacteria in sugarcane growing in Cuba without chemical fertilizers. Two N2-fixing isolates, 9C and T2, were obtained from surface-sterilized stems and roots, respectively, of sugarcane variety ML3-18. Both isolates showed acetylene reduction and H2 production in nitrogen-free media. Nitrogenase activity measured by H2 production was about 15 times higher for isolate 9C than for T2 or for Gluconoacetobacter diazotrophicus (PAL-5 standard strain, ATCC 49037). The nifH gene segment was amplified from both isolates using specific primers. Classification of both T2 and 9C was made on the basis of morphological, biochemical, PCR tests and 16S rDNA sequence analysis. Isolate 9C was identified as a Pantoea species from its 16S rDNA, but showed considerable differences in physiological properties from previously reported species of this genus. For example, 9C can be cultured over a wide range of temperature, pH and salt concentration, and showed high H2 production (up to 67.7 nmol H2 h(-1) 10(10) cell(-1)). Isolate T2 was a strain of Gluconacetobacter diazotrophicus. A new N2-fixing endophyte, i.e. Pantoea, able to produce H2 and to grow in a wide range of conditions, was isolated from sugarcane stem tissue and characterized. The strain with these attributes may well be valuable for agriculture. Copyright 2004 The Society for Applied Microbiology

  1. [Vertical Distribution Characteristics of Typical Forest Soil Organic Nitrogen in Dawei Mountain].

    PubMed

    Ding, Xian-qing; Ma, Hui-jing; Zhu, Xiao-long; Chen, Shan; Hou, Hong-bo; Peng, Pei-qin

    2015-10-01

    To clarify altitudinal gradient of subtropical forest soil total nitrogen and organic nitrogen, soil samples were collected per 10 cm on soil profile (0-100 cm) in Dawei Mountain, researched the variation of soil organic nitrogen and correlation with soil physical and chemical properties. The results showed that: (1) Total nitrogen, acid hydrolysable organic nitrogen and soluble organic nitrogen decreased with the increase of depth, content of each component in mountain granite yellow-brown soils was much higher affected by altitude; (2) The average percentage of soil organic nitrogen to total nitrogen was 97.39% ± 1.17%, and soil acid hydrolysable organic nitrogen was 64.38% ± 10.68%, each component decreased with the increase of soil depth; (3) Soil soluble organic nitrogen content was 9.92- 23.45 mg x kg(-1), free amino acids (1.62 - 12.02 mg x kg(-1)) accounted for about 27.36% ± 9.95% of soluble organic nitrogen; (4) Soil acid hydrolysable organic nitrogen and soluble organic nitrogen were significantly positively correlated with total nitrogen, total soluble nitrogen and inorganic nitrogen (P < 0.05), were highly significantly correlated with soil bulk density, organic carbon, and total phosphorus (P < 0.01). Organic nitrogen was the main body of soil nitrogen in typical subtropical forest, each component showed a downward trend increase with soil depth affected by altitude and soil physical and chemical properties. There was a close conversion relationship between soil organic nitrogen and other nitrogen forms, the characteristics of soil organic nitrogen will have profound impact on nitrogen cycling of forest ecological system.

  2. Free amino acids exhibit anthozoan "host factor" activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro.

    PubMed Central

    Gates, R D; Hoegh-Guldberg, O; McFall-Ngai, M J; Bil, K Y; Muscatine, L

    1995-01-01

    Reef-building corals and other tropical anthozoans harbor endosymbiotic dinoflagellates. It is now recognized that the dinoflagellates are fundamental to the biology of their hosts, and their carbon and nitrogen metabolisms are linked in important ways. Unlike free living species, growth of symbiotic dinoflagellates is unbalanced and a substantial fraction of the carbon fixed daily by symbiont photosynthesis is released and used by the host for respiration and growth. Release of fixed carbon as low molecular weight compounds by freshly isolated symbiotic dinoflagellates is evoked by a factor (i.e., a chemical agent) present in a homogenate of host tissue. We have identified this "host factor" in the Hawaiian coral Pocillopora damicornis as a set of free amino acids. Synthetic amino acid mixtures, based on the measured free amino acid pools of P. damicornis tissues, not only elicit the selective release of 14C-labeled photosynthetic products from isolated symbiotic dinoflagellates but also enhance total 14CO2 fixation. Images Fig. 2 PMID:11607567

  3. Free amino acids exhibit anthozoan "host factor" activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro.

    PubMed

    Gates, R D; Hoegh-Guldberg, O; McFall-Ngai, M J; Bil, K Y; Muscatine, L

    1995-08-01

    Reef-building corals and other tropical anthozoans harbor endosymbiotic dinoflagellates. It is now recognized that the dinoflagellates are fundamental to the biology of their hosts, and their carbon and nitrogen metabolisms are linked in important ways. Unlike free living species, growth of symbiotic dinoflagellates is unbalanced and a substantial fraction of the carbon fixed daily by symbiont photosynthesis is released and used by the host for respiration and growth. Release of fixed carbon as low molecular weight compounds by freshly isolated symbiotic dinoflagellates is evoked by a factor (i.e., a chemical agent) present in a homogenate of host tissue. We have identified this "host factor" in the Hawaiian coral Pocillopora damicornis as a set of free amino acids. Synthetic amino acid mixtures, based on the measured free amino acid pools of P. damicornis tissues, not only elicit the selective release of 14C-labeled photosynthetic products from isolated symbiotic dinoflagellates but also enhance total 14CO2 fixation.

  4. Are common symbiosis genes required for endophytic rice-rhizobial interactions?

    PubMed

    Chen, Caiyan; Zhu, Hongyan

    2013-09-01

    Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.

  5. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization.

    PubMed

    Di Cesare, Andrea; Cabello-Yeves, Pedro J; Chrismas, Nathan A M; Sánchez-Baracaldo, Patricia; Salcher, Michaela M; Callieri, Cristiana

    2018-04-16

    Many cyanobacteria are capable of fixing atmospheric nitrogen, playing a crucial role in biogeochemical cycling. Little is known about freshwater unicellular cyanobacteria Synechococcus spp. at the genomic level, despite being recognised of considerable ecological importance in aquatic ecosystems. So far, it has not been shown whether these unicellular picocyanobacteria have the potential for nitrogen fixation. Here, we present the draft-genome of the new pink-pigmented Synechococcus-like strain Vulcanococcus limneticus. sp. nov., isolated from the volcanic Lake Albano (Central Italy). The novel species Vulcanococcus limneticus sp. nov. falls inside the sub-cluster 5.2, close to the estuarine/marine strains in a maximum-likelihood phylogenetic tree generated with 259 marker genes with representatives from marine, brackish, euryhaline and freshwater habitats. V.limneticus sp. nov. possesses a complete nitrogenase and nif operon. In an experimental setup under nitrogen limiting and non-limiting conditions, growth was observed in both cases. However, the nitrogenase genes (nifHDK) were not transcribed, i.e., V.limneticus sp. nov. did not fix nitrogen, but instead degraded the phycobilisomes to produce sufficient amounts of ammonia. Moreover, the strain encoded many other pathways to incorporate ammonia, nitrate and sulphate, which are energetically less expensive for the cell than fixing nitrogen. The association of the nif operon to a genomic island, the relatively high amount of mobile genetic elements (52 transposases) and the lower observed GC content of V.limneticus sp. nov. nif operon (60.54%) compared to the average of the strain (68.35%) support the theory that this planktonic strain may have obtained, at some point of its evolution, the nif operon by horizontal gene transfer (HGT) from a filamentous or heterocystous cyanobacterium. In this study, we describe the novel species Vulcanococcus limneticus sp. nov., which possesses a complete nif operon for nitrogen fixation. The finding that in our experimental conditions V.limneticus sp. nov. did not express the nifHDK genes led us to reconsider the actual ecological meaning of these accessory genes located in genomic island that have possibly been acquired via HGT.

  6. Estimation of biological nitrogen fixation by black locust in short-rotation forests using natural 15N abundance method

    NASA Astrophysics Data System (ADS)

    Veste, M.; Böhm, C.; Quinckenstein, A.; Freese, D.

    2012-04-01

    The importance of short rotation forests and agroforestry systems for woody biomass production for bioenergy will increase in Central Europe within the next decades. In this context, black locust (Robinia pseudoacacia) has a high growth potential especially at marginal, drought-susceptible sites such as occur in Brandenburg State (Eastern Germany). As a pioneer tree species black locust grows under a wide range of site conditions. The native range of black locust in Northern America is classified by a humid to sub-humid climate with a mean annual precipitation of 1020 to 1830 mm. In Central and Eastern Europe, this species is cultivated in a more continental climate with an annual precipitation often below 600 mm. Therefore, black locust is known to be relatively drought tolerant compared to other temperate, deciduous tree species. Because of its N2-fixation ability black locust plays generally an important role for the improvement of soil fertility. This effect is of particular interest at marginal sites in the post-mining landscapes. In order to estimate the N2-fixation potential of black locust at marginal sites leaf samples were taken from black locust trees in short rotation plantations planted between 1995 and 2007 in post-mining sites south of Cottbus (Brandenburg, NE Germany). The variation of the natural 15N abundance was measured to evaluate the biological nitrogen fixation. The nitrogen derived from the atmosphere can be calculated using a two-pool model from the quotient of the natural 15N abundances of the N2-fixing plant and the plant available soil N. Because representatively determining the plant available soil N is difficult, a non-N2-fixing reference plant growing at the same site with a similar root system and temporal N uptake pattern to the N2-fixing plant is often used. In our case we used red oak (Quercus rubra) as a reference. The average nitrogen content in the leaves of black locust ranged from 3.1% (C/N 14.8) in 15 years old trees to 3.4% (C/N 14.4) in 3 year-old trees, respectively. A higher content of nitrogen was found in leaves of re-sprouted trees with 4.3% (C/N 11.5). The estimated percentage of nitrogen derived from the atmosphere (% NdfA) in black locust was 63% - 83% compared to 56% in seabuckthorn (Hippophaë rhamnoides) and 79% in common broom (Genista scuparia). The annual leaf biomass production of black locust varied between 1325 (2 years old trees) and 2576 kg/ha a (4 years old trees). The estimated leaf nitrogen fixed by Robinia was approx. 30.5 - 59.2 kg/ha a. From the results, we can conclude that the biological nitrogen fixation by Robina is an important factor for the nitrogen balance of short-rotation plantations on nutrient poor-soils.

  7. Reforestation and topography affect montane soil properties, nitrogen pools, and nitrogen transformations in Hawaii

    Treesearch

    Paul G. Scowcroft; Janis E. Haraguchi; Nguyen V. Hue

    2004-01-01

    Land use changes, such as deforestation and reforestation, modify not only the organisms inhabiting affected areas, but also above-and belowground environments. Topography further influences local vegetation and environment. Effects of topography and re-establishment of N-fixing koa (Acacia koa A. Gray) trees in +100-yr-old montane grassland on...

  8. Occurrence, structure, and nitrogen-fixation of root nodules of actinorhizal Arizona alder

    Treesearch

    J. O. Dawson; Gerald J. Gottfried; D. Hahn

    2005-01-01

    Actinorhizal plants are nodulated by the symbiotic, nitrogen-fixing actinomycete Frankia. The genus Alnus in the family Betulaceae is one of the 24 genera in 8 families of angiospermous plants that are actinorhizal. Arizona alder (Alnus oblongifolia Torr.) occurs in isolated populations associated with the watersheds of Madrean Sky Islands in the...

  9. Demography of Symbiotic Nitrogen-Fixing Trees Explains Their Rarity and Successional Decline in Temperate Forests in the United States.

    PubMed

    Liao, Wenying; Menge, Duncan N L

    2016-01-01

    Symbiotic nitrogen (N) fixation is the major N input to many ecosystems. Although temperate forests are commonly N limited, symbiotic N-fixing trees ("N fixers") are rare and decline in abundance as succession proceeds-a challenging paradox that remains unexplained. Understanding demographic processes that underlie N fixers' rarity and successional decline would provide a proximate answer to the paradox. Do N fixers grow slower, die more frequently, or recruit less in temperate forests? We quantified demographic rates of N-fixing and non-fixing trees across succession using U.S. forest inventory data. We used an individual-based model to evaluate the relative contribution of each demographic process to community dynamics. Compared to non-fixers, N fixers had lower growth rates, higher mortality rates, and lower recruitment rates throughout succession. The mortality effect contributed more than the growth effect to N fixers' successional decline. Canopy and understory N fixers experienced these demographic disadvantages, indicating that factors in addition to light limitation likely contribute to N fixers' successional decline. We show that the rarity and successional decline of N-fixing trees in temperate forests is due more to their survival disadvantage than their growth disadvantage, and a recruitment disadvantage might also play a large role.

  10. Demography of Symbiotic Nitrogen-Fixing Trees Explains Their Rarity and Successional Decline in Temperate Forests in the United States

    PubMed Central

    Liao, Wenying; Menge, Duncan N. L.

    2016-01-01

    Symbiotic nitrogen (N) fixation is the major N input to many ecosystems. Although temperate forests are commonly N limited, symbiotic N-fixing trees (“N fixers”) are rare and decline in abundance as succession proceeds–a challenging paradox that remains unexplained. Understanding demographic processes that underlie N fixers’ rarity and successional decline would provide a proximate answer to the paradox. Do N fixers grow slower, die more frequently, or recruit less in temperate forests? We quantified demographic rates of N-fixing and non-fixing trees across succession using U.S. forest inventory data. We used an individual-based model to evaluate the relative contribution of each demographic process to community dynamics. Compared to non-fixers, N fixers had lower growth rates, higher mortality rates, and lower recruitment rates throughout succession. The mortality effect contributed more than the growth effect to N fixers’ successional decline. Canopy and understory N fixers experienced these demographic disadvantages, indicating that factors in addition to light limitation likely contribute to N fixers’ successional decline. We show that the rarity and successional decline of N-fixing trees in temperate forests is due more to their survival disadvantage than their growth disadvantage, and a recruitment disadvantage might also play a large role. PMID:27780268

  11. Where did all the Nitrogen go? Use of Watershed-Scale Budgets to Quantify Nitrogen Inputs, Storages, and Losses.

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Goodale, C. L.; Howarth, R. W.; VanBreemen, N.

    2001-12-01

    Inputs of nitrogen (N) to aquatic and terrestrial ecosystems have increased during recent decades, primarily from the production and use of fertilizers, the planting of N-fixing crops, and the combustion of fossil fuels. We present mass-balanced budgets of N for 16 catchments along a latitudinal profile from Maine to Virginia, which encompass a range of climatic variability and are major drainages to the coast of the North Atlantic Ocean. We quantify inputs of N to each catchment from atmospheric deposition, application of nitrogenous fertilizers, biological nitrogen fixation by crops and trees, and import of N in agricultural products (food and feed). We relate these input terms to losses of N (total, organic, and nitrate) in streamflow. The importance of the relative N sources to N exports varies widely by watershed and is related to land use. Atmospheric deposition was the largest source of N to the forested catchments of northern New England (e.g., Penobscot and Kennebec); import of N in food was the largest source of N to the more populated regions of southern New England (e.g., Charles and Blackstone); and agricultural inputs were the dominant N sources in the Mid-Atlantic region (e.g., Schuylkill and Potomac). In all catchments, N inputs greatly exceed outputs, implying additional loss terms (e.g., denitrification or volatilization and transport of animal wastes), or changes in internal N stores (e.g, accumulation of N in vegetation, soil, or groundwater). We use our N budgets and several modeling approaches to constrain estimates about the fate of this excess N, including estimates of N storage in accumulating woody biomass, N losses due to in-stream denitrification, and more. This work is an effort of the SCOPE Nitrogen Project.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guardia, A. de, E-mail: amaury.de-guardia@cemagref.f; Universite Europeenne de Bretagne, F-35000 Rennes; Mallard, P.

    This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates andmore » in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and nitrification of total ammoniacal nitrogen. Separated pig solids were characterised by a high ability to accumulate total ammoniacal nitrogen. Whatever the waste, the striping rate depended mostly on the aeration rate and on the pool concentration in biofilm. The nitrification rate was observed as all the higher as the concentration in total ammoniacal nitrogen in the initial waste was low. Thus, household waste and green algae exhibited the highest nitrification rates. This result could mean that in case of low concentrations in total ammoniacal nitrogen, a nitrifying biomass was already developed and that this biomass consumed it. In contrast, in case of high concentrations, this could traduce some difficulties for nitrifying microorganisms to develop.« less

  13. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and CO2

    PubMed Central

    Johnson, Ian R.; Thornley, John H. M.; Frantz, Jonathan M.; Bugbee, Bruce

    2010-01-01

    Background and Aims The distribution of photosynthetic enzymes, or nitrogen, through the canopy affects canopy photosynthesis, as well as plant quality and nitrogen demand. Most canopy photosynthesis models assume an exponential distribution of nitrogen, or protein, through the canopy, although this is rarely consistent with experimental observation. Previous optimization schemes to derive the nitrogen distribution through the canopy generally focus on the distribution of a fixed amount of total nitrogen, which fails to account for the variation in both the actual quantity of nitrogen in response to environmental conditions and the interaction of photosynthesis and respiration at similar levels of complexity. Model A model of canopy photosynthesis is presented for C3 and C4 canopies that considers a balanced approach between photosynthesis and respiration as well as plant carbon partitioning. Protein distribution is related to irradiance in the canopy by a flexible equation for which the exponential distribution is a special case. The model is designed to be simple to parameterize for crop, pasture and ecosystem studies. The amount and distribution of protein that maximizes canopy net photosynthesis is calculated. Key Results The optimum protein distribution is not exponential, but is quite linear near the top of the canopy, which is consistent with experimental observations. The overall concentration within the canopy is dependent on environmental conditions, including the distribution of direct and diffuse components of irradiance. Conclusions The widely used exponential distribution of nitrogen or protein through the canopy is generally inappropriate. The model derives the optimum distribution with characteristics that are consistent with observation, so overcoming limitations of using the exponential distribution. Although canopies may not always operate at an optimum, optimization analysis provides valuable insight into plant acclimation to environmental conditions. Protein distribution has implications for the prediction of carbon assimilation, plant quality and nitrogen demand. PMID:20861273

  14. Insights into the noncoding RNome of nitrogen-fixing endosymbiotic α-proteobacteria.

    PubMed

    Jiménez-Zurdo, José I; Valverde, Claudio; Becker, Anke

    2013-02-01

    Symbiotic chronic infection of legumes by rhizobia involves transition of invading bacteria from a free-living environment in soil to an intracellular state as differentiated nitrogen-fixing bacteroids within the nodules elicited in the host plant. The adaptive flexibility demanded by this complex lifestyle is likely facilitated by the large set of regulatory proteins encoded by rhizobial genomes. However, proteins are not the only relevant players in the regulation of gene expression in bacteria. Large-scale high-throughput analysis of prokaryotic genomes is evidencing the expression of an unexpected plethora of small untranslated transcripts (sRNAs) with housekeeping or regulatory roles. sRNAs mostly act in response to environmental cues as post-transcriptional regulators of gene expression through protein-assisted base-pairing interactions with target mRNAs. Riboregulation contributes to fine-tune a wide range of bacterial processes which, in intracellular animal pathogens, largely compromise virulence traits. Here, we summarize the incipient knowledge about the noncoding RNome structure of nitrogen-fixing endosymbiotic bacteria as inferred from genome-wide searches for sRNA genes in the alfalfa partner Sinorhizobium meliloti and further comparative genomics analysis. The biology of relevant S. meliloti RNA chaperones (e.g., Hfq) is also reviewed as a first global indicator of the impact of riboregulation in the establishment of the symbiotic interaction.

  15. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America.

    PubMed

    Liao, Wenying; Menge, Duncan N L; Lichstein, Jeremy W; Ángeles-Pérez, Gregorio

    2017-11-01

    Symbiotic nitrogen (N)-fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N-fixation enzyme activity and physiology, comparatively little is known about how climate influences N-fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N-fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N-fixing trees? We found that rhizobial N-fixing trees were nearly absent below 15°C MAT, but above 15°C MAT, they increased in abundance as temperature rose. We found no evidence for a hump-shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5-10°C MAT and were least abundant in areas with intermediate precipitation. Next, we used a climate-envelope approach to project how N-fixing tree relative abundance might change in the future. The climate-envelope projection showed that rhizobial N-fixing trees will likely become more abundant in many areas by 2080, particularly in the southern USA and western Mexico, due primarily to rising temperatures. Projections for actinorhizal N-fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N-fixing tree abundance in much of the USA and Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N-fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models. © 2017 John Wiley & Sons Ltd.

  16. Response of Free-Living Nitrogen-Fixing Microorganisms to Land Use Change in the Amazon Rainforest

    PubMed Central

    Mirza, Babur S.; Potisap, Chotima; Nüsslein, Klaus; Bohannan, Brendan J. M.

    2014-01-01

    The Amazon rainforest, the largest equatorial forest in the world, is being cleared for pasture and agricultural use at alarming rates. Tropical deforestation is known to cause alterations in microbial communities at taxonomic and phylogenetic levels, but it is unclear whether microbial functional groups are altered. We asked whether free-living nitrogen-fixing microorganisms (diazotrophs) respond to deforestation in the Amazon rainforest, using analysis of the marker gene nifH. Clone libraries were generated from soil samples collected from a primary forest, a 5-year-old pasture originally converted from primary forest, and a secondary forest established after pasture abandonment. Although diazotroph richness did not significantly change among the three plots, diazotroph community composition was altered with forest-to-pasture conversion, and phylogenetic similarity was higher among pasture communities than among those in forests. There was also 10-fold increase in nifH gene abundance following conversion from primary forest to pasture. Three environmental factors were associated with the observed changes: soil acidity, total N concentration, and C/N ratio. Our results suggest a partial restoration to initial levels of abundance and community structure of diazotrophs following pasture abandonment, with primary and secondary forests sharing similar communities. We postulate that the response of diazotrophs to land use change is a direct consequence of changes in plant communities, particularly the higher N demand of pasture plant communities for supporting aboveground plant growth. PMID:24162570

  17. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution.

    PubMed

    Estrada-De Los Santos, P; Bustillos-Cristales, R; Caballero-Mellado, J

    2001-06-01

    The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N(2)-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N(2)-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75(T). These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75(T). Although the ability to fix N(2) is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N(2)-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N(2)-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N(2)-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments.

  18. Burkholderia, a Genus Rich in Plant-Associated Nitrogen Fixers with Wide Environmental and Geographic Distribution

    PubMed Central

    Estrada-De Los Santos, Paulina; Bustillos-Cristales, Rocío; Caballero-Mellado, Jesús

    2001-01-01

    The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N2-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N2-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75T. These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75T. Although the ability to fix N2 is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N2-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N2-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N2-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments. PMID:11375196

  19. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2002)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2002. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) v5.0.2 run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadab

  20. EnviroAtlas - Atmospheric Nitrogen and Sulfur Deposition by 12-digit HUC for the Conterminous United States (2011)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2011. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data

  1. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2006)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2006. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable dat

  2. Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Moore, J. Keith; Doney, Scott C.

    2007-06-01

    Recent upward revisions in key sink/source terms for fixed nitrogen (N) in the oceans imply a short residence time and strong negative feedbacks involving denitrification and N fixation to prevent large swings in the ocean N inventory over timescales of a few centuries. We tested the strength of these feedbacks in a global biogeochemical elemental cycling (BEC) ocean model that includes water column denitrification and an explicit N fixing phytoplankton group. In the northern Indian Ocean and over longer timescales in the tropical Atlantic, we find strong stabilizing feedbacks that minimize changes in marine N inventory over timescales of ˜30-200 years. In these regions high atmospheric dust/iron inputs lead to phosphorus limitation of diazotrophs, and thus a tight link between N fixation and surface water N/P ratios. Maintenance of the oxygen minimum zones in these basins depends on N fixation driven export. The stabilizing feedbacks in other regions are significant but weaker owing to iron limitation of the diazotrophs. Thus Fe limitation appears to restrict the ability of N fixation to compensate for changes in denitrification in the current climate, perhaps leading the oceans to lose fixed N. We suggest that iron is the ultimate limiting nutrient leading to nitrogen being the proximate limiting nutrient over wide regions today. Iron stress was at least partially alleviated during more dusty, glacial times, leading to a higher marine N inventory, increased export production, and perhaps widespread phosphorus limitation of the phytoplankton community. The increased efficiency of the biological pump would have contributed to the glacial drawdown in atmospheric CO2.

  3. Cyanobacteria in CELSS: Growth strategies for nutritional variation and nitrogen cycling

    NASA Technical Reports Server (NTRS)

    Fry, I. V.; Packer, L.

    1990-01-01

    Cyanobacteria (blue-green algae) are versatile organisms which are capable of adjusting their cellular levels of carbohydrate, protein, and lipid in response to changes in the environment. Under stress conditions there is an imbalance between nitrogen metabolism and carbohydrate/lipid synthesis. The lesion in nitrogen assimilation is at the level of transport: the stress condition diverts energy from the active accumulation of nitrate to the extrusion of salt, and probably inhibits a cold-labile ATP'ace in the case of cold shock. Both situations affect the bioenergetic status of the cell such that the nitrogenous precursors for protein synthesis are depleted. Dispite the inhibition of protein synthesis and growth, photosynthetic reductant generation is relatively unaffected. The high O2 reductant would normally lead to photo-oxidative damage of cellular components; however, the organism copes by channeling the 'excess' reductant into carbon storage products. The increase in glycogen (28 to 35 percent dry weight increase) and the elongation of lipid fatty acid side chains (2 to 5 percent dry weight increase) at the expense of protein synthesis (25 to 34 percent dry weight decrease) results in carbohydrate, lipid and protein ratios that are closer to those required in the human diet. In addition, the selection of nitrogen fixing mutants which excrete ammonium ions present an opportunity to tailor these micro-organisms to meet the specific need for a sub-system to reverse potential loss of fixed nitrogen material.

  4. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Treesearch

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  5. Accounting for nitrogen fixation in simple models of lake nitrogen loading/export.

    PubMed

    Ruan, Xiaodan; Schellenger, Frank; Hellweger, Ferdi L

    2014-05-20

    Coastal eutrophication, an important global environmental problem, is primarily caused by excess nitrogen and management efforts consequently focus on lowering watershed N export (e.g., by reducing fertilizer use). Simple quantitative models are needed to evaluate alternative scenarios at the watershed scale. Existing models generally assume that, for a specific lake/reservoir, a constant fraction of N loading is exported downstream. However, N fixation by cyanobacteria may increase when the N loading is reduced, which may change the (effective) fraction of N exported. Here we present a model that incorporates this process. The model (Fixation and Export of Nitrogen from Lakes, FENL) is based on a steady-state mass balance with loading, output, loss/retention, and N fixation, where the amount fixed is a function of the N/P ratio of the loading (i.e., when N/P is less than a threshold value, N is fixed). Three approaches are used to parametrize and evaluate the model, including microcosm lab experiments, lake field observations/budgets and lake ecosystem model applications. Our results suggest that N export will not be reduced proportionally with N loading, which needs to be considered when evaluating management scenarios.

  6. Lattice Gas Model Based Optimization of Plasma-Surface Processes for GaN-Based Compound Growth

    NASA Astrophysics Data System (ADS)

    Nonokawa, Kiyohide; Suzuki, Takuma; Kitamori, Kazutaka; Sawada, Takayuki

    2001-10-01

    Progress of the epitaxial growth technique for GaN-based compounds makes these materials attractive for applications in high temperature/high-power electronic devices as well as in short-wavelength optoelectronic devices. For MBE growth of GaN epilayer, atomic nitrogen is usually supplied from ECR-plasma while atomic Ga is supplied from conventional K-cell. To grow high-quality epilayer, fundamental knowledge of the detailed atomic process, such as adsorption, surface migration, incorporation, desorption and so forth, is required. We have studied the influence of growth conditions on the flatness of the growth front surface and the growth rate using Monte Carlo simulation based on the lattice gas model. Under the fixed Ga flux condition, the lower the nitrogen flux and/or the higher the growth temperature, the better the flatness of the front surface at the sacrifice of the growth rate of the epilayer. When the nitrogen flux is increased, the growth rate reaches saturation value determined from the Ga flux. At a fixed growth temperature, increasing of nitrogen to Ga flux ratio results in rough surface owing to 3-dimensional island formation. Other characteristics of MBE-GaN growth using ECR-plasma can be well reproduced.

  7. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea.

    PubMed

    Dutta, Debasree; Gachhui, Ratan

    2007-02-01

    A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as L-alanine, L-cysteine and L-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2-27.77 % DNA-DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).

  8. Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum.

    PubMed

    Huesemann, Michael H; Hausmann, Tom S; Carter, Blaine M; Gerschler, Jared J; Benemann, John R

    2010-09-01

    The nitrogen-fixing nonheterocystous cyanobacterium Plectonema boryanum was used as a model organism to study hydrogen generation by indirect biophotolysis in nitrogen-limited batch cultures that were continuously illuminated and sparged with argon/CO(2) to maintain anaerobiosis. The highest hydrogen-production rate (i.e., 0.18 mL/mg day or 7.3 micromol/mg day) was observed in cultures with an initial medium nitrate concentration of 1 mM at a light intensity of 100 micromol/m(2) s. The addition of photosystem II (PSII) inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) did not reduce hydrogen-production rates relative to unchallenged controls for 50 to 150 h, and intracellular glycogen concentrations decreased significantly during the hydrogen generation period. The insensitivity of the hydrogen-production process to DCMU is indicative of the fact that hydrogen was not derived from water splitting at PSII (i.e., direct biophotolysis) but rather from electrons provided by intracellular glycogen reserves (i.e., indirect biophotolysis). It was shown that hydrogen generation could be sustained for long time periods by subjecting the cultures to alternating cycles of aerobic, nitrogen-limited growth and anaerobic hydrogen production.

  9. Functional specialization of one copy of glutamine phosphoribosyl pyrophosphate amidotransferase in ureide production from symbiotically fixed nitrogen in Phaseolus vulgaris.

    PubMed

    Coleto, Inmaculada; Trenas, Almudena T; Erban, Alexander; Kopka, Joachim; Pineda, Manuel; Alamillo, Josefa M

    2016-08-01

    Purines are essential molecules formed in a highly regulated pathway in all organisms. In tropical legumes, the nitrogen fixed in the nodules is used to generate ureides through the oxidation of de novo synthesized purines. Glutamine phosphoribosyl pyrophosphate amidotransferase (PRAT) catalyses the first committed step of de novo purine synthesis. In Phaseolus vulgaris there are three genes coding for PRAT. The three full-length sequences, which are intron-less genes, were cloned, and their expression levels were determined under conditions that affect the synthesis of purines. One of the three genes, PvPRAT3, is highly expressed in nodules and protein amount and enzymatic activity in these tissues correlate with nitrogen fixation activity. Inhibition of PvPRAT3 gene expression by RNAi-silencing and subsequent metabolomic analysis of the transformed roots shows that PvPRAT3 is essential for the synthesis of ureides in P. vulgaris nodules. © 2016 John Wiley & Sons Ltd.

  10. Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge.

    PubMed

    Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen

    2015-12-01

    A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nitrogen fixation in the mucus of Red Sea corals.

    PubMed

    Grover, Renaud; Ferrier-Pagès, Christine; Maguer, Jean-François; Ezzat, Leila; Fine, Maoz

    2014-11-15

    Scleractinian corals are essential constituents of tropical reef ecological diversity. They live in close association with diazotrophs [dinitrogen (N2)-fixing microbes], which can fix high rates of N2. Whether corals benefit from this extrinsic nitrogen source is still under debate. Until now, N2 fixation rates have been indirectly estimated using the acetylene reduction assay, which does not permit assessment of the amount of nitrogen incorporated into the different compartments of the coral holobiont. In the present study, the (15)N2 technique was applied for the first time on three Red Sea coral species. Significant (15)N enrichment was measured in particles released by corals to the surrounding seawater. N2 fixation rates were species specific and as high as 1.6-2 ng N day(-1) l(-1). However, no significant enrichment was measured in the symbiotic dinoflagellates or the coral host tissues, suggesting that corals do not benefit from diazotrophic N2 fixation. © 2014. Published by The Company of Biologists Ltd.

  12. Achieve efficient nitrogen removal from real sewage in a plug-flow integrated fixed-film activated sludge (IFAS) reactor via partial nitritation/anammox pathway.

    PubMed

    Yang, Yandong; Zhang, Liang; Cheng, Jun; Zhang, Shujun; Li, Baikun; Peng, Yongzhen

    2017-09-01

    This study tested the feasibility of plug-flow integrated fixed-film activated sludge (IFAS) reactor in applying sewage partial nitritation/anammox (PN/A) process. The IFAS reactor was fed with real pre-treated sewage (C/N ratio=1.3) and operated for 200days. High nitrogen removal efficiency of 82% was achieved with nitrogen removal rates of 0.097±0.019kgN/(m 3 ·d). Therefore, plug-flow IFAS reactor could be an alternative to applying sewage PN/A process. Besides, it was found that the stability of sewage PN/A process was significantly affected by residual ammonium. Nitrate accumulated in effluent and PN/A performance deteriorated when residual ammonium was below 1mg/L. On the contrary, long-term stable PN/A operation was achieved when residual ammonium was over 3mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation

    PubMed Central

    Karl, David M.; Church, Matthew J.; Dore, John E.; Letelier, Ricardo M.; Mahaffey, Claire

    2012-01-01

    The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the “biological carbon pump.” Herein, we present results from a 13-y (1992–2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15–August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 μmol·m−2·d−1 for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms, are the main cause of the prominent SEP. The recurrent SEP is enigmatic because it is focused in time despite the absence of any obvious predictable stimulus or habitat condition. We hypothesize that changes in day length (photoperiodism) may be an important environmental cue to initiate aggregation and subsequent export of organic matter to the deep sea. PMID:22308450

  14. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation.

    PubMed

    Karl, David M; Church, Matthew J; Dore, John E; Letelier, Ricardo M; Mahaffey, Claire

    2012-02-07

    The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the "biological carbon pump." Herein, we present results from a 13-y (1992-2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15-August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 μmol·m(-2)·d(-1) for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms, are the main cause of the prominent SEP. The recurrent SEP is enigmatic because it is focused in time despite the absence of any obvious predictable stimulus or habitat condition. We hypothesize that changes in day length (photoperiodism) may be an important environmental cue to initiate aggregation and subsequent export of organic matter to the deep sea.

  15. [Flow injection-spectrophotometric determination of total dissolved nitrogen in seawater based on quantificational solenoid valves].

    PubMed

    Han, Bin; Cao, Lei; Zheng, Li; Zang, Jia-ye; Wang, Xiao-ru

    2012-01-01

    Using three pipe clamp solenoid valves to replace the traditional six-port valve for sample quota, a set of multi-channel flow injection analyzer was designed in the present paper. The authors optimized optimum instrumental testing condition, and realized determination and analysis of total dissolved nitrogen in seawaters. The construction of apparatus is simple and it has the potential to be used for analysis of total dissolved nitrogen. The sample throughput of total dissolved nitrogen was 27 samples per hour. The linear range of total dissolved nitrogen was 50.0-1 000.0 microgN x L(-3) (r > or = 0.999). The detection limit was 7.6 microgN x L(-3). The recovery of total dissolved nitrogen was 87.3%-107.2%. The relative standard deviation for total dissolved nitrogen was 1.35%-6.32% (n = 6). After the t-test analysis, it does not have the significance difference between this method and national standard method. It is suitable for fast analysis of total dissolved nitrogen in seawater.

  16. Protons and pleomorphs: aerobic hydrogen production in Azotobacters.

    PubMed

    Noar, Jesse D; Bruno-Bárcena, José M

    2016-02-01

    As obligate aerobic soil organisms, the ability of Azotobacter species to fix nitrogen is unusual given that the nitrogenase complex requires a reduced cellular environment. Molecular hydrogen is an unavoidable byproduct of the reduction of dinitrogen; at least one molecule of H2 is produced for each molecule of N2 fixed. This could be considered a fault in nitrogenase efficiency, essentially a waste of energy and reducing equivalents. Wild-type Azotobacter captures this hydrogen and oxidizes it with its membrane-bound uptake hydrogenase complex. Strains lacking an active hydrogenase complex have been investigated for their hydrogen production capacities. What is the role of H2 in the energy metabolism of nitrogen-fixing Azotobacter? Is hydrogen production involved in Azotobacter species' protection from or tolerance to oxygen, or vice versa? What yields of hydrogen can be expected from hydrogen-evolving strains? Can the yield of hydrogen be controlled or increased by changing genetic, environmental, or physiological conditions? We will address these questions in the following mini-review.

  17. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions.

    PubMed

    Oliveira, Rui S; Carvalho, Patrícia; Marques, Guilhermina; Ferreira, Luís; Nunes, Mafalda; Rocha, Inês; Ma, Ying; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2017-10-01

    Chickpea (Cicer arietinum L.) is a widely cropped pulse and an important source of proteins for humans. In Mediterranean regions it is predicted that drought will reduce soil moisture and become a major issue in agricultural practice. Nitrogen (N)-fixing bacteria and arbuscular mycorrhizal (AM) fungi have the potential to improve plant growth and drought tolerance. The aim of the study was to assess the effects of N-fixing bacteria and AM fungi on the growth, grain yield and protein content of chickpea under water deficit. Plants inoculated with Mesorhizobium mediterraneum or Rhizophagus irregularis without water deficit and inoculated with M. mediterraneum under moderate water deficit had significant increases in biomass. Inoculation with microbial symbionts brought no benefits to chickpea under severe water deficit. However, under moderate water deficit grain crude protein was increased by 13%, 17% and 22% in plants inoculated with M. mediterraneum, R. irregularis and M. mediterraneum + R. irregularis, respectively. Inoculation with N-fixing bacteria and AM fungi has the potential to benefit agricultural production of chickpea under water deficit conditions and to contribute to increased grain protein content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris.

    PubMed

    Martínez-Aguilar, Lourdes; Salazar-Salazar, Corelly; Méndez, Rafael Díaz; Caballero-Mellado, Jesús; Hirsch, Ann M; Vásquez-Murrieta, María Soledad; Estrada-de los Santos, Paulina

    2013-12-01

    During a survey of Burkholderia species with potential use in agrobiotechnology, a group of 12 strains was isolated from the rhizosphere and rhizoplane of tomato plants growing in Mexico (Nepantla, Mexico State). A phylogenetic analysis of 16S rRNA gene sequences showed that the strains are related to Burkholderia kururiensis and Burkholderia mimosarum (97.4 and 97.1 %, respectively). However, they induced effective nitrogen-fixing nodules on roots of Phaseolus vulgaris. Based on polyphasic taxonomy, the group of strains represents a novel species for which the name Burkholderia caballeronis sp. nov. is proposed. The type species is TNe-841(T) (= LMG 26416(T) = CIP 110324(T)).

  19. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    PubMed

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Lightning - Estimates of the rates of energy dissipation and nitrogen fixation

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Chameides, W. L.

    1984-01-01

    The nitrogen needed by plants can normally not be directly obtained from the nitrogen present in molecular form in the atmosphere. The reason for this situation is related to the great energy required to break the N-N bond. Only a few organisms, such as algae and certain bacteria, can 'fix' nitrogen. An abiological process for breaking the N-N bond is provided by lightning. The present investigation is concerned with this possibility. It is found that lightning produces approximately 2.6 x 10 to the 9th kg N per year. There are, however, uncertainties, which are mainly related to the energy of a lightning flash.

  1. Nitrogen fertilization and plant growth promoting rhizobacteria treatments affected amino acid content of cabbage

    NASA Astrophysics Data System (ADS)

    Dursun, Atilla; Yildirim, Ertan; Ekinci, Melek; Turan, Metin; Kul, Raziye; Karagöz, Fazilet P.

    2017-04-01

    This study was designed to determine the influence of a nitrogen fixing plant growth promoting rhizobacteria (PGPR) inoculation (seed coating and seedling dipping) and 6 doses of nitrogen (0, 40, 80, 120, 160, 200 kg ha-1) application on amino acid contents of cabbage. Coating and seedling dipping applications caused a significant increase in values histidine, glycine, thionin, arginine and alanine of cabbage. Highest glutamate, serine, asparagines and glutamine contents were obtained from 160-200 kg ha-1 nitrogen dose applied plants. As a result, the use of bacteria treatments provides means of improving amino acid contents in cabbage.

  2. Simulation of toluene decomposition in a pulse-periodic discharge operating in a mixture of molecular nitrogen and oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trushkin, A. N.; Kochetov, I. V.

    The kinetic model of toluene decomposition in nonequilibrium low-temperature plasma generated by a pulse-periodic discharge operating in a mixture of nitrogen and oxygen is developed. The results of numerical simulation of plasma-chemical conversion of toluene are presented; the main processes responsible for C{sub 6}H{sub 5}CH{sub 3} decomposition are identified; the contribution of each process to total removal of toluene is determined; and the intermediate and final products of C{sub 6}H{sub 5}CH{sub 3} decomposition are identified. It was shown that toluene in pure nitrogen is mostly decomposed in its reactions with metastable N{sub 2}(A{sub 3}{Sigma}{sub u}{sup +}) and N{sub 2}(a Primemore » {sup 1}{Sigma}{sub u}{sup -}) molecules. In the presence of oxygen, in the N{sub 2} : O{sub 2} gas mixture, the largest contribution to C{sub 6}H{sub 5}CH{sub 3} removal is made by the hydroxyl radical OH which is generated in this mixture exclusively due to plasma-chemical reactions between toluene and oxygen decomposition products. Numerical simulation showed the existence of an optimum oxygen concentration in the mixture, at which toluene removal is maximum at a fixed energy deposition.« less

  3. Water quality of Cedar Creek reservoir in northeast Texas, 1977 to 1984

    USGS Publications Warehouse

    Leibbrand, Norman F.; Gibbons, Willard J.

    1987-01-01

    The concentrations of total inorganic nitrogen, total nitrogen, and total phosphorus were largest during summer stagnation in water near the bottom at the deepest sites. At site Ac, the largest total phosphorus concentration was 5.3 milligrams per liter for a bottom sample. The maximum total inorganic nitrogen concentration for the same sample was 2.5 milligrams per liter. Water near the surface of Cedar Creek Reservoir during summer stagnation and throughout the reservoir during winter circulation had total phosphorus and total inorganic nitrogen concentrations of less than 0.1 milligram per liter. Total nitrogen concentrations near the surface ranged from 0.3 to 1.1 milligrams per liter from January 1980 to August 1984.

  4. Effect of organic matter supplementation on nitrogen transformations in soils. I. Chemical and bacteriological changes.

    PubMed

    Abd-el-Malek, Y; Monib, M; Hosny, I; Girgis, S A

    1979-01-01

    The effect of supplementation with different organic materials on nitrogen transformations and on certain bacterial groups in soil was studied. Addition of wide C/N ratio organic matter, sawdust and maize stalks prevented NO3-N from being lost through leaching out or dentrification and favoured the development of Azotobacter and N2-fixing clostridia that in turn resulted in marked gains in nitrogen through N2-fixation. Nitrifying bacteria were adversely affected. Application of such materials together with high amounts of NH4NO3 lessened nitrogen losses in drainage water but increased losses through denitrification. Nitrogen-rich organic matter resulted in higher losses in nitrates from soils in comparison to those of wide C/N ratio organic materials.

  5. The influence of air pollution on the phyllosphere microflora composition of Tillandsia leaves (Bromeliaceae).

    PubMed

    Brighigna, L; Gori, A; Gonnelli, S; Favilli, F

    2000-01-01

    The effect of air pollution on total phyllospheric microflora from two species of the epiphytic neotropical genus Tillandsia (Bromeliaceae) was studied by comparing unpolluted plants living in a forest (Escazú, San José) with polluted ones from an urban site of Costa Rica (San José city). Dilutions of homogenized leaf samples were plated on media suitable for each microbial group. For each microorganism group, total counts were performed and purified strains of randomly chosen colonies were identified. There was a global reduction in the number of living microorganisms due to pollution effects, especially yeasts and bacteria, while nitrogen-fixing microorganisms and fungi were less affected. Our results showed that the phyllosphere microflora of Tillandsia plants living in a tropical urban environment changes in terms of number and species composition of yeasts and bacteria with respect to plants living in unpolluted environment.

  6. Characterization of a Major Cluster of nif, fix, and Associated Genes in a Sugarcane Endophyte, Acetobacter diazotrophicus

    PubMed Central

    Lee, Sunhee; Reth, Alexander; Meletzus, Dietmar; Sevilla, Myrna; Kennedy, Christina

    2000-01-01

    A major 30.5-kb cluster of nif and associated genes of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus), a nitrogen-fixing endophyte of sugarcane, was sequenced and analyzed. This cluster represents the largest assembly of contiguous nif-fix and associated genes so far characterized in any diazotrophic bacterial species. Northern blots and promoter sequence analysis indicated that the genes are organized into eight transcriptional units. The overall arrangement of genes is most like that of the nif-fix cluster in Azospirillum brasilense, while the individual gene products are more similar to those in species of Rhizobiaceae or in Rhodobacter capsulatus. PMID:11092875

  7. Assessment of total nitrogen in the upper Connecticut River basin in New Hampshire, Vermont, and Massachusetts, December 2002-September 2005

    USGS Publications Warehouse

    Deacon, Jeffrey R.; Smith, Thor E.; Johnston, Craig M.; Moore, Richard B.; Blake, Laura J.; Weidman, Rebecca M.

    2006-01-01

    A study of total nitrogen concentrations and loads was conducted from December 2002 to September 2005 at 13 river sites in the upper Connecticut River Basin. Ten sites were selected to represent contributions of nitrogen from forested, agricultural, and urban land. Three sites were distributed spatially on the main stem of the Connecticut River to assess the cumulative total nitrogen loads. To further improve the understanding of the sources and concentrations and loads of total nitrogen in the upper Connecticut River Basin, ambient surface water-quality sampling was supplemented with sampling of effluent from 19 municipal and paper mill wastewater-treatment facilities. Mean concentrations of total nitrogen ranged from 0.19 to 2.8 milligrams per liter (mg/L) at river sampling sites. Instantaneous mean loads of total nitrogen ranged from 162 to 58,300 pounds per day (lb/d). Estimated mean annual loads of total nitrogen ranged from 49,100 to 21.6 million pounds per year (lb/yr) with about 30 to 55 percent of the loads being transported during the spring. The estimated mean annual yields of total nitrogen ranged from 1,190 to 7,300 pounds per square mile per year (lb/mi2)/yr. Mean concentrations of total nitrogen ranged from 4.4 to 30 mg/L at wastewater-treatment sampling sites. Instantaneous mean loads of total nitrogen from municipal wastewater-treatment facilities ranged from 36 to 1,780 lb/d. Instantaneous mean loads of total nitrogen from paper mill wastewater-treatment facilities ranged from 96 to 160 lb/d. The median concentration of total nitrogen was 0.24 mg/L at forested sites, 0.48 mg/L at agricultural sites, 0.54 mg/L at urban sites, 0.48 mg/L at main-stem sites, and 14 mg/L at wastewater-treatment sites. Concentrations of total nitrogen at forested sites were significantly less than at all other site types (p0.05) but were significantly greater (p<0.05) than at forested sites and significantly less than concentrations at wastewater-treatment sites (p<0.05). Total nitrogen concentrations at wastewater-treatment sites were significantly different from all other site types (p<0.05). Annual yields of total nitrogen ranged from 732 to 1,920 (lb/mi2)/yr at forested sites; 1,550 to 2,980 (lb/mi2)/yr at agricultural sites; 1,280 to 1,860 (lb/mi2)/yr at urban sites that were not directly affected by wastewater effluent; 7,090 to 7,770 (lb/mi2)/yr at an urban site directly affected by wastewater effluent; and 1,300 to 2,390 (lb/mi2)/yr at main-stem sites. In this study, the mean annual load and yield of total nitrogen at the Connecticut River at Wells River, VT, was estimated at 4.47 million lb/yr and 1,690 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen at the Connecticut River at North Walpole, NH, was estimated at 9.60 million lb/yr and 1,750 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen leaving the upper Connecticut River Basin, as estimated at the Connecticut River at Thompsonville, CT, was 21.6 million lb/yr and 2,230 (lb/mi2)/yr, respectively.

  8. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change.

    PubMed

    Lindo, Zoë; Nilsson, Marie-Charlotte; Gundale, Michael J

    2013-07-01

    Ecosystems in the far north, including arctic and boreal biomes, are a globally significant pool of carbon (C). Global change is proposed to influence both C uptake and release in these ecosystems, thereby potentially affecting whether they act as C sources or sinks. Bryophytes (i.e., mosses) serve a variety of key functions in these systems, including their association with nitrogen (N2 )-fixing cyanobacteria, as thermal insulators of the soil, and producers of recalcitrant litter, which have implications for both net primary productivity (NPP) and heterotrophic respiration. While ground-cover bryophytes typically make up a small proportion of the total biomass in northern systems, their combined physical structure and N2 -fixing capabilities facilitate a disproportionally large impact on key processes that control ecosystem C and N cycles. As such, the response of bryophyte-cyanobacteria associations to global change may influence whether and how ecosystem C balances are influenced by global change. Here, we review what is known about their occurrence and N2 -fixing activity, and how bryophyte systems will respond to several key global change factors. We explore the implications these responses may have in determining how global change influences C balances in high northern latitudes. © 2013 Blackwell Publishing Ltd.

  9. Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b.

    PubMed

    Zhang, Tingting; Zhou, Jiti; Wang, Xiaowei; Zhang, Yu

    2017-02-01

    The coupled effects of nitrogen source and methane monooxygenase (MMO) on the growth and poly-β-hydroxybutyrate (PHB) accumulation capacity of methanotrophs were explored. The ammonia-supplied methanotrophs expressing soluble MMO (sMMO) grew at the highest rate, while N 2 -fixing bacteria expressing particulate MMO (pMMO) grew at the lowest rate. Further study showed that more hydroxylamine and nitrite was formed by ammonia-supplied bacteria containing pMMO, which might cause their slightly lower growth rate. The highest PHB content (51.0%) was obtained under nitrogen-limiting conditions with the inoculation of nitrate-supplied bacteria containing pMMO. Ammonia-supplied bacteria also accumulated a higher content of PHB (45.2%) with the expression of pMMO, while N 2 -fixing bacteria containing pMMO only showed low PHB production capacity (32.1%). The maximal PHB contents of bacteria expressing sMMO were low, with no significant change under different nitrogen source conditions. The low MMO activity, low cell growth rate and low PHB production capacity of methanotrophs continuously cultivated with N 2 with the expression of pMMO were greatly improved in the cyclic NO 3 - N 2 cultivation regime, indicating that long-term deficiency of nitrogen sources was detrimental to the activity of methanotrophs expressing pMMO. Copyright © 2016. Published by Elsevier B.V.

  10. Satellite captures trichodesmium blooms in the southwestern tropical Pacific

    NASA Astrophysics Data System (ADS)

    Dupouy, Cécile; Neveux, Jacques; Subramaniam, Ajit; Mulholland, Margaret R.; Montoya, Joseph P.; Campbell, Lisa; Carpenter, Edward J.; Capone, Douglas G.

    Obtaining a true estimate of nitrogen fixation by cyanobacteria in the oceans, mainly Trichodesmium, is an important step toward understanding the entire nitrogen cycle in the tropical ocean. This strictly anaerobic process, which has a high Fe requirement, could regulate atmospheric CO2 over geological time. For example, during interglacial periods, N2 fixation would be too low (low Fe) to balance denitrification and the ocean would lose its fixed nitrogen [Falkowski, 1997]. Has the level of marine nitrogen fixation been underestimated until now? High N2 fixation rates measured on Trichodesmium spp. communities have led to an upward revision of this marine flux [Capone et al, 1997]. Recent modeling studies and observations predict that N2 fixation could regulate the long-term N:P equilibrium in the oceans and balance denitrification [Tyrell, 1999; J L. Sarmiento and N. Gruber, manuscript in preparation, 1999].The major nitrogen fixer, Trichodesmium spp., which are filamentous, nonheterocystous N2-fixing cyanobacteria, has a nearly ubiquitous distribution in the euphotic zone of tropical and subtropical seas and could play a major role in bringing new N to these oligotrophic systems. Satellite images from Sea-viewing Wide Field-of-view Sensor (SeaWiFs), the recently launched ocean color sensor, and data from a recent cruise, provide further evidence of the importance of Trichodesmium in the southwestern tropical Pacific Ocean.

  11. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    PubMed

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  12. Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential.

    PubMed

    Chaurasia, Akhilesh Kumar; Apte, Shree Kumar

    2011-01-01

    Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields.

  13. Improved Eco-Friendly Recombinant Anabaena sp. Strain PCC7120 with Enhanced Nitrogen Biofertilizer Potential▿

    PubMed Central

    Chaurasia, Akhilesh Kumar; Apte, Shree Kumar

    2011-01-01

    Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields. PMID:21057013

  14. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P < 0.01). Nevertheless, it is not clear why AM hyphae responded differently to nitrogen fertilization in the different sites. Carbon stocks within root-associated AM structures increased significantly with nitrogen fertilization across all sites (P = 0.001), as did root-associated ECM structures (P = 0.021). The amount of carbon sequestered within living mycorrhizal structures (0.013 to 0.21 g m2), however, was modest compared to that of glomalin (91 g m2). We conclude that allocation by AM fungi to hyphal growth influenced the size of glomalin stocks in the soil, and that nitrogen fertilization altered investment in hyphal growth, with potential consequences for soil carbon storage. However, the nitrogen response was inconsistent among boreal forest ecosystems. An understanding of the mechanisms underlying this variation would improve our ability to predict ecosystem feedbacks to global change.

  15. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany.

    PubMed

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-10-01

    In this study water balance components as well as nitrogen and dissolved organic carbon leaching were quantified by means of large weighable grassland lysimeters at three sites (860, 770 and 600 m a.s.l.) for both intensive and extensive management. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the site (E860) with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). Seepage water formation was substantially lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of management on water balance components were negligible. However, intensive management significantly increased total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha -1 year -1 (range: 0.5-6.0 kg N ha -1 year -1 ) to 4.8 kg N ha -1 year -1 (range: 0.9-12.9 kg N ha -1 year -1 ). N leaching losses were dominated by nitrate (64.7%) and less by ammonium (14.6%) and DON (20.7%). The low rates of N leaching (0.8-6.9% of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest. Moreover, plant uptake was often exceeding slurry application rates, suggesting further supply of N due to soil organic matter decomposition. The low risk of nitrate losses via leaching and surface runoff of cut grassland on non-sandy soils with vigorous grass growth may call for a careful site and region specific re-evaluation of fixed limits of N fertilization rates as defined by e.g. the German Fertilizer Ordinance following requirements set by the European Water Framework and Nitrates Directive. Copyright © 2017. Published by Elsevier Ltd.

  16. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of 0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual yield of nitrite plus nitrate was observed at the South Fork Little River site. The North Fork Little River site had the largest estimated mean annual yield of suspended sediment (450,000 lb/yr/mi2). Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the Little River Basin. Commercial fertilizer and livestock-waste applications on row crops are a principal source of nutrients for most of the Little River Basin. Sources of nutrients in the urban areas of the basin mainly are from effluent discharge from wastewater-treatment facilities and fertilizer applications to lawns and golf courses.

  17. Estimated nitrogen loads from selected tributaries in Connecticut draining to Long Island Sound, 1999–2009

    USGS Publications Warehouse

    Mullaney, John R.; Schwarz, Gregory E.

    2013-01-01

    The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year during water years 1999–2009. Total annual loads from the monitored basins represent 63 to 74 percent of the total load. Computed annual nitrogen loads from four stations near the Massachusetts border with Connecticut represent 52 to 54 percent of the total nitrogen load during water years 2008–9, the only years with data for all the border sites. During the latter part of the 1999–2009 study period, total nitrogen loads to Long Island Sound from the study area appeared to increase slightly. The apparent increase in loads may be due to higher than normal streamflows, which consequently increased nonpoint nitrogen loads during the study, offsetting major reductions of nitrogen from wastewater-treatment facilities. Nitrogen loads from wastewater treatment facilities declined as much as 2.3 million pounds per year in areas of Connecticut upstream from the monitoring stations and as much as 5.8 million pounds per year in unmonitored areas downstream in coastal and central Connecticut.

  18. Microbial Ecology of Thermophilic Anaerobic Digestion. Final Report

    DOE R&D Accomplishments Database

    Zinder, Stephen H.

    2000-04-15

    This grant supported research on methanogenic archaea. The two major areas that were supported were conversion of acetic acid to methane and nitrogen fixation by Methanosarcina. Among the achievements of this research were the isolation of novel methanogenic cultures, elucidation of the pathways from acetate to methane, description of a specific DNA-binding complex in nitrogen fixing methanogens, and demonstration of an alternative nitrogenase in Methanosarcina.

  19. Genome Sequence of Bradyrhizobium japonicum E109, One of the Most Agronomically Used Nitrogen-Fixing Rhizobacteria in Argentina

    PubMed Central

    Torres, Daniela; Revale, Santiago; Obando, Melissa; Maroniche, Guillermo; Paris, Gastón; Perticari, Alejandro; Vazquez, Martín; Wisniewski-Dyé, Florence; Martínez-Abarca, Francisco

    2015-01-01

    We present here the complete genome sequence of Bradyrhizobium japonicum strain E109, one of the most used rhizobacteria for soybean inoculation in Argentina since the 1970s. The genome consists of a 9.22-Mbp single chromosome and contains several genes related to nitrogen fixation, phytohormone biosynthesis, and a rhizospheric lifestyle. PMID:25700406

  20. Fire effects on carbon and nitrogen cycling in forests of the Sierra Nevada

    Treesearch

    D.W. Johnson; M.E. Fenn; W.W. Miller; C.T. Hunsaker

    2009-01-01

    Fire removes substantial quantities of nitrogen (N) by volatilization, and prescribed fire, over time, can remove as much as or more N than wildfire. This lost N can be quickly made up if fire is followed by N2-fixing vegetation. Wildfire often has short-term deleterious effects on water quality because of N mobilization, but long-term fire...

  1. Do foliar endophytic bacteria fix nitrogen?

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Moyes, A. B.; Frank, C.; Pett-Ridge, J.; Carper, D.; Vandehey, N.; O'Neil, J.; Dekas, A.

    2015-12-01

    Endophytic microorganisms - bacteria and fungi that live inside healthy plant tissue - are a relatively unexplored source of functional diversity in natural ecosystems. Prior to modern sequencing technology, detecting uncultured endophytic bacteria and assessing their putative functions was challenging. However, recent work has revealed a remarkable diversity of as yet non-culturable endophytic taxa and is beginning to identify functional roles within plant microbiomes. We recently examined bacterial communities in the foliage of a long-lived, high-elevation conifer species, limber pine (Pinus flexilis), and discovered a community strongly dominated by acetic acid bacteria (Acetobacteraceae), with several taxa closely related to known nitrogen fixers. Given limber pine's status as a pioneer species that is able to grow in low fertility soils, we hypothesized that this bacterial community has a potential functional role in fixing atmospheric nitrogen, providing a source of this limiting nutrient to the host tree. We used the radioisotope 13N2 to confirm that N2 rapidly diffuses into pine needles, where it could potentially be fixed. With an acetylene reduction assay we confirmed nitrogenase enzyme activity inside excised twigs 4 times over a growing season, and estimate potential rates of N2 fixation at 0.1 nmol N2 g needle-1 hr-1. Scaled to the stand level, this N input could be on the order of ~20 mg N m-2 d-1 over a growing season. While these rates are low, the long lifespan of individual trees (~1000 years) makes them biologically meaningful. Still, measured rates of acetylene reduction and bulk 15N2 incorporation are quite variable in space and time. Much work remains to better characterize the plant-microbial interactions in this system, including the rates of nitrogen fixation and their variability over the growing season, across edaphic conditions, among host species, and through plant development; and to determine which community members are responsible for this novel nitrogen transformation pathway in high elevation forests.

  2. Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum, and vanadium

    USGS Publications Warehouse

    Marks, Jade A; Pett-Ridge, Julie; Perakis, Steven S.; Allen, Jessica L; McCune, Bruce

    2015-01-01

    Nitrogen-fixing lichens (cyanolichens) are an important source of nitrogen (N) in Pacific Northwest forests, but limitation of lichen growth by elements essential for N fixation is poorly understood. To investigate how nutrient limitation may affect cyanolichen growth rates, we fertilized a tripartite cyanobacterial lichen (Lobaria pulmonaria) and a green algal non-nitrogen fixing lichen (Usnea longissima) with the micronutrients molybdenum (Mo) and vanadium (V), both known cofactors for enzymes involved in N fixation, and the macronutrient phosphorus (P). We then grew treated lichens in the field for one year in western Oregon, USA. Lichen growth was very rapid for both species and did not differ across treatments, despite a previous demonstration of P-limitation in L. pulmonaria at a nearby location. To reconcile these disparate findings, we analyzed P, Mo, and V concentrations, natural abundance δ15N isotopes, %N and change in thallus N in Lobaria pulmonaria from both growth experiments. Nitrogen levels in deposition and in lichens could not explain the large difference in growth or P limitation observed between the two studies. Instead, we provide evidence that local differences in P availability may have caused site-specific responses of Lobaria to P fertilization. In the previous experiment, Lobaria had low background levels of P, and treatment with P more than doubled growth. In contrast, Lobaria from the current experiment had much higher background P concentrations, similar to P-treated lichens in the previous experiment, consistent with the idea that ambient variation in P availability influences the degree of P limitation in cyanolichens. We conclude that insufficient P, Mo, and V did not limit the growth of either cyanolichens or chlorolichens at the site of the current experiment. Our findings point to the need to understand landscape-scale variation in P availability to cyanolichens, and its effect on spatial patterns of cyanolichen nutrient limitation and N fixation.

  3. Acetylene reduction (nitrogen fixation) associated with corn inoculated with Spirillum.

    PubMed

    Barber, L E; Tjepkema, J D; Russell, S A; Evans, H J

    1976-07-01

    Sorghum and corn breeding lines were grown in soil in field and greenhouse experiments with and without an inoculum of N2-fixing in Spirillum strains from Brazil. Estimated rates of N2 fixation associated with field-grown corn and sorghum plants were less than 4 g of N2/ha per day. The mean estimated N2-fixation rates determined on segments of roots from corn inoculated with Spirillum and grown in the greenhouse at 24 to 27 degrees C were 15 g of N2/ha per day (16 inbreds), 25 g of N2/ha per day (six hybrids), and 165 g of N2/ha per day for one hybird which was heavily inoculated. The corresponding mean rates determined from measurements of in situ cultures of the same series of corn plants (i.e., 16 inbreds, six hybrids, and one heavily inoculated hybrid) were 0.4, 2.3, and 1.1 g of N2/ha per day, respectively. Lower rates of C2H2 reduction were associated with control corn cultures which had been treated with autoclaved Spirillum than with cultures inoculated with live Spirillum. No C2H2 reduction was detected in plant cultures treated with ammonium nitrate. Numbers of nitrogen-fixing bacteria on excised roots of corn plants increased an average of about 30-fold during an overnight preincubation period, and as a result acetylene reduction assays of root samples after preincubation failed to serve as a valid basis for estimating N2 fixation by corn in pot cultures. Plants grown without added nitrogen either with or without inoculum exhibited severe symptoms of nitrogen deficiency and in most cases produced significantly less dry weight than those supplied with fixed nitrogen. Although substantial rates of C2H2 reduction by excised corn roots were observed after preincubation under limited oxygen, the yield and nitrogen content of inoculated plants and the C2H2-reduction rates by inoculated pot cultures of corn, in situ, provided no evidence of appreciable N2 fixation.

  4. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds

    USGS Publications Warehouse

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe; Küsel, Kirsten

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricellaand Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.

  5. Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota.

    PubMed

    Dahal, Bibha; NandaKafle, Gitanjali; Perkins, Lora; Brözel, Volker S

    2017-01-01

    Biological Nitrogen Fixation is critical for ecosystem productivity. Select members of Bacteria and Archaea express a nitrogenase enzyme complex that reduces atmospheric nitrogen to ammonia. Several nitrogen fixing bacteria form symbiotic associations with plants, but free-living diazotrophs also contribute a substantial amount of nitrogen to ecosystems. The aim of this study was to isolate and characterize free-living diazotrophs in arid lands of South Dakota Badlands. Samples were obtained from sod tables and the surrounding base in spring and fall. Diazotrophs were isolated on solid nitrogen free medium (NFM) under hypoxic conditions, and their16S rRNA and nifH genes sequenced. nifH was also amplified directly from soil DNA extracts. The 16S rRNA gene data indicated a diversity of putative free-living diazotrophs across 4 phyla (Actinomycetes, Proteobacteria, Bacteroidetes, and Firmicutes), but ∼50% of these clustered with Streptomyces. These Streptomyces isolates grew in liquid NFM in an ammonia-depleted environment. Only 5 of these yielded a nifH gene product using the PolF/PolR primer set. Four of these aligned with nifH of the cyanobacteria Scytonema and Nostoc, and the other one aligned with nifH of Bradyrhizobium. Six selected Streptomyces isolates, three of which were nifH positive by PCR, all indicated 15 N 2 incorporation, providing strong support of nitrogen fixation. All nifH amplicons from soil DNA extract resembled Cyanobacteria. This is the first known report of diazotrophic Streptomyces, other than the thermophilic, autotrophic S. thermoautotrophicus. nifH genes of these Streptomyces were related to those from Cyanobacteria. It is possible that the cyanobacteria-like nifH amplicons obtained from soil DNA were associated with Streptomyces. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Cell morphology and flagellation of nitrogen-fixing spirilla.

    PubMed

    Hegazi, N A; Vlassak, K

    1979-01-01

    Twenty isolates of N2-fixing spirilla were isolated from the rhizosphere of maize and sugar cane grown in Egyptian and Belgian soils. Electron microscopy distinguished two morphological groups. The first includes short and thick curved rods with an unipolar flagellum while cells of the second group are much longer with the typical appearance of spiral cells and most probably possess a bipolar tuft of flagella.

  7. Subirrigation reduces water use, nitrogen loss, and moss growth in a container nursery

    Treesearch

    R. Kasten Dumroese; Jeremy R. Pinto; Douglass F. Jacobs; Anthony S. Davis; Baron Horiuchi

    2006-01-01

    With about half the amount of water, subirrigated Metrosideros polymorpha Gaud. (Myrtaceae) grown 9 mo in a greenhouse were similar to those irrigated with an existing fixed overhead irrigation system; moss growth was about 3X greater in the fixed overhead system after 3 mo. Moss growth was affected by the rate of preplant controlled release fertilizer added (more...

  8. Early post-fire succession in California chaparral: changes in diversity, density, cover, and biomass

    USGS Publications Warehouse

    Guo, Q.

    2001-01-01

    For four consecutive years, following the fires in November 1993, temporal variations in species richness, cover and biomass of component plant groups in early post-fire chaparral succession were monitored on different aspects at the Stunt Ranch Santa Monica Mountains Reserve, southern California. Plant groups were categorized based on growth form, life form, ability to fix nitrogen, geographic origin and regeneration strategies. North-facing slopes exhibited higher species richness, higher species turnover rate over time and faster vegetation recovery in terms of biomass accumulation and return to pre-fire species composition. This was probably due to higher species richness and biomass of nitrogen-fixing species found on north-facing slopes in comparison to south-facing slopes. On both north- and south-facing slopes, annuals had the highest species turnover rate, followed by herbaceous perennials and shrubs. In the first four post-fire years, annual species were the largest floristic group, but herbaceous perennials and shrubs were the major contributors to community biomass. Nitrogen-fixing species and exotics contributed significantly to early post-fire community structure. Although the general trends in post-fire succession are clear in terms of temporal changes in the relative proportions of different plant groups, environmental variation and the nature of plant life histories of component species, especially dominant species, could alter such trends significantly.

  9. Early post-fire succession in California chaparral: Changes in diversity, density, cover and biomass

    USGS Publications Warehouse

    Guo, Q.

    2001-01-01

    For four consecutive years, following the fires in November 1993, temporal variations in species richness, cover and biomass of component plant groups in early post-fire chaparral succession were monitored on different aspects at the Stunt Ranch Santa Monica Mountains Reserve, southern California. Plant groups were categorized based on growth form, life form, ability to fix nitrogen, geographic origin and regeneration strategies. North-facing slopes exhibited higher species richness, higher species turnover rate over time and faster vegetation recovery in terms of biomass accumulation and return to pre-fire species composition. This was probably due to higher species richness and biomass of nitrogen-fixing species found on north-facing slopes in comparison to south-facing slopes. On both north- and south-facing slopes, annuals had the highest species turnover rate, followed by herbaceous perennials and shrubs. In the first four post-fire years, annual species were the largest floristic group, but herbaceous perennials and shrubs were the major contributors to community biomass. Nitrogen-fixing species and exotics contributed significantly to early post-fire community structure. Although the general trends in post-fire succession are clear in terms of temporal changes in the relative proportions of different plant groups, environmental variation and the nature of plant life histories of component species, especially dominant species, could alter such trends significantly.

  10. Characterization of the Symbiotic Nitrogen-Fixing Common Bean Low Phytic Acid (lpa1) Mutant Response to Water Stress.

    PubMed

    Chiozzotto, Remo; Ramírez, Mario; Talbi, Chouhra; Cominelli, Eleonora; Girard, Lourdes; Sparvoli, Francesca; Hernández, Georgina

    2018-02-15

    The common bean ( Phaseolus vulgaris L.) low phytic acid ( lpa1 ) biofortified genotype produces seeds with improved nutritional characteristics and does not display negative pleiotropic effects. Here we demonstrated that lpa1 plants establish an efficient nitrogen-fixing symbiosis with Rhizobium etli CE3. The lpa1 nodules showed a higher expression of nodule-function related genes than the nodules of the parental wild type genotype (BAT 93). We analyzed the response to water stress of lpa1 vs. BAT 93 plants grown under fertilized or under symbiotic N₂-fixation conditions. Water stress was induced by water withholding (up to 14% soil moisture) to fertilized or R. etli nodulated plants previously grown with normal irrigation. The fertilized lpa1 plants showed milder water stress symptoms during the water deployment period and after the rehydration recovery period when lpa1 plants showed less biomass reduction. The symbiotic water-stressed lpa1 plants showed decreased nitrogenase activity that coincides with decreased sucrose synthase gene expression in nodules; lower turgor weight to dry weight (DW) ratio, which has been associated with higher drought resistance index; downregulation of carbon/nitrogen (C/N)-related and upregulation of stress-related genes. Higher expression of stress-related genes was also observed in bacteroids of stressed lpa1 plants that also displayed very high expression of the symbiotic cbb ₃ oxidase ( fixN d).

  11. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    PubMed Central

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and later diversified into aerobes. Here we show that the transition of Nif from anaerobic to aerobic metabolism was accompanied by both gene recruitment and gene loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes is strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protective mechanisms. Rather, gene recruitment was likely a response to more efficiently regulate Nif under oxic conditions that favor protein turnover. PMID:25733617

  12. Ambient Ammonium Contribution to total Nitrogen Deposition ...

    EPA Pesticide Factsheets

    There has been a wealth of evidence over the last decade illustrating the rising importance of reduced inorganic nitrogen (NHx = ammonia gas, NH3, plus particulate ammonium, p-NH4) in the overall atmospheric mass balance and deposition of nitrogen as emissions of oxidized nitrogen have decreased throughout a period of stable or increasing NH3 emissions. In addition, the fraction of ambient ammonia relative to p-NH4 generally has risen as a result of decreases in both oxides of nitrogen and sulfur emissions. EPA plans to consider ecological effects related to deposition of nitrogen, of which NHx is a contributing component, in the review of secondary National Ambient Air Quality Standards (NAAQS) for oxides of nitrogen and sulfur (NOx/SOx standard). Although these ecological effects are associated with total nitrogen deposition, it will be important to understand the emissions sources contributing to the total nitrogen deposition and to understand how much of the total nitrogen deposition is from deposition of NHx versus other nitrogen species. Because p-NH4 contributes to nitrogen deposition and can also be a significant component of particulate matter, there is a potential overlap in addressing nitrogen based deposition effects in the secondary PM and NOx/SOx NAAQS. Consequently, there is a policy interest in quantifying the contribution of p-NH4 to total nitrogen deposition. While dry deposition of p-NH4 is calculated through a variety of modeling app

  13. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    PubMed

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  14. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense.

    PubMed

    Nishikawa, C Y; Araújo, L M; Kadowaki, M A S; Monteiro, R A; Steffens, M B R; Pedrosa, F O; Souza, E M; Chubatsu, L S

    2012-02-01

    Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ(54) co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH(4)Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.

  15. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense

    PubMed Central

    Nishikawa, C.Y.; Araújo, L.M.; Kadowaki, M.A.S.; Monteiro, R.A.; Steffens, M.B.R.; Pedrosa, F.O.; Souza, E.M.; Chubatsu, L.S.

    2012-01-01

    Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription. PMID:22267004

  16. Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain CcI3 under nitrogen-fixing conditions.

    PubMed

    Lee, Hae-In; Donati, Andrew J; Hahn, Dittmar; Tisa, Louis S; Chang, Woo-Suk

    2013-12-01

    We investigated the effect of different nitrogen (N) sources on exopolysaccharide (EPS) production and composition by Frankia strain CcI3, a N2-fixing actinomycete that forms root nodules with Casuarina species. Frankia cells grown in the absence of NH4Cl (i.e., under N2-fixing conditions) produced 1.7-fold more EPS, with lower galactose (45.1 vs. 54.7 mol%) and higher mannose (17.3 vs. 9.7 mol%) contents than those grown in the presence of NH4Cl as a combined N-source. In the absence of the combined N-source, terminally linked and branched residue contents were nearly twice as high with 32.8 vs. 15.1 mol% and 15.1 vs. 8.7 mol%, respectively, than in its presence, while the content of linearly linked residues was lower with 52.1 mol% compared to 76.2 mol%. To find out clues for the altered EPS production at the transcriptional level, we performed whole-gene expression profiling using quantitative reverse transcription PCR and microarray technology. The transcription profiles of Frankia strain CcI3 grown in the absence of NH4Cl revealed up to 2 orders of magnitude higher transcription of nitrogen fixation-related genes compared to those of CcI3 cells grown in the presence of NH4Cl. Unexpectedly, microarray data did not provide evidence for transcriptional regulation as a mechanism for differences in EPS production. These findings indicate effects of nitrogen fixation on the production and composition of EPS in Frankia strain CcI3 and suggest posttranscriptional regulation of enhanced EPS production in the absence of the combined N-source.

  17. The nitrogen cycle under changing redox conditions during late Neoproterozoic: the Ediacaran nitrate revolution?

    NASA Astrophysics Data System (ADS)

    Prokopenko, M.; Corsetti, F. A.; Gaines, R. R.; Loyd, S. J.; Cordova, A.; Berelson, W.

    2016-12-01

    The oxidation state of fixed (non-gaseous) nitrogen, a major limiting nutrient for the marine primary production, is dictated by the ambient environmental redox conditions: in the absence of O2, fixed inorganic N is stable in the form of ammonium, while in the presence of dissolved O2 nitrate is the main form. Therefore, the prevalence of nitrate vs. ammonium most likely reflects the availability of dissolved O2. We have developed a method of determining nitrate content in carbonates, Carbonate Associated Nitrate (CAN), as a proxy for the oceanic nitrate content. To investigate changes in the global O2 and marine nitrogen cycles through time, concentrations of CAN have been evaluated in both limestones and dolostones from multiple localities around the world, spanning the ages from 3 Ga through modern. The highest CAN values were found as several distinct peaks in the late Neoproterozoic carbonates from two locations: Caborca in Sonora, Mexico, within a stratigraphic sequence deposited through the Ediacaran, and within the Rainstorm Member of the Johnnie Formation in the Death Valley, California, likely deposited at the onset of the Shuram d13C excursion. The sharp increases in nitrate recorded in these rocks may be linked to a rapid, possibly multi-stage increase in the atmospheric O2 during this time. Transformation of the fixed N from the reduced to the oxidized forms (from ammonium to nitrate) may have caused a major restructuring of the global N cycle, possibly contributing to the diversification of the eukaryotic phytoplankton communities, forced to adapt to using nitrate instead of ammonium as the major nitrogen source.

  18. Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park.

    PubMed

    Loiacono, Sara T; Meyer-Dombard, D'Arcy R; Havig, Jeff R; Poret-Peterson, Amisha T; Hartnett, Hilairy E; Shock, Everett L

    2012-05-01

    Genes encoding nitrogenase (nifH) were amplified from sediment and photosynthetic mat samples collected in the outflow channel of Mound Spring, an alkaline thermal feature in Yellowstone National Park. Results indicate the genetic capacity for nitrogen fixation over the entire range of temperatures sampled (57.2°C to 80.2°C). Amplification of environmental nifH transcripts revealed in situ expression of nifH genes at temperatures up to 72.7°C. However, we were unable to amplify transcripts of nifH at the higher-temperature locations (> 72.7°C). These results indicate that microbes at the highest temperature sites contain the genetic capacity to fix nitrogen, yet either do not express nifH or do so only transiently. Field measurements of nitrate and ammonium show fixed nitrogen limitation as temperature decreases along the outflow channel, suggesting nifH expression in response to the downstream decrease in bioavailable nitrogen. Nitrogen stable isotope values of Mound Spring sediment communities further support geochemical and genetic data. DNA and cDNA nifH amplicons form several unique phylogenetic clades, some of which appear to represent novel nifH sequences in both photosynthetic and chemosynthetic microbial communities. This is the first report of in situ nifH expression in strictly chemosynthetic zones of terrestrial (non-marine) hydrothermal systems, and sets a new upper temperature limit (72.7°C) for nitrogen fixation in alkaline, terrestrial hydrothermal environments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Seasonal patterns of periphyton nitrogen fixation in calcareous wetlands

    NASA Astrophysics Data System (ADS)

    Liao, X.; Inglett, P.

    2011-12-01

    Periphyton mats are an ecologically important component of the Everglades ecosystem and plays various vital ecological functions. However, nitrogen fixation of periphyton, has received little attention throughout much of the Everglades system. The objective of this study was to characterize the seasonal pattern of periphyton N2 fixation in the Hole-in-the-Donut (HID) of Florida Everglades, where farmed marl prairie wetlands have been restored through complete soil removal (CSR) to reduce nutrient levels. Two restored areas (i.e., cleared in 2000 and 2003) and a reference (natural and unfarmed) marl prairie wetland sites were selected in the HID. Seven times of sampling were performed across the wet and dry season during the 2010 and 2011. The annual fixed nitrogen was approximately 0.4gN m-2 yr-1 in the restored sites which was higher in the reference site (~0.2gN m-2 yr-1). All the three sites showed similar seasonal patterns of N2 fixation that is higher values were observed in the wet season; but the peak value was one month later in reference sits (i.e., September) comparing to the restored areas (i.e., July). The peak of periphyton AR rates in the 2000- and 2003-restored areas appeared in July (i.e., wet season) within the range of 20-79 nmols g-1dw h-1 and 31-53nmols g-1dw h-1, respectively. In contrast, the peak of reference site was observed in September with the range of 2-5 nmols g-1dw h-1. Stable N isotopic ratios (i.e., δ15N) also varied with time but didn't show consistent seasonal pattern as nitrogen fixation. N2 fixation positively correlated with periphyton total phosphorus (TP) and negatively correlated with total nitrogen and phosphorus molar ratios (TN:TP), indicating that N2 fixation would be a indicator of nutrient limitation. In general, δ15N was negatively correlated with nitrogenase activity but the correlation became weakened in the wet season, especially in the flooded July and September, which would be explained by other environmental factors and higher denitrification activities in that time.

  20. Transport processes of the legume symbiosome membrane

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Day, David A.; Smith, Penelope M. C.

    2014-01-01

    The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome. PMID:25566274

  1. Robust biological nitrogen fixation in a model grass-bacterial association.

    PubMed

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  2. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    NASA Astrophysics Data System (ADS)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  3. Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis.

    PubMed

    Geurts, Rene; Lillo, Alessandra; Bisseling, Ton

    2012-08-01

    For almost a century now it has been speculated that a transfer of the largely legume-specific symbiosis with nitrogen fixing rhizobium would be profitable in agriculture [1,2]. Up to now such a step has not been achieved, despite intensive research in this era. Novel insights in the underlying signalling networks leading to intracellular accommodation of rhizobium as well as mycorrhizal fungi of the Glomeromycota order show extensive commonalities between both interactions. As mycorrhizae symbiosis can be established basically with most higher plant species it raises questions why is it only in a few taxonomic lineages that the underlying signalling network could be hijacked by rhizobium. Unravelling this will lead to insights that are essential to achieve an old dream. Copyright © 2012. Published by Elsevier Ltd.

  4. The draft genome sequence of Mangrovibacter sp. strain MP23, an endophyte isolated from the roots of Phragmites karka.

    PubMed

    Behera, Pratiksha; Vaishampayan, Parag; Singh, Nitin K; Mishra, Samir R; Raina, Vishakha; Suar, Mrutyunjay; Pattnaik, Ajit K; Rastogi, Gurdeep

    2016-09-01

    Till date, only one draft genome has been reported within the genus Mangrovibacter. Here, we report the second draft genome shotgun sequence of a Mangrovibacter sp. strain MP23 that was isolated from the roots of Phargmites karka (P. karka), an invasive weed growing in the Chilika Lagoon, Odisha, India. Strain MP23 is a facultative anaerobic, nitrogen-fixing endophytic bacteria that grows optimally at 37 °C, 7.0 pH, and 1% NaCl concentration. The draft genome sequence of strain MP23 contains 4,947,475 bp with an estimated G + C content of 49.9% and total 4392 protein coding genes. The genome sequence has provided information on putative genes that code for proteins involved in oxidative stress, uptake of nutrients, and nitrogen fixation that might offer niche specific ecological fitness and explain the invasive success of P. karka in Chilika Lagoon. The draft genome sequence and annotation have been deposited at DDBJ/EMBL/GenBank under the accession number LYRP00000000.

  5. Impacts of atmospheric anthropogenic nitrogen on the open ocean.

    PubMed

    Duce, R A; LaRoche, J; Altieri, K; Arrigo, K R; Baker, A R; Capone, D G; Cornell, S; Dentener, F; Galloway, J; Ganeshram, R S; Geider, R J; Jickells, T; Kuypers, M M; Langlois, R; Liss, P S; Liu, S M; Middelburg, J J; Moore, C M; Nickovic, S; Oschlies, A; Pedersen, T; Prospero, J; Schlitzer, R; Seitzinger, S; Sorensen, L L; Uematsu, M; Ulloa, O; Voss, M; Ward, B; Zamora, L

    2008-05-16

    Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to approximately 3% of the annual new marine biological production, approximately 0.3 petagram of carbon per year. This input could account for the production of up to approximately 1.6 teragrams of nitrous oxide (N2O) per year. Although approximately 10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.

  6. Nitrogen concentrations and loads for the Connecticut River at Middle Haddam, Connecticut, computed with the use of autosampling and continuous measurements of water quality for water years 2009 to 2014

    USGS Publications Warehouse

    Mullaney, John R.; Martin, Joseph W.; Morrison, Jonathan

    2018-03-20

    The daily and annual loads of nitrate plus nitrite and total nitrogen for the Connecticut River at Middle Haddam, Connecticut, were determined for water years 2009 to 2014. The analysis was done with a combination of methods, which included a predefined rating curve method for nitrate plus nitrite and total nitrogen for water years 2009 to 2011 and a custom rating curve method that included sensor measurements of nitrate plus nitrite nitrogen concentration and turbidity along with mean daily flow to determine total nitrogen loads for water years 2011 to 2014. Instantaneous concentrations of total nitrogen were estimated through the use of a regression model based on sensor measurements at 15-minute intervals of nitrate plus nitrite nitrogen and turbidity for water years 2011 to 2014.Annual total nitrogen loads at the Connecticut River at Middle Haddam ranged from 12,900 to 19,200 metric tons, of which about 42 to 49 percent was in the form of nitrate plus nitrite. The mean 95-percent prediction intervals on daily total nitrogen load estimates were smaller from the custom model, which used sensor data, than those calculated by the predefined model.Annual total nitrogen load estimates at the Connecticut River at Middle Haddam were compared with the upstream load estimates at the Connecticut River at Thompsonville, Conn. Annual gains in total nitrogen loads between the two stations ranged from 3,430 to 6,660 metric tons. These increases between the two stations were attributed to the effects of increased urbanization and to combined annual discharges of 1,540 to 2,090 metric tons of nitrogen from 24 wastewater treatment facilities in the drainage area between the two stations. The contribution of total nitrogen from wastewater discharge between the two stations had declined substantially before the beginning of this study and accounted for from 31 to 52 percent of the gain in nitrogen load between the Thompsonville and Middle Haddam sites.

  7. Bragg superlattice for obtaining individual photoluminescence of diamond color centers in dense 3D ensembles

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. A.

    2017-10-01

    A way to significantly increase the spatial resolution of the color center photoluminescence collection in chemically vapor-deposited (CVD) diamond at a fixed exciting beam focal volume is suggested. It is based on the creation of a narrow waveguide for the color center photoluminescence with a small number of allowed vertical indices of guided modes. The waveguide is formed between the top surface of a CVD diamond film and an underlaid mirror—a Bragg superlattice made of interchanging high- and low boron-doped layers of CVD diamond. The guided color center photoluminescence is extracted through the top surface of a CVD diamond film with the frustrated total internal reflection method. According to the results of simulation made for a case when color centers are nitrogen-vacancy (NV) centers, the suggested way allows to increase the maximal value of the NV center concentration still compatible with selective collection of their photoluminescence by several times at a fixed exciting beam focal volume. This increase is provided without the deterioration of the NV center photoluminescence collection efficiency.

  8. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    PubMed

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR significantly decreases the deleterious effects of Pb pollution and increases the maize growth under all Pb concentrations, i.e., 100-400 Pb mg kg(-1) soil. PGPR chelate the Pb in the soil, and ultimately influence its bioavailability, release and uptake. The PGPR having both ACC-deaminase and nitrogen-fixing abilities are more effective and resistive against Pb pollution than PGPR having either ACC-deaminase or nitrogen-fixing activity alone. The ACC enrichment technique is an efficient approach to select promising PGPR.

  9. Comparative effects of precommercial thinning, urea fertilizer, and red alder in a site II, coast Douglas-fir plantation.

    Treesearch

    Richard E. Miller; Edmund L. Obermeyer; Harry W. Anderson

    1999-01-01

    We varied the number of red alder retained with 300 Douglas-fir per acre on a high-quality site in coastal Oregon. Alder densities of 0, 20, 40, and 80 per acre were tested. Our fifth treatment eliminated nitrogen-fixing alder, but substituted nitrogen fertilizer. Treatment 6 had neither thinning nor alder control. Treatments were randomly assigned within each of three...

  10. Genome Sequence of Bradyrhizobium japonicum E109, One of the Most Agronomically Used Nitrogen-Fixing Rhizobacteria in Argentina.

    PubMed

    Torres, Daniela; Revale, Santiago; Obando, Melissa; Maroniche, Guillermo; Paris, Gastón; Perticari, Alejandro; Vazquez, Martín; Wisniewski-Dyé, Florence; Martínez-Abarca, Francisco; Cassán, Fabricio

    2015-02-19

    We present here the complete genome sequence of Bradyrhizobium japonicum strain E109, one of the most used rhizobacteria for soybean inoculation in Argentina since the 1970s. The genome consists of a 9.22-Mbp single chromosome and contains several genes related to nitrogen fixation, phytohormone biosynthesis, and a rhizospheric lifestyle. Copyright © 2015 Torres et al.

  11. Inoculation of new rhizobial isolates improve nutrient uptake and growth of bean (Phaseolus vulgaris) and arugula (Eruca sativa).

    PubMed

    de Souza, Eduardo M; Bassani, Victor L; Sperotto, Raul A; Granada, Camille E

    2016-08-01

    In the current agricultural model, the massive use of chemical fertilizer causes environmental and economic losses. Inoculation of plant-growth-promoting (PGP) nitrogen-fixing bacteria is an alternative to the use of nitrogen, phosphorus and potassium fertilizers. In this study, rhizobia strains isolated from common bean (Phaseolus vulgaris) root nodules were evaluated in an effort to identify an efficient nitrogen-fixing rhizobia strain able to improve bean germination and growth. Common bean plants were collected from seven sites in southern Brazil, and 210 native rhizobia isolates were obtained. Evaluation of PGP traits showed that most of the rhizobia isolates were non-siderophore producers and weak indolic compounds producers. Under laboratory conditions, rhizobia isolates E15 (Rhizobium leguminosarum) and L5 (Rhizobium radiobacter) increase germination percentage, length, and dry weight of common bean and arugula (Eruca sativa) seedlings. Under greenhouse conditions, common bean plants inoculated with the rhizobia isolates VC28 and L15 (both Rhizobium fabae) presented the highest nodule number and shoot dry matter, while VC28 also presented the highest values of shoot nitrogen and potassium. Isolate L17 presented highly effective N fixation, even with reduced nodulation. These new rhizobia isolates are attractive PGP alternatives to chemical fertilizers. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach.

    PubMed

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-11-01

    Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Effect of an ntrC mutation on amino acid or urea utilization and on nitrogenase switch-off in Herbaspirillum seropedicae.

    PubMed

    Gusso, Claudio L; de Souza, Emanuel M; Rigo, Liu Un; de Oliveira Pedrosa, Fábio; Yates, M G; de M Rego, Fabiane G; Klassen, Giseli

    2008-03-01

    Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with L-alanine, L-serine, L-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol.L-1 ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol x L-1 urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.

  14. Two negative regulatory systems of root nodule symbiosis - how are symbiotic benefits and costs balanced?

    PubMed

    Nishida, Hanna; Suzaki, Takuya

    2018-05-30

    Root nodule symbiosis is one of the best-characterized mutualistic relationships between plants-microbes symbiosis, where mainly leguminous species can obtain nitrogen sources fixed by nitrogen-fixing rhizobia through the formation of symbiotic organs root nodules. In order to drive this symbiotic process, plants need to provide carbon sources that should be used for their growth. Therefore, a balance between the benefits of obtaining nitrogen sources and the costs of losing carbon sources needs to be maintained during root nodule symbiosis. Plants have developed at least two negative regulatory systems of root nodule symbiosis. One strategy involves the regulation of nodule number in response to rhizobial infection. For this regulation, a systemic long-range signaling between roots and shoots called autoregulation of nodulation has a pivotal role. Another strategy involves the regulation of root nodule symbiosis in response to nitrate, the most abundant form of nitrogen nutrients in the soil. Recent studies indicate that a long-distance signaling is shared between the two strategies, where NIN and NRSYM1, two paralogous RWP-RK transcription factors, can activate the production of nodulation-related CLE peptides in response to different inputs. Here, we give an overview of such progress in our understanding of molecular mechanisms relevant to the control of the symbiotic balance, including their biological significance.

  15. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    PubMed Central

    Karaushu, E. V.; Kravzova, T. R.; Vorobey, N. A.; Kiriziy, D. A.; Olkhovich, O. P.; Taran, N. Yu.; Kots, S. Ya.; Omarova, E.

    2015-01-01

    Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum. PMID:26114100

  16. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    PubMed

    Karaushu, E V; Lazebnaya, I V; Kravzova, T R; Vorobey, N A; Lazebny, O E; Kiriziy, D A; Olkhovich, O P; Taran, N Yu; Kots, S Ya; Popova, A A; Omarova, E; Koksharova, O A

    2015-01-01

    Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  17. Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogen-fixing mixed cultures.

    PubMed

    Wong, P P; Stenberg, N E; Edgar, L

    1980-03-01

    A bacterium with the taxonomic characteristics of the genus Azospirillum was isolated from celluloytic N2-fixing mixed cultures. Its characteristics fit the descriptions of both Azopirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. It may be a variant strain of A. lipoferum. In mixed cultures with cellulolytic organisms, the bacterium grew and fixed N2 with cellelose as a sole source of energy and carbon. The mixed cultures used cellulose from leaves of wheat (Triticum aestivum L.), corn (Zea mays L.), and big bluestem grass (Andropogon gerardii Vitm). Microaerophilic N2-fixing bacteria of the genus Azospirillum, such as the bacterium we isolated, may be important contributors of fixed N2 in soil with partial anaerobiosis and cellulose decomposition.

  18. Nitrogen loads from selected rivers in the Long Island Sound Basin, 2005–13, Connecticut and Massachusetts

    USGS Publications Warehouse

    Mullaney, John R.

    2016-03-29

    Total nitrogen loads at 14 water-quality monitoring stations were calculated by using discrete measurements of total nitrogen and continuous streamflow data for the period 2005–13 (water years 2006–13). Total nitrogen loads were calculated by using the LOADEST computer program.Overall, for water years 2006–13, streamflow in Connecticut was generally above normal. Total nitrogen yields ranged from 1,160 to 23,330 pounds per square mile per year. Total nitrogen loads from the French River at North Grosvenordale and the Still River at Brookfield Center, Connecticut, declined noticeably during the study period. An analysis of the bias in estimated loads indicated unbiased results at all but one station, indicating generally good fit for the LOADEST models.

  19. Developmental effects on ureide levels are mediated by tissue-specific regulation of allantoinase in Phaseolus vulgaris L.

    PubMed

    Díaz-Leal, Juan Luis; Gálvez-Valdivieso, Gregorio; Fernández, Javier; Pineda, Manuel; Alamillo, Josefa M

    2012-06-01

    The ureides allantoin and allantoate are key molecules in the transport and storage of nitrogen in ureide legumes. In shoots and leaves from Phaseolus vulgaris plants using symbiotically fixed nitrogen as the sole nitrogen source, ureide levels were roughly equivalent to those of nitrate-supported plants during the whole vegetative stage, but they exhibited a sudden increase at the onset of flowering. This rise in the level of ureides, mainly in the form of allantoate, was accompanied by increases in allantoinase gene expression and enzyme activity, consistent with developmental regulation of ureide levels mainly through the tissue-specific induction of allantoate synthesis catalysed by allantoinase. Moreover, surprisingly high levels of ureides were also found in non-nodulated plants fertilized with nitrate, at both early and late developmental stages. The results suggest that remobilized N from lower leaves is probably involved in the sharp rise in ureides in shoots and leaves during early pod filling in N(2)-fixing plants and in the significant amounts of ureides observed in non-nodulated plants.

  20. Remote analysis of biological invasion and biogeochemical change

    PubMed Central

    Asner, Gregory P.; Vitousek, Peter M.

    2005-01-01

    We used airborne imaging spectroscopy and photon transport modeling to determine how biological invasion altered the chemistry of forest canopies across a Hawaiian montane rain forest landscape. The nitrogen-fixing tree Myrica faya doubled canopy nitrogen concentrations and water content as it replaced native forest, whereas the understory herb Hedychium gardnerianum reduced nitrogen concentrations in the forest overstory and substantially increased aboveground water content. This remote sensing approach indicates the geographic extent, intensity, and biogeochemical impacts of two distinct invaders; its wider application could enhance the role of remote sensing in ecosystem analysis and management. PMID:15761055

  1. Response of enzymes involved in the processes of antioxidation towards benthiocarb and methylparathion in cyanobacteria Nostoc muscorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhunia, A.K.; Roy, D.; Basu, N.K.

    1991-08-01

    Recently, it has been observed in the authors' laboratory that growth, nitrogen fixation, protein content of cyanobacteria Nostoc muscorum were reduced by methylparathion and benthiocarb treatment. Though many works on toxicity of pesticides on cyanobacteria, specially on growth, photosynthesis and nitrogen fixation are available, the effects of pesticides on antioxidant enzyme levels is still unclear. In this communication, studies have been presented on the effects of organophosphate insecticide methyl-parathione and carbamate herbicide benthiocarb, on glutathione content, glutathione reductase (GR) and superoxide dismutase (SOD) activities of filamentous, nitrogen-fixing cyanobacteria Nostoc muscorum.

  2. Prone to fix: Resilience of the active nitrogen-fixing rice root microbiome

    NASA Astrophysics Data System (ADS)

    Hurek, Thomas; Sabale, Mugdha; Sarkar, Abhijit; Pees, Tobias; Reinhold-Hurek, Barbara

    2016-04-01

    Due to water consumption, many lowland rice areas in Asia are undergoing a transition that involves adoption of new management strategies, with crop rotations encompassing a non-flooded crop, including maize. Shifting from flooded to non-flooded cropping is likely to affect microbial nitrogen cycling. For analysis of the root-associated microbiome of rice and maize in response to flooding or nitrogen fertilizer, we combine methods of microbial ecology (Next-Generation sequencing of amplicons), and a reductionist approach with pure cultures of the endophytic diazotroph Azoarus sp.. Field plots of the ICON project (Introducing non-flooded crops in rice-dominated landscapes: Impact on Carbon, nitrogen and water budgets) at the International Rice Research Institute in the Philippines were analyzed. Root-associated activity of nitrogenase gene expression was assessed by quantitative RT-PCR of nifH. For rice, expression levels were surprisingly stable, in response to non-flooded versus flooded conditions, or in response to conventional nitrogen fertilizer applications versus lack of N-fertilizer. In contrast, the active diazotrophic population of maize roots was not resistant to N-fertilization, nifH expression strongly decreased. Concordant changes in the diazotrophic resident or active communities were detected by nifH amplicon sequence analysis, based on bacterial DNA or mRNA, respectively. For high-resolution analyses of the endobiome in gnotobiotic culture, we developed a dual fluorescence reporter system for Azoarcus sp. BH72 which allows to quantify and visualize epi- and endophytic gene expression by concfocal microscopy (CLSM). This allowed us to demonstrate sites of active nitrogen fixation (gene expression) in association with rice roots. We confirmed that at low nitrogen fertilizer levels, endophytic nifH gene expression persisted in rice roots, while it was repressed in maize roots. This supports our observation of remarkable stability of nitrogen fixation in association with rice roots.

  3. A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli

    PubMed Central

    Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. PMID:24146630

  4. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501

    PubMed Central

    Zhan, Yuhua; Yan, Yongliang; Deng, Zhiping; Chen, Ming; Lu, Wei; Lu, Chao; Shang, Liguo; Yang, Zhimin; Zhang, Wei; Wang, Wei; Li, Yun; Ke, Qi; Lu, Jiasi; Xu, Yuquan; Zhang, Liwen; Xie, Zhihong; Cheng, Qi; Elmerich, Claudine; Lin, Min

    2016-01-01

    Unlike most Pseudomonas, the root-associated bacterium Pseudomonas stutzeri A1501 fixes nitrogen after the horizontal acquisition of a nitrogen-fixing (nif) island. A genome-wide search for small noncoding RNAs (ncRNAs) in P. stutzeri A1501 identified the novel P. stutzeri-specific ncRNA NfiS in the core genome, whose synthesis was significantly induced under nitrogen fixation or sorbitol stress conditions. The expression of NfiS was RNA chaperone Hfq-dependent and activated by the sigma factor RpoN/global nitrogen activator NtrC/nif-specific activator NifA regulatory cascade. The nfiS-deficient mutant displayed reduced nitrogenase activity, as well as increased sensitivity to multiple stresses, such as osmotic and oxidative stresses. Secondary structure prediction and complementation studies confirmed that a stem-loop structure was essential for NfiS to regulate the nitrogenase gene nifK mRNA synthesis and thus nitrogenase activity. Microscale thermophoresis and physiological analysis showed that NfiS directly pairs with nifK mRNA and ultimately enhances nitrogenase activity by increasing the translation efficiency and the half-life of nifK mRNA. Our data also suggest structural and functional divergence of NfiS evolution in diazotrophic and nondiazotrophic backgrounds. It is proposed that NfiS was recruited by nifK mRNA as a novel regulator to integrate the horizontally acquired nif island into host global networks. PMID:27407147

  5. Torrefaction of oil palm frond: The effect of process condition to calorific value and proximate analysis

    NASA Astrophysics Data System (ADS)

    Susanty, W.; Helwani, Z.; Zulfansyah

    2018-04-01

    Oil palm frond can be used as alternative energy source by torrefaction process. Torrefaction is a treatment process of biomass into solid fuel by heating within temperature range of 200-300°C in an inert environment. This research aims to result solid fuel through torrefaction and to study the effect of process variable interaction. Torrefaction of oil palm frond was using fixed bed horizontal reactor with operation condition of temperature (225-275 °C), time (15-45 minutes) and nitrogen flow rate (50-150 ml/min). Responses resulted were calorific value and proximate (moisture, ash, volatile matter and fixed carbon). Analysis result was processed by using Design Expert v7.0.0. Result obtained for calorific value was 17.700-19.600 kJ/kg and for the proximate were moisture range of 3-4%; ash range of 1.5-4%; volatile matter of 45-55% and fixed carbon of 37-46%. The most affecting factor signficantly towards the responses was temperature then followed by time and nitrogen flow rate.

  6. Limnological Conditions in Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina, August to September 2005, May 2006, and October 2006

    USGS Publications Warehouse

    Journey, Celeste A.; Abrahamsen, Thomas A.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Spartanburg Water System, conducted three spatial surveys of the limnological conditions in Lake William C. Bowen (Lake Bowen) and Municipal Reservoir #1 (Reservoir #1), Spartanburg County, South Carolina, during August to September 2005, May 2006, and October 2006. The surveys were conducted to identify spatial distribution and concentrations of geosmin and 2-methylisoborneol, common trophic state indicators (nutrients, transparency, and chlorophyll a), algal community structure, and stratification of the water column at the time of sampling. Screening tools such as the Carlson trophic state index, total nitrogen to total phosphorus ratios, and relative thermal resistance to mixing were used to help compare data among sites and among seasons. Water-column samples were collected at two depths at each selected site: a near-surface sample collected above a 1-meter depth and a lake-bottom sample collected at a depth of 2.5 to 7 meters, depending on the depth at the site. The degree of stratification of the water column was demonstrated by temperature-depth profiles and computed relative thermal resistance to mixing. Seasonal occurrence of thermal stratification (August to September 2005; May 2006) and de-stratification (October 2006) was evident in the depth profiles of water temperature in Lake Bowen. The most stable water-column (highest relative thermal resistance to mixing) conditions occurred in Lake Bowen during the August to September 2005 survey. The least stable water-column (destratified) conditions occurred in Lake Bowen during the October 2006 survey and Reservoir #1 during all three surveys. Changes with depth in dissolved oxygen (decreased with depth to near anoxic conditions in the hypolimnion), pH (decreased with depth), and specific conductance (increased with depth) along with thermal stratification indicated Lake Bowen was exhibiting characteristics common to both mesotrophic and eutrophic conditions. Nutrient dynamics were different in Lake Bowen during the May 2006 survey from those during the August to September 2005 and October 2006 surveys. Total organic nitrogen concentrations (total Kjeldahl nitrogen minus ammonia) remained relatively constant within the surveys and ranged from 0.15 to 0.36 milligram per liter during the period of study. Nitrate was the dominant inorganic species of nitrogen during May 2006. Ammonia was the dominant species during the August to September 2005 and October 2006 surveys. During the August and September 2005 survey, ammonia was detected only in bottom samples collected in the near anoxic hypolimnion, but during the October 2006 survey, ammonia was detected under destratified conditions in surface and bottom samples. In Lake Bowen, total phosphorus concentrations in bottom samples did not exhibit the dramatic, high values during the May 2006 and October 2006 surveys (0.009 to 0.014 milligram per liter) that were identified for the August to September 2005 survey (0.022 to 0.034 milligram per liter). Chlorophyll a concentrations appeared to vary with the species of inorganic nitrogen. Greater chlorophyll a concentrations were identified in samples from the May 2006 survey (6.8 to 15 micrograms per liter) than in the August to September 2005 (1.2 to 6.4 micrograms per liter) and October surveys (5.6 to 8.2 micrograms per liter) at all sites in Lake Bowen and Reservoir #1. For the three limnological surveys, surface concentrations of chlorophyll a and total phosphorus were well below established numerical criteria for South Carolina. In general, the computed trophic state indices indicated that mesotrophic conditions were present in Lake Bowen and Reservoir #1. The total nitrogen to total phosphorus ratios in Lake Bowen and Reservoir #1 were below 22:1 for the August to September 2005 survey, indicating a high probability of dominance by nitrogen-fixing cyanobacteria. Ratios during the May and October 2006 surveys at

  7. Nitrogen, phosphorus, organic carbon, and biochemical oxygen demand : in Florida surface waters, 1972

    USGS Publications Warehouse

    Kaufman, Matthew I.; Dysart, J.E.

    1978-01-01

    Water samples were collected during spring and autumn 1972 from about 100 surface-water sites in Florida. The samples were analyzed for the plant nutrients, nitrogen and phosphorus. In most waters, nitrogen concentrations are less than 2.0 milligrams per liter as nitrogen, and organic nitrogen is dominant. Median total nitrogen concentration for Florida surface waters is between 1.2 and 2.0 milligrams per liter as nitrogen. In samples from 85 percent of the sites, total nitrogen exceeded 0.6 milligrams per liter. Median total phosphorus concentration as phosphorus for Florida surface waters is between 0.05 and 0.1 milligrams per liter. The information will form a base useful to agencies concerned with setting concentration limits for nitrogen and phosphorus in industrial and sewage plant outfalls. (Woodard-USGS)

  8. N2-fixing legumes are linked to enhanced mineral dissolution and microbiome modulations in Neotropical rainforests

    NASA Astrophysics Data System (ADS)

    Epihov, Dimitar; Batterman, Sarah; Hedin, Lars; Saltonstall, Kristin; Hall, Jefferson; Leake, Jonathan; Beerling, David

    2017-04-01

    Legumes represent the dominant family of many tropical forests with estimates of 120 billion legume trees in the Amazon basin alone. Many rainforest legume trees form symbioses with N2-fixing bacteria. In the process of atmospheric N2-fixation large amounts of nitrogen-rich litter are generated, supplying half of all nitrogen required to support secondary rainforest succession. However, it is unclear how N2-fixers affect the biogeochemical cycling of other essential nutrients by affecting the rates of mineral dissolution and rock weathering. Here we show that N2-fixing legumes in young Panamanian rainforests promote acidification and enhance silicate rock weathering by a factor of 2 compared to non-fixing trees. We report that N2-fixers also associate with enhanced dissolution of Al- and Fe-bearing secondary minerals native to tropical oxisols. In legume-rich neighbourhoods, non-fixers benefited from raised weathering rates relative to those of legume-free zones thus suggesting a positive community effect driven by N2-fixers. These changes in weathering potential were tracked by parallel functional and structural changes in the soil and rock microbiomes. Our findings support the view that N2-fixing legumes are central components of biogeochemical cycling, associated with enhanced release of Fe- and Al-bound P and primary mineral products (Mg, Mo). Rainforest legume services therefore bear important implications to short-term C cycling related to forest growth and the long-term C cycle related to marine carbonate deposition fuelled by silicate weathering.

  9. A method for trace element determination of single Daphnia specimens using total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Mages, Margarete; Woelfl, Stefan; v. Tümpling jun, Wolf

    2001-11-01

    Two new preparation techniques for total-reflection X-ray fluorescence (TXRF) element determination of single freshwater crustacean specimens (dry weight: 3-40 μg ind -1) have been developed and tested using Daphnia pulex from a deep, oligotrophic freshwater lake located in southern Chile. Dry method: Specimens were washed with 0.2 μm filtered lake water and frozen in liquid nitrogen. The freeze-dried Daphnia specimens were weighed using an ultra-fine microbalance and placed on quartz glass carriers for TXRF analysis. Wet method: Specimens were washed with 0.2 μm filtered lake water and placed on quartz glass carriers for TXRF analysis and dried in air. The dry weight was determined using the previously established body length-dry weight relationship. Method validation for both the dry and the wet preparation method in combination with TXRF spectrometry for the element determination in small single freshwater crustaceans showed that both methods can be used for routine investigations. There were no significant differences between the dry and the wet methods concerning the elements Ca, K, Fe, Zn, Br, P, Cu, but the determination of Mn, S and Sr revealed significant differences between the two methods. It seems that the dry method yields more precise results, but the wet method is easier to handle in the field when samples cannot be fixed with liquid nitrogen.

  10. Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice

    PubMed Central

    Siddikee, Md. Ashaduzzaman; Zereen, Mst Israt; Li, Cai-Feng; Dai, Chuan-Chao

    2016-01-01

    Microbial community structure and functions of rhizosphere soil of rice were investigated after applying low and high doses of nitrogenous fertilizer and Phomopsis liquidambari. Average well color development, substrate richness, catabolic diversity and soil enzymes activities varied after applying N-fertilizer and P. liquidambari and were greater in P. liquidambari treated soil than only N-fertilization. Multivariate analysis distinctly separated the catabolic and enzymes activity profile which statistically proved alteration of microbial functional diversity. Nitrogen fertilizer altered microbial community structure revealed by the increased content of total PLFAs, specific subgroup marker PLFAs except fungal PLFAs and by the decreased ratio of G+/G−, sat/monunsat, iso/anteiso, F/B except trans/cis while P. liquidambari inoculation enhanced N-fertilization effect except increased fungal PLFA and decreased trans/cis. PCA using identified marker PLFAs revealed definite discrimination among the treatments which further statistically confirmed structural changed of microbial community. Nitrogenase activity representative of N-fixing community decreased in N-fertilizer treatment while P. liquidambari inoculation increased. In short, application of P. liquidambari with low doses of N-fertilizer improved rice growth and reduced N-fertilizer requirement by increasing enzymes activities involved in C, N and P cycling, structural and functional diversity of microbes, nitrogenase activity involved in N2 fixation and accumulation of total-N. PMID:27596935

  11. Are Visceral Proteins Valid Markers for Nutritional Status in the Burn Intensive Care Unit?

    DTIC Science & Technology

    2015-05-01

    serum CRP, haptoglobin, and α-1-antitrypsin) were measured weekly. Serum creatinine was measured daily. Urinary urea nitrogen (UUN) was measured weekly...using 24-hour urine col- lections. Nitrogen losses were calculated weekly (using UUN × 1.25) to estimate the total urinary nitrogen excretion.16...Subject Weeks Nitrogen Intake Wound Losses per Waxman Equation Urinary Urea Nitrogen Total Nitrogen Loss Nitrogen Balance % of Weeks in

  12. Nitrogen mass balance in the Brazilian Amazon: an update.

    PubMed

    Martinelli, L A; Pinto, A S; Nardoto, G B; Ometto, J P H B; Filoso, S; Coletta, L D; Ravagnani, E C

    2012-08-01

    The main purpose of this study is to perform a nitrogen budget survey for the entire Brazilian Amazon region. The main inputs of nitrogen to the region are biological nitrogen fixation occurring in tropical forests (7.7 Tg.yr(-1)), and biological nitrogen fixation in agricultural lands mainly due to the cultivation of a large area with soybean, which is an important nitrogen-fixing crop (1.68 Tg.yr(-1)). The input due to the use of N fertilizers (0.48 Tg.yr(-1)) is still incipient compared to the other two inputs mentioned above. The major output flux is the riverine flux, equal to 2.80 Tg.yr(-1) and export related to foodstuff, mainly the transport of soybean and beef to other parts of the country. The continuous population growth and high rate of urbanization may pose new threats to the nitrogen cycle of the region through the burning of fossil fuel and dumping of raw domestic sewage in rivers and streams of the region.

  13. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching.

    PubMed

    Pogoreutz, Claudia; Rädecker, Nils; Cárdenas, Anny; Gärdes, Astrid; Voolstra, Christian R; Wild, Christian

    2017-09-01

    The disruption of the coral-algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral-associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen-fixing microbes in coral holobiont functioning and breakdown. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Biomolecular Characterization of Diazotrophs Isolated from the Tropical Soil in Malaysia

    PubMed Central

    Naher, Umme Aminun; Othman, Radziah; Latif, Mohammad Abdul; Panhwar, Qurban Ali; Amaddin, Puteri Aminatulhawa Megat; Shamsuddin, Zulkifli H

    2013-01-01

    This study was conducted to evaluate selected biomolecular characteristics of rice root-associated diazotrophs isolated from the Tanjong Karang rice irrigation project area of Malaysia. Soil and rice plant samples were collected from seven soil series belonging to order Inceptisol (USDA soil taxonomy). A total of 38 diazotrophs were isolated using a nitrogen-free medium. The biochemical properties of the isolated bacteria, such as nitrogenase activity, indoleacetic acid (IAA) production and sugar utilization, were measured. According to a cluster analysis of Jaccard’s similarity coefficients, the genetic similarities among the isolated diazotrophs ranged from 10% to 100%. A dendogram constructed using the unweighted pair-group method with arithmetic mean (UPGMA) showed that the isolated diazotrophs clustered into 12 groups. The genomic DNA rep-PCR data were subjected to a principal component analysis, and the first four principal components (PC) accounted for 52.46% of the total variation among the 38 diazotrophs. The 10 diazotrophs that tested highly positive in the acetylene reduction assay (ARA) were identified as Bacillus spp. (9 diazotrophs) and Burkholderia sp. (Sb16) using the partial 16S rRNA gene sequence analysis. In the analysis of the biochemical characteristics, three principal components were accounted for approximately 85% of the total variation among the identified diazotrophs. The examination of root colonization using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) proved that two of the isolated diazotrophs (Sb16 and Sb26) were able to colonize the surface and interior of rice roots and fixed 22%–24% of the total tissue nitrogen from the atmosphere. In general, the tropical soils (Inceptisols) of the Tanjong Karang rice irrigation project area in Malaysia harbor a diverse group of diazotrophs that exhibit a large variation of biomolecular characteristics. PMID:23999588

  15. Size-fractionation and characterization of landfill leachate and the improvement of Cu{sup 2+} adsorption capacity in soil and aged refuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou Ziyang; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092; Chai Xiaoli

    2009-01-15

    Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH{sub 4}{sup +}, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW < 1 kDa) predominated in the leachate, accounting formore » 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu{sup 2+} was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48 h with leachate in the ratio of 5 g of sample per 50 ml of leachate. Cu{sup 2+} uptake by the raw soil was {approx}4.60 {mu}g/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11 {mu}g/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu{sup 2+}.« less

  16. Utilization of the terrestrial cyanobacterial sheet

    NASA Astrophysics Data System (ADS)

    Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yamaguchi, Yuji; Takenaka, Hiroyuki; Kohno, Nobuyuki

    2016-07-01

    The terrestrial nitrogen-fixing cyanobacterium, Nostoc commune, is living ranging from polar to desert. N. commune makes visible colonies composed extracellular polymeric substances. N. commune has expected to utilize for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. To exhibit the potential abilities, the N. commune sheet is made to use convenient and evaluated by plant growth and radioactive accumulation. We will discuss utilization of terrestrial cyanobacteria under closed environment.

  17. The environmental controls that govern the end product of bacterial nitrate respiration

    DOE PAGES

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; ...

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gasmore » or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.« less

  18. In vivo exposure to nitrogen dioxide (NO2) induces a decrease in calcitonin gene-related peptide (CGRP) and tachykinin immunoreactivity in guinea-pig peripheral airways.

    PubMed

    Lucchini, R E; Springall, D R; Chitano, P; Fabbri, L M; Polak, J M; Mapp, C E

    1996-09-01

    The mammalian respiratory tract is densely innervated by sensory and autonomic fibres. Subsets of the nerves contain bioactive regulatory peptides, such as substance P, calcitonin gene-related peptide (CGRP), and neurokinins. The sensory nervous system responds to inhaled irritants, resulting in a release of neuropeptides and, thus, a decrease in the peptide immunoreactivity of the fibres. We examined the effects of inhaled nitrogen dioxide (NO2), a well-known indoor and outdoor air pollutant, on pulmonary sensory neuropeptides. Guinea-pigs were exposed for 4 h to 18 parts per million (ppm) NO2 or to air (n = 5 each). At the end of the exposure, they were killed with urethane and their lungs were fixed in 1% paraformaldehyde in phosphate-buffered saline. Cryostat sections were stained with antisera to an anatomical nerve marker, protein gene product (PGP) 9.5, and to CGRP and tachykinins, utilizing the avidin-biotinylated peroxidase method. In the noncartilaginous airways (diameter < 250 microns) of NO2-exposed animals, less tachykinin- and CGRP-immunoreactive nerve fibres were found compared with controls. No change was seen in the total nerve fibre distribution (PGP 9.5). It is concluded that the peptidergic nerves of guinea-pig peripheral airways are a sensitive indicator of exposure to nitrogen dioxide.

  19. Complete Genome sequence of Burkholderia phymatum STM815T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    PubMed Central

    Moulin, Lionel; Klonowska, Agnieszka; Caroline, Bournaud; Booth, Kristina; Vriezen, Jan A.C.; Melkonian, Rémy; James, Euan K.; Young, J. Peter W.; Bena, Gilles; Hauser, Loren; Land, Miriam; Kyrpides, Nikos; Bruce, David; Chain, Patrick; Copeland, Alex; Pitluck, Sam; Woyke, Tanja; Lizotte-Waniewski, Michelle; Bristow, Jim; Riley, Margaret

    2014-01-01

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp). PMID:25197461

  20. Primary Characterization of Small RNAs in Symbiotic Nitrogen-Fixing Bacteria.

    PubMed

    Robledo, Marta; García-Tomsig, Natalia I; Jiménez-Zurdo, José I

    2018-01-01

    High-throughput transcriptome profiling (RNAseq) has uncovered large and heterogeneous populations of small noncoding RNA species (sRNAs) with potential regulatory roles in bacteria. A large fraction of sRNAs are differentially regulated and rely on protein-assisted antisense interactions to trans-encoded target mRNAs to fine-tune posttranscriptional reprogramming of gene expression in response to external cues. However, annotation and function of sRNAs are still largely overlooked in nonmodel bacteria with complex lifestyles. Here, we describe experimental protocols successfully applied for the accurate annotation, expression profiling and target mRNA identification of trans-acting sRNAs in the nitrogen-fixing α-rhizobium Sinorhizobium meliloti. The protocols presented here can be similarly applied for the characterization of trans-sRNAs in genetically tractable α-proteobacteria of agronomical or clinical relevance interacting with eukaryotic hosts.

  1. [Distribution of potentially nitrogen-fixing bacteria and its relationship with physicochemical parameters in soils with three vegetation types in the southern Colombian Amazon region].

    PubMed

    Mantilla-Paredes, Andrea J; Cardona, Gladys I; Peña-Venegas, Clara P; Murcia, Uriel; Rodríguez, Mariana; Zambrano, Maria M

    2009-12-01

    Potentially nitrogen-fixing microaerobic and aerobic bacteria were isolated from several Colombian Amazon soils (forest, pastures and chagras) and two landscapes (floodable and non floodable areas). The abundance and distribution of bacteria were evaluated, as well as their relationship with soil physical and chemical characteristics. Landscape had a direct influence on the abundance of the microaerobic bacteria, with higher numbers in forest and pasture soils in non-floodable zones. The aerobic isolates (N=51) were grouped into 19 morphologies, with the highest numbers found in forest soil in floodable zones. A higher number of aerobic morphologies was shared among forest sites (Nonmetric Multidimensional Scaling and Analysis of Similarity p<0.05), and 40% of the distribution was explained by lime percentage and Al concentration.

  2. Complete Genome sequence of Burkholderia phymatum STM815, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moulin, Lionel; Klonowska, Agnieszka; Caroline, Bournaud

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp)more » and a plasmid hosting the symbiotic functions (595,108 bp).« less

  3. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids.

    PubMed Central

    Martínez, E; Palacios, R; Sánchez, F

    1987-01-01

    Rhizobium phaseoli CFN299 forms nitrogen-fixing nodules in Phaseolus vulgaris (bean) and in Leucaena esculenta. It has three plasmids of 185, 225, and 410 kilobases. The 410-kilobase plasmid contains the nitrogenase structural genes. We have transferred these plasmids to the plasmid-free strain Agrobacterium tumefaciens GMI9023. Transconjugants containing different combinations of the R. phaseoli plasmids were obtained, and they were exhaustively purified before nodulation was assayed. Only transconjugants harboring the 410-kilobase plasmid nodulate P. vulgaris and L. esculenta. Nodules formed by all such transconjugants are able to reduce acetylene. Transconjugants containing the whole set of plasmids from CFN299 nodulate better and fix more nitrogen than the transconjugants carrying only the Sym plasmid. Microscopic analysis of nodules induced by A. tumefaciens transconjugants reveals infected cells and vascular bundles. None of the A. tumefaciens transconjugants, not even the one with the whole set of plasmids from CFN299, behaves in symbiosis like the original R. phaseoli strain; the transconjugants produce fewer nodules and have lower acetylene reduction (25% as compared to the original R. phaseoli strain) and more amyloplasts per nodule. More than 2,000 bacterial isolates from nodules of P. vulgaris and L. esculenta formed by the transconjugants were analyzed by different criteria. Not a single rhizobium could be detected. Our results show that R. phaseoli plasmids may be expressed in the A. tumefaciens background and direct the formation of effective, differentiated nodules. Images PMID:3584072

  4. Nitrogen-Fixing Heterocystous Cyanobacteria in the Tonian Period.

    PubMed

    Pang, Ke; Tang, Qing; Chen, Lei; Wan, Bin; Niu, Changtai; Yuan, Xunlai; Xiao, Shuhai

    2018-02-19

    Cyanobacteria were the ultimate ancestor of all plastids and, for much of Earth's history, the only source of biogenic oxygen and a major source of fixed carbon and nitrogen. One cyanobacterial clade, subsections IV+V, is characterized by multicellularity and cell differentiation, with many members bearing specialized nitrogen-fixing (or diazotrophic) heterocysts and encysting akinetes [1-3]. Molecular clock estimates of the divergence time of this clade are highly variable, ranging from ∼2,000 Ma (mega-annum) [4-9] to ∼500 Ma [10]. The older estimates are invariably calibrated by putative akinete fossils from Paleoproterozoic-Mesoproterozoic rocks around 2,100-1,400 Ma [3, 11, 12]. However, the interpretation of these fossils as akinetes has been questioned [13], and the next oldest akinete and heterocyst fossils are ∼410 Ma [14]. Thus, the scarcity of reliable heterocystous cyanobacterial fossils significantly hampers our understanding of the evolution of complex multicellularity among cyanobacteria, their role in regulating geochemical cycles in the geological past, and our ability to calibrate cyanobacterial molecular clocks. Here, we report Tonian (∼1,000-720 Ma) filamentous cyanobacteria that are characterized by large cells, binary fission (for filament elongation), hormogonia (for asexual reproduction and dispersal), probable akinetes (for survival in adverse conditions), and by implication, diazotrophic heterocysts. The new fossils provide a minimum age calibration on the divergence of subsections IV+V and place a firm constraint on the evolution of akinetes and heterocysts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Nitrogen Fixed By Cyanobacteria Is Utilized By Deposit-Feeders

    PubMed Central

    Karlson, Agnes M. L.; Gorokhova, Elena; Elmgren, Ragnar

    2014-01-01

    Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio) of the animals. Since nitrogen-fixing cyanobacteria have δ15N close to -2‰, we expected the δ15N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance) in the benthic fauna after the bloom. The three surface-feeding species (Monoporeia affinis, Macoma balthica and Marenzelleria arctia) showed significantly lower δ15N values after the bloom, while the sub-surface feeder Pontoporeia femorata did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic interactions, and intra- and interspecific competition. PMID:25105967

  6. Root-Zone-Specific Oxygen Tolerance of Azospirillum spp. and Diazotrophic Rods Closely Associated with Kallar Grass.

    PubMed

    Hurek, T; Reinhold, B; Fendrik, I; Niemann, E G

    1987-01-01

    The effect of oxygen on N(2)-dependent growth of two Azospirillum strains and two diazotrophic rods closely associated with roots of Kallar grass (Leptochloa fusca) was studied. To enable precise comparison, bacteria were grown in dissolved-oxygen-controlled batch and continuous cultures. Steady states were obtained from about 1 to 30 muM O(2), some of them being carbon limited. All strains needed a minimum amount of oxygen for N(2)-dependent growth. Nitrogen contents between 10 and 13% of cell dry weight were observed. The response of steady-state cultures to increasing O(2) concentrations suggested that carbon limitation shifted to internal nitrogen limitation when N(2) fixation became so low that the bacteria could no longer meet their requirements for fixed nitrogen. For Azospirillum lipoferum Rp5, increase of the dilution rate resulted in decreased N(2) fixation in steady-state cultures with internal nitrogen limitation. Oxygen tolerance was found to be strain specific in A. lipoferum with strain Sp59b as a reference organism. Oxygen tolerance of strains from Kallar grass was found to be root zone specific. A. halopraeferens Au 4 and A. lipoferum Rp5, predominating on the rhizoplane of Kallar grass, and strains H6a2 and BH72, predominating in the endorhizosphere, differed in their oxygen tolerance profiles. Strains H6a2 and BH72 still grew and fixed nitrogen in steady-state cultures at O(2) concentrations exceeding those which absolutely inhibited nitrogen fixation of both Azospirillum strains. It is proposed that root-zone-specific oxygen tolerance reflects an adaptation of the isolates to the microenvironments provided by the host plant.

  7. The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters

    PubMed Central

    Black, Michael; Moolhuijzen, Paula; Chapman, Brett; Barrero, Roberto; Howieson, John; Hungria, Mariangela; Bellgard, Matthew

    2012-01-01

    The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core ‘symbiome’—the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome. PMID:24704847

  8. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders.

    PubMed

    Karlson, Agnes M L; Gorokhova, Elena; Elmgren, Ragnar

    2014-01-01

    Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio) of the animals. Since nitrogen-fixing cyanobacteria have δ(15)N close to -2‰, we expected the δ(15)N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance) in the benthic fauna after the bloom. The three surface-feeding species (Monoporeia affinis, Macoma balthica and Marenzelleria arctia) showed significantly lower δ(15)N values after the bloom, while the sub-surface feeder Pontoporeia femorata did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic interactions, and intra- and interspecific competition.

  9. Limnology of Big Lake, south-central Alaska, 1983-84

    USGS Publications Warehouse

    Woods, Paul F.

    1992-01-01

    The limnological characteristics and trophic state of Big Lake in south-central Alaska were determined from the results of an intensive study during 1983-84. The study was begun in response to concern over the potential for eutrophication of Big Lake, which has experienced substantial residential development and recreational use because of its proximity to Anchorage. The east and west basins of the 1,213 square-hectometer lake were each visited 36 times during the 2-year study to obtain a wide variety of physical, chemical, and biological data. During 1984, an estimate was made of the lake's annual primary production. Big Lake was classified as oligotrophic on the basis of its annual mean values for total phosphorus (9.5 micrograms per liter), total nitrogen (209 micrograms per liter), chlorophyll-a (2.5 micrograms per liter), secchi-disc transparency (6.3 meters), and its mean daily integral primary production of 81.1 milligrams of carbon fixed per square meter. The lake was, however, uncharacteristic of oligotrophic lakes in that a severe dissolved-oxygen deficit developed within the hypolimnion during summer stratification and under winter ice cover. The summer dissolved-oxygen deficit resulted from the combination of strong and persistent thermal stratification, which developed within 1 week of the melting of the lake's ice cover in May, and the failure of the spring circulation to fully reaerate the hypolimnion. The autumn circulation did reaerate the entire water column, but the ensuing 6 months of ice and snow cover prevented atmospheric reaeration of the water column and led to development of the winter dissolved-oxygen deficit. The anoxic conditions that eventually developed near the lake bottom allowed the release of nutrients from the bottom sediments and facilitated ammonification reactions. These processes yielded hypolimnetic concentrations of nitrogen and phosphorus compounds, which were much larger than the oligotrophic concentrations measured within the epilimnion. An analysis of nitrogen-to-phosphorus ratios showed that nitrogen was the nutrient most likely to limit phytoplankton growth during the summer. Although mean chlorophyll-a concentrations were at oligotrophic levels, concentrations did peak at 46.5 micrograms per liter in the east basin. During each year and in both basins, the peak chlorophyll-a concentrations were measured within the hypolimnion because the euphotic zone commonly was deeper than the epilimnion during the summer. The annual integral primary production of Big Lake in 1984 was 29.6 grams of carbon fixed per square meter with about 90 percent of that produced during May through October. During this time period, the lake received 76 percent of its annual input of solar irradiance. Monthly integral primary production, in milligrams of carbon fixed per square meter, ranged from 1.5 in January to 7,050 in July. When compared with the range of annual integral primary production measured in 50 International Biological Program lakes throughout the world, Big Lake had a low value of annual integral primary production. The results of this study lend credence to the concerns about the potential eutrophication of Big Lake. Increases in the supply of oxygen-demanding materials to Big Lake could worsen the hypolimnetic dissolved-oxygen deficit and possibly shift the lake's trophic state toward mesotrophy or eutrophy.

  10. Determination of kjeldahl nitrogen in fertilizers by AOAC official methods 978.02: effect of copper sulfate as a catalyst.

    PubMed

    Abrams, Dean; Metcalf, David; Hojjatie, Michael

    2014-01-01

    In AOAC Official Method 955.04, Nitrogen (Total) in Fertilizers, Kjeldahl Method, fertilizer materials are analyzed using mercuric oxide or metallic mercury HgO or Hg) as a catalyst. AOAC Official Methods 970.02, Nitrogen (Total) in Fertilizers is a comprehensive total nitrogen (including nitrate nitrogen) method adding chromium metal. AOAC Official Method 978.02, Nitrogen (Total) in Fertilizers is a modified comprehensive nitrogen method used to measure total nitrogen in fertilizers with two types of catalysts. In this method, either copper sulfate or chromium metal is added to analyze for total Kjeldahl nitrogen. In this study, the part of AOAC Official Method 978.02 that is for nitrate-free fertilizer products was modified. The objective was to examine the necessity of copper sulfate as a catalyst for the nitrate-free fertilizer products. Copper salts are not environmentally friendly and are considered pollutants. Products such as ammonium sulfate, diammonium phosphate, monoammonium phosphate, urea-containing fertilizers such as isobutylene diurea (IBDU), and urea-triazone fertilizer solutions were examined. The first part of the study was to measure Kjeldahl nitrogen as recommended by AOAC Official Method 978.02. The second part of the study was to exclude the addition of copper sulfate from AOAC Official Method 978.02 to examine the necessity of copper sulfate as a catalyst in nitrate-free fertilizers, which was the primary objective. Our findings indicate that copper sulfate can be eliminated from the method with no significant difference in the results for the nitrogen content of the fertilizer products.

  11. Effect of the Organic Loading Rate Increase and the Presence of Zeolite on Microbial Community Composition and Process Stability During Anaerobic Digestion of Chicken Wastes.

    PubMed

    Ziganshina, Elvira E; Belostotskiy, Dmitry E; Ilinskaya, Olga N; Boulygina, Eugenia A; Grigoryeva, Tatiana V; Ziganshin, Ayrat M

    2015-11-01

    This study investigates the effect of the organic loading rate (OLR) increase from 1.0 to 3.5 g VS L(-1) day(-1) at constant hydraulic retention time (HRT) of 35 days on anaerobic reactors' performance and microbial diversity during mesophilic anaerobic digestion of ammonium-rich chicken wastes in the absence/presence of zeolite. The effects of anaerobic process parameters on microbial community structure and dynamics were evaluated using a 16S ribosomal RNA gene-based pyrosequencing approach. Maximum 12 % of the total ammonia nitrogen (TAN) was efficiently removed by zeolite in the fixed zeolite reactor (day 87). In addition, volatile fatty acids (VFA) in the fixed zeolite reactor accumulated in lower concentrations at high OLR of 3.2-3.5 g VS L(-1) day(-1). Microbial communities in the fixed zeolite reactor and reactor without zeolite were dominated by various members of Bacteroidales and Methanobacterium sp. at moderate TAN and VFA levels. The increase of the OLR accompanied by TAN and VFA accumulation and increase in pH led to the predominance of representatives of the family Erysipelotrichaceae and genera Clostridium and Methanosarcina. Methanosarcina sp. reached relative abundances of 94 and 57 % in the fixed zeolite reactor and reactor without zeolite at the end of the experimental period, respectively. In addition, the diminution of Synergistaceae and Crenarchaeota and increase in the abundance of Acholeplasmataceae in parallel with the increase of TAN, VFA, and pH values were observed.

  12. Symbiotic N2-Fixer Community Composition, but Not Diversity, Shifts in Nodules of a Single Host Legume Across a 2-Million-Year Dune Chronosequence.

    PubMed

    Birnbaum, Christina; Bissett, Andrew; Teste, Francois P; Laliberté, Etienne

    2018-04-16

    Long-term soil age gradients are useful model systems to study how changes in nutrient limitation shape communities of plant root mutualists because they represent strong natural gradients of nutrient availability, particularly of nitrogen (N) and phosphorus (P). Here, we investigated changes in the dinitrogen (N 2 )-fixing bacterial community composition and diversity in nodules of a single host legume (Acacia rostellifera) across the Jurien Bay chronosequence, a retrogressive 2 million-year-old sequence of coastal dunes representing an exceptionally strong natural soil fertility gradient. We collected nodules from plants grown in soils from five chronosequence stages ranging from very young (10s of years; associated with strong N limitation for plant growth) to very old (> 2,000,000 years; associated with strong P limitation), and sequenced the nifH gene in root nodules to determine the composition and diversity of N 2 -fixing bacterial symbionts. A total of 335 unique nifH gene operational taxonomic units (OTUs) were identified. Community composition of N 2 -fixing bacteria within nodules, but not diversity, changed with increasing soil age. These changes were attributed to pedogenesis-driven shifts in edaphic conditions, specifically pH, exchangeable manganese, resin-extractable phosphate, nitrate and nitrification rate. A large number of common N 2 -fixing bacteria genera (e.g. Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium) belonging to the Rhizobiaceae family (α-proteobacteria) comprised 70% of all raw sequences and were present in all nodules. However, the oldest soils, which show some of the lowest soil P availability ever recorded, harboured the largest proportion of unclassified OTUs, suggesting a unique set of N 2 -fixing bacteria adapted to extreme P limitation. Our results show that N 2 -fixing bacterial composition varies strongly during long-term ecosystem development, even within the same host, and therefore rhizobia show strong edaphic preferences.

  13. Study on grain quality forecasting method and indicators by using hyperspectral data in wheat

    NASA Astrophysics Data System (ADS)

    Huang, Wenjiang; Wang, Jihua; Liu, Liangyun; Wang, Zhijie; Tan, Changwei; Song, Xiaoyu; Wang, Jingdi

    2005-01-01

    Field experiments were conducted to examine the influence factors of cultivar, nitrogen application and irrigation on grain protein content, gluten content and grain hardness in three winter wheat cultivars under four levels of nitrogen and irrigation treatments. Firstly, the influence of cultivars and environment factors on grain quality were studied, the effective factors were cultivars, irrigation, fertilization, et al. Secondly, total nitrogen content around winter wheat anthesis stage was proved to be significant correlative with grain protein content, and spectral vegetation index significantly correlated to total nitrogen content around anthesis stage were the potential indicators for grain protein content. Accumulation of total nitrogen content and its transfer to grain is the physical link to produce the final grain protein, and total nitrogen content at anthesis stage was proved to be an indicator of final grain protein content. The selected normalized photochemical reflectance index (NPRI) was proved to be able to predict of grain protein content on the close correlation between the ratio of total carotenoid to chlorophyll a and total nitrogen content. The method contributes towards developing optimal procedures for predicting wheat grain quality through analysis of their canopy reflected spectrum at anthesis stage. Regression equations were established for forecasting grain protein and dry gluten content by total nitrogen content at anthesis stage, so it is feasible for forecasting grain quality by establishing correlation equations between biochemical constitutes and canopy reflected spectrum.

  14. The Co-Distribution of Nitrifying Archaea and Diazotrophic Bacteria in Geothermal Springs

    NASA Astrophysics Data System (ADS)

    Hamilton, T. L.; Jewell, T. N. M.; de la Torre, J. R.; Boyd, E. S.

    2014-12-01

    Microbial processes that regulate availability of nutrients play key roles in shaping community composition. All life requires fixed nitrogen (N), and its bioavailability is what often limits ecosystem productivity. Biological nitrogen fixation, or the reduction of dinitrogen (N2) to ammonia (NH3), is a keystone process in N limited ecosystems, providing nitrogen for members of the community. N2 fixing organisms likely represent a 'bottom up control' on the structure of communities that develop in N limited environments. N2 fixation is catalyzed by a limited number of metabolically diverse bacteria and some methanogenic archaea and occurs in a variety of physically and geochemically diverse environments. Nitrification, or the sequential oxidation of NH4+ to nitrite (NO2-) and ultimately nitrate (NO3-), is catalyzed by several lineages of Proteobacteria at temperatures of < 62°C and by members of the Thaumarcheota at temperatures up to 90°C. Nitrification can thus be considered a 'top down control' on the structure of communities that develop in N limited environments. Our research in Yellowstone National Park (YNP) reveals a strong correspondence between the distribution of ammonia oxidizing archaea (AOA) and nitrogen fixing aquificae (NFA) in nitrogen-limited geothermal hot springs over large environmental gradients. Based on the physiology of AOA and NFA, we propose that the strong co-distributional pattern results from interspecies interactions, namely competition for bioavailable ammonia. Our recent work has shown that in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter; pH 7.1, 86.4°C), the dissimilar affinities for NH4 result in AOA metabolism maintaining a low NH4(T) pool and selecting for inclusion of NFA during the assembly of these communities. Here, we examine in situ physiological interactions of AOA and NFA, tracking changes in transcript levels of key genes involved in nitrogen metabolism and carbon fixation of these organisms in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter). These data suggest affinity for substrate and electron donor use play key roles in structuring the biodiversity of this hydrothermal community, and likely influences the structure of other N limited hydrothermal and non-hydrothermal ecosystems.

  15. The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5.

    PubMed

    Therien, Jesse B; Artz, Jacob H; Poudel, Saroj; Hamilton, Trinity L; Liu, Zhenfeng; Noone, Seth M; Adams, Michael W W; King, Paul W; Bryant, Donald A; Boyd, Eric S; Peters, John W

    2017-01-01

    The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro , with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.

  16. Potential for Nitrogen Fixation and Nitrification in the Granite-Hosted Subsurface at Henderson Mine, CO

    PubMed Central

    Swanner, Elizabeth D.; Templeton, Alexis S.

    2011-01-01

    The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys cataloged a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO, USA (Sahl et al., 2008). The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4+. The reported fluid chemistry included N2, NH4+ (5–112 μM), NO2− (27–48 μM), and NO3− (17–72 μM). In this study, the correlation between low NH4+ concentrations in dominantly meteoric fluids and higher NH4+ in rock-reacted fluids is used to hypothesize that NH4+ is sourced from NH4+-bearing biotite. However, biotite samples from the host rocks and ore-body minerals were analyzed by Fourier transform infrared (FTIR) microscopy and none-contained NH4+. However, the nitrogenase-encoding gene nifH was successfully amplified from DNA of the fluid sample with high NH4+, suggesting that subsurface microbes have the capability to fix N2. If so, unregulated nitrogen fixation may account for the relatively high NH4+ concentrations in the fluids. Additionally, the amoA and nxrB genes for archaeal ammonium monooxygenase and nitrite oxidoreductase, respectively, were amplified from the high NH4+ fluid DNA, while bacterial amoA genes were not. Putative nitrifying organisms are closely related to ammonium-oxidizing Crenarchaeota and nitrite-oxidizing Nitrospira detected in other subsurface sites based upon 16S rRNA sequence analysis. Thermodynamic calculations underscore the importance of NH4+ as an energy source in a subsurface nitrification pathway. These results suggest that the subsurface microbial community at Henderson is adapted to the low nutrient and energy environment by their capability of fixing nitrogen, and that fixed nitrogen may support subsurface biomass via nitrification. PMID:22190904

  17. The role of nitrogen fixation in neotropical dry forests: insights from ecosystem modeling and field data

    NASA Astrophysics Data System (ADS)

    Trierweiler, A.; Xu, X.; Gei, M. G.; Powers, J. S.; Medvigy, D.

    2016-12-01

    Tropical dry forests (TDFs) have immense functional diversity and face multiple resource constraints (both water and nutrients). Legumes are abundant and exhibit a wide diversity of N2-fixing strategies in TDFs. The abundance and diversity of legumes and their interaction with N2-fixing bacteria may strongly control the coupled carbon-nitrogen cycle in the biome and influence whether TDFs will be particularly vulnerable or uniquely adapted to projected global change. However, the importance of N2-fixation in TDFs and the carbon cost of acquiring N through symbiotic relationships are not fully understood. Here, we use models along with field measurements to examine the role of legumes, nitrogen fixation, and plant-symbiont nutrient exchanges in TDFs. We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs. The new version incorporates plant-mycorrhizae interactions and multiple resource constraints (carbon, nitrogen, phosphorus, and water). We represent legumes and other functional groups found in TDFs with a range of resource acquisition strategies. In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies (e.g. N2-fixing bacteria and mycorrhizal fungi) according to the nutrient limitation status. We test (i) the model's performance against a nutrient gradient of field sites in Costa Rica and (ii) the model's sensitivity to the carbon cost to acquire N through fixation and mycorrhizal relationships. We also report on simulated tree community responses to ongoing field nutrient fertilization experiments. We found that the inclusion of the N2-fixation legume plant functional traits were critical to reproducing community dynamics of Costa Rican field TDF sites and have a large impact on forest biomass. Simulated ecosystem fixation rates matched the magnitude and temporal patterns of field measured fixation. Our results show that symbiotic nitrogen fixation plays an important role in tropical dry forests and biomass accumulation. Also, we suggest that fixation's tight link to the rainy season could result in potential nutrient cycling vulnerabilities with projected rainfall changes.

  18. The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5

    DOE PAGES

    Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; ...

    2017-07-12

    Here, the first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogenmore » production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.« less

  19. The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5

    PubMed Central

    Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; Hamilton, Trinity L.; Liu, Zhenfeng; Noone, Seth M.; Adams, Michael W. W.; King, Paul W.; Bryant, Donald A.; Boyd, Eric S.; Peters, John W.

    2017-01-01

    The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities. PMID:28747909

  20. Altered Nitrogenous Pools Induced by the Azolla-Anabaena Azolla Symbiosis

    PubMed Central

    Newton, Jack W.; Cavins, James F.

    1976-01-01

    The free amino acid and ammonia pools of Azolla caroliniana were analyzed by quantitative column chromatography on columns capable of separating all of the nitrogenous constituents normally found in physiological fluids. Comparisons were made of plants containing symbiotic algae and grown on nitrogen-free media, plants grown on media containing nitrate, and algae-free plants also grown on nitrate media. The major feature of the data was a very high level of intracellular ammonia found in plants which contain N2-fixing algal symbionts. In addition to the more usual amino acids, serine and cystathionine were found in the free amino acid pool. PMID:16659770

Top