NASA Astrophysics Data System (ADS)
Hines, M. E.; Bonzongo, J. J.; Barkay, T.; Horvat, M.; Faganeli, J.
2001-12-01
The Idrija Mine is the second largest Hg mine in the world, which operated for 500 years before recently closing. More than five million tons of ore were mined with only 73% recovered. Hg-laden tailings still line the banks. Exhausts from stacks and mineshafts caused elevated levels of airborne Hg, most of which was deposited in the Idrija basin leading to elevated Hg levels in surficial soils. Hg is continually being transported downstream with approximately 1,500 kg per year entering the northern Adriatic Sea 100 km away. Multidisciplinary studies were conducted on samples collected throughout the Idrija and Soca River systems and waters and sediments in the Gulf of Trieste including Hg speciation, Hg transformation activities in sediments and soils, and the presence and expression of bacterial Hg resistance (mer) genes. Total Hg in the Idrija River increased from <3 to >300 ng/L with MeHg accounting for about 0.5%. Concentrations decreased downstream, but increased again in the Soca River and in the estuary with MeHg accounting for nearly 1.5% of the total. However, while bacteria upstream of the mine did not contain mer genes, such genes were detected in bacteria collected downstream for nearly 40 km, and these genes were transcribed. Total Hg levels decreased offshore, but values over 30 ng/L were noted in bottom waters. MeHg concentrations in the Gulf were highest in bottom waters. Sediments near the river mouth contained 40 micro-g/g total Hg with MeHg concentrations of about 3 ng/g. Sediments several km into the Gulf contained 50-fold less total Hg but only 10-fold less MeHg that decreased with depth in the sediment. Hg in sediment pore waters varied between 1 and 8 ng/L, with MeHg accounting for about 30%. Hg methylation and MeHg demethylation were active in Gulf sediments with highest activities near the surface. MeHg was degraded by an oxidative pathway with >97% of the C released from MeHg as carbon dioxide. Hg methylation depth profiles resembled profiles of dissolved MeHg. Despite the closure of the Idrija Mine, Hg-laden waters still strongly impact the riverine, estuarine, and marine systems. Organisms in the Idrija River responded to Hg stress, and high Hg levels persist into the Gulf. Increases in total Hg and MeHg in the estuary demonstrate the remobilization of Hg, presumably as HgS dissolution and recycling. Gulf sediments actively produce MeHg, which enters bottoms waters and the marine food chain.
Uptake of selenium and mercury by captive mink: Results of a controlled feeding experiment.
Evans, R D; Grochowina, N M; Basu, N; O'Connor, E M; Hickie, B E; Rouvinen-Watt, K; Evans, H E; Chan, H M
2016-02-01
Captive, juvenile, ranch-bred, male mink (Neovison vison) were fed diets containing various concentrations of methyl-mercury (MeHg) and selenium (Se) for a period of 13 weeks and then sacrificed to determine total Hg levels in fur, blood, brain, liver and kidneys and total Se concentrations in brain tissue. As MeHg concentrations in the diet increased, concentrations of total Hg in the tissues also increased with the highest level occurring in the fur > liver = kidney > brain > blood. Concentrations of Hg in the fur were correlated (r(2) > 0.97) with liver, kidney, blood and brain concentrations. The addition of Se to the mink diet did not appear to affect most tissue concentrations of total Hg nor did it affect the partitioning of Hg between the liver:blood, kidney:blood and brain:blood; however, partitioning of Hg between fur and blood was apparently affected. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Total hair mercury in children from a coastal population in Cananéia, São Paulo State, Brazil].
Farias, Luciana A; Santos, Nathália Renata dos; Favaro, Déborah I T; Braga, Elisabete S
2008-10-01
Mercury (Hg) levels in hair are directly related to eating habits, especially fish consumption by coastal populations with a large contingent of traditional fishing families. This study assessed total Hg levels in children's hair. The study group was selected from three public elementary schools in Cananéia, São Paulo State, Brazil (ages 4 to 12 years). The results (median and range) for total Hg levels in children's hair were: 0.04 mg.kg-1 (0.01-0.77 mg.kg-1), 0.39 mg.kg-1 (< 0.01-3.33 mg.kg-1), and 0.39 mg.kg-1 (< 0.01-2.81 mg.kg-1) for schools ES1, ES2, and ES3, respectively. The values were well below the level set by World Health Organization for an adult population unexposed to Hg (2.0 mg.kg-1). However, since there are no existing reference values for total Hg in children's hair, these results can be used as a contribution to establishing reference values for total hair Hg in Brazilian children living in coastal areas.
Mercury in fish of the Madeira river (temporal and spatial assessment), Brazilian Amazon.
Bastos, Wanderley R; Dórea, José G; Bernardi, José Vicente E; Lauthartte, Leidiane C; Mussy, Marilia H; Lacerda, Luiz D; Malm, Olaf
2015-07-01
The Madeira River is the largest tributary of the Amazon River Basin and one of the most impacted by artisanal gold-mining activities, deforestation for agricultural projects, and recent hydroelectric reservoirs. Total Hg (and methylmercury-MeHg) concentrations was determined in 3182 fish samples of 84 species from different trophic levels as a function of standard size. Species at the top of the trophic level (Piscivorous, Carnivorous) showed the highest mean total Hg concentrations (51-1242 µg/kg), Planctivorous and Omnivorous species showed intermediate total Hg concentrations (26-494 µg/kg), while Detritivorous and Herbivorous species showed the lowest range of mean total Hg concentrations (9-275 µg/kg). Significant correlations between fish size (standard length) and total Hg concentrations were seen for Planctivorous (r=0.474, p=0.0001), Piscivorous (r=0.459, p=0.0001), Detritivorous (r=0.227, p=0.0001), Carnivorous (r=0.212, p=0.0001), and Herbivorous (r=0.156, p=0.01), but not for the Omnivorous species (r=-0.064, p=0.0685). Moreover, fish trophic levels influenced the ratio of MeHg to total Hg (ranged from 70% to 92%). When adjusted for standard body length, significant increases in Hg concentrations in the last 10 years were species specific. Spatial differences, albeit significant for some species, were not consistent with time trends for environmental contamination from past alluvial gold mining activities. Fish-Hg bioaccumulation is species specific but fish feeding strategies are the predominant influence in the fish-Hg bioaccumulation pattern. Copyright © 2015 Elsevier Inc. All rights reserved.
Unexpectedly high mercury level in pelleted commercial fish feed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, M.H.; Cech, J.J. Jr.
1998-10-01
An unexpectedly high mercury (Hg) level was found in a pelleted commercial fish feed used to feed fish in laboratory and fish farm settings. Mean total Hg (T-Hg) concentration in the commercial fish pellets was 66 ppb. Mean total selenium (T-Se) concentration in the pellets was 1,120 ppb (ranging from 790 to 1,360 ppb). Total Hg and Se in the whole blood of Sacramento blackfish and in the fish feed were determined by inductively coupled plasma-mass spectrometry (ICP-MS). During a 10-week sampling period T-Hg in blood fluctuated between 35 and 56 ppb. A highly significant, positive correlation was found betweenmore » T-Hg in the fish blood and in the fish feed through the sampling period. On the other hand, no correlation was found between T-Se in the fish feed and T-Hg or T-Se blood level. Researchers working with fish in Hg studies need to know that fish pellets may contain Hg and to consider the influence of these pellets in their results.« less
Guentzel, Jane L; Portilla, Enrique; Keith, Katherine M; Keith, Edward O
2007-12-15
The Alvarado Lagoon System (ALS) is located within the Papaloapan River Basin in southern Veracruz, Mexico. The ALS is a shallow system (2 m) connected to the Gulf of Mexico through a narrow sea channel. There are a large number of riverbank communities within the ALS that are dependent upon its biological productivity for comestible and economic subsistence. The purpose of this project was to determine the levels of mercury in water, sediment, fish, and hair samples from within the Papaloapan River Basin and to characterize the risk of Hg exposure to the individuals that reside in these communities. Water and fish samples were collected during the wet (September 2005) and dry (March 2003 and 2005) seasons. Hair samples, dietary surveys, and sediment samples were obtained during the wet and dry seasons of 2005. Total Hg in the water column ranged from 1.0 to 12.7 ng/L. A strong correlation (R(2)=0.82; p<0.001) between total Hg and total suspended solids in the water column suggests that particulate matter is a transport mechanism for Hg within the lagoon system. Total Hg in the sediments ranged from 27.5 to 90.5 ng Hg/g dry weight with no significant difference between the 2005 wet and dry seasons. There was a mild, but significant, correlation between total Hg and % carbon for the March 2005 sediment samples (R(2)=0.435; p=0.020), suggesting that Hg is associated with organic matter on the solid phase. Concentrations of total Hg in fish and shellfish harvested from the ALS ranged from 0.01 to 0.35 microg Hg/g wet. The levels of total Hg in hair ranged from 0.10 to 3.36 microg Hg/g (n=47) and 58% of the samples were above 1.00 microg Hg/g. The findings from this study suggest that individuals who frequently consume fish and shell fish containing low levels of Hg (<0.3 microg/g) can accumulate low to moderate body burdens of Hg, as indicated by hair Hg concentrations>1.0 microg/g, and may be at risk for experiencing low dose mercury toxicity.
Klenavic, Katherine; Champoux, Louise; Mike, O'Brien; Daoust, Pierre-Y; Evans, R Douglas; Evans, Hayla E
2008-11-01
Total mercury (Hg) concentrations were measured in the fur, brain and liver of wild mink (Mustela vison) and river otters (Lontra canadensis) collected from eastern and Atlantic Canada. Total Hg concentrations in fur were strongly correlated with levels in the brain and liver. There was no difference in tissue concentrations between male and female mink; however, female otters had significantly higher fur, brain and liver Hg levels than males. Similarly, there was not a significant relationship between Hg concentration and age of mink, whereas in otters, Hg concentrations in all three tissues decreased significantly with age. In both species, only a very small percentage of the variability in Hg concentration was explained by age. After adjusting the data for site-to-site differences in Hg levels, Hg concentrations in the fur of mink infected by the parasite, Dioctophyma renale, were found to be significantly higher than Hg levels in uninfected mink.
Nam, Dong-Ha; Adams, Douglas H; Reyier, Eric A; Basu, Niladri
2011-05-01
Tissue levels of mercury (Hg; total, organic) and selenium (Se) were assessed in juvenile lemon sharks (Negaprion brevirostris) from Florida nearshore waters collected during a harmful algal bloom (HAB, brevetoxin) event and compared with sharks not exposed to HABs. In all sharks studied, total Hg levels in the muscle were generally present in a molar excess over Se (which may protect against Hg toxicity) and mean muscle Hg levels (0.34 microg/g) exceed safe human consumption guidelines. While there was generally no difference in tissue Hg and Se levels following exposure of sharks to HABs, hepatic Hg levels were significantly lower (56% reduction) in the HAB-exposed sharks compared to controls. As Hg and HABs are globally increasing in scope and magnitude, further work is warranted to assess their interactions and biotic impacts within aquatic ecosystems, especially for a species such as the lemon shark that is classified as a near-threatened species by the International Union for the Conservation of Nature.
Delaune, R D; Gambrell, R P; Jugsujinda, Aroon; Devai, Istavan; Hou, Aixin
2008-07-15
Concentration of total Hg, methyl Hg, and other heavy metals were determined in sediment collected along a salinity gradient in a Louisiana Gulf Coast estuary. Surface sediment was collected at established coordinates (n = 292) along a salinity gradient covering Lake Maurepas, Lake Pontchartrain, Lake Borgne and the Chandeleur Sound located in the 12,170 km(2) Pontchartrain basin estuary southeastern coastal Louisiana. Lake Maurepas sediment with lower salinity contained higher levels of methyl Hg (0.80 microg/kg) than Lake Pontchartrain (0.55 microg/kg). Lake Maurepas sediment also had higher levels of total Hg (98.0 microg/kg) as compared to Lake Pontchartrain (67.0 microg/kg). Average total Hg content of Lake Borgne and the Chandeleur Sound sediment was 24.0 microg/kg dry sediment and methyl Hg content averaged 0.21 microg/kg dry sediment. Methyl Hg content of sediment was positively correlated with total Hg, organic matter and clay content of sediment. Methyl Hg was inversely correlated with salinity, sediment Eh and sand content. Total Hg and methyl Hg decreased with increase in salinity in the order of Lake Maurepas > Lake Pontchartrain > Lake Borgne/ the Chandeleur Sound. Lake Maurepas containing several times higher amount of methyl Hg in sediment as compared to Lake Pontchartrain and Lake Borgne and the Chandeleur Sound is an area that could serve as potential source of mercury to the aquatic food chain. Methyl Hg content of sediment in the estuary could be predicted by the equation: Methyl Hg = 0.11670-0.0625 x Salinity + 0.05349 x O.M. + 0.00513 x Total Hg - 0.00250 x Clay. Concentrations of other toxic heavy metals (Pb, Cd, Ni, Cu and Zn) in sediment were not elevated and was statistically correlated with sediment texture and iron and aluminum content of sediment.
Bank, M.S.; Loftin, C.S.; Jung, R.E.
2005-01-01
Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (BBWM; a paired, gauged watershed treated with bimonthly applications (25 kg/ha/yr) of ammonium sulfate [(NH4)(2)SO4]) since 1989), and Shenandoah National Park (SNP), Virginia. MeHg comprised 73-97% of total Hg in the larval salamander composite samples from ANP. At BBWM we detected significantly higher total Hg levels in larvae from the (NH4)(2)SO4 treatment watershed. At ANP total Hg concentrations in salamander larvae were significantly higher from streams in unburned watersheds in contrast with larval samples collected from streams located in watersheds burned by the 1947 Bar Harbor fire. Additionally, total Hg levels were significantly higher in salamander larvae collected at ANP in contrast with SNP. Our results suggest that watershed-scale attributes including. re history, whole-catchment (NH4)(2)SO4 additions, wetland extent, and forest cover type influence mercury bioaccumulation in salamanders inhabiting lotic environments. We also discuss the use of this species as an indicator of Hg bioaccumulation in stream ecosystems.
Total dietary intake of mercury in the Canary Islands, Spain.
Rubio, C; Gutiérrez, A; Burgos, A; Hardisson, A
2008-08-01
Estimating the risk associated with dietary intake of heavy metals by consumers is a vital and integral part of regulatory processes. The assessment of exposure to mercury shown in this paper has been performed by means of a study on the whole diet. Total mercury (Hg) levels were determined by cold vapour atomic absorption spectrometry (AAS) in 420 samples of regularly consumed food and drink. The total Hg concentrations measured in the different groups of food ranged from non-detectable to 119 microg kg(-1) w/w. The fish group had the highest concentrations of total Hg. All groups of food with regulated Hg content showed levels that were lower than the legally set values. The food consumption data used in the analysis were taken from the latest nutritional survey made in the Canary Islands, Spain. The estimated total Hg intake of local population (5.7 microg/person day(-1)) did not exceed the provisional tolerable weekly intake (PTWI) limit of 0.3 mg week(-1) of total mercury (43 microg/person day(-1)) fixed by the Joint Food and Agricultural Organization/World Health Organization (FAO/WHO) Expert Committee on Food Additives. Fishery products contributed 96% of the total Hg intake. The mean Hg intake for each island in this archipelago, formed by seven, has also been calculated. Fuerteventura, Lanzarote and El Hierro are the islands with the highest level of Hg intake (7.0, 7,0 and 6.1 microg/person day(-1), respectively). La Palma Island, due to its low fish consumption, had the lowest level of Hg intake (4.5 microg/person day(-1)), followed by La Gomera (5.4 microg/person day(-1)), Tenerife (5.5 microg/person day(-1)) and Gran Canaria (5.6 microg/person day(-1)). A comparison has been made of the results obtained in this study with those found for other national and international communities.
Total mercury, cadmium and lead levels in main export fish of Sri Lanka.
Jinadasa, B K K K; Edirisinghe, E M R K B; Wickramasinghe, I
2014-01-01
Total mercury (Hg), cadmium (Cd) and lead (Pb) levels were determined in the muscle of four commercialised exported fish species Thunnus albacares (yellowfin tuna), Xiphias gladius (swordfish), Makaira indica (black marlin) and Lutjanus sp (red snapper) collected from the Indian Ocean, Sri Lanka, during July 2009-March 2010 and measured by atomic absorption spectrophotometry. Results show that swordfish (n = 176) contained the highest total Hg (0.90 ± 0.51 mg/kg) and Cd (0.09 ± 0.13 mg/kg) levels, whereas yellowfin tuna (n = 140) contained the highest Pb levels (0.11 ± 0.16 mg/kg). The lowest total Hg (0.16 ± 0.11 mg/kg), Cd (0.01 ± 0.01 mg/kg) and Pb (0.04 ± 0.04 mg/kg) levels were found in red snapper (n = 28). Black marlin (n = 24) contained moderate levels of total Hg (0.49 ± 0.37), Cd (0.02 ± 0.02) and Pb (0.05 ± 0.05). Even though there are some concerns during certain months of the year, this study demonstrates the safety of main export fish varieties in terms of total Hg, Cd and Pb.
Daso, Adegbenro P; Okonkwo, Jonathan O; Jansen, Raymond; Brandao, José D D O; Kotzé, Antoinette
2015-04-01
In this study, wild hatched eggshells were collected from the nests of threatened Wattled Crane and South Ground-Hornbill in an attempt to determine their total Hg concentrations. A total of fourteen eggshell samples from both bird species were collected from different study areas in the Mpumlanga and KwaZulu-Natal Provinces of South Africa. The eggshells were acid digested under reflux and their total Hg concentrations were determined using cold-vapour atomic absorption spectrophotometry (CV-AAS). The observed total Hg levels for the South Ground-Hornbill samples ranged from 1.31 to 8.88 µg g(-1) dry weight (dw), except for one outlier which had an elevated 75.0 µg g(-1) dw. The levels obtained for the Wattled Crane samples were relatively high and these ranged from 14.84 to 36.37 µg g(-1) dw. Generally, all the measured total Hg concentrations for the Wattled Crane samples exceeded the estimated total Hg levels derived for eggshell which were known to cause adverse reproductive effects in avian species from previous studies. Based on these findings, it is, therefore, possible that the exposure of these birds to elevated Hg may have contributed to their present population decline. Copyright © 2015 Elsevier Inc. All rights reserved.
Mercury in South Carolina fishes, USA.
Glover, James B; Domino, Marisa E; Altman, Kenneth C; Dillman, James W; Castleberry, William S; Eidson, Jeannie P; Mattocks, Micheal
2010-04-01
The South Carolina Department of Health and Environmental Control has collected, processed, and analyzed fish tissue total mercury (Hg) since 1976. For this study, skin-on-filet data from 1993 to 2007 were examined to determine biotic, spatial and temporal trends in tissue Hg levels for SC fishes. Because of the relatively high number of tissue Hg values below the analytical detection limits interval censored regression and censored least absolute deviations were used to construct several models to characterize trends. Large pelagic, piscivorous fish species, such as bowfin (Amia calva Linnaeus 1766), had higher levels of tissue Hg than smaller omnivorous species. Estuarine species had relatively low levels of tissue Hg compared to freshwater species, while two large open ocean species, king mackerel (Scomberomorus cavalla Cuvier 1829) and swordfish (Xiphias gladius Linnaeus 1758), had higher tissue Hg readings. For a given fish species, length was an important predictor of tissue Hg with larger individuals having higher levels than smaller individuals. The USEPA Level III ecoregion and water body type from where the fishes were collected were important in predicting the levels of tissue Hg. The Middle Atlantic Coastal Plain ecoregion had fishes with the highest levels of tissue Hg, while the Piedmont and Southern Coastal Plain ecoregions had the lowest. For a given ecoregion, large reservoirs and regulated rivers had fish with lower levels of tissue Hg than unregulated rivers. For reservoirs, the size of the impoundment was a significant predictor of tissue mercury with small reservoirs having higher levels of tissue mercury than large reservoirs. Landuse and water chemistry accounted for differences seen in fish of various ecoregions and waterbody types. Sampling locations associated with a high percentage of wetland area had fish with high levels of tissue Hg. Correlation analysis showed a strong positive relationship between tissue Hg levels and water column iron, total organic carbon, ammonia, and total kjedahl nitrogen, and a negative relationship with alkalinity, dissolved oxygen and pH. Results from principle component analysis revealed patterns between waterbody type and water chemistry variables that suggests hydrologic modification can have profound effects on the levels of fish tissue Hg in riverine systems. From 1993 to 2007, fish tissue Hg levels have trended lower. A spike in tissue Hg levels was observed in 2003-2005. The drying and rewetting of the landscape after the 2002 drought is hypothesized to have caused an increase in the methylation efficiencies of the system.
Sustainable remediation of mercury contaminated soils by thermal desorption.
Sierra, María J; Millán, Rocio; López, Félix A; Alguacil, Francisco J; Cañadas, Inmaculada
2016-03-01
Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.
Ruelas-Inzunza, J; Hernández-Osuna, J; Páez-Osuna, F
2009-07-01
We measured organic and total Hg in muscle tissue of five species of aquatic birds from the south-eastern gulf of California region, Mexico. Concentrations of total and organic Hg measured in Pelecanus occidentalis were the highest (2.85 and 2.68 microgg(-1)); lowest values of organic Hg (0.20 microgg(-1)) and total Hg (0.47 microgg(-1)) were detected in Anas discors and Anas clypeata, respectively. Differences of Hg levels were related to feeding habits, being concentrations in birds of piscivorous habits more elevated than corresponding values in non-piscivorous species.
Rodrigues, S M; Coelho, C; Cruz, N; Monteiro, R J R; Henriques, B; Duarte, A C; Römkens, P F A M; Pereira, E
2014-10-15
The objective of this study was to characterize the link between bioaccessibility and fractionation of mercury (Hg) in soils and to provide insight into human exposure to Hg due to inhalation of airborne soil particles and hand-to-mouth ingestion of Hg-bearing soil. Mercury in soils from mining, urban and industrial areas was fractionated in organometallic forms; mobile; semi-mobile; and non-mobile forms as well as HCl-extractable Hg. The in vitro bioaccessibility of Hg was obtained by extracting soils with (1) a simulated human gastric fluid (pH1.5), and (2) a simulated human lung fluid (pH7.4). Total soil Hg concentrations ranged from 0.72 to 1.8 mg kg(-1) (urban areas), 0.28 to 94 mg kg(-1) (industrial area) and 0.92 to 37 mg kg(-1) (mining areas). Both organometallic Hg as well as 0.1M HCl extractable Hg were lower (<0.5% of total Hg) than Hg extracted by gastric fluid (up to 1.8% of total Hg) and lung fluid (up to 12% of total Hg). In addition, Hg extracted by lung fluid was significantly higher in urban and industrial soils (average 5.0-6.6% of total Hg) compared to mining soils. Such differences were related to levels of mobile Hg species in urban and industrial soils compared to mining soils. These results strengthen the need to measure site-specific Hg fractionation when determining Hg bioaccessibility. Results also show that ingestion and/or inhalation of Hg from soil particles can contribute up to 8% of adult total Hg intake when compared to total Hg intake via consumption of contaminated fish and animal products from contaminated areas. Copyright © 2014 Elsevier B.V. All rights reserved.
Partitioning and transport of total and methyl mercury in the Lower Fox River, Wisconsin
Hurley, J.P.; Cowell, S.E.; Shafer, M.M.; Hughes, P.E.
1998-01-01
To investigate transport and partitioning processes of Hg(T) in the Fox River, we coupled detailed time series data of total mercury (Hg(T)) at the river mouth with transect sampling in the Lower Fox River. Unfiltered Hg(T) concentrations in the Fox River during the study period (April 1994-October 1995) ranged from 1.8 to 182 ng L(-1) with a median of 24.8 ng L-1, predominantly (93.6%) in the particulate phase. These levels were significantly elevated compared with other large tributaries to Lake Michigan (Hurley, J. P.; Shafer, M. M.; Cowell, S. E.; Overdier, J. T.; Hughes, P. E.; Armstrong, D. E. Environ. Sci. Technol. 1996, 30, 20932098). Transect sampling revealed progressively increasing water column Hg(T) concentrations and Hg(T) particulate enrichment downstream, which were consistent with trends in sediment Hg(T) levels in the river. Resuspended sediments are likely the predominant source of Hg from the Fox River into Green Bay. Despite elevated Hg(T) concentrations, methyl mercury (MeHg) concentrations were relatively low, suggesting limited bioavailability of Hg(T) associated with sediments.To investigate transport and partitioning processes of HgT in the Fox River, we coupled detailed time series data of total mercury (HgT) at the river mouth with transect sampling in the Lower Fox River. Unfiltered HgT concentrations in the Fox River during the study period (April 1994-October 1995) ranged from 1.8 to 182 ng L-1 with a median of 24.8 ng L-1, predominantly (93.6%) in the particulate phase. These levels were significantly elevated compared with other large tributaries to Lake Michigan. Transect sampling revealed progressively increasing water column HgT concentrations and HgT particulate enrichment downstream, which were consistent with trends in sediment HgT levels in the river. Resuspended sediments are likely the predominant source of Hg from the Fox River into Green Bay. Despite elevated HgT concentrations, methyl mercury (MeHg) concentrations were relatively low, suggesting limited bioavailability of HgT associated with sediments.
Low mercury levels in marine fish from estuarine and coastal environments in southern China.
Pan, Ke; Chan, Heidi; Tam, Yin Ki; Wang, Wen-Xiong
2014-02-01
This study is the first comprehensive evaluation of total Hg and methylmercury (MeHg) concentrations in wild marine fish from an estuarine and a coastal ecosystem in southern China. A total of 571 fish from 54 different species were examined. Our results showed that the Hg levels were generally low in the fish, and the Hg levels were below 30 ng g(-1) (wet weight) for 82% of the samples, which may be related to the reduced size of the fish and altered food web structure due to overfishing. Decreased coastal wetland coverage and different carbon sources may be responsible for the habitat-specific Hg concentrations. The degree of biomagnification was relatively low in the two systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Blood mercury concentrations in CHARGE Study children with and without autism.
Hertz-Picciotto, Irva; Green, Peter G; Delwiche, Lora; Hansen, Robin; Walker, Cheryl; Pessah, Isaac N
2010-01-01
Some authors have reported higher blood mercury (Hg) levels in persons with autism, relative to unaffected controls. We compared blood total Hg concentrations in children with autism or autism spectrum disorder (AU/ASD) and typically developing (TD) controls in population-based samples, and determined the role of fish consumption in differences observed. The Childhood Autism Risk from Genetics and the Environment (CHARGE) Study enrolled children 2-5 years of age. After diagnostic evaluation, we analyzed three groups: AU/ASD, non-AU/ASD with developmental delay (DD), and population-based TD controls. Mothers were interviewed about household, medical, and dietary exposures. Blood Hg was measured by inductively coupled plasma mass spectrometry. Multiple linear regression analysis was conducted (n = 452) to predict blood Hg from diagnostic status controlling for Hg sources. Fish consumption strongly predicted total Hg concentration. AU/ASD children ate less fish. After adjustment for fish and other Hg sources, blood Hg levels in AU/ASD children were similar to those of TD children (p = 0.75); this was also true among non-fish eaters (p = 0.73). The direct effect of AU/ASD diagnosis on blood Hg not through the indirect pathway of altered fish consumption was a 12% reduction. DD children had lower blood Hg concentrations in all analyses. Dental amalgams in children with gum-chewing or teeth-grinding habits predicted higher levels. After accounting for dietary and other differences in Hg exposures, total Hg in blood was neither elevated nor reduced in CHARGE Study preschoolers with AU/ASD compared with unaffected controls, and resembled those of nationally representative samples.
The complexity of hair/blood mercury concentration ratios and its implications.
Liberda, Eric N; Tsuji, Leonard J S; Martin, Ian D; Ayotte, Pierre; Dewailly, Eric; Nieboer, Evert
2014-10-01
The World Health Organization (WHO) recommends a mercury (Hg) hair-to-blood ratio of 250 for the conversion of Hg hair levels to those in whole blood. This encouraged the selection of hair as the preferred analyte because it minimizes collection, storage, and transportation issues. In spite of these advantages, there is concern about inherent uncertainties in the use of this ratio. To evaluate the appropriateness of the WHO ratio, we investigated total hair and total blood Hg concentrations in 1333 individuals from 9 First Nations (Aboriginal) communities in northern Québec, Canada. We grouped participants by sex, age, and community and performed a 3-factor (M)ANOVA for total Hg in hair (0-2 cm), total Hg in blood, and their ratio. In addition, we calculated the percent error associated with the use of the WHO ratio in predicting blood Hg concentrations from hair Hg. For group comparisons, Estimated Marginal Means (EMMS) were calculated following ANOVA. At the community level, the error in blood Hg estimated from hair Hg ranged -25% to +24%. Systematic underestimation (-8.4%) occurred for females and overestimation for males (+5.8%). At the individual level, the corresponding error range was -98.7% to 1040%, with observed hair-to-blood ratios spanning 3 to 2845. The application of the ratio endorsed by the WHO would be unreliable for determining individual follow-up. We propose that Hg exposure be assessed by blood measurements when there are human health concerns, and that the singular use of hair and the hair-to-blood concentration conversion be discouraged in establishing individual risk. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Distribution and chemical form of mercury in commercial fish tissues.
Watanabe, Naoko; Tayama, Misato; Inouye, Minoru; Yasutake, Akira
2012-01-01
We analyzed total Hg concentrations in various tissue samples obtained from 7 commercially available fish species. MeHg contents were also estimated for muscle and liver samples by a selective analysis of inorganic Hg. Among the tissues, high Hg accumulations were shown in liver, muscle, heart and spleen throughout all fish species. Carnivorous fish, such as scorpion fish, sea bream and Japanese whiting, tended to show higher Hg accumulations in the muscle, with the highest Hg levels being shown by scorpion fish. Although the liver was expected to show the highest Hg accumulations among tissues throughout all fish species, the highest accumulation in the liver was observed only in scorpion fish. In contrast, the muscle level was significantly higher than the liver in Pacific saury and Japanese whiting. MeHg accumulated in fish is considered to show a sustained increase throughout the life of the fish, due to its long biological half-life. In fact, in the present study, muscle Hg levels in Japanese whiting, Japanese flying fish, and halfbeak showed good correlations with body weights. However, such correlations were not clear in scorpion fish, sea bream, Jack mackerel and Pacific saury. Selective analyses of inorganic Hg levels revealed that most of the Hg (> 95%) in fish muscle existed as MeHg, while the rates of MeHg contents in the liver varied from 56% in scorpion fish to 84% in Jack mackerel. As a result, fish muscle showed the highest MeHg accumulations in all fish species examined. These results suggest that reliable information on total Hg contents in fish muscle might be sufficient to avoid the risk of MeHg exposure caused by eating fish, even when one consumes other tissues such as fish liver.
Mercury and methylmercury in water and sediment of the Sacramento River Basin, California
Domagalski, Joseph L.
2001-01-01
Mercury (Hg) and methylmercury (CH3Hg+) concentrations in streambed sediment and water were determined at 27 locations throughout the Sacramento River Basin, CA. Mercury in sediment was elevated at locations downstream of either Hg mining or Au mining activities where Hg was used in the recovery of Au. Methylmercury in sediment was highest (2.84 ng/g) at a location with the greatest wetland land cover, in spite of lower total Hg at that site relative to other river sites. Mercury in unfiltered water was measured at 4 locations on the Sacramento River and at tributaries draining the mining regions, as well as agricultural regions. The highest levels of Hg in unfiltered water (2248 ng/l) were measured at a site downstream of a historic Hg mining area, and the highest levels at all sites were measured in samples collected during high streamflow when the levels of suspended sediment were also elevated. Mercury in unfiltered water exceeded the current federal and state recommended criterion for protection of aquatic life (50 ng/l as total Hg in unfiltered water) only during high streamflow conditions. The highest loading of Hg to the San Francisco Bay system was attributed to sources within the Cache Creek watershed, which are downstream of historic Hg mines, and to an unknown source or sources to the mainstem of the Sacramento River upstream of historic Au mining regions. That unknown source is possibly associated with a volcanic deposit. Methylmercury concentrations also were dependent on season and hydrologic conditions. The highest levels (1.98 ng/l) in the Sacramento River, during the period of study, were measured during a major flood event. The reactivity of Hg in unfiltered water was assessed by measuring the amount available for reaction by a strong reducing agent. Although most Hg was found to be nonreactive, the highest reactivity (7.8% of the total Hg in water) was measured in the sample collected from the same site with high CH3Hg+ in sediment, and during the time of year when that site was under continual flooded conditions. Although Hg concentrations in water downstream of the Hg mining operations were measured as high as 2248 ng/l during stormwater runoff events, the transported Hg was found to have a low potential for geochemical transformations, as indicated by the low reactivity to the reducing agent (0.0001% of the total), probably because most of the Hg in the unfiltered water sample was in the mercury sulfide form.
Morrison, R John; Peshut, Peter J; West, Ronald J; Lasorsa, Brenda K
2015-07-15
We investigated Hg in muscle tissue of fish species from three trophic levels on fringing reefs of Tutuila (14°S, 171°W), plus water, sediment and turf alga. Accumulation of total Hg in the herbivore Acanthurus lineatus (Acanthuridae, lined surgeonfish, (n=40)) was negligible at 1.05 (±0.04) ng g(-1) wet-weight, (∼65% occurring as methyl Hg). The mid-level carnivore Parupeneus spp. (Mullidae, goatfishes (n=10)) had total Hg 29.8 (±4.5) ng g(-1) wet-weight (∼99% as methyl Hg). Neither A. lineatus or Parupeneus spp. showed a propensity to accumulate Hg based on body size. Both groups were assigned a status of "un-restricted" for monthly consumption limits for non-carcinogenic health endpoints for methyl Hg. The top-level carnivore Sphyraena qenie (Sphyraenidae, blackfin barracuda, n=3) had muscle tissue residues of 105, 650 and 741 ng g(-1) wet-weight (100% methyl Hg, with increasing concentration with body mass, suggesting that S. qenie >15 kg would have a recommendation of "no consumption". Copyright © 2015 Elsevier Ltd. All rights reserved.
Bustamante, P; Garrigue, C; Breau, L; Caurant, F; Dabin, W; Greaves, J; Dodemont, R
2003-01-01
Liver, muscle and blubber tissues of two short-finned pilot whales (Globicephala macrorhynchus) and two pygmy sperm whales(Kogia breviceps) stranded on the coast of New Caledonia have been analysed for 12 trace elements (Al, Cd, Co, Cr, Cu. Fe, organic and total Hg, Mn, Ni, Se, V, and Zn). Liver was shown to be the most important accumulating organ for Cd, Cu, Fe, Hg, Se, and Zn in both species, G. macrorhynchus having the highest Cd, Hg, Se and Zn levels. In this species, concentrations of total Hg are particularly elevated, reaching up to 1452 microg g(-1) dry wt. Only a very low percentage of the total Hg was organic. In both species,the levels of Hg are directly related to Se in liver. Thus, a molar ratio of Hg:Se close to 1.0 was found for all specimens, except for the youngest K. breviceps. Our results suggest that G. macrorhynchus have a physiology promoting the accumulation of high levels of naturally occurring toxic elements. Furthermore, concentrations of Ni, Cr and Co are close to or below the detection limit in the liver and muscles of all specimens. This suggests that mining activity in New Caledonia, which typically elevates the levels of these contaminants in the marine environment, does not seem to be a significant source of contamination for these pelagic marine mammals.
Kim, Sang-Jo; Lee, Hyun-Kyung; Badejo, Abimbola C; Lee, Won-Chan; Moon, Hyo-Bang
2016-01-15
Limited information is available on mercury (Hg) levels in various shark species consumed in Korea. The methyl-Hg (Me-Hg) and total Hg concentrations in all shark species ranged from 0.08 to 4.5 (mean: 1.2) mg/kg wet weight and from 0.1 to 7.0 (mean: 1.4) mg/kg wet weight, respectively. Inter-species differences in Hg accumulation were found among the species; however, Hg accumulation was homogenous between dorsal and pectoral fins within species. The highest Hg levels were found in aggressive carnivore shark species. Trophic position was important in determining Hg accumulation for aggressive carnivore sharks. Approximately 80% of shark species exceeded the safety limits for Me-Hg established by domestic and international authorities. The mean estimated daily intake of Me-Hg (1.3 μg/kg body weight/day) for Korean populations consuming various sharks was higher than the guidelines proposed by international regulatory authorities, suggesting that excessive shark fin consumption may pose potential health risks for Koreans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of mental stress on the plasma homocysteine level and blood pressure change in young men.
Sawai, Asuka; Ohshige, Kenji; Kura, Naoki; Tochikubo, Osamu
2008-04-01
Objective. This study aimed to determine whether mental stress influences the plasma total homocysteine level or blood pressure in young men. Method. Twenty-seven male university students were assigned to a normal blood pressure group (24-h systolic blood pressure <125 mmHg and diastolic blood pressure <75 mmHg; 13 subjects) or a high blood pressure group (24-h systolic blood pressure > or =125 mmHg, or 24-h diastolic blood pressure > or =75 mmHg; 14 subjects). Wearing an ambulatory blood pressure monitoring device, subjects rested for 30 minutes, underwent an arithmetic test for 15 minutes, and rested again for 15 minutes. Blood samples were taken before and after the test. Plasma total homocysteine levels were measured. Heart rate, blood pressure, and sympathovagal balance were determined during the test. Results. The mean total homocysteine level at rest in the high blood pressure group was slightly, but not significantly, higher than that in the normal blood pressure group. The resting total homocysteine level was significantly higher in subjects with parental history of hypertension than in those without (p < 0.01). Blood pressure, heart rate, and the plasma total homocysteine level were increased significantly by mental stress (p < 0.05). The change in total homocysteine correlated significantly with the changes in systolic blood pressure and sympathovagal balance (p < 0.05). Conclusion. Resting total homocysteine level was significantly higher in male students with a parental history of hypertension than in those without. It was shown that mental stress elevates heart rate, blood pressure, sympathovagal activity, and the plasma total homocysteine level in young men.
Exposures of dental professionals to elemental mercury and methylmercury.
Goodrich, Jaclyn M; Chou, Hwai-Nan; Gruninger, Stephen E; Franzblau, Alfred; Basu, Niladri
2016-01-01
Mercury (Hg) exposure, a worldwide public health concern, predominantly takes two forms--methylmercury from fish consumption and elemental Hg from dental amalgam restorations. We recruited 630 dental professionals from an American Dental Association meeting to assess Hg body burden and primary sources of exposure in a dually exposed population. Participants described occupational practices and fish consumption patterns via questionnaire. Hg levels in biomarkers of elemental Hg (urine) and methylmercury (hair and blood) were measured with a Direct Mercury Analyzer-80 and were higher than the general US population. Geometric means (95% CI) were 1.28 (1.19-1.37) μg/l in urine, 0.60 (0.54-0.67) μg/g in hair and 3.67 (3.38-3.98) μg/l in blood. In multivariable linear regression, personal amalgams predicted urine Hg levels along with total years in dentistry, amalgams handled, working hours and sex. Fish consumption patterns predicted hair and blood Hg levels, which were higher among Asians compared with Caucasians. Five species contributed the majority of the estimated Hg intake from fish--swordfish, fresh tuna, white canned tuna, whitefish and king mackerel. When studying populations with occupational exposure to Hg, it is important to assess environmental exposures to both elemental Hg and methylmercury as these constitute a large proportion of total exposure.
Horai, Sawako; Furukawa, Tatsuhiko; Ando, Tetsuo; Akiba, Suminori; Takeda, Yasuo; Yamada, Katsushi; Kuno, Katsuji; Abe, Shintaro; Watanabe, Izumi
2008-06-01
In a previous study, we showed that Hg accumulated to high levels in the liver of the Javan mongoose (Herpestes javanicus), a terrestrial mammal that lives on Amamioshima Island, Japan. This suggests a sophisticated mechanism of hepatic Hg detoxication. Assay of the subcellular localization of Hg and the expression of protective enzymes provides important clues for elucidating the mechanism of Hg detoxication. In the present study, the concentrations of 11 elements (Mg, Cr, Mn, Fe, Cu, Zn, Se, Rb, Cd, total Hg [T-Hg] and organic Hg [O-Hg], and Pb) were determined in the liver and in five liver subcellular fractions (plasma membrane, mitochondria, nuclei, microsome, and cytosol) of this species. As the T-Hg level increased, T-Hg markedly distributed to the plasma membrane. The T-Hg levels in all subcellular fractions correlated with Se levels. Although the T-Hg level in the microsomal fraction was relatively low, the ratio of O-Hg to T-Hg was significantly lower in the microsomes than in the other fractions. Significant positive correlations were found between the level of glutathione-S-transferase-pi, a marker of oxidative stress, and the O-Hg and T-Hg levels, but the correlation was better with O-Hg than with T-Hg. Western blot analysis of thioredoxin reductase 2 (TrxR2), a protein involved in protecting cells from mitochondrial oxidative stress, showed that the level of TrxR2 correlated with that of T-Hg. High TrxR2 levels may be one mechanism by which the Javan mongoose attenuates the toxicity of the high Hg levels present in the liver.
Tang, Wei; Cheng, Jinping; Zhao, Wenchang; Wang, Wenhua
2015-08-01
In order to assess the potential health risks of Hg pollution, total mercury (T-Hg) and methyl mercury (MeHg) concentrations were determined in air, dust, surface soil, crops, poultry, fish and human hair samples from an electronic waste (e-waste) recycling area in Taizhou, China. High concentrations of T-Hg and MeHg were found in these multiple matrices, and the mean concentration was 30.7 ng/m(3) of T-Hg for atmosphere samples, 3.1 μg/g of T-Hg for soil, 37.6 μg/g of T-Hg for dust, 20.3 ng/g of MeHg for rice and 178.1 ng/g of MeHg for fish, suggesting that the e-waste recycling facility was a significant source of Hg. The inorganic Hg (I-Hg) levels (0.84 μg/g) in hair samples of e-waste workers were much higher than that in the reference samples. Pearson's correlation coefficients showed that strong positive correlations (p<0.01) between hair I-Hg and time staying in industrial area (r=0.81) and between MeHg and fish consumption frequency (r=0.91), imply that workers were mainly exposed to Hg vapor through long-time inhalation of contaminated air and dust, while other population mainly exposed to MeHg through high-frequency fish consumption. The estimated daily intakes of Hg showed that dietary intake was the major Hg exposure source, and Hg intakes from rice and fish were significantly higher than from any other foods. The estimated total daily intakes (TDIs) of MeHg for both children (696.8 ng/(kg·day)) and adults (381.3 ng/(kg·day)) greatly exceeded the dietary reference dose (RfD) of 230 ng/(kg·day), implying greater health risk for humans from Hg exposures around e-waste recycling facilities. Copyright © 2015. Published by Elsevier B.V.
Mercury pollution in Doha (Qatar) coastal environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Madfa, H.; Dahab, O.A.; Holail, H.
Surface water and sediment samples were collected from the Doha coastal area and analyzed for content of physico-chemical forms of mercury. Dissolved reactive Hg represented 81.0% of the total dissolved Hg. Organic Hg contributed only 5.0% of total Hg. Mercury showed a strong tendency to be associated with suspended matter in Doha coastal waters, as it represented about 73.0% of the total. Total Hg in bulk Doha surface sediments fluctuated between 0.14 and 1.75 [mu]g g[sup [minus]1] dry weight, with an average of 0.54 [+-] 0.46 [mu]g g[sup [minus]1] dry weight. The sediment fraction past 63 [mu]m contained 0.73 [+-]more » 0.60 [mu]g g[sup [minus]1] dry weight total Hg. Leachable and methyl Hg averaged 0.10 [+-] 0.11 and 0.02 [+-] 0.03 [mu]g g[sup [minus]1] dry weight, respectively, in the < 63-[mu]m sediment fraction. There is a general trend for all Hg species determined in water and sediments to decrease seaward. The significantly elevated Hg levels at certain locations indicated that the main Hg sources to Doha coastal environment are leachate from the solid waste disposal site, the two harbors, and surface-water discharge.« less
Zhi, Zhongwei; Cepurna, William; Johnson, Elaine; Jayaram, Hari; Morrison, John; Wang, Ruikang K
2015-09-01
To determine if retinal capillary filling is preserved in the face of acutely elevated intraocular pressure (IOP) in anesthetized rats, despite a reduction in total retinal blood flow (RBF), using optical microangiography/optical coherence tomography (OMAG/OCT). OMAG provided the capability of depth-resolved imaging of the retinal microvasculature down to the capillary level. Doppler OCT was applied to measure the total RBF using an enface integration approach. The microvascular pattern, capillary density, and total RBF were monitored in vivo as the IOP was increased from 10 to 100mmHg in 10mmHg intervals and returned back to 10mmHg. In animals with mean arterial pressure (MAP) of 102±4mmHg (n=10), when IOP was increased from 0 to 100mmHg, the capillary density remained at or above 80% of baseline for the IOP up to 60mmHg [or ocular perfusion pressure (OPP) at 40mmHg]. This was then decreased, achieving 60% of baseline at IOP 70mmHg and OPP of 30mmHg. Total RBF was unaffected by moderate increases in IOP up to 30mmHg, beyond which total RBF decreased linearly, reaching 50% of baseline at IOP 60mmHg and OPP 40mmHg. Both capillary density and total RBF were totally extinguished at 100mmHg, but fully recovered when IOP returned to baseline. By comparison, a separate group of animals with lower MAP (mean=75±6mmHg, n=7) demonstrated comparable decreases in both capillary filling and total RBF at IOPs that were 20mmHg lower than in the initial group. Both were totally extinguished at 80mmHg, but fully recovered when IOP returned to baseline. Relationships of both parameters to OPP were unchanged. Retinal capillary filling and total RBF responses to IOP elevation can be monitored non-invasively by OMAG/OCT and both are influenced by OPP. Retinal capillary filling was relatively preserved down to a perfusion pressure of 40mmHg, despite a linear reduction in total RBF. Copyright © 2015 Elsevier Inc. All rights reserved.
Exposures of Dental Professionals to Elemental Mercury and Methylmercury
Goodrich, Jaclyn M.; Chou, Hwai-Nan; Gruninger, Stephen E.; Franzblau, Alfred; Basu, Niladri
2015-01-01
Mercury (Hg) exposure, a worldwide public health concern, predominantly takes two forms – methylmercury from fish consumption and elemental Hg from dental amalgam restorations. We recruited 630 dental professionals from an American Dental Association meeting to assess Hg body burden and primary sources of exposure in a dually-exposed population. Participants described occupational practices and fish consumption patterns via questionnaire. Mercury levels in biomarkers of elemental Hg (urine) and methylmercury (hair, blood) were measured with a Direct Mercury Analyzer-80 and were higher than the general U.S. population. Geometric means (95% CI) were 1.28 (1.19–1.37) µg/L in urine, 0.60 (0.54–0.67) µg/g in hair, and 3.67 (3.38–3.98) µg/L in blood. In multivariable linear regression, personal amalgams predicted urine Hg levels along with total years in dentistry, amalgams handled, working hours, and sex. Fish consumption patterns predicted hair and blood Hg levels which were higher among Asians compared with Caucasians. Five species contributed the majority of the estimated Hg intake from fish - swordfish, fresh tuna, white canned tuna, whitefish, and king mackerel. When studying populations with occupational exposure to Hg, it is important to assess environmental exposures to both elemental Hg and methylmercury as these constitute a large proportion of total exposure. PMID:26329138
Wang, Qing; Feng, Xinbin; Yang, Yufeng; Yan, Haiyu
2011-12-01
Total mercury (THg) and methylmercury (MeHg) concentrations in four size fractions of plankton from three sampling stations in the Hg-contaminated and eutrophic Baihua Reservoir, Guizhou, China, were investigated for biomagnification and trophic transfer of Hg at different sites with various proximity to the major point sources of nutrients and metals. Total Hg concentrations in plankton of the various size fractions varied from 49 to 5,504 ng g(-1) and MeHg concentrations ranged from 3 to 101 ng g(-1). The percentage of Hg as MeHg varied from 0.16 to 70%. Total Hg and MeHg concentrations in plankton samples differed among the three sampling stations with different proximities from the major point sources. The plankton from the site closest to the dam contained the highest concentrations of MeHg. The successive increase of the ratios of MeHg to Hg from seston to macroplankton at all sites indicated that biomagnification is occurring along the plankton food web. However, biomagnification factors (BMF) for MeHg were low (1.5-2.0) between trophic levels. Concentrations of THg in seston decreased with an increase of chlorophyll concentrations, suggesting a significant dilution effect by the algae bloom for Hg. Eutrophication dilution may be a reason for lower MeHg accumulation by the four size classes of plankton in this Hg-contaminated reservoir. Copyright © 2011 SETAC.
Olson, M.L.; Cleckner, L.B.; Hurley, J.P.; Krabbenhoft, D.P.; Heelan, T.W.
1997-01-01
Aqueous samples from the Florida Everglades present several problems for the analysis of total mercury (HgT) and methyl mercury (MeHg). Constituents such as dissolved organic carbon (DOC) and sulfide at selected sites present particular challenges due to interferences with standard analytical techniques. This is manifested by 1) the inability to discern when bromine monochloride (BrCl) addition is sufficient for sample oxidation for HgT analysis; and 2) incomplete spike recoveries using the distillation/ethylation technique for MeHg analysis. Here, we suggest ultra-violet (UV) oxidation prior to addition of BrCl to ensure total oxidation of DOC prior to HgT analysis and copper sulfate (CuSO4) addition to aid in distillation in the presence of sulfide for MeHg analysis. Despite high chloride (Cl-) levels, we observed no effects on MeHg distillation/ethylation analyses. ?? Springer-Verlag 1997.
Egler, Silvia G; Rodrigues-Filho, Saulo; Villas-Bôas, Roberto C; Beinhoff, Christian
2006-09-01
This study examines the total Hg contamination in soil and sediments, and the correlation between the total Hg concentration in soil and vegetables in two small scale gold mining areas, São Chico and Creporizinho, in the State of Para, Brazilian Amazon. Total Hg values for soil samples for both study areas are higher than region background values (ca. 0.15 mg/kg). At São Chico, mean values in soils samples are higher than at Creporizinho, but without significant differences at alpha<0.05 level. São Chico's aboveground produce samples possess significantly higher values for total Hg levels than samples from Creporizinho. Creporizinho's soil-root produce regression model were significant, and the slope negative. Creporizinho's soil-aboveground and root wild plants regression models were also significant, and the slopes positives. Although, aboveground:root ratios were >1 in all of São Chico's produce samples, soil-plant parts regression were not significant, and Hg uptake probably occurs through stomata by atmospheric mercury deposition. Wild plants aboveground:root ratios were <1 at both study areas, and soil-plant parts regressions were significant in samples of Creporizinho, suggesting that they function as an excluder. The average total contents of Hg in edible parts of produces were close to FAO/WHO/JECFA PTWI values in São Chico area, and much lower in Creporizinho. However, Hg inorganic small gastrointestinal absorption reduces its adverse health effects.
Bergman, Brenda Gail; Bump, Joseph K
2014-05-01
Mercury (Hg) is a leading contaminant across U.S. water bodies, warranting concern for wildlife species that depend upon food from aquatic systems. The risk of Hg toxicity to large herbivores is little understood, even though some large herbivores consume aquatic vascular plants (macrophytes) that may hyper-accumulate Hg. We investigated whether total Hg and methylmercury (MeHg) in aquatic forage may be of concern to moose (Alces alces) and beaver (Castor canadensis) by measuring total Hg and MeHg concentrations, calculating sediment-water bioconcentration factors for macrophyte species these herbivores consume, and estimating herbivore daily Hg consumption. Abiotic factors impacting macrophyte Hg were assessed, as was the difference in Hg concentrations of macrophytes from glacial lakes and those created or expanded by beaver damming. The amount of aquatic-derived Hg that moose move from aquatic to terrestrial systems was calculated, in order to investigate the potential for movement of Hg across ecosystem compartments by large herbivores. Results indicate that the Hg exposure of generalist herbivores may be affected by macrophyte community composition more so than by many abiotic factors in the aquatic environment. Mercury concentrations varied greatly between macrophyte species, with relatively high concentrations in Utricularia vulgaris (>80 ng g(-1) in some sites), and negligible concentrations in Nuphar variegata (~6 ng g(-1)). Macrophyte total Hg concentration was correlated with water pH in predictable ways, but not with other variables generally associated with aquatic Hg concentrations, such as dissolved organic carbon. Moose estimated daily consumption of MeHg is equivalent to or below human reference levels, and far below wildlife reference levels. However, estimated beaver Hg consumption exceeds reference doses for humans, indicating the potential for sub-lethal nervous impairment. In regions of high moose density, moose may be ecologically important vectors that transfer Hg from aquatic to surrounding terrestrial systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Mercury in alpine fish from four rivers in the Tibetan Plateau.
Shao, Junjuan; Shi, Jianbo; Duo, Bu; Liu, Chengbin; Gao, Yan; Fu, Jianjie; Yang, Ruiqiang; Jiang, Guibin
2016-01-01
As a global pollutant, high levels of mercury (Hg) have been found in remote ecosystem due to the long range atmospheric transport. In this study, a total of 60 fish samples were collected from four rivers across the Tibetan Plateau to study the accumulation of Hg in remote and high-altitude aquatic environment. The total Hg (THg) and methylmercury (MeHg) in fish muscles ranged from 11 to 2097 ng/g dry weight (dw) (average: 819 ng/g dw) and from 14 to 1960 ng/g dw (average: 756 ng/g dw), respectively. Significantly positive linear relationships were observed between the THg (r=0.591, p<0.01, n=36) and MeHg concentrations (r=0.473, p<0.01, n=36) with the trophic level of fish from Lhasa River, suggesting trophic transfer and biomagnification of Hg in this aquatic ecosystem. Moreover, the THg levels in fish had significantly positive correlations with the length (r=0.316, p<0.05, n=60) and weight (r=0.271, p<0.05, n=60) of fish. The high levels of Hg were attributed to the slow growth and long lifespan of the fish under this sterile and cold environment. Risk assessment revealed that the consumption of Oxygymnocypris stewartii, Schizothorax macropogon, Schizothorax waltoni, Schizopygopsis younghusbandi and Schizothorax o'connori would lead to a high exposure to MeHg. Copyright © 2015. Published by Elsevier B.V.
Linking mercury exposure to habitat and feeding behaviour in Beaufort Sea beluga whales
NASA Astrophysics Data System (ADS)
Loseto, L. L.; Stern, G. A.; Deibel, D.; Connelly, T. L.; Prokopowicz, A.; Lean, D. R. S.; Fortier, L.; Ferguson, S. H.
2008-12-01
Mercury (Hg) levels in the Beaufort Sea beluga population have been increasing since the 1990's. Ultimately, it is the Hg content of prey that determines beluga Hg levels. However, the Beaufort Sea beluga diet is not understood, and little is known about the diet Hg sources in their summer habitat. During the summer, they segregate into social groups based on habitat use leading to the hypothesis that they may feed in different food webs explaining Hg dietary sources. Methyl mercury (MeHg) and total mercury (THg) levels were measured in the estuarine-shelf, Amundsen Gulf and epibenthic food webs in the western Canadian Arctic collected during the Canadian Arctic Shelf Exchange Study (CASES) to assess their dietary Hg contribution. To our knowledge, this is the first study to report MeHg levels in estuarine fish and epibenthic invertebrates from the Arctic Ocean. Although the Mackenzie River is a large source of Hg, the estuarine-shelf prey items had the lowest MeHg levels, ranging from 0.1 to 0.27 μg/g dry weight (dw) in arctic cisco ( Coregonus autumnalis) and saffron cod ( Eleginus gracilis) respectively. Highest MeHg levels occurred in fourhorn sculpin ( Myoxocephalus quadricornis) (0.5 μg/g dw) from the epibenthic food web. Beluga hypothesized to feed in the epibenthic and Amundsen Gulf food webs had the highest Hg levels matching with high Hg levels in associated food webs, and estuarine-shelf belugas had the lowest Hg levels (2.6 μg/g dw), corresponding with the low food web Hg levels, supporting the variation in dietary Hg uptake. The trophic level transfer of Hg was similar among the food webs, highlighting the importance of Hg sources at the bottom of the food web as well as food web length. We propose that future biomagnification studies incorporate predator behaviour with food web structure to assist in the evaluation of dietary Hg sources.
Taylor, David L.; Kutil, Nicholas J.; Malek, Anna J.; Collie, Jeremy S.
2014-01-01
This study examined total mercury (Hg) concentrations in cartilaginous fishes from Southern New England coastal waters, including smooth dogfish (Mustelus canis), spiny dogfish (Squalus acanthias), little skate (Leucoraja erinacea), and winter skate (L. ocellata). Total Hg in dogfish and skates were positively related to their respective body size and age, indicating Hg bioaccumulation in muscle tissue. There were also significant inter-species differences in Hg levels (mean ± 1 SD, mg Hg/kg dry weight, ppm): smooth dogfish (3.3 ± 2.1 ppm; n = 54) > spiny dogfish (1.1 ± 0.7 ppm; n = 124) > little skate (0.4 ± 0.3 ppm; n = 173) ~ winter skate (0.3 ± 0.2 ppm; n = 148). The increased Hg content of smooth dogfish was attributed to its upper trophic level status, determined by stable nitrogen (δ15N) isotope analysis (mean δ15N = 13.2 ± 0.7‰), and the consumption of high Hg prey, most notably cancer crabs (0.10 ppm). Spiny dogfish had depleted δ15N signatures (11.6 ± 0.8‰), yet demonstrated a moderate level of contamination by foraging on pelagic prey with a range of Hg concentrations, e.g., in order of dietary importance, butterfish (Hg = 0.06 ppm), longfin squid (0.17 ppm), and scup (0.11 ppm). Skates were low trophic level consumers (δ15N = 11.9-12.0‰) and fed mainly on amphipods, small decapods, and polychaetes with low Hg concentrations (0.05-0.09 ppm). Intra-specific Hg concentrations were directly related to δ15N and carbon (δ13C) isotope signatures, suggesting that Hg biomagnifies across successive trophic levels and foraging in the benthic trophic pathway increases Hg exposure. From a human health perspective, 87% of smooth dogfish, 32% of spiny dogfish, and < 2% of skates had Hg concentrations exceeding the US Environmental Protection Agency threshold level (0.3 ppm wet weight). These results indicate that frequent consumption of smooth dogfish and spiny dogfish may adversely affect human health, whereas skates present minimal risk. PMID:25081850
Mercury biogeochemistry in the Idrija River, Slovenia, from above the mine into the Gulf of Trieste
Hines, M.E.; Horvat, M.; Faganeli, J.; Bonzongo, J.-C.J.; Barkay, T.; Major, E.B.; Scott, K.J.; Bailey, E.A.; Warwick, J.J.; Lyons, W.B.
2000-01-01
The Idrija Mine is the second largest Hg mine in the world which operated for 500 years. Mercury (Hg)-laden tailings still line the banks, and the system is a threat to the Idrija River and water bodies downstream including the Soca/Isonzo River and the Gulf of Trieste in the northern Adriatic Sea. A multidisciplinary study was conducted in June 1998 on water samples collected throughout the Idrija and Soca River systems and waters and sediments in the Gulf. Total Hg in the Idrija River increased >20-fold downstream of the mine from 60 ng liter-1 with methyl mercury (MeHg) accounting for ~0.5%. Concentrations increased again downstream and into the estuary with MeHg accounting for nearly 1.5% of the total. While bacteria upstream of the mine did not contain mercury detoxification genes (mer), such genes were detected in bacteria collected downstream. Benthic macroinvertebrate diversity decreased downstream of the mine. Gulf waters near the river mouth contained up to 65 ng liter-1 total Hg with ~0.05 ng liter-1 MeHg. Gulf sediments near the river mouth contained 40 ??g g-1 total Hg with MeHg concentrations of about 3 ng g-1. Hg in sediment pore waters varied between 1 and 8 ng liter-1, with MeHg accounting for up to 85%. Hg methylation and MeHg demethylation were active in Gulf sediments with highest activities near the surface. MeHg was degraded by an oxidative pathway with >97% C released from MeHg as CO2. Hg methylation depth profiles resembled profiles of dissolved MeHg. Hg-laden waters still strongly impact the riverine, estuarine, and marine systems. Macroinvertebrates and bacteria in the Idrija River responded to Hg stress, and high Hg levels persist into the Gulf. Increases in total Hg and MeHg in the estuary demonstrate the remobilization of Hg, presumably as HgS dissolution and recycling. Gulf sediments actively produce MeHg, which enters bottom waters and presumably the marine food chain. (C) 2000 Academic Press.
Ehrlich, Shelley; Smith, Kristen; Williams, Paige L.; Chavarro, Jorge E.; Batsis, Maria; Toth, Thomas L.; Hauser, Russ
2015-01-01
Total hair mercury (Hg) was measured among 205 women undergoing in vitro fertilization (IVF) treatment and the association with prospectively collected IVF outcomes (229 IVF cycles) was evaluated. Hair Hg levels (median=0.62 ppm, range: 0.03-5.66 ppm) correlated with fish intake (r=0.59), and exceeded the recommended EPA reference of 1ppm in 33% of women. Generalized linear mixed models with random intercepts accounting for within-woman correlations across treatment cycles were used to evaluate the association of hair Hg with IVF outcomes adjusted for age, body mass index, race, smoking status, infertility diagnosis, and protocol type. Hair Hg levels were not related to ovarian stimulation outcomes (peak estradiol levels, total and mature oocyte yields) or to fertilization rate, embryo quality, clinical pregnancy rate or live birth rate. PMID:25601638
Olivero-Verbel, Jesús; Caballero-Gallardo, Karina; Marrugo Negrete, Jose; Negrete-Marrugo, José
2011-12-01
Mercury (Hg) is a heavy metal that, once in the environment, is bioaccumulated and biomagnified through food chain impacting ecosystems. The aim of this study was to evaluate total Hg (T-Hg) concentrations in individuals along Cauca and Magdalena Rivers in Colombia, where most gold mining activities take place. A total of 1,328 hair samples were collected and analyzed for T-Hg using atomic absorption spectroscopy. T-Hg concentrations ranged from 0.01 to 20.14 μg/g. Greatest levels were detected in La Raya (5.27 ± 0.32 μg/g), Achi (2.44 ± 0.22 μg/g), and Montecristo (2.20 ± 0.20 μg/g), places that are located near gold mines. Concentrations decreased with the distance from main mining areas. Only 0.75% of the individuals had T-Hg levels above 10 μg/g. Men had significantly higher T-Hg levels than women, and correlation analysis revealed moderately weak but significant relationships between T-Hg and weight (R = 0.111, P < 0.001), stature (R = 0.111, P < 0.001), and age (R = 0.073, P = 0.007). However, T-Hg concentrations did not vary according to fish consumption frequency. Subjective health survey showed no Hg-related signs or symptoms within studied sample. However, studies are necessary to detect neurological damage linked to the metal. Changing technologies to Hg-free mining, monitoring, and educational programs are necessary to protect health of people living near Colombian rivers.
The Impact of Fire on Mercury Cycling in Watershed Systems
NASA Astrophysics Data System (ADS)
Lopez, S.; Mendez, C.; Hogue, T.; Jay, J.
2006-12-01
Mercury methylation is a process by which the less-toxic inorganic mercury is transformed into methylmercury (MeHg). MeHg is a potent neurotoxin with a strong tendency to biomagnify within the food chain. Limited studies suggest that wildfires change the soil characteristics and contribute to Hg transport and possibly methylation in downstream ecosystems. We propose that post-fire Hg cycling can be related to various soil properties and burn characteristics. In order to better understand the effects of wildfires on Hg cycling, studies were undertaken within a burned watershed and a neighboring unburned site, Malibu Creek and Cold Creek, respectively. Soil sampling of the burned and control (unburned) regions were composed of 25 square foot grids with nine equidistant sampling points. Sediment samples for soil sieve analysis were collected at all grid points to determine the particle size distribution of the fine and coarse grain aggregates. Total Hg sediments were collected from the three middle points of the grid at two soil horizons to provide a vertical profile. Total Hg concentrations of the sediment samples were measured using the Direct Mercury Analyzer (DMA80). Initial analysis of the soil profiles reveals a decrease in Hg concentration at the soil surface (89 percent loss). Preliminary results indicate sites with the lowest concentration of Hg are characterized by a higher percentage of finer grain aggregates. Runoff from the first post-fire storm was extremely turbid and dark gray in color due to high levels of suspended solids (3980 mg/L). Total Hg concentrations in unfiltered and filtered samples (0.2 micron) were 196 and 4.7 ng/L, respectively, compared to the control which had unfiltered and filtered Hg levels of 6.1 and 2.3 ng/L, respectively, and 450 mg/L total suspended solids. The concentration of Hg on the particles was six times higher than the Hg content of suspended particles at the control site. Results also show much stronger partitioning (three-fold higher Kd's) to the solid phase in the fire- impacted site. On-going work includes: 1) analysis of Hg and ancillary geochemical parameters overlying water and porewater from samples collected in the streambed downstream of the fire, 2) analysis of Hg concentrations in various particle size fractions of soil; and 3) preliminary characterization of recovery through analysis of soil properties and Hg levels at the burned and control sites, one-year post-fire.
Application of brown bear (Ursus arctos) records for retrospective assessment of mercury.
Solgi, Eisa; Ghasempouri, Seyed Mahmoud
2015-01-01
Because mercury (Hg) is released into the atmosphere, wildlife living in habitats located far from point sources of metal may still be at risk. Mercury accumulation, previously considered a risk for aquatic ecosystems, is also found in many wildlife terrestrial species. The aim of the present study was to examine total Hg concentrations in the brown bear (Ursus arctos) by measurement of metal in hair from museum collections in Iran. Another objective of this investigation was to characterize the risk of Hg exposure in bears in several parts of Iran. Brown bear (Ursus arctos) hair samples (n = 35) were collected from 14 provinces in Iran for analysis of Hg contamination, performed using an advanced mercury analyzer (model Leco 254 AMA, USA) according to ASTM standard D-6722. Total Hg levels in Iranian bears from all areas ranged from 115.81 to 505.82 μg/kg, with a mean of 193.39 ng/g. Mercury concentrations in brown bear hair from different provinces in Iran were as follows in descending order: Khorasan Razavi > Esfahan > Khozestan > Yazd > Lorestan > Charmahalva Bakhtiari > Bushehr > Mazandaran > Markazi > Tehran > Ardebil > Gilan > East Azerbaijan. The highest content of Hg was found in the south (206.62 ± 31.95 ng/g), whereas the lowest levels were detected in the west (167.71 ± 32.97 ng/g). Overall total Hg content in bear hair was below harmful levels for this species. A decreasing trend was noted in the period 1986-2006, which may be mainly due to reduction of global Hg emissions. Data suggest that food habits and habitat are two important factors that influence Hg accumulation in bears.
Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil.
Nyland, Jennifer F; Fillion, Myriam; Barbosa, Fernando; Shirley, Devon L; Chine, Chiameka; Lemire, Melanie; Mergler, Donna; Silbergeld, Ellen K
2011-12-01
Mercury (Hg) is a ubiquitous environmental contaminant with neurodevelopmental and immune system effects. An informative biomarker of Hg-induced immunotoxicity could aid studies on the potential contribution to immune-related health effects. Our objectives were to test the hypothesis that methylmercury (MeHg) exposures affect levels of serum biomarkers and to examine interactions between Hg and selenium (Se) in terms of these responses. This cross-sectional epidemiological study assessed adults living along the Tapajós River, a system long affected by MeHg. We measured antinuclear (ANA) and antinucleolar (ANoA) autoantibody levels and eight cytokines in serum samples (n = 232). Total Hg (including MeHg) and Se were measured in blood, plasma, hair, and urine. The median (range) total Hg concentrations were 14.1 μg/g (1.1-62.4), 53.5 μg/L (4.3-288.9), 8.8 μg/L (0.2-40), and 3.0 μg/L (0.2-16.1) for hair, blood, plasma, and urine, respectively. Elevated titers of ANA (but not ANoA) were positively associated with MeHg exposure (log-transformed, for blood and plasma), unadjusted [odds ratio (OR) = 2.6; 95% confidence interval (CI): 1.1, 6.2] and adjusted for sex and age (OR = 2.9; 95% CI: 1.1, 7.5). Proinflammatory [interleukin (IL)-6 and interferon (IFN)-γ], anti-inflammatory (IL-4), and IL-17 cytokine levels were increased with MeHg exposure; however, in the subset of the population with elevated ANA, proinflammatory IL-1β, IL-6, IFN-γ, and tumor necrosis factor (TNF)-α and anti-inflammatory (IL-4) cytokine levels were decreased with MeHg exposure. Although Se status was associated with MeHg level (correlation coefficient = 0.86; 95% CI: 0.29, 1.43), Se status was not associated with any changes in ANA and did not modify associations between Hg and ANA titers. MeHg exposure was associated with an increased ANA and changes in serum cytokine profile. Moreover, alterations in serum cytokine profiles differed based on ANA response, suggesting a specific phenotype of MeHg susceptibility. Further research on the potential health implications of these observed immunological changes is warranted.
Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China.
Horvat, Milena; Nolde, Natasa; Fajon, Vesna; Jereb, Vesna; Logar, Martina; Lojen, Sonja; Jacimovic, Radojko; Falnoga, Ingrid; Liya, Qu; Faganeli, Jadran; Drobne, Damjana
2003-03-20
The province of Guizhou in Southwestern China is currently one of the world's most important mercury production areas. Emissions of mercury from the province to the global atmosphere have been estimated to be approximately 12% of the world total anthropogenic emissions. The main objective of this study was to assess the level of contamination with Hg in two geographical areas of Guizhou province. Mercury pollution in the areas concerned originates from mercury mining and ore processing in the area of Wanshan, while in the area of Quingzhen mercury pollution originates from the chemical industry discharging Hg through wastewaters and emissions to the atmosphere due to coal burning for electricity production. The results of this study confirmed high contamination with Hg in soil, sediments and rice in the Hg mining area in Wanshan. High levels of Hg in soil and rice were also found in the vicinity of the chemical plant in Quingzhen. The concentrations of Hg decreased with distance from the main sources of pollution considerably. The general conclusion is that Hg contamination in Wanshan is geographically more widespread, due to deposition and scavenging of Hg from contaminated air and deposition on land. In Quingzhen Hg contamination of soil is very high close to the chemical plant but the levels reach background concentrations at a distance of several km. Even though the major source of Hg in both areas is inorganic Hg, it was observed that active transformation of inorganic Hg to organic Hg species (MeHg) takes place in water, sediments and soils. The concentration of Hg in rice grains can reach up to 569 microg/kg of total Hg of which 145 microg/kg was in MeHg form. The percentage of Hg as MeHg varied from 5 to 83%. The concentrations of selenium can reach up to 16 mg/kg in soil and up to 1 mg/g in rice. A correlation exists between the concentration of Se in soil and rice, indicating that a portion of Se is bioavailable to plants. No correlation between Hg and Se in rice was found. Exposure of the local population to Hg may occur due to inhalation of Hg present in air (in particular in Hg mining area) and consumption of Hg contaminated food (in particular rice and fish) and water. Comparison of intake through these different routes showed that the values of Hg considerably exceed the USA EPA Reference Concentration (RfC) for chronic Hg exposure (RfC is 0.0004 mg/m(3)) close to the emission sources. Intake of Hg through food consumption, particularly rice and fish, is also an important route of Hg exposure in study area. In general, it can be concluded that the population mostly at risk is located in the vicinity of smelting facilities, mining activities and close to the waste disposal sites in the wider area of Wanshan. In order to assess the real level of contamination in the local population, it is recommended that biomonitoring should be performed, including Hg and MeHg measurements in hair, blood and urine samples.
Water-level fluctuations influence sediment porewater ...
Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log Kd values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management a
Fang, Fengman; Wang, Haidong; Lin, Yuesheng
2011-08-01
Total mercury (Hg(T)) and bioavailability Hg (Hg(HCl)) concentrations in soil were determined in five districts in Wuhu urban area. Spatial pattern of soil Hg concentration was generated through kriging technology. Results showed that Hg concentration in soil ranged from 0.024 to 2.844 mg kg( -1) with an average of 0.207 mg kg( -1). Hg concentration in soil appeared to have a block distribution and decreased from downtown to surrounding district. And Hg concentrations appeared to have a medium scale spatial auto correlation, strongly affected by human activity. The maximal Hg average concentration (0.332 mg kg( -1)) in soil appeared in Jinghu district, where the high intensity of human activities is. Second highest Hg average concentration (0.263 mg kg( -1)) in soil appeared in development district, where the intensive industrial activities are. Bioavailability Hg concentration in soil ranged from 2.6 to 4.9 μg kg( -1) with an average of 3.8 μg kg( -1), which had a ratio of 0.28~6.44% to total Hg. The ratios of bioavailability Hg to total Hg in vegetable soil were bigger than those of park soil. Correlation analysis showed that total Hg, organic matter, total phosphorus, and bioavailability Hg concentrations in soil were significantly positively correlated. Hg concentration in vegetable ranged from 2.7 to 15.2 μg kg( -1) with an average of 6.5 μg kg( -1). Hg concentration in vegetable was positively correlated with Hg(HCl) concentration in soil. According to the calculation on hazard quotient (HQ) for children, inhalation of Hg vapor from soil is the main exposure pathway, in which HQ is 2.517 × 10( -2), accounting for 80.3% of the four exposure pathways. Hazard index (HI) of the four exposure pathways is lower than the "safe" level of HI = 1; therefore, exposure of soil Hg exhibited little potential health risk to children in Wuhu urban area.
Wright, Diane L; Afeiche, Myriam C; Ehrlich, Shelley; Smith, Kristen; Williams, Paige L; Chavarro, Jorge E; Batsis, Maria; Toth, Thomas L; Hauser, Russ
2015-01-01
Total hair mercury (Hg) was measured among 205 women undergoing in vitro fertilization (IVF) treatment and the association with prospectively collected IVF outcomes (229 IVF cycles) was evaluated. Hair Hg levels (median=0.62ppm, range: 0.03-5.66ppm) correlated with fish intake (r=0.59), and exceeded the recommended EPA reference of 1ppm in 33% of women. Generalized linear mixed models with random intercepts accounting for within-woman correlations across treatment cycles were used to evaluate the association of hair Hg with IVF outcomes adjusted for age, body mass index, race, smoking status, infertility diagnosis, and protocol type. Hair Hg levels were not related to ovarian stimulation outcomes (peak estradiol levels, total and mature oocyte yields) or to fertilization rate, embryo quality, clinical pregnancy rate or live birth rate. Copyright © 2015 Elsevier Inc. All rights reserved.
Total Mercury and Methylmercury in the Great Egg Harbor River Watershed, New Jersey, USA
NASA Astrophysics Data System (ADS)
Barringer, J. L.; Riskin, M. L.; Szabo, Z.; Fischer, J. M.; Reilly, P. A.; Rosman, R.; Bonin, J. L.; Heckathorn, H. A.
2007-12-01
Hydrologic and biogeochemical conditions are important factors in the transport and distribution of mercury (Hg) in New Jersey Coastal Plain watersheds that contain extensive freshwater wetlands and where Hg bioaccumulation is of concern. U.S. Geological Survey studies found Hg concentrations in top predator fish from the Great Egg Harbor River mainstem that ranged from 2.9 to 4.5 mg/kg (dry wt.) and exceeded 10 ng/L in the watershed's acidic streams. An ongoing study with the N.J. Department of Environmental Protection indicates that atmospheric deposition of Hg to the wetlands and streams may be augmented by substantial contributions of Hg from ground water. Although background levels of Hg in water from the underlying aquifer typically are less than 10 ng/L, concentrations in water from more than 600 domestic wells in southern New Jersey have been shown to exceed the drinking-water maximum contaminant level of 2,000 ng/L. Therefore, to determine ground-water inputs to the streams, samples of ground water discharging to the tributaries and mainstem as well as streamwater samples collected during various flow conditions were analyzed for total Hg and methylmercury (MeHg). Total Hg concentrations in ground water discharging to the tributaries and mainstem were low to moderate (0.29-22 ng/L) in relatively undeveloped areas (including wetlands), but higher (36 and 177 ng/L) in two urban/suburban areas where much of the Hg was in particulate form. In recent and ongoing studies, total Hg concentrations in unfiltered samples of surface water, except those for one suburban tributary, have ranged from 2.13 to 37.7 ng/L. Concentrations in the suburban tributary have ranged from 50 ng/L during a dry period to 250 ng/L during a wet period. Hg concentrations in samples from a wetlands-embedded reach of the mainstem varied markedly with flow. In addition to increases in concentrations of total Hg, UV absorbance and concentrations of dissolved organic carbon also increased with flow after rain events, whereas pH and concentrations of dissolved oxygen and nitrate decreased. These flow-related changes apparently result from inputs of water that has percolated through acidic, reducing wetlands soils. The biogeochemical environment of these soils, on the basis of hydrogen sulfide odors detected during piezometer placement, supports sulfate reduction and likely promotes methylation of Hg. MeHg concentrations were 0.48 ng/L after a rainfall in discharge from 0.8 m below the streambed at a mainstem wetlands site. Downstream, where the channel briefly emerges from wetlands, MeHg was detectable during a dry period only in the hyporheic-zone water from 0.15 m below the streambed and in ground water from a depth of 0.3 m (0.15 ng/L and 0.05 ng/L, respectively). MeHg was not detected in the ground-water samples from deeper points below the streambeds, but concentrations in surface water ranged from 0.17 to 2.88 ng/L. The concentration from a tributary surrounded by urban/suburban development was highest. MeHg concentrations in mainstem water did not always increase with streamflow; variations in antecedent hydrologic conditions in the wetlands may explain the unpredictable relation of concentration to flow. Overall, total Hg appears to be contributed to the streams by both ground water and atmospheric deposition, with methylation taking place at shallow levels in wetlands soils and stream sediments.
Effects of small hydropower plants on mercury concentrations in fish.
Cebalho, Elaine C; Díez, Sergi; Dos Santos Filho, Manoel; Muniz, Claumir Cesar; Lázaro, Wilkinson; Malm, Olaf; Ignácio, Aurea R A
2017-10-01
Although the impacts of large dams on freshwater biota are relatively well known, the effects of small hydropower plants (SHP) are not well investigated. In this work, we studied if mercury (Hg) concentrations in fish rise in two tropical SHP reservoirs, and whether similar effects take place during impoundment. Total Hg concentrations in several fish species were determined at two SHP in the Upper Guaporé River basin floodplain, Brazil. In total, 185 specimens were analysed for Hg content in dorsal muscle and none of them reported levels above the safety limit (500 μg kg -1 ) for fish consumption recommended by the World Health Organisation (WHO). The highest levels of Hg (231 and 447 μg kg -1 ) were found in carnivorous species in both reservoirs. Mercury increased as a function of standard length in most of the fish populations in the reservoirs, and higher Hg concentrations were found in fish at the reservoir compared with fish downstream. The high dissolved oxygen concentrations and high transparency of the water column (i.e. oligotrophic reservoir) together with the absence of thermal stratification may explain low Hg methylation and low MeHg levels found in fish after flooding. Overall, according to limnological characteristics of water, we may hypothesise that reservoir conditions are not favourable to high net Hg methylation.
Nie, Yaguang; Liu, Xiaodong; Sun, Liguang; Emslie, Steven D
2012-09-01
Total mercury (Hg) concentration and several other geochemical parameters were determined for five sediment profiles from the Antarctic Ross Sea region. Our data exhibit significant positive correlations between Hg concentration and total organic carbon (TOC) content in all profiles, suggesting the predominant role of organic matter (OM) as a Hg carrier. The OM in the sediments originates primarily from penguin guano and algae. High Hg content in guano and a positive correlation between Hg and a guano bio-element (phosphorus, P) in the ornithogenic sediment profiles (MB6, BI and CC) indicate that Hg was strongly influenced by guano input. The bottom sediments of MB6 with seal hairs contain relatively high Hg. This increase is attributed to the input of seal excrement, suggesting that sedimentary Hg may be an effective trophic-level indicator from seals to penguins. The enrichment factor (EF) for Hg was calculated and the results indicated apparent Hg enrichment in the sediment profiles from the Ross Sea region caused by bio-vectors such as penguins and seals. Compared with typical sediments from other sites in Antarctica and the SQGs (sediment quality guidelines), the total amount of Hg in our study area is still not considered to be adversely high. Copyright © 2012 Elsevier B.V. All rights reserved.
Arsenic and mercury in the soils of an industrial city in the Donets Basin, Ukraine
Conko, Kathryn M.; Landa, Edward R.; Kolker, Allan; Kozlov, Kostiantyn; Gibb, Herman J.; Centeno, Jose; Panov, Boris S.; Panov, Yuri B.
2013-01-01
Soil and house dust collected in and around Hg mines and a processing facility in Horlivka, a mid-sized city in the Donets Basin of southeastern Ukraine, have elevated As and Hg levels. Surface soils collected at a former Hg-processing facility had up to 1300 mg kg−1 As and 8800 mg kg−1 Hg; 1M HCl extractions showed 74–93% of the total As, and 1–13% of the total Hg to be solubilized, suggesting differential environmental mobility between these elements. In general, lower extractability of As and Hg was seen in soil samples up to 12 km from the Hg-processing facility, and the extractable (1M HCl, synthetic precipitation, deionized water) fractions of As are greater than those for Hg, indicating that Hg is present in a more resistant form than As. The means (standard deviation) of total As and Hg in grab samples collected from playgrounds and public spaces within 12 km of the industrial facility were 64 (±38) mg kg−1 As and 12 (±9.4) mg kg−1 Hg; all concentrations are elevated compared to regional soils. The mean concentrations of As and Hg in dust from homes in Horlivka were 5–15 times higher than dust from homes in a control city. Estimates of possible exposure to As and Hg through inadvertent soil ingestion are provided.
Mercury (Hg) species distribution patterns among ecosystem compartments in the Everglades were analyzed at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation, and to investigate major biogeochemical processes that are pertinent to t...
Mercury patterns in wood duck eggs from a contaminated reservoir in South Carolina, USA.
Kennamer, Robert A; Stout, Jason R; Jackson, Brian P; Colwell, Sheila V; Brisbin, I Lehr; Burger, Joanna
2005-07-01
Mercury contamination of wildlife populations has been documented widely in recent years as biomonitoring has become an important tool for assessing environmental contamination. Avian eggs provide an ideal assay material for Hg biomonitoring, particularly when the collection of eggs is simplified by using cavity-nesting species that nest in easily monitored nest boxes. However, studies are needed that address the dynamics of how Hg is distributed within eggs, and how Hg is deposited naturally within clutches laid by a single female and among clutches laid by different females occupying the same contaminated environment. We collected 138 eggs from 13 complete clutches of box-nesting wood ducks (Aix sponsa) during 1991 and 1992 at a contaminated reservoir of the U.S. Department of Energy's Savannah River Site in South Carolina, USA. Total Hg residues in egg components and clutches were determined, partitioning of Hg among egg components was examined, and effects of egg-laying sequence on egg component Hg levels were determined. Mean albumen Hg was 0.22 ppm wet mass, mean yolk Hg was 0.04 ppm, and mean shell Hg was 0.03 ppm. On average, 86.1% of total egg Hg was concentrated in the albumen, 11.2% in the yolk, and 2.7% in the shell. Mercury concentrations in all egg components varied significantly among clutches and between successive clutches laid by the same female in the same year. Laying sequence significantly affected Hg concentrations in the albumen and shell, but not in the yolk. Declines of albumen Hg due to laying sequence were more pronounced for clutches that contained higher average Hg levels. Our results suggest that collection of first-laid eggs may be preferable for assessing maximal Hg exposure to developing embryos, and that monitoring Hg levels through the use of empty eggshells following brood departure from nests may be valid only if the laying sequence is known.
Mieiro, C L; Pacheco, M; Duarte, A C; Pereira, M E
2011-12-01
In the present study, the risk to humans by consuming European sea bass (Dicentrarchus labrax), captured at three sites along a Hg contamination gradient, was evaluated by comparing muscle and kidney total Hg (T-Hg) levels with the European regulations for marketed fish. Moreover, T-Hg and organic Hg (O-Hg) levels in muscle were compared with the Provisional Tolerable Weekly Intake (PTWI) and the Reference Dose (RfD). Although T-Hg levels in muscle were below the European value allowable for marketed fish, kidney's levels were higher than the set value, stressing the importance of redefining the concept of edible tissue and which tissues should be considered. Mercury weekly ingestion in the contaminated areas was higher than the PTWI, and O-Hg daily ingestion rates were higher than the RfD in all sampling sites. Thus, populations consuming sea bass from the contaminated sites may be at risk, with particular relevance for children and pregnant women. Copyright © 2011 Elsevier Ltd. All rights reserved.
Biomarkers of Methylmercury Exposure Immunotoxicity among Fish Consumers in Amazonian Brazil
Fillion, Myriam; Barbosa, Fernando; Shirley, Devon L.; Chine, Chiameka; Lemire, Melanie; Mergler, Donna; Silbergeld, Ellen K.
2011-01-01
Background: Mercury (Hg) is a ubiquitous environmental contaminant with neurodevelopmental and immune system effects. An informative biomarker of Hg-induced immunotoxicity could aid studies on the potential contribution to immune-related health effects. Objectives: Our objectives were to test the hypothesis that methylmercury (MeHg) exposures affect levels of serum biomarkers and to examine interactions between Hg and selenium (Se) in terms of these responses. Methods: This cross-sectional epidemiological study assessed adults living along the Tapajós River, a system long affected by MeHg. We measured antinuclear (ANA) and antinucleolar (ANoA) autoantibody levels and eight cytokines in serum samples (n = 232). Total Hg (including MeHg) and Se were measured in blood, plasma, hair, and urine. Results: The median (range) total Hg concentrations were 14.1 μg/g (1.1–62.4), 53.5 μg/L (4.3–288.9), 8.8 μg/L (0.2–40), and 3.0 μg/L (0.2–16.1) for hair, blood, plasma, and urine, respectively. Elevated titers of ANA (but not ANoA) were positively associated with MeHg exposure (log-transformed, for blood and plasma), unadjusted [odds ratio (OR) = 2.6; 95% confidence interval (CI): 1.1, 6.2] and adjusted for sex and age (OR = 2.9; 95% CI: 1.1, 7.5). Proinflammatory [interleukin (IL)-6 and interferon (IFN)-©], anti-inflammatory (IL-4), and IL-17 cytokine levels were increased with MeHg exposure; however, in the subset of the population with elevated ANA, proinflammatory IL-1®, IL-6, IFN-©, and tumor necrosis factor (TNF)-〈 and anti-inflammatory (IL-4) cytokine levels were decreased with MeHg exposure. Although Se status was associated with MeHg level (correlation coefficient = 0.86; 95% CI: 0.29, 1.43), Se status was not associated with any changes in ANA and did not modify associations between Hg and ANA titers. Conclusions: MeHg exposure was associated with an increased ANA and changes in serum cytokine profile. Moreover, alterations in serum cytokine profiles differed based on ANA response, suggesting a specific phenotype of MeHg susceptibility. Further research on the potential health implications of these observed immunological changes is warranted. PMID:21868305
System controls on the aqueous distribution of mercury in the northern Florida Everglades
Hurley, J.P.; Krabbenhoft, D.P.; Cleckner, L.B.; Olson, M.L.; Aiken, G.R.; Rawlik, P.S.
1998-01-01
The forms and partitioning of aqueous mercury species in the canals and marshes of the Northern Florida Everglades exhibit strong spatial and temporal variability. In canals feeding Water Conservation Area (WCA) 2A, unfiltered total Hg (HgT(U)) is less than 3 ng L-1 and relatively constant. In contrast, methyl mercury (MeHg) exhibited a strong seasonal pattern, with highest levels entering WCA-2A marshes during July. Stagnation and reduced flows also lead to particle enrichment of MeHg. In the marshes of WCA-2A, 2B and 3A, HgT(U) is usually <5 ng L-1 with no consistent north-south patterns. However, for individual dates, aqueous unfiltered MeHg (MeHg(U)) levels increase from north to south with generally lowest levels in the eutrophied regions of northern WCA-2A. A strong relationship between filtered Hg species and dissolved organic carbon (DOC), evident for rivers draining wetlands in Wisconsin, was not apparent in the Everglades, suggesting either differences in the binding sites of DOC between the two regions, or non-organic Hg complexation in the Everglades.
Gray, J.E.; Theodorakos, P.M.; Bailey, E.A.; Turner, R.R.
2000-01-01
Concentrations of total Hg, Hg (II), and methylmercury were measured in stream-sediment, stream-water, and fish collected downstream from abandoned mercury mines in south-western Alaska to evaluate environmental effects to surrounding ecosystems. These mines are found in a broad belt covering several tens of thousands of square kilometers, primarily in the Kuskokwim River basin. Mercury ore is dominantly cinnabar (HgS), but elemental mercury (Hg(o)) is present in ore at one mine and near retorts and in streams at several mine sites. Approximately 1400 t of mercury have been produced from the region, which is approximately 99% of all mercury produced from Alaska. These mines are not presently operating because of low prices and low demand for mercury. Stream-sediment samples collected downstream from the mines contain as much as 5500 ??g/g Hg. Such high Hg concentrations are related to the abundance of cinnabar, which is highly resistant to physical and chemical weathering, and is visible in streams below mine sites. Although total Hg concentrations in the stream-sediment samples collected near mines are high, Hg speciation data indicate that concentrations of Hg (II) are generally less than 5%, and methylmercury concentrations are less than 1% of the total Hg. Stream waters below the mines are neutral to slightly alkaline (pH 6.8-8.4), which is a result of the insolubility of cinnabar and the lack of acid- generating minerals such as pyrite in the deposits. Unfiltered stream-water samples collected below the mines generally contain 500-2500 ng/l Hg; whereas, corresponding stream-water samples filtered through a 0.45-??m membrane contain less than 50 ng/l Hg. These stream-water results indicate that most of the Hg transported downstream from the mines is as finely- suspended material rather than dissolved Hg. Mercury speciation data show that concentrations of Hg (II) and methylmercury in stream-water samples are typically less than 22 ng/l, and generally less than 5% of the total Hg. Muscle samples of fish collected downstream from mines contain as much as 620 ng/g Hg (wet wt.), of which 90-100% is methylmercury. Although these Hg concentrations are several times higher than that in fish collected from regional baseline sites, the concentration of Hg in fish is below the 1000 ng/g action level for edible fish established by the US Food and Drug Administration (FDA). Salmon contain less than 100 ng/g Hg, which are among the lowest Hg contents observed for fish in the study, and well below the FDA action level. (C) 2000 Elsevier Science B.V.
de Oliveira, Andréia Ávila Soares; de Souza, Marilesia Ferreira; Lengert, André van Helvoort; de Oliveira, Marcelo Tempesta; Camargo, Rossana Batista de Oliveira Godoy; Braga, Gilberto Úbida Leite; Cólus, Ilce Mara de Syllos; Barbosa, Fernando; Barcelos, Gustavo Rafael Mazzaron
2014-01-01
This study aims to evaluate the effects of polymorphisms in glutathione (GSH-) related genes (GSTM1, GSTT1, GSTP1, GCLM, and GCLC) in the distribution of Hg in the blood compartments in humans exposed to methylmercury (MeHg). Subjects (n = 88), exposed to MeHg from fish consumption, were enrolled in the study. Hg species in the plasma compartment were determined by LC-ICP-MS, whereas genotyping was performed by PCR assays. Mean total Hg levels in plasma (THgP) and whole blood (THgB) were 10 ± 4.2 and 37 ± 21, whereas mean levels of plasmatic MeHg (MeHgP), inorganic Hg (IHgP), and HgP/HgB were 4.3 ± 2.9, 5.8 ± 2.3 µg/L, and 0.33 ± 0.15, respectively. GSTM1 and GCLC polymorphisms influence THgP and MeHgP (multivariate analyses, P < 0.050). Null homozygotes for GSTM1 showed higher THgP and MeHgP levels compared to subjects with GSTM1 (THgP β = 0.22, P = 0.035; MeHgP β = 0.30, P = 0.050) and persons carrying at least one T allele for GCLC had significant higher MeHgP (β = 0.59, P = 0.046). Also, polymorphic GCLM subjects had lower THgP/THgB than those with the nonvariant genotype. Taken together, data of this study suggest that GSH-related polymorphisms may change the metabolism of MeHg by modifying the distribution of mercury species iin plasma compartment and the HgP/HgB partitioning.
Mercury speciation and selenium in toothed-whale muscles.
Sakamoto, Mineshi; Itai, Takaaki; Yasutake, Akira; Iwasaki, Toshihide; Yasunaga, Genta; Fujise, Yoshihiro; Nakamura, Masaaki; Murata, Katsuyuki; Chan, Hing Man; Domingo, José L; Marumoto, Masumi
2015-11-01
Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hg decreased from 90-100% to 20-40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. Copyright © 2015 Elsevier Inc. All rights reserved.
Biogeochemical cycle of Mercury in an urban stream in Hartford CT
NASA Astrophysics Data System (ADS)
Aragon-jose, A. T.; Bushey, J. T.; Perkins, C.; Mendes, M.; Ulatowski, G.
2012-12-01
Mercury (Hg) toxicity and the potential for bioaccumulation in the food chain result in exposure risk even at low Hg levels. The presence of urban activities can substantially alter Hg fate and transport mechanisms and Hg biogeochemical cycles. Urban watersheds are characterized by high imperviousness and some may even be impacted by combined sewer overflows, both being fundamental factors contributing to Hg loading, mobilization, and shifts in bioavailability in urban watersheds. Research is still needed to characterize the fate and dynamics of Hg in urban streams. To address this gap in knowledge, we collected and characterized stream water and suspended sediment samples in the Park River watershed in Hartford, CT (USA) during baseflow and precipitation events. Sampling sites were selected across an urbanization gradient. Water samples are analyzed for total, dissolved, and particulate Hg and methyl Hg (MeHg), major ions (Cl-, NO3-, SO42-)-, total suspended solids (TSS), and dissolved organic carbon (DOC). Our results show that both total and dissolved Hg concentrations increase in the streams during precipitation events, however, the greatest portion of Hg is associated, and consequently transported, with suspended sediments, as suggested by the high correlation coefficient (R2 ~ 0.80) between TSS and total Hg. No significant correlation was observed between dissolved or total Hg and DOC, contrary to the observations in forested systems, which indicates that the sources and mechanisms governing mobilization and transport of dissolved Hg in an urban watershed differ from those at forested systems. However, during select events, a significant portion of Hg flux occurs in the dissolved phase. Unfiltered MeHg samples exhibited a similar pattern relative to the hydrograph to that of total Hg. Concentrations increase during the rising limb with TSS followed by a decrease as the storm progresses. Dissolved MeHg is mostly below our detection limit. Area normalized THg flux is generally higher at the more developed sites for all but the May storm, whereas the opposite trend is observed for MeHg except for the August storm, indicative of different sources of Hg contributing to the stream. To assist in elucidating the potential sources, dissolved organic matter in the water samples was analyzed for specific ultra violet absorbance at 254 nm (SUVA254) and for excitation-emission matrix (EEMs) to assess differences in organic matter loading to the stream. Additionally, Hg association with sediment was analyzed by collecting four sets of suspended sediment samples over 3-month periods at five sites across the watershed to assess potential sediment sources into the stream. Solid samples were analyzed for total carbon, nitrogen, and hydrogen, organic and inorganic carbon, mercury, acid volatile sulfide, chromium reducible sulfide, PAHs, QACs, and select metals.
Teeth as biomonitors of soft tissue mercury concentrations in beluga, Delphinapterus leucas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Outridge, P.M.; Wagemann, R.; McNeely, R.
2000-06-01
This paper reports relationships between bulk Hg concentrations in the tooth cementum and soft tissues of free-living beluga (Delphinapterus leucas). Total Hg levels were determined in slivers of cementum using a solid-sample Hg analyzer, a recent advance in Hg analysis that avoids acid predigestion. Tooth Hg concentrations ranged up to about 350 ng/g dry weight and were significantly correlated with Hg levels in kidneys, liver, muscle, and muktuk (skin) and with the age of the animals. The Hg/Se ratio in liver, the organ with the highest Hg concentrations, may have been an important determinant of tooth Hg. At hepatic Hg/Semore » molar ratios {ge}0.6, tooth Hg increased steeply, suggesting that Hg in teeth may reflect physiologically available Hg that was not bound in the liver and that was circulating in the bloodstream. This Hg/Se ratio was exceeded in most beluga aged {ge}20 years. The results indicate that teeth can be used as biomonitors to reconstruct temporal and geographic trends in the soft tissue Hg concentrations of beluga, provided that the age structures of the different populations are known.« less
Santos-Francés, F; García-Sánchez, A; Alonso-Rojo, P; Contreras, F; Adams, M
2011-04-01
An extensive and remote gold mining region located in the East of Venezuela has been studied with the aim of assessing the distribution and mobility of mercury in soil and the level of Hg pollution at artisanal gold mining sites. To do so, soils and pond sediments were sampled at sites not subject to anthropological influence, as well as in areas affected by gold mining activities. Total Hg in regionally distributed soils ranged between 0.02 mg kg(-1) and 0.40 mg kg(-1), with a median value of 0.11 mg kg(-1), which is slightly higher than soil Hg worldwide, possibly indicating long-term atmospheric input or more recent local atmospheric input, in addition to minor lithogenic sources. A reference Hg concentration of 0.33 mg kg(-1) is proposed for the detection of mining affected soils in this region. Critical total Hg concentrations were found in the surrounding soils of pollutant sources, such as milling-amalgamation sites, where soil Hg contents ranged from 0.16 mg kg(-1) to 542 mg kg(-1) with an average of 26.89 mg kg(-1), which also showed high levels of elemental Hg, but quite low soluble+exchangeable Hg fraction (0.02-4.90 mg kg(-1)), suggesting low Hg soil mobility and bioavailability, as confirmed by soil column leaching tests. The vertical distribution of Hg through the soil profiles, as well as variations in soil Hg contents with distance from the pollution source, and Hg in pond mining sediments were also analysed. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branco, Vasco, E-mail: vbranco@ipimar.pt; Marine Environment and Biodiversity Unit, National Institute for Biological Resources; Canario, Joao, E-mail: jcanario@ipimar.pt
2011-03-01
Mercury compounds were recently found to interact in vitro with the thioredoxin system, inhibiting both Thioredoxin (Trx) and Thioredoxin reductase (TrxR). In order to evaluate if Trx and TrxR are affected in vivo by methylmercury (MeHg), we exposed juvenile zebra-seabreams to different concentrations of this toxicant in water for 28 days followed by a 14-day depuration period. Methylmercury accumulated to a larger extent in the kidney and liver of fishes, but decreased significantly during the depuration. During the exposure, MeHg percentage in the liver reached levels above 90% of total mercury (HgT) decreasing to 60% of HgT by the endmore » of the depuration period. In the kidney, MeHg accounted for 50-70% of HgT. In the brain and muscle, mercury accumulated throughout the exposure with all mercury being MeHg. The total mercury kept increasing in these organs during the depuration period. However, in the brain, this increase in HgT was accompanied by a decrease in the MeHg percentage ({approx} 10%). In the liver, both Trx and TrxR activities were significantly reduced (TrxR - 40%; Trx - 70%) by the end of the exposure, but recovered to control levels (100%) during the depuration. In the brain, both enzymes where inhibited during the depuration period (TrxR - 75%; Trx - 70%) when some production of inorganic mercury was detected. Activity of glutathione reductase showed increased levels when TrxR activity was low, suggesting complementarity between both systems. These results indicate that in vivo the thioredoxin system is a toxicological target for MeHg with TrxR being particularly affected.« less
Effects of methylmercury exposure on the immune function of juvenile common loons (Gavia immer)
Kenow, K.P.; Grasman, K.A.; Hines, R.K.; Meyer, M.W.; Gendron-Fitzpatrick, A.; Spalding, M.G.; Gray, B.R.
2007-01-01
We conducted a dose-response laboratory study to quantify the level of exposure to dietary Hg, delivered as methylmercury chloride (CH3HgCl), that is associated with suppressed immune function in captive-reared common loon (Gavia immer) chicks. We used the phytohemagglutinin (PHA) skin test to assess T-lymphocyte function and the sheep red blood cell (SRBC) hemagglutination test to measure antibody-mediated immunity. The PHA stimulation index among chicks receiving dietary Hg treatment did not differ significantly from those of chicks on the control diet (p = 0.15). Total antibody (immunoglobulin [Ig] M [primary antibody] + IgG [secondary response]) production to the SRBC antigen in chicks treated with dietary methylmercury (MeHg), however, was suppressed (p = 0.04) relative to chicks on control diets. Analysis indicated suppression of total Ig production (p = 0.025 with comparisonwise ?? level = 0.017) between control and 0.4 ??g Hg/g wet food intake treatment groups. Furthermore, the control group exhibited a higher degree of variability in antibody response compared to the Hg groups, suggesting that in addition to reducing the mean response, Hg treatment reduced the normal variation attributable to other biological factors. We observed bursal lymphoid depletion in chicks receiving the 1.2 ??g Hg/g treatment (p = 0.017) and a marginally significant effect (p = 0.025) in chicks receiving the 0.4 ??g Hg/g diet. These findings suggest that common loon chick immune systems may be compromised at an ecologically relevant dietary exposure concentration (0.4 ??g Hg/g wet wt food intake). We also found that chicks hatched from eggs collected from low-pH lakes exhibited higher levels of lymphoid depletion in bursa tissue relative to chicks hatched from eggs collected from neutral-pH lakes. ?? 2007 SETAC.
The influence of avian biovectors on mercury speciation in a bog ecosystem.
Kickbush, Jocelyn C; Mallory, Mark L; Murimboh, John D; Rand, Jennie; Klapstein, Sara J; Loder, Amanda L; Hill, Nicholas M; O'Driscoll, Nelson J
2018-05-08
Methylmercury (MeHg) is a neurotoxin and endocrine disruptor that bioaccumulates and biomagnifies through trophic levels, resulting in potentially hazardous concentrations. Although wetlands are known hotspots for mercury (Hg) methylation, the effects of avian biovectors on these processes are poorly understood. We examined Hg speciation and distribution in shallow groundwater and surface water from a raised-bog with over 30years of avian biovector (herring gulls Larus argentatus and great black-backed gulls Larus marinus) colonization and guano input. Compared to the reference site, the avian-impacted bog had elevated concentrations of total dissolved organic carbon (TOC), total Hg, MeHg, phosphate (PO 4 3- ), and other trace metals, notably Pb, As, Cd and Ni. Spatial interpolation showed that the densest area of gull nesting was co-located with areas that had the highest concentrations of PO 4 3- , MeHg, As and Cd, but not total mercury (THg), and models suggested that Mn, PO 4 3- , and dissolved TOC were strong predictors of MeHg. Our findings suggest that while these gulls may not be a significant source of Hg, the excess of PO 4 3- (a well recognised component of guano) and the subsequent changes in water chemistry due to avian biovector subsidies may increase net Hg methylation. Copyright © 2018 Elsevier B.V. All rights reserved.
Horai, Sawako; Minagawa, Mikiko; Ozaki, Hirokazu; Watanabe, Izumi; Takeda, Yasuo; Yamada, Katsushi; Ando, Tetsuo; Akiba, Suminori; Abe, Shintaro; Kuno, Katsuji
2006-10-01
Concentrations of 22 elements (Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Tl, total Hg (T-Hg), Pb) and organic Hg (O-Hg) were examined in the liver, kidney and brain of the Javan mongoose (Herpestes javanicus) and in liver of the Amami rabbit (Pentalagus furnessi) from Amamioshima Island in Japan. Relatively high levels of T-Hg levels (from 1.75 to 55.5 microg g-1 wet wt.) were found in the Javan mongoose. As for a comparison of hepatic T-Hg concentrations between the two areas, there was no significant difference between the Javan mongoose in Amamioshima and those in the Okinawa islands. In addition, T-Hg levels in the livers of the Amami rabbit were the same as in the livers of other herbivorous mammals. Taken together, it suggested that T-Hg accumulation in the livers of the Javan mongoose was not affected by the environment but by a specific physiological mechanism. The comparison of Hg and other heavy metal accumulations between terrestrial mammals (13 species, 61 individuals) including the Javan mongoose and marine mammals (18 species, 508 individuals) were also discussed.
Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.
Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-04-01
Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.
Reyes, Ellen S; Aristizabal Henao, Juan J; Kornobis, Katherine M; Hanning, Rhona M; Majowicz, Shannon E; Liber, Karsten; Stark, Ken D; Low, George; Swanson, Heidi K; Laird, Brian D
2017-01-01
To better understand the risks and benefits of eating wild-harvested fish from the Northwest Territories, Canada, levels of total mercury (HgT) and selenium (Se) and composition of omega-3 fatty acid (n-3 FA) were measured in muscle tissue of fish harvested from lakes in the Dehcho Region, Northwest Territories, Canada. Average HgT levels ranged from 0.057 mg/kg (cisco) to 0.551 mg/kg (northern pike), while average n-3 FA concentrations ranged from 101 mg/100 g (burbot) to 1,689 mg/100 g (lake trout). In contrast to HgT and n-3 FA, mean Se concentrations were relatively similar among species. Consequently, species such as lake whitefish, cisco, and longnose sucker displayed the highest nutrient levels relative to HgT content. Levels of HgT tended to increase with fish size, while Se and n-3 FA levels were typically not associated with fork length or fish weight. Interestingly, HgT concentration was occasionally inversely related to tissue nutrient content. Significant negative correlations were observed between Hg and n-3 FA for lake trout, northern pike, and walleye. There were also significant negative correlations between Hg and Se noted for lake whitefish, cisco, and northern pike. Samples with the highest nutritional content displayed, on occasion, lower levels of HgT. This study provides valuable information for the design of probabilistic models capable of refining public health messaging related to minimizing Hg risks and maximizing nutrient levels in wild-harvested fish in the Canadian subarctic.
Glutathione level after long-term occupational elemental mercury exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobal, Alfred Bogomir; Prezelj, Marija; Horvat, Milena
2008-05-15
Many in vitro and in vivo studies have elucidated the interaction of inorganic mercury (Hg) and glutathione. However, human studies are limited. In this study, we investigated the potential effects of remote long-term intermittent occupational elemental Hg vapour (Hg{sup o}) exposure on erythrocyte glutathione levels and some antioxidative enzyme activities in ex-mercury miners in the period after exposure. The study included 49 ex-mercury miners divided into subgroups of 28 still active, Hg{sup o}-not-exposed miners and 21 elderly retired miners, and 41 controls, age-matched to the miners subgroup. The control workers were taken from 'mercury-free works'. Reduced glutathione (GSH) and oxidizedmore » disulphide glutathione (GSSG) concentrations in haemolysed erythrocytes were determined by capillary electrophoresis, while total glutathione (total GSH) and the GSH/GSSG ratio were calculated from the determined values. Catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in erythrocytes were measured using commercially available reagent kits, while urine Hg (U-Hg) concentrations were determined by cold vapour atomic absorption (CVAAS). No correlation of present U-Hg levels, GSH, GSSG, and antioxidative enzymes with remote occupational biological exposure indices were found. The mean CAT activity in miners and retired miners was significantly higher (p<0.05) than in the controls. No differences in mean GPx activity among the three groups were found, whereas the mean GR activity was significantly higher (p<0.05) in miners than in retired miners. The mean concentrations of GSH (mmol/g Hb) in miners (13.03{+-}3.71) were significantly higher (p<0.05) than in the control group (11.68{+-}2.66). No differences in mean total GSH, GSSG levels, and GSH/GSSG ratio between miners and controls were found. A positive correlation between GSSG and present U-Hg excretion (r=0.41, p=0.001) in the whole group of ex-mercury miners was observed. The significantly lower GSH level (p<0.05) determined in the group of retired miners (9.64{+-}1.45) seems to be age-related (r=-0.39, p=0.001). Thus, the moderate but significantly increased GSH level, GR and CAT activity in erythrocytes in the subgroup of miners observed in the period after exposure to Hg{sup o} could be an inductive and additive response to maintain the balance between GSH and antioxidative enzymes in interaction with the Hg body burden accumulated during remote occupational exposure, which does not represent a severely increased oxidative stress.« less
Miles, A.K.; Ricca, M.A.
2010-01-01
Decommissioned agricultural salt ponds within south San Francisco Bay, California, are in the process of being converted to habitat for the benefit of wildlife as well as water management needs and recreation. Little is known of baseline levels of contaminants in these ponds, particularly mercury (Hg), which has a well established legacy in the Bay. In this study we described spatial and short-term temporal variations in sediment Hg species concentrations within and among the Alviso and Eden Landing salt ponds in the southern region of San Francisco Bay. We determined total Hg (Hgt) and methylmercury (MeHg) in the top 5 cm of sediment of most ponds in order to establish baseline conditions prior to restoration, sediment Hgt concentrations in a subset of these ponds after commencement of restoration, and variation in MeHg concentrations relative to sediment Hgt, pH, and total Fe concentrations and water depth and salinity in the subset of Alviso ponds. Inter-pond differences were greatest within the Alviso pond complex, where sediment Hgt concentrations averaged (arithmetic mean) 0.74 ??g/g pre and 1.03 ??g/g post-restoration activity compared to 0.11 ??g/g pre and post at Eden Landing ponds. Sediment Hgt levels at Alviso were fairly stable temporally and spatially, whereas MeHg levels were variable relative to restoration activities across time and space. Mean (arithmetic) sediment MeHg concentrations increased (2.58 to 3.03 ng/g) in Alviso and decreased (2.20 to 1.03 ng/g) in Eden Landing restoration ponds during the study. Differences in MeHg levels were related to water depth and pH, but these relationships were not consistent between years or among ponds and were viewed with caution. Factors affecting MeHg levels in these ponds (and in general) are highly complex and require in-depth study to understand.
Soto Cárdenas, Carolina; Diéguez, María Del Carmen; Queimaliños, Claudia; Rizzo, Andrea; Fajon, Vesna; Kotnik, Jože; Horvat, Milena; Ribeiro Guevara, Sergio
2018-04-01
Lake Nahuel Huapi (NH) is a large, ultraoligotrophic deep system located in Nahuel Huapi National Park (NHNP) and collecting a major headwater network of Northwestern Patagonia (Argentina). Brazo Rincón (BR), the westernmost branch of NH, is close to the active volcanic formation Puyehue-Cordón Caulle. In BR, aquatic biota and sediments display high levels of total Hg (THg), ranging in contamination levels although it is an unpolluted region. In this survey, Hg species and fractionation were assessed in association with dissolved organic matter (DOM) in several aquatic systems draining to BR. THg varied between 16.8 and 363 ng L -1 , with inorganic Hg (Hg 2+ ) contributing up to 99.8% and methyl mercury (MeHg) up to 2.10%. DOC levels were low (0.31-1.02 mg L -1 ) resulting in high THg:DOC and reflecting in high Hg 2+ availability for binding particles (partitioning coefficient log K d up to 6.03). In streams, Hg fractionation and speciation related directly with DOM terrestrial prints, indicating coupled Hg-DOM inputs from the catchment. In the lake, DOM quality and photochemical and biological processing drive Hg fractionation, speciation and vertical levels. Dissolved gaseous Hg (Hg 0 ) reached higher values in BR (up to 3.8%), particularly in upper lake layers where solar radiation enhances the photoreduction of Hg 2+ and Hg-DOM complexes. The environmental conditions in BR catchment promote Hg 2+ binding to abiotic particles and bioaccumulation and the production of Hg 0 , features enhancing Hg mobilization among ecosystem compartments. Overall, the aquatic network studied can be considered a "natural Hg hotspot" within NHNP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Eckley, Chris S; Luxton, Todd P; Goetz, Jennifer; McKernan, John
2017-03-01
Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log K d values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management actions can have an impact on the sediment-porewater characteristics that affect MeHg production. Such findings are also relevant to natural water systems that experience wetting and drying cycles, such as floodplains and ombrotrophic wetlands. Published by Elsevier Ltd.
Tavshunsky, Ilana; Eggert, Susan L; Mitchell, Carl P J
2017-12-01
Mercury (Hg) methylation is often elevated at the terrestrial-peatland interface, but methylmercury (MeHg) production at this "hot spot" has not been linked with in situ biotic accumulation. We examined total Hg and MeHg levels in peat, invertebrates and tissues of the insectivore Sorex cinereus (masked shrew), inhabiting a terrestrial-peatland ecotone in northern Minnesota, USA. Mean MeHg concentrations in S. cinereus (71 ng g -1 ) fell between concentrations measured in spiders (mean 70-140 ng g -1 ), and ground beetles and millipedes (mean 29-42 ng g -1 ). Methylmercury concentrations in S. cinereus increased with age and differed among tissues, with highest concentrations in kidneys and muscle, followed by liver and brain. Nearly all Hg in S. cinereus was in the methylated form. Overall, the high proportional accumulation of MeHg in peat at the site (3.5% total Hg as MeHg) did not lead to particularly elevated concentrations in invertebrates or shrews, which are below values considered a toxicological risk.
Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment
Gworek, Barbara; Dmuchowski, Wojciech; Gozdowski, Dariusz; Koda, Eugeniusz; Osiecka, Renata; Borzyszkowski, Jan
2015-01-01
The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19–271 μg kg-1, 0.36–3.01 μg l-1, 19–66 μg kg-1 and 8–29 μg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment. PMID:26176607
Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment.
Gworek, Barbara; Dmuchowski, Wojciech; Gozdowski, Dariusz; Koda, Eugeniusz; Osiecka, Renata; Borzyszkowski, Jan
2015-01-01
The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19-271 μg kg-1, 0.36-3.01 μg l-1, 19-66 μg kg-1 and 8-29 μg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment.
Moreno, Clara E; Fjeld, Eirik; Lydersen, Espen
2016-03-01
Effects of wildfire on main water chemistry and mercury (Hg) in water and biota were studied during the first 4 post-fire years. After severe water chemical conditions during hydrological events a few months following the wildfire, the major water chemical parameters were close to pre-fire conditions 4 years after the fire. Concentrations of total Hg and methyl Hg in the surface water 4 years after the fire ranged between 1.17-2.63 ng L(-1) and 0.053-0.188 ng L(-1), respectively. Both variables were positive and strongly correlated with total organic carbon (TOC), TOC-related variables (color, UV absorbance), total phosphorous, and total iron. In addition, MeHg was positively correlated with total nitrogen and chlorophyll-a. The concurrence of increased concentrations of nutrients and chlorophyll-a in the lakes, the more enriched δ(15)N-signatures and higher Hg levels in fish 2 years after the fire, might be a result of the wildfire. However, natural factors as year-to-year variations in thermocline depth and suboxic status in the lakes make it difficult to draw any strong conclusions about wildfire effects on Hg in the biota from our investigated lakes.
A review of mercury concentrations in freshwater fishes of Africa: patterns and predictors.
Hanna, Dalal E L; Solomon, Christopher T; Poste, Amanda E; Buck, David G; Chapman, Lauren J
2015-02-01
The methylated form of mercury (methylmercury) is a potent neurotoxic chemical and a contaminant of concern for fisheries because of its potential effects on ecosystem and human health. In Africa, inland fisheries are a crucial component of food and economic security, yet little information is available on mercury (Hg) contamination trends. The authors compiled published data on Hg contamination in African freshwater fishes, invertebrates, and plankton, as well as on potential drivers of Hg concentrations in these organisms. From 30 identified studies the authors assembled 407 total Hg concentrations from 166 fish species, 10 types of invertebrates, and various plankton, distributed across 31 water bodies in 12 countries. In fishes, total Hg concentrations, expressed as mean (± standard deviation) per location, averaged 156.0 ± 328.0 ng/g wet weight and ranged from 5.5 ng/g wet weight to 1865.0 ng/g wet weight. Only locations with nearby artisanal and small-scale gold mining operations had mean Hg concentrations above the World Health Organization/Food and Agriculture Organization's recommended guideline for fish (500 ng/g wet wt). The authors used mixed models to detect relationships between fish Hg concentrations and trophic level, mass, latitude, and chlorophyll a. Mass, trophic level, and latitude were all positive predictors of Hg concentration, confirming the presence of Hg bioaccumulation and biomagnification in African fishes. Although strong trends in Hg concentrations were evident, the present study also highlights limited availability of Hg data in Africa. © 2014 SETAC.
Mercury, Cadmium, and Lead Levels in Human Placenta: A Systematic Review
Esteban-Vasallo, María D.; Aragonés, Nuria; Pollan, Marina; López-Abente, Gonzalo
2012-01-01
Background: Placental tissue may furnish information on the exposure of both mother and fetus. Mercury (Hg), cadmium (Cd), and lead (Pb) are toxicants of interest in pregnancy because they are associated with alterations in child development. Objectives: The aim of this study was to summarize the available information regarding total Hg, Cd, and Pb levels in human placenta and possible related factors. Methods: We performed a systematic search of PubMed/MEDLINE, EMBASE, Lilacs, OSH, and Web of Science for original papers on total Hg, Cd, or Pb levels in human placenta that were published in English or Spanish (1976–2011). Data on study design, population characteristics, collection and analysis of placenta specimens, and main results were extracted using a standardized form. Results: We found a total of 79 papers (73 different studies). Hg, Cd, and Pb levels were reported in 24, 46, and 46 studies, respectively. Most studies included small convenience samples of healthy pregnant women. Studies were heterogeneous regarding populations selected, processing of specimens, and presentation of results. Hg concentrations > 50 ng/g were found in China (Shanghai), Japan, and the Faroe Islands. Cd levels ranged from 1.2 ng/g to 53 ng/g and were highest in the United States, Japan, and Eastern Europe. Pb showed the greatest variability, with levels ranging from 1.18 ng/g in China (Shanghai) to 500 ng/g in a polluted area of Poland. Conclusion: The use of the placenta as a biomarker to assess heavy metals exposure is not properly developed because of heterogeneity among the studies. International standardized protocols are needed to enhance comparability and increase the usefulness of this promising tissue in biomonitoring studies. PMID:22591711
Wang, Jianxu; Feng, Xinbin; Anderson, Christopher W N; Zhu, Wei; Yin, Runsheng; Wang, Heng
2011-12-01
The level of mercury bioaccumulation in wild plants; the distribution of bioavailable Hg, elemental Hg, and total Hg in soil; and the concentration of total gaseous Hg (TGM) in ambient air was studied at three different mining sites (SiKeng [SK], WuKeng [WK], and GouXi [GX]) in the Wanshan mercury mining district of China. Results of the present study showed that the distribution of soil total Hg, elemental Hg, bioavailable Hg, and TGM varies across the three mining sites. Higher soil total Hg (29.4-1,972.3 mg/kg) and elemental Hg (19.03-443.8 mg/kg) concentrations were recorded for plots SK and WK than for plot GX. Bioavailable Hg was lower at plot SK and GX (SK, 3-12 ng/g; GX, 9-14 ng/g) than at plot WK (11-1,063 ng/g), although the TGM concentration in the ambient air was significantly higher for plot GX (52,723 ng/m(3) ) relative to WK (106 ng/m(3) ) and SK (43 ng/m(3)). Mercury in sampled herbage was elevated and ranged from 0.8 to 4.75 mg/kg (SK), from 2.17 to 34.38 mg/kg (WK), and from 47.45 to 136.5 mg/kg (GX). Many of the sampled plants are used as fodder or for medicinal purposes. High shoot Hg concentrations may therefore pose an unacceptable human health risk. Statistical analysis of the recorded data showed that the Hg concentration in plant shoots was positively correlated with TGM and that the Hg concentration in roots was positively correlated with the bioavailable Hg concentration in the soil. The bioaccumulation factor (BAF) in the present study was defined with reference to the concentration of bioavailable Hg in the soil (Hg([root]) /Hg([bioavail])). Three plant species, Macleaya cordata L., Achillea millefolium L., and Pteris vittata L., showed enhanced accumulation of Hg and therefore may have potential for use in the phytoremediation of soils of the Wanshan mining area. Copyright © 2011 SETAC.
Delgado-Alvarez, C G; Frías-Espericueta, M G; Ruelas-Inzunza, J; Becerra-Álvarez, M J; Osuna-Martínez, C C; Aguilar-Juárez, M; Osuna-López, J I; Escobar-Sánchez, O; Voltolina, D
2017-07-01
Total mercury (Hg) concentrations were determined by atomic absorption spectrophotometry in muscles and liver of composite samples of Mugil cephalus and M. curema collected during November 2013 and in January, April, and July 2014 from the coastal lagoons Altata-Ensenada del Pabellón (AEP), Ceuta (CEU), and Teacapán-Agua Brava (TAG) of Sinaloa State. The mean Hg contents and information on local consumption were used to assess the possible risk caused by fish ingestion. Mean total mercury levels in the muscles ranged from 0.11 to 0.39 μg/g, while the range for liver was 0.12-3.91 μg/g. The mean Hg content of the liver was significantly (p < 0.001) higher than that of the muscles only in samples collected from AEP. Although total Hg levels in the muscles were lower than the official permissible limit, the HQ values for methyl mercury calculated for the younger age classes of one fishing community were >1, indicating a possible risk for some fishing communities of the Mexican Pacific coast.
Schuster, Paul F.; Krabbenhoft, David P.; Naftz, David L.; Cecil, L. DeWayne; Olson, Mark L.; DeWild, John F.; Susong, David D.; Green, Jaromy R.; Abbott, Michael L.
2002-01-01
Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation are significant environmental problems of global extent. At regional to global scales, the primary mechanism of Hg contamination is atmospheric Hg transport. Thus, a better understanding of the long-term history of atmospheric Hg cycling and quantification of the sources is critical for assessing the regional and global impact of anthropogenic Hg emissions. Ice cores collected from the Upper Fremont Glacier (UFG), Wyoming, contain a high-resolution record of total atmospheric Hg deposition (ca. 1720−1993). Total Hg in 97 ice-core samples was determined with trace-metal clean handling methods and low-level analytical procedures to reconstruct the first and most comprehensive atmospheric Hg deposition record of its kind yet available from North America. The record indicates major atmospheric releases of both natural and anthropogenic Hg from regional and global sources. Integrated over the past 270-year ice-core history, anthropogenic inputs contributed 52%, volcanic events 6%, and background sources 42%. More significantly, during the last 100 years, anthropogenic sources contributed 70% of the total Hg input. Unlike the 2−7-fold increase observed from preindustrial times (before 1840) to the mid-1980s in sediment-core records, the UFG record indicates a 20-fold increase for the same period. The sediment-core records, however, are in agreement with the last 10 years of this ice-core record, indicating declines in atmospheric Hg deposition.
Influence of Reservoir Water Level Fluctuations on Sediment ...
Mercury (Hg) is a pollutant of global concern due to its ability to accumulate as methylmercury (MeHg) in biota. Mercury is methylated by anaerobic microorganisms such as sulfate reducing bacteria (SRB) in water and sediment. Throughout North America, reservoirs tend to have elevated methylmercury (MeHg) concentrations compared to natural lakes and rivers. This impact is most pronounced in newly created reservoirs where methylation is fueled by the decomposition of flooded organic material, which can release Hg and enhance microbial activity. Much less is known about the longer-term water-level management impacts on Hg cycling in older reservoirs. The objective of our study was to understand the role of on-going water-level fluctuations on sediment MeHg concentrations and sulfur speciation within a reservoir 75 years after initial impoundment. The study was performed at the Cottage Grove Reservoir located 15 km downstream of the historical Black Butte Hg mine. For 8 months each year, the water level is lowered resulting in roughly half of the reservoir’s sediment being exposed to the atmosphere. Water samples from the inflow, water-column, outflow, and sediment were collected seasonally over a year for total-Hg, MeHg, and several ancillary parameters. The results showed that conditions in the reservoir were favorable to methylation with a much higher %MeHg observed in the outflowing water (34%) compared to the inflow (7%) during the late-summer. An
Batchelar, Katharina L; Kidd, Karen A; Drevnick, Paul E; Munkittrick, Kelly R; Burgess, Neil M; Roberts, Aaron P; Smith, James D
2013-03-01
Few studies have investigated the effects of mercury (Hg) on wild fish from remote areas, even though these fish can have high total Hg concentrations. In Kejimkujik National Park and National Historic Site (KNPNHS), Nova Scotia, Canada, concentrations of total Hg in many yellow perch (Perca flavescens) currently exceed the estimated threshold level for adverse effects in fish (0.2 µg Hg g(-1) (wet wt), whole body). To determine whether Hg exposure is adversely affecting the general health of these fish, the authors collected male and female perch in the fall of 2009 and 2010 from 12 lakes within KNPNHS. The health endpoints condition, liver somatic index (LSI), and macrophage aggregates (MAs; indicators of oxidative stress and tissue damage) in the liver, kidney, and spleen were examined, and in female perch were compared between lakes and related to Hg concentrations measured in the muscle and liver tissue. No negative relationships between fish condition or LSI and Hg were found. However, within the liver, kidney, and spleen tissues of females, the relative area occupied by MAs was positively related to both muscle and liver Hg concentrations, indicating the health of these perch was adversely affected at the cellular level. These findings raise concerns for the health of these perch as well as for other wild fish populations known to have similarly elevated Hg concentrations. Copyright © 2013 SETAC.
Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia).
Olivero-Verbel, Jesus; Caballero-Gallardo, Karina; Turizo-Tapia, Alexi
2015-04-01
Gold mining is responsible for most Hg pollution in developing countries. The aims of this study were to assess the levels of total Hg (T-Hg) in human hair, fish, water, macrophyte, and sediment samples in the gold mining district of San Martin de Loba, Colombia, as well as to determine fish consumption-based risks for T-Hg ingestion. T-Hg levels were measured by electrothermal atomization and atomic absorption spectroscopy. The overall mean T-Hg level in hair for humans in the mining district of San Martin de Loba was 2.12 μg/g, whereas for the reference site, Chimichagua, Cesar, it was 0.58 μg/g. Mean T-Hg levels were not different when considered within localities belonging to the mining district but differed when the comparison included Chimichagua. T-Hg levels in examined locations were weakly but significantly associated with age and height, as well as with fish consumption, except in San Martin de Loba. High T-Hg concentrations in fish were detected in Pseudoplatystoma magdaleniatum, Caquetaia kraussii, Ageneiosus pardalis, Cyrtocharax magdalenae, and Triportheus magdalenae, whereas the lowest appeared in Prochilodus magdalenae and Hemiancistrus wilsoni. In terms of Hg exposure due to fish consumption, only these last two species offer some guarantee of low risk for Hg-related health problems. Water, floating macrophytes, and sediments from effluents near mining sites also had high Hg values. In mines of San Martin de Loba and Hatillo de Loba, for instance, the geoaccumulation index (I(geo)) for sediments reached values greater than 6, indicating extreme pollution. In short, these data support the presence of a high Hg-polluted environment in this mining district, with direct risk for deleterious effects on the health of the mining communities.
Variations of Mercury Concentrations in American Beech Foliage over a Growing Season
NASA Astrophysics Data System (ADS)
Stinson, I.; Tsui, M. T. K.; Chow, A. T.
2017-12-01
Accumulation of atmospheric gaseous mercury (Hg) in foliage is well known, however, a small fraction of Hg always exists as highly bioavailable methylmercury (MeHg) in foliage but the source of MeHg in foliage is unknown. Recent studies suggested in-vivo Hg methylation in foliage while others suggested external inputs (e.g., precipitation) as sources of MeHg in foliage. This study assesses the accumulation of total Hg and MeHg within the foliage of a small sample set of American Beech trees, one of the common tree species in the east coast and the study site is located within the campus of University of North Carolina - Greensboro, over the growing season in 2017 (spring, summer, and fall). In addition, this study evaluates the Hg concentrations in foliage as related to other physiological parameters (e.g., stomatal density, leaf area, chlorophyll, and carbon/nitrogen content) and the changes in environmental characteristics (e.g., sunlight) over the growing season. For this investigation, five American Beech trees with varying characteristics (height, age, and location) were selected. On a biweekly basis, starting late April 2017, foliage samples were collected and composited from different positions on each tree. For the samples processed to date, our results indicate that total Hg accumulation is occurring for all five trees with an initial mean value of 5.79 ng/g, increasing to a mean value of 13.9 ng/g over a ten-week period. Coincidentally, there has been a similar increase in chlorophyll (a+b) concentrations for the foliage, and there is a strong, positive relationship between chlorophyll and total-Hg concentrations. However, we found no relationships between total Hg concentrations and stomatal density of foliage or carbon/nitrogen content. This study is still ongoing and will continue through the end of the growing season in 2017. Additionally, from the same sample sets, besides total Hg analysis and other ancillary parameters in foliage, MeHg analysis will be conducted to determine its levels and changes over the growing season. Results of this study can shed new light onto the potential mechanisms of inorganic Hg and MeHg accumulation in tree foliage, which has been implied to be the main sources of toxic MeHg to enter the forest food webs.
Souza-Araujo, J; Giarrizzo, T; Lima, M O; Souza, M B G
2016-07-01
This study assessed total mercury (THg) and methyl mercury (MeHg) concentrations, bioaccumulation and biomagnification of THg through the food web in fishes consumed by indigenous communities of Bacajá River, the largest tributary of the right bank of Xingu River. In total, 496 fish (22 species) were sampled. Nine species had THg concentrations above the limit recommended by the World Health Organisation (0·5 µg g(-1) wet mass), and one exceeded the recommended level for Hg in predatory fishes by Brazilian law (1·0 µg g(-1) ). The average concentration of THg increased significantly with trophic guild (herbivorous to piscivorous) and trophic level, with higher accumulation in fishes with greater total length. Ninety-six per cent of all mercury was methylated. These results suggest that feeding habits determine THg concentrations in fishes and that Hg elimination rate is slow during growth, which allows greater accumulation. These findings show that fishes in the Bacajá River contain high concentrations of THg and MeHg. © 2016 The Fisheries Society of the British Isles.
Chen, Qianqian; Liu, Xiaodong; Xu, Liqiang; Sun, Liguang; Yan, Hong; Liu, Yi; Luo, Yuhan; Huang, Jing
2012-08-01
This study determined the distribution and main source of methylmercury in ornithogenic coral sand sediments and pure guano collected from Guangjin and Jinqing islets of the South China Sea. Results showed that the levels of methylmercury (MeHg) and total mercury (THg), as well as the percentage of MeHg relative to THg (%MeHg), are high in both fresh and ancient guano samples. %MeHg in ancient guano exceeded 70 %, much greater than that in fresh seabird droppings (~45 %). These results suggest that excretion through feces likely plays an important role in the cycling of MeHg by seabirds. Guano has been identified as the major source of MeHg in the ornithogenic coral sand sediments in the Xisha Islands. The close relationship between MeHg and guano-derived phosphorus has weakened considerably since 1840 AD. This is probably caused by a significant increase in THg and MeHg in modern guano samples due to the recent increase of Hg pollution. %MeHg in the ornithogenic coral sand sediments is extremely high, ranging from 10 to 30 % (average 20 %).
Carneiro, Maria Fernanda Hornos; Oliveira Souza, Juliana Maria; Grotto, Denise; Batista, Bruno Lemos; de Oliveira Souza, Vanessa Cristina; Barbosa, Fernando
2014-10-01
Thimerosal (TM) is an ethylmercury (etHg)-containing preservative used in some vaccines despite very limited knowledge on the kinetics and direct interaction/effects in mammals׳ tissues after exposure. Thus, this study aimed to evaluate the kinetics of Hg species in mice in a time course analysis after intramuscular injection of TM, by estimating Hg half-lives in blood and tissues. Mice were exposed to one single intramuscular dose of 20 µg of Hg as TM. Blood, brain, heart, kidney and liver were collected at 0.5 hour (h), 1 h, 8 h, 16 h, 144 h, 720 h and 1980 h after TM exposure (n=4). Hg species in animal tissues were identified and quantified by speciation analysis via liquid chromatography hyphenated with inductively coupled mass spectrometry (LC-ICP-MS). It was found that the transport of etHg from muscle to tissues and its conversion to inorganic Hg (inoHg) occur rapidly. Moreover, the conversion extent is modulated in part by the partitioning between EtHg in plasma and in whole blood, since etHg is rapidly converted in red cells but not in a plasma compartment. Furthermore, the dealkylation mechanism in red cells appears to be mediated by the Fenton reaction (hydroxyl radical formation). Interestingly, after 0.5 h of TM exposure, the highest levels of both etHg and inoHg were found in kidneys (accounting for more than 70% of the total Hg in the animal body), whereas the brain contributed least to the Hg body burden (accounts for <1.0% of total body Hg). Thirty days after TM exposure, most Hg had been excreted while the liver presented the majority of the remaining Hg. Estimated half-lives (in days) were 8.8 for blood, 10.7 for brain, 7.8 for heart, 7.7 for liver and 45.2 for kidney. Taken together, our findings demonstrated that TM (etHg) kinetics more closely approximates Hg(2+) than methylmercury (meHg) while the kidney must be considered a potential target for etHg toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Zheng, Shun-An; Wu, Zeying; Chen, Chun; Liang, Junfeng; Huang, Hongkun; Zheng, Xiangqun
2018-01-01
Mercury (Hg) can evaporate and enter the plants through the stomata of plant leaves, which will cause a serious threat to local food safety and human health. For the risk assessment, this study aimed to investigate the concentration and accumulation of total gaseous mercury (TGM) in five typical leafy vegetables (Chinese chives (Allium tuberosum Rottler), amaranth (Amaranthus mangostanus L.), rape (Brassica campestris L.), lettuce (Lactuca sativa L.), and spinach (Spinacia oleracea L.)) grown on sewage-irrigated areas in Tianjin, China. The following three sites were chosen to biomonitor Hg pollution: a paddy field receiving sewage irrigation (industrial and urban sewage effluents) for the last 30 years, a vegetable field receiving sewage irrigation for 15 years, and a grass field which did not receive sewage irrigation in history. Results showed that the total Hg levels in the paddy (0.65 mg kg -1 ) and vegetation fields (0.42 mg kg -1 ) were significantly higher than the local background level (0.073 mg kg -1 ) and the China national soil environment quality standard for Hg in grade I (0.30 mg kg -1 ). The TGM levels in ambient air were significantly higher in the paddy (71.3 ng m -3 ) and vegetable fields (39.2 ng m -3 ) relative to the control (9.4 ng m -3 ) and previously reported levels (1.45 ng m -3 ), indicating severe Hg pollution in the atmospheric environment of the sewage-irrigated areas. Furthermore, gaseous mercury was the dominant form of Hg uptake in the leaves or irreversibly bound to leaves. The comparison of Hg uptake levels among the five vegetables showed that the gradient of Hg accumulation followed the order spinach > red amaranth > Chinese chives > rape > lettuce. These results suggest that gaseous Hg exposure in the sewage-irrigated areas is a dominant Hg uptake route in leafy vegetables and may pose a potential threat to agricultural food safety and human health.
Tracking the source of mercury in coastal populations of California Cougars (puma concolor)
NASA Astrophysics Data System (ADS)
Weiss-Penzias, P. S.; Wilmers, C.; Yovovich, V.; Houghtaling, P.; Torregrosa, A.
2015-12-01
As part of a project on the cycling of mercury (Hg) from the ocean to fog and deposition to land in coastal California, the whiskers of pumas from coastal and inland populations in California were analyzed for total Hg (HgT). Previous studies have shown that fog water in coastal California contains enhanced concentrations of monomethyl Hg (MMHg) compared to rain water. The likely source of fog MMHg is from evasion and demethylation of dimethyl Hg (DMHg) from coastal ocean upwelling. The California coast receives seasonal inputs of fog drip, and we hypothesized that if fog water deposition of MMHg was making an impact, the observable effects might be seen in high trophic level predators of the terrestrial ecosystem. Puma whiskers from 88 individuals from the Santa Cruz Mountains, a sub-range of the California Coast Range, were obtained and compared with puma whiskers from 12 individuals from the foothills of the Sierra Nevada Mountains. Mean total Hg in puma whiskers from the coastal population is 1.0 ± 1.5 ug Hg / g whisker (ppm), whereas mean HgT from the inland puma population is 0.13 ± 0.09 ppm. The difference between these means is significant to the 95% confidence level. For the coastal puma population, the whiskers from 10 individuals had HgT concentrations > 2.0 ppm and 3 individuals had HgT > 4 ppm, which exceeds the U.S. EPA reference dose for humans (1 ppm) approaches a level of concern found for other large mammals such as polar bears (5 ppm). The study is ongoing and HgT concentrations will be determined in the fur and flesh of deer from the same locations as the puma whiskers, since deer comprise ~95% of the puma diet. Samples of plants that are likely fed upon by deer that span the coastal-inland transect will also be analyzed for HgT. Estimates of fog frequency spatial patterns, derived from weather satellite observations and topographic modeling, will be compared with the HgT content of plant and animal tissue in coastal California to quantify relationships between biological uptake of HgT and summertime fog frequencies.
Krabbenhoft, David P.; Olson, Mark L.; DeWild, John F.; Clow, David W.; Striegl, Robert G.; Dornblaser, Mark M.; Van Metre, Peter C.
2002-01-01
Studies worldwide have shown that mercury (Hg) is a ubiquitous contaminant, reaching even the most remote environments such as high-altitude lakes via atmospheric pathways. However, very few studies have been conducted to assess Hg contamination levels of these systems. We sampled 90 mid-latitude, high-altitude lakes from seven national parks in the western United States during a four-week period in September 1999. In addition to the synoptic survey, routine monitoring and experimental studies were conducted at one of the lakes (Mills Lake) to quantify MeHg fluxrates and important process rates such as photo-demethylation. Results show that overall, high-altitude lakes have low total mercury (HgT) and methylmercury (MeHg) levels (1.07 and 0.05 ng L-1, respectively), but a very good correlation of Hg to MeHg (r2= 0.82) suggests inorganic Hg(II) loading is a primary controlling factor of MeHg levels in dilute mountain lakes. Positive correlations were also observed for dissolved organic carbon (DOC) and both Hg and MeHg, although to a much lesser degree. Levels of MeHg were similar among the seven national parks, with the exception of Glacier National Park where lowerconcentrations were observed (0.02 ng L-1), and appear to be related to naturally elevated pH values there. Measured rates ofMeHg photo-degradation at Mills Lake were quite fast, and this process was of equal importance to sedimentation and stream flow for removing MeHg. Enhanced rates of photo-demethylation are likely an important reason why high-altitude lakes, with typically high water clarity and sunlight exposure, are low in MeHg.
Methylmercury in flood-control impoundments and natural waters of northwestern Minnesota, 1997-99
Brigham, M.E.; Krabbenhoft, D.P.; Olson, M.L.; DeWild, J.F.
2002-01-01
We studied methylmercury (MeHg) and total mercury (HgT) in impounded and natural surface waters in northwestern Minnesota, in settings ranging from agricultural to undeveloped. In a recently constructed (1995) permanent-pool impoundment, MeHg levels typically increased from inflow to outflow during 1997; this trend broke down from late 1998 to early 1999. MeHg levels in the outflow reached seasonal maxima in mid-summer (maximum of 1.0 ng L−1 in July 1997) and late-winter (maximum of 6.6 ng L−1 in February 1999), and are comparable to high levels observed in new hydroelectric reservoirs in Canada. Spring and autumn MeHg levels were typically about 0.1–0.2 ng L−1. Overall, MeHg levels in both the inflow (a ditch that drains peatlands) and outflow were significantly higher than in three nearby reference natural lakes. Eleven older permanent-pool impoundments and six natural lakes in northwestern Minnesota were sampled five times. The impoundments typically had higher MeHg levels (0.071–8.36 ng L−1) than natural lakes. Five of six lakes MeHg levels typical of uncontaminated lakes (0.014–1.04 ng L−1) with highest levels in late winter, whereas a hypereutrophic lake had high levels (0.37–3.67 ng L−1) with highest levels in mid-summer. Seven temporary-pool impoundments were sampled during summer high-flow events. Temporary-pool impoundments that retained water for about 10–15 days after innundation yielded pronounced increases in MeHg from inflow to outflow, in one case reaching 4.6 ng L−1, which was about 2 ng L−1 greater than the mean inflow concentration during the runoff event.
Methylmercury biomagnification in an Arctic pelagic food web.
Ruus, Anders; Øverjordet, Ida B; Braaten, Hans Fredrik V; Evenset, Anita; Christensen, Guttorm; Heimstad, Eldbjørg S; Gabrielsen, Geir W; Borgå, Katrine
2015-11-01
Mercury (Hg) is a toxic element that enters the biosphere from natural and anthropogenic sources, and emitted gaseous Hg enters the Arctic from lower latitudes by long-range transport. In aquatic systems, anoxic conditions favor the bacterial transformation of inorganic Hg to methylmercury (MeHg), which has a greater potential for bioaccumulation than inorganic Hg and is the most toxic form of Hg. The main objective of the present study was to quantify the biomagnification of MeHg in a marine pelagic food web, comprising species of zooplankton, fish, and seabirds, from the Kongsfjorden system (Svalbard, Norway), by use of trophic magnification factors. As expected, tissue concentrations of MeHg increased with increasing trophic level in the food web, though at greater rates than observed in several earlier studies, especially at lower latitudes. There was strong correlation between MeHg and total Hg concentrations through the food web as a whole. The concentration of MeHg in kittiwake decreased from May to October, contributing to seasonal differences in trophic magnification factors. The ecology and physiology of the species comprising the food web in question may have a large influence on the magnitude of the biomagnification. A significant linear relationship was also observed between concentrations of selenium and total Hg in birds but not in zooplankton, suggesting the importance of selenium in Hg detoxification for individuals with high Hg concentrations. © 2015 SETAC.
Szczebak, Joseph T; Taylor, David L
2011-06-01
In this study, bluefish (Pomatomus saltatrix; age 0-7, n = 632) and their prey (forage fish, macroinvertebrates, zooplankton; n = 2,005) were collected from the Narragansett Bay estuary (RI, USA), and total Hg concentration was measured in white muscle and whole-body tissues, respectively. Bluefish Hg concentrations were analyzed relative to fish length, prey Hg content, and ontogenetic shifts in habitat use and foraging ecology, the latter assessed using stomach content analysis (n = 711) and stable nitrogen (δ(15)N) and carbon (δ(13)C) isotope measurements (n = 360). Diet and δ(13)C analysis showed that age 0 bluefish consumed both benthic and pelagic prey (silversides, sand shrimp, planktonic crustaceans; δ(13)C = - 16.52‰), whereas age 1 + bluefish fed almost exclusively on pelagic forage fish (Atlantic menhaden, herring; δ(13)C = - 17.33‰). Bluefish total Hg concentrations were significantly correlated with length (mean Hg = 0.041 and 0.254 ppm wet wt for age 0 and age 1 + bluefish, respectively). Furthermore, Hg biomagnification rates were maximal during bluefish early life stages and decelerated over time, resulting in relatively high Hg concentrations in age 0 fish. Rapid Hg accumulation in age 0 bluefish is attributed to these individuals occupying a comparable trophic level to age 1 + bluefish (δ(15)N = 15.58 and 16.09‰; trophic level = 3.55 and 3.71 for age 0 and age 1 + bluefish, respectively), as well as juveniles having greater standardized consumption rates of Hg-contaminated prey. Finally, bluefish larger than 30 cm total length consistently had Hg levels above the U.S. Environmental Protection Agency criterion of 0.3 ppm. As such, frequent consumption of bluefish could pose a human health risk, and preferentially consuming smaller bluefish may be an inadequate strategy for minimizing human dietary exposure to Hg. Copyright © 2011 SETAC.
Gandhi, N.; Bhavsar, S.P.; Diamond, M.L.; Kuwabara, J.S.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.
2007-01-01
A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)2, and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations. ?? 2007 SETAC.
Mercury in soil near a long-term air emission source in southeastern Idaho
Abbott, M.L.; Susong, D.D.; Olson, M.; Krabbenhoft, D.P.
2003-01-01
At the Idaho National Engineering and Environmental Laboratory in southeastern Idaho, a 500??C fluidized bed calciner was intermittently operated for 37 years, with measured Hg emission rates of 9-11 g/h. Surface soil was sampled at 57 locations around the facility to determine the spatial distribution of Hg fallout and surface Hg variability, and to predict the total residual Hg mass in the soil from historical emissions. Measured soil concentrations were slightly higher (p<0.05) within 5 km of the source but were overall very low (15-20 ng/g) compared to background Hg levels published for similar soils in the USA (50-70 ng/g). Concentrations decreased 4%/cm with depth and were found to be twice as high under shrubs and in depressions. Mass balance calculations accounted for only 2.5-20% of the estimated total Hg emitted over the 37-year calciner operating history. These results suggest that much of the Hg deposited from calciner operations may have been reduced in the soil and re-emitted as Hg(0) to the global atmospheric pool.
Bacterial Influence on the Solubility of Cinnabar and Metacinnabar at New Idria, CA
NASA Astrophysics Data System (ADS)
Jew, A. D.; Rytuba, J. J.; Spormann, A. M.; Brown, G. E.
2007-12-01
Mercury in the forms of cinnabar (α-HgS) and metacinnabar (β-HgS) is generally considered to be unreactive and of little environmental concern. To determine if this current belief is valid, a consortium of bacteria (including a Thiomonas intermedia-like bacterium) was taken from the acid mine drainage (AMD) pond at the New Idria Hg Mine, San Benito Co., CA, and inoculated into filter-sterilized AMD pond water (pH = 4) containing either ground cinnabar or metacinnabar crystals (<45 μm in diameter), with sampling occurring every 3 days. Under aerobic conditions the samples showed a pronounced increase in aqueous Hg concentration over background water concentrations (350(±20)ng/L). Bacteria growing on α-HgS increased the Hg concentration to 597(±10)μg/L, while bacteria growing on β-HgS resulted in levels of 8.0(±0.2)mg/L; both maxima occurred after 18 days of incubation. Experiments conducted with (1) α- HgS or β-HgS in the presence of killed bacteria (anaerobic), (2) α-HgS with pond water (abiotic), and (3) β-HgS with AMD pond water (abiotic) showed drops in aqueous Hg to below the detection limit (0.1ng/L) within 12 days. Anaerobic growth of the bacterial consortium showed a pattern similar to those of the abiotic water-HgS experiments, except that Hg levels dropped below detection limit within 6 days. These combined results suggest that HgS degradation by this bacterial consortium is an aerobic process. Killed bacteria incubated aerobically showed a slight increase in Hg levels over background water levels (<10x increase) then dropped below detection limit. This observation suggests that enzymes might be involved in the dissolution of HgS and were still viable for ~6 days after sterilization. In aerobic living incubations, the activities of different mercury and sulfide species were estimated using the thermodynamic modeling program Minteq with AMD pond water chemistry determined by ICP-MS and total mercury and total sulfide analyses. These calculations give an equilibrium solubility product for the dissolution of HgS up to 25 orders of magnitude higher than HgS under standard conditions. When compared to calculations by Paquette et al., 1997 and Benoit et al., 1999, the bacterial consortium at New Idria causes an increase in the pK for all reported reactions including H+, HS-, and H2S of 11-13 orders of magnitude. These results indicate that the biofilm consortium at the New Idria AMD pond has a profound effect on the solubility of cinnabar and metacinnabar, suggesting that a reassessment of HgS stability in aerobic AMD environments is needed.
Rojas, Maritza; Seijas, David; Agreda, Olga; Rodríguez, Maritza
2006-02-01
People in developing countries are often considered at greater risk of mercury (Hg) poisoning due to a variety of factors including a lack of awareness regarding their occupational risks. Individuals requiring urine mercury (U-Hg) analysis at the Center for Toxicological Investigations of the University of Carabobo (CITUC), between 1998 and 2002 were studied to identify demographic characteristics associated to U-Hg levels. The studied population included individuals with a history of exposure (or related exposures) to Hg processes, and was comprised of 1159 individuals (65 children, 1094 adults) ages 0.58-79 years old, mean 36.63+/-12.4. Children's geometric mean U-Hg levels were 2.73 microg/g Creatinine (Ct) and in adults 2.55 microg/g Ct. The highest frequency of adults' occupations were shipyard workers (35.47%), dentists (23.5%), lab technicians (11.43%), dental employees 10.42% and miners (10.2%). Chemical laboratory technicians had the highest mean U-Hg (4.46 microg/g Ct). Mean U-Hg levels in female adults (3.45 microg/g Ct) were statistically superior to levels in male adults (2.15 microg/g Ct). Two of the 172 women in reproductive age, had U-Hg levels higher than 78 microg/g Ct. Individuals from Falcon State were found to have the highest mean U-Hg (4.53 microg/g Ct). U-Hg levels higher than permissible limits were found in only 2 states (Carabobo and Bolivar) with a total of 24 cases. Although the results of this investigation were highly variable, the findings can be used to examine circumstances which influence mercury toxicity trends, and possibly used in future studies working to identify Hg exposures.
de Oliveira, Andréia Ávila Soares; de Souza, Marilesia Ferreira; Lengert, André van Helvoort; de Oliveira, Marcelo Tempesta; Camargo, Rossana Batista de Oliveira Godoy; Braga, Gilberto Úbida Leite; Cólus, Ilce Mara de Syllos; Barbosa, Fernando; Barcelos, Gustavo Rafael Mazzaron
2014-01-01
This study aims to evaluate the effects of polymorphisms in glutathione (GSH-) related genes (GSTM1, GSTT1, GSTP1, GCLM, and GCLC) in the distribution of Hg in the blood compartments in humans exposed to methylmercury (MeHg). Subjects (n = 88), exposed to MeHg from fish consumption, were enrolled in the study. Hg species in the plasma compartment were determined by LC-ICP-MS, whereas genotyping was performed by PCR assays. Mean total Hg levels in plasma (THgP) and whole blood (THgB) were 10 ± 4.2 and 37 ± 21, whereas mean evels of plasmatic MeHg (MeHgP), inorganic Hg (IHgP), and HgP/HgB were 4.3 ± 2.9, 5.8 ± 2.3 µg/L, and 0.33 ± 0.15, respectively. GSTM1 and GCLC polymorphisms influence THgP and MeHgP (multivariate analyses, P < 0.050). Null homozygotes for GSTM1 showed higher THgP and MeHgP levels compared to subjects with GSTM1 (THgP β = 0.22, P = 0.035; MeHgP β = 0.30, P = 0.050) and persons carrying at least one T allele for GCLC had significant higher MeHgP (β = 0.59, P = 0.046). Also, polymorphic GCLM subjects had lower THgP/THgB than those with the nonvariant genotype. Taken together, data of this study suggest that GSH-related polymorphisms may change the metabolism of MeHg by modifying the distribution of mercury species iin plasma compartment and the HgP/HgB partitioning. PMID:24696865
Mercury speciation and selenium in toothed-whale muscles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Mineshi, E-mail: sakamoto@nimd.go.jp; Itai, Takaaki; Yasutake, Akira
2015-11-15
Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hgmore » decreased from 90–100% to 20–40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. - Highlights: • T-Hg, MeHg, I-Hg and Se were determined in the muscles of four toothed-whales. • MeHg increased with increasing T-Hg and tended to reach a plateau in all species. • Se/I-Hg molar ratios rapidly decreased with increase of I-Hg and reached almost 1. • XAFS of bottlenose dolphin muscle confirmed that HgSe was dominant chemical form. • EPMA of bottlenose dolphin muscle showed that HgSe deposited in muscle cells.« less
Dewailly, Eric; Rouja, Philippe; Forde, Martin; Peek-Ball, Cheryl; Côté, Suzanne; Smith, Emma; Drescher, Olivia; Robertson, Lyndon
2012-01-01
Objectives To assess the efficacy of a public health intervention to reduce blood mercury (Hg) concentration levels in pregnant Bermudian women. Methods In 2003, we conducted a study entitled “Prenatal exposure of the Bermudian Population to Environmental Contaminants” which provided Bermuda’s first baseline data on prenatal exposure to several environmental contaminants, including Hg. The mean Hg concentration from 42 healthy newborns measured in umbilical cord blood was 41.3 nmol/L, ranging from 5–160 nmol/L. This concentration was much higher than expected, being approximately 8 times the general levels found in Canada and the U.S. Furthermore, we estimated that 85% of total Hg measured was in the form of methylmercury (MeHg), indicating that seafood consumption was the primary source of Hg exposure during pregnancy in Bermuda. Locally sourced seafood was identified as the most significant possible contributory source of Hg exposure. In 2005 the authors began a complementary research programme to study the levels of Hg in local commercial fish species. Coming out of this research were specific local fish consumption guidelines issued by the Department of Health advising pregnant women to avoid those local fish species found to be high in Hg while still encouraging consumption of fish species having lower Hg levels. Results In 2010, under another research initiative, we returned to Bermuda to carry out another evaluation of Hg in human blood. Hg was measured in the blood of 49 pregnant women. The arithmetic mean Hg blood concentration was 6.6 nmol/L and the geometric mean 4.2 nmol/L. The maximum concentration found was 24 nmol/L. Conclusions Hg exposure of Bermudian pregnant women has dropped significantly by a factor of around 5 since the foetal cord blood study in 2003. PMID:23077607
Dewailly, Eric; Rouja, Philippe; Forde, Martin; Peek-Ball, Cheryl; Côté, Suzanne; Smith, Emma; Drescher, Olivia; Robertson, Lyndon
2012-01-01
To assess the efficacy of a public health intervention to reduce blood mercury (Hg) concentration levels in pregnant Bermudian women. In 2003, we conducted a study entitled "Prenatal exposure of the Bermudian Population to Environmental Contaminants" which provided Bermuda's first baseline data on prenatal exposure to several environmental contaminants, including Hg. The mean Hg concentration from 42 healthy newborns measured in umbilical cord blood was 41.3 nmol/L, ranging from 5-160 nmol/L. This concentration was much higher than expected, being approximately 8 times the general levels found in Canada and the U.S. Furthermore, we estimated that 85% of total Hg measured was in the form of methylmercury (MeHg), indicating that seafood consumption was the primary source of Hg exposure during pregnancy in Bermuda. Locally sourced seafood was identified as the most significant possible contributory source of Hg exposure. In 2005 the authors began a complementary research programme to study the levels of Hg in local commercial fish species. Coming out of this research were specific local fish consumption guidelines issued by the Department of Health advising pregnant women to avoid those local fish species found to be high in Hg while still encouraging consumption of fish species having lower Hg levels. In 2010, under another research initiative, we returned to Bermuda to carry out another evaluation of Hg in human blood. Hg was measured in the blood of 49 pregnant women. The arithmetic mean Hg blood concentration was 6.6 nmol/L and the geometric mean 4.2 nmol/L. The maximum concentration found was 24 nmol/L. Hg exposure of Bermudian pregnant women has dropped significantly by a factor of around 5 since the foetal cord blood study in 2003.
Geochemical influences and mercury methylation of a dental wastewater microbiome
Rani, Asha; Rockne, Karl J.; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi
2015-01-01
The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452
Production and retention of methylmercury in inundated boreal forest soils.
Rolfhus, Kristofer R; Hurley, James P; Bodaly, Richard A Drew; Perrine, Gregory
2015-03-17
The Flooded Uplands Dynamics Experiment (FLUDEX) was an ecosystem-scale study examining the production of methylmercury (MeHg) and greenhouse gases from reservoirs constructed on an upland boreal forest landscape in order to quantify their dependence upon carbon stores. We detail the within-reservoir production and storage of MeHg before, during, and nine years after the experiment. The reservoirs were net MeHg producers during the first two years of flooding, and net demethylating systems afterward. During years 1-3, a rapid pulse of MeHg and total Hg was observed in floodwater, followed by substantial increases in MeHg in seston and sediment. Resampling of the dry reservoirs nine years after the experiment ended indicated that organic soil MeHg was still 8 to 52-fold higher than preflood conditions, and averaged 86% of the levels recorded at the end of the third flooding year. Both total Hg and MeHg retention in soil were a strong function of organic carbon content. The time scale of soil MeHg retention may help explain the decadal time lag frequently observed for the decrease of piscivorous fish Hg concentrations in new reservoirs. Predicted extreme precipitation events associated with climate change may serve to make landscapes more susceptible to this process.
Ice Core Perspective on Mercury Pollution during the Past 600 Years.
Beal, Samuel A; Osterberg, Erich C; Zdanowicz, Christian M; Fisher, David A
2015-07-07
Past emissions of the toxic metal mercury (Hg) persist in the global environment, yet these emissions remain poorly constrained by existing data. Ice cores are high-resolution archives of atmospheric deposition that may provide crucial insight into past atmospheric Hg levels during recent and historical time. Here we present a record of total Hg (HgT) in an ice core from the pristine summit plateau (5340 m asl) of Mount Logan, Yukon, Canada, representing atmospheric deposition from AD 1410 to 1998. The Colonial Period (∼1603-1850) and North American "Gold Rush" (1850-1900) represent minor fractions (8% and 14%, respectively) of total anthropogenic Hg deposition in the record, with the majority (78%) occurring during the 20th Century. A period of maximum HgT fluxes from 1940 to 1975 coincides with estimates of enhanced anthropogenic Hg emissions from commercial sources, as well as with industrial emissions of other toxic metals. Rapid declines in HgT fluxes following peaks during the Gold Rush and the mid-20th Century indicate that atmospheric Hg deposition responds quickly to reductions in emissions. Increasing HgT fluxes from 1993 until the youngest samples in 1998 may reflect the resurgence of Hg emissions from unregulated coal burning and small-scale gold mining.
Achari, Arunkumar E; Jain, Sushil K
2017-09-15
Diabetic patients have lower blood levels of l-cysteine (LC) and glutathione (GSH). This study examined the hypothesis that LC supplementation positively up regulates the effects of insulin on GSH and glucose metabolism in 3T3-L1 adipocyte model. 3T3L1 adipocytes were treated with LC (250 μM, 2 h) and/or insulin (15 or 30 nM, 2 h), and high glucose (HG, 25 mM, 20 h). Results showed that HG caused significant increase (95%) in ROS and reduction in the protein levels of DsbA-L (43%), adiponectin (64%), GCLC (20%), GCLM (21%), GSH (50%), and GLUT-4 (23%) in adipocytes. Furthermore, HG caused a reduction in total (35%) and HMW adiponectin (30%) secretion. Treatment with insulin alone significantly (p < 0.05) reduced ROS levels as well as increased DsbA-L, adiponectin, GCLC, GCLM, GSH, and GLUT-4 protein levels, glucose utilization, and improved total and HMW adiponectin secretion in HG treated adipocytes compared to HG alone. Interestingly, LC supplementation along with insulin caused greater reduction in ROS levels and significantly (p < 0.05) boosted the DsbA-L (41% vs LC, 29% vs Insulin), adiponectin (92% Vs LC, 84% Vs insulin) protein levels and total (32% Vs LC, 22% Vs insulin) and HMW adiponectin (75% Vs LC, 39% Vs insulin) secretion compared with the either insulin or LC alone in HG-treated cells. In addition, LC supplementation along with insulin increased GCLC (21% Vs LC, 14% insulin), GCLM (28% Vs LC, 16% insulin) and GSH (25% Vs LC and insulin) levels compared with the either insulin or LC alone in HG-treated cells. Furthermore, LC and insulin increases GLUT-4 protein expression (65% Vs LC, 18% Vs Insulin), glucose utilization (57% Vs LC, 27% Vs insulin) compared with the either insulin or LC alone in HG-treated cells. Similarly, LC supplementation increased insulin action significantly in cells maintained in medium contained control glucose. To explore the beneficial effect of LC is mediated by the upregulation of GCLC, we knocked down GCLC using siRNA in adipoctyes. There was a significant decrease in DsbA-L and GLUT-4 mRNA levels and GSH levels in GCLC knockdown adipocytes and LC supplementation up regulates GCLC, DsbA-L and GLUT-4 mRNA expression and GSH levels in GCLC knockdown cells. These results demonstrated that LC along with insulin increases GSH levels thereby improving adiponectin secretion and glucose utilization in adipocytes. This suggests that LC supplementation can increase insulin sensitivity and can be used as an adjuvant therapy for diabetes. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkwood, A.E.; Chow-Fraser, P.; Mierle, G.
1999-03-01
This study focused on the seasonal dynamics of total Hg in the phytoplankton (living and dead) of two dystrophic shield lakes (Mouse and Ranger). Phytoplankton samples were taken from metalimnetic and hypolimnetic depths in the euphotic zone and were collected and analyzed using ultraclean techniques. In both lakes, phytoplankton Hg (PHYTO-Hg) levels (pg/L) in the metalimnion did not significantly change among dates over the season, although Ranger Lake exhibited significant differences between Hg values measured at the beginning and end of the season. In contrast, PHYTO-Hg significantly increased in the hypolimnia of both lakes by the end of the season.more » Combined influences of external Hg inputs, remineralization, phytoplankton sedimentation, and increased methylmercury production in the hypolimnia over the season may have contributed to these trends. A highly significant positive relationship existed between PHYTO-Hg levels and whole-water Hg levels, and the mean bioconcentration factor for Hg between the water column and phytoplankton was significantly higher in the hypolimnion compared to the metalimnion for both lakes. In most cases, parameters associated with algal biomass had significant positive correlations with PHYTO-Hg levels. Weight-specific PHYTO-Hg (pg/mg dry weight) varied significantly over the season, and there were interlake differences with respect to season trends. On the basis of these results, the authors recommend that the future sampling regimes include collection of phytoplankton at different limnetic depths through the season to account for spatial and temporal variations. Weight specific Hg levels in phytoplankton could not be explained well by the parameters tested, and the only significant regressions were with parameters reflecting algal biomass. This study provides in situ evidence of Hg accumulation in lake phytoplankton as a function of algal biomass on a seasonal basis and stresses the need to confirm these trends in other lake systems.« less
Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang
2016-12-01
Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg 2+ (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl 2 ) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg 2+ concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg 2+ caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl 2 exposure (especially in the 16μg/L Hg 2+ group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl 2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl 2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish. Copyright © 2016 Elsevier B.V. All rights reserved.
Béliveau, Annie; Lucotte, Marc; Davidson, Robert; Lopes, Luis Otávio do Canto; Paquet, Serge
2009-07-15
In the Brazilian Amazon, forest conversion to agricultural lands (slash-and-burn cultivation) contributes to soil mercury (Hg) release and to aquatic ecosystem contamination. Recent studies have shown that soil Hg loss occurs rapidly after deforestation, suggesting that Hg mobility could be related to the massive cation input resulting from biomass burning. The objective of this research was to determine the effects of the first year of slash-and-burn agriculture on soil Hg levels at the regional scale of the Tapajós River, in the state of Pará, Brazilian Amazon. A total of 429 soil samples were collected in 26 farms of five riparian communities of the Tapajós basin. In September 2004, soil samples were collected from primary forest sites planned for slash-and-burn cultivation. In August 2005, one year after the initial burning, a second campaign was held and the exact same sites were re-sampled. Our results showed that total Hg levels in soils did not change significantly during the first year following slash-and-burn, suggesting no immediate release of soil Hg at that point in time. However, an early Hg mobility was detected near the surface (0-5 cm), reflected by a significant shift in Hg distribution in soil fractions. Indeed, a transfer of Hg from fine to coarser soil particles was observed, indicating that chemical bonds between Hg and fine particles could have been altered. A correspondence analysis (CA) showed that this process could be linked to a chemical competition caused by cation enrichment. The regional dimension of the study highlighted the prevailing importance of soil types in Hg dynamics, as shown by differentiated soil responses following deforestation according to soil texture. Confirming an early Hg mobility and indicating an eventual Hg release out of the soil, our results reinforce the call for the development of more sustainable agricultural practices in the Amazon.
Chouvelon, Tiphaine; Warnau, Michel; Churlaud, Carine; Bustamante, Paco
2009-01-01
There is a dramatic lack of data on Hg levels in marine organisms from tropical areas, and in particular from New Caledonia. For the first time, this study reports the total Hg concentrations in the tissues of several marine taxa from the New Caledonian lagoon. Seafood from both wild and farmed populations was considered. Hg concentrations varied over three orders of magnitudes according to factors including species, age (size/weight), trophic level, lifestyle and geographical origin. Taking into account the edible tissues, estimations of the amount of flesh that should be consumed by a 60-kg person to reach the Hg Provisional Tolerable Weekly Intake (PTWI) reveal acceptable risk for Human health in general. However, a risk was clearly identified in one site of the lagoon (i.e. Grande Rade) where high Hg concentrations were measured. These concentrations were higher than values reported in the current literature.
Garcia-Ordiales, Efrén; Covelli, Stefano; Rico, Jose Manuel; Roqueñí, Nieves; Fontolan, Giorgio; Flor-Blanco, German; Cienfuegos, Pablo; Loredo, Jorge
2018-05-01
Sediments contaminated by Hg and As from two historical mining areas have been deposited in the Nalón estuary (Asturias, northern Spain) since 1850. Total mercury (Hg total ) concentrations in the sediments range from 0.20 μg g -1 to 1.33 μg g -1 , most of it in the form of sulphides. Concentrations of methylmercury (303.20-865.40 pg g -1 ) are up to two orders of magnitude lower than the concentration of Hg total . Total As concentration (As total ) is enriched compared to the background level for the area. The relative abundance of As(V) on As(III) in the sediments ranges from 97.6% to 100%, whereas inorganic Hg accounts for more than 99% of the total Hg. The occurrence of the most toxic species, inorganic As(III) and organic methylmercury, seem to be related to redox conditions together with the amounts of sulphur which act as natural barriers which inhibit the biological and chemical speciation processes. Despite the high amounts of Hg and As present in the sediments, their transference to the water column appear to be limited thus converting sediments in an effective sink of both elements. Special attention should be paid to potential variations of the environmental conditions which might increase the element mobility and exchange between sediments and the water column. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tang, Zhenya; Fan, Fangling; Wang, Xinyue; Shi, Xiaojun; Deng, Shiping; Wang, Dingyong
2018-04-15
High levels of mercury (Hg), especially methylmercury (MeHg), in rice is of concern due to its potential of entering food chain and the high toxicity to human. The level and form of Hg in rice could be influenced by fertilizers and other soil amendments. Studies were conducted to evaluate the effect of 24 years application of chemical fertilizers and organic amendments on total Hg (THg) and MeHg and their translocation in soil, plants, and rice grain. All treatments led to significantly higher concentrations of MeHg in grain than those from the untreated control. Of nine treatments tested, chemical fertilizers combining with returning rice straw (NPK1+S) led to highest MeHg concentration in grain and soil; while the nitrogen and potassium (NK) treatment led to significantly higher THg in grain. Concentrations of soil MeHg were significantly correlated with THg in soil (r = 0.59 *** ) and MeHg in grain (r = 0.48 *** ). Calcium superphosphate negatively affected plant bioavailability of soil Hg. MeHg concentration in rice was heavily influenced by soil Hg levels. Phosphorus fertilizer was a main source contributing to soil THg, while returning rice straw to the field contributed significantly to MeHg in soil and rice grain. As a result, caution should be exercised in soil treatment or when utilizing Hg-contaminated soils to produce rice for human consumption. Strategic management of rice straw and phosphorus fertilizer could be effective strategies of lowering soil Hg, which would ultimately lower MeHg in rice and the risk of Hg entering food chain. Copyright © 2017 Elsevier Inc. All rights reserved.
Rowse, Linnea M; Rodewald, Amanda D; Sullivan, S Mažeika P
2014-07-01
A prevalent environmental contaminant, mercury (Hg) is mobile and persistent in aquatic systems, where it often occurs in its bioavailable form methylmercury. Because methylmercury can bioaccumulate in aquatic insects and then transfer to terrestrial food webs, riparian consumers reliant upon aquatic emergent insects, should be disproportionately affected. Using the aerial insectivore Acadian flycatcher (Empidonax virescens) as a focal species, we examined (1) the extent to which total Hg loads in breeding flycatchers affected body condition and reproductive output and (2) potential pathways of contaminant flux in 19 riparian forest fragments distributed across an urban-to-rural landscape gradient in Ohio, USA. From April-August 2011-2012, we collected blood samples from adult (n=76) and nestling (n=17 from 7 nests) flycatchers, monitored their annual reproductive success (i.e., total number of fledglings), and sampled water, sediment, and aquatic emergent insects at each site. Hg concentrations in adult flycatcher blood (47 to 584 μg/kg, x¯=211.8, SD=95.5) were low relative to published advisory levels and not related to body condition. However, even at low concentrations, blood Hg was negatively related to reproductive success, with a 0.83 decline in the number of fledglings per μg/kg (loge) increase of blood Hg. Adult flycatchers had 11× greater concentrations of blood Hg than their offspring. Hg levels in flycatcher blood were not predicted by Hg concentrations in sediment, water, or aquatic emergent insects, with the exception of rural landscapes alone, in which flycatcher Hg was negatively related to sediment Hg. In addition to illustrating the difficulty of predicting exposure pathways that may vary among landscape contexts, our study provides evidence that even trace levels of contaminants may impair reproductive success of free-living songbirds. Copyright © 2014 Elsevier B.V. All rights reserved.
Hair methylmercury levels of mummies of the Aleutian Islands, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egeland, G.M.; Ponce, Rafael; Bloom, Nicolas S.
2009-04-15
Ancient human hair specimens can shed light on the extent of pre-historic exposures to methylmercury and provide valuable comparison data with current-day exposures, particularly for Indigenous Peoples who continue to rely upon local traditional food resources. Human hair from ancient Aleutian Island Native remains were tested for total and methylmercury (Hg, MeHg) and were radiocarbon dated. The remains were approximately 500 years old (1450 A.D.). For four adults, the mean and median total hair mercury concentration was 5.8 ppm (SD=0.9). In contrast, MeHg concentrations were lower with a mean of 1.2 ppm (SD=1.8) and a median of 0.54 ppm (0.12-3.86).more » For the five infants, the mean and median MeHg level was 1.2 ppm (SD=1.8) and 0.20 ppm (0.007-4.61), respectively. Segmental analyses showed variations in MeHg concentrations in 1-cm segments, consistent with fluctuations in naturally occurring exposure to mercury through dietary sources. The levels are comparable to or lower than those found in fish and marine mammal-eating populations today who rely far less on subsistence food than pre-historic humans. The findings are, therefore, compatible with increased anthropogenic release of trace metals during the past several centuries.« less
[Distribution of Mercury in Plants at Water-Level-Fluctuating Zone in the Three Gorges Reservoir].
Liang, Li; Wang, Yong-min; Li, Xian-yuan; Tang, Zhen-ya; Zhang, Xiang; Zhang, Cheng; WANG, Ding-yong
2015-11-01
The mercury (Hg) distribution and storage in plants at water-level-fluctuating zone (WLFZ) in the Three Gorges Reservoir were investigated by analyzing the total mercury(THg) and methylmercury ( MeHg) levels in different parts of plants collected from three typical sites including Shibaozhai, Zhenxi and Hanfeng Lake in WLFZ. The results indicated that THg and MeHg concentrations in plants ranged from (1.62 ± 0.57) to (49.42 ± 3.93) μg x kg(-1) and from (15.27 ± 7.09) to (1 974.67 ± 946.10) ng x kg(-1), respectively. In addition, THg levels in different plant parts followed the trend: root > leaf > stem, and similar trend for MeHg was observed with the highest level in root. An obvious spatial distribution was also found with the THg and MeHg levels in plants in Hanfeng higher than those in the same plants in the other two sampling sites (Shibaozhai and Zhenxi), and there was a difference of THg and MeHg storage in plants in various attitudes. The corresponding THg and MeHg storages were 145.3, 166.4, 124.3 and 88.2 mg x hm(-2), and 1.9, 2.7, 3.6 and 3.2 mg x hm(-2) in 145-150, 150-160, 160-170 and 170-175 m attitudes. The accumulation ability of dominant plants in WLFZ for THg (bioaccumulation factor, BAF < 1) was weaker than that for MeHg (BAF > 1).
Olivero-Verbel, Jesus; Carranza-Lopez, Liliana; Caballero-Gallardo, Karina; Ripoll-Arboleda, Adriana; Muñoz-Sosa, Diego
2016-10-01
Mercury (Hg) is a global contaminant posing severe risks to human health worldwide. The aim of this study was to assess the levels of total Hg (T-Hg) in human hair and fish in the Caqueta River, at the Colombian Amazon, as well as to determine fish consumption-based risks for T-Hg ingestion. T-Hg levels were measured using a direct mercury analyzer. The overall mean T-Hg level in hair for humans in the Caqueta River sample (n = 200) was 17.29 ± 0.61 μg/g (1.2 to 47.0 μg/g). Ninety-four percent of the individuals had hair T-Hg concentrations greater than the WHO threshold level (5 μg/g), and 79 % displayed levels higher than 10 μg/g. Average Hg concentrations in fish varied between 0.10-0.15 μg/g and 0.10-1.60 μg/g, for noncarnivorous and carnivorous species, respectively. Based on the maximum allowable fish consumption rate for adults, most carnivorous species should be avoided in the diet, as their target hazard quotient ranged from 2.96 up to 31.05, representing a risk for Hg-related health problems. In the light of existing evidence for elevated Hg levels in the indigenous population of the Colombian Amazon, carnivorous fish should be restricted as part of the diet, and breastfeeding should be reduced to protect children health. Most importantly, gold mining activities directly on rivers demand immediate attention from the national government to avoid extensive damage on the environment and human health.
Fish mercury increase in Lago Manso, a new hydroelectric reservoir in tropical Brazil.
Hylander, Lars D; Gröhn, Janina; Tropp, Magdalena; Vikström, Anna; Wolpher, Henriette; de Castro E Silva, Edinaldo; Meili, Markus; Oliveira, Lázaro J
2006-10-01
It has been frequently demonstrated that mercury (Hg) concentrations in fish rise in newly constructed hydroelectric reservoirs in the Northern Hemisphere. In the present work, we studied whether similar effects take place also in a tropical upland reservoir during impoundment and discuss possible causes and implications. Total Hg concentrations in fish and several soil and water parameters were determined before and after flooding at Rio Manso hydroelectric power plant in western Brazil. The Hg concentrations in soil and sediment were within the background levels in the region (22-35 ng g(-1) dry weight). There was a strong positive correlation between Hg and carbon and sulphur in sediment. Predatory fish had total Hg concentrations ranging between 70 and 210 ng g(-1) f.w. 7 years before flooding and between 72 and 755 ng g(-1) f.w. during flooding, but increased to between 216 and 938 ng g(-1) f.w. in the piscivorous and carnivorous species Pseudoplatystoma fasciatum, cachara, and Salminus brasiliensis, dourado, 3 years after flooding. At the same time, concentrations of organic carbon in the water increased and oxygen concentrations decreased, indicating increased decomposition and anoxia as contributing to the increased Hg concentrations in fish. The present fish Hg concentrations in commonly consumed piscivorous species are a threat to the health of the population dependent on fishing in the dam and downstream river for sustenance. Mercury exposure can be reduced by following fish consumption recommendations until fish Hg concentrations decrease to a safe level.
Sumathi, Thangarajan; Shobana, Chandrasekar; Christinal, Johnson; Anusha, Chandran
2012-08-01
Methyl mercury (MeHg) is a ubiquitous environmental pollutant leading to neurological and developmental deficits in animals and human beings. Bacopa monniera (BM) is a perennial herb and is used as a nerve tonic in Ayurveda, a traditional medicine system in India. The objective of the present study was to investigate whether Bacopa monniera extract (BME) could potentially inhibit MeHg-induced toxicity in the cerebellum of rat brain. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with BME (40 mg/kg, orally) for 21 days. After the treatment period, we observed that MeHg exposure significantly inhibited the activities of superoxide dismutase, catalase, glutathione peroxidase, and increased the glutathione reductase activity in cerebellum. It was also found that the level of thiobarbituric acid-reactive substances was increased with the concomitant decrease in the glutathione level in MeHg-induced rats. These alterations were prevented by the administration of BME. Behavioral interference in the MeHg-exposed animals was evident through a marked deficit in the motor performance in the rotarod task, which was completely recovered to control the levels by BME administration. The total mercury content in the cerebellum of MeHg-induced rats was also increased which was measured by atomic absorption spectrometry. The levels of NO(2) (-) and NO(3) (-) in the serum were found to be significantly increased in the MeHg-induced rats, whereas treatment with BME significantly decreased their levels in serum to near normal when compared to MeHg-induced rats. These findings strongly implicate that BM has potential to protect brain from oxidative damage resulting from MeHg-induced neurotoxicity in rat.
Stoichev, Teodor; Tessier, Emmanuel; Almeida, Cristina Marisa R; Basto, Maria Clara P; Vasconcelos, Vitor M; Amouroux, David
2018-04-13
The concentrations of dissolved and particulate inorganic mercury (IHg(II)) and methylmercury (MeHg) from the contaminated Laranjo Bay (main freshwater discharge from the Antuã River) were measured by species-specific isotope dilution during six sampling campaigns at high and at low tide. Different effective riverine concentrations were calculated, based on salinity profiles, for specific hydrological conditions. The export fluxes of total Hg and MeHg (324 and 1.24 mol year -1 , respectively) from the bay to the rest of the Aveiro Lagoon are much higher than the input fluxes from the Hg source (3.9 and 0.05 mol year -1 ) and from the Antuã River (10.4 and 0.10 mol year -1 ). Resuspension of contaminated sediments from Laranjo Bay is crucial for the transport of both IHg(II) and MeHg. Methylation and/or selective enrichment into biogenic particles is responsible for the mobilization of MeHg. Sorption of dissolved IHg(II) onto suspended particles limits its export flux. This is one of the rarest examples where both speciation fluxes and partitioning of mercury are studied in a contaminated coastal environment. Despite the lower fraction of total MeHg (relative to total Hg), the contaminated lagoon may have an impact on coastal areas, particularly if change in the lagoon geometry occurs, due to sea level rise.
Alves, Jeanne Clécia; Lima de Paiva, Esther; Milani, Raquel Fernanda; Bearzoti, Eduardo; Morgano, Marcelo Antonio; Diego Quintaes, Késia
2017-06-03
Although fish is a healthy alternative for meat, it can be a vehicle for mercury (Hg), including in its most toxic organic form, methylmercury (MeHg). The objective of the present study was to estimate the risk to human health caused by the consumption of sushi and sashimi as commercialized by Japanese food restaurants in the city of Campinas (SP, Brazil). The total Hg content was determined by atomic absorption spectrometry with thermal decomposition and amalgamation, and the MeHg content calculated considering that 90% of the total Hg is in the organic form. The health risk was estimated from the values for the provisional tolerable weekly ingestion (PTWI) by both adults and children. The mean concentrations for total Hg were: 147.99, 6.13, and 3.42 µg kg -1 in the tuna, kani, and salmon sushi samples, respectively, and 589.09, 85.09, and 11.38 µg kg -1 in the tuna, octopus and salmon sashimi samples, respectively. The tuna samples showed the highest Hg concentrations. One portion of tuna sashimi exceeded the PTWI value for MeHg established for children and adults. The estimate of risk for human health indicated that the level of toxicity depended on the type of fish and size of the portion consumed.
Perugini, Monia; Zezza, Daniela; Tulini, Serena Maria Rita; Abete, Maria Cesarina; Monaco, Gabriella; Conte, Annamaria; Olivieri, Vincenzo; Amorena, Michele
2016-08-15
The risk of Hg poisoning by eating seafood is considered real from the several international agencies that recommended, by fish consumption advisories, to pregnant women and young children to avoid or severely limit the consumption of the fish and shellfish with a high-range mercury levels. The analyses of two common species, European hake and Norway lobster, collected from an area of Central Adriatic Sea, reported high mercury levels in crustaceans. For Norway lobster total mercury exceeded, in six out of ten analysed pools, the recommended 0.5mg/kg wet weight European limit. Moreover the increased amount of Hg concentrations in Norway lobster cooked samples suggests the necessity to review current procedures of Hg control in food, considering also consumption habits of consumers. The Hg values found in all European hake samples are below the legal limits and, in this species, the boiling did not modify the concentrations in fish tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Atmospheric monitoring at abandoned mercury mine sites in Asturias (NW Spain).
Loredo, Jorge; Soto, Jorge; Alvarez, Rodrigo; Ordóñez, Almudena
2007-07-01
Mercury concentrations are usually significant in historic Hg mining districts all over the world, so the atmospheric environment is potentially affected. In Asturias, northern Spain, past mining operations have left a legacy of ruins and Hg-rich wastes, soils and sediments in abandoned sites. Total Hg concentrations in the ambient air of these abandoned mine sites have been investigated to evaluate the impact of the Hg emissions. This paper presents the synthesis of current knowledge about atmospheric Hg contents in the area of the abandoned Hg mining and smelting works at 'La Peña-El Terronal' and La Soterraña, located in Mieres and Pola de Lena districts, respectively, both within the Caudal River basin. It was found that average atmospheric Hg concentrations are higher than the background level in the area (0.1 microg Nm(-3)), reaching up to 203.7 microg Nm(-3) at 0.2 m above the ground level, close to the old smelting chimney at El Terronal mine site. Data suggest that past Hg mining activities have big influences on the increased Hg concentrations around abandoned sites and that atmospheric transfer is a major pathway for Hg cycling in these environments.
Rahayu, Rachmawati Noviana; Irawan, Bambang; Soegianto, Agoes
2016-01-01
This study measured the levels of total mercury (tHg) in the whole tissues of cockles (Anadara granosa and A. antiquata) harvested from three estuaries of Western Lombok Island (WLI), Indonesia. This paper also evaluated the hazard level posed by the mercury in relation to the maximum residual limit for human consumption and to estimate the weekly intake and compare it with the provisional tolerable weekly intake (PTWI). The tHg concentrations in A. granosa ranged from 0.020 to 0.070 mg kg(-1), and those in A. antiquata were between 0.032 and 0.077 mg kg(-1) at all locations. All samples of cockles harvested from WLI contain tHg below the permissible limit for human consumption. The maximum weekly intakes for total mercury by coastal people range from 0.28 to 1.08 µg kg(-1) b.w., and they are below the recommended values of PTWI (5.6 µg kg(-1) b.w.). If it is assumed that 100% of the Hg in cockles is methyl mercury (MeHg), consumption of the indicated amounts at the measured values wouldn't exceed the MeHg PTWI (1.6 µg kg(-1) b.w.).
Escobar-Sánchez, O; Ruelas-Inzunza, J; Moreno-Sánchez, X G; Romo-Piñera, A K; Frías-Espericueta, M G
2016-01-01
Concentrations of mercury (Hg) were quantified in muscle tissues of the Pacific angel shark, Squatina californica sampled from Southern Gulf of California, Mexico, considering total length, sex, diet and the dietary risk assessment. High Hg levels are typically associated with carnivorous fishes, however S. californica showed low Hg concentrations (<1.0 µg g(-1)) in muscle (0.24 ± 0.27 µg g(-1) wet weight; n = 94). No effect of sex, total length and weight on Hg concentrations were observed in the shark (p > 0.05). Hg concentrations were highest in the darkedge mishipman: Porichthys analis (0.14 ± 0.08 µg g(-1)) and red-eye round herring Etrumeus teres (0.13 ± 0.05 µg g(-1)) relative to other prey species, which could suggest that Hg concentrations in S. californica were influenced by these species. Given the relatively low concentration of Hg across age-classes and sex, consumption of S. californica's muscle tissue poses limited risk to humans.
Sun, Xuejun; Zhang, Qianggong; Kang, Shichang; Guo, Junming; Li, Xiaofei; Yu, Zhengliang; Zhang, Guoshuai; Qu, Dongmei; Huang, Jie; Cong, Zhiyuan; Wu, Guangjian
2018-08-01
Glacierized mountain environments can preserve and release mercury (Hg) and play an important role in regional Hg biogeochemical cycling. However, the behavior of Hg in glacierized mountain environments and its environmental risks remain poorly constrained. In this research, glacier meltwater, runoff and wetland water were sampled in Zhadang-Qugaqie basin (ZQB), a typical glacierized mountain environment in the inland Tibetan Plateau, to investigate Hg distribution and its relevance to environmental risks. The total mercury (THg) concentrations ranged from 0.82 to 6.98ng·L -1 , and non-parametric pairwise multiple comparisons of the THg concentrations among the three different water samples showed that the THg concentrations were comparable. The total methylmercury (TMeHg) concentrations ranged from 0.041 to 0.115ng·L -1 , and non-parametric pairwise multiple comparisons of the TMeHg concentrations showed a significant difference. Both the THg and MeHg concentrations of water samples from the ZQB were comparable to those of other remote areas, indicating that Hg concentrations in the ZQB watershed are equivalent to the global background level. Particulate Hg was the predominant form of Hg in all runoff samples, and was significantly correlated with the total suspended particle (TSP) and not correlated with the dissolved organic carbon (DOC) concentration. The distribution of mercury in the wetland water differed from that of the other water samples. THg exhibited a significant correlation with DOC as well as TMeHg, whereas neither THg nor TMeHg was associated with TSP. Based on the above findings and the results from previous work, we propose a conceptual model illustrating the four Hg distribution zones in glacierized environments. We highlight that wetlands may enhance the potential hazards of Hg released from melting glaciers, making them a vital zone for investigating the environmental effects of Hg in glacierized environments and beyond. Copyright © 2018 Elsevier B.V. All rights reserved.
Hothem, Roger L.; Trejo, Bonnie S.; Bauer, Marissa L.; Crayon, John J.
2008-01-01
To evaluate mercury (Hg) and other element exposure in cliff swallows (Petrochelidon pyrrhonota), eggs were collected from 16 sites within the mining-impacted Cache Creek watershed, Colusa, Lake, and Yolo counties, California, USA, in 1997-1998. Nestlings were collected from seven sites in 1998. Geometric mean total Hg (THg) concentrations ranged from 0.013 to 0.208 ??g/g wet weight (ww) in cliff swallow eggs and from 0.047 to 0.347 ??g/g ww in nestlings. Mercury detected in eggs generally followed the spatial distribution of Hg in the watershed based on proximity to both anthropogenic and natural sources. Mean Hg concentrations in samples of eggs and nestlings collected from sites near Hg sources were up to five and seven times higher, respectively, than in samples from reference sites within the watershed. Concentrations of other detected elements, including aluminum, beryllium, boron, calcium, manganese, strontium, and vanadium, were more frequently elevated at sites near Hg sources. Overall, Hg concentrations in eggs from Cache Creek were lower than those reported in eggs of tree swallows (Tachycineta bicolor) from highly contaminated locations in North America. Total Hg concentrations were lower in all Cache Creek egg samples than adverse effects levels established for other species. Total Hg concentrations in bullfrogs (Rana catesbeiana) and foothill yellow-legged frogs (Rana boylii) collected from 10 of the study sites were both positively correlated with THg concentrations in cliff swallow eggs. Our data suggest that cliff swallows are reliable bioindicators of environmental Hg. ?? Springer Science+Business Media, LLC 2007.
Deposition of Mercury in Forests along a Montane Elevation Gradient.
Blackwell, Bradley D; Driscoll, Charles T
2015-05-05
Atmospheric mercury (Hg) deposition varies along elevation gradients and is influenced by both orographic and biological factors. We quantified total Hg deposition over a 2 year period at 24 forest sites at Whiteface Mountain, NY, USA, that ranged from 450 to 1450 m above sea level and covered three distinct forest types: deciduous/hardwood forest (14.1 μg/m2-yr), spruce/fir forest (33.8 μg/m2-yr), and stunted growth alpine/fir forest (44.0 μg/m2-yr). Atmospheric Hg deposition increased with elevation, with the dominant deposition pathways shifting from litterfall in low-elevation hardwoods to throughfall in midelevation spruce/fir to cloudwater in high-elevation alpine forest. Soil Hg concentrations (ranging from 69 to 416 ng/g for the Oi/Oe and 72 to 598 ng/g for the Oa horizons) were correlated with total Hg deposition, but the weakness of the correlations suggests that additional factors such as climate and tree species also contribute to soil Hg accumulation. Meteorological conditions influenced Hg deposition pathways, as cloudwater Hg diminished in 2010 (dry conditions) compared to 2009 (wet conditions). However, the dry conditions in 2010 led to increased Hg dry deposition and subsequent significant increases in throughfall Hg fluxes compared to 2009. These findings suggest that elevation, forest characteristics, and meteorological conditions are all important drivers of atmospheric Hg deposition to montane forests.
Residential Mercury Contamination in Adobe Brick Homes in Huancavelica, Peru
Hagan, Nicole; Robins, Nicholas; Hsu-Kim, Heileen; Halabi, Susan; Espinoza Gonzales, Ruben Dario; Richter, Daniel deB.; Vandenberg, John
2013-01-01
This is the first study of adobe brick contamination anywhere in the world. Huancavelica, Peru is the site of historic cinnabar refining and one of the most mercury (Hg) contaminated urban areas in the world. Over 80% of homes in Huancavelica are constructed with adobe bricks made from Hg contaminated soil. In this study we measured total Hg concentrations in adobe brick, dirt floor, surface dust, and air samples from the interior of 60 adobe brick houses located in four neighborhoods. Concentrations of total Hg in adobe bricks, dirt floors, and surface dust ranged from 8.00 to 1070 µg/g, 3.06 to 926 µg/g, and 0.02 to 9.69 µg/wipe, respectively, with statistically significant differences between the four neighborhoods. Concentrations of Hg in adobe brick and dirt floor samples in Huancavelica were orders of magnitude higher than in Ayacucho, a non-mining town in Peru. A strong correlation exists between total Hg concentrations in adobe bricks and dirt floors which confirms that adobe bricks were being made on-site and not purchased from an off-site source. A strong correlation between surface dust and adobe bricks and dirt floors indicates that walls and floors serve as indoor sources of Hg contamination. Elemental Hg vapor concentrations were below detection (<0.5 µg/m3) in most homes; however in homes with detectable levels, concentrations up to 5.1 µg/m3 were observed. No statistically significant differences in Hg vapor measurements were observed between neighborhoods. This study demonstrates that building materials used widely in developing communities, such as adobe bricks, may be a substantial source of residential Hg exposure in silver or gold refining communities where Hg is produced or used for amalgamation in artisanal gold production. PMID:24040399
Human Body Burden and Dietary Methylmercury Intake: The Relationship in a Rice-Consuming Population.
Li, Ping; Feng, Xinbin; Chan, Hing-Man; Zhang, Xiaofeng; Du, Buyun
2015-08-18
Rice can be the main route of methylmercury (MeHg) exposure for rice-consuming populations living in area where mercury (Hg) is mined. However, the current risk assessment paradigm for MeHg exposure is based on epidemiological data collected from fish-consuming populations. This study was designed to evaluate the relationship between dietary MeHg intake and human body burden in a rice -consuming population from the Wanshan Hg mining area in China. Hair MeHg concentrations averaged 2.07 ± 1.79 μg/g, and the average blood MeHg concentration across the study area ranged from 2.20 to 9.36 μg/L. MeHg constituted 52.8 ± 17.5% and 71.7 ± 18.2% of total Hg (THg) on average in blood and hair samples, respectively. Blood and hair MeHg concentrations, rather than THg, can be used as a proxy of human MeHg exposure. Hair MeHg levels showed no significant monthly variation; however, hair THg can be impacted by inorganic Hg exposure. The toxicokinetic model of MeHg exposure based on fish consumption underestimated the human hair MeHg levels, and this may be a consequence of the high hair-to-blood MeHg ratio (361 ± 105) in the studied rice-consuming population. The use of risk assessment models based on fish consumption may not be appropriate for inland mining areas where rice is the staple food.
Vlachopoulos, C; Grammatikou, V; Kallistratos, M; Karagiannis, A
2016-09-01
The rates of blood pressure (BP) control worldwide are discouraging. This study had the purpose of assessing the effectiveness of perindopril/amlodipine fixed dose combination on BP-lowering efficacy, and recording adherence, safety and tolerability during a 4 month treatment period. In this multicenter, observational study 2269 hypertensive patients were prospectively enrolled. The data were recorded at 1 and 4 months of treatment. Between the first and third visits mean BP values (systolic/diastolic) decreased from 158.4 ± 13.6/89.9 ± 8.7 mmHg to 130.0 ± 7.9/77.7 ± 6.3 mmHg (P < 0.001). The magnitude of BP reduction depended on baseline blood pressure levels and total cardiovascular (CV) risk (P < 0.001). Patients with grade 1, 2 and 3 showed a BP reduction of 21.9/10.0 mmHg, 34.4/14.2 mmHg and 51.4/21.2 mmHg, accordingly (P < 0.001). Patients with very high, high, moderate and low added CV risk showed a BP reduction of 35.7/14.9 mmHg, 27.5/12.1 mmHg, 28.6/12.2 mmHg and 14.5/5.8 mmHg respectively (P < 0.001). Adherence to treatment was high: 98.3% of the sample was taking the treatment "every day" or "quite often", while only 15 patients (0.7% of the sample) prematurely discontinued treatment. Study interpretation may be limited by the fact that this is an observational study with no comparator and a short follow-up period. A perindopril/amlodipine fixed dose combination significantly decreases BP levels. The degree of BP reduction is related to baseline BP levels and total CV risk.
Mercury hair levels and factors that influence exposure for residents of Huancavelica, Peru
Between 1564 and 1810, nearly 17,000 metric tons of mercury (Hg) vapor were released to the environment during cinnabar refining in the small town of Huancavelica, Peru. The present study characterizes individual exposure to mercury using total and speciated Hg from residential s...
Gray, J.E.; Hines, M.E.; Biester, H.
2006-01-01
Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg2+, Hg0, methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 ??g/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg0, and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg2+, organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 ??g/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly applicable to mine waste. Although total Hg and methyl-Hg concentrations are locally high in some mine waste samples, little Hg appears to be exported from these Hg mines in stream sediment primarily due to the arid climate and lack of precipitation and mine runoff in this region. ?? 2006 Elsevier Ltd. All rights reserved.
Hg Storage and Mobility in Tundra Soils of Northern Alaska
NASA Astrophysics Data System (ADS)
Olson, C.; Obrist, D.
2017-12-01
Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral soils of active layer samples (0.062%) than in permafrost soils (0.026%) where soil Hg concentrations were lower. Mobilization of Hg stored in thawing permafrost soils could lead to accelerated export of Hg to aquatic systems, with major implications to Arctic wildlife and human health.
Arcagni, Marina; Juncos, Romina; Rizzo, Andrea; Pavlin, Majda; Fajon, Vesna; Arribére, María A; Horvat, Milena; Ribeiro Guevara, Sergio
2018-01-15
Niche segregation between introduced and native fish in Lake Nahuel Huapi, a deep oligotrophic lake in Northwest Patagonia (Argentina), occurs through the consumption of different prey. Therefore, in this work we analyzed total mercury [THg] and methylmercury [MeHg] concentrations in top predator fish and in their main prey to test whether their feeding habits influence [Hg]. Results indicate that [THg] and [MeHg] varied by foraging habitat and they increased with greater percentage of benthic diet and decreased with pelagic diet in Lake Nahuel Huapi. This is consistent with the fact that the native creole perch, a mostly benthivorous feeder, which shares the highest trophic level of the food web with introduced salmonids, had higher [THg] and [MeHg] than the more pelagic feeder rainbow trout and bentho-pelagic feeder brown trout. This differential THg and MeHg bioaccumulation observed in native and introduced fish provides evidence to the hypothesis that there are two main Hg transfer pathways from the base of the food web to top predators: a pelagic pathway where Hg is transferred from water, through plankton (with Hg in inorganic species mostly), forage fish to salmonids, and a benthic pathway, as Hg is transferred from the sediments (where Hg methylation occurs mostly), through crayfish (with higher [MeHg] than plankton), to native fish, leading to one fold higher [Hg]. Copyright © 2017 Elsevier B.V. All rights reserved.
Chouvelon, Tiphaine; Cresson, Pierre; Bouchoucha, Marc; Brach-Papa, Christophe; Bustamante, Paco; Crochet, Sylvette; Marco-Miralles, Françoise; Thomas, Bastien; Knoery, Joël
2018-02-01
Mercury (Hg) is a global contaminant of environmental concern. Numerous factors influencing its bioaccumulation in marine organisms have already been described at both individual and species levels (e.g., size or age, habitat, trophic level). However, few studies have compared the trophic characteristics of ecosystems to explain underlying mechanisms of differences in Hg bioaccumulation and biomagnification among food webs and systems. The present study aimed at investigating the potential primary role of the trophic status of systems on Hg bioaccumulation and biomagnification in temperate marine food webs, as shown by their medium-to high-trophic level consumers. It used data from samples collected at the shelf-edge (i.e. offshore organisms) in two contrasted ecosystems: the Bay of Biscay in the North-East Atlantic Ocean and the Gulf of Lion in the North-West Mediterranean Sea. Seven species including crustaceans, sharks and teleost fish, previously analysed for their total mercury (T-Hg) concentrations and their stable carbon and nitrogen isotope compositions, were considered for a meta-analysis. In addition, methylated mercury forms (or methyl-mercury, Me-Hg) were analysed. Mediterranean organisms presented systematically lower sizes than Atlantic ones, and lower δ 13 C and δ 15 N values, the latter values especially highlighting the more oligotrophic character of Mediterranean waters. Mediterranean individuals also showed significantly higher T-Hg and Me-Hg concentrations. Conversely, Me-Hg/T-Hg ratios were higher than 85% for all species, and quite similar between systems. Finally, the biomagnification power of Hg was different between systems when considering T-Hg, but not when considering Me-Hg, and was not different between the Hg forms within a given system. Overall, the different parameters showed the crucial role of the low primary productivity and its effects rippling through the compared ecosystems in the higher Hg bioaccumulation seen in organisms from oligotrophic Mediterranean waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beaver Ponds Increase Methylmercury and Nutrients Concentrations in Canadian Shield Streams
NASA Astrophysics Data System (ADS)
Roy, V.; Amyot, M.; Carignan, R.
2007-12-01
Beaver populations and the number of beaver dams are currently increasing in many Canadian regions. Since natural and anthropogenic impoundments have historically been identified as sources of the potent neurotoxin methylmercury (MeHg), beaver dams could also increase MeHg levels in streams. During summer 2006, we collected water samples upstream and downstream from twenty beaver dams of the Laurentians, located on the Canadian Shield. Samples were analysed for total Hg, MeHg and other chemical variables including DOC, TP, TDP, TN, and major ions. Significant increases of nutrients (DOC, TP, TDP, TN) and ammonium concentrations and depletions of oxygen, nitrate and sulphate concentrations between inlet and outlet show that beaver ponds provide environmental conditions that can favour methylation of inorganic mercury. Heterogeneity of the ratio MeHg/THg at the outlet among our sites was well explained by the estimated age of the impoundment, with methylation capacity of beaver ponds decreasing with age. Further, the geographic location of beaver ponds influenced water chemistry at the outlet, as we observed a dichotomy between northern and southern sites; these differences were based mainly on forest composition. On average, beaver impoundments increased MeHg concentrations by 5.7 fold, total Hg concentrations by 1.6 fold and nutrients concentrations by 2-3 fold. Overall, our results suggest that beaver dams may considerably increase MeHg and nutrients levels in downstream ecosystems. The impact of beavers on the cycling of contaminants and nutrients in boreal watersheds should therefore be considered in the management of their populations.
Mercury and methylmercury contamination related to artisanal gold mining, Suriname
Gray, J.E.; Labson, V.F.; Weaver, J.N.; Krabbenhoft, D.P.
2002-01-01
Elemental Hg-Au amalgamation mining practices are used widely in many developing countries resulting in significant Hg contamination of surrounding ecosystems. We have measured total Hg and methyl-Hg concentrations in sediment and water collected from artisanal Au mines and these are the first Hg speciation data from such mines in Suriname. Total Hg and methyl-Hg contents in mine-waste sediment and water are elevated over local uncontaminated baselines. Total Hg (10-930 ng/L) and methyl-Hg (0.02-3.8 ng/L) are highly elevated in mine waters. Increasing total Hg contents in discharged mine waters correlate with increasing water turbidity indicating that most Hg transport is on suspended particulates. Our Hg results are similar to those found in artisanal Au mines in the Amazon basin, where Hg contamination has led to adverse effects on tropical ecosystems.
Effects of hypolimnetic oxygen addition on mercury bioaccumulation in Twin Lakes, Washington, USA.
Beutel, Marc; Dent, Stephen; Reed, Brandon; Marshall, Piper; Gebremariam, Seyoum; Moore, Barry; Cross, Benjamin; Gantzer, Paul; Shallenberger, Ed
2014-10-15
Twin Lakes, located on the Confederated Tribes of the Colville Indian Reservation in eastern Washington, USA, include North Twin Lake (NT) and South Twin Lake (ST). The mesotrophic, dimictic lakes are important recreational fishing sites for both warm-water bass and cold-water trout. To improve summertime cold-water habitat for trout in NT, dissolved oxygen (DO) addition to the hypolimnion, using liquid oxygen as an oxygen gas source, started in 2009. This study assessed mercury (Hg) in the water column, zooplankton and fish, and related water quality parameters, in Twin Lakes from 2009 to 2012. Because methylmercury (MeHg) buildup in lake bottom water is commonly associated with hypolimnetic anoxia, hypolimnetic oxygenation was hypothesized to reduce Hg in bottom waters and biota in NT relative to ST. Oxygen addition led to significantly higher DO (mean hypolimnetic DO: 2-8 mg/L versus <1 mg/L) and lower MeHg (peak mean hypolimnetic MeHg: 0.05-0.2 ng/L versus 0.15-0.4 ng/L) in North Twin. In North Twin, years with higher DO (2009 and 2011) exhibited lower MeHg in bottom waters and lower total Hg in zooplankton, inferring a positive linkage between oxygen addition and lower bioaccumulation. However, when comparing between the two lakes, Hg levels were significantly higher in zooplankton (total Hg range: 100-200 versus 50-100 μg/kg dry weight) and trout (spring 2010 stocking cohort of eastern brook trout mean total Hg: 74.9 versus 49.9 μg/kg wet weight) in NT relative to ST. Lower Hg bioaccumulation in ST compared to NT may be related to bloom dilution in chlorophyll-rich bottom waters, a vertical disconnect between the location of zooplankton and MeHg in the water column, and high binding affinity between sulfide and MeHg in bottom waters. Copyright © 2014 Elsevier B.V. All rights reserved.
Mercury in swamp sparrows (Melospiza georgiana) from wetland habitats in Wisconsin.
Strom, Sean M; Brady, Ryan S
2011-10-01
Wetlands play a major role in the export of methylmercury (MeHg) to a watershed. The large contribution of wetlands to watersheds in northern Wisconsin, coupled with the acidic environment of this area, makes these habitats especially vulnerable to mercury (Hg) accumulation by biota. The purpose of this study was to compare Hg accumulation between northern Wisconsin wetlands and southern Wisconsin wetlands using the swamp sparrow (Melospiza georgiana) as a representative species. The swamp sparrow was selected as a representative passerine species in which to examine Hg in these habitats, because during their breeding season, they feed at a higher trophic level than many of their counterparts. During the breeding seasons of 2007 and 2008, blood samples were collected from swamp sparrows inhabiting wetlands in both northern and southern Wisconsin and analyzed for total Hg. The mean concentration of total Hg in swamp sparrows from northern wetlands was 0.135 ± 0.064 μg/ml while the mean concentration of total Hg in swamp sparrows from southern wetlands was 0.187 ± 0.106 μg/ml. Results revealed no significant difference (P = 0.17) between Hg accumulation in swamp sparrows from less-acidic wetlands in southern Wisconsin and Hg in swamp sparrows from acidic wetlands in northern Wisconsin. The results are contrary to those observed in other species such as common loon, tree swallow and river otter where higher accumulation has been observed in individuals from acidic habitats. Reasons for the lack of this accumulation pattern in swamp sparrows are unclear and warrant further study.
Kenow, K.P.; Meyer, M.W.; Hines, R.K.; Karasov, W.H.
2007-01-01
We determined the distribution and accumulation of Hg in tissues of common loon (Gavia immer) chicks maintained for up to 15 weeks on either a control diet with no added methylmercury chloride (MeHgCl) or one containing either 0.4 or 1.2 ??g Hg (as MeHgCl)/g wet-weight food. Total Hg and MeHg tissue concentrations were strongly positively correlated (r2 > 0.95) with the amount of Hg delivered to individual chicks throughout the course of the experiment. The pattern of differential Hg concentration in internal tissues was consistent within each treatment: Liver > kidney > muscle > carcass > brain. Feather Hg concentrations were consistently higher than those of internal tissues and represented an important route of Hg elimination. Feather mass accounted for 4.3% ?? 0.1% (average ?? standard error) of body mass, yet 27.3% ?? 2.6% of total Hg intake was excreted into feathers. Our calculations indicate that 26.7% ?? 4.9% of ingested Hg was not accounted for and, thus, either was never absorbed or was absorbed and subsequently eliminated in feces. With the additional excretion into feathers, 54% of ingested Hg was excreted. Demethylation was evident in the liver at all treatment levels and in the kidneys of chicks dosed at 1.2 ??g Hg/g. Mercury concentrations were strongly positively correlated (r2 ??? 0.95) among internal tissues and with blood Hg concentration. Mercury concentrations of secondary feathers were moderately correlated (r2 = 0.82-0.93) with internal tissues. We supply regression models that may be used to provide perspective and a useful means of interpreting the variety of measures of Hg exposure reported in the literature. ?? 2007 SETAC.
Meng, Bo; Feng, X B; Chen, C X; Qiu, G L; Sommar, J; Guo, Y N; Liang, P; Wan, Q
2010-01-01
The distribution of mercury (Hg) and the characteristics of its methylation were investigated in Wujiangdu (WJD) and Yinzidu (YZD) reservoirs in Guizhou province, China. The two reservoirs are characterized by high and low levels of primary productivity, respectively. Mercury species in water samples from depth profiles in both reservoirs and from interface water in the WJD were analyzed each season during 2007. The concentrations of total Hg (HgT(unf)) and methylmercury (MeHgT(unf)) in unfiltered water samples from the WJD varied from 3.0 to 18 pmol dm(-3) and from 0.17 to 15 pmol dm(-3), respectively; ranges were 2.0 to 9.5 pmol dm(-3) for HgT(unf) and 0.14 to 2.2 pmol dm(-3) for MeHgT(unf) in the YZD. Elevated methylmercury concentrations in water samples from the bottom water and water-sediment interface demonstrated an active net Hg methylation in the downstream reach of the WJD. There was no discernable Hg methylation occurring in the YZD, nor in the upstream and middle reaches of the WJD. The results suggest that high primary productivity resulting from cage aquaculture activities in the WJD is an important control on Hg methylation in the reservoir, increasing the concentrations of MeHg in water in the Wujiang River basin Southwestern China.
de Paiva, Esther Lima; Morgano, Marcelo Antonio; Milani, Raquel Fernanda
2017-09-01
The objective of this work was to determine levels of inorganic contaminants in 30 samples of five commercial brands of canned tuna, acquired on the local market in Campinas, São Paulo, Brazil, in the year of 2015. Total mercury and methylmercury (MeHg+) were determined by atomic absorption with thermal decomposition and amalgamation; and cadmium, lead, and tin were determined by inductively coupled plasma optical emission spectrometry. Results indicated that 20% of the tuna samples surpassed limits determined by the Brazilian and European Commission legislation for cadmium; for lead, the maximum value found was 59 µg kg -1 and tin was not detected in any samples. The maximum values found for total Hg and MeHg+ were 261 and 258 µg kg -1 , respectively. As from the results obtained, it was estimated that the consumption of four cans per week (540 g) of tuna canned in water could surpass the provisional tolerable monthly intake for MeHg + by 100%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro, Maria Fernanda Hornos, E-mail: mafehoca@fcfrp.usp.br; Oliveira Souza, Juliana Maria, E-mail: souza.jmo@gmail.com; Grotto, Denise, E-mail: denise.grotto@prof.uniso.br
Thimerosal (TM) is an ethylmercury (etHg)-containing preservative used in some vaccines despite very limited knowledge on the kinetics and direct interaction/effects in mammals' tissues after exposure. Thus, this study aimed to evaluate the kinetics of Hg species in mice in a time course analysis after intramuscular injection of TM, by estimating Hg half-lives in blood and tissues. Mice were exposed to one single intramuscular dose of 20 µg of Hg as TM. Blood, brain, heart, kidney and liver were collected at 0.5 hour (h), 1 h, 8 h, 16 h, 144 h, 720 h and 1980 h after TM exposuremore » (n=4). Hg species in animal tissues were identified and quantified by speciation analysis via liquid chromatography hyphenated with inductively coupled mass spectrometry (LC–ICP-MS). It was found that the transport of etHg from muscle to tissues and its conversion to inorganic Hg (inoHg) occur rapidly. Moreover, the conversion extent is modulated in part by the partitioning between EtHg in plasma and in whole blood, since etHg is rapidly converted in red cells but not in a plasma compartment. Furthermore, the dealkylation mechanism in red cells appears to be mediated by the Fenton reaction (hydroxyl radical formation). Interestingly, after 0.5 h of TM exposure, the highest levels of both etHg and inoHg were found in kidneys (accounting for more than 70% of the total Hg in the animal body), whereas the brain contributed least to the Hg body burden (accounts for <1.0% of total body Hg). Thirty days after TM exposure, most Hg had been excreted while the liver presented the majority of the remaining Hg. Estimated half-lives (in days) were 8.8 for blood, 10.7 for brain, 7.8 for heart, 7.7 for liver and 45.2 for kidney. Taken together, our findings demonstrated that TM (etHg) kinetics more closely approximates Hg{sup 2+} than methylmercury (meHg) while the kidney must be considered a potential target for etHg toxicity. - Highlights: • Ethylmercury is rapidly converted to inorganic mercury. • Hg substantially accumulates in kidney with a terminal half-life of 45.2 d. • The dealkylation of ethylmercury occurs in red blood cells but not in plasma. • Hydroxyl radical is probably the main effector of this dealkylation. • Kidney must be considered a potential target for ethylmercury toxicity.« less
Ostertag, Sonja K; Stern, Gary A; Wang, Feiyue; Lemes, Marcos; Chan, Hing Man
2013-07-01
The toxicokinetics of mercury (Hg) in key species of Arctic ecosystem are poorly understood. We sampled five brain regions (frontal lobe, temporal lobe, cerebellum, brain stem and spinal cord) from beluga whales (Delphinapterus leucas) harvested in 2006, 2008, and 2010 from the eastern Beaufort Sea, Canada, and measured total Hg (HgT) and total selenium (SeT) by inductively coupled plasma mass spectrometry (ICP-MS), mercury analyzer or cold vapor atomic absorption spectrometry, and the chemical forms using a high performance liquid chromatography ICP-MS. At least 14% of the beluga whales had HgT concentrations higher than the levels of observable adverse effect (6.0 mg kg(-1) wet weight (ww)) in primates. The concentrations of HgT differed between brain regions; median concentrations (mgkg(-1) ww) were 2.34 (0.06 to 22.6, 81) (range, n) in temporal lobe, 1.84 (0.12 to 21.9, 77) in frontal lobe, 1.84 (0.05 to 16.9, 83) in cerebellum, 1.25 (0.02 to 11.1, 77) in spinal cord and 1.32 (0.13 to 15.2, 39) in brain stem. Total Hg concentrations in the cerebellum increased with age (p<0.05). Between 35 and 45% of HgT was water-soluble, of which, 32 to 41% was methyl mercury (MeHg) and 59 to 68% was labile inorganic Hg. The concentration of MeHg (range: 0.03 to 1.05 mg kg(-1) ww) was positively associated with HgT concentration, and the percent MeHg (4 to 109%) decreased exponentially with increasing HgT concentration in the spinal cord, cerebellum, frontal lobe and temporal lobe. There was a positive association between SeT and HgT in all brain regions (p<0.05) suggesting that Se may play a role in the detoxification of Hg in the brain. The concentration of HgT in the cerebellum was significantly associated with HgT in other organs. Therefore, HgT concentrations in organs that are frequently sampled in bio-monitoring studies could be used to estimate HgT concentrations in the cerebellum, which is the target organ of MeHg toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.
Sulfate threshold target to control methylmercury levels in wetland ecosystems
Corrales, J.; Naja, G.M.; Dziuba, C.; Rivero, R.G.; Orem, W.
2011-01-01
Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear-1, respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear-1, respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear-1, and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear-1. Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL-1 was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2??gL-1 criterion for surface water already established by the U.S. Environmental Protection Agency (EPA). ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Covelli, Stefano; Langone, Leonardo; Acquavita, Alessandro; Piani, Raffaella; Emili, Andrea
2012-11-01
The "MIRACLE" Project was established in order to assess the feasibility of clam farming and high levels of sediment mercury (Hg) contamination coexisting in the Marano and Grado Lagoon, Italy. This lagoon has been subjected to Hg input from both industrial waste (chlor-alkali plant) and long-term mining activity (Idrija mine, NW Slovenia). One of the subtasks of the "MIRACLE" Project was to determine the historical evolution of Hg accumulation in the lagoon's bottom sediments. Thirteen 1-m deep sediment cores were collected from the subtidal and intertidal zones, plus one in a saltmarsh, all of which were then analyzed for total Hg content and several physicochemical parameters. Sedimentation rate assessments were performed by measuring short-lived radionuclides (excess 210Pb and 137Cs). For most of the analyzed cores, natural background levels of Hg were observed at depths of 50-100 cm. In the eastern area, Hg contamination was found to be at its maximum level at the core top (up to 12 μg g-1) as a consequence of the long-term mining activity. The vertical distribution of Hg was related to the influence of the single-point contamination sources, whereas the grain-size variability or organic matter content seemed not to affect it. In the western area, Hg content at the surface was found not to exceed 7 μg g-1 and contamination was recorded only in the first 20-30 cm. Geochronological measurements showed that the depositional flux of Hg was influenced by anthropogenic inputs after 1800, when mining activity was more intense. After 1950, Hg in the surface sediment, most remarkable in the central-western sector, seemed to also be affected by the discharge of the Aussa River, which delivers Hg from the chlor-alkali plant. In 1996, Hg mining at Idrija ceased, however the core profiles did not show any subsequent decreasing trend in terms of Hg flux, which implies the system retaining some "memory" of contamination. Thus, in the short term, a decrease in Hg inputs into the nearby Gulf of Trieste and the lagoon seems unlikely. A preliminary rounded-down gross estimate of total Hg "trapped" in the lagoon's sediments amounted to 251 t. Such a quantity, along with the complexity of the lagoon ecosystem, suggests that an in toto reclamation of the sediments at the lagoon scale is unfeasible, both economically and environmentally.
Mercury levels in human population from a mining district in Western Colombia.
Gutiérrez-Mosquera, Harry; Sujitha, S B; Jonathan, M P; Sarkar, S K; Medina-Mosquera, Fairy; Ayala-Mosquera, Helcias; Morales-Mira, Gladis; Arreola-Mendoza, Laura
2018-06-01
A biomonitoring study was carried out to examine the adverse impacts of total mercury in the blood (HgB), urine (HgU) and human scalp hair (HgH) on the residents of a mining district in Colombia. Representative biological samples (scalp hair, urine and blood) were collected from volunteered participants (n=63) to estimate the exposure levels of THg using a Direct mercury analyzer. The geometric mean of THg concentrations in the hair, urine and blood of males were 15.98μg/g, 23.89μg/L and 11.29μg/L respectively, whereas the females presented values of 8.55μg/g, 5.37μg/L and 8.80μg/L. Chronic urinary Hg (HgU) levels observed in male workers (32.53μg/L) are attributed to their long termed exposures to inorganic and metallic mercury from gold panning activities. On an average, the levels of THg are increasing from blood (10.05μg/L) to hair (12.27μg/g) to urine (14.63μg/L). Significant positive correlation was found between hair and blood urinary levels in both male and female individuals. Thus the present biomonitoring investigation to evaluate the Hg levels and associated health issues would positively form a framework for further developmental plans and policies in building an ecofriendly ecosystem. Copyright © 2017. Published by Elsevier B.V.
Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Laura S., E-mail: lsaylors@umich.edu; Blum, Joel D.; Basu, Niladri
Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ{sup 199}Hg values to Hg derived from ore deposits (mean urine Δ{sup 199}Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ{sup 199}Hg values (0.23–0.55‰, n=6) and low percentages of total Hgmore » as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ{sup 199}Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed.« less
Babiarz, Christopher; Hoffmann, Stephen; Wieben, Ann; Hurley, James; Andren, Anders; Shafer, Martin; Armstrong, David
2012-02-01
Knowledge of the partitioning and sources of mercury are important to understanding the human impact on mercury levels in Lake Superior wildlife. Fluvial fluxes of total mercury (Hg(T)) and methylmercury (MeHg) were compared to discharge and partitioning trends in 20 sub-basins having contrasting land uses and geological substrates. The annual tributary yield was correlated with watershed characteristics and scaled up to estimate the basin-wide loading. Tributaries with clay sediments and agricultural land use had the largest daily yields with maxima observed near the peak in water discharge. Roughly 42% of Hg(T) and 57% of MeHg was delivered in the colloidal phase. Tributary inputs, which are confined to near-shore zones of the lake, may be more important to the food-web than atmospheric sources. The annual basin-wide loading from tributaries was estimated to be 277 kg yr(-1) Hg(T) and 3.4 kg yr(-1) MeHg (5.5 and 0.07 mg km(-2) d(-1), respectively). Copyright © 2011 Elsevier Ltd. All rights reserved.
Witham, Miles D; Price, Rosemary J G; Struthers, Allan D; Donnan, Peter T; Messow, Claudia-Martina; Ford, Ian; McMurdo, Marion E T
2013-10-14
Observational data link low 25-hydroxyvitamin D levels to both prevalent blood pressure and incident hypertension. No clinical trial has yet examined the effect of vitamin D supplementation in isolated systolic hypertension, the most common pattern of hypertension in older people. To test whether high-dose, intermittent cholecalciferol supplementation lowers blood pressure in older patients with isolated systolic hypertension. Parallel group, double-blind, placebo-controlled randomized trial. Primary care clinics and hospital clinics. Patients 70 years and older with isolated systolic hypertension (supine systolic blood pressure >140 mm Hg and supine diastolic blood pressure <90 mm Hg) and baseline 25-hydroxyvitamin D levels less than 30 ng/mL were randomized into the trial from June 1, 2009, through May 31, 2011. A total of 100,000 U of oral cholecalciferol or matching placebo every 3 months for 1 year. Difference in office blood pressure, 24-hour blood pressure, arterial stiffness, endothelial function, cholesterol level, insulin resistance, and b-type natriuretic peptide level during 12 months. A total of 159 participants were randomized (mean age, 77 years). Mean baseline office systolic blood pressure was 163/78 mm Hg. Mean baseline 25-hydroxyvitamin D level was 18 ng/mL. 25-Hydroxyvitamin D levels increased in the treatment group compared with the placebo group (+8 ng/mL at 1 year, P < .001). No significant treatment effect was seen for mean (95% CI) office blood pressure (−1 [−6 to 4]/−2 [−4 to 1] mm Hg at 3 months and 1 [−2 to 4]/0 [−2 to 2] mm Hg overall treatment effect). No significant treatment effect was evident for any of the secondary outcomes (24-hour blood pressure, arterial stiffness, endothelial function, cholesterol level, glucose level, and walking distance). There was no excess of adverse events in the treatment group, and the total number of falls was nonsignificantly lower in the group receiving vitamin D (36 vs 46, P = .24). Vitamin D supplementation did not improve blood pressure or markers of vascular health in older patients with isolated systolic hypertension. isrctn.org Identifier: ISRCTN92186858.
Fischer, John P; Nelson, Jonas A; Sieber, Brady; Stransky, Carrie; Kovach, Stephen J; Serletti, Joseph M; Wu, Liza C
2014-05-01
Free tissue transfer requires lengthy operative times and can be associated with significant blood loss. The goal of our study was to determine independent risk factors for blood transfusions and transfusion-related complications and costs. We reviewed our prospectively maintained free flap database and identified all patients undergoing breast reconstruction receiving blood transfusions. These patients were compared with those not receiving a postoperative transfusion. We examined baseline patient comorbidities, preoperative and postoperative hemoglobin (HgB) levels, intraoperative and postoperative complications, and blood transfusions. Factors associated with transfusion were identified using univariate analyses, and multivariate logistic regression was used to determine independently associated factors. A total of 70 (8.2%) patients received postoperative blood transfusions. Multivariate analysis revealed associations between length of surgery (P=0.01), intraoperative arterial thrombosis [odds ratio (OR), 6.75; P=0.01], major surgical complications (OR, 25.9; P<0.001), medical complications (OR, 7.2; P=0.002), and postoperative HgB levels (OR, 0.2; P<0.001). Transfusions were independently associated with higher rates of medical complications (OR, 2.7; P=0.03). A significantly lower rate of medical complications was observed when a restrictive transfusion (HgB level, <7 g/dL) was administered (P=0.04). A cost analysis demonstrated that each blood transfusion was independently associated with an added $1,500 in total cost. Several key perioperative factors are associated with allogenic transfusion, including intraoperative complications, operative time, HgB level, and postoperative medical and surgical complications. Blood transfusions were independently associated with greater morbidity and added hospital costs. Overall, a restrictive transfusion strategy (HgB level, <7 g/dL or clinically symptomatic) may help minimize medical complications. Prognostic/risk category, level III.
Changes in stable isotope composition in Lake Michigan trout ...
Researchers have frequently sought to use environmental archives of sediment, peat and glacial ice to try and assess historical trends in atmospheric mercury (Hg) deposition to aquatic ecosystems. While this information is valuable in the context of identifying temporal source trends, these types of assessments cannot account for likely changes in bioavailability of Hg sources that are tied to the formation of methylmercury (MeHg) and accumulation in fish tissues. For this study we propose the use of long-term fish archives and Hg stable isotope determination as an improved means to relate temporal changes in fish Hg levels to varying Hg sources in the Great Lakes. For this study we acquired 180 archived fish composites from Lake Michigan over a 40-year time period (1975 to 2014) from the Great Lakes Fish Monitoring and Surveillance Program, which were analyzed for their total Hg content and Hg isotope abundances. The results reveal that Hg sources to Lake Michigan trout (Salvelinus namaycush) have encountered considerable changes as well as a large shift in the food web trophic position as a result of the introduction of several invasive species, especially the recent invasion of dreissenid mussels. Total Hg concentrations span a large range (1,600 to 150 ng g-1) and exhibit large variations from 1975 to 1985. Ä199Hg signatures similarly exhibit large variation (3.2 to 6.9‰) until 1985, followed by less variation through the end of the data record in 2014.
MERCURY CONCENTRATION IN FISH FROM STREAMS AND RIVERS THROUGHOUT THE WESTERN UNITED STATES
We collected and analyzed 2,707 large fish from 626 stream/river sites in 12 western U.S. states using a probability design to assess the regional distribution of whole fish mercury (Hg) concentrations. Large (>120 mm total length) fish Hg levels were strongly related to both fis...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, F.L.; Watness, K.; Nelson, D.A.
1987-03-01
Crepidula fornicata were held in a flow-through bioassay system and exposed to sand-filtered seawater to which no soluble mercury (control) was added or to which either 5, 25, or 50 {mu}g l{sup {minus}1} soluble Hg was added. At specific intervals during the 16-week experiment, a group of limpets was removed from each tank; one subgroup was exposed for 48 h to high concentrations of Hg, and another was analyzed for Hg-binding proteins by gel-permeation chromatography and spectrometry. Mortality from exposure to Hg in the 48-Hg acute toxicity tests was related to concentrations of Hg experienced both during the long-term exposuremore » period and the 48-h exposure period. Chronic exposure to low levels of Hg resulted in increased amounts of total Hg in the whole body and in the low-molecular-weight Hg-binding proteins. No evidence was found for increased tolerance of Hg with preexposure.« less
Outridge, P M; Hobson, K A; Savelle, J
2009-11-15
Mercury (Hg) concentrations were determined in the canine teeth of ringed seals (Phoca hispida) harvested during the 13th-14th, late 19th and early 21st Centuries in Amundsen Gulf, Northwest Territories, Canada. Most historical and pre-industrial teeth contained undetectable Hg levels (i.e. <1.0 ng/g DW), whereas samples from 2001-03 contained up to 12 ng/g DW in an age-dependent pattern. Assuming a median [Hg] value in 13th-14th Century teeth of half the detection limit (i.e. 0.5 ng/g DW), geometric means of Hg in modern teeth were 9-17 times those of seals in the 14th Century, equivalent to an anthropogenic input of 89-94% of total Hg in modern seals. These results corroborate a previous study of beluga (Delphinapterus leucas) in the nearby Beaufort Sea. While the seals' trophic position (inferred from delta(15)N values) did not change over time, modern delta(13)C values were lower by about 2 per thousand than in the 14th and 19th Centuries. This could be due to increased dissolution of anthropogenically derived CO(2) in the ocean from the atmosphere, but could also indicate more offshore pelagic feeding by modern seals, which might be a factor in their Hg exposure. New tooth [Hg] data are also presented for the Beaufort Sea beluga, using recently-discovered museum samples collected in 1960/61, which showed that most of the anthropogenic contribution to beluga Hg had already taken effect by 1960 (reaching approximately 75% of total Hg). Taken together, the long-term seal and beluga data indicate that whereas Hg levels in the marine ecosystems of the western Canadian Arctic were probably unchanged from pre-industrial times up to the late 19th Century, there was a significant, many-fold increase in the early to mid-20th Century, but little or no change after about the early 1960s.
Aandstad, Anders; Hageberg, Rune; Holme, Ingar M; Anderssen, Sigmund A
2016-07-01
Soldiers are encouraged to be physically active, and thereby maintain or increase their fitness level to meet job-related physical demands. However, studies on objectively measured physical activity (PA) in soldiers are scarce, particular for reserve soldiers. Hence, the aim of this study was to present PA data on Norwegian Home Guard (HG) soldiers. A total of 411 HG soldiers produced acceptable PA measurements (SenseWear Armband Pro2) during civilian life, of which 299 soldiers also produced acceptable data during HG military training. Reference data on total energy expenditure, metabolic equivalents, steps per day, and minutes of PA in three different metabolic equivalent categories are presented. The HG soldiers produced more minutes of moderate PA during HG military training compared to civilian life, but less vigorous and very vigorous PA. Furthermore, HG soldiers were more physically active during civilian week days compared to weekend days. The presented reference data can be used for comparisons against other groups of soldiers. Our data indicate that aerobic demands during HG military training were not very high. Promoting PA and exercise could still be important to ensure HG soldiers are physically prepared for more unforeseen job tasks. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Pastorelli, A A; Baldini, M; Stacchini, P; Baldini, G; Morelli, S; Sagratella, E; Zaza, S; Ciardullo, S
2012-01-01
The presence of selected toxic heavy metals, such as cadmium (Cd), lead (Pb) and mercury (Hg), was investigated in fish and seafood products, namely, blue mussel, carpet shell clam, European squid, veined squid, deep-water rose shrimp, red mullet, European seabass, gilthead seabream, Atlantic cod, European hake, Atlantic bluefin tuna and swordfish so as to assess their human exposure through diet. Metals were detected by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and hydride generation atomic absorption spectrometry (Hg-AAS). Measurements of Cd, Pb and Hg were performed by means of analytical methods validated in compliance with UNI CEI EN ISO/IEC 17025 [2005. General requirements for the competence of testing and calibration laboratories. Milano (Italy): UNI Ente Nazionale Italiano di Unificazione]. The exposure assessment was undertaken matching the levels of Cd, Pb and total Hg with consumption data related to fish and seafood products selected for this purpose. In order to establish human health implications, the estimated weekly intakes (EWIs) for Cd, Pb and Hg were compared with the standard tolerable weekly intakes (TWI) for Cd and provisional tolerable weekly intakes (PTWIs) for Pb and Hg stipulated by the European Food Safety Authority (EFSA) and the Food and Agriculture Organization/World Health Organization (FAO/WHO) Joint Expert Committee on Food Additives (JECFA). The found metal concentrations were largely below the maximum levels (MLs) established at the European Union level with the exception of Cd. This metal exceeded the MLs in squid, red mullet, European hake and Atlantic cod. Squid and blue mussel showed the highest Pb concentrations which accounted for 60% and 10% of the MLs, respectively. Highest Hg levels were found in predatory fish. The concentrations of Hg in swordfish, Atlantic bluefin tuna and red mullet accounted for 50%, 30% and 30% of the MLs, respectively. The EWIs for Cd, Pb and Hg related to the consumption of fish and seafood products by the median of the Italian total population accounted for 20%, 1.5% and 10% of the standard TWI for Cd as well as PTWIs for Pb and Hg, respectively. Furthermore, the EWIs estimated using consumption data concerning Italian consumers did not exceed the standard TWI and PTWIs, except for Cd at 95th percentile.
Exploring the Hg pollution in global marginal seas by trophic biomagnification in demersal fishes
NASA Astrophysics Data System (ADS)
Tseng, C. M.; Hsieh, Y. C.; Chiang, C. Y.; Lamborg, C. H.; Chang, N. N.; Shiao, J. C.
2017-12-01
Limited knowledge still exists concerning the effects of size composition and trophic level (TL) on mercury levels in the demersal fishes associated with human activities in the marginal seas. In this study, we found evidence of strong control of TL on the Hg in fish and its biomagnification via food webs in the ECS. Total Hg in seven selected fish species, collected during the cruise OR1- 890 in July 2009, ranged from 2.6 and 256.2 ng g-1 (n=72). There were good linear relationships between Hg concentrations and fish body length (R2 = 0.79) and weight (R2 = 0.82), respectively, other than environmental variables (R2 = 0 0.03). It indicates that the Hg concentration in fish is mainly controlled by the growth mechanism of the fish itself through food chain transfer. In order to investigate how Hg levels in fish through trophic magnification associated with environmental changes, we hence developed the empirical method to calculate Hg accumulation rate (MAR) via the relationship of Hg concentration with the fish age for each fish species. The results further showed a significantly positive correlation of MAR with trophic levels, which relationship is Ln MAR =6.1 TL-15.8 (R2 = 0.89) in the ECS shelf. The magnitude of the slope (δMAR/δTL) as a biomagnification index of demersal fish shall provide the feasibility to compare Hg pollution situation among different marine ecosystems. Globally, the biomagnification indicator in the demersal fishes of the ECS is much greater than those in other marginal seas, suggesting high regional Hg pollution impacts from Mainland China.
Macedo-Júnior, Sérgio José; Luiz-Cerutti, Murilo; Nascimento, Denise B; Farina, Marcelo; Soares Santos, Adair Roberto; de Azevedo Maia, Alcíbia Helena
2017-01-01
Various studies on methylmercury (MeHg)-induced toxicity focused on the central nervous system (CNS) as a primary target. However, MeHg-mediated toxicity is related to metallic interaction with electrophilic groups, which are not solely restricted to the CNS, but these reactive groups are present ubiquitously in several systems/organs. The aim of this study was thus to examine MeHg-induced systemic toxicity in mice using a standardized neurotoxicology testing exposure model to measure cerebellar neurotoxicity by determining biochemical and behavioral parameters in the cerebellum. After 2 weeks exposure to MeHg (40 µg/ml; diluted in drinking water; ad libitum), adult male Swiss mice showed a marked motor impairment characteristic of cerebellar toxicity as noted in the following tests: rotarod, beam walking, pole, and hind limb clasping. MeHg treatment resulted in Hg deposition in the cerebellum as well as reduction in cerebellar weight, glutathione peroxidase (GPx) activity, and interleukin (IL)-6 levels. MeHg ingestion increased cerebellar glutathione reductase (GR) activity and brain-derived neurotrophic factor (BDNF) levels. In addition to cerebellar toxicity, MeHg treatment also elevated total and non-high density lipoprotein (non-HDL) cholesterol levels, as well as serum aspartate transaminase (AST) and alanine transaminase (ALT) enzymatic activities, systemic parameters. Increased liver weight and reduced serum urea levels were also noted in MeHg-exposed mice. Taken together, our findings demonstrated that a well-standardized exposure protocol to examine MeHg-induced neurotoxicity also produced systemic toxicity in mice, which was characterized by changes in markers of hepatic function as well as serum lipid homeostasis.
Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia
2013-05-01
Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.
Niksa, Stephen; Fujiwara, Naoki
2005-07-01
This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.
Can Urtica dioica supplementation attenuate mercury intoxication in Wistar rats?
Siouda, Wafa; Abdennour, Cherif
2015-12-01
The objective of this study was to investigate the possible protective role of nettle Urtica dioica (UD) against Hg-induced toxicity. A total of 28 rats were equally divided into four groups: the control, the Hg (0.8 g HgCl2/kg in the diet), the UD (1.5 ml UD/rat by gavage), and the Hg+UD group. HgCl2 was daily dissolved in distilled water and immediately mixed with the standard diet. A solution of daily infused fresh nettle leaves in boiling water (16 g in 25 ml) was obtained and then it was administrated by gavage. Biochemical and reproductive markers, in addition to glutathione (GSH) level (liver, kidney and testis) and the histological profiles (testis and epididymis) were evaluated after 1 month exposure. Compared to the control, the levels of glucose, triglycerides, urea, creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were significantly raised in the Hg group. In the latter group, the concentrations of Mg, Fe, and Ca were significantly decreased. Besides, Hg+UD group has only showed raised AST activity and reduced Mg level. Concerning the fertility markers, Hg has provoked a significant decrease in the spermatozoa's concentration and motility and in plasma testosterone level as well. Furthermore, hepatic, renal and testicular GSH concentrations have declined significantly in the Hg treated rat compared to the control. A remarkable enhancement of the GSH level was observed in all organs of the UD group. The histological examinations of the Hg group have revealed marked testicular degeneration of the most seminiferous tubules, and showed few sperms in the lumen of epididymis ducts. However, the Hg+UD rats have demonstrated an improved histological structure with the presence of important numbers of sperms in the lumen. In addition, a clear stabilization of organized seminiferous tubules and an increased sperms' numbers were noted in the UD supplemented rats. Nettle leaves have not only played a clear protective role during Hg intoxication, but it also enhanced hepatic, renal and testicular GSH level of Wistar rats.
Can Urtica dioica supplementation attenuate mercury intoxication in Wistar rats?
Siouda, Wafa; Abdennour, Cherif
2015-01-01
Aim: The objective of this study was to investigate the possible protective role of nettle Urtica dioica (UD) against Hg-induced toxicity. Materials and Methods: A total of 28 rats were equally divided into four groups: the control, the Hg (0.8 g HgCl2/kg in the diet), the UD (1.5 ml UD/rat by gavage), and the Hg+UD group. HgCl2 was daily dissolved in distilled water and immediately mixed with the standard diet. A solution of daily infused fresh nettle leaves in boiling water (16 g in 25 ml) was obtained and then it was administrated by gavage. Biochemical and reproductive markers, in addition to glutathione (GSH) level (liver, kidney and testis) and the histological profiles (testis and epididymis) were evaluated after 1 month exposure. Results: Compared to the control, the levels of glucose, triglycerides, urea, creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were significantly raised in the Hg group. In the latter group, the concentrations of Mg, Fe, and Ca were significantly decreased. Besides, Hg+UD group has only showed raised AST activity and reduced Mg level. Concerning the fertility markers, Hg has provoked a significant decrease in the spermatozoa’s concentration and motility and in plasma testosterone level as well. Furthermore, hepatic, renal and testicular GSH concentrations have declined significantly in the Hg treated rat compared to the control. A remarkable enhancement of the GSH level was observed in all organs of the UD group. The histological examinations of the Hg group have revealed marked testicular degeneration of the most seminiferous tubules, and showed few sperms in the lumen of epididymis ducts. However, the Hg+UD rats have demonstrated an improved histological structure with the presence of important numbers of sperms in the lumen. In addition, a clear stabilization of organized seminiferous tubules and an increased sperms’ numbers were noted in the UD supplemented rats. Conclusion: Nettle leaves have not only played a clear protective role during Hg intoxication, but it also enhanced hepatic, renal and testicular GSH level of Wistar rats. PMID:27047060
Yoshida, Minoru; Lee, Jin-Yong; Satoh, Masahiko; Watanabe, Chiho
2018-01-01
This study examined the effects on neurobehavioral function of exposure to low-level mercury vapor (Hg 0 ), methylmercury (MeHg) in female mice and the combination of Hg 0 and MeHg during postnatal development. Postnatal mice were exposed to Hg 0 at a mean concentration of 0.188 mg/m 3 Hg 0 and supplied with food containing 3.85 μg/g of MeHg from day 2 to day 28 after delivery. The combined exposure group was exposed to both Hg 0 and MeHg, using the same procedure. When their offspring reached the age of 11 weeks, behavioral analyses were performed. The behavioral effects in mice were evaluated based on locomotive activity and rate of center entries in the open field (OPF), learning activity in the passive avoidance response (PA) and spatial learning ability in the radial maze (RM). Total locomotive activity in the OPF significantly decreased in the Hg 0 , MeHg and combined exposure groups compared with the control group. The proportion of entries to central area in the OPF was significantly higher in the combined exposure group than in the control group, while those in the Hg 0 or MeHg exposure group did not differ from the control group. Other behavioral tests did not reveal significant differences among the groups. Behavioral anomalies were more distinctive after combined exposure compared to Hg 0 or MeHg exposure alone. The brain Hg concentration of offspring, immediately after exposure, was highest in the combined exposure group, exceeding 2 μg/g, followed by the MeHg and Hg 0 exposure groups. Thus, the enhancement of neurobehavioral effects in the combined exposure group was associated with higher brain mercury concentration.
Yoon, Hyun; Choi, Seong Woo; Park, Jong; Ryu, So Yeon; Han, Mi Ah; Kim, Gwang Seok; Kim, Sung Gil; Oh, Hye Jong; Choi, Cheol Won
2015-10-01
The present study was conducted to assess the relationship between metabolic syndrome and systolic inter-arm blood pressure difference (sIAD) in Korean adults. This study included 410 adults (235 males, 175 females) who were over 30 years old and had undergone a health check from July to December in 2013. The incidence of high sIAD and metabolic syndrome were 23.4% and 23.2%, respectively. Key study results were as follows: First, the sIAD levels increased significantly with an increase in metabolic syndrome score (p<0.001), shown by sIAD levels after adjusted the variables that affect sIAD levels (age, gender, smoking, drinking, exercising, total cholesterol, and body mass index). These were 4.6±0.7 mmHg for metabolic syndrome score (MSS) 0; 5.8±0.5 mmHg for MSS 1; 6.2±0.6 mmHg for MSS 2, 9.2±0.8 mmHg for MSS 3; and 9.9±1.2 mmHg for MSS ≥4 (p<0.001). Second, the sIAD level of the metabolic syndrome group (9.3±0.7 mmHg) was significantly higher (p<0.001) than for the nonmetabolic syndrome group (5.7±0.3 mmHg). In conclusion, metabolic syndrome and an increased number of its components are associated with the sIAD levels in Korean adults.
Rocha, Luciana S; Lopes, I; Lopes, Cláudia B; Henriques, Bruno; Soares, Amadeu M V M; Duarte, Armando C; Pereira, Eduarda
2014-01-01
In the present work, the efficiency of rice husk to remove Hg(II) from river waters spiked with realistic environmental concentrations of this metal (μg L(-1) range) was evaluated. The residual levels of Hg(II) obtained after the remediation process were compared with the guideline values for effluents discharges and water for human consumption, and the ecotoxicological effects using organisms of different trophic levels were assessed. The rice husk sorbent proved to be useful in decreasing Hg(II) contamination in river waters, by reducing the levels of Hg(II) to values of ca. 8.0 and 34 μg L(-1), for an Hg(II) initial concentration of 50 and 500 μg L(-1), respectively. The remediation process with rice husk biowaste was extremely efficient in river waters spiked with lower levels of Hg(II), being able to eliminate the toxicity to the exposed organisms algae Pseudokirchneriella subcapitata and rotifer Brachionus calyciflorus and ensure the total survival of Daphnia magna species. For concentrations of Hg(II) tenfold higher (500 μg L(-1)), the remediation process was not adequate in the detoxification process, still, the rice husk material was able to reduce considerably the toxicity to the bacteria Vibrio fischeri, algae P. subcapitata and rotifer B. calyciflorus, whose responses where fully inhibited during its exposure to the non-remediated river water. The use of a battery of bioassays with organisms from different trophic levels and whose sensitivity revealed to be different and dependent on the levels of Hg(II) contamination proved to be much more accurate in predicting the ecotoxicological hazard assessment of the detoxification process by means of rice husk biowaste.
NASA Astrophysics Data System (ADS)
Bank, M. S.; Crocker, J.; Wachtl, J.; Kleeman, P.; Fellers, G.; Currens, C.; Hothem, R.; Madej, M. A.
2014-12-01
Mercury (Hg) contamination of stream salamanders in the Pacific Northwest region of the United States has received little attention. Here we report total Hg (HgT) and methyl mercury (MeHg) concentrations in larval giant salamanders (Dicamptodon spp.) and surface water from forested and chaparral lotic ecosystems distributed along a latitudinal gradient throughout Northern California and Washington. To test hypotheses related to potential effects from mining land-use activities, salamander larvae were also sampled from a reference site at Whiskeytown National Recreation Area, California, and at a nearby, upstream site (Shasta county) on Bureau of Land Management land where Hg contamination from gold mining activities has been documented. HgT concentrations in whole body larvae ranged from 4.6 to 74.5 ng/g wet wt. and percent MeHg ranged from 67% to 86%. Both HgT and MeHg larval tissue concentrations were significantly higher at the mining site in comparison to measured background levels (P < 0.001). We conclude that salamander larvae in remote stream ecosystems, where Hg sources were dominated by atmospheric deposition, were generally low in HgT and MeHg and, in comparison, watersheds with a legacy of land-use practices (i.e., mining operations) had approximately 4.5 - 5.5 times the level of HgT bioaccumulation. Moreover, trophic magnification slopes were highest in the Shasta county region where mining was present. These findings suggest that mining activities increase HgT and MeHg exposure to salamander larvae in the region and may present a threat to other higher trophically positioned organisms, and their associated food webs.
Jia, Qin; Zhu, Xuemei; Hao, Yaqiong; Yang, Ziliang; Wang, Qi; Fu, Haihui; Yu, Hongjin
2018-06-01
Concentrations of total mercury (T-Hg) and methylmercury (MeHg) in soil, vegetables, and human hair were measured in a mercury mining area in central China. T-Hg and MeHg concentrations in soil ranged from 1.53 to 1054.97mg/kg and 0.88 to 46.52μg/kg, respectively. T-Hg concentrations was correlated with total organic carbon (TOC) content (R 2 =0.50, p<0.01) and pH values (R 2 =0.21, p<0.05). A significant linear relationship was observed between MeHg concentrations and the abundance of sulfate-reducing bacteria (SRB) (R 2 =0.39, p<0.05) in soil. Soil incubation experiments amended with specific microbial stimulants and inhibitors showed that Hg methylation was derived from SRB activity. T-Hg and MeHg concentrations in vegetables were 24.79-781.02μg/kg and 0.01-0.18μg/kg, respectively; levels in the edible parts were significantly higher than in the roots (T-Hg: p<0.05; MeHg: p<0.01). Hg species concentrations in rhizosphere soil were positively correlated to those in vegetables (p<0.01), indicating that soil was an important source of Hg in vegetables. Risk assessment indicated that the consumption of vegetables could result in higher probable daily intake (PDI) of T-Hg than the provisional tolerable daily intake (PTDI) for both adults and children. In contrast, the PDI of MeHg was lower than the reference dose. T-Hg and MeHg concentrations in hair samples ranged from 1.57 to 12.61mg/kg and 0.04 to 0.94mg/kg, respectively, and MeHg concentration in hair positively related to PDI of MeHg via vegetable consumption (R 2 =0.39, p<0.05), suggesting that vegetable may pose health risk to local residents. Copyright © 2017. Published by Elsevier B.V.
Results Of Hg Speciation Testing On DWPF SMECT-1, SMECT-3, And SMECT-5 Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C.
2016-01-07
The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The thirteenth shipment of samples was designated to include Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) from Sludge Receipt and Adjustment Tank (SRAT) Batch 736 and 738 samples. Triplicate samples of each material were prepared for this shipment. Each replicate was analyzed for seven Hg species: total Hg, total soluble (dissolved) Hg, elemental Hg [Hg(0)], ionic (inorganic) Hg [Hg(I) andmore » Hg(II)], methyl Hg [CH 3Hg-X, where X is a counter anion], ethyl Hg [CH 3CH 2-Hg-X, where X is a counter anion], and dimethyl Hg [(CH 3) 2Hg]. The difference between the total Hg and total soluble Hg measurements gives the particulate Hg concentration, i.e. Hg adsorbed to the surface of particulate matter in the sample but without resolution of the specific adsorbed species. The average concentrations of Hg species in the aqueous samples derived from Eurofins reported data corrected for dilutions performed by SRNL are tabulated.« less
Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher
2014-02-18
Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from undisturbed, background soils emphasizing the important role of soils in sequestering past and current Hg pollution loads.
Mercury in the Gulf of Mexico: sources to receptors.
Harris, Reed; Pollman, Curtis; Landing, William; Evans, David; Axelrad, Donald; Hutchinson, David; Morey, Steven L; Rumbold, Darren; Dukhovskoy, Dmitry; Adams, Douglas H; Vijayaraghavan, Krish; Holmes, Christopher; Atkinson, R Dwight; Myers, Tom; Sunderland, Elsie
2012-11-01
Gulf of Mexico (Gulf) fisheries account for 41% of the U.S. marine recreational fish catch and 16% of the nation's marine commercial fish landings. Mercury (Hg) concentrations are elevated in some fish species in the Gulf, including king mackerel, sharks, and tilefish. All five Gulf states have fish consumption advisories based on Hg. Per-capita fish consumption in the Gulf region is elevated compared to the U.S. national average, and recreational fishers in the region have a potential for greater MeHg exposure due to higher levels of fish consumption. Atmospheric wet Hg deposition is estimated to be higher in the Gulf region compared to most other areas in the U.S., but the largest source of Hg to the Gulf as a whole is the Atlantic Ocean (>90%) via large flows associated with the Loop Current. Redistribution of atmospheric, Atlantic and terrestrial Hg inputs to the Gulf occurs via large scale water circulation patterns, and further work is needed to refine estimates of the relative importance of these Hg sources in terms of contributing to fish Hg levels in different regions of the Gulf. Measurements are needed to better quantify external loads, in-situ concentrations, and fluxes of total Hg and methylmercury in the water column, sediments, and food web. Copyright © 2012 Elsevier Inc. All rights reserved.
Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands.
Strickman, R J; Mitchell, C P J
2017-02-01
Stormwater management ponds and created habitat wetlands effectively manage erosion, flooding, and pollutant loadings while providing biodiversity and aesthetic benefits, but these structures are also potential sources of methylmercury (MeHg), a bioaccumulative neurotoxin. While MeHg accumulation has been confirmed in habitat wetlands, the extent of MeHg production and accumulation in stormwater ponds is unknown. Additionally, the fine-scale spatial variation in MeHg in these wetlands has never been explored despite the possibility that cycles of wetting and drying, and the presence of aquatic plants may stimulate methylation at their margins. To address these knowledge gaps, we compared MeHg and inorganic mercury concentrations, the percent of total mercury present as MeHg (%MeHg), and potential mercury methylation rate constants (K meth ) in the sediments of terrestrial-aquatic transects through several stormwater and habitat wetlands. We present novel evidence confirming the in situ production of MeHg in both stormwater ponds and habitat wetlands, but observe no systematic differences across the terrestrial-aquatic gradient, suggesting that routine variations in water level do not alter MeHg production and accumulation. Stormwater ponds effectively trap mercury while converting relatively little to MeHg, as evidenced by lower MeHg concentrations, %-MeHg, and K meth values than habitat wetlands, but often greater inorganic Hg concentrations. The relationship of aquatic vegetation to MeHg accumulation is weak and ambiguous, suggesting plants are not strong drivers of MeHg biogeochemistry in these systems. Although the MeHg hazard associated with individual artificial wetlands is low, they may be important sources of MeHg at the landscape level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geographic trend in mercury measured in common loon feathers and blood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evers, D.C.; Kaplan, J.D.; Reaman, P.S.
1998-02-01
The common loon (Gavia immer) is a high-trophic-level, long-lived, obligate piscivore at risk from elevated levels of Hg through biomagnification and bioaccumulation. From 1991 to 1996 feather and blood samples from adult loons were collected between June and September in five regions of North America: Alaska, northwestern US, Upper Great Lakes, New England, and the Canadian Maritimes. Concentrations of Hg in adults ranged from 2.8 to 36.7 {micro}g/g in feathers and from 0.12 to 7.80 {micro}g/g in whole blood. Blood Hg concentrations in 3 to 6-week-old juveniles ranged from 0.03 to 0.78 {micro}g/g. To better interpret exposure data, relationships betweenmore » blood and feather Hg concentrations were examined among age and sex classes. Blood and feather Hg correlated strongest in areas with the highest blood Hg levels, indicating a possible carryover of breeding season Hg that is depurated during winter remigial molt. Mean blood and feather Hg concentrations in males were significantly higher than concentrations in females for each region. The mean blood Hg concentration in adults was 10 times higher than that in juveniles, and feather Hg concentrations significantly increased over 1 to 4-year periods in recaptured individuals. Geographic stratification indicates a significant increasing regional trend in adult and juvenile blood Hg concentrations from west to east. This gradient resembles US Environmental Protection Agency-modeled predictions of total anthropogenic Hg deposition across the US. This gradient is clearest across regions. Within-region blood Hg concentrations in adults and juveniles across nine sites of one region, the Upper Great Lakes, were less influenced by variations in geographic Hg deposition than by hydrology and lake chemistry. Loons breeding on low-pH lakes in the Upper Great Lakes and in all lake types of northeastern North America are most at risk from Hg.« less
Buckman, Kate L.; Marvin-DiPasquale, Mark; Taylor, Vivien F.; Chalmers, Ann; Broadley, Hannah J.; Agee, Jennifer; Jackson, Brian P.; Chen, Celia Y.
2015-01-01
In Berlin, NH, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US EPA Superfund site and source of mercury (Hg) to the river. A study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40x increase, mean±sd: 20.1±24.8 ng g−1 DW) and total mercury (THg, 10–30x increase, mean±sd: 2045±2669 ng g−1 DW) compared to all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7x on average) relative to the reference (THg mean±sd: 33.5±9.33 ng g−1 DW; MeHg mean±sd: 0.52±0.21 ng g−1 DW). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L−1) and dissolved (0.76 ng L−1) fractions were 5-fold higher than at the reference sites, and 2–5-fold higher than downstream. Methylmercury production potential (MPP) of periphyton material was highest (2–9 ng g−1 d−1 DW) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g−1 d−1 DW). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies and shiners showed a weak positive relationship with porewater MeHg concentration. PMID:25732794
Partitioning and bioavailability of mercury in an experimentally acidified Wisconsin lake
Wiener, James G.; Fitzgerald, William F.; Watras, Carl J.; Rada, Ronald G.
1990-01-01
We studied the partitioning of mercury (Hg) among air, water, sediments and fish at Little Rock Lake, a clear water seepage lake in north-central Wisconsin. The lake was divided with a sea curtain into two basins, one acidified with sulfuric acid to pH 5.6 for two years and the other an untreated reference site (mean pH 6.1), to document the effects of acidification. Trace-metal-free protocols were used to measure Hg at the picomolar level in air and water. Total gaseous Hg in air samples averaged 2.0 ng/m3. Total Hg in unfiltered water samples collected in 1986 after the fall overturn averaged about 1 ng/L in the acidified and reference basins. Mercury in surficial sediments was strongly correlated with volatile matter content and ranged from 10 to about 170 ng/g (dry weight) in both basins. Total Hg concentrations in whole, calendar age-1 yellow perch (Perca flavescens), sampled after one year of residence in the lake, averaged 114 ng/g (fresh weight) in the reference basin and 135 ng/g in the acidified basin – a highly significant (p < 0.01) difference. The mean whole-body burden (quantity) of Hg in age-1 perch did not differ between basins after the first year, but was significantly greater in the treatment basin than in the reference basin after the second year of acidification. Differences between the two basins in the bioaccumulation of Hg were attributed to internal (within-lake) processes that influence the bioavailability of the metal. An initial Hg budget for the treatment basin of Little Rock Lake showed that atmospheric deposition and sedimentary remobilization of Hg are potentially important processes influencing its biogeochemical cycling and uptake by fish.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-07
... harvest guideline (HG) for Pacific mackerel in the U.S. exclusive economic zone (EEZ) off the Pacific...) and establishes allowable harvest levels for Pacific mackerel off the Pacific coast. The total HG for... proposed rule stage that this action would not have a significant economic impact on a substantial number...
Oswald, Claire J; Carey, Sean K
2016-06-01
In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L(-1). The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L(-1)) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO4(2-) concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rothenberg, Sarah E; Feng, Xinbin; Dong, Bin; Shang, Lihai; Yin, Runsheng; Yuan, Xiaobo
2011-05-01
In China, total Hg (HgT) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of HgT (water-saving: 3.3±1.6 ng/g; flooded: 110±9.2 ng/g) and MeHg (water-saving 1.3±0.56 ng/g; flooded: 12±2.4 ng/g) were positively correlated with root-soil HgT and MeHg contents (HgT: r2=0.97, MeHg: r2=0.87, p<0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of HgT and other trace elements were significantly higher in unmilled brown rice (p<0.05), while MeHg content was similar (p>0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II). Copyright © 2011 Elsevier Ltd. All rights reserved.
Mercury in fish from Norwegian lakes: The complex influence of aqueous organic carbon.
Braaten, Hans Fredrik Veiteberg; de Wit, Heleen A; Larssen, Thorjørn; Poste, Amanda E
2018-06-15
Mercury (Hg) concentrations in water and biota are often positively correlated to organic matter (OM), typically measured as total or dissolved organic carbon (TOC/DOC). However, recent evidence suggests that higher OM concentrations inhibit bioaccumulation of Hg. Here, we test how TOC impacts the Hg accumulation in fish in a synoptic study of Methyl-Hg (MeHg) in water and total Hg (THg) in perch (Perca fluviatilis) in 34 boreal lakes in southern Norway. We found that aqueous MeHg (r 2 = 0.49, p < 0.0001) and THg (r 2 = 0.69, p < 0.0001), and fish THg (r 2 = 0.26, p < 0.01) were all positively related with TOC. However, we found declining MeHg bioaccumulation factors (BAF MeHg ) for fish with increasing TOC concentrations. The significant correlation between fish THg concentrations and aqueous TOC suggests that elevated fish Hg levels in boreal regions are associated with humic lakes. The declining BAF MeHg with increasing TOC suggest that increased OM promotes increased aqueous Hg concentrations, but lowers relative MeHg bioaccumulation. A mechanistic understanding of the response from OM on BAF MeHg might be found in the metal-complexation properties of OM, where OM complexation of metals reduces their bioavailability. Hence, suggesting that MeHg bioaccumulation becomes less effective at higher TOC, which is particularly relevant when assessing potential responses of fish Hg to predicted future changes in OM inputs to boreal ecosystems. Increased browning of waters may affect fish Hg in opposite directions: an increase of food web exposure to aqueous Hg, and reduced bioavailability of Hg species. However, the negative relationship between BAF MeHg and TOC is challenging to interpret, and carries a great deal of uncertainty, since this relationship may be driven by the underlying correlation between TOC and MeHg (i.e. spurious correlations). Our results suggest that the trade-off between Hg exposure and accumulation will have important implications for the effects of lake browning on Hg transport, bioavailability, and trophodynamics. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Yue; Xu, Lei; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong
2017-01-01
This study investigated the dynamic shifts in mucosa-associated microbiota composition and mucosal morphology in the colon of sheep fed a high grain (HG) diet. A total of 20 male sheep were randomly assigned to four groups ( n = 5 for each). The sheep in first group received hay diet. The animals in other 3 groups were fed an HG diet for 7 (HG7), 14 (HG14), or 28 (HG28) days, respectively. Colonic digesta samples were collected to determine the pH and the concentrations of volatile fatty acid (VFA) and lactate. The colonic mucosa was sampled to characterize the bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression levels of cytokines and tight junction protein genes using quantitative real-time PCR. As time advanced, results revealed that colonic pH linearly decreased ( P = 0.007), and the concentrations of total VFA linearly increased ( P < 0.001). Microbial analysis showed that an HG diet linearly reduced ( P < 0.050) the diversity and richness of the colonic microbiota. The principal coordinate analysis results showed that the colonic mucosa-associated bacterial communities of the four groups significantly shifted with number of days fed an HG diet. At the genus level, HG feeding significantly increased the relative abundance of some taxa including Prevotella , Coprococcus , Roseburia , and Clostridium_sensu_stricto_1 , and decreased the proportion of Treponema, and the percentage of these taxa was not affected by days fed an HG diet. The microscopic examination showed that HG feeding caused the mucosal epithelial injury. The RT-PCR results showed that the mRNA expression of claudin-1 ( P = 0.038), IL-1β ( P = 0.045), IL-6 ( P = 0.050), and TNF-α ( P = 0.020) increased linearly with number of days fed an HG diet. The correlation analysis revealed significant correlation between the colonic mucosal mRNA expression of cytokines and mucosal bacterial composition. Generally, HG feeding increased colonic fermentation and altered colonic mucosal bacterial communities, which eventually caused colonic mucosal damage and led to colonic dysfunction, and these changes occurred gradually over at least 4 weeks.
Wang, Yue; Xu, Lei; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong
2017-01-01
This study investigated the dynamic shifts in mucosa-associated microbiota composition and mucosal morphology in the colon of sheep fed a high grain (HG) diet. A total of 20 male sheep were randomly assigned to four groups (n = 5 for each). The sheep in first group received hay diet. The animals in other 3 groups were fed an HG diet for 7 (HG7), 14 (HG14), or 28 (HG28) days, respectively. Colonic digesta samples were collected to determine the pH and the concentrations of volatile fatty acid (VFA) and lactate. The colonic mucosa was sampled to characterize the bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression levels of cytokines and tight junction protein genes using quantitative real-time PCR. As time advanced, results revealed that colonic pH linearly decreased (P = 0.007), and the concentrations of total VFA linearly increased (P < 0.001). Microbial analysis showed that an HG diet linearly reduced (P < 0.050) the diversity and richness of the colonic microbiota. The principal coordinate analysis results showed that the colonic mucosa-associated bacterial communities of the four groups significantly shifted with number of days fed an HG diet. At the genus level, HG feeding significantly increased the relative abundance of some taxa including Prevotella, Coprococcus, Roseburia, and Clostridium_sensu_stricto_1, and decreased the proportion of Treponema, and the percentage of these taxa was not affected by days fed an HG diet. The microscopic examination showed that HG feeding caused the mucosal epithelial injury. The RT-PCR results showed that the mRNA expression of claudin-1 (P = 0.038), IL-1β (P = 0.045), IL-6 (P = 0.050), and TNF-α (P = 0.020) increased linearly with number of days fed an HG diet. The correlation analysis revealed significant correlation between the colonic mucosal mRNA expression of cytokines and mucosal bacterial composition. Generally, HG feeding increased colonic fermentation and altered colonic mucosal bacterial communities, which eventually caused colonic mucosal damage and led to colonic dysfunction, and these changes occurred gradually over at least 4 weeks. PMID:29123511
Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong
2014-01-01
Background and Aims Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Methods Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. Key Results The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Conclusions Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. PMID:24948669
Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U.S. Estuaries.
Buck, Clifton S; Hammerschmidt, Chad R; Bowman, Katlin L; Gill, Gary A; Landing, William M
2015-12-15
To better understand the source of elevated methylmercury (MeHg) concentrations in Gulf of Mexico (GOM) fish, we quantified fluxes of total Hg and MeHg from 11 rivers in the southeastern United States, including the 10 largest rivers discharging to the GOM. Filtered water and suspended particles were collected across estuarine salinity gradients in Spring and Fall 2012 to estimate fluxes from rivers to estuaries and from estuaries to coastal waters. Fluxes of total Hg and MeHg from rivers to estuaries varied as much as 100-fold among rivers. The Mississippi River accounted for 59% of the total Hg flux and 49% of the fluvial MeHg flux into GOM estuaries. While some estuaries were sources of Hg, the combined estimated fluxes of total Hg (~5200 mol y(-1)) and MeHg (~120 mol y(-1)) from the estuaries to the GOM were less than those from rivers to estuaries, suggesting an overall estuarine sink. Fluxes of total Hg from the estuaries to coastal waters of the northern GOM are approximately an order of magnitude less than from atmospheric deposition. However, fluxes from rivers are significant sources of MeHg to estuaries and coastal regions of the northern GOM.
Matos, J; Lourenço, H M; Brito, P; Maulvault, A L; Martins, L L; Afonso, C
2015-11-01
This study aimed to identify the benefit and risk associated with raw and cooked blue shark consumption taking into account the bioaccessibility of Se, Hg and MeHg, by using in vitro digestion method. Selenium, Hg and MeHg levels were higher in cooked samples, particularly in grilled blue shark. Whereas Se bioaccessibility was above 83% in grilled samples, Hg and MeHg bioaccessibility was lower in grilled samples with values near 50%. In addition, all Se-Health Beneficial Values were negative and the molar MeHg:Se ratios were higher than one. The risk-benefit assessment yielded a maximum consumption of one yearly meal for raw or cooked blue shark, thus emphasizing the need to recommend the consumption of a wider variety of seafood species in a balanced and healthy diet. Copyright © 2015 Elsevier Inc. All rights reserved.
Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín
2015-01-01
Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368
Bentley, Keith; Soebandrio, Amin
2017-08-01
The Mesel gold mine in the Ratatotok Sub-district operated between 1996 and 2004 with tailings disposal via an engineered submarine tailings placement (STP) into Buyat Bay. This operation raised concerns of increased levels of arsenic (As) and mercury (Hg) associated disease in the local communities from consumption of seafood contaminated with anthropogenic As and Hg. This report uses the dietary exposure to As and Hg, from local fishermen and market-purchased Codex "as consumed" and environmental fish results from the pre-mining baseline (1990-1995), the mine operational (1996-2004) and post-closure monitoring (2007-2016) to examine the potential health effects. The Ratatotok Sub-district consumers total As average daily intake from fish was between 152 and 317 μg/day (adults) and 58 and 105 μg/day (infants). The average daily intake of inorganic arsenic (As i ) from the dietary staples fish and rice and drinking water consumption was 77 μg/day (adults) and 35 μg/day (infants) at Buyat Pantai and 39 μg/day (adults) and 19 μg/day (infants) at Ratatotok township. Fish consumption contributed 8.2% (adults) and 6.5% (infants) to total daily As i intake. Average Hg intake from fish consumption, exceeded the FAO WHO PTWI for methylmercury (MeHg) for all age and gender groups at Buyat Pantai 4.6 μg/kg bw/wk (adults) and 7.3 μg/kg bw/wk (infants) and for the infants at Buyat village and Ratatotok township (2.5 and 2.8 μg/kg bw/wk respectively). The Manado City consumers had average intakes below the MeHg PTWI. The Hg exceedances resulted from the high fish consumption in coastal communities and not elevated levels of Hg in fish. Hg exposure levels from the pre-mining baseline, Mesel STP operation and post-closure monitoring, confirmed that exceedances were unrelated to the tailings deposited into Buyat Bay. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fu, Q; Sugiyama, Y; Kamiya, A; Mano, T
2000-04-12
Six-degree head-down tilt (HDT) is well accepted as an effective weightlessness model in humans. However, some researchers utilized lower body positive pressure (LBPP) to simulate the cardiovascular and renal effects of a decreased gravitational stress. In order to determine whether LBPP was a suitable model for simulated weightlessness, we compared the differences between these two methods. Ten healthy males, aged 21-41 years, were subjected to graded LBPP at 10, 20 and 30 mmHg, as well as 6 degrees HDT. Muscle sympathetic nerve activity (MSNA) was microneurographically recorded from the tibial nerve along with cardiovascular variables. We found that MSNA decreased by 27% to a similar extent both at low levels of LBPP (10 and 20 mmHg) and HDT. However, at a high level of LBPP (30 mmHg), MSNA tended to increase. Mean arterial pressure was elevated significantly by 11% (10 mmHg) at 30 mmHg LBPP, but remained unchanged at low levels of LBPP and HDT. Heart rate did not change during the entire LBPP and HDT procedures. Total peripheral resistance markedly increased by 36% at 30 mmHg LBPP, but decreased by 9% at HDT. Both stroke volume and cardiac output tended to decrease at 30 mmHg LBPP, but increased at HDT. These results suggest that although both LBPP and HDT induce fluid shifts from the lower body toward the thoracic compartment, autonomic responses are different, especially at LBPP greater than 20 mmHg. We note that high levels of LBPP (>20 mmHg) activate not only cardiopulmonary and arterial baroreflexes, but also intramuscular mechanoreflexes, while 6 degrees HDT only activates cardiopulmonary baroreflexes. We conclude that LBPP is not a suitable model for simulated weightlessness in humans.
Karouna-Renier, Natalie K.; White, Carl; Perkins, Christopher R.; Schmerfeld, John J.; Yates, David
2014-01-01
Historical discharges of Hg into the South River near the town of Waynesboro, VA, USA, have resulted in persistently elevated Hg concentrations in sediment, surface water, ground water, soil, and wildlife downstream of the discharge site. In the present study, we examined mercury (Hg) levels in in little brown bats (Myotis lucifugus) from this location and assessed the utility of a non-destructively collected tissue sample (wing punch) for determining mitochondrial DNA (mtDNA) damage in Hg exposed bats. Bats captured 1 and 3 km from the South River, exhibited significantly higher levels of total Hg (THg) in blood and fur than those from the reference location. We compared levels of mtDNA damage using real-time quantitative PCR (qPCR) analysis of two distinct regions of mtDNA. Genotoxicity is among the many known toxic effects of Hg, resulting from direct interactions with DNA or from oxidative damage. Because it lacks many of the protective protein structures and repair mechanisms associated with nuclear DNA, mtDNA is more sensitive to the effects of genotoxic chemicals and therefore may be a useful biomarker in chronically exposed organisms. Significantly higher levels of damage were observed in both regions of mtDNA in bats captured 3 km from the river than in controls. However, levels of mtDNA damage exhibited weak correlations with fur and blood THg levels, suggesting that other factors may play a role in the site-specific differences.
Pb, Hg, Cd, As, Sb and Al levels in foodstuffs from the 2nd French total diet study.
Millour, Sandrine; Noël, Laurent; Kadar, Ali; Chekri, Rachida; Vastel, Christelle; Sirot, Véronique; Leblanc, Jean-Charles; Guérin, Thierry
2011-06-15
In 2006, the French Food Safety Agency (AFSSA) conducted the second French total diet study (TDS) to estimate dietary exposures of main minerals and trace elements from 1319 samples of foods habitually consumed by the French population. The foodstuffs were analysed by ICP-MS after microwave-assisted digestion. Contamination data for lead, mercury, cadmium, arsenic, antimony and aluminium were reported and compared with results from the previous French total diet study. The results are comparable with those from the rest of Europe. "Fish and fish products" and "sweeteners, honey and confectionery" were the food groups showing the highest cumulated contents in Pb, Hg, Cd, As, Al and Sb. However, observed levels remained low and were generally well below the maximum levels set by the current European regulation for lead, cadmium and mercury. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mercury speciation and subcellular distribution in experimentally dosed and wild birds.
Perkins, Marie; Barst, Benjamin D; Hadrava, Justine; Basu, Niladri
2017-12-01
Many bird species are exposed to methylmercury (MeHg) at levels shown to cause sublethal effects. Although MeHg sensitivity and assimilation can vary among species and developmental stages, the underlying reasons (such as MeHg toxicokinetics) are poorly understood. We investigated Hg distribution at the tissue and cellular levels in birds by examining Hg speciation in blood, brain, and liver and Hg subcellular distribution in liver. We used MeHg egg injection of white leghorn chicken (Gallus gallus domesticus), sampled at 3 early developmental stages, and embryonic ring-billed gulls (Larus delawarensis) exposed to maternally deposited MeHg. The percentage of MeHg (relative to total Hg [THg]) in blood, brain, and liver ranged from 94 to 121%, indicating little MeHg demethylation. A liver subcellular partitioning procedure was used to determine how THg was distributed between potentially sensitive and detoxified compartments. The distributions of THg among subcellular fractions were similar among chicken time points, and between embryonic chicken and ring-billed gulls. A greater proportion of THg was associated with metal-sensitive fractions than detoxified fractions. Within the sensitive compartment, THg was found predominately in heat-denatured proteins (∼42-46%), followed by mitochondria (∼15-18%). A low rate of MeHg demethylation and high proportion of THg in metal-sensitive subcellular fractions further indicates that embryonic and hatchling time points are Hg-sensitive developmental stages, although further work is needed across a range of additional species and life stages. Environ Toxicol Chem 2017;36:3289-3298. © 2017 SETAC. © 2017 SETAC.
Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc
2015-02-01
Within wetlands, epiphytes and macrophytes play an important role in storage and transfer of metals, through the food web. However, there is a lack of information about spatial and temporal changes in their metal levels, including those of mercury (Hg), a key priority contaminant of aquatic systems. We assessed total mercury (THg) and methylmercury (MeHg) concentrations of epiphyte/macrophyte complexes in Lake St. Pierre, a large fluvial lake of the St. Lawrence River (Québec, Canada). THg and MeHg concentrations were ten fold higher in epiphytes than in macrophytes. THg concentrations in epiphytes linearly decreased as a function of the autotrophic index, suggesting a role of algae in epiphyte Hg accumulation, and % of MeHg in epiphytes reached values as high as 74%. Spatio-temporal variability in THg and MeHg concentrations in epiphytes and macrophytes were influenced by water temperature, available light, host species, water level, dissolved organic carbon and dissolved oxygen. Copyright © 2014 Elsevier Ltd. All rights reserved.
Geochemistry of mercury in tropical swamps impacted by gold mining.
Marrugo-Negrete, José; Pinedo-Hernández, José; Díez, Sergi
2015-09-01
Artisanal and small-scale gold mining (ASGM) poses a serious threat to the local environment. Colombia has very active ASGM activities, where mercury (Hg) ends in piles of mining waste, soils, and waterways. In this study, we assessed Hg speciation and bioavailability in sediments of two tropical swamps, impacted by ASGM. In Ayapel swamp, total Hg (T-Hg) concentrations in sediments ranged between 145 and 313 ng g(-1) dry weight (dw) (mean: 235 ± 49 ng g(-1) dw), whereas Grande Achi swamp levels are 3-fold higher (range: 543-1021 ng g(-1) dw; mean: 722 ± 145 ng g(-1) dw). Even though lower levels of Hg were found in Ayapel, methylation was found to be significantly higher than in Grande Achi, and it is significantly higher in the dry than in the rainy season for both swamps. This increased methylation is linked to the statistically significant correlation between T-Hg, MeHg and organic matter in the Ayapel swamp. In fact, Hg content in both swamps is mainly associated to the organic fraction (Hg-o), with a higher statistically significant difference in Ayapel (43 ± 5%) compared to Grande Achi (33 ± 5%). On the other hand, a significant percentage (30 ± 6%) of elemental Hg fraction (Hg-e) was found in Grande Achi, directly related with Hg released during the gold recovery process from upstream ASGM sites. The percentage of the bioavailable fraction (Hg-w and Hg-h) is elevated (up to 15%), indicating a potential risk to the aquatic environment and human health because these labile Hg species could enter the water column and bioaccumulate in biota. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xing, Zhilin; Zhao, Tiantao; Bai, Weiyang; Yang, Xu; Liu, Shuai; Zhang, Lijie
2018-09-30
The microbiome in artificial lake water and its impact on mercury (Hg) methylation remain largely unknown. We selected the largest artificial lake in southeastern china, Changshou Lake (CSL), which has high background levels of Hg, for our investigation of Hg transformation microorganisms. Five different sections of the water column of CSL were sampled during four seasons. The water samples were subjected to analysis of geochemical parameters, various Hg species and microbiome information. High concentrations of total mercury (THg) were detected in CSL in comparison with those found in natural lakes. Significant differences in microbial community structure and Hg species abundance existed among seasons. High dissolved methyl mercury (DMeHg) formation and high bacterial richness and diversity occurred in the fall. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Deinococcus-Thermus and many unclassified bacteria. Significant correlations were found between seasonal bacterial communities and Hg levels. Hg methylation was strongly linked to the abundance of Cyanobacteria. Methylators, including Syntrophus, Desulfovibrio and Desulfomonile species, were detected only in samples collected in the fall. The results of enzyme functional analyses revealed that many unknown types of bacteria could also be responsible for Hg transformation. This study was the first to investigate the impact of various Hg species on the microbiome of artificial lake water. The findings of this study illuminate the role of seasonal bacteria in Hg transformation. Copyright © 2018 Elsevier Inc. All rights reserved.
The relationships between mercury and selenium in plankton and fish from a tropical food web.
do A Kehrig, Helena; Seixas, Tércia G; Palermo, Elisabete A; Baêta, Aida P; Castelo-Branco, Christina W; Malm, Olaf; Moreira, Isabel
2009-01-01
Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70-290 microm) and mesoplankton (>or=290 microm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 microg g(-1) dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g(-1)) than in Micropogonias furnieri (2.9 and 15.3 nmol g(-1)), Bagre spp (1.3 and 3.4 nmol g(-1)) and Mugil liza (0.3 and 5.1 nmol g(-1)), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.
Rapid determination of methylmercury in fish and shellfish: method development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hight, S.C.; Corcoran, M.T.
The AOAC official first action method for methylmercury in fish and shellfish was modified to provide more rapid determination. Methylmercury is isolated from homogenized, acetone-washed tissue by addition of HCl and extraction by toluene of the methylmercuric chloride produced. The extract is analyzed by electron capture gas chromatography (GC) on 5% DEGS-PS treated with mercuric chloride solution. The quantitation limit of the method is 0.25 ..mu..g Hg/g. Swordfish, shark, tuna, shrimp, clams, oysters, and NBS Research Material-50 (tuna) were analyzed for methylmercury by the AOAC official first action method. All products also were analyzed by the modified method and themore » AOAC official method for total Hg. In addition, selected extracts obtained with the modified method were analyzed by GC with Hg-selective, microwave-induced helium plasma detection. There was no significant different between the results for the various methods. Essentially all the Hg present (determined as total Hg) was in the organic form. Coefficients of variation from analyses by the modified method ranged from 1 to 7% for fish and shellfish containing methylmercury at levels of 0.50-2.30 ..mu..g Hg/g. The overall average recovery was 100.5%.« less
Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain
Barringer, J.L.; Szabo, Z.; Kauffman, L.J.; Barringer, T.H.; Stackelberg, P.E.; Ivahnenko, T.; Rajagopalan, S.; Krabbenhoft, D.P.
2005-01-01
Concentrations of total mercury (Hg) from 2 ??g/L (the USEPA maximum contaminant level) to 72 ??g/L in water from about 600 domestic wells in residential parts of eight counties in southern New Jersey have been reported by State and county agencies. The wells draw water from the areally extensive (7770 km2) unconfined Kirkwood-Cohansey aquifer system, in which background concentrations of Hg are about 0.01 ??g/L or less. Hg is present in most aquifer materials at concentrations 0.1 ??g/L did not correlate significantly with concentrations of the inorganic constituents. Hgf concentrations near or exceeding 2 ??g/L were found only in water from wells in areas with residential land use, but concentrations were at background levels in most water samples from undeveloped land. The spatial distribution of Hg-contaminated ground water appears to be locally and regionally heterogeneous; no extensive plumes of Hg contamination have yet been identified. ?? 2004 Elsevier B.V. All rights reserved.
Diel mercury-concentration variations in streams affected by mining and geothermal discharge
Nimick, D.A.; McCleskey, R. Blaine; Gammons, C.H.; Cleasby, T.E.; Parker, S.R.
2007-01-01
Diel variations of concentrations of unfiltered and filtered total Hg and filtered methyl Hg were documented during 24-h sampling episodes in water from Silver Creek, which drains a historical gold-mining district near Helena, Montana, and the Madison River, which drains the geothermal system of Yellowstone National Park. The concentrations of filtered methyl Hg had relatively large diel variations (increases of 68 and 93% from morning minima) in both streams. Unfiltered and filtered (0.1-??m filtration) total Hg in Silver Creek had diel concentration increases of 24% and 7%, respectively. In the Madison River, concentrations of unfiltered and filtered total Hg did not change during the sampling period. The concentration variation of unfiltered total Hg in Silver Creek followed the diel variation in suspended-particle concentration. The concentration variation of filtered total and methyl Hg followed the solar photocycle, with highest concentrations during the early afternoon and evening and lowest concentrations during the morning. None of the diel Hg variations correlated with diel variation in streamflow or major ion concentrations. The diel variation in filtered total Hg could have been produced by adsorption-desorption of Hg2+ or by reduction of Hg(II) to Hg0 and subsequent evasion of Hg0. The diel variation in filtered methyl Hg could have been produced by sunlight- and temperature-dependent methylation. This study is the first to examine diel Hg cycling in streams, and its results reinforce previous conclusions that diel trace-element cycling in streams is widespread but often not recognized and that parts of the biogeochemical Hg cycle respond quickly to the daily photocycle. ?? 2006 Elsevier B.V. All rights reserved.
Lubrano, Riccardo; Elli, Marco; Stoppa, Francesca; Di Traglia, Mario; Di Nardo, Matteo; Perrotta, Daniela; David, Piero; Paoli, Sara; Cecchetti, Corrado
2015-08-01
The purpose of this study was to define, in children following head trauma and GSC ≤ 8, at which level of intracranial pressure (ICP), the thermodilutional, and gas analytic parameters implicated in secondary cerebral insults shows initial changes. We enrolled in the study 56 patients: 30 males and 26 females, mean age 71 ± 52 months. In all children, volumetric hemodynamic and blood gas parameters were monitored following initial resuscitation and every 4 h thereafter or whenever a hemodynamic deterioration was suspected. During the cumulative hospital stay, a total of 1050 sets of measurements were done. All parameters were stratified in seven groups according to ICP (group A1 = 0-5 mmHg, group A2 = 6-10 mmHg, group A3 = 11-15 mmHg, group A4 16-20 mmHg, group A5 21-25 mmHg, group A6 26-30 mmHg, group A7 >31 mmHg). Mean values of jugular oxygen saturation (SJO2), jugular oxygen partial pressure (PJO2), extravascular lung water (EVLWi), pulmonary vascular permeability (PVPi), fluid overload (FO), and cerebral extraction of oxygen (CEO2) vary significantly from A3 (11-15 mmHg) to A4 (16-20 mmHg). They relate to ICP in a four-parameter sigmoidal function (4PS function with: r(2) = 0.90), inflection point of 15 mmHg of ICP, and a maximum curvature point on the left horizontal asymptote at 13 mmHg of ICP. Mean values of SJO2, PJO2, EVLWi, PVPi, FO, and CEO2 become pathologic at 15 mmHg of ICP; however, the curve turns steeper at 13 mmHg, possibly a warning level in children for the development of post head trauma secondary insult.
New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis.
Wu, Qingru; Wang, Shuxiao; Hui, Mulin; Wang, Fengyang; Zhang, Lei; Duan, Lei; Luo, Yao
2015-03-17
The mercury (Hg) flow paths from three zinc (Zn) smelters indicated that a large quantity of Hg, approximately 38.0-57.0% of the total Hg input, was stored as acid slag in the landfill sites. Approximately 15.0-27.1% of the Hg input was emitted into water or stored as open-dumped slags, and 3.3-14.5% of the Hg input ended in sulfuric acid. Atmospheric Hg emissions, accounting for 1.4-9.6% of the total Hg input, were from both the Zn production and waste disposal processes. Atmospheric Hg emissions from the waste disposal processes accounted for 40.6, 89.6, and 94.6% of the total atmospheric Hg emissions of the three studied smelters, respectively. The Zn production process mainly contributed to oxidized Hg (Hg2+) emissions, whereas the waste disposal process generated mostly elemental Hg (Hg0) emissions. When the emissions from these two processes are considered together, the emission proportion of the Hg2+ mass was 51, 46, and 29% in smelters A, B, and C, respectively. These results indicated that approximately 10.8±5.8 t of atmospheric Hg emissions from the waste disposal process were ignored in recent inventories. Therefore, the total atmospheric Hg emissions from the Zn industry of China should be approximately 50 t.
Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon
2009-03-01
In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and
NASA Astrophysics Data System (ADS)
Drott, A.; Skyllberg, U.
2007-12-01
Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (p<0.001) positive relationship between the experimentally determined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of brackish waters (p<0.001, n=23), southern, high-productivity freshwaters (p<0.001, n=20) as well as northern, low-productivity freshwater (p=0.048, n=6), the sum of neutral Hg-sulfides [Hg(SH)20 (aq)] and [HgS0 (aq)] in the sediment pore water was significantly, positively correlated with both the potential methylation rate constant (Km) and total MeHg concentrations (2). This indicates that methylating sulphate reducing bacteria passively take up neutral Hg-sulfides, which are transformed to MeHg. Differences in slopes of the relationships were explained by differences in primary productivity and availability of energy-rich organic matter to methylating bacteria. High primary productivity at southern freshwater sites, reflected by a low C/N ratio (large contribution from free living algae and bacteria) in the sediment and a high annual temperature sum, resulted in high methylation rates. In conclusion, concentrations of neutral Hg-sulfides and availability of energy rich organic matter, but also total Hg concentrations in sediments are important factors behind net production and accumulation of MeHg . References: (1) Drott et. al. submitted, (2) Drott, A.; Lambertsson, L.; Björn, E.; Skyllberg, U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology 2007, 41, 2270-2276.
In this first large-scale study of mercury (Hg) in Lake Mead, USA, the nation's largest man-
made reservoir, total-Hg concentrations were determined in the skeletal muscle of 339 fish collected during the Fall of 1998 and the Spring of 1999. Five species of fish representing ...
Braune, Birgit M; Gaston, Anthony J; Mallory, Mark L
2016-07-01
We compared temporal trends of total mercury (Hg) in eggs of five seabird species breeding at Prince Leopold Island in the Canadian high Arctic. As changes in trophic position over time have the potential to influence contaminant temporal trends, Hg concentrations were adjusted for trophic position (measured as δ(15)N). Adjusted Hg concentrations in eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) increased from 1975 to the 1990s, followed by a plateauing of levels from the 1990s to 2014. Trends of adjusted Hg concentrations in eggs of murres, fulmars, black guillemots (Cepphus grylle) and black-legged kittiwakes (Rissa tridactyla) had negative slopes between 1993 and 2013. Adjusted Hg concentrations in glaucous gull (Larus hyperboreus) eggs decreased by 50% from 1993 to 2003 before starting to increase again. Glaucous gull eggs had the highest Hg concentrations followed by black guillemot eggs, and black-legged kittiwake eggs had the lowest concentrations consistently in the five years compared between 1993 and 2013. Based on published toxicological thresholds for Hg in eggs, there is little concern for adverse reproductive effects due to Hg exposure in these birds, although the levels in glaucous gull eggs warrant future scrutiny given the increase in Hg concentrations observed in recent years. There is evidence that the Hg trends observed reflect changing anthropogenic Hg emissions. It remains unclear, however, to what extent exposure to Hg on the overwintering grounds influences the Hg trends observed in the seabird eggs at Prince Leopold Island. Future research should focus on determining the extent to which Hg exposure on the breeding grounds versus the overwintering areas contribute to the trends observed in the eggs. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Effect of doping on electronic properties of HgSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Abhinav, E-mail: abhinavn76@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com
2016-05-23
First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% ofmore » electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point Γ. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.« less
Rothenberg, Sarah E; Jackson, Brian P; Carly McCalla, G; Donohue, Alexis; Emmons, Alison M
2017-11-01
Rice is an important dietary source for methylmercury (MeHg), a potent neurotoxin, and inorganic arsenic (As), a human carcinogen. Rice baby cereals are a dietary source of inorganic As; however, less is known concerning MeHg concentrations in rice baby cereals and rice teething biscuits. MeHg concentrations were measured in 36 rice baby cereals, eight rice teething biscuits, and four baby cereals manufactured with oats/wheat (n = 48 total). Arsenic (As) species, including inorganic As, were determined in rice baby cereals and rice teething biscuits (n = 44/48), while total As was determined in all products (n = 48). Rice baby cereals and rice teething biscuits were on average 61 and 92 times higher in MeHg, respectively, and 9.4 and 4.7 times higher in total As, respectively, compared to wheat/oat baby cereals. For a 15-g serving of rice baby cereal, average MeHg intake was 0.0092μgday -1 (range: 0.0013-0.034μgday -1 ), while average inorganic As intake was 1.3μgday -1 (range: 0.37-2.3μgday -1 ). Inorganic As concentrations in two brands of rice baby cereal (n = 12/36 boxes of rice cereal) exceeded 100ng/g, the proposed action level from the U.S. Food and Drug Administration. Log 10 MeHg and inorganic As concentrations in rice baby cereals were strongly, positively correlated (Pearson's rho = 0.60, p < 0.001, n = 36). Rice-containing baby cereals and teething biscuits were a dietary source of both MeHg and inorganic As. Studies concerning the cumulative impacts of MeHg and inorganic As on offspring development are warranted. Copyright © 2017 Elsevier Inc. All rights reserved.
Mercury accumulation and attenuation at a rapidly forming delta with a point source of mining waste
Johnson, Bryce E.; Esser, Bradley K.; Whyte, Dyan C.; Ganguli, Priya M.; Austin, Carrie M.; Hunt, James R.
2009-01-01
The Walker Creek intertidal delta of Tomales Bay, California is impacted by a former mercury mine within the watershed. Eleven short sediment cores (10 cm length) collected from the delta found monomethylmercury (MMHg) concentrations ranging from 0.3 to 11.4 ng/g (dry wt.), with lower concentrations occurring at the vegetated marsh and upstream channel locations. Algal mats common to the delta’s sediment surface had MMHg concentrations ranging from 7.5 to 31.5 ng/g, and the top 1 cm of sediment directly under the mats had two times greater MMHg concentrations compared to adjacent locations without algal covering. Spatial trends in resident biota reflect enhanced MMHg uptake at the delta compared to other bay locations. Eighteen sediment cores, 1 to 2 meters deep, collected from the 1.2 km2 delta provide an estimate of a total mercury (Hg) inventory of 2500 ± 500 kg. Sediment Hg concentrations ranged from pre-mining background conditions of approximately 0.1 μg/g to a post-mining maximum of 5 μg/g. Sediment accumulation rates were determined from three sediment cores using measured differences of 137Cs activity. We estimate a pre-mining Hg accumulation of less than 20 kg/yr, and a period of maximum Hg accumulation in the 1970s and 1980s with loading rates greater than 50 kg/yr, corresponding to the failure of a tailings dam at the mine site. At the time of sampling (2003) over 40 kg/yr of Hg was still accumulating at the delta, indicating limited recovery. We attribute observed spatial evolution of elevated Hg levels to ongoing inputs and sediment re-working, and estimate the inventory of the anthropogenic fraction of total Hg to be at least 1500 ± 300 kg. We suggest ongoing sediment inputs and methylation at the deltaic surface support enhanced mercury levels for resident biota and transfer to higher trophic levels throughout the Bay. PMID:19539980
Mercury Sources and Fate in the Gulf of Maine
Sunderland, Elsie M.; Amirbahman, Aria; Burgess, Neil M.; Dalziel, John; Harding, Gareth; Jones, Stephen H.; Kamai, Elizabeth; Karagas, Margaret R.; Shi, Xun; Chen, Celia Y.
2012-01-01
Most human exposure to mercury (Hg) in the United States is from consuming marine fish and shellfish. The Gulf of Maine is a complex marine ecosystem comprised of twelve physioregions, including the Bay of Fundy, coastal shelf areas and deeper basins that contain highly productive fishing grounds. Here we review available data on spatial and temporal Hg trends to better understand the drivers of human and biological exposures. Atmospheric Hg deposition from U.S. and Canadian sources has declined since the mid-1990s in concert with emissions reductions but deposition from global sources has increased. Oceanographic circulation is the dominant source of total Hg inputs to the entire Gulf of Maine region (59%), followed by atmospheric deposition (28%), wastewater/industrial sources (8%), and rivers (5%). Resuspension of sediments increases MeHg inputs to overlying waters raising concerns about benthic trawling activities in shelf regions. In the near coastal areas, elevated sediment and mussel Hg levels are co-located in urban embayments and near large historical point sources. Temporal patterns in sentinel species (mussels and birds) have in some cases declined in response to localized point source mercury reductions but overall Hg trends do not show consistent declines. For example, levels of Hg have either declined or remained stable in eggs from four seabird species collected in the Bay of Fundy since 1972. Quantitatively linking Hg exposures from fish harvested from the Gulf of Maine to human health risks is challenging at this time because no data are available on the geographic origin of seafood consumed by coastal residents. In addition, there is virtually no information on Hg levels in commercial species for offshore regions of the Gulf of Maine where some of the most productive fisheries are located. Both of these data gaps should be priorities for future research. PMID:22572623
Webber, H.M.; Haines, T.A.
2003-01-01
Mercury contamination of fish is widespread in North America and has resulted in the establishment of fish consumption advisories to protect human health, However, the effects of mercury exposure to fish have seldom been investigated. We examined the effects of dietary mercury exposure at environmental levels in a common forage species, golden shiner (Notemigonus crysoleucas). Fish were fed either an unaltered diet (12 ng/g wet wt methylmercury [MeHg] as Hg), a low-Hg diet (455 ng/g Hg), or a high-Hg diet (959 ng/g Hg). After 90 d mean fish whole-body total Hg concentrations were 41, 230, and 518 ng/g wet wt, respectively, which were within the range of concentrations found in this species in northern U.S. lakes. There were no mortalities or differences in growth rate among groups. Groups of fish from each treatment were exposed to a model avian predator and their behavioral response videotaped for analysis. Brain acetylcholinesterase (AChE) activity was determined in fish after behavioral testing. Fish fed the high-Hg diet had significantly greater shoal vertical dispersal following predator exposure, took longer to return to pre-exposure activity level, and had greater shoal area after return to pre-exposure activity than did the other treatments, all of which would increase vulnerability of the fish to predation. There were no differences in brain AChE among treatments. We conclude that mercury exposure at levels currently occurring in northern United States lakes alters fish predator-avoidance behavior in a manner that may increase vulnerability to predation. This finding has significant implications for food chain transfer of Hg and Hg exposure of fish predators.
NASA Astrophysics Data System (ADS)
Windham-Myers, L.; Fleck, J.; Eagles-Smith, C.; Ackerman, J.
2013-12-01
Seasonally flooded wetland ecosystems are often poised for mercury (Hg) methylation, thus becoming sources of methylmercury (MeHg) to in situ and downstream biota. The seasonal flooding associated with cultivation of rice (Oryza sativa) also generates MeHg, which may be stored in sediment or plants, bioaccumulated into fauna, degraded or exported, depending on hydrologic and seasonal conditions. While many U.S. waters are regulated for total Hg concentrations based on fish targets, California's Sacramento-San Joaquin Delta (Delta) will soon implement the first MeHg total maximum daily load (TMDL) control program. Since 2007, a conceptual model (DRERIP-MCM) and several ecosystem-level studies have been advanced to better understand the mechanisms behind Hg methylation, export and bioaccumulation within Delta wetlands, including rice agriculture. Three Delta rice-growing regions (Yolo Bypass, Cosumnes River, Central Delta) of varied soil characteristics, mining influences and hydrology, were monitored over full crop years to evaluate annual MeHg dynamics. In addition to fish tissue Hg accumulation, a broad suite of biogeochemical and hydrologic indices were assessed and compared between wetland types, seasons, and regions. In general, Delta rice fields were found to export MeHg during the post-harvest winter season, and promote MeHg uptake in fish and rice grain during the summer growing season. As described in a companion presentation (Eagles-Smith et al., this session), the experimental Cosumnes River study suggests that rice-derived dissolved organic carbon (DOC) fuels MeHg production and uptake into aquatic foodwebs. Explicit DRERIP-MCM linkages for the role of rice-DOC in MeHg production, export and bioaccumulation were verified across two summers (2011, 2012): rice biomass and root productivity influenced porewater DOC availability and microbial processes, which drove sediment MeHg production and flux to surface water, promoting MeHg bioaccumulation in fish. Linkages from plant biomass to fish Hg concentrations were less evident in non-agricultural wetlands (seasonal or permanent flooding), where aromatic DOC and physical controls (e.g. hydrology, photodemethylation) appeared to have a greater role. Winter rice straw management had no measurable impact on summer MeHg dynamics, but wetland data suggest that the inclusion of deepwater cells within fields may reduce MeHg exposure. As concern grows over MeHg concentrations in rice grains, research on cultivars and field management is expanding in China, but ecosystem-level studies remain rare. Broader global monitoring and research are needed to address these pathways of Hg exposure given the global expansion of rice agriculture and ongoing atmospheric Hg deposition. Dense root and canopy structure of California rice fields (Oryza sativa), August 2007
Liu, Jin-Ling; Xu, Xiang-Rong; Yu, Shen; Cheng, Hefa; Peng, Jia-Xi; Hong, Yi-Guo; Feng, Xin-Bin
2014-11-01
Hair has long been recognized as a good biomarker for human exposure to Hg. The mercury concentrations in 14 species of marine fish and hair samples from 177 coastal residents in Hainan, South China Sea were investigated to assess the status of mercury exposure associated with marine fish consumption. Concentrations of total Hg (THg) and methylmercury (MeHg) in the fish muscles were 0.094 ± 0.008 and 0.066 ± 0.006 μg/gww, respectively, which were far below the limit considered safe for consumption (0.5 μg/g). The average THg concentrations in hair of adults (1.02 ± 0.92 μg/g) were lower than the provisional tolerable weekly intake (PTWI) level of 2.2 μg/g. However, 23.7% of children had a hair THg level exceeding the RfD level of 1μg/g, indicating a great risk of Hg exposure to children via fish consumption. The concentration of THg in hair was significantly correlated with fish consumption but not with gender-specific fish intake. With higher fish consumption frequency, the fishermen had significantly elevated hair Hg levels compared to the students and the other general public, who had similar hair THg levels but different fish consumption patterns, indicating the existence of other sources of Hg exposure to the residents of Hainan Island. Copyright © 2014 Elsevier Inc. All rights reserved.
Goyal, Nitin; Tsivgoulis, Georgios; Pandhi, Abhi; Dillard, Kira; Alsbrook, Diana; Chang, Jason J; Krishnaiah, Balaji; Nickele, Christopher; Hoit, Daniel; Alsherbini, Khalid; Alexandrov, Andrei V; Arthur, Adam S; Elijovich, Lucas
2018-01-11
Permissive hypertension may benefit patients with non-recanalized large vessel occlusion (nrLVO) post mechanical thrombectomy (MT) by maintaining brain perfusion. Data evaluating the impact of post-MT blood pressure (BP) levels on outcomes in nrLVO patients are scarce. We investigated the association of the post-MT BP course with safety and efficacy outcomes in nrLVO. Hourly systolic BP (SBP) and diastolic BP (DBP) values were prospectively recorded for 24 hours following MT in consecutive nrLVO patients. Maximum, minimum, and mean BP levels were documented. Three-month functional independence (FI) was defined as modified Rankin Scale (mRS) scores of 0-2. A total of 88 nrLVO patients were evaluated post MT. Patients with FI had lower maximum SBP (160±19 mmHg vs 179±23 mmHg; P=0.001) and higher minimum SBP levels (119±12 mmHg vs 108±25 mmHg; P=0.008). Maximum SBP (183±20 mmHg vs 169±23 mmHg; P=0.008) and DBP levels (105±20 mmHg vs 89±18 mmHg; P=0.001) were higher in patients who died at 3 months while minimum SBP values were lower (102±28 mmHg vs 115±16 mmHg; P=0.007). On multivariable analyses, both maximum SBP (OR per 10 mmHg increase: 0.55, 95% CI 0.39 to 0.79; P=0.001) and minimum SBP (OR per 10 mmHg increase: 1.64, 95% CI 1.04 to 2.60; P=0.033) levels were independently associated with the odds of FI. Maximum DBP (OR per 10 mmHg increase: 1.61; 95% CI 1.10 to 2.36; P=0.014) and minimum SBP (OR per 10 mmHg increase: 0.65, 95% CI 0.47 to 0.90; P=0.009) values were independent predictors of 3-month mortality. Our study demonstrates that wide BP excursions from the mean during the first 24 hours post MT are associated with worse outcomes in patients with nrLVO. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong
2014-08-01
Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. The high Se treatment (5 μg g(-1)) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced 'water-soluble' Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
MacCoy, Dorene E.
2014-01-01
Mercury (Hg) analyses were conducted on samples of sport fish and water collected from six sampling sites in the Boise and Snake Rivers, and Brownlee Reservoir to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho. A water sample was collected from each site during October and November 2013 by the City of Boise personnel and was analyzed by the Boise City Public Works Water Quality Laboratory. Total Hg concentrations in unfiltered water samples ranged from 0.73 to 1.21 nanograms per liter (ng/L) at five river sites; total Hg concentration was highest (8.78 ng/L) in a water sample from Brownlee Reservoir. All Hg concentrations in water samples were less than the EPA Hg chronic aquatic life criterion in Idaho (12 ng/L). The EPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). MeHg residue in fish tissue is considered to be equivalent to total Hg in fish muscle tissue and is referred to as Hg in this report. The Idaho Department of Environmental Quality adopted the EPA’s fish-tissue criterion and a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg wet weight Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to advise of allowable fish consumption from specific water bodies. The geometric mean Hg concentration of 10 fish of a single species collected from a single water body (lake or stream) in Idaho is compared to the action level to determine if a fish consumption advisory should be issued. The U.S. Geological Survey collected and analyzed individual fillets of mountain whitefish (Prosopium williamsoni), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurus punctatus) for Hg. The median Hg concentration of 0.32 mg/kg exceeded the Idaho water-quality criterion at the site in Brownlee Reservoir. Average Hg concentrations from Brownlee Reservoir (0.32 mg/kg) and the Boise River at mouth (0.33 mg/kg) exceeded the Hg RPTE threshold (>0.24 mg/kg). IFCAP action levels also were exceeded at the sites on Brownlee Reservoir and at the mouth of the Boise River. Median Hg concentrations in fish at the remaining four river sites were less than 0.20 mg/kg with average concentrations ranging from 0.14 to 0.21 mg/kg Hg. Selenium (Se) analysis also was conducted on one composite fish tissue sample per site to screen for general concentrations and to provide information for future risk assessments. Concentrations of Se ranged from 0.07 to 0.49 mg/kg wet weight; average concentrations were highest in smallmouth bass (0.40 mg/kg) and lowest in mountain whitefish (0.12 mg/kg).
Fish mercury concentration in the Alto Pantanal, Brazil: influence of season and water parameters.
Hylander, L D; Pinto, F N; Guimarães, J R; Meili, M; Oliveira, L J; de Castro e Silva, E
2000-10-16
The tropical flood plain Pantanal is one of the world's largest wetlands and a wildlife sanctuary. Mercury (Hg) emissions from some upstream gold mining areas and recent findings of high natural Hg levels in tropical oxisols motivated studies on the Hg cycle in the Pantanal. A survey was made on total Hg in the most consumed piscivorous fish species from rivers and floodplain lakes in the north (Cáceres and Barão de Melgaço) and in the south part of Alto Pantanal (around the confluence of the Cuiabá and Paraguai rivers). Samples were collected in both the rainy and dry seasons (March and August 1998) and included piranha (Serrasalmus spp.), and catfish (Pseudoplatystoma coruscans, pintado, and Pseudoplatystoma fasciatum, cachara or surubim). There was only a small spatial variation in Hg concentration of the 185 analyzed fish samples from the 200 x 200 km large investigation area, and 90% contained total Hg concentration below the safety limit for regular fish consumption (500 ng g(-1)). Concentration above this limit was found in both Pseudoplatystoma and Serrasalmus samples from the Baia Siá Mariana, the only acid soft-water lake included in this study, during both the rainy and dry seasons. Concentration above this limit was also found in fish outside Baia Siá Mariana during the dry season, especially in Rio Cuiabá in the region of Barão de Melgaço. The seasonal effect may be connected with decreasing water volumes and changing habitat during the dry season. The results indicate that fertile women should restrict their consumption of piscivorous fishes from the Rio Cuiabá basin during the dry season. Measures should be implanted to avoid a further deterioration of fish Hg levels.
Goo, Miran; Kim, Seong-Gil; Jun, Deokhoon
2015-08-01
[Purpose] The purpose of this study was to identify the imbalance of muscle recruitment in cervical flexor muscles during the craniocervical flexion test by using ultrasonography and to propose the optimal level of pressure in clinical craniocervical flexion exercise for people with neck pain. [Subjects and Methods] A total of 18 students (9 males and 9 females) with neck pain at D University in Gyeongsangbuk-do, South Korea, participated in this study. The change in muscle thickness in superficial and deep cervical flexor muscles during the craniocervical flexion test was measured using ultrasonography. The ratio of muscle thickness changes between superficial and deep muscles during the test were obtained to interpret the imbalance of muscle recruitment in cervical flexor muscles. [Results] The muscle thickness ratio of the sternocleidomastoid muscle/deep cervical flexor muscles according to the incremental pressure showed significant differences between 22 mmHg and 24 mmHg, between 24 mmHg and 28 mmHg, between 24 mmHg and 30 mmHg, and between 26 mmHg and 28 mmHg. [Conclusion] Ultrasonography can be applied for examination of cervical flexor muscles in clinical environment, and practical suggestion for intervention exercise of craniocervical flexors can be expected on the pressure level between 24 mmHg and 26 mmHg enabling the smallest activation of the sternocleidomastoid muscle.
Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tercia G; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M
2016-06-01
In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hginorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hginorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hginorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Palacios-Torres, Yuber; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus
2018-02-01
Mercury (Hg) is a harmful pollutant released into the environment from gold mining activities, representing a risk to human health and the ecosystems. The aim of this study was to assess the levels of total Hg (T-Hg) in human hair, fish, sediments and air; and to determine fish consumption-based risks for T-Hg ingestion in the Choco biogeographic region, a global biodiversity hotspot located at the Colombian Pacific. Mercury concentrations in hair were measured in two locations, Quibdo, the state capital, and Paimado, a riverine community. The median T-Hg value in human hair in Quibdo was 1.26 μg/g (range: 0.02-116.40 μg/g), whereas in Paimado it was 0.67 μg/g (range: 0.07-6.47 μg/g). Mercury levels in examined locations were weakly associated with height (ρ = 0.145, P = 0.024). Air T-Hg levels in Quibdo were high inside gold shops being up to 200.9-fold greater than the background. Mercury concentrations in fish from Atrato River were above WHO limit (0.5 μg/g), with highest levels in Pseudopimelodus schultzi, Ageneiosus pardalis, Sternopygus aequilabiatus, Rhamdia quelen and Hoplias malabaricus, whereas the lowest appeared in Cyphocharax magdalenae and Hemiancistrus wilsoni. Based on fish consumption, these last two species offer low risk to human health. Sediment samples from fifty different sites of Atrato River showed low T-Hg concentrations, with little variability between stations. However, contamination factors revealed a moderate pollution in 44% of sampling sites along the river. In conclusion, Hg pollution is widespread in the Biogeographic Choco and governmental actions must be taken to protect the population and preserve its biodiversity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schoeffl, V; Klee, S; Strecker, W
2004-01-01
Background: Chronic exertional compartment syndromes (CECS) are well known in sports medicine. Most commonly affected is the tibialis anterior muscle compartment in runners and walkers. Only a few cases of CECS of the forearm flexor muscles have been reported. Objectives: To determine pressure levels inside the deep flexor compartment of the forearms during a sport specific stress test. Method: Ten healthy, high level climbers were enrolled in a prospective study. All underwent climbing specific ergometry, using a rotating climbing wall (step test, total climbing time 9–15 minutes). Pressure was measured using a slit catheter placed in the deep flexor compartment of the forearm. Pressure, blood lactate, and heart rate were recorded every three minutes and during recovery. Results: In all the subjects, physical exhaustion of the forearms defined the end point of the climbing ergometry. Blood lactate increased with physical stress, reaching a mean of 3.48 mmol/l. Compartment pressure was related to physical stress, exceeding 30 mm Hg in only three subjects. A critical pressure of more than 40 mm Hg was never observed. After the test, the pressure decreased to normal levels within three minutes in seven subjects. The three with higher pressure levels (>30 mm Hg) required a longer time to recover. Conclusions: For further clinical and therapeutic consequences, an algorithm was derived. Basic pressure below 15 mm Hg and stress pressure below 30 mm Hg as well as pressures during the 15 minute recovery period below 15 mm Hg are physiological. Pressures of 15–30 mm Hg during recovery suggest high risk of CECS, and pressures above 30 mm Hg confirm CECS. PMID:15273176
Mercury in the Soil of Two Contrasting Watersheds in the Eastern United States
Burns, Douglas A.; Woodruff, Laurel G.; Bradley, Paul M.; Cannon, William F.
2014-01-01
Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2 = 0.68; p<0.001), but a linear relation at Fishing Brook was weak (r2 = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks. PMID:24551042
Mercury in the soil of two contrasting watersheds in the eastern United States
Burns, Douglas A.; Woodruff, Laurel G.; Bradley, Paul M.; Cannon, William F.
2014-01-01
Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2 = 0.68; p2 = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks.
Mercury and methylmercury dynamics in the hyporheic zone of an Oregon stream
Hinkle, Stephen R.; Bencala, Kenneth E.; Wentz, Dennis A.; Krabbenhoft, David P.
2014-01-01
The role of the hyporheic zone in mercury (Hg) cycling has received limited attention despite the biogeochemically active nature of this zone and, thus, its potential to influence Hg behavior in streams. An assessment of Hg geochemistry in the hyporheic zone of a coarse-grained island in the Coast Fork Willamette River in Oregon, USA, illustrates the spatially dynamic nature of this region of the stream channel for Hg mobilization and attenuation. Hyporheic flow through the island was evident from the water-table geometry and supported by hyporheic-zone chemistry distinct from that of the bounding groundwater system. Redox-indicator species changed abruptly along a transect through the hyporheic zone, indicating a biogeochemically reactive stream/hyporheic-zone continuum. Dissolved organic carbon (DOC), total Hg, and methylmercury (MeHg) concentrations increased in the upgradient portion of the hyporheic zone and decreased in the downgradient region. Total Hg (collected in 2002 and 2003) and MeHg (collected in 2003) were correlated with DOC in hyporheic-zone samples: r2=0.63 (total Hg-DOC, 2002), 0.73 (total Hg-DOC, 2003), and 0.94 (MeHg-DOC, 2003). Weaker Hg/DOC association in late summer 2002 than in early summer 2003 may reflect seasonal differences in DOC reactivity. Observed correlations between DOC and both total Hg and MeHg reflect the importance of DOC for Hg mobilization, transport, and fate in this hyporheic zone. Correlations with DOC provide a framework for conceptualizing and quantifying Hg and MeHg dynamics in this region of the stream channel, and provide a refined conceptual model of the role hyporheic zones may play in aquatic ecosystems.
Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.
Meischen, Sandra J; Van Pelt, Vincent J; Zarate, Eugene A; Stephens, Edward A
2004-01-01
Gaseous elemental and total (elemental + oxidized) mercury (Hg) in the flue gas from a coal-fired boiler was measured by a modified ultraviolet (UV) spectrometer. Challenges to Hg measurement were the spectral interferences from other flue gas components and that UV measures only elemental Hg. To eliminate interference from flue gas components, a cartridge filled with gold-coated sand removed elemental Hg from a flue gas sample. The Hg-free flue gas was the reference gas, eliminating the spectral interferences. To measure total Hg by UV, oxidized Hg underwent a gas-phase, thermal-reduction in a quartz cell heated to 750 degrees C. Simultaneously, hydrogen was added to flash react with the oxygen present forming water vapor and preventing Hg re-oxidation as it exits the cell. Hg concentration results are in parts per billion by volume Hg at the flue gas oxygen concentration. The modified Hg analyzer and the Ontario Hydro method concurrently measured Hg at a field test site. Measurements were made at a 700-MW steam turbine plant with scrubber units and selective catalytic reduction. The flue gas sampled downstream of the selective catalytic reduction contained 2100 ppm SO2 and 75 ppm NOx. Total Hg measured by the Hg analyzer was within 20% of the Ontario Hydro results.
Total mercury content in cultured oysters from NW Mexico: health risk assessment.
Delgado-Álvarez, C G; Ruelas-Inzunza, J; Osuna-López, J I; Voltolina, D; Frías-Espericueta, M G
2015-02-01
The total mercury (Hg) content of the soft tissues of cultured oysters of the genus Crassostrea obtained during the dry and rainy seasons at sampling sites of NW Mexico with different degrees of urbanization, was determined by cold vapor atomic absorption spectrophotometry. Hg levels ranged from 0.05 to 0.37 µg/g (dry weight) and no significant differences (p > 0.05) related to season and sampling site were observed. The values did not exceed the limit of 1.0 µg/g (wet weight) established by Mexican legislation and by the Food and Drug Agency (FDA), and the hazard quotient was between 0.001 and 0.002. The estimated hazard quotient for MeHg ranged approximately from 0.002 to 0.01.
Umbangtalad, S; Parkpian, P; Visvanathan, C; Delaune, R D; Jugsujinda, A
2007-12-01
Gold extracted by Hg-amalgamation process, which can cause both health and environmental problems, is widespread in South East Asia including Myanmar, Laos, Cambodia, and Thailand. Small-scale gold mining operations have been carried out since the year 2000 in Phanom Pha District, Phichit Province, Thailand. Since no data is available for evaluating Hg exposure, an investigation of mercury (Hg) contamination and exposure assessment was carried out at this mine site. Environmental monitoring illustrated the total Hg in water was as high as 4 microg/l while Hg in sediment ranged between 102 to 325 microg/kg dry weight. Both Hg deposition from the air (1.28 microg/100 cm(2)/day) and concentration in surface soil (20,960 microg/kg dry weight) were elevated in the area of amalgamation. The potential of Hg exposure to miners as well as to schoolchildren was assessed. The concentrations of Hg in urine of 79 miners who were directly (group I) or indirectly (group II) involved in the gold recovery operation were 32.02 and 20.04 microg/g creatinine, respectively, which did not exceed regulatory limits (35 microg/g creatinine). Hair Hg levels in both groups (group I and group II) also were not significantly higher than the non-exposed group. In terms of risk factors, gender and nature of food preparation and consumption were the two significant variables influencing the concentration of Hg in urine of miners (P < 0.05). A hazard quotient (HQ) was estimated based on the inorganic Hg exposure of individual miners. The HQ values of group I were in a range 16 to 218 times higher than the safety level set as 1. By comparison the group II HQ index was very low (0.03-0.39). The miners in group I who worked and ate food from this area experienced potentially high exposure to Hg associated with the mining process. In a second Hg exposure assessment, a group of 59 schoolchildren who attended an elementary school near the gold mine site was evaluated for Hg exposure. A slightly higher Hg urine concentration was detected in group I and group II (involved and not involved in gold recovery) at average levels of 15.82 and 9.95 microg/g creatinine, respectively. The average Hg values for both groups were below the established levels indicating no risk from Hg intake. Average Hg hair level in all schoolchildren (0.93 microg/g) was not significantly higher than reference group. There were two variables (gender and personal hygiene) which affected the concentration of Hg in urine of schoolchildren (P < 0.05). The result (HQ) also suggested that schoolchildren were not at risk (< 1). Schoolchildren involved in gold mining activities showed some indirect exposure to Hg from the adults working in mining area.
Liu, W; Xu, Z; Li, H; Guo, M; Yang, T; Feng, S; Xu, B; Deng, Yu
2017-09-01
Mercury (Hg) represents a ubiquitous environmental heavy metal that could lead to severe toxic effects in a variety of organs usually at a low level. The present study focused on the liver oxidative stress, one of the most important roles playing in Hg hepatotoxicity, by evaluation of different concentrations of mercuric chloride (HgCl 2 ) administration. Moreover, the protective potential of curcumin against Hg hepatotoxic effects was also investigated. Eighty-four rats were randomly divided into six groups for a three-days experiment: control, dimethyl sulfoxide control, HgCl 2 treatment (0.6, 1.2, and 2.4 mg kg -1 day -1 ), and curcumin pretreatment (100 mg kg -1 day -1 ) groups. Exposure of HgCl 2 resulted in acute dose-dependent hepatotoxic effects. Administration of 2.4 mg kg -1 HgCl 2 significantly elevated total Hg, nonprotein sulfhydryl, reactive oxygen species formation, malondialdehyde, apoptosis levels, serum lactate dehydrogenase, and alanine transaminase activities, with an impairment of superoxide dismutase and glutathione peroxidase in the liver. Moreover, HgCl 2 treatment activated nuclear factor-E2-related factor 2-antioxidant response element (Nrf2-ARE) signaling pathway in further investigation, with a significant upregulation of Nrf2, heme oxygenase-1, and γ-glutamylcysteine synthetase heavy subunit expression, relative to control. Pretreatment with curcumin obviously prevented HgCl 2 -induced liver oxidative stress, which may be due to its free radical scavenging or Nrf2-ARE pathway-inducing properties. Taking together these data suggest that curcumin counteracts HgCl 2 hepatotoxicity through antagonizing liver oxidative stress.
Franko, Benoit; Brault, Julie; Jouve, Thomas; Beaumel, Sylvain; Benhamou, Pierre-Yves; Zaoui, Philippe; Stasia, Marie José
2014-09-05
High glucose (HG) or synthetic advanced glycation end-products (AGE) conditions are generally used to mimic diabetes in cellular models. Both models have shown an increase of apoptosis, oxidative stress and pro-inflammatory cytokine production in tubular cells. However, the impact of the two conditions combined has rarely been studied. In addition, the impact of glucose level variation due to cellular consumption is not clearly characterized in such experiments. Therefore, the aim of this study was to compare the effect of HG and AGE separately and of both on tubular cell phenotype changes in the HK2 cell line. Moreover, glucose consumption was monitored every hour to maintain the glucose level by supplementation throughout the experiments. We thus observed a significant decrease of apoptosis and H2O2 production in the HK2 cell. HG or AGE treatment induced an increase of total and mitochondrial apoptosis as well as TGF-β release compared to control conditions; however, AGE or HG led to apoptosis preferentially involving the mitochondria pathway. No cumulative effect of HG and AGE treatment was observed on apoptosis. However, a pretreatment with RAGE antibodies partially abolished the apoptotic effect of HG and completely abolished the apoptotic effect of AGE. In conclusion, tubular cells are sensitive to the lack of glucose as well as to the HG and AGE treatments, the AGE effect being more deleterious than the HG effect. Absence of a potential synergistic effect of HG and AGE could indicate that they act through a common pathway, possibly via the activation of the RAGE receptors. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Ruhai; Zhang, Yanyan; Wang, Yan; Zhao, Jin; Shan, Huayao
2018-02-01
Wetlands often show different small-scale topography, such as riffle, habitat island, deep water, shallow water zone and dry zone. Core soils in different micro topographical landforms of Nandagang and Beidagang wetlands in North China were sampled for THg and MeHg to analyze the influence of microtopography. Results showed that THg content in surface soil (<2 cm) was little higher than that at depth 2-4 cm of all stations. There were several peaks in the profile, which reflected mercury pollution in past. High THg content in undisturbed natural wetland soil implied accumulation of mercury. Harvest of plant, drained water decreased the accumulation of mercury in wetlands. Water level caused by microtopography affected the production of MeHg. Depth of the highest MeHg content decreased from N1, N2, N6, N3 to N4 following the increase of water level. Plant type and coverage also affected the vertical distribution of MeHg. More detailed profiles of MeHg, organic matter and total phosphorus in different sites show strong differences in soil chemistry, suggesting a complex interplay among hydrology, biogeochemistry and microtopography.
Liu, Qing; Basu, Niladri; Goetz, Giles; Jiang, Nan; Hutz, Reinhold J.; Tonellato, Peter J.; Carvan, Michael J.
2013-01-01
The objective of this study was to identify and evaluate conserved biomarkers that could be used in most species of teleost fish at most life-stages. We investigated the effects of sublethal methylmercury (MeHg) exposure on developing rainbow trout and zebrafish. Juvenile rainbow trout and young adult zebrafish were fed food with MeHg added at 0, 0.5, 5 and 50 ppm. Atomic absorption spectrometry was applied to measure whole body total Hg levels, and pathologic analysis was performed to identify MeHg-induced toxicity. Fish at six weeks were sampled from each group for microarray analysis using RNA from whole fish. MeHg-exposed trout and zebrafish did not show overt signs of toxicity or pathology, nor were significant differences seen in mortality, length, mass, or condition factor. The accumulation of MeHg in trout and zebrafish exhibited dose- and time-dependent patterns during six weeks, and zebrafish exhibited greater assimilation of total Hg than rainbow trout. The dysregulated genes in MeHg-treated fish have multiple functional annotations, such as iron ion homeostasis, glutathione transferase activity, regulation of muscle contraction, troponin I binding and calcium-dependent protein binding. Genes were selected as biomarker candidates based on their microarray data and their expression was evaluated by QPCR. Unfortunately, these genes are not good consistent biomarkers for both rainbow trout and zebrafish from QPCR evaluation using individual fish. Our conclusion is that biomarker analysis for aquatic toxicant assessment using fish needs to be based on tissue-, sex- and species-specific consideration. PMID:23529582
Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.
Bellum, Sairam; Bawa, Bhupinder; Thuett, Kerry A; Stoica, Gheorghe; Abbott, Louise C
2007-01-01
At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H(2)DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca(2+)](i)) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.
Buckman, Kate L.; Marvin-DiPasquale, Mark C.; Taylor, Vivien F.; Chalmers, Ann T.; Broadley, Hannah J.; Agee, Jennifer L.; Jackson, Brian P.; Chen, Celia Y.
2015-01-01
In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g–1 dry wt) and total mercury (THg; 10–30× increase, mean ± SD: 2045 ± 2669 ng g–1 dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g–1 dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g–1 dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L–1) and dissolved (0.76 ng L–1) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2–9 ng g–1 d–1 dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g–1 d–1 dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration.
Buckman, Kate L; Marvin-DiPasquale, Mark; Taylor, Vivien F; Chalmers, Ann; Broadley, Hannah J; Agee, Jennifer; Jackson, Brian P; Chen, Celia Y
2015-07-01
In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10-40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g(-1) dry wt) and total mercury (THg; 10-30× increase, mean ± SD: 2045 ± 2669 ng g(-1) dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3-7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g(-1) dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g(-1) dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L(-1)) and dissolved (0.76 ng L(-1)) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2-9 ng g(-1) d(-1) dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g(-1) d(-1) dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration. © 2015 SETAC.
Gou, San-Hu; Liu, Bei-Jun; Han, Xiu-Feng; Wang, Li; Zhong, Chao; Liang, Shan; Liu, Hui; Qiang, Yin; Zhang, Yun; Ni, Jing-Man
2018-05-01
The mixture of Hongqu and gypenosides (HG) is composed of Fermentum Rubrum (Hongqu, in Chinese) and total saponins of Gynostemma pentaphyllum (Thunb.) Makino (Jiaogulan, in Chinese) in a 3.6:1 weight ratio. Both Hongqu and Jiaogulan are considered valuable traditional Chinese medicines (TCMs); they have been commonly used in China for the treatment of hyperlipidemia and related diseases for centuries. The aim of the current study was assess the anti-atherosclerotic effect of HG. Sixty-four Wistar rats were randomly divided into eight groups: normal, model, positive control (simvastatin, 1 mg/kg), Hongqu-treated (72 mg/kg), gypenoside (total saponin)-treated (20 mg/kg), and three doses HG-treated (50, 100, and 200 mg/kg). All of the rats were fed a basal diet. Additionally, the model group rats were intragastrically administered a high-fat emulsion and intraperitoneally injected with vitamin D 3 . The serum lipid profiles, oxidative stress, inflammatory cytokine, and hepatic antioxidant levels were then determined. Furthermore, the liver histopathology and arterial tissue were analyzed, and the expression of hyperlipidemia- and atherosclerosis (AS)-related genes was measured using reverse transcription-polymerase chain reaction. The AS rat model was established after 80 days. Compared to the model group, the HG-treated groups showed an obvious improvement in the serum lipid profiles, oxidative stress, and inflammatory cytokine levels, and showed markedly increased hepatic total antioxidant capacity. Moreover, the expression of genes related to lipid synthesis and inflammation reduced and that of the genes related to lipid oxidation increased in the liver and arterial tissue, which also reflected an improved health condition. the anti-atherosclerotic effects of HG were superior to those of simvastatin, Hongqu, and the gypenosides. Therefore, HG may be a useful anti-atherosclerotic TCM preparation. Copyright © 2017. Published by Elsevier Taiwan LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirtu, Alin C.; Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi; Malarvannan, Govindan
Due to their high trophic position and long life span, small cetaceans are considered as suitable bioindicators to monitor the presence of contaminants in marine ecosystems. Here, we document the contamination with persistent organic pollutants (POPs) and total mercury (T-Hg) of spinner (Stenella longirostris, n =21) and Indo-Pacific bottlenose dolphins (Tursiops aduncus, n=32) sampled from the coastal waters of La Réunion (south-western Indian Ocean). In addition, seven co-occurring teleost fish species were sampled and analyzed as well. Blubber samples from living dolphins and muscle from teleosts were analyzed for polychlorinated biphenyls (PCBs), DDT and metabolites (DDTs), chlordanes (CHLs), hexachlorocyclohexanes (HCHs),more » hexachlorobenzene (HCB), and polybrominated diphenyl ethers (PBDEs). Methoxylated PBDEs (MeO-PBDEs), reported as having a natural origin, were also analyzed. T-Hg levels were measured in blubber and skin biopsies of the two dolphin species. Stable isotopes δ{sup 13}C and δ{sup 15}N values were determined in skin of the dolphins and in the muscle of teleosts. For PCBs, HCHs and T-Hg, concentrations were significantly higher in T. aduncus than in S. longirostris. For other POP levels, intra-species variability was high. MeO-PBDEs were the dominant compounds (55% of the total POPs) in S. longirostris, while PCBs dominated (50% contribution) in T. aduncus. Other contaminants showed similar profiles between the two species. Given the different patterns of POPs and T-Hg contamination and the δ{sup 15}N values observed among analyzed teleosts, dietary and foraging habitat preferences most likely explain the contrasted contaminant profiles observed in the two dolphin species. Levels of each class of contaminants were significantly higher in males than females. Despite their spatial and temporal overlap in the waters of La Réunion, S. longirostris and T. aduncus are differently exposed to contaminant accumulation. - Highlights: • POPs and total Hg were measured in spinner and bottlenose dolphins from La Réunion. • Levels of PCBs, PBDEs and T-Hg were lower in spinner than in bottlenose dolphins. • Contrasted contaminant profiles were observed between the two dolphin species. • Profiles are most likely explained by dietary and foraging habitat preferences.« less
Mercury concentrations in the coastal marine food web along the Senegalese coast.
Diop, Mamadou; Amara, Rachid
2016-06-01
This paper presents the results of seasonal (wet and dry seasons) and spatial (five sites) variation of mercury concentration in seven marine organisms representative for shallow Senegalese coastal waters and including species of commercial importance. Total mercury levels were recorded in the green algae (Ulva lactuca); the brown mussel (Perna perna); the Caramote prawn (Penaeus kerathurus); and in the liver and muscles of the following fish: Solea senegalensis, Mugil cephalus, Saratherondon melanotheron, and Sardinella aurita. The total selenium (Se) contents were determined only in the edible part of Perna perna, Penaeus kerathurus and in the muscles of Sardinella aurita and Solea senegalensis. Hg concentration in fish species was higher in liver compared to the muscle. Between species differences in Hg, concentrations were recorded with the highest concentration found in fish and the lowest in algae. The spatiotemporal study showed that there was no clear seasonal pattern in Hg concentrations in biota, but spatial differences existed with highest concentrations in sites located near important anthropogenic pressure. For shrimp, mussel, and the muscles of sardine and sole, Hg concentrations were below the health safety limits for human consumption as defined by the European Union. The Se/Hg molar ratio was always higher than one whatever the species or location suggesting a protection of Se against Hg potential adverse effect.
Satoh, Michihiro; Ohkubo, Takayoshi; Asayama, Kei; Murakami, Yoshitaka; Sakurai, Masaru; Nakagawa, Hideaki; Iso, Hiroyasu; Okayama, Akira; Miura, Katsuyuki; Imai, Yutaka; Ueshima, Hirotsugu; Okamura, Tomonori
2015-03-01
No large-scale, longitudinal studies have examined the combined effects of blood pressure (BP) and total cholesterol levels on long-term risks for subtypes of cardiovascular death in an Asian population. To investigate these relationships, a meta-analysis of individual participant data, which included 73 916 Japanese subjects (age, 57.7 years; men, 41.1%) from 11 cohorts, was conducted. During a mean follow-up of 15.0 years, deaths from coronary heart disease, ischemic stroke, and intraparenchymal hemorrhage occurred in 770, 724, and 345 cases, respectively. Cohort-stratified Cox proportional hazard models were used. After stratifying the participants by 4 systolic BP ×4 total cholesterol categories, the group with systolic BP ≥160 mm Hg with total cholesterol ≥5.7 mmol/L had the greatest risk for coronary heart disease death (adjusted hazard ratio, 4.39; P<0.0001 versus group with systolic BP <120 mm Hg and total cholesterol <4.7 mmol/L). The adjusted hazard ratios of systolic BP (per 20 mm Hg) increased with increases in total cholesterol categories (hazard ratio, 1.52; P<0.0001 in group with total cholesterol ≥5.7 mmol/L). Similarly, the adjusted hazard ratios of total cholesterol increased with increases in systolic BP categories (P for interaction ≤0.04). Systolic BP was positively associated with ischemic stroke and intraparenchymal hemorrhage death, and total cholesterol was inversely associated with intraparenchymal hemorrhage, but no significant interactions between BP and total cholesterol were observed for stroke. High BP and high total cholesterol can synergistically increase the risk for coronary heart disease death but not for stroke in the Asian population. © 2015 American Heart Association, Inc.
Jenko, Kathryn; Karouna-Renier, Natalie K.; Hoffman, David J.
2012-01-01
Despite extensive studies of methylmercury (MeHg) toxicity in birds, molecular effects on birds are poorly characterized. To improve our understanding of toxicity pathways and identify novel indicators of avian exposure to Hg, the authors investigated genomic changes, glutathione status, and oxidative status indicators in liver from laughing gull (Larus atricilla) hatchlings that were exposed in ovo to MeHg (0.05–1.6 µg/g). Genes involved in the transsulfuration pathway, iron transport and storage, thyroid-hormone related processes, and cellular respiration were identified by suppression subtractive hybridization as differentially expressed. Quantitative polymerase chain reaction (qPCR) identified statistically significant effects of Hg on cytochrome C oxidase subunits I and II, transferrin, and methionine adenosyltransferase RNA expression. Glutathione-S-transferase activity and protein-bound sulfhydryl levels decreased, whereas glucose-6-phosphate dehydrogenase activity increased dose-dependently. Total sulfhydryl concentrations were significantly lower at 0.4 µg/g Hg than in controls. T ogether, these endpoints provided some evidence of compensatory effects, but little indication of oxidative damage at the tested doses, and suggest that sequestration of Hg through various pathways may be important for minimizing toxicity in laughing gulls. This is the first study to describe the genomic response of an avian species to Hg. Laughing gulls are among the less sensitive avian species with regard to Hg toxicity, and their ability to prevent hepatic oxidative stress may be important for surviving levels of MeHg exposures at which other species succumb.
NASA Astrophysics Data System (ADS)
Fitamo, Daniel; Itana, Fisseha; Olsson, Mats
2007-02-01
The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.
Mercury contamination chronologies from Connecticut wetlands and Long Island Sound sediments
Varekamp, J.C.; Kreulen, B.; Buchholtz ten Brink, Marilyn R.; Mecray, E.L.
2003-01-01
Sediment cores were used to investigate the mercury deposition histories of Connecticut and Long Island Sound. Most cores show background (pre-1800s) concentrations (50–100 ppb Hg) below 30–50 cm depth, strong enrichments up to 500 ppb Hg in the core tops with lower Hg concentrations in the surface sediments (200–300 ppb Hg). A sediment core from the Housatonic River has peak levels of 1,500 ppb Hg, indicating the presence of a Hg point source in this watershed. The Hg records were translated into Hg contamination chronologies through 210Pb dating. The onset of Hg contamination occurred in ~1840–1850 in eastern Connecticut, whereas in the Housatonic River the onset is dated at around 1820. The mercury accumulation profiles show periods of peak contamination at around 1900 and at 1950–1970. Peak Hg* (Hg*= Hg measured minus Hg background) accumulation rates in the salt marshes vary, dependent on the sediment character, between 8 and 44 ng Hg/cm2 per year, whereas modern Hg* accumulation rates range from 4–17 ng Hg/cm2 per year; time-averaged Hg* accumulation rates are 15 ng Hg/cm2 per year. These Hg* accumulation rates in sediments are higher than the observed Hg atmospheric deposition rates (about 1–2 ng Hg/cm2 per year), indicating that contaminant Hg from the watershed is focused into the coastal zone. The Long Island Sound cores show similar Hg profiles as the marsh cores, but time-averaged Hg* accumulation rates are higher than in the marshes (26 ng Hg/cm2 a year) because of the different sediment characteristics. In-situ atmospheric deposition of Hg in the marshes and in Long Island Sound is only a minor component of the total Hg budget. The 1900 peak of Hg contamination is most likely related to climatic factors (the wet period of the early 1900s) and the 1950–1970 peak was caused by strong anthropogenic Hg emissions at that time. Spatial trends in total Hg burdens in cores are largely related to sedimentary parameters (amount of clay) except for the high inventories of the Housatonic River, which are related to Hg releases from hat-making in the town of Danbury. Much of the contaminated sediment transport in the Housatonic River Basin occurs during floods, creating distinct layers of Hg-contaminated sediment in western Long Island Sound. The drop of about 40% in Hg accumulation rates between the 1960s and 1990s seems largely the result of reduced Hg emissions and to a much lesser extent of climatic factors.
Briant, N; Chouvelon, T; Martinez, L; Brach-Papa, C; Chiffoleau, J F; Savoye, N; Sonke, J; Knoery, J
2017-01-30
Marine mercury (Hg) concentrations have been monitored in the French coastline for the last half a century using bivalves. The analyses presented in this study concerned 192 samples of bivalves (mussels: Mytilus edulis and Mytilus galloprovincialis and oysters: Crassostrea gigas and Isognomon alatus) from 77 sampling stations along the French coast and in the French Antilles sea. The goals of this study were to assess MeHg levels in various common bivalves from French coastline, and to identify possible geographic, taxonomic or temporal variations of concentrations. We show that the evolution of methylmercury (MeHg) concentrations covary with total mercury (HgT) concentrations. Moreover, in most of the study sites, HgT concentrations have not decreased since 1987, despite regulations to decrease or ban mercury used for anthropic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cadmium and mercury exposure over time in Swedish children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundh, T., E-mail: Thomas.Lundh@med.lu.se
Purpose: Knowledge about changes in exposure to toxic metals over time remains very sparse, in particular for children, the most vulnerable group. Here, we assessed whether a reduction in environmental pollution with cadmium (Cd) and mercury (Hg) caused a change in exposure over time. In total, 1257 children (age 4–9) in two towns in Sweden were sampled once in 1986–2013. Blood concentrations of Cd (b-Cd; n=1120) and Hg (b-Hg; n=560) were determined. Results: The median b-Cd was 0.10 (geometric mean 0.10; range 0.010–0.61) μg/L and b-Hg was 0.91 (geometric mean 0.83; range 0.021–8.2) μg/L. Children living close to a smeltermore » had higher b-Cd and b-Hg than those in urban and rural areas. There was no sex difference in b-Cd or b-Hg, and b-Cd and b-Hg showed no significant accumulation by age. b-Cd decreased only slightly (0.7% per year, p<0.001) over the study period. In contrast, b-Hg did show a clear decrease over the study period (3% per year, p<0.001). Conclusions: The exposure to Cd was very low but still might increase the risk of disease later in life. Moreover, b-Cd only showed a minor decrease, indicating that Cd pollution should be further restricted. b-Hg was relatively low and decreasing, probably because of reduced use of dental amalgam and lower Hg intake from fish. The b-Cd and b-Hg levels decreased much less than the levels of lead in the blood as previously found in the same children. - Highlights: • There are few studies of time trends for exposure to toxic metals, except for lead. • 1986–2013 we studied blood levels of cadmium and mercury in 1257 Swedish children. • The median blood concentration of cadmium was 0.10 μg/L, of mercury 0.83 μg/L. • Cadmium perhaps decreased by 0.7% per year, mercury by 3% per year. • Cadmium accumulation may result in toxic levels in elderly women.« less
Mercury-induced biochemical and proteomic changes in rice roots.
Chen, Yun-An; Chi, Wen-Chang; Huang, Tsai-Lien; Lin, Chung-Yi; Quynh Nguyeh, Thi Thuy; Hsiung, Yu-Chywan; Chia, Li-Chiao; Huang, Hao-Jen
2012-06-01
Mercury (Hg) is a serious environmental pollution threats to the planet. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. We investigated cellular, biochemical and proteomic changes in rice roots under Hg stress. Root growth rate was decreased and Hg, reactive oxygen species (ROS), and malondialdehyde (MDA) content and lipoxygenase activity were increased significantly with increasing Hg concentration in roots. We revealed a time-dependent alteration in total glutathione content and enzymatic activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) during Hg stress. 2-D electrophoresis revealed differential expression of 25 spots with Hg treatment of roots: 14 spots were upregulated and 11 spots downregulated. These differentially expressed proteins were identified by ESI-MS/MS to be involved in cellular functions including redox and hormone homeostasis, chaperone activity, metabolism, and transcription regulation. These results may provide new insights into the molecular basis of the Hg stress response in plants. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Araújo, Olinda; Pereira, Patrícia; Cesário, Rute; Pacheco, Mário; Raimundo, Joana
2015-06-15
Mercury is a recognized harmful pollutant in aquatic systems but still little is known about its sub-cellular partitioning in wild fish. Mercury concentrations in liver homogenate (whole organ load) and in six sub-cellular compartments were determined in wild Liza aurata from two areas - contaminated (LAR) and reference. Water and sediment contamination was also assessed. Fish from LAR displayed higher total mercury (tHg) organ load as well as in sub-cellular compartments than those from the reference area, reflecting environmental differences. However, spatial differences in percentage of tHg were only observed for mitochondria (Mit) and lysosomes plus microsomes (Lys+Mic). At LAR, Lys+Mic exhibited higher levels of tHg than the other fractions. Interestingly, tHg in Mit, granules (Gran) and heat-denaturable proteins was linearly correlated with the whole organ. Low tHg concentrations in heat stable proteins and Gran suggests that accumulated levels might be below the physiological threshold to activate those detoxification fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anthropometrics, body composition, and aerobic fitness in Norwegian home guard personnel.
Aandstad, Anders; Hageberg, Rune; Holme, Ingar M; Anderssen, Sigmund A
2014-11-01
The Norwegian Home Guard (HG) consists of soldiers and officers who primarily live a civilian life but are typically called in for military training a few days per year. Although full-time soldiers and officers are monitored annually on physical fitness, no such assessments are performed on regular HG personnel. Data on physical fitness of similar forces from other nations are also scarce. Thus, the main aim of this study was to collect reference data on physical fitness in HG personnel. A total of 799 male soldiers and officers from the regular and the rapid reaction HG force participated in this study. Between 13 and 19% of the subjects were obese, according to measured body mass index, waist circumference and estimations of body fat. The mean (95% confidence interval) estimated peak oxygen uptake from the 20-m shuttle run test was 50.1 (49.7-50.6) mL·kg·minute. Personnel from the rapid reaction force had a more favorable body composition compared with the regular HG personnel, whereas no differences were found for peak oxygen uptake. The physical demands on HG personnel are not well defined, but we believe that the majority of Norwegian HG soldiers and officers have a sufficient aerobic fitness level to fulfill their planned HG tasks. The gathered data can be used by military leaders to review the ability of the HG to perform expected military tasks, to serve as a future reference material for secular changes in HG fitness level, and for comparison purposes among similar international reserve forces.
Methylmercury level in umbilical cords from patients with congenital Minamata disease.
Harada, M; Akagi, H; Tsuda, T; Kizaki, T; Ohno, H
1999-08-30
A total of 151 umbilical cords during the period from 1950 to 1969 were collected from the residents of the Minamata area (including 25 patients with congenital Minamata disease) for methylmercury (MeHg) analysis. When the MeHg discharge from the Chisso Company's Minamata factory into the Minamata Bay is compared with the incidence of congenital Minamata disease, the abrupt increase of the former in 1952 [Nishimura H. Chem. Today 1998;323:60-66] was found to precede that of the latter by approximately 2 years, thereby indicating that MeHg is the cause of the disaster. This was confirmed by the elevated levels of MeHg in the umbilical cords from residents of the Minamata area [from 0.35 +/- 0.30 (S.D.) ppm in 1952 to 0.96 +/- 0.75 ppm in 1955], the MeHg levels (1.60 +/- 1.00 ppm) in the cords from patients with congenital Minamata disease showing the highest values [P < 0.01 vs. acquired Minamata disease (0.72 +/- 0.65 ppm), mental retardation (0.74 +/- 0.64 ppm), other diseases (0.22 +/- 0.15 ppm), and no symptoms (0.28 +/- 0.20 ppm), respectively]. Thus, in order to fill a gap, which extends over a long period of time, in studies on environmental Hg pollution, umbilical cord samples were considered to be a useful tool.
Chakraborty, Parthasarathi; Vudamala, Krushna; Chennuri, Kartheek; Armoury, Kazip; Linsy, P; Ramteke, Darwin; Sebastian, Tyson; Jayachandran, Saranya; Naik, Chandan; Naik, Richita; Nath, B Nagender
2016-05-01
Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition. However, redox-mediated reactions in the upper part of the core influenced the total Hg content in the sediment cores. This study suggests that probable increase in authigenic and allogenic Hg deposition attributed to the increasing Hg concentration in the surface sediment in the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, M.; Norman, D.
Birds and mammals exposed to waterborne mercury (Hg) and methylmercury (MeHg) were collected and/or sampled at Clear Lake, California, USA, to field test the predictive wildlife criteria model developed for the Great Lakes Water Quality Initiative (GLWQI). Tissue samples collected from sampled animals were analyzed for Hg and organochlorine residues, and for selected physiologic parameters known to be affected by Hg. All mammalian organ tissues analyzed contained less than 12 ppm total Hg, wet weight. All avian tissue samples analyzed contained less than 3 ppm total Hg, wet weight. No evidence of Hg-associated health effects was found. Tissue Hg residuesmore » were compared with water, sediment, and animal food samples to characterize bioaccumulation of mercury in the Clear Lake food web. Total Hg bioaccumulation factors for the Clear Lake site closest to the Hg source were: TL-2: 11,100; TL-3: 31,200; TL-4, 190,000. The results support the final wildlife criterion and suggest that the GLWQI model, with site-specific modifications, is predictive for other Hg-bearing aquatic systems.« less
Mercury Methylation at Mercury Mines In The Humboldt River Basin, Nevada, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, John E.; Crock, James G.; Lasorsa, Brenda K.
2002-12-01
Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River basin. Mine-waste calcines contain total Hg concentrations as high as 14 000?g/g. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170?g/g, whereas stream sediments collected>5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations<0.5?g/g. Similarly, methylmercury concentrations in mine-waste calcines are locally asmore » high as 96 ng/g, but methylmercury contents in stream-sediments collected downstream from the mines and from the Humboldt River are lower, ranging from<0.05 to 0.95 ng/g. Stream-water samples collected below two mines studied contain total Hg concentrations ranging from 6 to 2000 ng/L, whereas total Hg in Humboldt River water was generally lower ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in the Humboldt River water were the lowest in this study (<0.02-0.27 ng/L). Although total Hg and methylmercury concentrations are locally high in mine-waste calcines, there is significant dilution of Hg and lower Hg methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is> 8 km from any mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.« less
Lemes, Marcos; Wang, Feiyue; Stern, Gary A; Ostertag, Sonja K; Chan, Hing Man
2011-12-01
Monitoring data have shown that the total monomethylmercury (CH(3) Hg(+) and its complexes; collectively referred as MeHg hereafter) concentrations in Arctic marine mammals have remained very high in recent decades. Toward a better understanding of the metabolic and toxicological implications of these high levels of MeHg, we report here on the molecular forms of MeHg in the muscle, brain, liver, and kidneys of 10 beluga whales from the western Canadian Arctic. In all tissues analyzed, monomethylmercury was found to be dominated by methylmercuric cysteinate, a specific form of MeHg believed to be able to transport across the blood-brain barrier. Another MeHg-thiol complex, methylmercuric glutathionate, was also detected in the muscle and, to a much lesser extent, in the liver and brain tissues. Furthermore, a profound inorganic Hg peak was detected in the liver and brain tissues, which showed the same retention time as a selenium (Se) peak, suggesting the presence of an Hg-Se complex, most likely an inorganic Hg complex with a selenoamino acid. These results provide the first analytical support that the binding of MeHg with glutathione and Se may have protected beluga whales from the toxic effect of high concentrations of MeHg in their body. Copyright © 2011 SETAC.
The Life Cycle of Mercury Within the Clear Lake Aquatic Ecosystem: From Ore to Organism
NASA Astrophysics Data System (ADS)
Suchanek, T. H.; Suchanek, T. H.; Nelson, D. C.; Nelson, D. C.; Zierenberg, R. A.; King, P.; King, P.; McElroy, K.; McElroy, K.
2001-12-01
Clear Lake (Lake County) is located in the geologically active Clear Lake volcanics mercury (Hg) bearing Franciscan formation within the Coast Range of California, which includes over 300 abandoned Hg mines and prospects. Intermittent mining at the Sulphur Bank Mercury Mine (from 1872-1957), now a USEPA SuperFund site, has resulted in approximately 100 metric tonnes of Hg being deposited into the aquatic ecosystem of Clear Lake, with sediment concentrations of total-Hg as high as 650 mg/kg (parts per million = ppm) near the mine, making Clear Lake one of the most Hg contaminated lakes in the world. As a result, largemouth bass and other top predatory fish species often exceed both the Federal USFDA recommended maximum recommended concentrations of 1.0 ppm and the State of California level of 0.5 ppm. Acid rock drainage leaches Hg and high concentrations of sulfate from the mine site through wasterock and subsurface conduits through subsediment advection and eventually upward diffusion into lake sediments and water. When mineral-laden pH 3 fluids from the mine mix with Clear Lake water (pH 8), an alumino-silicate precipitate (floc) is produced that promotes the localized production of toxic methyl Hg. Floc "hot spots" in sediments near the mine exhibit low pH, high sulfate, anoxia and high organic loading which create conditions that promote Hg methylation by microbial activity, especially in late summer and fall. Wind-driven currents transport methyl-Hg laden floc particles throughout Clear Lake, where they are consumed by plankton and benthic invertebrates and bioaccumulated throughout the food web. While Clear Lake biota have elevated concentrations of methyl-Hg, they are not as elevated as might be expected based on the total Hg loading into the lake. A science-based management approach, utilizing over 10 years of data collected on Hg cycling within the physical and biological compartments of Clear Lake, is necessary to affect a sensible remediation plan.
Wang, Ya; Zhao, Zheng; Mu, Zhi-jian; Wang, Dlng-yong; Yu, Ya-wei
2015-01-01
To understand the mercury (Hg) pollution level and the corresponding ecological risk in agricultural watershed of the Three Gorges Reservoir region, a typical watershed, Wangjiagou, located in Fuling, where is in interior zones of the Three Gorges Reservoir region, was selected as the study object. Meanwhile, ArcGIS geo-statistics module was conducted for investigation of the Hg contents and distribution characteristics in soils of different land use types including dry land, farmland, woodland and settlements. Also the corresponding Hg pollution level and ecological risk were assessed. The results suggested that soil Hg contents in this watershed ranged from 9.47 to 94.57 microg x kg(-1), and the mean value was (34.23 +/- 16.23) microg x kg(-1). Higher Hg contents in surfaces of soils were observed in woodland, followed by farmland and settlement. The lowest was found in dry land. Surfaces of soils significantly showed Hg accumulation, and an obvious inverse correlation between soil Hg contents and soil depths was also observed in this study. Additionally, geo-statistics analysis showed a weak spatial correlation of soil Hg contents in this watershed, indicating the spatial distribution of soil Hg in this watershed was mainly influenced by several natural factors such as atmospheric wet-dry deposit, vegetation coverage and topography, instead of anthropogenic interference. Overall confirmative soil Hg pollution was not found in this watershed, which showed a very low pollution index (-0.08), but a moderate potential ecological risk still existed (the ecological risk index was 57), of which woodland had the highest potential risk. The total capacity of Hg in this watershed was 25.39 kg, among which dry land accounted for 69%.
Hurley, James P.; Krabbenhoft, David P.; Babiarz, Christopher L.; Andren, Anders
1994-01-01
The magnitude and direction of Hg fluxes across the sediment—water interface were estimated by groundwater, dry bulk sediment, sediment pore water, sediment trap, and water-column analyses in two northern Wisconsin seepage lakes. Little Rock Lake (Treatment Basin) received no groundwater discharge during the study period (1988—1990), and Follette Lake received continuous groundwater discharge. In Little Rock Lake, settling of particulate matter accounted for the major Hg delivery mechanism to the sediment—water interface. Upward diffusion of Hg from sediment pore waters below 2—4-cm sediment depth was apparently a minor source during summer stratification. Time-series comparisons suggested that the observed buildup of Hg in the hypolimnion of Little Rock Lake was attributable to dissolution and diffusion of Hg from recently fallen particulate matter close to the sediment—water interface. Groundwater inflow represented an important source of new Hg, and groundwater outflow accounted for significant removal of Hg from Pallette Lake. Equilibrium speciation calculations revealed that association of Hg with organic matter may control solubility in well-oxygenated waters, whereas in anoxic environments sulfur (polysulfide and bisulfide) complexation governs dissolved total Hg levels.
Lent, R.M.; Alexander, C.R.
1997-01-01
Sediment cores were collected from lakes in the Devils Lake Basin in North Dakota to determine if mercury (Hg) accumulation chronologies from sediment-core data are good indicators of variations in Hg accumulation rates in saline lakes. Sediment cores from Creel Bay and Main Bay, Devils Lake were selected for detailed analysis and interpretation. The maximum Hg concentration in the Creel Bay core was 0.15 micrograms per gram at 8 to 9 centimeters. The maximum Hg concentration in the Main Bay core was 0.07 micrograms per gram at 5 to 7 centimeters. The general decreases in Hg concentrations with depth are attributed to historic variations in atmospheric Hg deposition rate. Hg stratigraphies combined with 210Pb and 137Cs dating analyses yield Hg chronologies that indicate a general increase in Hg accumulation rates in Devils Lake since the middle of the 19th century. Mean modern Hg accumulation rates in Creel Bay were 4.9 nanograms per square centimeter per year, and rates in Main Bay were 1.8 nanograms per square centimeter per year. Mean preindustrial Hg accumulation rates in Creel Bay were 1.2 nanograms per square centimeter per year, and rates in Main Bay were 1.6 nanograms per square centimeter per year. Relatively low Hg concentrations in recent sediments in the Devils Lake Basin, along with similarities in Hg accumulation rates between lakes in the Devils Lake Basin and other lakes in the northern interior of North America, indicate that local sources of Hg are not important sources of Hg. Results of the study indicate that accurate Hg chronologies are discernible in sediment cores collected from saline lakes. However, spatial and temporal variations in lake level and water chemistry common to saline lakes make interpretation of radioisotopic and geochemical chronologies difficult. Hg geochemistry in Devils Lake, and presumably in other saline lakes, is dynamic. The results of this study indicate that the absolute amount of sediment transported to Devils Lake, along with the associated Hg and total organic carbon, and the distribution of sedimentation patterns in Devils Lake may be affected by changing lake levels.
Mercury in the atmospheric and coastal environments of Mexico.
Ruelas-Inzunza, Jorge; Delgado-Alvarez, Carolina; Frías-Espericueta, Martín; Páez-Osuna, Federico
2013-01-01
In Mexico, published studies relating to the occurrence of Hg in the environment are limited. Among the main sources of Hg in Mexico are mining and refining of Auand Hg, chloralkali plants, Cu smelting, residential combustion of wood, carbo electric plants, and oil refineries. Hg levels are highly variable in the atmospheric compartment because of the atmospheric dynamics and ongoing metal exchange with the terrestrial surface. In atmospheric studies, Hg levels are usually reported as total gaseous Hg (TGM). In Mexico, TGM values ranged from 1.32 ng m-3 in Hidalgo state (a rural agricultural area) to 71.82 ng m-3 in Zacatecas state (an area where brick manufacturers use mining wastes as a raw material).Published information on mercury levels in the coastal environment comprise 21 studies, representing 21 areas, in which sediments constituted the substrate that was analyzed for Hg. In addition, water samples were analyzed for Hg in nine studies.Few studies exist on Hg levels in the Caribbean and in the southwest of the country where tourism is rapidly increasing. Hence, there is a need for establishing baseline levels of mercury in these increasingly visited areas. In regions where studies have been undertaken, Hg levels in sediments were highly variable. Variations in Hg sediment levels mainly result from geological factors and the varying degree of anthropogenic impacts in the studied areas. In areas that still have pristine or nearly pristine environments (e.g., coast, Baja California, Todos Santos Bay, and La Paz lagoon), sediment Hg levels ranged from <0.006 to 0.35 j.lg g-1 on a dry wt basis.When higher levels exist (0.34-57.94 j.lg g-1 on a dry wt basis), the environment generally shows the influence of inputs from mining, oil processing, agriculture,geothermal events, or harmful algal bloom events (e.g., Guaymas Bay and Coatzacoalcos estuary). From chronological studies performed in selected coastal lagoons in NW Mexico, it is clear that Hg fluxes to sediments have increased from2- to 15-fold in recent years. Since the 1940s, historical increases of Hg fluxes have resulted from higher agricultural waste releases and exhaust from the thermo electric plants. The levels of Hg in water reveal a moderate to elevated contamination of some Mexican coastal sites. In Urias lagoon (NW Mexico), moderate to high levels were found in the dissolved and suspended fraction, and these are related to shipping, the fishing industry, domestic effluents, and the presence of a thermoelectric plant. In Coatzacoalcos (SE Mexico), extremely elevated Hg levels were found during the decade of the 1970s. Low to moderate levels of Hg were measured in waters from the Alvarado lagoon (SE Mexico); those concentrations appear to be associated with river waters that became enriched with organic matter and suspended solids inthe brackish mixing zone.Regarding the Hg content in invertebrates, the use of bivalves (oysters and mussels)as biomonitors must be established along the coastal zones of Mexico, because some coastal lagoons have not been previously monitored. In addition, more research is needed to investigate shrimp farms that are associated with agricultural basins and receive effluents from several anthropogenic sources (e.g., mining activity and urban discharges). Hg residues in several vertebrate groups collected in Mexico have been studied.These include mammals, birds, reptiles, and fish. In elasmobranch species, the highest Hg concentration (27.2 flg g-1 dry wt) was found in the muscle of the smooth hammer head shark (Sphyrna zygaena). Teleost fish are the vertebrate group that has been most studied, with regard to Hg residue content; the highest value (5.67 11g g-1dry wt) was detected in the striped marlin (T. audax). Among reptiles, only marine turtles were studied; Hg levels found ranged from 0.795 in the liver to 0.0006flg g-1dry wt in the blood of L. olivacea. In birds, the highest Hg concentration (5.08 flg g-1dry wt) detected was in the liver of the olivaceous cormorant (P. olivaceous).Specimens from stranded marine mammals were also analyzed; levels of Hg ranged from 70.35 flg g-1 dry wt in the liver of stranded spinner dolphin (S. longirostris ), to0.145 flg g-1 dry wt in the muscle of gray whale (E. robustus). The presence of Hgin these marine animals is not thought to have caused the stranding of the animals.Other organisms like macroalgae and vestimentiferan tube worms were used to monitor the occurrence of Hg in the aquatic environment; levels were comparable to data reported on similar organisms from other areas of the world. Few investigation shave been carried out concerning the mercury content in human organs/tissues in Mexico. Considering the potential deleterious effects of Hg on kidney, lung, and the central nervous system, more information about human exposure to organic and inorganic forms of mercury and their effects is needed, both in Mexico and elsewhere.
Azaki, Alaa; Diab, Reem; Harb, Aya; Asmar, Roland; Chahine, Mirna N
2017-01-01
Two oscillometric devices, the Microlife WatchBP O3 ® and the Omron RS6 ® , designed for self-blood pressure measurement were evaluated according to the European Society of Hypertension (ESH)-International Protocol (IP) Revision 2010 in the obese population. The Microlife WatchBP O3 measures blood pressure (BP) at the brachial level and the Omron RS6 measures BP at the wrist level. The ESH-IP revision 2010 includes a total of 33 subjects. The difference between observers' and device BP values was calculated for each measure. A total of 99 pairs of BP differences were classified into three categories (≤5, ≤10, and ≤15 mmHg). The protocol procedures were followed precisely in each of the two studies. Microlife WatchBP O3 and Omron RS6 failed to fulfill the criteria of the ESH-IP. The mean differences between the device and the mercury readings were: 0.3±7.8 mmHg and -1.9±6.4 mmHg for systolic BP and diastolic BP, respectively, for Microlife WatchBP O3, and 2.7±9.9 mmHg for SBP and 3.5±11.1 mmHg for diastolic BP for Omron RS6. Microlife WatchBP O3 and Omron RS6 readings differing from the mercury standard by more than 5, 10, and 15 mmHg failed to fulfill the ESH-IP revision 2010 requirements in obese subjects. Therefore, the two devices cannot be recommended for use in obese subjects.
Sun, Xuejun; Wang, Kang; Kang, Shichang; Guo, Junming; Zhang, Guoshuai; Huang, Jie; Cong, Zhiyuan; Sun, Shiwei; Zhang, Qianggong
2017-01-01
Glaciers, particularly alpine glaciers, have been receding globally at an accelerated rate in recent decades. The glacial melt-induced release of pollutants (e.g., mercury) and its potential impact on the atmosphere and glacier-fed ecosystems has drawn increasing concerns. During 15th-20th August, 2011, an intensive sampling campaign was conducted in Qugaqie Basin (QB), a typical high mountain glacierized catchment in the inland Tibetan Plateau, to investigate the export and transport of mercury from glacier to runoff. The total mercury (THg) level in Zhadang (ZD) glacier ranged from <1 to 20.8 ng L -1 , and was slightly higher than levels measured in glacier melt water and the glacier-fed river. Particulate Hg (PHg) was the predominant form of Hg in all sampled environmental matrices. Mercury concentration in Qugaqie River (QR) was characterized by a clear diurnal variation which is linked to glacier melt. The estimated annual Hg exports by ZD glacier, the upper river basin and the entire QB were 8.76, 7.3 and 157.85 g, respectively, with respective yields of 4.61, 0.99 and 2.74 μg m -2 yr -1 . Unique landforms and significant gradients from the glacier terminus to QB estuary might promote weathering and erosion, thereby controlling the transport of total suspended particulates (TSP) and PHg. In comparison with other glacier-fed rivers, QB has a small Hg export yet remarkably high Hg yield, underlining the significant impact of melting alpine glaciers on regional Hg biogeochemical cycles. Such impacts are expected to be enhanced in high altitude regions under the changing climate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, X.; Zhang, Q.
2016-12-01
Glaciers, particularly alpine glaciers, have been receding globally at an accelerated rate in recent decades. The glacial melt-induced release of pollutants (e.g., mercury) and its potential impact on the atmosphere and glacier-fed ecosystems has drawn increasing concerns. During 15th to 20th August, 2011, an intensive sampling campaign was conducted in Qugaqie Basin (QB), a typical high mountain glacierized catchment in the inland Tibetan Plateau, to investigate the export and transport of mercury from glacier to runoff. The total mercury (THg) level in Zhadang (ZD) glacier ranged from < 1 to 20.8 ng L-1, and was slightly higher than levels measured in glacier melt water and the glacier-fed river. Particulate Hg (PHg) was the predominant form of Hg in all sampled environmental matrices. Mercury concentration in Qugaqie River (QR) was characterized by a clear diurnal variation which is linked to glacier melt. The estimated annual Hg exports by ZD glacier, the upper river basin and the entire QB were 8.76, 7.3 and 157.85 g, respectively, with respective yields of 4.61, 0.99 and 2.74 μg m-2 yr-1. Unique landforms and significant gradients from the glacier terminus to QB estuary might promote weathering and erosion, thereby controlling the transport of total suspended particulates (TSP) and PHg. In comparison with other glacier-fed rivers, QB has a small Hg export yet remarkably high Hg yield, underlining the significant impact of melting alpine glaciers on regional Hg biogeochemical cycles. Such impacts are expected to be enhanced in high altitude regions under the changing climate.
Pathways of Methylmercury Transfer to the Water Column Across Multiple Estuaries
NASA Astrophysics Data System (ADS)
Schartup, A. T.; Balcom, P. H.; Mason, R. P.; Chen, C.
2014-12-01
Estuarine water column methylmercury (MeHg) is an important driver of bioaccumulation in pelagic organisms so it is important to understand the sources and cycling of MeHg. As MeHg biomagnifies in food webs, increased water column concentrations can be transferred to fish consumed by humans. Few studies have taken a multi-estuary approach to look at MeHg cycling in the water column of these important MeHg producing areas. We examined the distributions and partitioning of sediment and water column MeHg across a geographic range of estuaries. In 2008 we sampled 10 shallow-water estuarine sites from Maine to New Jersey, sampled 11 sites in 4 estuaries in 2009, and sampled at 3 estuarine turbidity maximum (ETM) sites in 1 estuary in 2012. Sediment measurements included both solid phase and pore water MeHg and total mercury (HgT). Water column parameters included dissolved and particulate MeHg and HgT, total suspended solids, nutrients, and dissolved organic carbon. Average suspended particle MeHg was highest at Wells (ME; 6 to 11.5 pmol/g; 4.5 to 7% of HgT) and lowest at Portsmouth (NH) and in Long Island Sound (CT-NY; 0.2 to 5.5 pmol/g; 0.25 to 3.75% of HgT). Average water column dissolved MeHg was highest in the Delaware River ETM (0.5 to 0.7 pM; 16 to 24% of HgT) and lowest at Portsmouth (0.06 to 0.12 pM; 1 to 2% of HgT). Significant positive correlations were found between MeHg and HgT across multiple estuaries in both sediment and the water column in 2008 and 2009. In contrast, water column dissolved and suspended particle MeHg do not correlate well with sediment MeHg or HgT, pore water MeHg or methylation rates in sediment across estuaries, indicating that sediment is often not a good predictor of water MeHg levels. However, ratios of average dissolved:pore water MeHg and suspended particle:sediment MeHg are close to 1 in the Delaware River ETM, suggesting that sediment supplies MeHg to the water column in this turbulent region, but average pore water MeHg was uniformly elevated above water dissolved MeHg in the other estuaries studied. Several estuaries had higher MeHg at low tide suggesting input as water was delivered from the watersheds. We conclude that the relative importance of sources is dependent on the physical (water residence time, water depth) and chemical characteristics (sediment organic carbon content) of the estuary.
Marshall, Bruce G; Veiga, Marcello M; Kaplan, Robert J; Adler Miserendino, Rebecca; Schudel, Gary; Bergquist, Bridget A; Guimarães, Jean R D; Sobral, Luis G S; Gonzalez-Mueller, Carolina
2018-04-25
In Portovelo in southern Ecuador, 87 gold processing centers along the Puyango-Tumbes River produce an estimated 6 tonnes of gold per annum using a combination of mercury amalgamation and/or cyanidation and processing poly-metallic ores. We analysed total Hg, Hg isotopes, total arsenic, cadmium, copper, lead and zinc in water and sediment along the Puyango in 2012-2014. The highest total mercury (THg) concentrations in sediments were found within a 40 km stretch downriver from the processing plants, with levels varying between 0.78-30.8 mg kg-1 during the dry season and 1.80-70.7 mg kg-1 during the wet season, with most concentrations above the CCME (Canadian Council of Ministers of the Environment) Probable Effect Level (PEL) of 0.5 mg kg-1. Data from mercury isotopic analyses support the conclusion that mercury use during gold processing in Portovelo is the source of Hg pollution found downstream in the Tumbes Delta in Peru, 160 km away. The majority of the water and sediment samples collected from the Puyango-Tumbes River had elevated concentrations of, arsenic, cadmium, copper, lead and zinc exceeding the CCME thresholds for the Protection of Aquatic Life. At monitoring points immediately below the processing plants, total dissolved concentrations of these metals exceeded the thresholds by 156-3567 times in surface waters and by 19-740 times in sediment. The results illustrate a significant transboundary pollution problem involving Hg and other toxic metals, amplified by the fact that the Puyango-Tumbes River is the only available water source in the semi-arid region of northern Peru.
Muscle mercury and selenium in fishes and semiaquatic mammals from a selenium-deficient area.
Kalisinska, Elzbieta; Lanocha-Arendarczyk, Natalia; Kosik-Bogacka, Danuta; Budis, Halina; Pilarczyk, Bogumila; Tomza-Marciniak, Agnieszka; Podlasinska, Joanna; Cieslik, Lukasz; Popiolek, Marcin; Pirog, Agnieszka; Jedrzejewska, Ewa
2017-02-01
The aim of this study was to investigate and compare total mercury (Hg), selenium (Se), and Se:Hg molar ratios in fish muscles (phytophages n=3; benthophages n=32; predators n=5) and semiaquatic carnivores, including piscivores (the European otter n=8, the feral American mink n=7) and the omnivorous raccoon (n=37) from a riverine European ecosystem in a Se-deficient area. The Hg concentration in fish reached 0.337μg/g dry weight, dw (0.084μg/g wet weight, ww). We found significant differences among Hg levels in tested vertebrate groups (predators vs benthophages: 0.893 vs 0.281μg/g; piscivores vs omnivores: 6.085 vs 0.566μg/g dw). Fish groups did not differ in Se concentrations, with a mean value of 0.653μg/g dw. Significant differences were revealed between Se levels in piscivorous and omnivorous carnivores (0.360 vs 0.786μg/g dw, respectively). Fish Se:Hg molar ratio values were >2.2. Benthophages had higher the ratio than predators but similar to phytophages. Among carnivores, piscivores had much lower the ratio than raccoon (0.14 vs 3.75) but raccoon and fish medians did not significantly differ. We found almost two times higher Se levels in fish and raccoons compared to piscivores, possibly resulting from lower fish Se digestibility by piscivores in contrast to higher absorption of plant Se by many fish and omnivorous raccoons. Considering that a tissue Se:Hg molar ratio <1 may be connected with a Hg toxicity potential increase, we assume that piscivores in Se-deficient area are in worse situation and more exposed to Hg than fish and omnivores. Copyright © 2016 Elsevier Inc. All rights reserved.
Tian, Kang; Hu, Wenyou; Xing, Zhe; Huang, Biao; Jia, Mengmeng; Wan, Mengxue
2016-12-01
The evaluation of heavy metals (HMs) in greenhouse soils is crucial for both environmental monitoring and human health; thus, it is imperative to determine their concentrations, identify their sources and assess their potential risks. In this study, eight metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 167 surface soils were investigated in two representative greenhouse vegetable systems of China: perennial solar greenhouse (SG) and seasonal plastic greenhouse (PG). The results indicated accumulations of Cd, Cu, Hg and Zn in the SG soils and Cd, Pb, Hg and Zn in the PG soils, with higher concentrations than the background values. In particular, Cd and Hg exhibited high levels of pollution under both GVP systems due to their positive Igeo values. Principle component analysis (PCA) and correlation analysis suggested that Cd, Cu, Hg and Zn in the SG soils and Cd, Hg and Zn in the PG soils were mainly related to intensive farming practices; Pb in the PG soils was significantly affected by atmospheric deposition. The results showed that soil characteristics, in particular soil organic matter, total nitrogen and total phosphorus, exerted significant influence on Hg, Cu, Cd, and Zn under the SG system. However, the HMs in the PG soils were weakly affected by soil properties. Overall, this study provides comparative research on the accumulation, potential risks and sources of HMs in two typical greenhouse soils in China, and our findings suggest that, Cd and Hg in both greenhouse soils could potentially represent environmental problems. Copyright © 2016 Elsevier Ltd. All rights reserved.
In-Beam Studies of High Spin States in Mercury -182 and MERCURY-184
NASA Astrophysics Data System (ADS)
Bindra, Kanwarjit Singh
The high spin states in ^{182 }Hg were studied by using the reaction ^{154}Gd(^{32}S, 4n) at the Holifield Heavy Ion Research Facility. In addition, the in-beam gamma-rays in ^{183}Hg were identified for the first time using the reaction ^{155}Gd(^{32}S, 4n) at the Argonne BGO-FMA facility. Five new bands were observed for the first time in ^{182}Hg by studying the gamma-gamma coincidence relationships. The spins and parities of the nuclear levels were assigned on the basis of the measured ratios of directional correlations for oriented nuclei (DCO ratios). Shape co-existence similar to that observed in ^{184{-}186}Hg was established. The well deformed prolate band was extended to a state with tentative spin (20^+). The 2^+ state of the prolate band was identified at an energy of 548.6 keV which is higher in energy than in ^{184}Hg. A two parameter band mixing calculation yielded an interaction strength of 87 keV between the prolate 2^+ and the oblate 2^+ states. Four of the five new bands were found to be similar in behavior to ones seen in ^{184}Hg. An attempt was made to study the behavior of some of these bands at high spins by analyzing their kinematic and dynamic moments of inertia. The gamma-ray transitions in ^{183}Hg were identified from fragment-gamma and gamma-gamma coincidence measurements. A total of five bands of levels were identified and the spins and parities of the levels were assigned by comparing the level scheme of ^{138 }Hg obtained with that of ^ {185}Hg established previously. The interpretation of these bands in terms of associated quasi-particle configurations also relies on noted similarities with the structure of ^{185}Hg. Shape co-existence was established in ^{183}Hg as a result of this study. Two of the bands associated with the (624) 9/2^+ orbital were found to exhibit signature splitting, as expected for i _{13/2} excitations built on the prolate shape with moderate deformation. Two other bands which do not show signature splitting have been associated with the (514) 7/2- orbital and the gamma-ray transition energies in these bands were found to be "identical" to those present in bands with the same configuration in ^{185 }Hg.
Tran, Thi Anh Thu; Dinh, Quang Toan; Cui, Zeiwei; Huang, Jie; Wang, Dan; Wei, Tianjiao; Liang, Dongli; Sun, Xin; Ning, Ping
2018-01-01
Selenite (Se (IV)) and selenate (Se (IV)) have recently been demonstrated to be equally effective in inhibiting mercury (Hg) phytotoxicity to plants. This assertion is still unclear. In this study, we aimed to explore the potential effects of Se species (Se 4+ and Se 6+ ) on the inhibition of the mercury (Hg) bioavailability to pak choi in dry land. Pot experiments with exposure to different dosages of mercuric chloride (HgCl 2 ) and selenite (Na 2 SeO 3 ) or selenate (Na 2 SeO 4 ) were treated. To compare the influence of Se (IV) and Se (VI) on the bioaccumulation and bioavailability of Hg, the levels of total Hg in different pak choi (Brassica chinensis L.) tissues (roots and shoots) and the distribution changes of Hg fractions in soil before planting and after harvest were determined as well as the Hg I R values in soils (relative binding intensity) were analyzed. Results showed that application Se (IV) reduced the concentrations of Hg in pak choi roots more than Se (VI). Hg concentrations were also decreased in pak choi shoots in Se (IV) treatments, while which notably increased in Se (VI) treatments. Thus, Se (IV) plays a more important role than Se (VI) in limiting the absorption and bioaccumulation of Hg in pak choi. Moreover, this inhibition may only significantly occur when Se (IV) is at an appropriate level (2.5mg/kg). In addition, the good correlations between the proportions of mobile Hg fractions (soluble and exchangeable fractions), I R values with the Hg concentrations in plants were observed. This affirmed the importance of the Hg fractions transformation and the I R indicator of Hg in the assessment of their bioavailability. Our findings regarding the importance of Se (IV) influence in reducing Hg bioaccumulation not only provided the correct appraisal about the effect of Se species on the inhibition of the Hg phytotoxicity to pak choi in dry land, but also be a good reference for selecting Se fertilizer forms (Se 4+ or Se 6+ ). Copyright © 2017 Elsevier Inc. All rights reserved.
Mercury flow through an Asian rice-based food web.
Abeysinghe, Kasun S; Qiu, Guangle; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Evers, David C; Goodale, Morgan W; Hintelmann, Holger; Liu, Shengjie; Mammides, Christos; Quan, Rui-Chang; Wang, Jin; Wu, Pianpian; Xu, Xiao-Hang; Yang, Xiao-Dong; Feng, Xinbin
2017-10-01
Mercury (Hg) is a globally-distributed pollutant, toxic to humans and animals. Emissions are particularly high in Asia, and the source of exposure for humans there may also be different from other regions, including rice as well as fish consumption, particularly in contaminated areas. Yet the threats Asian wildlife face in rice-based ecosystems are as yet unclear. We sought to understand how Hg flows through rice-based food webs in historic mining and non-mining regions of Guizhou, China. We measured total Hg (THg) and methylmercury (MeHg) in soil, rice, 38 animal species (27 for MeHg) spanning multiple trophic levels, and examined the relationship between stable isotopes and Hg concentrations. Our results confirm biomagnification of THg/MeHg, with a high trophic magnification slope. Invertivorous songbirds had concentrations of THg in their feathers that were 15x and 3x the concentration reported to significantly impair reproduction, at mining and non-mining sites, respectively. High concentrations in specialist rice consumers and in granivorous birds, the later as high as in piscivorous birds, suggest rice is a primary source of exposure. Spiders had the highest THg concentrations among invertebrates and may represent a vector through which Hg is passed to vertebrates, especially songbirds. Our findings suggest there could be significant population level health effects and consequent biodiversity loss in sensitive ecosystems, like agricultural wetlands, across Asia, and invertivorous songbirds would be good subjects for further studies investigating this possibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jitaru, Petru; Adams, Freddy C
2004-11-05
This paper reports the development of an analytical approach for speciation analysis of mercury at ultra-trace levels on the basis of solid-phase microextraction and multicapillary gas chromatography hyphenated to inductively coupled plasma-time-of-flight mass spectrometry. Headspace solid-phase microextraction with a carboxen/polydimethylsyloxane fiber is used for extraction/preconcentration of mercury species after derivatization with sodium tetraethylborate and subsequent volatilization. Isothermal separation of methylmercury (MeHg), inorganic mercury (Hg2+) and propylmercury (PrHg) used as internal standard is achieved within a chromatographic run below 45 s without the introduction of spectral skew. Method detection limits (3 x standard deviation criteria) calculated for 10 successive injections of the analytical reagent blank are 0.027 pg g(-1) (as metal) for MeHg and 0.27 pg g(-1) for Hg2+. The repeatability (R.S.D., %) is 3.3% for MeHg and 3.8% for Hg2+ for 10 successive injections of a standard mixture of 10pg. The method accuracy for MeHg and total mercury is validated through the analysis of marine and estuarine sediment reference materials. A comparison of the sediment data with those obtained by a purge-and-trap injection (PTI) method is also addressed. The analytical procedure is illustrated with some results for the ultra-trace level analysis of ice from Antarctica for which the accuracy is assessed by spike recovery experiments.
Protective effect of selenium on methylmercury toxicity: a possible mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.W.; Suber, R.
1982-09-01
Young adult male Charles River rats were injected (i.p.) with 2.0 mg/kg b.w. methylmercury chloride (MeHg), with 2.0 mg/kg b.w. sodium selenite (Se), or with 2.0 mg/kg b.w. MeHg and 2.0 mg/kg b.w. Se. Erythrocytic glutathione peroxidase activity was determined and the rate of oxidation of NADPH with t-butyl-hydroperoxide as a substrate was followed at 340 nm and 25/sup 0/C. Toxic signs (crossing reflex of the hind limbs) were displayed by MeHg-treated animals by the 6th week of intoxication. By 8 weeks of the experiment, overt neurological signs (crossing reflex, ataxic gait, and weight loss) were observed in MeHg-treated animals.more » No observable toxic signs or symptoms were evident in the control animals (saline or Se-treated) and in the MeHg/Se treated rats. Results have confirmed that exposure to methyl-mercury suppresses the activity of glutathione peroxidase. Furthermore, it was demonstrated that with co-administration of selenium (sodium selenite), the inhibitory effect of MeHg on GSH-Px was totally alleviated. These findings suggest that the level of GSH-Px level is important in influencing the toxic consequences in MeHg-intoxicated animals and may be useful as a predictive indicator for methylmercury toxic conditions of the animals. (JMT)« less
Lino, A S; Kasper, D; Guida, Y S; Thomaz, J R; Malm, O
2018-07-01
This work aimed to evaluate associated risks of fish consumption to human health, concerning mercury (Hg) and selenium (Se) concentrations in fish species largely consumed in the Tapajós River basin in the Brazilian Amazon. Total mercury (THg), methylmercury (MeHg) and Se concentrations were measured in 129 fish specimens from four sites of the Tapajós River basin. Estimated daily intake (EDI) of Hg and Se were reported regarding fish consumption. EDI were compared with the reference value of provisional tolerable daily intake proposed by the World Health Organization (WHO). Se:Hg ratios and selenium health benefit values (Se HBVs) seem to offer a more comprehensive fish safety model. THg concentrations in fishes ranged from 0.03 to 1.51 μg g -1 of wet weight (w.w.) and MeHg concentrations ranged from 0.02 to 1.44 μg g -1 (w.w.). 80% of the samples were below the value of Hg recommended by the WHO for human consumption (0.5 μg g -1 w.w.). However, Hg EDI exceeded the dose suggested by the United States Environmental Protection Agency (0.1 μg kg -1 day -1 ), due to the large level of fish consumption in that area. Se concentrations in fishes ranged from 0.02 to 0.44 μg g -1 w.w. An inverse pattern was observed between Hg and Se concentrations in the trophic chain (highest levels of Se in the lowest trophic levels). The molar ratio Se:Hg and Se HBVs were higher in iliophagous and herbivorous fishes, which is noteworthy to reduce toxic effects of Hg contamination. For planktivores, the content of Se and Hg was almost equimolar. Carnivorous fishes - with the exception of Hemisorubim platyrhynchos and Pseudoplatystoma fasciatum -, showed Se:Hg ratios <1. Thus, they do not act as a favorable source of Se in the diet. Therefore, reduced intake of carnivorous fishes with preferential consumption of iliophages, herbivores and, to some extent, even planktivores should be promoted as part of a healthier diet. Copyright © 2018 Elsevier GmbH. All rights reserved.
Metal content in caviar of wild Persian sturgeon from the southern Caspian Sea.
Hosseini, S M; Sobhanardakani, S; Navaei, M Batebi; Kariminasab, M; Aghilinejad, S M; Regenstein, J M
2013-08-01
Caviar (fish roe of sturgeon) may contain high levels of contaminants. An inductively coupled plasma-optical emission spectrometer and a direct mercury analyzer were used to assess the contents of four heavy metals (Hg, Se, Sn, and Ba) in caviar of wild Persian sturgeon sea foods. The levels of Hg ranged from 1.39 to 1.50 μg g(-1), Se from 0.90 to 1.10 μg g(-1), Sn from 0.23 to 0.33, and Ba from 0.71 to 1.17 µg g(-1). Evaluation of these levels showed that except for Hg, the average concentrations of other metals are significantly lower than adverse level for the human consumption when compared with Food and Agricultural Organization of the United Nations and World Health Organization permissible limits. Therefore, their contribution to the total body burden of these heavy metals can be considered as negligibly small given that caviar is a luxury product.
Residential metal contamination and potential health risks of ...
Potosí, Bolivia, is the site of centuries of historic and present-day mining of the Cerro Rico Mountain, known for its rich polymetallic deposits, and was the site of large-scale Colonial era silver refining operations, both of which have left a legacy of pollution. In this study, trace elements were quantified in adobe brick, dirt floor, and surface dust samples from 49 houses. Mean concentrations of total mercury (Hg), lead (Pb), and arsenic (As) were statistically significantly greater than concentrations measured in Sucre, Bolivia, a non-mining town used as a reference site, and exceeded US-based soil screening levels that are designed to be protective of human health. Adobe brick samples were analyzed for bioaccessible concentrations of elements using a simulated gastric fluid (GF) extraction. Mean GF extractable concentrations of Hg, As, and Pb were 0.841, 14.9, and 30.2 percent of the total concentration, respectively. Total and GF extractable concentrations of these elements were used to estimate exposure and potential health risks to children following incidental ingestion of adobe brick particles. Risks were assessed using a range of potential ingestion rates (50-1000 mg/day). Although the majority of households have total Hg, As, and Pb concentrations that represent a potential health risk, fewer are of concern when GF extractable concentrations are considered at lower ingestion rates. For Hg, only a small percentage of the sampled houses have GF ex
Khaled, Eman M; Meguid, Nagwa A; Bjørklund, Geir; Gouda, Amr; Bahary, Mohamed H; Hashish, Adel; Sallam, Nermin M; Chirumbolo, Salvatore; El-Bana, Mona A
2016-12-01
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects social, communication, and behavioral development. Recent evidence supported but also questioned the hypothetical role of compounds containing mercury (Hg) as contributors to the development of ASD. Specific alterations in the urinary excretion of porphyrin-containing ring catabolites have been associated with exposure to Hg in ASD patients. In the present study, the level of urinary porphyrins, as biomarkers of Hg toxicity in children with ASD, was evaluated, and its correlation with severity of the autistic behavior further explored. A total of 100 children was enrolled in the present study. They were classified into three groups: children with ASD (40), healthy controls (40), and healthy siblings of the ASD children (20). Children with ASD were diagnosed using DSM-IV-TR, ADI-R, and CARS tests. Urinary porphyrins were evaluated within the three groups using high-performance liquid chromatography (HPLC), after plasma evaluation of mercury (Hg) and lead (Pb) in the same groups. Results showed that children with ASD had significantly higher levels of Hg, Pb, and the porphyrins pentacarboxyporphyrin, coproporphyrin, precoproporphyrin, uroporphyrins, and hexacarboxyporphyrin compared to healthy controls and healthy siblings of the ASD children. However, there was no significant statistical difference in the level of heptacarboxyporphyrin among the three groups, while a significant positive correlation between the levels of coproporphyrin and precoproporphyrin and autism severity was observed. Mothers of ASD children showed a higher percentage of dental amalgam restorations compared to the mothers of healthy controls suggesting that high Hg levels in children with ASD may relate to the increased exposure to Hg from maternal dental amalgam during pregnancy and lactation. The results showed that the ASD children in the present study had increased blood Hg and Pb levels compared with healthy control children indicating that disordered porphyrin metabolism might interfere with the pathology associated with the autistic neurologic phenotype. The present study indicates that coproporphyrin and precoproporhyrin may be utilized as possible biomarkers for heavy metal exposure and autism severity in children with ASD.
Mercury contamination of fish and shrimp samples available in markets of Mashhad, Iran.
Vahabzadeh, Maryam; Balali-Mood, Mahdi; Mousavi, Seyed-Reza; Moradi, Valiollah; Mokhtari, Mehrangiz; Riahi-Zanjani, Bamdad
2013-09-01
Fish and shrimp are common healthy sources of protein to a large percentage of the world's population. Hence, it is vital to evaluate the content of possible contamination of these marine-foods. Six species of fishes and two species of shrimps were collected from the local markets of Mashhad, Iran. The mercury (Hg) concentration of samples was determined by atomic absorption spectrophotometry using a mercuric hydride system (MHS 10). High concentration of total Hg was found in Clupeonella cultriventris caspia (0.93 ± 0.14 μg/g) while the lowest level was detected in Penaeus indicus (0.37 ± 0.03 μg/g). Mean Hg levels in fish and shrimp samples were 0.77 ± 0.08 μg/g and 0.51 ± 0.05 μg/g, respectively. Farmed species (except for P. indicus) and all samples from Persian Gulf and the Caspian Sea had mean mercury concentrations above 0.5 μg/g, which is the maximum standard level recommended by Joint FAO/WHO/Expert Committee on Food Additives (JECFA). All samples had also mean Hg concentrations that exceeded EPA's established safety level of 0.3 μg/g. A little more extensive analysis of data showed that weekly intake of mercury for the proportion of the Iranian population consuming Hg contaminated fish and shrimp is not predicted to exceed the respective provisional tolerable weekly intakes recommended by JECFA. However, the Iranian health and environmental authorities should monitor Hg contamination of the fishes and shrimps before marketing.
Krey, Anke; Kwan, Michael; Chan, Hing Man
2014-11-01
Mercury (Hg) has been detected in polar bear brain tissue, but its biological effects are not well known. Relationships between Hg concentrations and neurochemical enzyme activities and receptor binding were assessed in the cerebellum, frontal lobes, and occipital lobes of 24 polar bears collected from Nunavik (Northern Quebec), Canada. The concentration-response relationship was further studied with in vitro experiments using pooled brain homogenate of 12 randomly chosen bears. In environmentally exposed brain samples, there was no correlative relationship between Hg concentration and cholinesterase (ChE) activity or muscarinic acetylcholine receptor (mAChR) binding in any of the 3 brain regions. Monoamine oxidase (MAO) activity in the occipital lobe showed a negative correlative relationship with total Hg concentration. In vitro experiments, however, demonstrated that Hg (mercuric chloride and methylmercury chloride) can inhibit ChE and MAO activities and muscarinic mAChR binding. These results show that Hg can alter neurobiochemical parameters but the current environmental Hg exposure level does have an effect on the neurochemistry of polar bears from northern Canada. © 2014 SETAC.
Sample weight and digestion temperature as critical factors in mercury determination in fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadiq, M.; Zaidi, T.H.; Al-Mohana, H.
The concern about mercury (Hg) pollution of the marine environment started with the well publicized case of Minimata (Japan) where in the 1950s several persons died or became seriously ill after consuming fish or shellfish containing high levels of methylmercury. It is now accepted that Hg contaminated seafoods constitute a hazard to human health. To safeguard humans, accurate determination of Hg in marine biota is, therefore, very important. Two steps are involved in the determination of total Hg in biological materials: (a) decomposition of organic matrix (sample preparation), and (b) determination of Hg in aliquot samples. Although the procedures formore » determining Hg using the cold vapor technique are well established, sample preparation procedures have not been standardized. In general, samples of marine biota have been prepared by digesting different weights at different temperatures, by using mixtures of different chemicals and of varying quantities, and by digesting for variable durations. The objectives of the present paper were to evaluate the effects of sample weights and digestion temperatures on Hg determination in fish.« less
The removal of mercury from dental-operatory wastewater by polymer treatment.
Pederson, E D; Stone, M E; Ovsey, V G
1999-01-01
The mercury (Hg) content of dental-operatory wastewater has become an issue in many localities, and Hg removal is rapidly becoming a matter of concern for all dental clinics. This preliminary study tested the efficacy of polymers for the removal of Hg contaminants from the dental-unit wastewater stream. Two commercially available polymers were used to treat dental-operatory wastewater. Used separately, each polymer removed from 74.9% to 88.4% of the Hg from dental-wastewater supernatant. The polymers used in combination, within the recommended pH range, removed up to 99.9% of the total Hg from dental-wastewater supernatant. The estimated optimal concentration of the two polymers is approximately 2.33 ml of each per liter of waste, and more than 90% of the Hg may be removed with 0.13 ml/l. Results indicate that a combination of the two polymers may sufficiently reduce Hg levels to allow discharge of clarified supernatants into public sewer systems. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9872711
Jimenez-Corona, Aida; Lopez-Ridaura, Ruy; Stern, Michael P; Gonzalez-Villalpando, Clicerio
2007-01-01
BACKGROUND Blood pressure (BP) levels below the pre-hypertension category may be associated with the risk of developing hypertension. We estimated the incidence rates of hypertension in low-income Mexican population according to several subcategories of baseline BP within normal and pre-hypertension categories. METHODS A total of 1572 nonhypertensive men (n=632) and non-pregnant women (n=940), aged 35 to 64 years at baseline, were followed for a median of 5.8 years. Hypertension was defined as systolic blood pressure (SBP) ≥140 mm Hg, diastolic blood pressure (DBP) ≥90 mm Hg, or self-reported physician diagnosis with anti-hypertensive medications. RESULTS During follow-up, 267 subjects developed hypertension, of whom 83 were men and 184 were women. Age-adjusted incidence rate was higher in women (37.1 per 1000 person-years) than in men (23.7 per 1000 person-years). There was a significant association between BP levels at baseline and hypertension incidence even within the normal category. For the upper levels of normal SBP (110-119 mm Hg), the HR (95%CI) was 2.43 (1.50-3.93) in women and 2.44 (1.05-5.69) in men, compared with SBP <110 mm Hg. For the upper levels of normal DBP (70-79 mm Hg), the HR (95%CI) was 2.33 (1.65-3.31) in women and 1.80 (0.92-3.52) in men, compared with DBP <70 mm Hg, after adjustment for recognized predictors. CONCLUSIONS High risk of hypertension incidence was associated with levels of BP even within the normal category. This information could help define a population at high risk of progression to hypertension, in order to establish preventive measures. PMID:17765131
Mercury methylation in mine wastes collected from abandoned mercury mines in the USA
Gray, J.E.; Hines, M.E.; Biester, H.; Lasorsa, B.K.; ,
2003-01-01
Speciation and transformation of Hg was studied in mine wastes collected from abandoned Hg mines at McDermitt, Nevada, and Terlingua, Texas, to evaluate formation of methyl-Hg, which is highly toxic. In these mine wastes, we measured total Hg and methyl-Hg contents, identified various Hg compounds using a pyrolysis technique, and determined rates of Hg methylation and methyl-Hg demethylation using isotopic-tracer methods. Mine wastes contain total Hg contents as high as 14000 ??g/g and methyl-Hg concentrations as high as 88 ng/g. Mine wastes were found to contain variable amounts of cinnabar, metacinnabar, Hg salts, Hg0, and Hg0 and Hg2+ sorbed onto matrix particulates. Samples with Hg0 and matrix-sorbed Hg generally contained significant methyl-Hg contents. Similarly, samples containing Hg0 compounds generally produced significant Hg methylation rates, as much as 26%/day. Samples containing mostly cinnabar showed little or no Hg methylation. Mine wastes with high methyl-Hg contents generally showed low methyl-Hg demethylation, suggesting that Hg methylation was dominant. Methyl-Hg demethylation was by both oxidative and microbial pathways. The correspondence of mine wastes containing Hg0 compounds and measured Hg methylation suggests that Hg0 oxidizes to Hg2+, which is subsequently bioavailable for microbial Hg methylation.
Impaired reduction of nocturnal systolic blood pressure and severity of diabetic retinopathy
Felício, João Soares; Pacheco, Juliana Torres; Ferreira, Sandra Roberta; Plavnik, Frida; Moisés, Valdir; Junior, Oswaldo Kohlmann; Ribeiro, Artur Beltrame; Zanella, Maria Tereza
2007-01-01
The aim of the present study was to evaluate the influence of elevated levels of nocturnal blood pressure (BP) on diabetic retinopathy (DR). A total of 88 diabetic hypertensive patients were divided according to the stage of DR. They underwent 24 h ambulatory BP monitoring and ophthalmological evaluation, and their average level of fasting blood glucose as well as their glycemic control index (percentage of fasting blood glucose higher than 11.2 mmol/L over the previous four years) were calculated. When diabetic patients with retinopathy (n=29) (group 1) were compared with patients without retinopathy (n=59) (group 2), a significant difference was observed in diabetes duration (124 months [range six to 460 months] versus 43 months [range six to 365 months], respectively; P<0.05). In addition, group 1 showed higher levels of nocturnal systolic BP (NSBP) (141 ± 22 mmHg versus 132±18 mmHg; P<0.05). However, no significant differences were found between the two groups (group 1 and group 2) when diurnal pressoric levels were compared (diurnal systolic BP, 153±19 mmHg versus 146±19 mmHg, P not significant; and diurnal diastolic BP, 91±9 mmHg versus 91±13 mmHg, P not significant). DR correlated with diabetes duration (r=0.26; P<0.05) and with glycemic control index (r=0.24; P<0.01). Multivariate regression analysis showed NSBP to be an independent predictor of DR (r2=0.12; P<0.01). Moreover, patients with severe stages of DR (preproliferative, proliferative or macular edema) showed a lower decrease of NSBP than the other patients (3.9±6.0 mmHg versus 9.2±6.0 mmHg; P<0.05). The present study suggests that the absence of 24 h normal pressoric rhythm can interfere with the prevalence and severity of DR. PMID:18650998
Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.
Lee, Seyong; Han, Seunghee; Gill, Gary A
2011-06-01
Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved). This phase speciation influences the fate and cycling of Hg in estuarine systems. However, limited information exists on the estuarine distribution of colloidal phase Hg, mainly due to the technical difficulties involved in measuring it. In the present study, we determined Hg and organic carbon levels from unfiltered, filtered (<0.45 μm), colloidal (10 kDa-0.45 μm), and truly dissolved (<10 kDa) fractions of Galveston Bay surface water in order to understand the estuarine mixing behavior of Hg species as well as interactions of Hg with colloidal organic matter. For the riverine end-member, the colloidal fraction comprised 43 ± 11% of the total dissolved Hg pool and decreased to 17 ± 8% in brackish water. In the estuarine mixing zone, dissolved Hg and colloidal organic carbon showed non-conservative removal behavior, particularly in the low salinity (<15 ppt) region. This removal may be caused by salt-induced coagulation of colloidal matter and consequent removal of dissolved Hg. The particle-water interaction, K(d) ([particulate Hg (mol kg(-1))]/[dissolved Hg (mol L(-1))]) of Hg decreased as particle concentration increased, while the particle-water partition coefficient based on colloidal Hg and the truly dissolved Hg fraction, K(c) ([colloidal Hg (mol kg(-1))]/[truly dissolved Hg (mol L(-1))]) of Hg remained constant as particle concentration increased. This suggests that the particle concentration effect is associated with the amount of colloidal Hg, increasing in proportion to the amount of suspended particulate matter. This work demonstrates that, colloidal organic matter plays an important role in the transport, particle-water partitioning, and removal of dissolved Hg in estuarine waters.
Milatou, Niki; Dassenakis, Manos; Megalofonou, Persefoni
2015-01-01
The objective of this study was to determine the current levels of heavy metals and trace elements in Atlantic bluefin tuna muscle tissues and how they are influenced by the fattening process and various life history parameters to ascertain whether the concentrations in muscle tissue exceed the maximum levels defined by the European Commission Decision and to evaluate the health risk posed by fish consumption. A total of 20 bluefin tuna reared in sea cages, ranging from 160 to 295 cm in length and from 80 to 540 kg in weight, were sampled from a bluefin tuna farm in the Ionian Sea. The condition factor K of each specimen was calculated and their age was estimated. Heavy metal and trace element (Hg, Zn, Fe and Cu) contents were determined in muscle tissue using cold vapour atomic absorption spectrometry and flame and graphite furnace atomic absorption spectrometry. The total Hg concentrations ranged from 0.28 to 1.28 mg kg(-1) w/w, Zn from 5.81 to 76.37 mg kg(-1) w/w, Fe from 12.14 to 39.58 mg kg(-1) w/w, and Cu from 0.36 to 0.94 mg kg(-1) w/w. Only 5% of the muscle samples of tuna contained Hg above the maximum level laid down by the European Commission Decision. Moreover, 15% of the muscle samples contained Zn above the maximum level, while Fe and Cu concentrations were within the acceptable tolerable guideline values. The reared bluefin tuna had lower concentrations of Hg than the wild ones from the Mediterranean Sea. Hg and Fe concentrations showed a positive relationship with size and age of bluefin tuna, whereas negative relationships were found for the concentrations of Zn and Cu. The estimated dietary intake values of the analysed metals were mostly below the derived guidelines.
Concentration and dry deposition of mercury species in arid south central New Mexico (2001-2002)
Caldwell, Colleen A.; Swartzendruber, Philip; Prestbo, Eric
2006-01-01
This research was initiated to characterize atmospheric deposition of reactive gaseous mercury (RGM), particulate mercury (HgP; <2.5 μm), and gaseous elemental mercury (Hg0) in the arid lands of south central New Mexico. Two methods were field-tested to estimate dry deposition of three mercury species. A manual speciation sampling train consisting of a KCl-coated denuder, 2.5 μm quartz fiber filters, and gold-coated quartz traps and an ion-exchange membrane (as a passive surrogate surface) were deployed concurrently over 24-h intervals for an entire year. The mean 24-h atmospheric concentration for RGM was 6.8 pg m-3 with an estimated deposition of 0.10 ng m-2h-1. The estimated deposition of mercury to the passive surrogate surface was much greater (4.0 ng m-2h-1) but demonstrated a diurnal pattern with elevated deposition from late afternoon to late evening (1400−2200; 8.0 ng m-2h-1) and lowest deposition during the night just prior to sunrise (2200−0600; 1.7 ng m-2h-1). The mean 24-h atmospheric concentrations for HgP and Hg0 were 1.52 pg m-3 and 1.59 ng m-3, respectively. Diurnal patterns were observed for RGM with atmospheric levels lowest during the night prior to sunrise (3.8 pg m-3) and greater during the afternoon and early evening (8.9 pg m-3). Discernible diurnal patterns were not observed for either HgP or Hg0. The total dry deposition of Hg was 5.9 μg m-2 year-1 with the contribution from the three species as follows: RGM (0.88 μg m-2 year-1), HgP (0.025 μg m-2 year-1), and Hg0 (5.0 μg m-2 year-1). The annual wet deposition for total mercury throughout the same collection duration was 4.2 μg m-2 year-1, resulting in an estimated total deposition of 10.1 μg m-2 year-1 for Hg. On one sampling date, enhanced HgP (12 pg m-3) was observed due to emissions from a wildfire approximately 250 km to the east.
Mercury methylation at mercury mines in the Humboldt River Basin, Nevada, USA
Gray, J.E.; Crock, J.G.; Lasorsa, B.K.
2002-01-01
Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River Basin. Mine-waste calcines contain total Hg concentrations as high as 14 000 ??g g-1. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170 ??g g-1, whereas stream sediments collected at a distance >5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations 8 km from the nearest mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.
Methylmercury in fish from the South China Sea: geographical distribution and biomagnification.
Zhu, Aijia; Zhang, Wei; Xu, Zhanzhou; Huang, Liangmin; Wang, Wen-Xiong
2013-12-15
We conducted a large-scale investigation of methylmercury (MeHg) in a total of 628 marine wild fish covering 46 different species collected from the South China Sea between 2008 and 2009. Biological and ecological characteristics such as size (length and wet weight), feeding habit, habitat, and stable isotope (δ(15)N) were examined to explain MeHg bioaccumulation in marine fish and their geographical distribution. MeHg levels in the muscle tissues of the 628 individuals ranged from 0.010 to 1.811 μg/g dry wt. Log10MeHg concentration was significantly related to their length and wet weight. Feeding habit and habitat were the primary factors influencing MeHg bioaccumulation. Demersal fish were more likely to be contaminated with MeHg than the epipelagic and mesopelagic varieties. Linear relationships were obtained between Log10(MeHg) and δ(15)N only for one location, indicating that biomagnification was site-specific. Results from this study suggest that dietary preference and trophic structure were the main factors affecting MeHg bioaccumulation in marine fish from the South China Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hamilton, Melanie; Scheuhammer, Anton; Basu, Niladri
2011-10-01
Common loons (Gavia immer) can be exposed to relatively high levels of dietary methylmercury (MeHg) through fish consumption, and several studies have documented MeHg-associated health effects in this species. To further study the neurological risks of MeHg accumulation, migrating loons dying of Type E botulism were collected opportunistically from the Lake Erie shore at Long Point (Ontario, Canada) and relationships between total mercury (THg), selenium (Se), and selected neurochemical receptors and brain enzymes were investigated. THg concentrations were 1-78 μg/g in liver; and 0.3-4 μg/g in the brain (all concentrations reported on a dry weight basis). A significant (p < 0.05) positive correlation was found between THg in liver and THg in 3 subregions of the brain (cerebral cortex: r = 0.433; cerebellum: r = 0.293; brain stem: r = 0.405). THg varied significantly among different brain regions, with the cortex having the highest concentrations. Se levels in the cortex and cerebellum were 1-29 and 1-10 μg/g, respectively, with no significant differences between regions. Se was not measured in brain stem due to insufficient tissue mass. There were molar excesses of Se over mercury (Hg) in both cortex and cerebellum at all Hg concentrations, and a significant positive relationship between THg and the Hg:Se molar ratio (cortex: r = 0.63; cerebellum: r = 0.47). No significant associations were observed between brain THg and the N-methyl-D-aspartic acid (NMDA) receptor concentration, nor between THg and muscarinic cholinergic (mACh) receptor concentration; however, brain THg levels were lower than in previous studies that reported significant Hg-associated changes in neuroreceptor densities. Together with previous studies, the current findings add to our understanding of Hg distribution in the brain of common loons, and the associations between Hg and sub-lethal neurochemical changes in fish-eating wildlife.
Welfare effects of a disease eradication programme for dairy goats.
Muri, K; Leine, N; Valle, P S
2016-02-01
The Norwegian dairy goat industry has largely succeeded in controlling caprine arthritis encephalitis (CAE), caseous lymphadenitis (CLA) and paratuberculosis through a voluntary disease eradication programme called Healthier Goats (HG). The aim of this study was to apply an on-farm welfare assessment protocol to assess the effects of HG on goat welfare. A total of 30 dairy goat farms were visited, of which 15 had completed disease eradication and 15 had not yet started. Three trained observers assessed the welfare on 10 farms each. The welfare assessment protocol comprised both resource-based and animal-based welfare measures, including a preliminary version of qualitative behavioural assessments with five prefixed terms. A total of 20 goats in each herd were randomly selected for observations of human-animal interactions and physical health. The latter included registering abnormalities of eyes, nostrils, ears, skin, lymph nodes, joints, udder, claws and body condition score. For individual-level data, robust clustered logistic regression analyses with farm as cluster variable were conducted to assess the association with disease eradication. Wilcoxon rank-sum tests were used for comparisons of herd-level data between the two groups. Goats with swollen joints (indicative of CAE) and enlarged lymph nodes (indicative of CLA) were registered on 53% and 93% of the non-HG farms, respectively, but on none of the HG farms. The only other health variables with significantly lower levels in HG herds were skin lesions (P=0.008) and damaged ears due to torn out ear tags (P<0.001). Goats on HG farms showed less fear of unknown humans (P=0.013), and the qualitative behavioural assessments indicated that the animals in these herds were calmer than in non-HG herds. Significantly more space and lower gas concentrations reflected the upgrading of buildings usually done on HG farms. In conclusion, HG has resulted in some welfare improvements beyond the elimination of infectious diseases. The protocol was considered a useful tool to evaluate the welfare consequences of a disease eradication programme. However, larger sample sizes would increase the reliability of prevalence estimates for less common conditions and increase the power to detect differences between the groups. Despite the obvious link between disease and suffering, this aspect is rarely taken into account in the evaluation of disease control programmes. We therefore propose that welfare assessment protocols should be applied to evaluate the merits of disease control or eradication programmes in terms of animal welfare.
Mercury in alligators (Alligator mississippiensis) in the southeastern United States
Jagoe, C.H.; Arnold-Hill, B.; Yanochko, G.M.; Winger, P.V.; Brisbin, I.L.
1998-01-01
Mercury methylation may be enhanced in wetlands and humic-rich, blackwater systems that crocodiles and alligators typically inhabit. Given their high trophic level and long life-spans, crocodilians could accumulate significant burdens of Hg. Our objectives were to survey Hg concentrations in alligators from several areas in the southeastern United States to test their utility as sentinels of Hg contamination, to examine relationships among Hg concentrations in various tissues and to look for any differences in tissue Hg concentrations among locations. We measured total Hg concentrations in alligators collected in the Florida Everglades (n = 18), the Okefenokee National Wildlife Refuge, Georgia (n = 9), the Savannah River Site (SRS), South Carolina (n = 49) and various locations in central Florida ( n = 21), sampling tissues including blood, brain, liver, kidney, muscle, bone, fat, spleen, claws and dermal scutes. Alligators from the Everglades were mostly juvenile, but Hg concentrations in tissues were high (means: liver 41.0, kidney 36.4, muscle 5.6 mg Hg/kg dry wt.). Concentrations in alligators from other locations in Florida were lower (means: liver 14.6, kidney 12.6, muscle 1.8 mg Hg/kg dry wt.), although they tended to be larger adults. Alligators from the Okefenokee were smallest and had the lowest Hg concentrations (means: liver 4.3, kidney 4.8, muscle 0.8 mg Hg/kg dry wt.). At some locations, alligator length was correlated with Hg concentrations in some internal organs. However, at three of the four locations, muscle Hg was not related to length. Tissue Hg concentrations were correlated at most locations; however, claw or dermal scute Hg explained less than 74% of the variation of Hg in muscle or organs, suggesting readily-obtained tissues, such as scutes or claws, have limited value for nondestructive screening of Hg in alligator populations.
Bergamaschi, B.A.; Krabbenhoft, D.P.; Aiken, G.R.; Patino, E.; Rumbold, D.G.; Orem, W.H.
2012-01-01
The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (??12.6) g C m -2 yr -1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ?? 4.5 ??g total Hg m -2 yr -1 and 3.1 ?? 0.4 ??g methyl Hg m -2 yr -1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. ?? 2011 American Chemical Society.
2011-01-01
The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (±12.6) g C m–2 yr–1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ± 4.5 μg total Hg m–2 yr–1 and 3.1 ± 0.4 μg methyl Hg m–2 yr–1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. PMID:22206226
Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing
2015-12-01
Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.
de Crom, Ronald M P C; Webers, Carroll A B; van Kooten-Noordzij, Marina A W; Michiels, Agnes C; Schouten, Jan S A G; Berendschot, Tos T J M; Beckers, Henny J M
2017-10-01
The purpose of this study is to investigate the influence of playing a wind instrument on intraocular pressure (IOP) and to monitor 24-hour (IOP) fluctuations in wind musicians of symphony and wind orchestras to compare IOP levels during normal daily activities with IOP levels during playing. Professional and amateur musicians of symphony and wind orchestras were invited to participate. A total of 42 participants, 9 with glaucoma, underwent a routine ophthalmologic examination. IOP measurements were taken before and immediately after 20 minutes of playing wind instruments. In addition, 6 participants underwent 24-hour IOP monitoring with the Triggerfish (Sensimed AG, Switzerland) sensing contact lens, during which they kept an activity logbook. Eleven professionals and 31 amateur musicians participated in the study. A total of 7 eyes of 6 patients underwent additional 24-hour IOP monitoring. Mean IOP before playing was 13.6±2.6 mm Hg, IOP change after playing was +1.5±2.2 mm Hg with a significant difference between professionals (2.5±1.5 mm Hg) and amateurs (1.1±2.3 mm Hg). There were no significant differences in IOP change between subjects with or without glaucoma. During 24-hour IOP monitoring there were slight increases in IOP while playing an instrument, but also during other activities and overnight. These latter IOP levels were similar or even higher than the IOP rise caused by playing a wind instrument. IOP often rises after playing wind instruments, but similar or even higher IOP levels seem to occur during common other daily activities or at night. These peaks may be relevant for glaucomatous field progression and treatment of glaucoma patients.
Mercury in canned tuna marketed in Cartagena, Colombia, and estimation of human exposure.
Alcala-Orozco, Maria; Morillo-Garcia, Yenifer; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus
2017-12-01
The presence of mercury in tuna is ubiquitous, so national authorities should guarantee food safety of canned tuna available on the market, according to legal regulations. The objective of this survey was to assess total mercury (T-Hg) levels in brands of canned tuna marketed in Cartagena, Colombia, and determine fish consumption-based risks after ingestion. For that purpose, 252 cans of tuna were collected, representing 6 brands (A-F), in 2 mediums (water and oil). Mean T-Hg levels were 0.66 ± 0.05 and 0.61 ± 0.05 µg g -1 wet weight, for water and oil, respectively. High T-Hg concentrations were measured in brands B and D. Only brands E and F guaranteed low risk for Hg-related health problems. According to Colombia's legislation, 15.5% of the samples exceeded the maximum level of 1.0 µg g -1 for mercury and 18.3% was higher than limits as recommended by Food and Agriculture Organization/World Health Organisation (0.5 µg g -1 ). It was concluded that consumption of canned tuna could represent a high risk for the Colombian population, particularly to vulnerable groups.
Factors affecting water strider (Hemiptera: Gerridae) mercury concentrations in lotic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, T.D.; Kidd, K.A.; Cunjak, R.A.
2009-07-15
Water striders (Hemiptera: Gerridae) have been considered as a potential sentinel for mercury (Hg) contamination of freshwater ecosystems, yet little is known about factors that control Hg concentrations in this invertebrate. Striders were collected from 80 streams and rivers in New Brunswick, Canada, in August and September of 2004 through 2007 to assess the influence of factors such as diet, water chemistry, and proximity to point sources on Hg concentrations in this organism. Higher than average Hg concentrations were observed in the southwest and Grand Lake regions of the province, the latter being the location of a coal-fired power plantmore » that is a source of Hg (similar to 100 kg annually), with elevated Hg concentrations in the lichen Old Man's Beard (Usnea spp.) in its immediate vicinity. Across all streams, pH and total organic carbon of water were relatively weak predictors of strider Hg concentrations. Female striders that were larger in body size than males had significantly lower Hg concentrations within sites, suggestive of growth dilution. There was no relationship between percent aquatic carbon in the diet and Hg concentrations in striders. For those striders feeding solely on terrestrial carbon, Hg concentrations were higher in animals occupying a higher trophic level. Mercury concentrations were highly variable in striders collected monthly over two growing seasons, suggesting short-term changes in Hg availability. These measurements highlight the importance of considering both deposition and postdepositional processes in assessing Hg bioaccumulation in this species.« less
Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun-Deok Choi; Thomas M. Holsen; Philip K. Hopke
2008-08-15
Hourly averaged gaseous elemental Hg (GEM) concentrations and hourly integrated reactive gaseous Hg (RGM), and particulate Hg (HgP) concentrations in the ambient air were measured at Huntington Forest in the Adirondacks, New York from June 2006 to May 2007. The average concentrations of GEM, RGM, and HgP were 1.4 {+-} 0.4 ng m{sup -3}, 1.8 {+-} 2.2 pg m{sup -3}, and 3.2 {+-} 3.7 pg m{sup -3}, respectively. RGM represents <3.5% of total atmospheric Hg or total gaseous Hg (TGM: GEM + RGM) and HgP represents <3.0% of the total atmospheric Hg. The highest mean concentrations of GEM, RGM, andmore » HgP were measured during winter and summer whereas the lowest mean concentrations were measured during spring and fall. Significant diurnal patterns were apparent in warm seasons for all species whereas diurnal patterns were weak in cold seasons. RGM was better correlated with ozone concentration and temperature in both warm than the other species. Potential source contribution function (PSCF) analysis was applied to identify possible Hg sources. This method identified areas in Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri, which coincided well with sources reported in a 2002 U.S. mercury emissions inventory. 51 refs., 7 figs., 1 tab.« less
Tyser, Robin W.; Rolfhus, Kristofer R.; Wiener, James G.; Windels, Steve K.; Custer, Thomas W.; Dummer, Paul
2016-01-01
Most investigations of the environmental effects of mercury (Hg) have focused on aquatic food webs that include piscivorous fish or wildlife. However, recent investigations have shown that other species, including passerine songbirds, may also be at risk from exposure to methylmercury (MeHg). We quantified Hg concentrations in eggs of two species of songbirds, red-winged blackbirds (Agelaius phoeniceus) and tree swallows (Tachycineta bicolor), nesting in Voyageurs National Park, Minnesota, USA. Geometric mean concentrations of total Hg (THg) were lower in red-winged blackbird eggs [218 and 107 ng/g dry weight (dw) for 2012 and 2013, respectively] than in tree swallow eggs (228 and 300 ng/g dw for 2012 and 2013, respectively), presumably reflecting differences in the trophic positions of these two species. Concentrations of MeHg averaged 98.4 % of THg in red-winged blackbird eggs. Levels of THg observed in this study were well below critical toxicological benchmarks commonly applied to eggs of avian species, suggesting these breeding populations were not adversely affected by exposure to MeHg. In red-winged blackbirds, concentrations of THg in eggs collected in 2012 were twice those in eggs collected in 2013. Hg levels in eggs of both species increased with date of clutch initiation. In red-winged blackbirds, for example, temporal patterns showed that a 3-week delay in clutch initiation increased egg THg by 60 %. These observations indicate that in ovo exposure of wetland birds to MeHg can vary significantly within nesting season as well as between years.
Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.
Zizek, Suzana; Horvat, Milena; Gibicar, Darija; Fajon, Vesna; Toman, Mihael J
2007-05-15
The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.
NASA Astrophysics Data System (ADS)
Flegal, A. R.; Weiss-Penzias, P. S.; Ortiz, C.; Acosta, P.; Ryan, J. P.; Collett, J. L.
2011-12-01
Mercury (Hg) is a toxic element that can bioaccumulate in higher trophic level aquatic organisms and poses a health risk to humans and wildlife who consume those organisms. This widespread problem is exemplified by a recent survey of game fish from 152 California Lakes, which found that at least one species in 74% of the lakes sampled exceeded the lowest health threshold for methylmercury. The atmosphere is known to be an important pathway for transport of anthropogenic and natural Hg emissions sources. In this study, we investigated wet deposition of Hg through the precipitation of fog and rain water on the Central Coast of California. Fog (or marine stratus) is common on the California Central Coast and is a significant contributor to the hydrologic cycle, yet concentrations of Hg in fog have not previously been measured in this region. Our samples were collected from a small boat in the Monterey Bay, at the harbor in Moss Landing, and from a rooftop on the University of California, Santa Cruz campus, during June - July 2011 using a Caltech Active Strand Cloud Water Collector-2 that has been used previously for collection of Hg samples. Aqueous samples were analyzed for total Hg using EPA method 1631. Rainwater samples were also collected in Santa Cruz between March and June 2011. Hg concentrations ranged from 1-19 ng/L in fog and from 1-3 ng/L in rain. A previous study in Santa Cruz found a wider range of 2-18 ng/L Hg in rain, and previous studies of Hg in fog from the U.S. and Canada reported concentrations of 2-430 ng/L. Thus, our results are consistent with previous findings that Hg concentrations in fog water are at least as high, if not higher than Hg concentrations in rain. This suggests that in environments where fog is an important contributor to total precipitation, like coastal California, a significant fraction of Hg wet deposition may be occurring via fog precipitation.
Le, Dung Quang; Satyanarayana, Behara; Fui, Siau Yin; Shirai, Kotaro
2018-03-26
The present study, aimed at observing the total concentration of mercury (Hg) in edible finfish species with an implication to human health risk, was carried out from the Setiu mangrove wetlands on the east coast of Peninsular Malaysia. Out of 20 species observed, the highest Hg concentrations were found among carnivores-fish/invertebrate-feeders, followed by omnivores and carnivores-invertebrate-feeders, while the lowest concentrations in herbivores. The Hg concentrations varied widely with fish species and body size, from 0.12 to 2.10 mg/kg dry weight. A positive relationship between body weight and Hg concentration was observed in particular for Toxotes jaculatrix and Tetraodon nigroviridis. Besides the permissible range of Hg concentration up to 0.3 mg/kg (cf. United States Environmental Protection Agency (USEPA)) in majority of species, the carnivore feeders such as Acanthopagrus pacificus, Gerres filamentosus, and Caranx ignobilis have shown excess amounts (> 0.40 mg/kg flesh weight) that raising concerns over the consumption by local people. However, the weekly intake of mercury-estimated through the fish consumption in all three trophic levels-suggests that the present Hg concentrations are still within the range of Provisional Tolerable Weekly Intake (PTWI) reported by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Perhaps, a multi-species design for Hg monitoring at Setiu wetlands would be able to provide further insights into the level of toxicity transfer among other aquatic organisms and thereby a strong health risk assessment for the local communities.
Jara-Marini, M E; Tapia-Alcaraz, J N; Dumer-Gutiérrez, J A; García-Rico, L; García-Hernández, J; Páez-Osuna, F
2013-02-01
The Tobari Lagoon, located in the central-east coast of the Gulf of California, receives effluents from the Yaqui Valley, one of the most extensive agricultural areas of México. The Tobari Lagoon also receives effluents from nearby shrimp farms and untreated municipal sewage. Surface sediment samples and six different species of filter feeders (Crassostrea corteziensis, Crassostrea gigas, Chione gnidia, Anadara tuberculosa, Chione fluctifraga, and Fistulobalanus dentivarians) were collected during the dry and the rainy seasons and analyzed to determine concentrations of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn). Seasonal variations in metal concentrations in sediment were evident, especially for Cd, Cu, Hg, and Zn. The total and bioavailable concentrations of the five metals are not elevated in comparison to other areas around the world. The percentages of bioavailable respect to total concentrations of the metals varied from 0.6 % in Hg to 50.2 % for Cu. In the organisms, Hg showed the lowest concentrations (ranged from 0.22 to 0.65 μg/g) while Zn showed the highest (ranged from 36.6 to 1,702 μg/g). Linear correlations between the levels of Cu, Pb, and Zn in the soft tissues of C. fluctifraga and C. gnidia, and A. tuberculosa and C. gnidia were found. Seasonal and interspecies variations in the metal levels in filter feeders were found; F. dentivarians, C. corteziensis, and C. gigas exhibited the highest levels, could be used as biomonitors of metals contamination in this area.
Walters, D.M.; Blocksom, K.A.; Lazorchak, J.M.; Jicha, T.; Angradi, T.R.; Bolgrien, D.W.
2010-01-01
We measured mercury (Hg) concentrations in whole fish from the Upper Mississippi, Missouri, and Ohio Rivers to characterize the extent and magnitude of Hg contamination and to identify environmental factors influencing Hg accumulation. Concentrations were generally lower (80% of values between 20?200 ng g1 wet weight) than those reported for other regions (e.g., upper Midwest and Northeast U.S.). Mercury exceeded the risk threshold for belted kingfisher (Ceryle alcyon, the most sensitive species considered) in 33?75% of river length and 1?7% of river length for humans. Concentrations were lower in the Missouri than in the Mississippi and Ohio Rivers, consistent with continental-scale patterns in atmospheric Hg deposition. Body size and trophic guild were the best predictors of Hg concentrations, which were highest in large-bodied top predators. Site geochemical and landscape properties were weakly related with fish Hg. Moreover, relationships often ran contrary to conventional wisdom, and the slopes of the relationships (positive or negative) were inconsistent among fish guilds and rivers. For example, sulfate is positively associated with fish Hg concentrations but was negatively correlated with Hg in five of six regression models of tissue concentrations. Variables such as pH, acid neutralizing capacity, and total phosphorus did not occur at levels associated with high fish Hg concentrations, partially explaining the relatively low Hg values we observed. ?? 2010 American Chemical Society.
Huang, Minjuan; Deng, Sixin; Dong, Hanying; Dai, Wei; Pang, Jiongming; Wang, Xuemei
2016-10-04
A preliminary projection was performed to determine human multimedia exposure to mercury (Hg) based on deposition flux observations and to identify the impacts of atmospheric Hg deposition in Pearl River Delta (PRD) region, South China. The Monte Carlo technique was used to propagate the variability throughout the projection. The regional specific probability density functions (PDFs) of the studied parameters were regressed from the provincial/national published data, except when the data were deficient. The atmospheric Hg deposition flux ranged from 43.70 to 321.19 μg/m 2 /year and did not significantly contribute to Hg accumulation in the regional topsoil, freshwater bodies, and most food items except fish. The consumption of fish and milk/dairy products was the major contributor to the total exposure for adults (>18 years)/6- to 12-year children and 0- to 6-year children, respectively. The projected concentrations and exposure levels were the results combining MeHg and inorganic Hg (Hg 2+ ). Under the 30-year projection, the probability of risks caused by Hg deposition (combining Hg 2+ and MeHg) was the highest for 0- to 6-year children, followed by 6- to 12-year children and adults. The ground effects driven by precipitation had a significantly greater effect relative to the mass transport effects in this region.
Ergothioneine prevents endothelial dysfunction induced by mercury chloride.
Gökçe, Göksel; Arun, Mehmet Zuhuri; Ertuna, Elif
2018-06-01
Exposure to mercury has detrimental effects on the cardiovascular system, particularly the vascular endothelium. The present study aimed to investigate the effects of ergothioneine (EGT) on endothelial dysfunction induced by low-dose mercury chloride (HgCl 2 ). Agonist-induced contractions and relaxations were evaluated in isolated aortic rings from 3-month-old male Wistar rats treated by intra-muscular injection to caudal hind leg muscle with HgCl 2 (first dose, 4.6 µg/kg; subsequent doses, 0.07 µg/kg/day for 15 days) and optionally with EGT (2 µg/kg for 30 days). Reactive oxygen species (ROS) in aortic rings were measured by means of lucigenin- and luminol-enhanced chemiluminescence. The protein level of endothelial nitric oxide synthase was evaluated by ELISA. Blood glutathione (GSH) and catalase levels, lipid peroxidation and total nitrite were measured spectrophotometrically. The results indicated that low-dose HgCl 2 administration impaired acetylcholine (ACh)-induced relaxation and potentiated phenylephrine- and serotonin-induced contractions in rat aortas. In addition, HgCl 2 significantly increased the levels of ROS in the aortic tissue. EGT prevented the loss of ACh-induced relaxations and the increase in contractile responses. These effects were accompanied by a significant decrease in ROS levels. EGT also improved the ratio of reduced GSH to oxidized GSH and catalase levels with a concomitant decrease in lipid peroxidation. In conclusion, to the best of our knowledge, the present study was the first to report that EGT prevents endothelial dysfunction induced by low-dose HgCl 2 administration. EGT may serve as a therapeutic tool to reduce mercury-associated cardiovascular complications via improving the antioxidant status.
NASA Astrophysics Data System (ADS)
Singer, M. B.; Pellachini, C.; Blum, J. D.; Marvin-DiPasquale, M. C.; Donovan, P. M.
2013-12-01
Bioavailability of sediment-adsorbed contaminants to food webs in river corridors is typically controlled by biological, chemical, and physical factors, but understanding of their respective influences is limited due to a dearth of landscape-scale investigations of these biogeochemical links. Studies that account for the dynamics and interactions of hydrology and sediment transport in affecting the reactivity of sediment-adsorbed heavy metals such as mercury (Hg) are particularly lacking. Sequences of flood events generate complex inundation histories with banks, terraces, and floodplains that have the potential to alter local redox conditions and thereby affect the oxidation of elemental Hg0 to inorganic Hg(II), and the microbial conversion of Hg(II) to methylmercury (MeHg), potentially increasing the risk of Hg uptake into aquatic food webs. However, the probability distributions of saturation/inundation frequency and duration are typically unknown for channel boundaries along sediment transport pathways, and landscape-scale characterizations of Hg reactivity are rare along contaminated rivers. This research provides the first links between the dynamics of physical processes and biochemical processing and uptake into food webs in fluvial systems beset by large-scale mining contamination. Here we present new research on Hg-contaminated legacy terraces and banks along the Yuba River anthropogenic fan, produced by 19th C. hydraulic gold mining in Northern California. To assess the changes in Hg(II) availability for methylation and MeHg bioavailability into the food web, we combine numerical modeling of streamflow with geochemical assays of total Hg and Hg reactivity to identify hot spots of toxicity within the river corridor as a function of cycles of wetting/drying. We employ a 3D hydraulic model to route historical streamflow hydrographs from major flood events through the Yuba and Feather Rivers into the Central Valley to assess the frequency and duration of saturation/inundation of channel boundary sediments. We compare these spatiotemporal modeling results to sediment total Hg and stannous chloride ';reducible' Hg(II) concentrations (the latter as a proxy for Hg(II) availability for methylation) along this ~70 km swath of river corridor. Finally, we evaluate these potential hot spots of Hg toxicity against MeHg concentrations in local aquatic biota at several trophic levels. The research will provide the basis for new models describing the evolution of toxic substances in river corridors and may prove helpful in explaining the contribution of Hg to food webs of the San Francisco Bay-Delta as an enduring legacy of California's 19th C. Gold Rush.
Chakraborty, Parthasarathi; Babu, P V Raghunadh
2015-06-15
Distribution and speciation of mercury (Hg) in the sediments from a tropical estuary (Godavari estuary) was influenced by the changing physico-chemical parameters of the overlying water column. The sediments from the upstream and downstream of the estuary were uncontaminated but the sediments from the middle of the estuary were contaminated by Hg. The concentrations of Hg became considerably less during the monsoon and post monsoon period. Total Hg concentrations and its speciation (at the middle of the estuary) were dependent on the salinity of the overlying water column. However, salinity had little or no effect on Hg association with organic phases in the sediments at downstream. Increasing pH of the overlying water column corresponded with an increase in the total Hg content in the sediments. Total organic carbon in the sediments played an important role in controlling Hg partitioning in the system. Uncomplexed Hg binding ligands were available in the sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Petrassi, Frank A; Davis, James T; Beasley, Kara M; Evero, Oghenero; Elliott, Jonathan E; Goodman, Randall D; Futral, Joel E; Subudhi, Andrew; Solano-Altamirano, J Manuel; Goldman, Saul; Roach, Robert C; Lovering, Andrew T
2018-05-01
Blood flow through intrapulmonary arteriovenous anastomoses (Q IPAVA ) occurs in healthy humans at rest and during exercise when breathing hypoxic gas mixtures at sea level and may be a source of right-to-left shunt. However, at high altitudes, Q IPAVA is reduced compared with sea level, as detected using transthoracic saline contrast echocardiography (TTSCE). It remains unknown whether the reduction in Q IPAVA (i.e., lower bubble scores) at high altitude is due to a reduction in bubble stability resulting from the lower barometric pressure (P B ) or represents an actual reduction in Q IPAVA . To this end, Q IPAVA , pulmonary artery systolic pressure (PASP), cardiac output (Q T ), and the alveolar-to-arterial oxygen difference (AaDO 2 ) were assessed at rest and during exercise (70-190 W) in the field (5,260 m) and in the laboratory (1,668 m) during four conditions: normobaric normoxia (NN; [Formula: see text] = 121 mmHg, P B = 625 mmHg; n = 8), normobaric hypoxia (NH; [Formula: see text] = 76 mmHg, P B = 625 mmHg; n = 7), hypobaric normoxia (HN; [Formula: see text] = 121 mmHg, P B = 410 mmHg; n = 8), and hypobaric hypoxia (HH; [Formula: see text] = 75 mmHg, P B = 410 mmHg; n = 7). We hypothesized Q IPAVA would be reduced during exercise in isooxic hypobaria compared with normobaria and that the AaDO 2 would be reduced in isooxic hypobaria compared with normobaria. Bubble scores were greater in normobaric conditions, but the AaDO 2 was similar in both isooxic hypobaria and normobaria. Total pulmonary resistance (PASP/Q T ) was elevated in HN and HH. Using mathematical modeling, we found no effect of hypobaria on bubble dissolution time within the pulmonary transit times under consideration (<5 s). Consequently, our data suggest an effect of hypobaria alone on pulmonary blood flow. NEW & NOTEWORTHY Blood flow through intrapulmonary arteriovenous anastomoses, detected by transthoracic saline contrast echocardiography, was reduced during exercise in acute hypobaria compared with normobaria, independent of oxygen tension, whereas pulmonary gas exchange efficiency was unaffected. Modeling the effect(s) of reduced air density on contrast bubble lifetime did not result in a significantly reduced contrast stability. Interestingly, total pulmonary resistance was increased by hypobaria, independent of oxygen tension, suggesting that pulmonary blood flow may be changed by hypobaria.
NASA Astrophysics Data System (ADS)
Nugraha, W. C.; Elishian, C.; Ketrin, R.
2017-03-01
Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.
Salt-marsh plants as potential sources of Hg0 into the atmosphere
NASA Astrophysics Data System (ADS)
Canário, João; Poissant, Laurier; Pilote, Martin; Caetano, Miguel; Hintelmann, Holger; O'Driscoll, Nelson J.
2017-03-01
To assess the role of salt-marsh plants on the vegetation-atmospheric Hg0 fluxes, three salt marsh plant species, Halimione portulacoides, Sarcocornia fruticosa and Spartina maritima were selected from a moderately contaminated site in the Tagus estuary during May 2012. Total mercury in stems and leaves for each plant as well as total gaseous mercury and vegetation-air Hg0 fluxes were measured over two continuous days. Mercury fluxes were estimated with a dynamic flux Tedlar® bag coupled to a high-resolution automated mercury analyzer (Tekran 2537A). Other environmental parameters such as air temperature, relative humidity and net solar radiation were also measured aside. H. portulacoides showed the highest total mercury concentrations in stems and leaves and the highest average vegetation-air Hg0 flux (0.48 ± 0.40 ng Hg m-2 h-1). The continuous measurements converged to a daily pattern for all plants, with enhanced fluxes during daylight and lower flux during the night. It is noteworthy that throughout the measurements a negative flux (air-vegetation) was never observed, suggesting the absence of net Hg0 deposition. Based on the above fluxes and the total area occupied by each species we have estimated the total amount of Hg0 emitted from this salt-marsh plants. A daily emission of 1.19 mg Hg d-1 was predicted for the Alcochete marsh and 175 mg Hg d-1 for the entire salt marsh area of the Tagus estuary.
Sunderland, E.M.; Krabbenhoft, D.P.; Moreau, J.W.; Strode, S.A.; Landing, W.M.
2009-01-01
Fish harvested from the Pacific Ocean are a major contributor to human methylmercury (MeHg) exposure. Limited oceanic mercury (Hg) data, particularly MeHg, has confounded our understanding of linkages between sources, methylation sites, and concentrations in marine food webs. Here we present methylated (MeHg and dimethylmercury (Me2Hg)) and total Hg concentrations from 16 hydrographie stations in the eastern North Pacific Ocean. We use these data in combination with information from previous cruises and coupled atmospheric-oceanic modeling results to better understand controls on Hg concentrations, distribution, and bioavailability. Total Hg concentrations (average 1.14 ?? 0.38 pM) are elevated relative to previous cruises. Modeling results agree with observed increases and suggest that at present atmospheric Hg deposition rates, basin-wide Hg concentrations will double relative to circa 1995 by 2050. Methylated Hg accounts for up to 29% of the total Hg in subsurface waters (average 260 ??114 fM). We observed lower ambient methylated Hg concentrations in the euphotic zone and older, deeper water masses, which likely result from decay of MeHg and Me2Hg when net production is not occurring. We found a significant, positive linear relationship between methylated Hg concentrations and rates of organic carbon remineralization (r2 = 0.66, p < 0.001). These results provide evidence for the importance of particulate organic carbon (POC) transport and remineralization on the production and distribution of methylated Hg species in marine waters. Specifically, settling POC provides a source of inorganic Hg(II) to microbially active subsurface waters and can also provide a substrate for microbial activity facilitating water column methylation. Copyright 2009 by the American Geophysical Union.
Sun, Liguang; Yin, Xuebin; Liu, Xiaodong; Zhu, Renbin; Xie, Zhouqing; Wang, Yuhong
2006-09-01
The concentrations of total mercury (Hg(T)) and three bio-essential elements (phosphor, potassium, sodium) were analyzed in Antarctic seal hairs from a lake core spanning the past 2,000 years and collected from King George Island (63 degrees 23'S, 57 degrees 00'W), West Antarctica. The Hg(T) concentration shows a significant fluctuation while the levels of the three bio-essential elements remain almost constant. The rise and fall of the Hg(T) concentration in the seal hairs are found to be closely coincided with ancient activities of gold and silver mining using Hg-amalgamation process around the world, especially in the Southern Hemisphere. Briefly, Hg(T) levels are high during five episodes of extensive gold and silver mining activities--Rome Empire and China Han Dynasty (approximately 18-300 A.D.), Maya period and China Tang (750-900 A.D.), Incas civilization and Christian Kingdom (1200-1500 A.D.), New world (1650-1800 A.D.), and modern industry period (1840 A.D.-present); they are low during four time periods of reduced gold and silver mining activities--the China Han and Rome fall (since 300 A.D.), Maya fall and Wartime period in China (1050-1250 A.D.), Pizarro coming (ca. 1532 A.D.) and Independence War of South America (1800-1830 A.D.). Two profiles of Hg(T) in other two lake cores, one affected by seal excrements and the other by penguin droppings, from the same region are similar to the one in seal hairs. The Hg concentration profile in the seal hairs is significantly correlated with the one in a peat bog of Southern Chile near King George Island. Since Hg is existent mainly at the form of methyl-mercury in seal hairs, this correlation supports a relationship and link between atmospheric mercury concentration and methyl-mercury production. Comparing with samples from American and European continents, the Antarctic seal hairs provide an archive of total mercury concentration in surface seawater of the South Ocean less affected by regional human activities, and this archive may provide a good reference for assessing the global Hg emissions, depositions and recycling in the past thousand years.
Tributary loading of mercury to Lake Michigan: Importance of seasonal events and phase partitioning
Hurley, J.P.; Cowell, S.E.; Shafer, M.M.; Hughes, P.E.
1998-01-01
As a component of a lakewide mass balance study for Lake Michigan, we measured total mercury (Hg(T)) concentrations and fluxes in 11 selected tributaries. Unfiltered Hg(T) concentrations ranged from 0.56 ng l-61 at the Pete Marquette River to 182 ng l-1 at the Fox River. Highest mean Hg(T) concentrations were observed in the Fox R., Indiana Harbor Ship Canal, Grand R. and the Kalamazoo R. Mean particulate matter Hg(T) content ranged from about 0.1 to 1.5 ??g g-1, with highest levels from the industrialized basins of the Indiana Harbor and Fox River. Highest tributary loading rates (g day-1) were observed from the Fox, Grand, Kalamazoo and St. Joseph Rivers. Increased loading rates during spring melt and summer/fall storm events in these tributaries were generally associated with particulate loading from either sediment resuspension or erosional processes. In contrast, filtered Hg(T) represented 80% of the Hg(T) flux in the Manistique R., whose watershed is comprised almost entirely of wetlands and forest.
Castro, D; Mieiro, C L; Coelho, J P; Guilherme, S; Marques, A; Santos, M A; Duarte, A C; Pereira, E; Pacheco, M
2018-02-01
The decline of the European eel (Anguilla anguilla L., 1758) population throughout Europe has been partially attributed to pollution. As glass eel estuarine migration may represent a considerable threat, the impact of mercury (Hg) contamination at this stage was evaluated through an in situ experiment (7days). Total Hg (tHg) bioaccumulation was evaluated concomitantly with erythrocytic nuclear morphology alterations: erythrocytic nuclear abnormalities assay (ENA), frequency of immature erythrocytes (IE) and the erythrocytic maturity index (EMI). The ENA results suggested a genotoxic pressure at the most contaminated sites, in line with the tHg increase. The EMI data, together with IE frequency, showed that fish exposed to high levels of Hg exhibited alterations of haematological dynamics, translated into an erythropoiesis increment. Despite the presence of these compensatory mechanisms, the present findings suggest a harmful impact of Hg on genome integrity at this early development stage, potentially affecting eels' condition and ultimately the population sustainability. Copyright © 2017. Published by Elsevier Ltd.
Protano, Giuseppe; Nannoni, Francesco
2018-05-01
A geochemical study was carried out at the former Abbadia San Salvatore (ASS) mining site of the Monte Amiata ore district (Italy). Hg, As and Sb total contents and fractionation using a sequential extraction procedure were determined in soil and mining waste samples. Ore processing activities provided a different contribution to Hg contamination and concentration in soil fractions, influencing its behaviour as volatility and availability. Soils of roasting zone showed the highest Hg contamination levels mainly due to the deposition of Hg released as Hg 0 by furnaces during cinnabar roasting. High Hg contents were also measured in waste from the lower part of mining dump due to the presence of cinnabar. The fractionation pattern suggested that Hg was largely as volatile species in both uncontaminated and contaminated soils and mining waste, and concentrations of these Hg species increased as contamination increased. These findings were in agreement with the fact that the ASS mining site is characterized by high Hg concentrations in the air and the presence of Hg 0 liquid droplets in soil. Volatile Hg species were also prevalent in uncontaminated soils likely because the Monte Amiata region is an area characterized by anomalous fluxes of gaseous Hg from natural and anthropogenic inputs. At the ASS mining site soils were also contaminated by Sb, while As contents were comparable with its local background in soil. In all soil and waste samples Sb and As were preferentially in residual fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Uchikawa, Takuya; Yasutake, Akira; Kumamoto, Yoshimitsu; Maruyama, Isao; Kumamoto, Shoichiro; Ando, Yotaro
2010-02-01
Chlorella (Parachlorella beyerinckii CK-5), previously identified as Chlorella vulgaris CK-5, is a unicellular green algae that has for many years been used as a nutritional supplement. In order to investigate the effects of methylmercury (MeHg) detoxification by Chlorella, we examined the absorption and excretion of MeHg in mice. Female C57BL/6N mice were randomly divided into three groups of five, and were housed in metabolism cages. Mice were orally administered MeHg chloride at doses of 5 mg (4 mg Hg)/kg body weight with or without 100 mg/mouse of P. beyerinckii powder (BP), and were assigned to either a MeHg group or MeHg + BP group, accordingly. Twenty-four hr after oral administration, feces and urine were collected, and blood, liver, and kidney samples were obtained. Total mercury contents in the samples obtained were determined using an atomic absorption method. The amounts of Hg excreted in feces and urine of the MeHg + BP group were increased nearly 1.9 and 2.2-fold compared with those of the MeHg group. On the other hand, blood and organ Hg levels were not significantly different between two groups. These results suggest that the intake of BP may induce the excretion of Hg both in feces and urine, although it does not affect MeHg absorption from the gastrointestinal tract. The effect of BP on the tissue mercury accumulation may become evident in a long-term experiment.
Relationships between blood mercury levels, reproduction, and return rate in a small seabird.
Pollet, Ingrid L; Leonard, Marty L; O'Driscoll, Nelson J; Burgess, Neil M; Shutler, Dave
2017-01-01
Mercury (Hg) is a ubiquitous heavy metal that occurs naturally in the environment, but its levels have been supplemented for decades by a variety of human activities. Mercury can have serious deleterious effects on a variety of organisms, with top predators being particularly susceptible because methylmercury bioaccumulates and biomagnifies in food webs. Among birds, seabirds can have especially high levels of Hg contamination and Leach's storm-petrels (Oceanodroma leucorhoa), in particular, have amongst the highest known levels. Several populations of Leach's storm-petrels have declined recently in the Northwest Atlantic. The causes of these declines remain uncertain, but the toxic effects of Hg could be a potential factor in this decline. Here, we tested for relationships between adult blood total Hg (THg) concentration and several offspring development parameters, and adult return rate of Leach's storm-petrels breeding on Bon Portage Island (43° 28' N, 65° 44' W), Nova Scotia, Canada, between 2011 and 2015 (blood samples n = 20, 36, 6, 15, and 13 for each year, respectively). Overall, THg levels were elevated (0.78 ± 0.43 μg/g wet wt.) compared to other species of seabirds in this region, and varied significantly among years. However, we found no associations between THg levels and reproductive parameters or adult return rate. Our results indicate that levels of mercury observed in Leach's storm-petrel blood, although elevated, appear not to adversely affect their offspring development or adult return rate on Bon Portage Island.
Mercury levels, reproduction, and hematology in western grebes from three California Lakes, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elbert, R.A.; Anderson, D.W.
1998-02-01
Twenty-three healthy adult western and Clark`s grebes (Aechmorphorus occidentalis and Aechmorphorus clarkii) were collected at three study sites in California, USA, in 1992: Clear Lake, Lake County; Eagle Lake, Lassen County; and Tule Lake, Siskiyou County. Liver, kidney, breast muscle, and brain were analyzed for total mercury (Hg) concentration (ppm wet weight), and blood was analyzed for various blood parameters. Clear Lake birds had greater Hg concentrations in kidney, breast muscle, and brain than birds from the other two lakes whereas liver concentrations were not statistically different. Average concentrations for Clear Lake birds were 2.74 ppm for liver, 2.06 ppmmore » for kidney, 1.06 ppm for breast muscle, and 0.28 ppm for brain. The tissue levels of kidney, breast muscle, and brain at the other two study sites were one half the levels found at Clear Lake. These mean tissue levels were near, but below, those known to cause adverse effects. When data from all sites were merged, kidney, breast muscle, and brain concentrations are positively correlated to each other. Liver concentrations were not correlated to any other value. Brain Hg concentrations were also negatively correlated to blood potassium and blood phosphorus levels. Kidney Hg levels were positively correlated to percent blood heterophils and negatively correlated to percent eosinophils, suggesting that mercury levels might be affecting immune function. These biomarkers could not be related to any obvious ecological effects.« less
Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Fleck, Jacob; Alpers, Charles N.; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Stricker, Craig; Stephenson, Mark; Feliz, David; Gill, Gary; Bachand, Philip; Brice, Ann; Kulakow, Robin
2010-01-01
d) Identification and testing of potential management approaches for reducing MeHg contamination. In addition, the quantitative results reported here assess the effect of current land use practices in the Yolo Bypass MeHg production, bioaccumulation and export, and provide process-based advice towards achieving current goals of the RWQCB-CVR's Sacramento -- San Joaquin Delta Estuary TMDL for Methyl & Total Mercury (Wood et al., 2010b). Further work is necessary to evaluate biotic exposure in the Yolo Bypass Wildlife Area at higher trophic levels (e.g. birds), to quantify winter hydrologic flux of MeHg to the larger Delta ecosystem, and to evaluate rice straw management options to limit labile carbon supplies to surface sediment during winter months. In summary, agricultural management of rice fields -- specifically the periodic flooding and production of easily degraded organic matter -- promotes the production of MeHg beyond rates seen in naturally vegetated wetlands, whether seasonally or permanently flooded., The exported load from MeHg from these agricultural wetlands may be controlled by limiting hydrologic export from fields to enhance on-site MeHg removal processes, but the tradeoff is that this impoundement increases Me Hg exposure to resident organisms.
Riscassi, Ami; Miller, Carrie; Brooks, Scott
2015-11-17
Sediments and floodplain soils in the East Fork Poplar Creek watershed (Oak Ridge, TN, USA) are contaminated with high levels of mercury (Hg) from an industrial source at the headwaters. Although baseflow conditions have been monitored, concentrations of Hg and methylmercury (MeHg) during high-flow storm events, when the stream is more hydrologically connected to the floodplain, have yet to be assessed. This paper evaluated baseflow and event-driven Hg and MeHg dynamics in East Fork Poplar Creek, 5 km upstream of the confluence with Poplar Creek, to determine the importance of hydrology to in-stream concentrations and downstream loads and to ascertainmore » whether the dynamics are comparable to those of systems without an industrial Hg source. Particulate Hg and MeHg were positively correlated with discharge (r 2 = 0.64 and 0.58, respectively) and total suspended sediment (r 2 = 0.97 and 0.89, respectively), and dissolved Hg also increased with increasing flow (r 2 = 0.18) and was associated with increases in dissolved organic carbon (r 2 = 0.65), similar to the dynamics observed in uncontaminated systems. Dissolved MeHg decreased with increases in discharge (r 2 = 0.23) and was not related to dissolved organic carbon concentrations (p = 0.56), dynamics comparable to relatively uncontaminated watersheds with a small percentage of wetlands (<10%). Finally, although stormflows exert a dominant control on particulate Hg, particulate MeHg, and dissolved Hg concentrations and loads, baseflows were associated with the highest dissolved MeHg concentration (0.38 ng/L) and represented the majority of the annual dissolved MeHg load.« less
Yoshida, Minoru; Honda, Masako; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira
2011-10-01
This study examined the neurobehavioral changes and alteration in gene expression in the brains of metallothionein (MT)-I/II null mice exposed to low-levels of mercury vapor (Hg(0)) during postnatal development. MT-I/II null and wild-type mice were repeatedly exposed to Hg(0) at 0.030 mg/m(3) (range: 0.023-0.043 mg/m(3)), which was similar to the current threshold value (TLV), for 6 hr per day until the 20th day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning ability in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. Hg(0)-exposed MT-I/II null mice showed a significant decrease in total locomotor activity in females, though learning ability and spatial learning ability were not affected. Immediately after Hg(0) exposure, mercury concentrations in the brain did not exceed 0.5 µg/g in any animals. Hg(0) exposure resulted in significant alterations in gene expression in the brains of both strains using DNA microarray analysis. The number of altered genes in MT-I/II null mice was higher than that in wild-type mice and calcium-calmodulin kinase II (Camk2a) involved in learning and memory in down-regulated genes was detected. These results provide useful information to elucidate the development of behavioral toxicity following low-level exposure to Hg(0).
Evasion of added isotopic mercury from a northern temperate lake
Southworth, G.; Lindberg, S.; Hintelmann, H.; Amyot, M.; Poulain, A.; Bogle, M.; Peterson, M.; Rudd, J.; Harris, R.; Sandilands, K.; Krabbenhoft, D.; Olsen, M.
2007-01-01
Isotopically enriched Hg (90% 202Hg) was added to a small lake in Ontario, Canada, at a rate equivalent to approximately threefold the annual direct atmospheric deposition rate that is typical of the northeastern United States. The Hg spike was thoroughly mixed into the epilimnion in nine separate events at two-week intervals throughout the summer growing season for three consecutive years. We measured concentrations of spike and ambient dissolved gaseous Hg (DGM) concentrations in surface water and the rate of volatilization of Hg from the lake on four separate, week-long sampling periods using floating dynamic flux chambers. The relationship between empirically measured rates of spike-Hg evasion were evaluated as functions of DGM concentration, wind velocity, and solar illumination. No individual environmental variable proved to be a strong predictor of the evasion flux. The DGM-normalized flux (expressed as the mass transfer coefficient, k) varied with wind velocity in a manner consistent with existing models of evasion of volatile solutes from natural waters but was higher than model estimates at low wind velocity. The empirical data were used to construct a description of evasion flux as a function of total dissolved Hg, wind, and solar illumination. That model was then applied to data for three summers for the experiment to generate estimates of Hg re-emission from the lake surface to the atmosphere. Based on ratios of spike Hg to ambient Hg in DGM and dissolved total Hg pools, ratios of DGM to total Hg in spike and ambient Hg pools, and flux estimates of spike and ambient Hg, we concluded that the added Hg spike was chemically indistinguishable from the ambient Hg in its behavior. Approximately 45% of Hg added to the lake over the summer was lost via volatilization. ?? 2007 SETAC.
Armah, Frederick A; Obiri, Samuel; Yawson, David O; Onumah, Edward E; Yengoh, Genesis T; Afrifa, Ernest K A; Odoi, Justice O
2010-11-01
The levels of heavy metals in surface water and their potential origin (natural and anthropogenic) were respectively determined and analysed for the Obuasi mining area in Ghana. Using Hawth's tool an extension in ArcGIS 9.2 software, a total of 48 water sample points in Obuasi and its environs were randomly selected for study. The magnitude of As, Cu, Mn, Fe, Pb, Hg, Zn and Cd in surface water from the sampling sites were measured by flame Atomic Absorption Spectrophotometry (AAS). Water quality parameters including conductivity, pH, total dissolved solids and turbidity were also evaluated. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to identify possible sources of these heavy metals. Pearson correlation coefficients among total metal concentrations and selected water properties showed a number of strong associations. The results indicate that apart from tap water, surface water in Obuasi has elevated heavy metal concentrations, especially Hg, Pb, As, Cu and Cd, which are above the Ghana Environmental Protection Agency (GEPA) and World Health Organisation (WHO) permissible levels; clearly demonstrating anthropogenic impact. The mean heavy metal concentrations in surface water divided by the corresponding background values of surface water in Obuasi decrease in the order of Cd > Cu > As > Pb > Hg > Zn > Mn > Fe. The results also showed that Cu, Mn, Cd and Fe are largely responsible for the variations in the data, explaining 72% of total variance; while Pb, As and Hg explain only 18.7% of total variance. Three main sources of these heavy metals were identified. As originates from nature (oxidation of sulphide minerals particularly arsenopyrite-FeAsS). Pb derives from water carrying drainage from towns and mine machinery maintenance yards. Cd, Zn, Fe and Mn mainly emanate from industry sources. Hg mainly originates from artisanal small-scale mining. It cannot be said that the difference in concentration of heavy metals might be attributed to difference in proximity to mining-related activities because this is inconsistent with the cluster analysis. Based on cluster analysis SN32, SN42 and SN43 all belong to group one and are spatially similar. But the maximum Cu concentration was found in SN32 while the minimum Cu concentration was found in SN42 and SN43.
Frazier, O H; Tuzun, Egemen; Cohn, William E; Conger, Jeffrey L; Kadipasaoglu, Kamuran A
2006-01-01
Continuous-flow pumps are small, simple, and respond physiologically to input variations, making them potentially ideal for total heart replacement. However, the physiological effects of complete pulseless flow during long-term circulatory support without a cardiac interface or with complete cardiac exclusion have not been well studied. We evaluated the feasibility of dual continuous-flow pumps as a total artificial heart (TAH) in a chronic bovine model. Both ventricles of a 6-month-old Corriente crossbred calf were excised and sewing rings attached to the reinforced atrioventricular junctions. The inlet portions of 2 Jarvik 2000 pumps were positioned through their respective sewing rings at the mid-atrial level and the pulseless atrial reservoir connected end-to-end to the pulmonary artery and aorta. Pulseless systemic and pulmonary circulations were thereby achieved. Volume status was controlled, and systemic and pulmonary resistance were managed pharmacologically to keep mean arterial pressures at 100+/-10 mmHg (systemic) and 20+/-5 mmHg (pulmonary) and both left and right atrial pressures at 15+/-5 mmHg. The left pump speed was maintained at 14,000 rpm and its output autoregulated in response to variations in right pump flow, systemic and pulmonary pressures, fluid status, and activity level. Hemodynamics, end-organ function, and neurohormonal status remained normal. These results suggest the feasibility of using dual continuous-flow pumps as a TAH.
Marín, Silvia; Pardo, Olga; Báguena, Rosario; Font, Guillermina; Yusà, Vicent
2017-02-01
Dietary exposure of the Valencian region population to lead, cadmium, inorganic arsenic (iAs), chromium, copper, tin and methylmercury (meHg) was assessed in a total diet study carried out in the region of Valencia in 2010-11. A total of 8100 food samples were collected and analysed. Occurrence data were combined with consumption data to estimate dietary exposure in adults (> 15 years of age) and young children (6-15 years of age). The estimated intake was calculated by a probabilistic approach. Average intake levels (optimistic scenario) for lead, iAs, chromium and tin were 0.21, 0.08, 1.79 and 1.87 µg kg - 1 bw day -1 respectively; for Cd and meHg average intake levels were 0.77 and 0.54 µg kg - 1 bw week -1 , respectively, and for Cu, 1.60 mg day -1 . In terms of risk characterisation, the results showed that 2.84% of the adult population may exceed the BMDL 10 (benchmark dose lower confidence limit) established for Pb, which is linked to renal effects; whereas 28.01% of the young children population may exceed the BMDL 01 related to neurodevelopment effects. In addition, 8.47% of the adult population and 12.32% of young children exceeded the meHg tolerable weekly intake (TWI).
García, M Ángeles; Núñez, Ricardo; Alonso, Julián; Melgar, M Julia
2016-12-01
Mercury is a toxic trace metal, which can accumulate to levels threatening human and environmental health. In this study, contents of total mercury have been determined by ICP-MS spectrometry in fresh and processed tuna (110 samples) purchased from supermarkets in NW Spain. Mercury was present in all samples analyzed; however, only one sample of fresh tuna (1.070 mg kg -1 wet weight (w.w.)) slightly exceeded the limit of the EU (1.0 mg kg -1 w.w.). The average mercury concentration in processed tuna was lower than fresh, 0.306 mg kg -1 w.w., and ranged from 0.080 to 0.715 mg kg -1 w.w. Results were compared with literature data. In regard to the three types of preparation-packaging media for canned tuna, total Hg content was found in the following order: olive oil > natural > pickled sauce; the last showed significant statistical differences (p < 0.01) with the other two preparations. Between the two evaluated canned tuna species, significant statistical differences (p = 0.008) were observed and Thunnus alalunga presented a greater mean content (0.332 ± 0.114 mg kg -1 w.w.) compared to Thunnus albacares (0.266 ± 0.171 mg kg -1 w.w.).Taking into account the AESAN recommendation for adults and children, as well as the EU regulations and the tuna consumption by the Spanish population, the Hg levels obtained in this study pose no risk to consumer health. However, additional studies, a monitoring process, and efforts to reduce Hg concentration in tuna would be necessary, as well as considering other sources of exposure to Hg.
Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats
2012-01-01
In this paper we investigate the hypothesis that long-term sulphate (SO(4) (2-)) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO(4) (2-) on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO(4) (2-) started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha(-1) yr(-1) of sulphur (S) addition (1.3±0.08 ng L(-1), SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha(-1) yr(-1) of ambient S deposition (0.6±0.02 ng L(-1), SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L(-1) compared to +/-0.5 ng L(-1) in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r(2) = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO(4) (2-) to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO(4) (2-) deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO(4) (2-) in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands.
Yoshida, Minoru; Honda, Akiko; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira
2014-08-01
This study examined the relationship between neurobehavioral changes and alterations in gene expression profiles in the brains of mice exposed to different levels of Hg(0) during postnatal development. Neonatal mice were repeatedly exposed to mercury vapor (Hg(0)) at a concentration of 0.057 mg/m(3) (low level), which was close to the current threshold value (TLV), and 0.197 mg/m(3) (high level) for 24 hr until the 20(th) day postpartum. Behavioral responses were evaluated based on changes in locomotor activity in the open field test (OPF), learning ability in the passive avoidance response test (PA), and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. No significant differences were observed in the three behavioral measurements between mice exposed to the low level of Hg(0) and control mice. On the other hand, total locomotive activity in mice exposed to the high level of Hg(0) was significantly decreased and central locomotion was reduced in the OPF task. Mercury concentrations were approximately 0.4 μg/g and 1.9 μg/g in the brains of mice exposed to the low and high levels of Hg(0), respectively. Genomic analysis revealed that the expression of 2 genes was up-regulated and 18 genes was down-regulated in the low-level exposure group, while the expression of 3 genes was up-regulated and 70 genes was down-regulated in the high-level exposure group. Similar alterations in the expression of seven genes, six down-regulated genes and one up-regulated gene, were observed in both groups. The results indicate that an increase in the number of altered genes in the brain may be involved in the emergence of neurobehavioral effects, which may be associated with the concentration of mercury in the brain. Moreover, some of the commonly altered genes following exposure to both concentrations of Hg(0) with and without neurobehavioral effects may be candidates as sensitive biomarker genes for assessing behavioral effects in the early stages of development.
Arveschoug, A K; Revsbech, P; Brøchner-Mortensen, J
1998-07-01
Using the determination of distal blood pressure (DBP) measured using the strain gauge technique as an example of a routine clinical physiological investigation involving many different observers (laboratory technicians), the present study was carried out to assess (1) the influence of the number of observers and the number of analyses made by each observer on the precision of a definitive value; and (2) the minimal difference between two determinations to detect a real change. A total of 45 patients participated in the study. They were all referred for DBP determination on suspicion of arterial peripheral vascular disease. In 30 of the patients, the DBP curves were read twice, with a 5-week interval, by 10 laboratory technicians. The results were analysed using the variance component model. The remaining 15 patients had their DBP determined twice on two different days with an interval of 1-3 days and the total day-to-day variation (SDdiff) of DBP was determined. The inter- and intraobserver variations were, respectively, 5.7 and 4.9 mmHg at ankle level and 3.5 and 2.7 mmHg at toe level. The index values as related to systolic pressure were somewhat lower. The mean day-to-day variation was 11 mmHg at ankle level and 10 mmHg at toe level, thereby giving a minimal significant difference between two DBP determinations of 22 mmHg at ankle and 20 mmHg at toe level. To decrease the value of SD (standard deviation) on a definitive determination of DBP and index values, it was slightly more effective if the value was based on two observers performing one independent DBP curve reading than if one observer made one or two DBP curve readings. The reduction in SDdiff was greatest at ankle level. The extent of the Sddiff decrease was greatest when two different observers made a single DBP reading each at both determinations compared with one different observer making two readings at each determination. Surprisingly, about half of the maximum reduction in the SDdiff was achieved just by increasing the number of observers from one to two. We have found variance component analyses to be a suitable method for determining intra- and interobserver variation when several different observers take part in a routine laboratory investigation. It may be applied to other laboratory methods such as renography, isotope cardiography and myocardial perfusion single-photon emission computerized tomography (SPECT) scintigraphy, in which the final result may be affected by individual judgement during processing.
Mercury in the Canadian Arctic terrestrial environment: an update.
Gamberg, Mary; Chételat, John; Poulain, Alexandre J; Zdanowicz, Christian; Zheng, Jiancheng
2015-03-15
Contaminants in the Canadian Arctic have been studied over the last twenty years under the guidance of the Northern Contaminants Program. This paper provides the current state of knowledge on mercury (Hg) in the Canadian Arctic terrestrial environment. Snow, ice, and soils on land are key reservoirs for atmospheric deposition and can become sources of Hg through the melting of terrestrial ice and snow and via soil erosion. In the Canadian Arctic, new data have been collected for snow and ice that provide more information on the net accumulation and storage of Hg in the cryosphere. Concentrations of total Hg (THg) in terrestrial snow are highly variable but on average, relatively low (<5 ng L(-1)), and methylmercury (MeHg) levels in terrestrial snow are also generally low (<0.1 ng L(-1)). On average, THg concentrations in snow on Canadian Arctic glaciers are much lower than those reported on terrestrial lowlands or sea ice. Hg in snow may be affected by photochemical exchanges with the atmosphere mediated by marine aerosols and halogens, and by post-depositional redistribution within the snow pack. Regional accumulation rates of THg in Canadian Arctic glaciers varied little during the past century but show evidence of an increasing north-to-south gradient. Temporal trends of THg in glacier cores indicate an abrupt increase in the early 1990 s, possibly due to volcanic emissions, followed by more stable, but relatively elevated levels. Little information is available on Hg concentrations and processes in Arctic soils. Terrestrial Arctic wildlife typically have low levels of THg (<5 μg g(-1) dry weight) in their tissues, although caribou (Rangifer tarandus) can have higher Hg because they consume large amounts of lichen. THg concentrations in the Yukon's Porcupine caribou herd vary among years but there has been no significant increase or decrease over the last two decades. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sontag, P.; Steinberg, D. K.; Reinfelder, J. R.
2016-02-01
Philip T. Sontag1, Deborah K. Steinberg2, and John R. Reinfelder11Rutgers University, Department of Environmental Sciences, New Brunswick, New Jersey, USA 2College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, Virginia, USAThe Antarctic krill Euphausia superba is a critical component of the WAP food web and is therefore a potentially important link in the transfer of mercury (Hg) to higher trophic levels including penguins, seals, and whales. In order to examine ontogenetic (juvenile, adult), spatial (north-south, onshore-offshore) and annual differences in Hg accumulation by E. superba, we measured concentrations of total Hg (THg) and monomethylmercury (MMHg) in krill collected at northern ( 64.5°S) and southern (67.4-69°S) stations during the summers of 2013-2015 along the WAP. Total mercury in krill (4.6 ± 1.1 to 20 ± 13 ng g-1), which includes both inorganic Hg and organic MMHg (0.3 ± 0.2 to 3.2 ± 0.8 ng g-1) was higher in offshore than nearshore adults in 2014, but north-south differences in krill THg were not observed. THg concentrations were positively correlated with trophic level (derived from δ15N) for both juvenile (R2=0.86) and adult (R2=0.45) krill at northern and southern stations. However, higher concentrations of MMHg, the form of Hg that biomagnifies in marine food webs, were observed in juvenile than adult E. superba collected at the same latitude and longitude (p<0.005). In addition, both juvenile and adult krill collected at northern latitudes contained higher MMHg concentrations than krill collected farther south near the summer sea ice edge (p<0.005). Differences in MMHg accumulation in krill were not explained by δ15N-based trophic levels indicating that spatial and developmental factors were most important.
Total mercury and methylmercury in high altitude surface snow from the French Alps.
Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Yumvihoze, Emmanuel; Lean, David; Nedjai, Rachid; Ferrari, Christophe
2011-09-01
Surface snow samples were collected weekly from the 31st of December 2008 to the 21st of June 2009 from Lake Bramant in the French Alps. Total mercury (THg), total dissolved mercury (THgD), methylmercury (MeHg) and particle distributions in surface snow were analyzed. Results showed that THg concentrations, MeHg concentrations and particle load increased with snow surface temperature, which is an indicator of rising temperatures as the season progresses. Significant correlations between MeHg and snow surface temperature and MeHg and total particles greater than 10 μm were observed. This suggests that the MeHg found in the snow originates from atmospheric deposition processes rather than in situ snowpack sources. This study suggests that an important post-winter atmospheric deposition of MeHg and THg occurs on summital zones of the French Alps and it is likely that this contamination originates from the surrounding valleys. Copyright © 2011 Elsevier B.V. All rights reserved.
McKinney, Melissa A; Dean, Kylie; Hussey, Nigel E; Cliff, Geremy; Wintner, Sabine P; Dudley, Sheldon F J; Zungu, M Philip; Fisk, Aaron T
2016-01-15
Conservation concern regarding the overharvest of global shark populations for meat and fin consumption largely surrounds documented deleterious ecosystem effects, but may be further supported by improved knowledge of possibly high levels in their edible tissues (particularly meat) of the neurotoxin, methylmercury (CH3Hg). For many regions, however, little data exist on shark tissue Hg concentrations, and reasons for Hg variation within and among species or across regions are poorly understood. We quantified total Hg (THg) in 17 shark species (total n=283) from the east coast of South Africa, a top Hg emitter globally. Concentrations varied from means of around 0.1 mg kg(-1) dry weight (dw) THg in hardnose smoothhound (Mustelus mosis) and whale (Rhincodon typus) sharks to means of over 10 mg kg(-1) dw in shortfin mako (Isurus oxyrinchus), scalloped hammerhead (Sphyrna lewini), white (Carcharodon carcharias) and ragged-tooth (Carcharias taurus) sharks. These sharks had higher THg levels than conspecifics sampled from coastal waters of the North Atlantic and North, mid-, and South Pacific, and although sampling year and shark size may play a confounding role, this result suggests the potential importance of elevated local emissions. Values of THg showed strong, species-specific correlations with length, and nearly half the remaining variation was explained by trophic position (using nitrogen stable isotopes, δ(15)N), whereas measures of foraging habitat (using carbon stable isotopes, δ(13)C) were not significant. Mercury concentrations were above the regulatory guidelines for fish health effects and safe human consumption for 88% and 70% of species, respectively, suggesting on-going cause for concern for shark health, and human consumers of shark meat. Copyright © 2015 Elsevier B.V. All rights reserved.
Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei
2008-07-01
Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.
Becker, Jesse C; Groeger, Alan W; Nowlin, Weston H; Chumchal, Matthew M; Hahn, Dittmar
2011-10-01
Patterns of spatial variation of mercury and methylmercury (MeHg) were examined in sediments and muscle tissue of largemouth bass (Micropterus salmoides) from Amistad International Reservoir, a large and hydrologically complex subtropical water body in the Rio Grande drainage. The distributions of both Hg and MeHg were compared with environmental and biological factors known to influence production of MeHg. The highest concentrations of total Hg (THg) in sediment were found in the Rio Grande arm of the reservoir, whereas MeHg was highest at sites in the Devils River arm and inundated Pecos River (often more than 3.0 ng/g). Conditions in the sediments of the Devils River arm and Pecos River channel were likely more favorable to the production of MeHg, with higher sediment porewater dissolved organic carbon, and porewater sulfate levels in the optimal range for methylation. Although the detection of different groups of sulfate-reducing bacteria by polymerase chain reaction (PCR) was generally correlated with MeHg concentrations, bacterial counts via fluorescent in situ hybridization (FISH) did not correlate with MeHg. A sample of 156 largemouth bass (<30 cm) showed a spatial pattern similar to that of MeHg in sediments, where fish from the Devils River arm of the reservoir had higher muscle Hg concentrations than those collected in the Rio Grande arm. In 88 bass of legal sport fishing size (>35 cm), 77% exceeded the 0.3 mg/kg U.S. Environmental Protection Agency screening value. This study shows that significant variation in sediment MeHg and biotic Hg concentration can exist within lakes and reservoirs and that it can correspond to variation in environmental conditions and Hg methylation. Copyright © 2011 SETAC.
Tanner, K. Christy; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Fleck, Jacob; Tate, Kenneth W.; Linquist, Bruce A.
2018-01-01
Few studies have considered how methylmercury (MeHg, a toxic form of Hg produced in anaerobic soils) production in rice (Oryza sativa L.) fields can affect water quality, and little is known about MeHg dynamics in rice fields. Surface water MeHg and total Hg (THg) imports, exports, and storage were studied in two commercial rice fields in the Sacramento Valley, California, where soil THg was low (25 and 57 ng g−1). The median concentration of MeHg in drainage water exiting the fields was 0.17 ng g−1 (range: <0.007–2.1 ng g−1). Compared with irrigation water, drainage water had similar MeHg concentrations, and lower THg concentrations during the growing season. Significantly elevated drainage water MeHg and THg concentrations were observed in the fallow season compared with the growing season. An analysis of surface water loads indicates that fields were net importers of both MeHg (76–110 ng m−2) and THg (1947–7224 ng m−2) during the growing season, and net exporters of MeHg (35–200 ng m−2) and THg (248–6496 ng m−2) during the fallow season. At harvest, 190 to 700 ng MeHg m−2 and 1400 to 1700 ng THg m−2 were removed from fields in rice grain. Rice straw, which contained 120 to 180 ng MeHg m−2 and 7000–10,500 ng m−2 THg was incorporated into the soil. These results indicate that efforts to reduce MeHg and THg exports in rice drainage water should focus on the fallow season. Substantial amounts of MeHg and THg were stored in plants, and these pools should be considered in future studies.
Berzas Nevado, Juan J; Rodríguez Martín-Doimeadios, Rosa C; Moreno, María Jiménez
2009-03-15
Mercury (Hg) speciation and partitioning have been investigated in a river-reservoir system impacted by the Almadén mining activities, the world's largest Hg district. This study is the first to simultaneously investigate Hg dynamics from above the mining district and into the La Serena Reservoir (3219 Hm(3)), being the third largest reservoir in Europe and the largest in Spain. Water, sediment and biota were sampled at different seasons during a 2-year study from the Valdeazogues River, which flows east-west from the mining District, to La Serena Reservoir. Simultaneously, a comprehensive study was undertaken to determine the influence of some major physico-chemical parameters that potentially influence the fate of Hg within the watershed. Concentrations of dissolved Hg in water were below 0.14 microg/L, whereas particulate Hg ranged from 0.1 to 87 microg/g, with significant seasonal variation. Total Hg concentrations varied from 7 to 74 microg/g in sediment from the Valdeazogues River, while in sediments from La Serena Reservoir were below 2 microg/g. On the other hand, methyl-Hg reached concentrations up to 0.3 ng/L in water and 6 ng/g in sediment from La Serena Reservoir, whereas maximum concentrations in Valdeazogues River were 5 ng/L and 880 ng/g in water and sediment, respectively. The distribution of Hg species in the Valdeazogues River-La Serena Reservoir system indicated a source of Hg from the mine waste distributed along the river. Total Hg in water was strongly correlated with total dissolved solids and chlorophyll a concentrations, whereas organic carbon and Fe concentrations seem to play a role in methylation of inorganic Hg in sediment. Total Hg concentrations were low in fish from Valdeazogues River (0.8-8.6 ng/g, wet weight) and bivalves from La Serena Reservoir (10-110 ng/g, wet weight), but most was present as methyl-Hg.
Bosch, Adina C; O'Neill, Bernadette; Sigge, Gunnar O; Kerwath, Sven E; Hoffman, Louwrens C
2016-01-01
The concentrations and relationships between individual mercury species and total mercury were investigated in different muscle parts and sizes of Yellowfin tuna (Thunnus albacares). Fourteen Yellowfin tuna caught in the South Atlantic off the coast of South Africa had an average total Hg (tHg) concentration of 0.77 mg/kg wet weight. No differences were detected (p > 0.05) in tHg, MethylHg (MeHg) or inorganic Hg (iHg) accumulation among the four white muscle portions across the carcass, but both tHg and iHg were found in higher concentrations (p < 0.001) in dark muscle than white muscle. Positive linear correlations with fish weight were found for both tHg (r = 0.79, p < 0.001) and MeHg (r = 0.75, p < 0.001) concentrations. A prediction model was formulated to calculate toxic MeHg concentrations from measured tHg concentrations and fish weight (cMeHg = 0.073 + 1.365 · tHg-0.008 · w). As sampling sites and subsampling methods could affect toxicity measurements, we provide recommendations for sampling guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.
The effects of a stannous chloride-based water treatment system in a mercury contaminated stream
Mathews, Teresa J.; Looney, Brian B.; Smith, John G.; ...
2015-06-09
Remediation of mercury (Hg)-contaminated watersheds is often challenging because of the complex nature of Hg biogeochemistry. Stream ecosystems have been shown to be particularly susceptible to Hg contamination and bioaccumulation in fish. Decreasing total Hg loading to stream systems, however, has shown variable performance in decreasing Hg concentrations in fish tissues. In this study, we assess the impacts of an innovative treatment system in reducing releases of Hg to a small stream system in the southeastern United States. The treatment system, installed in 2007, removes Hg from water using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations inmore » the receiving stream, Tims Branch, decreased from > 100 to ~10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel ( Esox americanus) decreased by 70 % at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to MeHg production and bioaccumulation. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream with minimal impacts on the environment due to the increased Sn in the system.« less
Factors controlling mercury transport in an upland forested catchment
Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J.
1998-01-01
Total mercury (Hg) deposition and input/output relationships were investigated in an 11-ha deciduous forested catchment in northern Vermont as part of ongoing evaluations of rig cycling and transport in the Lake Champlain basin. Atmospheric Hg deposition (precipitation + modeled vapor phase downward flux) was 425 mg ha-1 during the one-year period March 1994 through February 1995 and 463 mg ha-1 from March 1995 through February 1996. In the same periods, stream export of total Hg was 32 mg ha-1 and 22 mg ha-1, respectively. Thus, there was a net retention of Hg by the catchment of 92% the first year and 95% the second year. In the first year, 16.9 mg ha-1 or about half of the annual stream export, occurred on the single day of peak spring snowmelt in April. In contrast, the maximum daily export in the second year, when peak stream flow was somewhat lower, was 3.5 mg ha-1 during a January thaw. The fate of file Hg retained by this forested catchment is not known. Dissolved (< 0.22 ??m) Hg concentrations in stream water ranged from 0.5-2.6 ng L-1, even when total (unfiltered) concentrations were greater than 10 ng L-1 during high flow events. Total Hg concentrations in stream water were correlated with the total organic fraction of suspended sediment, suggesting the importance of organic material in Hg transport within the catchment. High flow events and transport with organic material may be especially important mechanisms for the movement of Hg through forested ecosystems.
Plasma levels of selenium-containing proteins in Inuit adults from Nunavik.
Achouba, Adel; Dumas, Pierre; Ouellet, Nathalie; Lemire, Mélanie; Ayotte, Pierre
2016-11-01
Selenium (Se) is highly abundant in marine foods traditionally consumed by Inuit of Nunavik (Northern Quebec, Canada) and accordingly, their Se intake is among the highest in the world. However, little is known regarding the biological implications of this high Se status in this Arctic indigenous population. We used a method combining affinity chromatography and inductively coupled plasma-mass spectrometry with quantification by post-column isotope dilution to determine total Se levels and concentrations of Se-containing proteins in archived plasma samples of Inuit adults who participated to the 2004 Nunavik Inuit Health Survey (N = 852). Amounts of mercury (Hg) associated with Se-containing proteins were also quantified. Results show that glutathione peroxidase 3 (GPx3), selenoprotein P (SelP) and selenoalbumin (SeAlb) represented respectively 25%, 52% and 23% of total plasma Se concentrations. In addition, small amounts of Hg co-eluted with each Se-containing protein and up to 50% of plasma Hg was associated to SelP. Total plasma Se concentrations (median = 139 μg L− 1; interquartile range (IQR) = 22.7 μg L− 1) were markedly lower and less variable than whole blood Se concentration (median = 261 μg L− 1, IQR = 166 μg L− 1). A non linear relation was observed between whole blood Se and plasma Se levels, with plasma Se concentrations leveling off at approximately 200 μg L− 1, whereas 16% and 3% of individuals exhibited whole blood concentrations higher than 500 μg L− 1 and 1000 μg L− 1, respectively. In contrast, a linear relationship was previously reported in communities consuming Brazil nuts which are rich Se, mainly present as selenomethionine. This suggests that a different selenocompound, possibly selenoneine, is present in the Arctic marine food chain and accumulates in the blood cellular fraction of Inuit.
Vlot, John; Wijnen, Rene; Stolker, Robert Jan; Bax, Klaas
2013-05-01
Several factors may affect volume and dimensions of the working space in laparoscopic surgery. The precise impact of these factors has not been well studied. In a porcine model, we used computed tomographic (CT) scanning for measuring working space volume and distances. In a first series of experiments, we studied the relationship between intra-abdominal pressure (IAP) and working space. Eleven 20 kg pigs were studied under standardized anesthesia and volume-controlled ventilation. Cardiorespiratory parameters were monitored continuously, and blood gas samples were taken at different IAP levels. Respiratory rate was increased when ETCO₂ exceeded 7 kPa. Breath-hold CT scans were made at IAP levels of 0, 5, 10, and 15 mmHg. Insufflator volumes were compared to CT-measured volumes. Maximum dimensions of pneumoperitoneum were measured on reconstructed CT images. Respiratory rate had to be increased in three animals. Mild hypercapnia and acidosis occurred at 15 mmHg IAP. Peak inspiratory pressure rose significantly at 10 and 15 mmHg. CT-measured volume increased relatively by 93 % from 5 to 10 mmHg IAP and by 19 % from 10 to 15 mmHg IAP. Comparing CT volumes to insufflator volumes gave a bias of 76 mL. The limits of agreement were -0.31 to +0.47, a range of 790 mL. The internal anteroposterior diameter increased by 18 % by increasing IAP from 5 to 10 mmHg and by 5 % by increasing IAP from 10 to 15 mmHg. At 15 mmHg, the total relative increase of the pubis-diaphragm distance was only 6 %. Abdominal width did not increase. CT allows for precise calculation of the actual CO₂ pneumoperitoneum volume, whereas the volume of CO₂ released by the insufflator does not. Increasing IAP up to 10 mmHg achieved most gain in volume and in internal anteroposterior diameter. At an IAP of 10 mmHg, higher peak inspiratory pressure was significantly elevated.
Krey, Anke; Ostertag, Sonja K; Chan, Hing Man
2015-03-15
Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were <0.5mg/kg ww, whereas the average concentration in beluga whale brain was >3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals. Copyright © 2014 Elsevier B.V. All rights reserved.
Cardona-Marek, Tamara; Knott, Katrina K; Meyer, Benjamin E; O'Hara, Todd M
2009-07-01
Total Hg concentration was measured in hair and whole blood of 52 adult Southern Beaufort Sea polar bears (Ursus maritimus) captured in the spring of 2005. Stable isotopic signatures (i.e., 13C/12C, delta13C; 15N/14N, delta15N) in hair and two blood compartments (packed blood cells/clot and serum) were determined to assess the variation of Hg concentrations among polar bears in relation to their feeding ecology and other biological factors. Concentrations of Hg in hair and blood (2.2-23.9 microg/g dry wt and 0.007-0.213 microg/g wet wt, respectively) were within the range of values previously reported for polar bears in Canada and East Greenland. Mercury concentration in hair from females was higher than that in hair from males, and concentration was related to interactions between delta13C, delta15N, and longitude of capture location. Mercury concentrations in hair were inversely correlated to delta13C in hair and blood, suggesting that polar bears with greater total Hg concentrations fed more on pelagic prey, such as ringed seals or beluga whale, than on benthic prey. Variability in Hg concentrations in polar bear hair and blood may be the result of intraspecific or regional variation in prey selection rather than strictly trophic level interactions.
Global Mercury Pathways in the Arctic Ecosystem
NASA Astrophysics Data System (ADS)
Lahoutifard, N.; Lean, D.
2003-12-01
The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.
Effects of hypergravity on the development of cell number and asymmetry in fish brain nuclei
NASA Astrophysics Data System (ADS)
Anken, R. H.; Werner, K.; Rahmann, H.
Larval cichlid fish ( Oreochromis mossambicus) siblings were subjected to 3g hypergravity (hg) and total darkness for 21 days during development and subsequently processed for conventional histology. Further siblings reared at 1g and alternating light/dark (12h:12h) conditions served as contros. Cell number counts of the visual Nucleus isthmi (Ni) versus the vestibular Nucleus magnocellularis (Nm) revealed that in experimental animals total cell number was decreased in the Ni, possibly due to retarded growth as a result of the lack of visual input whereas no effect was observed in the Nm. Calculating the percentual asymmetry in cell number (i.e., right vs. the left side of the brain), no effects of hg/darkness were seen in the Ni, whereas asymmetry was slightly increased in the Nm. Since the asymmetry of inner ear otoliths is decreased under hg, this finding may indicate efferent vestibular action of the CNS on the level of the Nm by means of a feedback mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Qingqiao; Xia, Yuanyu, E-mail: xiayuanyu.wh@gmail.com; Wang, Guan
As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression inmore » HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders.« less
Air-sea exchange of gaseous mercury in the East China Sea.
Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan
2016-05-01
Two oceanographic cruises were carried out in the East China Sea (ECS) during the summer and fall of 2013. The main objectives of this study are to identify the spatial-temporal distributions of gaseous elemental mercury (GEM) in air and dissolved gaseous mercury (DGM) in surface seawater, and then to estimate the Hg(0) flux. The GEM concentration was lower in summer (1.61 ± 0.32 ng m(-3)) than in fall (2.20 ± 0.58 ng m(-3)). The back-trajectory analysis revealed that the air masses with high GEM levels during fall largely originated from the land, while the air masses with low GEM levels during summer primarily originated from ocean. The spatial distribution patterns of total Hg (THg), fluorescence, and turbidity were consistent with the pattern of DGM with high levels in the nearshore area and low levels in the open sea. Additionally, the levels of percentage of DGM to THg (%DGM) were higher in the open sea than in the nearshore area, which was consistent with the previous studies. The THg concentration in fall was higher (1.47 ± 0.51 ng l(-1)) than those of other open oceans. The DGM concentration (60.1 ± 17.6 pg l(-1)) and Hg(0) flux (4.6 ± 3.6 ng m(-2) h(-1)) in summer were higher than those in fall (DGM: 49.6 ± 12.5 pg l(-1) and Hg(0) flux: 3.6 ± 2.8 ng m(-2) h(-1)). The emission flux of Hg(0) from the ECS was estimated to be 27.6 tons yr(-1), accounting for ∼0.98% of the global Hg oceanic evasion though the ECS only accounts for ∼0.21% of global ocean area, indicating that the ECS plays an important role in the oceanic Hg cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pan, Libo; Ma, Jin; Hu, Yu; Su, Benying; Fang, Guangling; Wang, Yue; Wang, Zhanshan; Wang, Lei; Xiang, Bao
2016-10-01
A total of 128 surface soil samples were collected, and eight heavy metals, including As, Cd, Cr, Cu, Pb, Ni, Zn, and Hg, were analyzed for their concentrations, potential ecological risks, and human health risks. The mean concentrations of these eight metals were lower than the soil environmental quality standards in China, while they were slightly higher than the background values in Shanxi Province. The enrichment factor, coefficient variation, and potential ecological risk index were used to assess the pollution and eco-risk level of heavy metals, among which, Cd and Hg showed higher pollution levels and potential risks than the others in the studied area. Moreover, multivariate geostatistical analysis suggested that Hg originated mainly from point sources such as industrial emissions, while agricultural activity is the predominant factor for Cd. The human health risk assessment indicated that non-carcinogenic values were below the threshold values. The total carcinogenic risks due to As, Cr, and Ni were within the acceptable range for adults, while for children, they were higher than the threshold value (1.0E-04), indicating that children are facing higher threat to heavy metals in soils. These results provide basic information on heavy metal pollution control and human health risk assessment management in the study regions.
Impacts of a North Pacific Predator on Nearshore Seawater Mercury Cycling via Top-Down Contamination
NASA Astrophysics Data System (ADS)
Cossaboon, J. M.; Ganguli, P. M.; Flegal, A. R., Jr.
2015-12-01
Marine mammals are common sentinel species for studying marine pollution, however their potential role as vectors of contaminants to local ecosystems has rarely been addressed. Organic methylmercury, or MeHg, is a potent neurotoxin that biomagnifies approximately one to ten million-fold in aquatic carnivores such as the Northern elephant seal (Mirounga angustirostris), whose excreta and molted pelage, in turn, constitute a source of environmental MeHg contamination at the base of marine food chains. This recycling of MeHg was evidenced by comparing total mercury (HgT) and MeHg concentrations in seawater at the Año Nuevo State Reserve pinniped rookery to those of neighboring coastal sites in Central California. The observed 17-fold enrichment of MeHg in seawater at Año Nuevo during the M. angustirostris molting season (0.28—9.5 pM) was remarkable, and exceeded the range of surface water MeHg concentrations observed in the highly urbanized San Francisco Bay estuary (<0.05—2.3 pM). The importance of MeHg inputs to Año Nuevo waters from Northern elephant seals was confirmed by the HgT concentrations in molted pelage samples (average = 3.6 μg g-1 dry wt.), which presumably contained >80% MeHg. This equates to an annual per-capita emission factor of 0.05 g MeHg per adult elephant seal. Based on this estimate, we calculate that approximately 0.2 kg of organic Hg entered the nearshore environment of Año Nuevo during that molting season. This elevated methylmercury (MeHg) in seawater adjacent to the rookery may become bioavailable to lower trophic levels, demonstrating that marine mammal colonization can substantially influence nearshore mercury cycling and potentially threaten ecosystem health.
Prpić, Igor; Milardović, Ana; Vlašić-Cicvarić, Inge; Špiric, Zdravko; Radić Nišević, Jelena; Vukelić, Petar; Snoj Tratnik, Janja; Mazej, Darja; Horvat, Milena
2017-01-01
To compare motor, cognitive and language characteristics in children aged 18 months who were prenatally exposed to low-level methyl-mercury (MeHg), and to analyze the eventual differences in these characteristics in relation to cord blood THg concentration. The total number of 205 child-mother pairs was included in the study, and total cord blood mercury was measured in 198 of them. Out of the 198 already measured samples, 47 of them have also been tested for methyl-mercury in cord blood. Data regarding the 47 samples of MeHg levels has been used for calculating the correlation between cord blood THg and cord blood MeHg. MeHg and THg showed a significant correlation (r=0.95, p<0.05). One month after the delivery, mothers were asked to complete the questionnaire regarding socioeconomic factors, breastfeeding of their infants, and dietary habits during pregnancy. Neurodevelopmental assessment of motor, cognitive and language skills were conducted on 168 children using The Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Regarding the cord blood THg concentration, 135 children were divided in 4 quartile groups. Their neurodevelopmental characteristics have been compared. The cord blood THg concentration median and inter-quartile range was 2.98ng/g (1.41-5.61ng/g). There was a negative correlation between cord blood THg concentration and fine motor skills (rho=-0.22, p=0.01). It is evident that children grouped in 2nd ,3rd and 4th quartile had statistically significant lower fine motor skills assessment related to those grouped in 1st quartile (2nd quartile -1.24, p=0.03; 3rd quartile -1.28, p=0.03; 4th quartile -1.45, p=0.01). The differences in fine motor skills assessments between children in 2nd and 3rd and 3rd and 4th quartile were not statistically significant. Intrauterine exposure to low-level THg (MeHg) is associated with alterations in fine motor skills at the age of 18 months. Copyright © 2016. Published by Elsevier Inc.
Liang, Qian; Xue, Zhan-Jun; Wang, Fei; Sun, Zhi-Mei; Yang, Zhi-Xin; Liu, Shu-Qing
2015-12-01
A total of 79 topsoil samples (ranging from 0 to 20 cm in depth) were collected from a grape cultivation area of Zhangjiakou City, China. The total concentrations of As, Cd, Hg, Cr, Cu, Mn, Ni, Pb, and Zn in soil samples were determined to evaluate pollution levels and associated health risks in each sample. Pollution levels were calculated using enrichment factors (EF) and geoaccumulation index (I geo). Health risks for adults and children were quantified using hazard indexes (HI) and aggregate carcinogenic risks (ACR). The mean concentrations of measured heavy metals Cd, Hg, and Cu, only in the grape cultivation soil samples, were higher than the background values of heavy metals in Hebei Province. According to principal component analysis (PCA), the anthropogenic activities related to agronomic and fossil fuel combustion practices attributed to higher accumulations of Cd, Hg, and Cu, which have slightly polluted about 10-40% of the sampled soils. However, the HI for all of the heavy metals were lower than 1 (within safe limits), and the ACR of As was in the 10(-6)-10(-4) range (a tolerable level). This suggests the absence of both non-carcinogenic and carcinogenic health risks for adults and children through oral ingestion and dermal absorption exposure pathways in the studied area. It should be also noted that the heightened vulnerability of children to health risks was accounted for higher HI and ACR values. Consequently, heavy metal concentrations (e.g., Cd, Hg, Cu) should be periodically monitored in these soils and improved soil management practices are required to minimize possible impacts on children's health.
Historical and Future Trends in Global Source-receptor Relationships of Mercury
NASA Astrophysics Data System (ADS)
Chen, L.; Zhang, W.; Wang, X.
2017-12-01
Growing concerns about the risk associated with increasing environmental Mercury (Hg) levels have resulted in a focus on the relationships between intercontinental emitted and accumulated Hg. We use a global biogeochemical Hg model with eight continental regions and a global ocean to evaluate the legacy impacts of historical anthropogenic releases (2000 BC to 2008 AD) on global source-receptor relationships of Hg. The legacy impacts of historical anthropogenic releases are confirmed to be significant on the source-receptor relationships according to our results. Historical anthropogenic releases from Asia account for 8% of total soil Hg in North America, which is smaller than the proportion ( 17%) from previous studies. The largest contributors to the global oceanic Hg are historical anthropogenic releases from North America (26%), Asia (16%), Europe (14%) and South America (14%). Although anthropogenic releases from Asia have exceeded North America since the 1970s, source contributions to global Hg receptors from Asia have not exceeded North America so far. Future projections indicate that if Hg emissions are not effectively controlled, Asia will exceed North America as the largest contributor to the global ocean in 2019 and this has a long-term adverse impact on the future environment. For the Arctic Ocean, historical anthropogenic release from North America contributes most to the oceanic Hg reservoir and future projections reveal that the legacy impacts of historical releases from mid-latitudes would lead to the potential of rising Hg in the Arctic Ocean in the future decades, which calls for more effective Hg controls on mid-latitude releases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, Teresa J; Southworth, George R; Peterson, Mark J
2013-01-01
East Fork Poplar Creek (EFPC) and White Oak Creek (WOC) are two mercury-contaminated streams located on the Department of Energy s Oak Ridge Reservation in east Tennessee. East Fork Poplar Creek is the larger and more contaminated of the two, with average aqueous mercury (Hg) concentrations exceeding those in reference streams by several hundred-fold. Remedial actions over the past 20 years have decreased aqueous Hg concentrations in EFPC by 85 %. Fish fillet concentrations, however, have not responded to this decrease in aqueous Hg and remain above the U.S. Environmental Protection Agency s ambient water quality criterion (AWQC) of 0.3more » mg/kg. The lack of correlation between aqueous and fish tissue Hg concentrations in this creek has led to questions regarding the usefulness of target aqueous Hg concentrations and strategies for future remediation efforts. White Oak Creek has a similar contamination history but aqueous Hg concentrations in WOC are an order of magnitude lower than in EFPC. Despite the lower aqueous Hg concentrations, fish fillet concentrations in WOC have also been above the AWQC, making the most recent aqueous Hg target of 200 ng/L in EFPC seem unlikely to result in an effective decrease in fillet Hg concentrations. Recent monitoring efforts in WOC, however, suggest an aqueous total Hg threshold above which Hg bioaccumulation in fish may not respond. This new information could be useful in guiding remedial actions in EFPC and in other point-source contaminated streams.« less
Natural biogeochemical cycle of mercury in a global three-dimensional ocean tracer model
NASA Astrophysics Data System (ADS)
Zhang, Yanxu; Jaeglé, Lyatt; Thompson, LuAnne
2014-05-01
We implement mercury (Hg) biogeochemistry in the offline global 3-D ocean tracer model (OFFTRAC) to investigate the natural Hg cycle, prior to any anthropogenic input. The simulation includes three Hg tracers: dissolved elemental (Hg0aq), dissolved divalent (HgIIaq), and particle-bound mercury (HgPaq). Our Hg parameterization takes into account redox chemistry in ocean waters, air-sea exchange of Hg0, scavenging of HgIIaq onto sinking particles, and resupply of HgIIaq at depth by remineralization of sinking particles. Atmospheric boundary conditions are provided by a global simulation of the natural atmospheric Hg cycle in the GEOS-Chem model. In the surface ocean, the OFFTRAC model predicts global mean concentrations of 0.16 pM for total Hg, partitioned as 80% HgIIaq, 14% Hg0aq, and 6% HgPaq. Total Hg concentrations increase to 0.38 pM in the thermocline/intermediate waters (between the mixed layer and 1000 m depth) and 0.82 pM in deep waters (below 1000 m), reflecting removal of Hg from the surface to the subsurface ocean by particle sinking followed by remineralization at depth. Our model predicts that Hg concentrations in the deep North Pacific Ocean (>2000 m) are a factor of 2-3 higher than in the deep North Atlantic Ocean. This is the result of cumulative input of Hg from particle remineralization as deep waters transit from the North Atlantic to the North Pacific on their ~2000 year journey. The model is able to reproduce the relatively uniform concentrations of total Hg observed in the old deep waters of the North Pacific Ocean (observations: 1.2 ± 0.4 pM; model: 1.1 ± 0.04 pM) and Southern Ocean (observations: 1.1 ± 0.2 pM; model: 0.8 ± 0.02 pM). However, the modeled concentrations are factors of 5-6 too low compared to observed concentrations in the surface ocean and in the young water masses of the deep North Atlantic Ocean. This large underestimate for these regions implies a factor of 5-6 anthropogenic enhancement in Hg concentrations.
Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)
NASA Astrophysics Data System (ADS)
Zambardi, T.; Sonke, J. E.; Toutain, J. P.; Sortino, F.; Shinohara, H.
2009-01-01
Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed gaseous fumarole Hg (fum)T, plume gaseous elemental Hg (g)0 and plume particulate Hg (p)II were obtained at fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on Hg T/SO 2 in condensed fumarolic gases and plumes, range from 2.5 to 10.1 kg y - 1 , in agreement with published values [Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Sci. Total Environ. 259(1-3), 115-121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO 2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg (p)II increases with distance from the fumarole vent, at the expense of Hg (g)0 and indicates significant in-plume oxidation and condensation of fumarole Hg (fum)T. Relative to the NIST SRM 3133 Hg standard, the stable isotopic compositions of Hg are δ 202Hg (fum)T = - 0.74‰ ± 0.18 (2SD, n = 4) for condensed gaseous fumarole Hg (fum)T, δ 202Hg (g)0 = - 1.74‰ ± 0.36 (2SD, n = 1) for plume gaseous elemental Hg (g)0 at the F0 fumarole, and δ 202Hg (p)II = - 0.11‰ ± 0.18 (2SD, n = 4) for plume particulate Hg (p)II. The enrichment of Hg (p)II in the heavy isotopes and Hg (g)0 in the light isotopes relative to the total condensed fumarolic Hg (fum)T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas expulsion in ambient T° atmosphere. A first order Rayleigh equilibrium condensation isotope fractionation model yields a fractionation factor α cond-gas of 1.00135 ± 0.00058.
Gilmour, Cynthia; Bell, James Tyler; Soren, Ally Bullock; Riedel, Georgia; Riedel, Gerhardt; Kopec, A Dianne; Bodaly, R A
2018-06-01
The distribution of mercury and methylmercury (MeHg) in sediment, mudflats, and marsh soils of the Hg-contaminated tidal Penobscot River was investigated, along with biogeochemical controls on production. Average total Hg in surface samples (0-3 cm) ranged from 100 to 1200 ng/g; average MeHg ranged from 5 to 50 ng/g. MeHg was usually highest at or near the surface except in highly mobile mudflats. Although total Hg concentrations in the Penobscot are elevated, it is the accumulation of MeHg that stands out in comparison to other ecosystems. Surface soils in the large Mendall Marsh, about 17 km downstream from the contamination source, contained particularly high %MeHg (averaging 8%). In Mendall marsh soil porewaters, MeHg often accounted for more than half of total Hg. Salt marshes are areas of particular concern in the Penobscot River, for they are depositional environments for a Hg-contaminated mobile pool of river sediment, hot spots for net MeHg production, and sources of risk to marsh animals. We hypothesized that exceptionally low mercury partitioning between the solid and aqueous phases (with log K d averaging ~4.5) drives high MeHg in Penobscot marshes. The co-occurrence of iron and sulfide in filtered soil porewaters, sometimes both above 100 μM, suggests the presence of nanoparticulate and/or colloidal metal sulfides. These colloids may be stabilized by high concentrations of aromatic and potentially sulfurized dissolved organic matter (DOM) in marsh soils. Thus, Hg in Penobscot marsh soils appears to be in a highly available for microbial methylation through the formation of DOM-associated HgS complexes. Additionally, low partitioning of MeHg to marsh soils suggests high MeHg bioavailability to animals. Overall, drivers of high MeHg in Penobscot marshes include elevated Hg in soils, low partitioning of Hg to solids, high Hg bioavailability for methylation, rapidly shifting redox conditions in surface marsh soils, and high rates of microbial activity. Copyright © 2018 Elsevier B.V. All rights reserved.
Yu, Yang; Zhang, Shuzhen; Huang, Honglin
2010-08-01
Effects of inoculation with the arbuscular mycorrhizal (AM) fungus Glomus mosseae on the behavior of Hg in soil-plant system were investigated using an artificially contaminated soil at the concentrations of 0, 1.0, 2.0, and 4.0 mg Hg kg(-1). Mercury accumulation was lower in mycorrhizal roots than in nonmycorrhizal roots when Hg was added at the rates of 2.0 and 4.0 mg kg(-1), while no obvious difference in shoot Hg concentration was found between mycorrhizal and nonmycorrhizal treatments. Mycorrhizal inoculation significantly decreased the total and extractable Hg concentrations in soil as well as the ratio of extractable to total Hg in soil. Equilibration sorption of Hg by soil was investigated, and the results indicated that mycorrhizal treatment enhanced Hg sorption on soil. The uptake of Hg was lower by mycorrhizal roots than by nonmycorrhizal roots. These experiments provide further evidence for the role of mycorrhizal inoculation in increasing immobilization of Hg in soil and reducing the uptake of Hg by roots. Calculation on mass balance of Hg in soil suggests the presence of Hg loss from soil presumably through evaporation, and AM inoculation enhanced Hg evaporation. This was evidenced by a chamber study to detect the Hg evaporated from soil.
Wang, Yongjie; Dang, Fei; Evans, R. Douglas; Zhong, Huan; Zhao, Jiating; Zhou, Dongmei
2016-01-01
Methylmercury (MeHg) accumulation in rice has great implications for human health. Here, effects of selenium (Se) on MeHg availability to rice are explored by growing rice under soil or foliar fertilization with Se. Results indicate that soil amendment with Se could reduce MeHg levels in soil and grain (maximally 73%). In contrast, foliar fertilization with Se enhanced plant Se levels (3–12 folds) without affecting grain MeHg concentrations. This evidence, along with the distinct distribution of MeHg and Se within the plant, demonstrate for the first time that Se-induced reduction in soil MeHg levels (i.e., MeHg-Se antagonism in soil) rather than MeHg-Se interactions within the plant might be the key process triggering the decreased grain MeHg levels under Se amendment. The reduction in soil MeHg concentrations could be mainly attributed to the formation of Hg-Se complexes (detected by TEM-EDX and XANES) and thus reduced microbial MeHg production. Moreover, selenite and selenate were equally effective in reducing soil MeHg concentrations, possibly because of rapid changes in Se speciation. The dominant role of Se-induced reduction in soil MeHg levels, which has been largely underestimated previously, together with the possible mechanisms advance our mechanistic understanding about MeHg dynamics in soil-rice systems. PMID:26778218
Methylmercury declines in a boreal peatland when experimental sulfate deposition decreases
Jill K. Coleman Wasik; Carl P.J. Mitchell; Daniel R. Engstrom; Edward B. Swain; Bruce A. Monson; Steven J. Balogh; Jeffrey D. Jeremiason; Brian A. Branfireun; Susan L. Eggert; Randall K. Kolka; James E. Almendinger
2012-01-01
Between 2001 and 2008 we experimentally manipulated atmospheric sulfate-loading to a small boreal peatland and monitored the resulting short and long-term changes in methylmercury (MeHg) production. MeHg concentrations and %MeHg (fraction of total-Hg (HgT) present as MeHg) in the porewaters of the experimental treatment reached peak values within...
Wang, Shaofeng; Li, Biao; Zhang, Mingmei; Xing, Denghua; Jia, Yonfeng; Wei, Chaoyang
2011-08-01
Due to the fast development of industry and the overuse of agrichemicals in past decades, Lake Taihu, an important source of aquatic products for Eastern China, has simultaneously suffered mercury (Hg) contamination and eutrophication. The objectives of this study are to understand Hg transfer in the food web in this eutrophic, shallow lake and to evaluate the exposure risk of Hg through fish consumption. Biota samples including macrophytes, sestons, benthic animals, and fish were collected from Lake Taihu in the fall of 2009. The total mercury (THg), methyl mercury (MeHg), δ(13)C and δ(15)N in the samples were measured. The signature for δ(15)N increased with the trophic levels. Along with a diet composed of fish, the significant relationship between the δ(13)C and δ(15)N indicated that a pelagic foraging habitat is the dominant pathway for energy transfer in Lake Taihu. The concentrations of THg and MeHg in the organisms varied dramatically by ∼3 orders of magnitude from primary producers (macrophytes and sestons) to piscivorous fish. The highest concentrations of both THg (100 ng g(-1)) and MeHg (66 ng g(-1)), however, were lower than the guideline of 200 ng g(-1) of MeHg for vulnerable populations that is recommended by the World Health Organization (WHO). The daily intake of THg and MeHg of 92 and 56 ng day(-1) kg(-1) body weight, respectively, was generally lower than the tolerable intake of 230 ng day(-1) kg(-1) body weight for children recommended by the Joint FAO/WHO Expert Committee on Food Additives. Significant relationships between the δ(15)N and the logarithm of THg and MeHg showed an obvious biomagnification of Hg along the food web. The logarithmic bioaccumulation factor of MeHg in the fish (up to 5.7) from Lake Taihu, however, was relatively low compared to that of other aquatic ecosystems. Health risk of exposure to Hg by consumption of fish for local residents is relatively low in the Lake Taihu area. Dilution of Hg levels in the phytoplankton induced by eutrophication is a possible factor inhibiting accumulation of MeHg in fish in eutrophic Lake Taihu.
Jensen, Allison M; Scanlon, Todd M; Riscassi, Ami L
2017-12-13
Wildfires alter forested ecosystems, which include large stores of mercury (Hg) and organic carbon, two compounds that are closely linked in vegetation, soils, and streamwater. Studies have shown that wildfires release elevated levels of mercury to the atmosphere which can be locally redeposited and leave charred organic material (vegetation and litter) on the soil surface. Both can contribute to the elevated mobilization of Hg into lakes and streams. However, no studies have conducted a detailed examination of hydrological transport of Hg following a wildfire. This study investigates the coupled transport of mercury and carbon at Twomile Run, a headwater stream located in the forested mountains of Shenandoah National Park, in the year following a low-severity wildfire. Weekly baseflow samples and bi-hourly high-flow storm samples were analyzed for dissolved and particulate mercury (Hg D and Hg P , respectively), dissolved organic carbon (DOC), UV absorbance at 254 nm (UV 254 , surrogate for DOC quantity and character), and total suspended solids (TSS), and were compared with identical measurements taken from a nearby unburned watershed. For all flow conditions sampled at the burned site (which did not include the 2 months following the fire), streamwater Hg D and DOC concentrations, and corresponding UV 254 , were similar to the unburned system. TSS concentrations varied between sites but overall differences were relatively small in magnitude and likely attributable to site differences rather than fire effects. Notably, the Hg P per unit of TSS at the burned site was an order of magnitude higher than the unburned site (2.66 and 0.13 ng Hg P per mg TSS, respectively) for 8 months following the fire, resulting in elevated Hg P concentrations for the range of flow conditions, after which there was a rapid return to non-disturbed conditions. Streamwater total Hg fluxes roughly doubled (0.55 to 1.04 μg m -2 yr -1 ) as a consequence of the fire, indicating that in addition to changing atmospheric and terrestrial Hg cycling, fires can rapidly and significantly alter the streamwater Hg which has implication for downstream ecosystems. These findings are particularly relevant as the occurrence and severity of wildfires are expected to increase in the mid-latitudes in response to climate change.
Nóvoa-Muñoz, J C; Pontevedra-Pombal, X; Martínez-Cortizas, A; García-Rodeja Gayoso, E
2008-05-15
This study was carried out to determine total Hg concentrations (HgT) in acid soils and main plant species in forest ecosystems located in the river Sor catchment, which is located 20 km to the NE of the biggest coal-fired power-plant in southwestern Europe (Galicia, NW Spain). Mercury enrichment factors and Hg inventories were also determined in the soils, which were regularly sampled between 1992 and 2001. The presence of elemental Hg was estimated by simple thermal desorption at 105 degrees C. The highest HgT concentrations occurred in upper soil layers (O and A horizons) with values up to 300 ng g(-1). HgT decreased with depth, achieving the lowest values in the bottommost horizons (i.e. the soil parent material, <6 ng g(-1)), except in podzolic soils. A similar trend occurred for Hg enrichment factors (HgEF) which showed values from 40 to 76 in topsoils. Upper soil mineral horizons (A or AB) made the largest contribution (>50%) to the HgT inventory despite showing lower concentrations than the organic horizons. The role of vegetation in capturing atmospheric Hg and subsequent deposition to soil agrees with the sequence of HgT in plant material: wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bratkič, Arne, E-mail: arne.bratkic@ijs.si; Ogrinc, Nives, E-mail: nives.orginc@ijs.si; Kotnik, Jože, E-mail: joze.kotnik@ijs.si
In this study, seasonal changes of mercury (Hg) species in the highly variable estuary of Soča/Isonzo River (northern Adriatic Sea) were investigated. Samplings were performed on a seasonal basis (September 2009, May, August and October 2010) and Hg species (total Hg, methylmercury (MeHg), dissolved gaseous Hg (DGM)) in waters, sediments and pore waters were determined. In addition, a range of ancillary parameters were measured (salinity, nutrients, organic carbon (OC), nitrogen species). Hg values were interpreted using these parameters and hydrological conditions (river flow, wave height) around the time of sampling. There were no significant changes in Hg load from rivermore » to the gulf, compared to previous studies. The load was temporarily higher in May 2010 due to higher river flow. Wave height, through changing hydrostatic pressure, was most likely to cause resuspension of already deposited Hg from the bottom (August 2010). The estuary is a net source of DGM to the atmosphere as suggested by DGM profiles, with salinity, redox potential and organic matter as the most probable controls over its production. MeHg is produced in situ in sediment or in water column, rather than transported by river, as indicated by its correlation with OC of the marine origin. Calculated fluxes for THg and MeHg showed sediment as a source for both the water column. In pore waters, OC in part affects partitioning of both THg and MeHg; however other factors (e.g. sulphide and/or oxyhydroxides precipitation and dissolution) are also probably important. -- Highlights: ► Water, sediment and pore water mercury species in front of Soča River estuary were measured. ► Seasonally variable hydrological conditions were shown to influence water column Hg speciation. ► Fluxes for total Hg and MeHg from sediment to water were calculated. ► Sediment is a source of total Hg and MeHg to the water column. ► Correlation of MeHg with organic carbon of marine origin suggests in situ formation.« less
Photochemical influences on the air-water exchange of mercury
NASA Astrophysics Data System (ADS)
Vette, Alan Frederic
The formation of dissolved gaseous mercury (DGM) in natural waters is an important component in the biogeochemical cycle of mercury (Hg). The predominate form of DGM in natural waters, gaseous elemental Hg (Hg0), may be transferred from the water to the atmosphere. Gas exchange may reduce the amount of Hg available for methyl-Hg formation, the most toxic form of Hg that bioaccumulates in the food chain. Determining the mechanisms and rates of DGM formation is essential in understanding the fate and cycling of Hg in aquatic ecosystems. Field and laboratory experiments were conducted to evaluate the effect of light on DGM formation in surface waters containing different levels of dissolved organic carbon (DOC). Water samples collected from the Tahqwamenon River and Whitefish Bay on Lake Superior were amended with divalent Hg (Hg2+) and irradiated under a variety of reaction conditions to determine rates of DGM formation. The water samples were also analyzed for various Hg species (total, filtered, easily reducible and dissolved gaseous Hg), DOC and light attenuation. Additional field studies were conducted on Lake Michigan to measure gaseous Hg in air and water. These data were used to develop a mechanistic model to estimate air-water exchange of gaseous Hg. This research found that photochemical formation of DGM was affected by penetration of UV A radiation (320-400 nm). Formation of DGM was enhanced at higher DOC concentrations, indicating DOC photosensitized the reduction of Hg2+ to Hg0. Wavelength studies determined that formation of DGM was significantly reduced in the absence of UV A. Field studies showed DGM concentrations were highest near the water surface and peaked at mid-day, indicating a photo-induced source of DGM. The conversion of reducible Hg2+ to Hg0 was suppressed in high DOC waters where UV A penetration was limited. The mechanistic model predicted similar DGM concentrations to the observed values and demonstrated that deposition and emission fluxes of gaseous Hg were similar in Lake Michigan. In addition, deposition and emission fluxes of gaseous Hg were similar to Hg loadings by precipitation. The formation and emission of DGM from surface waters represents a significant contribution to the Hg cycle in aquatic ecosystems.
Chahine, Mirna N; Topouchian, Jirar; Zelveian, Parounak; Hakobyan, Zoya; Melkonyan, Arevik; Azaki, Alaa; Diab, Reem; Harb, Aya; Asmar, Roland
2018-01-01
Following the European Society of Hypertension International Protocol (ESH-IP) Revision 2010, QardioArm ® and Omron M6 Comfort IT ® oscillometric devices were evaluated in the general population and in patients with type II diabetes, respectively, for self-blood pressure (BP) measurement. Both devices, QardioArm ® and Omron M6 Comfort ® , measure BP at the brachial level. The ESH-IP Revision 2010 includes a total number of 33 subjects. For each measure, the difference between observer and device BP values was calculated. In all, 99 pairs of BP differences are classified into three categories (≤5, ≤10, and ≤15 mmHg). The protocol procedures were followed precisely. QardioArm ® and Omron M6 Comfort ® fulfilled the requirements of the ESH-IP and passed the validation process successfully. For QardioArm ® , a total of 69 out of 99 comparisons for systolic blood pressure (SBP) showed an absolute difference within 5 mmHg and 82 out of 99 for diastolic blood pressure (DBP). As for Omron M6 Comfort ® , a total of 83 out of 99 comparisons for SBP showed an absolute difference within 5 mmHg and 77 out of 99 for DBP. The mean differences between the device and mercury readings were 0.7±5.9 mmHg for SBP and 0.3±4.1 mmHg for DBP for QardioArm ® and -1.4±4.7 mmHg for SBP and -2.1±4.3 mmHg for DBP for Omron M6 Comfort ® . With regard to part 2 of ESH-IP 2010, 27 out of 33 subjects had a minimum of two out of three measurements within 5 mmHg difference for SBP and 31 out of 33 subjects for DBP for the QardioArm ® , and 29 out of 33 patients had a minimum of two out of three measurements within 5 mmHg difference for SBP and 26 out of 33 patients for DBP for Omron M6 Comfort ® . QardioArm ® and Omron M6 Comfort ® readings differing from the mercury standard by <5, 10, and 15 mmHg fulfill the ESH-IP Revision 2010 requirements. Consequently, these two devices are suitable for use in the general population and non-insulin-dependent type II diabetic patients, respectively.
Chahine, Mirna N; Topouchian, Jirar; Zelveian, Parounak; Hakobyan, Zoya; Melkonyan, Arevik; Azaki, Alaa; Diab, Reem; Harb, Aya; Asmar, Roland
2018-01-01
Background Following the European Society of Hypertension International Protocol (ESH-IP) Revision 2010, QardioArm® and Omron M6 Comfort IT® oscillometric devices were evaluated in the general population and in patients with type II diabetes, respectively, for self-blood pressure (BP) measurement. Methods Both devices, QardioArm® and Omron M6 Comfort®, measure BP at the brachial level. The ESH-IP Revision 2010 includes a total number of 33 subjects. For each measure, the difference between observer and device BP values was calculated. In all, 99 pairs of BP differences are classified into three categories (≤5, ≤10, and ≤15 mmHg). The protocol procedures were followed precisely. Results: QardioArm® and Omron M6 Comfort® fulfilled the requirements of the ESH-IP and passed the validation process successfully. For QardioArm®, a total of 69 out of 99 comparisons for systolic blood pressure (SBP) showed an absolute difference within 5 mmHg and 82 out of 99 for diastolic blood pressure (DBP). As for Omron M6 Comfort®, a total of 83 out of 99 comparisons for SBP showed an absolute difference within 5 mmHg and 77 out of 99 for DBP. The mean differences between the device and mercury readings were 0.7±5.9 mmHg for SBP and 0.3±4.1 mmHg for DBP for QardioArm® and −1.4±4.7 mmHg for SBP and −2.1±4.3 mmHg for DBP for Omron M6 Comfort®. With regard to part 2 of ESH-IP 2010, 27 out of 33 subjects had a minimum of two out of three measurements within 5 mmHg difference for SBP and 31 out of 33 subjects for DBP for the QardioArm®, and 29 out of 33 patients had a minimum of two out of three measurements within 5 mmHg difference for SBP and 26 out of 33 patients for DBP for Omron M6 Comfort®. Conclusion: QardioArm® and Omron M6 Comfort® readings differing from the mercury standard by <5, 10, and 15 mmHg fulfill the ESH-IP Revision 2010 requirements. Consequently, these two devices are suitable for use in the general population and non-insulin-dependent type II diabetic patients, respectively. PMID:29343992
Total mercury in canned yellowfin tuna Thunnus albacares marketed in northwest Mexico.
Ruelas-Inzunza, Jorge; Patiño-Mejía, Carlos; Soto-Jiménez, Martín; Barba-Quintero, Guillermo; Spanopoulos-Hernández, Milton
2011-12-01
Mercury (Hg) was determined in Thunnus albacares canned in oil (from 7 to 10 samples per brand) and water (from 5 to 10 samples per brand) of five leading brands in Mexico in 2008. Potential health risk was estimated on the basis of Hg concentration and rate (1.43 kg year(-1)per capita) of tuna consumption in Mexico. Highest Hg concentrations were 0.51 ± 0.26 and 0.40 ± 0.24 μ gg(-1) dry weight in water and oil, respectively. Averaged Hg concentrations in tuna canned in water in the current study were comparable to values in Katsuwonus pelamis from Alabama; regarding the oil presentation, Hg levels were lower than in canned tuna collected in Mexico and comparable to values in canned tuna (species not identified) from Turkey. Hazard quotients were 0.0166 and 0.012 in water and oil, respectively. For the analyzed brands and considering tuna consumption in Mexican population, reference dose for this element was not exceeded; therefore, no human health risk is likely to occur. More work is necessary in relation to exposure to Hg from other sources, rates of consumption in strata of population with elevated fish consumption, size of canned tuna and on the role of Se against Hg toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary.
Reinhart, Bethany L; Kidd, Karen A; Curry, R Allen; O'Driscoll, Nelson J; Pavey, Scott A
2018-06-01
Although estuaries are critical habitats for many aquatic species, the spatial trends of toxic methylmercury (MeHg) in biota from fresh to marine waters are poorly understood. Our objective was to determine if MeHg concentrations in biota changed along a salinity gradient in an estuary. Fourspine Stickleback (Apeltes quadracus), invertebrates (snails, amphipods, and chironomids), sediments, and water were collected from ten sites along the Saint John River estuary, New Brunswick, Canada in 2015 and 2016, with salinities ranging from 0.06 to 6.96. Total mercury (proxy for MeHg) was measured in whole fish and MeHg was measured in a subset of fish, pooled invertebrates, sediments, and water. Stable sulfur (δ 34 S), carbon (δ 13 C), and nitrogen (δ 15 N) isotope values were measured to assess energy sources (S, C) and relative trophic level (N). There were increases in biotic δ 13 C and δ 34 S from fresh to more saline sites and these measures were correlated with salinity. Though aqueous MeHg was higher at the freshwater than more saline sites, only chironomid MeHg increased significantly with salinity. In the Saint John River estuary, there was little evidence that MeHg and its associated risks increased along a salinity gradient. Copyright © 2018. Published by Elsevier B.V.
Mercury concentrations of bluegill (Lepomis macrochirus) vary by sex
Madenjian, Charles P.; Francis, James T.; Braunscheidel, Jeffrey J.; Bohr, Joseph R.; Geiger, Matthew J.; Knottnerus, G. Mark
2015-01-01
Patterns in relative differences in contaminant concentrations between the sexes across many species of fish may reveal clues for important behavioral and physiological differences between the sexes, and may also be useful in developing fish consumption advisories and efficient designs for programs meant to monitor contaminant levels in fish. We determined skin-off fillet and whole-fish total mercury (Hg) concentrations of 28 adult female and 26 adult male bluegills (Lepomis macrochirus) from Squaw Lake, Oakland County, Michigan (MI), USA. Bioenergetics modeling was used to quantify the effect of growth dilution on the difference in Hg concentrations between the sexes. On average, skin-off fillet and whole-fish Hg concentrations were 25.4% higher and 26.6% higher, respectively, in females compared with males. Thus, the relative difference in Hg concentrations between the sexes for skin-off fillets was nearly identical to that for whole fish. However, mean skin-off fillet Hg concentration (363 ng/g) was 2.3 times greater than mean whole-fish Hg concentration (155 ng/g). Males grew substantially faster than females, and bioenergetics modeling results indicated that the growth dilution effect could account for females having 14.4% higher Hg concentrations than males. Our findings should be useful in revising fish consumption advisories.
Belém-Filho, Ivaldo Jesus Almeida; Ribera, Paula Cardoso; Nascimento, Aline Lima; Gomes, Antônio Rafael Quadros; Lima, Rafael Rodrigues; Crespo-Lopez, Maria Elena; Monteiro, Marta Chagas; Fontes-Júnior, Enéas Andrade; Lima, Marcelo Oliveira; Maia, Cristiane Socorro Ferraz
2018-04-30
Methylmercury (MeHg) is an environmental contaminant that provokes damage to developing brain. Simultaneously, the consumption of ethanol among adolescents has increased. Evidence concerning the effects of MeHg low doses per se or associated with ethanol during adolescence are scarce. Thus, we investigate behavioral disorders resulted from exposure to MeHg low doses and co-intoxicated with ethanol in adolescent rats. Wistar rats received chronic exposure to low doses of MeHg (40 μg/kg/day for 5 weeks) and/or ethanol binge drinking (3 g/kg/day at 3 days per week for 5 weeks). Animals were submitted to behavioral assays to assess emotionality and cognitive function. Total mercury content was evaluated in the brain and hair. Oxidative parameters were analyzed in blood samples. MeHg at low doses or associated to ethanol binge drinking produced psychiatric-like disorders and cognitive impairment. Peripherally, MeHg altered oxidative parameters when associated to ethanol. Ethanol administration reduced brain mercury deposit. We proposed that ethanol reduces the necessity of mercury tissue levels to display psychiatric-like disorders/cognitive impairment. Copyright © 2018. Published by Elsevier B.V.
Marrugo-Negrete, José Luis; Ruiz-Guzmán, Javier Alonso; Díez, Sergi
2013-02-01
In the present study, total mercury (T-Hg) concentrations were assessed in human hair samples (n = 76) and fish muscle (n = 33) collected at Urrá dam, upstream Sinú river, northwestern Colombia. Based on interviews with study participants, weekly intakes of total mercury (WIT-Hg) and methylmercury (WIMeHg) by fish consumption were also estimated. T-Hg concentrations in hair samples ranged from 0.40 to 24.56 μg/g dw. The highest concentrations were recorded in children (CH) (2-15 years old, n = 24) with significant differences (p < 0.05) with respect to women of childbearing age (WCHA) (16-49 years old, n = 29) and the rest of the population (RP) (n = 23), which were not significantly different. The highest T-Hg concentrations in muscle tissue were recorded in the carnivorous fish (0.65-2.25 μg/g wet weight, ww), with significant differences (p < 0.05) compared to non-carnivorous fish (0.16-0.54 μg/g ww). WIT-Hg recorded the highest values in CH (2.18-50.41 μg/kg/week), with significant differences (p < 0.05) with respect to WCHA (2.02-23.54 μg/kg/week) and RP (1.09-24.71 μg/kg/week), which were not significantly different. Correlation analysis showed a significant relationship between weekly fish consumption and hair T-Hg in CH (r = 0.37, p < 0.05) and WCHA (r = 0.44, p < 0.05). This association was also observed with the number of days per week with fish consumption in CH (r = 0.37, p < 0.05) and WCHA (r = 0.45, p < 0.05). These results suggest that Hg exposure in people inhabiting the Urrá dam should be carefully monitored, particularly in vulnerable groups such as CH and WCHA.
Mapping 1995 global anthropogenic emissions of mercury
NASA Astrophysics Data System (ADS)
Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon
This paper presents maps of anthropogenic Hg emissions worldwide within a 1°×1° latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg emissions and its three main chemical species: elemental gaseous Hg, divalent gaseous Hg, and particle-associated Hg are presented. The main emissions occur in southeast Asia (particularly in China), South Africa, Central and Eastern Europe, and the Eastern United States. These are the regions where coal combustion is the main source of electricity and heat production. Waste incineration adds to these emissions in the Eastern United States. Emissions of total Hg and its three species are quite similar in terms of their (global) spatial distributions. They reflect the worldwide distribution of coal consumption in large power plants, industrial burners, and small combustion units, such as residential and commercial furnaces.
Sources of Dietary Protein in Relation to Blood Pressure in a General Dutch Population
Altorf - van der Kuil, Wieke; Engberink, Mariëlle F.; Vedder, Moniek M.; Boer, Jolanda M. A.; Verschuren, W. M. Monique; Geleijnse, Johanna M.
2012-01-01
Background Little is known about the relation of different dietary protein types with blood pressure (BP). We examined whether intake of total, plant, animal, dairy, meat, and grain protein was related to BP in a cross sectional cohort of 20,820 Dutch adults, aged 20–65 y and not using antihypertensive medication. Design Mean BP levels were calculated in quintiles of energy-adjusted protein with adjustment for age, sex, BMI, education, smoking, and intake of energy, alcohol, and other nutrients including protein from other sources. In addition, mean BP difference after substitution of 3 en% carbohydrates or MUFA with protein was calculated. Results Total protein and animal protein were not associated with BP (ptrend = 0.62 and 0.71 respectively), both at the expense of carbohydrates and MUFA. Systolic BP was 1.8 mmHg lower (ptrend<0.01) in the highest (>36 g/d) than in the lowest (<27 g/d) quintile of plant protein. This inverse association was present both at the expense of carbohydrates and MUFA and more pronounced in individuals with untreated hypertension (−3.6 mmHg) than in those with normal (+0.1 mmHg) or prehypertensive BP (−0.3 mmHg; pinteraction<0.01). Meat and grain protein were not related to BP. Dairy protein was directly associated with systolic BP (+1.6 mmHg, ptrend<0.01), but not with diastolic BP (ptrend = 0.24). Conclusions Total protein and animal protein were not associated with BP in this general untreated Dutch population. Plant protein may be beneficial to BP, especially in people with elevated BP. However, because high intake of plant protein may be a marker of a healthy diet and lifestyle in general, confirmation from randomized controlled trials is warranted. PMID:22347387
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.
2014-10-01
China's atmospheric mercury (Hg) emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems for power sector, precalciners with fabric filter (FF) for cement production, machinery coking with electrostatic precipitator (ESP) for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t) in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an example, increased from -48~ +73% in 2005 to -50~ +89% in 2012 (expressed as 95% confidence interval). This is attributed mainly to swiftly increased penetration of advanced manufacturing and pollutant control technologies. The unclear operation status or relatively small sample size of field measurements on those technologies results in lower but highly varied emission factors. To further confirm the benefits of pollution control polices with reduced uncertainty, therefore, systematic investigations are recommended specific for Hg pollution sources, and the variability of temporal trends and spatial distributions of Hg emissions need to be better tracked for the country under dramatic changes in economy, energy and air pollution status.
Mercury methylation in forested uplands; how important is it?
NASA Astrophysics Data System (ADS)
Shanley, J. B.; Marvin-Dipasquale, M.; Schuster, P. F.; Chalmers, A.; Reddy, M. M.
2004-05-01
Episodic fluxes of mercury during high flows at the headwater catchment at the Sleepers River Research Watershed in Vermont indicate that uplands are an important source of total mercury (Hg) to known downstream methylation sites (i.e. large wetlands). Methylmercury (MeHg) behavior in streamwater, soil water, and sediment porewater coupled with high potential methylation rates suggests that forested uplands may be significant source areas for MeHg as well. In a July 2003 incubation, potential Hg methylation rates exceeded potential demethylation rates by factors of 1.6 each in shallow (0-4 cm) swamp and riparian soils and by 19.6 in anoxic stream sediments. The stream sediment had the greatest methylation rate of 7.5 ng/ g of wet sediment / day. However, MeHg concentrations in filtered (0.4 um) porewater at these sites ranged only from 0.07 to 0.37 ng/ L, similar to the range at low-lying wetland sites elsewhere in Vermont (0.06 to 0.56 ng/L). In Sleepers River headwaters as well as larger Vermont rivers, most of the MeHg export occurs during snowmelt and summer / fall storms, with nearly all of the MeHg occurring in the particulate phase. Stream total Hg and MeHg concentrations were consistently correlated, suggesting a common source, probably soil organic matter. The methylation efficiency (ratio MeHg / total Hg) was near 2% in the Sleepers River headwaters, similar to that in Vermont rivers draining large wetland systems, indicating that the methylation process originates in the headwaters.
Mercury transport in a high-elevation watershed in Rocky Mountain National Park, Colorado
Mast, M.A.; Campbell, D.H.; Krabbenhoft, D.P.; Taylor, Howard E.
2005-01-01
Mercury (Hg) was measured in stream water and precipitation in the Loch Vale watershed in Rocky Mountain National Park, Colorado, during 2001-2002 to investigate processes controlling Hg transport in high-elevation ecosystems. Total Hg concentrations in precipitation ranged from 2.6 to 36.2 ng/L and showed a strong seasonal pattern with concentrations that were 3 to 4 times higher during summer months. Annual bulk deposition of Hg was 8.3 to 12.4 ?? g/m 2 and was similar to deposition rates in the Midwestern and Northeastern U.S. Total Hg concentrations in streams ranged from 0.8 to 13.5 ng/L and were highest in mid-May on the rising limb of the snowmelt hydrograph. Stream-water Hg was positively correlated with dissolved organic carbon suggesting organically complexed Hg was flushed into streams from near-surface soil horizons during the early stages of snowmelt. Methylmercury (MeHg) in stream water peaked at 0.048 ng/L just prior to peak snowmelt but was at or below detection (< 0.040 ng/L) for the remainder of the snowmelt season. Annual export of total Hg in Loch Vale streams ranged from 1.2 to 2.3 ?? g/m2, which was less than 20% of wet deposition, indicating the terrestrial environment is a net sink of atmospheric Hg. Concentrations of MeHg in stream water and corresponding watershed fluxes were low, indicating low methylation rates or high demethylation rates or both. ?? Springer 2005.
Parajuli, Rajendra Prasad; Goodrich, Jaclyn M.; Chou, Hwai-Nan; Gruninger, Stephen E.; Dolinoy, Dana C.; Franzblau, Alfred; Basu, Niladri
2015-01-01
Background/Aims Mercury (Hg) is a potent toxicant of concern to the general public. Recent studies suggest that several genes that mediate Hg metabolism are polymorphic. We hypothesize that single nucleotide polymorphisms (SNPs) in such genes may underline inter-individual differences in exposure biomarker concentrations. Methods Dental professionals were recruited during the American Dental Association (ADA) 2012 Annual Meeting. Samples of hair, blood, and urine were collected for quantifying Hg levels and genotyping (88 SNPs in classes relevant to Hg toxicokinetics including glutathione metabolism, selenoproteins, metallothioneins, and xenobiotic transporters). Questionnaires were administrated to obtain information on demographics and sources of Hg exposure (e.g., fish consumption and use of dental amalgam). Here, we report results for 380 participants with complete genotype and Hg biomarker datasets. ANOVA and linear regressions were used for statistical analysis. Results Mean (geometric) Hg levels in hair (hHg), blood (bHg), urine (uHg), and the average estimated Hg intake from fish were 0.62μg/g, 3.75μg/L, 1.32μg/L, and 0.12μg/kg body weight/day, respectively. Out of 88 SNPs successfully genotyped, Hg biomarker levels differed by genotype for 25 SNPs, one of which remained significant following Bonferroni correction in ANOVA. When the associations between sources of Hg exposure and SNPs were analyzed with respect to Hg biomarker concentrations, 38 SNPs had significant main effects and/or gene-Hg exposure source interactions. Twenty-five, 23, and four SNPs showed significant main effects and/or interactions for hHg, bHg, and uHg levels, respectively (p<0.05), and six SNPs (in GCLC, MT1M, MT4, ATP7B, and BDNF) remained significant following Bonferroni correction. Conclusion The findings suggest that polymorphisms in environmentally-responsive genes can influence Hg biomarker levels. Hence, consideration of such gene-environment factors may improve the ability to assess the health risks of Hg more precisely. PMID:26673400
Impact of Climate Change on Mercury Transport along the Carson River-Lahontan Reservoir System
NASA Astrophysics Data System (ADS)
Flickinger, A.; Carroll, R. W. H.; Warwick, J. J.; Schumer, R.
2014-12-01
Historic mining practices have left the Carson River and Lahontan Reservoir (CRLR) system contaminated with high levels of mercury (Hg). Hg levels in Lahontan Reservoir planktivorous and predatory fish exceed federal consumption limits. Inputs of Hg to the system are mainly a result of erosion during high flow and diffusion from sediment during low flow, and the relationships between streamflow and both mercury transport and bioaccumulation are non-linear. The United States Bureau of Reclamation has produced future streamflow estimates for 2000-2099 using 112 CMIP3 climate projections and the Variable Infiltration Capacity (VIC) model. VIC results suggest that the hydrology of the system is likely to experience higher frequencies of both high and low extreme flows, and the monthly averages of future flows are expected to be higher in the winter and lower in the summer compared to observed flows. VIC daily streamflow estimates are biased-corrected using an empirical cumulative distribution function to match observed data over the historic period of 1950-1999. Future reservoir stage and outflows are modeled assuming reservoir operations are a function of river/canal inflows, previous reservoir stage and downstream agricultural demands. VIC and reservoir flows drive the CRLR Hg transport model (RIVMOD, WASP5, and MERC4). Daily output for both total and dissolved inorganic Hg and methylmercury (MeHg) are averaged at the decadal timescale to assess changes and uncertainty in predicted spatial and temporal Hg species water column concentrations as a function of altered hydrology with respect to changing climate. Future research will use CRLR output in a bioenergetics and Hg mass balance model for Sacramento blackfish (Orthodon microlepidotus), a filter feeding cyprinid found in Lahontan Reservoir. These future simulations will help to assess possible changes in ecosystem health with respect to hydrologic conditions and associated changes to Hg transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marino, Kady B.; Hoover-Miller, Anne; Conlon, Suzanne
This study quantified the Hg levels in the liver (n=98) and heart (n=43) tissues of Harbor Seals (Phoca vitulina) (n=102) harvested from Prince William Sound and Kodiak Island Alaska. Mercury tissue dry weight (dw) concentrations in the liver ranged from 1.7 to 393 ppm dw, and in the heart from 0.19 to 4.99 ppm dw. Results of this study indicate liver and heart tissues' Hg ppm dw concentrations significantly increase with age. Male Harbor Seals bioaccumulated Hg in both their liver and heart tissues at a significantly faster rate than females. The liver Hg bioaccumulation rates between the harvest locationsmore » Kodiak Island and Prince William Sound were not found to be significantly different. On adsorption Hg is transported throughout the Harbor Seal's body with the partition coefficient higher for the liver than the heart. No significant differences in the bio-distribution (liver:heart Hg ppm dw ratios (n=38)) values were found with respect to either age, sex or geographic harvest location. In this study the age at which Hg liver and heart bioaccumulation levels become significantly distinct in male and female Harbor Seals were identified through a Tukey's analysis. Of notably concern to human health was a male Harbor Seal's liver tissue harvested from Kodiak Island region. Mercury accumulation in this sample tissue was determined through a Q-test to be an outlier, having far higher Hg concentrarion (liver 392 Hg ppm dw) than the general population sampled. - Highlights: Black-Right-Pointing-Pointer Mercury accumulation in the liver and heart of seals exceed food safety guidelines. Black-Right-Pointing-Pointer Accumulation rate is greater in males than females with age. Black-Right-Pointing-Pointer Liver mercury accumulation is greater than in the heart tissues. Black-Right-Pointing-Pointer Mercury determination by USA EPA Method 7473 using thermal decomposition.« less
Kwon, Sae Yun; Blum, Joel D; Nadelhoffer, Knute J; Timothy Dvonch, J; Tsui, Martin Tsz-Ki
2015-11-01
Studies of monomethylmercury (MMHg) sources and biogeochemical pathways have been extensive in aquatic ecosystems, but limited in forest ecosystems. Increasing evidence suggests that there is significant mercury (Hg) exchange between aquatic and forest ecosystems. We use Hg stable isotope ratios (δ(202)Hg and Δ(199)Hg) to investigate the relative importance of MMHg sources and assess Hg transfer pathways between Douglas Lake and adjacent forests located at the University of Michigan Biological Station, USA. We characterize Hg isotopic compositions of basal resources and use linear regression of % MMHg versus δ(202)Hg and Δ(199)Hg to estimate Hg isotope values for inorganic mercury (IHg) and MMHg in the aquatic and adjacent forest food webs. In the aquatic ecosystem, we found that lake sediment represents a mixture of IHg pools deposited via watershed runoff and precipitation. The δ(202)Hg and Δ(199)Hg values estimated for IHg are consistent with other studies that measured forest floor in temperate forests. The Δ(199)Hg value estimated for MMHg in the aquatic food web indicates that MMHg is subjected to ~20% photochemical degradation prior to bioaccumulation. In the forest ecosystem, we found a significant negative relationship between total Hg and δ(202)Hg and Δ(199)Hg of soil collected at multiple distances from the lakeshore and lake sediment. This suggests that IHg input from watershed runoff provides an important Hg transfer pathway between the forest and aquatic ecosystems. We measured Δ(199)Hg values for high trophic level insects and compared these insects at multiple distances perpendicular to the lake shoreline. The Δ(199)Hg values correspond to the % canopy cover suggesting that forest MMHg is subjected to varying extents of photochemical degradation and the extent may be controlled by sunlight. Our study demonstrates that the use of Hg isotopes adds important new insight into the relative importance of MMHg sources and complex Hg transfer pathways across ecosystem boundaries. Copyright © 2015 Elsevier B.V. All rights reserved.
Teraoka, Hiroki; Kumagai, Yoshihiro; Iwai, Hisae; Haraguchi, Kensaku; Ohba, Takashi; Nakai, Kunihiko; Satoh, Hiroshi; Sakamoto, Mineshi; Momose, Kunikazu; Masatomi, Hiroyuki; Hiraga, Takeo
2007-02-01
Japanese cranes (Grus japonensis) of eastern Hokkaido, Japan, and migrants between the Amur River basin and the eastern China-Korea Peninsula, live around fresh and brackish wetlands. Only a few thousand cranes are confirmed to exist in the world, so they are under threat of extinction. To understand the adverse effects of metal accumulation, we measured concentrations of three heavy metals in the liver, kidney, and muscle of 93 Japanese cranes from Hokkaido. The cranes were classified into six categories according to their sex and three life stages. Cadmium and mercury (Hg: total mercury) showed age-dependent but not sex-dependent accumulation in the liver and kidney. Twenty cranes showed 30 microg/g or higher levels of Hg in dry tissue and five adult cranes had more than 100 microg/g in their livers or kidneys. Cadmium concentrations were generally lower in all samples. Two adult cranes showed extremely high lead levels of more than 30 microg/g in their livers, suggesting lead poisoning. These results have highlighted the widespread and high levels of Hg pollution in Japanese cranes in Hokkaido, Japan.
Eckley, Chris S; Branfireun, Brian
2009-08-01
This research focuses on mercury (Hg) mobilization in stormwater runoff from an urban roadway. The objectives were to determine: how the transport of surface-derived Hg changes during an event hydrograph; the influence of antecedent dry days on the runoff Hg load; the relationship between total suspended sediments (TSS) and Hg transport, and; the fate of new Hg input in rain and its relative importance to the runoff Hg load. Simulated rain events were used to control variables to elucidate transport processes and a Hg stable isotope was used to trace the fate of Hg inputs in rain. The results showed that Hg concentrations were highest at the beginning of the hydrograph and were predominantly particulate bound (HgP). On average, almost 50% of the total Hg load was transported during the first minutes of runoff, underscoring the importance of the initial runoff on load calculations. Hg accumulated on the road surface during dry periods resulting in the Hg runoff load increasing with antecedent dry days. The Hg concentrations in runoff were significantly correlated with TSS concentrations (mean r(2)=0.94+/-0.09). The results from the isotope experiments showed that the new Hg inputs quickly become associated with the surface particles and that the majority of Hg in runoff is derived from non-event surface-derived sources.
Occurrence and mobility of mercury in groundwater: Chapter 5
Barringer, Julia L.; Szabo, Zoltan; Reilly, Pamela A.; Bradley, Paul M.
2013-01-01
Mercury (Hg) has long been identified as an element that is injurious, even lethal, to living organisms. Exposure to its inorganic form, mainly from elemental Hg (Hg(0)) vapor (Fitzgerald & Lamborg, 2007) can cause damage to respiratory, neural, and renal systems (Hutton, 1987; USEPA, 2012; WHO, 2012). The organic form, methylmercury (CH3Hg+; MeHg), is substantially more toxic than the inorganic form (Fitzgerald & Lamborg, 2007). Methylmercury attacks the nervous system and exposure can prove lethal, as demonstrated by well-known incidents such as those in 1956 in Minimata, Japan (Harada, 1995), and 1971 in rural Iraq (Bakir et al., 1973), where, in the former, industrial release of MeHg into coastal waters severely tainted the fish caught and eaten by the local population, and in the latter, grain seed treated with an organic mercurial fungicide was not planted, but eaten in bread instead. Resultant deaths are not known with certainty but have been estimated at about 100 and 500, respectively (Hutton, 1987). Absent such lethal accidents, human exposure to MeHg comes mainly from ingestion of piscivorous fish in which MeHg has accumulated, with potential fetal damage ascribed to high fish diets during their mothers’ pregnancies (USEPA, 2001). Lesser human exposure occurs through ingestion of drinking water (USEPA, 2001), where concentrations of total Hg (THg; inorganic plus organic forms) typically are in the low nanograms-per-liter range[1] - , particularly from many groundwater sources, and concentrations at the microgram-per-liter level are rare.
Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000.
Sunderland, Elsie M; Dalziel, John; Heyes, Andrew; Branfireun, Brian A; Krabbenhoft, David P; Gobas, Frank A P C
2010-03-01
Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost 40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast, MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs.
Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000
Sunderl, E.M.; Dalziel, J.; Heyes, A.; Branfireun, B.A.; Krabbenhoft, D.P.; Gobas, F.A.P.C.
2010-01-01
Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs. ?? 2010 American Chemical Society.
Hair mercury levels in relation to fish consumption among Vietnamese in Hanoi.
Hoang, Van Anh Thi; Do, Hien Thu Thi; Agusa, Tetsuro; Koriyama, Chihaya; Akiba, Suminori; Ishibashi, Yasuhiro; Sakamoto, Mineshi; Yamamoto, Megumi
2017-01-01
People are exposed to methylmercury (MeHg) mainly through fish consumption, which is increasing in Vietnam. However, little information is available on estimating the health risk of MeHg exposure through fish consumption in Vietnam. The present study examined the association between mercury (Hg) levels in hair and selenium (Se) levels in toenails of 196 Vietnamese people and their fish consumption, using a dietary questionnaire to obtain information pertinent for assessing health risk owing to MeHg exposure. The geometric mean of Hg levels in the hair of males and females was 617 ng/g and 575 ng/g, respectively. We found that Hg levels in the hair of 98% of the Vietnamese study subjects were lower than the provisional tolerable weekly intake for MeHg (1.6 µg Hg/kg body weight; which is equivalent to a hair Hg concentration of approximately 2,300 ng/g, with an uncertainty factor of 6.4). There were significant differences in the age-adjusted geometric mean of Hg levels found in hair from females related to their frequency of freshwater fish consumption. The levels of Hg in hair and Se in toenails increased with an increased frequency of marine fish consumption, and both showed a significant positive correlation in subjects who consumed marine fish ≥ once/week. This is the first cross-sectional study to investigate the association between hair Hg levels and fish consumption in Vietnam. These findings provide valuable information for future assessments of the health risk of MeHg exposure through fish consumption in Vietnam.
Castilhos, Zuleica; Rodrigues-Filho, Saulo; Cesar, Ricardo; Rodrigues, Ana Paula; Villas-Bôas, Roberto; de Jesus, Iracina; Lima, Marcelo; Faial, Kleber; Miranda, Antônio; Brabo, Edilson; Beinhoff, Christian; Santos, Elisabeth
2015-08-01
Mercury (Hg) contamination is an issue of concern in the Amazon region due to potential health effects associated with Hg exposure in artisanal gold mining areas. The study presents a human health risk assessment associated with Hg vapor inhalation and MeHg-contaminated fish ingestion, as well as Hg determination in urine, blood, and hair, of human populations (about 325 miners and 321 non-miners) from two gold mining areas in the Brazilian Amazon (São Chico and Creporizinho, Pará State). In São Chico and Creporizinho, 73 fish specimens of 13 freshwater species, and 161 specimens of 11 species, were collected for total Hg determination, respectively. The hazard quotient (HQ) is a risk indicator which defines the ratio of the exposure level and the toxicological reference dose and was applied to determine the threat of MeHg exposure. The mean Hg concentrations in fish from São Chico and Creporizinho were 0.83 ± 0.43 and 0.36 ± 0.33 μg/g, respectively. More than 60 and 22 % of fish collected in São Chico and Creporizinho, respectively, were above the Hg limit (0.5 μg/g) recommended by WHO for human consumption. For all sampling sites, HQ resulted from 1.5 to 28.5, except for the reference area. In Creporizinho, the values of HQ are close to 2 for most sites, whereas in São Chico, there is a hot spot of MeHg contamination in fish (A2-São Chico Reservoir) with the highest risk level (HQ = 28) associated with its human consumption. Mean Hg concentrations in urine, blood, and hair samples indicated that the miners group (in São Chico: urine = 17.37 μg/L; blood = 27.74 μg/L; hair = 4.50 μg/g and in Creporizinho: urine = 13.75 μg/L; blood = 25.23 μg/L; hair: 4.58 μg/g) was more exposed to mercury compared to non-miners (in São Chico: urine = 5.73 μg/L; blood = 16.50 μg/L; hair = 3.16 μg/g and in Creporizinho: urine = 3.91 μg/L; blood = 21.04 μg/L, hair = 1.88 μg/g). These high Hg levels (found not only in miners but also in non-miners who live near the mining areas) are likely to be related to a potential hazard due to exposure to both Hg vapor by inhalation and to MeHg-contaminated fish ingestion.
Dietary mercury exposure and bioaccumulation in southern leopard frog (Rana sphenocephala) larvae.
Unrine, Jason M; Jagoe, Charles H
2004-12-01
Aufwuchs was collected from three reservoirs, a constructed wetland used for groundwater treatment, and mercury (Hg)-enriched mesocosms to examine the relationship between inorganic Hg and methylmercury concentrations in the diet of tadpoles. Four diets were then formulated with Hg-enriched aufwuchs to concentrations that bracketed those of Hg observed in aufwuchs from the field and reported in the literature from sites contaminated by atmospheric deposition. The diets were fed to southern leopard frog tadpoles in the laboratory for the entire larval period (60-254 d). Metamorphs and tadpoles were analyzed for inorganic Hg and methylmercury contents by gas chromatography-cold-vapor atomic fluorescence spectrophotometry. Methylmercury concentration increased with total Hg concentration in aufwuchs, but the proportion of methylmercury to inorganic Hg decreased with increasing total Hg concentration. In the feeding experiment, there was an inverse relationship between Hg exposure concentration and the bioaccumulation factor for each Hg species. We concluded that neither methylmercury nor inorganic Hg in aufwuchs is highly bioavailable to tadpoles and that bioaccumulation is not well explained by a simple partitioning model. This suggests that bioaccumulation factors as currently used are not the best predictors of dietary Hg bioaccumulation.
NASA Astrophysics Data System (ADS)
Burns, D. A.; Riva-Murray, K.; Bradley, P. M.
2012-12-01
Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream yields of 0.095 μg/m2/yr in a sub-basin of the upper Hudson during this same period. Our work shows that Hg in stream biota, which is largely in the methyl form, is strongly related to MeHg measured in the water column; food web factors that affect Hg bioaccumulation also play a role. In brook trout, the top aquatic predator in the food web of the upper Hudson, Hg concentrations average about 0.1 μg/g, a level believed to affect fish behavior, and a few values were greater than 0.3 μg/g, a level at which human fish consumption advisories are issued. Landscape-based regression models that account for about 80% of the variation in stream MeHg concentrations at 25 sites across the upper Hudson basin include metrics of riparian area and open water indicating the importance of these landscape types in affecting methylation rates, losses of MeHg (through demethylation and other processes), and the transport of MeHg to surface waters. These and other study results indicate that factors such as watershed geomorphology, seasonal variations in discharge and air temperature, and the location and connection of riparian wetlands to streams are the strongest factors that affect stream MeHg concentrations and therefore, the potential ecosystem services provided by fish and other wildlife in the Adirondack region.
Reash, Robin J; Brown, Lauren; Merritt, Karen
2015-07-01
Many coal-fired electric generating facilities in the United States are discharging higher loads of Hg, Se, and other chemicals to receiving streams due to the installation of flue gas desulfurization (FGD) air pollution control units. There are regulatory concerns about the potential increased uptake of these bioaccumulative trace elements into food webs. We evaluated the concentrations of As, total Hg (THg), methylmercury (MeHg), and Se in Ohio River fish collected proximal to coal-fired power plants, of which 75% operate FGD systems. Fillet samples (n = 50) from 6 fish species representing 3 trophic levels were analyzed. Geometric mean fillet concentrations of THg (wet wt), MeHg (wet wt), and Se (dry wt) in 3 species were 0.136, 0.1181, and 3.19 mg/kg (sauger); 0.123, 0.1013, and 1.56 mg/kg (channel catfish); and 0.127, 0.0914, and 3.30 mg/kg (hybrid striped bass). For all species analyzed, only 3 fillet samples (6% of total) had MeHg concentrations that exceeded the US Environmental Protection Agency (USEPA) human health criterion (0.3 mg/kg wet wt); all of these were freshwater drum aged ≥ 19 y. None of the samples analyzed exceeded the USEPA proposed muscle and whole body Se thresholds for protection against reproductive effects in freshwater fish. All but 8 fillet samples had a total As concentration less than 1.0 mg/kg dry wt. Mean Se health benefit values (HBVSe ) for all species were ≥ 4, indicating that potential Hg-related health risks associated with consumption of Ohio River fish are likely to be offset by adequate Se concentrations. Overall, we observed no measurable evidence of enhanced trace element bioaccumulation associated with proximity to power plant FGD facilities, however, some enhanced bioaccumulation could have occurred in the wastewater mixing zones. Furthermore, available evidence indicates that, due to hydraulic and physical factors, the main stem Ohio River appears to have low net Hg methylation potential. © 2015 SETAC.
Valera, Beatriz; Dewailly, Eric; Poirier, Paul
2013-01-01
Epidemiological evidence suggests a negative impact of methylmercury (MeHg) on cardiovascular risk factors such as blood pressure (BP) and heart rate (HR). This issue is of concern in Arctic populations such as in the Inuit of Nunavik since this contaminant is accumulated in fish and marine mammals, which still represent the subsistence diet of this population. We examined the associations between MeHg and BP and resting HR among Inuit adults. The "Santé Quebec" health survey was conducted in 1992 in the 14 villages of Nunavik and a complete set of data was obtained for 313 Inuit adults≥18 years. Blood samples were collected in order to determine total mercury, lead, total polychlorinated biphenyls (PCBs), n-3 polyunsaturated fatty acids (PUFAs), fasting glucose and lipid profile while socio-demographic variables were obtained through questionnaires. Anthropometric measurements as well as BP and resting HR were obtained using standardised protocols. Pulse pressure (PP: systolic BP minus diastolic BP) was also calculated. Multiple linear regression was used in order to determine the change in the dependent variables associated with the quartiles of MeHg concentration, taking the quartile 1 as reference. The mean age of the participants was 38±14 years and the sample was composed of 132 men (42.2%) and 181 women (57.8%). MeHg geometric mean was 15.4 μg/L (95%CI: 13.9-17.0) and levels ranged from 0.8 to 112.0 μg/L. Resting HR increased linearly across quartiles of blood MeHg concentration after adjusting for confounders (p for trend=0.02). An increase of 6.9 beats per minute (bpm) between the 4th and 1st quartile was observed after adjusting for confounders. No significant association was observed between blood MeHg and systolic BP, diastolic BP or PP. MeHg was associated with increasing resting HR after considering traditional risk factors as well as other contaminants (lead and total PCBs) and n-3 PUFAs. In contrast, no significant association with blood pressure was observed in this study. Copyright © 2012 Elsevier Inc. All rights reserved.
Head, Jessica A; DeBofsky, Abigail; Hinshaw, Janet; Basu, Niladri
2011-10-01
Museum specimens were used to analyze temporal trends in feather mercury (Hg) concentrations in birds collected from the state of Michigan between the years 1895 and 2007. Hg was measured in flank and secondary feathers from three species of birds that breed in the Great Lakes region; common terns (n = 32), great blue herons (n = 35), and herring gulls (n = 35). More than 90% of the Hg in feathers should be organic, but some of the heron and gull feathers collected prior to 1936 showed evidence of contamination with inorganic Hg, likely from museum preservatives. The data presented here therefore consist of organic Hg in pre-1936 samples and total Hg in post-1936 samples. Insufficient tissue was available from terns to assess organic Hg content. Mean Hg concentrations ranged from 2.9 ± 2.5 μg/g Hg in tern flank feathers to 12.4 ± 10.6 μg/g Hg in gull flank feathers. No linear trend of Hg contamination over time was detected in herons and gulls. Though a significant decrease was noted for terns, these data are presented with caution given the strong likelihood that earlier samples were preserved with inorganic mercury. When data were separated into 30-year intervals, Hg content in heron and gull feathers collected from birds sampled between 1920 and 1949 were consistently highest but not to a level of statistical significance. For example, Hg concentrations in gull secondary feathers collected in the second time interval (1920-1949) were 11.5 ± 7.8. This value was 67% higher than the first time interval (1890-1919), 44% higher than the third interval (1950-1979), and 187% higher than the fourth interval (1980-2009). Studies on Great Lakes sediments also showed greatest Hg accumulations in the mid-twentieth century. Through the use of museum specimens, these results present a unique snapshot of Hg concentrations in Great Lakes biota in the early part of the twentieth century.
Hothem, Roger L.; Rytuba, James J.; Brussee, Brianne E.; Goldstein, Daniel N.
2013-01-01
At the request of the U.S. Bureau of Land Management, we performed a study during April–July 2010 to characterize mercury (Hg), monomethyl mercury (MMeHg), and other geochemical constituents in sediment, water, and biota at the Clyde Gold Mine and the Elgin Mercury Mine, located in neighboring subwatersheds of Sulphur Creek, Colusa County, California. This study was in support of a Comprehensive Environmental Response, Compensation, and Liability Act - Removal Site Investigation. The investigation was in response to an abatement notification from the California Central Valley Regional Water Quality Control Board to evaluate the release of Hg from the Clyde and Elgin mines. Samples of water, sediment, and biota (aquatic macroinvertebrates) were collected from sites upstream and downstream from the two mine sites to evaluate the level of Hg contamination contributed by each mine to the aquatic ecosystem. Physical parameters, as well as dissolved organic carbon, total Hg (HgT), and MMeHg were analyzed in water and sediment. Other relevant geochemical constituents were analyzed in sediment, filtered water, and unfiltered water. Samples of aquatic macroinvertebrates from each mine were analyzed for HgT and MMeHg. The presence of low to moderate concentrations of HgT and MMeHg in water, sediment, and biota from the Freshwater Branch of Sulphur Creek, and the lack of significant increases in these concentrations downstream from the Clyde Mine indicated that this mine is not a significant source of Hg to the watershed during low flow conditions. Although concentrations of HgT and MMeHg were generally higher in samples of sediment and water from the Elgin Mine compared to the Clyde Mine, concentrations in comparable biota from the two mine areas were similar. It is likely that highly saline effluent from nearby hot springs contribute more Hg to the West Fork of Sulphur Creek than the mine waste material at the Elgin Mine.
Exposure to mercury among Spanish preschool children: Trend from birth to age four
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llop, Sabrina, E-mail: llop_sab@gva.es; Spanish Consortium for Research on Epidemiology and Public Health; Murcia, Mario
The purpose of this study is to describe the total hair mercury concentrations and their determinants in preschool Spanish children, as well as to explore the trend in mercury exposure from birth to the age four. This evolution has been scarcely studied in other birth cohort studies. The study population was 580 four year old children participating in the INMA (i.e. Childhood and Environment) birth cohort study in Valencia (2008–2009). Total mercury concentration at age four was measured in hair samples by atomic absorption spectrometry. Fish consumption and other covariates were obtained by questionnaire. Multivariate linear regression models were conductedmore » in order to explore the association between mercury exposure and fish consumption, socio-demographic characteristics and prenatal exposure to mercury. The geometric mean was 1.10 µg/g (95%CI: 1.02, 1.19). Nineteen percent of children had mercury concentrations above the equivalent to the Provisional Tolerable Weekly Intake proposed by WHO. Mercury concentration was associated with increasing maternal age, fish consumption and cord blood mercury levels, as well as decreasing parity. Children whose mothers worked had higher mercury levels than those with non working mothers. Swordfish, lean fish and canned fish were the fish categories most associated with hair mercury concentrations. We observed a decreasing trend in mercury concentrations between birth and age four. In conclusion, the children participating in this study had high hair mercury concentrations compared to reported studies on children from other European countries and similar to other countries with high fish consumption. The INMA study design allows the evaluation of the exposure to mercury longitudinally and enables this information to be used for biomonitoring purposes and dietary recommendations. - Highlights: • The geometric mean of hair Hg concentrations was 1.10 µg/g. • 19% of children had Hg concentrations above the RfD proposed by the WHO. • Hair Hg concentrations in children increased as a function of total fish intake. • Swordfish, lean fish and canned fish were the most related to Hg concentrations. • There was a decrease in Hg concentrations from birth to age four.« less
Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats
2012-01-01
In this paper we investigate the hypothesis that long-term sulphate (SO4 2−) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO4 2− on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO4 2− started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha−1 yr−1 of sulphur (S) addition (1.3±0.08 ng L−1, SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha−1 yr−1 of ambient S deposition (0.6±0.02 ng L−1, SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L−1 compared to +/−0.5 ng L−1 in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r2 = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO4 2− to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO4 2− deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO4 2− in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands. PMID:23029086
Yin, Qingqiao; Xia, Yuanyu; Wang, Guan
2016-09-02
As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Graves, Stephanie D; Kidd, Karen A; Batchelar, Katharina L; Cowie, Andrew M; O'Driscoll, Nelson J; Martyniuk, Christopher J
2017-02-01
Methylmercury (MeHg) exposure and adverse health effects in fishes have been documented, but the molecular mechanisms involved in toxicity have not been fully characterized. The objectives of the current study were to (1) determine whether total Hg (THg) in the muscle was predictive of MeHg concentrations in the brain of wild female yellow perch (Perca flavescens) collected from four lakes in Kejimkujik National Park, a known biological mercury (Hg) hotspot in Nova Scotia, Canada and (2) to determine whether transcripts involved in the oxidative stress response were altered in abundance in fish collected across five lakes representing a MeHg gradient. In female yellow perch, MeHg in whole brain (0.38 to 2.00μg/g wet weight) was positively associated with THg in muscle (0.18 to 2.13μg/g wet weight) (R 2 =0.61, p<0.01), suggesting that muscle THg may be useful for predicting MeHg concentrations in the brain. Catalase (cat) mRNA levels were significantly lower in brains of perch collected from lakes with high Hg when compared to those individuals from lakes with relatively lower Hg (p=0.02). Other transcripts (cytochrome c oxidase, glutathione peroxidase, glutathione-s-transferase, heat shock protein 70, protein disulfide isomerase, and superoxide dismutase) did not show differential expression in the brain over the gradient. These findings suggest that MeHg may be inversely associated with catalase mRNA abundance in the central nervous system of wild fishes. Copyright © 2016 Elsevier Inc. All rights reserved.
Mercury cycling in stream ecosystems. 1. Water column chemistry and transport
Brigham, M.E.; Wentz, D.A.; Aiken, G.R.; Krabbenhoft, D.P.
2009-01-01
We studied total mercury (THg) and methylmercury (MeHg) in eight streams, located in Oregon, Wisconsin, and Florida, that span large ranges in climate, landscape characteristics, atmospheric Hg deposition, and water chemistry. While atmospheric deposition was the source of Hg at each site, basin characteristics appeared to mediate this source by providing controls on methylation and fluvial THg and MeHg transport. Instantaneous concentrations of filtered total mercury (FTHg) and filtered methylmercury (FMeHg) exhibited strong positive correlations with both dissolved organic carbon (DOC) concentrations and streamflow for most streams, whereas mean FTHg and FMeHg concentrations were correlated with wetland density of the basins. For all streams combined, whole water concentrations (sum of filtered and particulate forms) of THg and MeHg correlated strongly with DOC and suspended sediment concentrations in the water column. ?? 2009 American Chemical Society.
Díaz-Jaramillo, Mauricio; Muñoz, Claudia; Rudolph, Ignacio; Servos, Mark; Barra, Ricardo
2013-01-01
The Lenga Estuary is one of the most industrialized sites in south central Chile where the historic operation of chlor-alkali plants resulted in large quantities of mercury (Hg) being deposited into the estuary. This historical contamination may still represent a risk to the biota in the estuary. To investigate this four macroinvertebrates, Neotrypaea uncinata (ghostshrimp), Elminius kingii (barnacle), Hemigrapsus crenulatus (shore crab) and Perinereis gualpensis (ragworm) were collected seasonally from three different sites in the Lenga Estuary and one in a reference estuary (Tubul Estuary), and analyzed for Hg and stable isotopes (δ(15)N and δ(13)C). Mercury concentrations in Lenga sediments ranged from 0.4 ± 0.1 to 13 ± 3 mg/kg, while those in Tubul sediments ranged from 0.02 ± 0.01 to 0.07 ± 0.09 mg/kg. Total Hg concentrations of invertebrates were significantly different between estuaries (p<0.05), but not by species or season for each estuary (p>0.05). In contrast, organic Hg concentrations were different by species and season with shore crab muscle tissues exhibiting the greatest percent difference. Site-specific relationships demonstrated that total Hg concentrations in ragworm best reflected the total Hg sediment mercury concentrations. Signatures of δ(13)C were correlated to the organic Hg % rather than total Hg. This suggests that organic Hg concentrations in these species were related to the carbon sources. Copyright © 2012 Elsevier B.V. All rights reserved.
Kucuksezgin, F; Kontas, A; Altay, O; Uluturhan, E; Darilmaz, E
2006-01-01
Izmir Bay (western Turkey) is one of the great natural bays of the Mediterranean. Izmir is an important industrial and commercial centre and a cultural focal point. The main industries in the region include food processing, oil, soap and paint production, chemical industries, paper and pulp factories, textile industries and metal processing. The mean concentrations showed ranges of 0.01-0.19 and 0.01-10 microM for phosphate, 0.10-1.8 and 0.12-27 microM for nitrate+nitrite, and 0.30-5.8 and 0.43-39 microM for silicate in the outer and middle-inner bays, respectively. The TNO(x)/PO(4) ratio is significantly lower than the Redfield's ratio and nitrogen is the limiting element in the middle-inner bays. Diatoms and dinoflagellates were observed all year around in the bay and are normally nitrogen limited. Metal concentrations ranged between Hg: 0.05-1.3, Cd: 0.005-0.82, Pb: 14-113 and Cr: 29-316 microg g(-1) in the sediments. The results showed significant enrichments during sampling periods from Inner Bay. Outer and middle bays show low levels of heavy metal enrichments except estuary of Gediz River. The concentrations of Hg, Cd and Pb in the outer bay were generally similar to the background levels from the Mediterranean. The levels gradually decreased over the sampling period. Total hydrocarbons concentrations range from 427 to 7800 ng g(-1) of sediments. The highest total hydrocarbon levels were found in the inner bay due to the anthropogenic activities, mainly combustion processes of traffic and industrial activities. The concentrations of heavy metals found in fish varied for Hg: 4.5-520, Cd: 0.10-10 and Pb: 0.10-491 microg kg(-1) in Izmir Bay. There was no significant seasonal variation in metal concentrations. An increase in Hg concentration with increasing length was noted for Mullus barbatus. A person can consume more than 2, 133 and 20 meals per week of fish in human diet would represent the tolerable weekly intake of mercury, cadmium and lead, respectively, in Izmir Bay. Heavy metal levels were lower than the results in fish tissues reported from polluted areas of the Mediterranean Sea.
Rodríguez, Luz Helena Sánchez; Rodríguez-Villamizar, Laura Andrea; Flórez-Vargas, Oscar; Fiallo, Yolanda Vargas; Ordoñez, Álvaro; Gutiérrez, Myriam Del Carmen
2017-01-01
This cross-sectional study examined whether people who are exposed to mercury (Hg) vapours in ongoing artisanal gold mining activities have alteration in kidney function monitoring parameters. The study enrolled 164 miners and 127 participant controls. The Hg concentrations for miners and control participants were measured in blood (B-Hg; median 7.0 vs. 2.5 µg/L), urine (U-Hg; median 3.9 vs. 1.5 µg/g creatinine) and hair (H-Hg; median 0.8 vs. 0.4 µg/g hair). The biomarkers of renal function were creatinine, albumin and excretion of β-2 microglobulin. Glomerular filtration rate (eGFR) was calculated using the chronic kidney disease epidemiology collaboration equation. Significant statistical differences were found in Hg concentrations and eGFR levels between the two study groups ( p < 0.01) but not with the other biomarkers of renal function. A multiple regression model was applied to explore the relationship of eGFR levels and Hg concentrations. However, no association was found between the prevalence of reduced eGFR (<71.96 mL/min/1.73 m 2 ) and the B-Hg or U-Hg levels after adjustment for covariates. Nevertheless, it was observed that having B-Hg levels above 10 µg Hg/L decreased the eGFR by 1.7 mL/min/1.73 m 2 (confidence interval 95% -5.1 to 1.7) compared to having levels below 2.0 µg Hg/L. Our results found no support for kidney damage associated with Hg vapour exposure in ongoing artisanal gold mining, whose population has a level of Hg exposure from low to moderate (B-Hg from 3.4 to 11.0 µg/L and U-Hg from 1.3 to 9.6 µg/g creatinine).
A 320 Year Ice-Core Record of Atmospheric Hg Pollution in the Altai, Central Asia.
Eyrikh, Stella; Eichler, Anja; Tobler, Leonhard; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit
2017-10-17
Anthropogenic emissions of the toxic heavy metal mercury (Hg) have substantially increased atmospheric Hg levels during the 20th century compared to preindustrial times. However, on a regional scale, atmospheric Hg concentration or deposition trends vary to such an extent during the industrial period that the consequences of recent Asian emissions on atmospheric Hg levels are still unclear. Here we present a 320 year Hg deposition history for Central Asia, based on a continuous high-resolution ice-core Hg record from the Belukha glacier in the Siberian Altai, covering the time period 1680-2001. Hg concentrations and deposition fluxes start rising above background levels at the beginning of the 19th century due to emissions from gold/silver mining and Hg production. A steep increase occurs after the 1940s culminating during the 1970s, at the same time as the maximum Hg use in consumer products in Europe and North America. After a distinct decrease in the 1980s, Hg levels in the 1990s and beginning of the 2000s return to their maximum values, which we attribute to increased Hg emissions from Asia. Thus, rising Hg emissions from coal combustion and artisanal and small-scale gold mining (ASGM) in Asian countries determine recent atmospheric Hg levels in Central Asia, counteracting emission reductions due to control measures in Europe and North America.
Kaler, Robb S.A.; Kenney, Leah A.; Bond, Alexander L.; Eagles-Smith, Collin A.
2014-01-01
Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz’s murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands.
Kaler, Robb S A; Kenney, Leah A; Bond, Alexander L; Eagles-Smith, Collin A
2014-05-15
Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz's murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands. Published by Elsevier Ltd.
Dietz, R; Born, E W; Rigét, F; Aubail, A; Sonne, C; Drimmie, R; Basu, N
2011-02-15
Hair samples from 117 Northwest Greenland polar bears (Ursus maritimus) were taken during 1892-2008 and analyzed for total mercury (hereafter Hg). The sample represented 28 independent years and the aim of the study was to analyze for temporal Hg trends. Mercury concentrations showed yearly significant increases of 1.6-1.7% (p < 0.0001) from 1892 to 2008 and the two most recent median concentrations from 2006 and 2008 were 23- to 27-fold higher respectively than baseline level from 1300 A.D. in the same region (Nuullit). This indicates that the present (2006-2008) Northwest Greenland polar bear Hg exposure is 95.6-96.2% anthropogenic in its origin. Assuming a continued anthropogenic increase, this model estimated concentrations in 2050 and 2100 will be 40- and 92-fold the baseline concentration, respectively, which is equivalent to a 97.5 and 98.9% man-made contribution. None of the 2001-2008 concentrations of Hg in Northwest Greenland polar bear hair exceeded the general guideline values of 20-30 μg/g dry weight for terrestrial wildlife, whereas the neurochemical effect level of 5.4 μg Hg/g dry weight proposed for East Greenland polar bears was exceeded in 93.5% of the cases. These results call for detailed effect studies in main target organs such as brain, liver, kidney, and sexual organs in the Northwest Greenland polar bears.
Ceccatto, Ana P S; Testoni, Magalei C; Ignácio, Aurea R A; Santos-Filho, Manoel; Malm, Olaf; Díez, Sergi
2016-06-01
This study evaluated the risk to human health from mercury (Hg) exposure through fish consumption in the Pantanal, Brazil. In order to address these risks, Hg concentrations and accumulation patterns were determined in target organs of predatory fish (Crenicichla lepidota and Pygocentrus nattereri). Levels of Hg were analysed during the two phases of the flood pulse (flood and drought) in fish from different local ecosystems, such as the Bento Gomes and Paraguay rivers. Although the former study area is directly affected by gold mining, a higher, but not significantly different, Hg concentration in fish was found compared with fish at the Paraguay River, which is regarded as pristine area. Moreover, no seasonal variability was found in either river. Although total mercury levels in fish did not exceed the maximum FAO/WHO threshold (0.5 μg g(-1)), according to dietary habits in riverine communities of the Pantanal (up to 6 oz of fish per day), there is reason for concern over the potential for deleterious health effects that could be caused by high Hg intake. In fact, the estimated daily intake in the present study ranged from 0.49 to 1.08 μg Hg kg(-1) day(-1), for adults (including women of childbearing age) and children, respectively. Because of high Hg intakes in riverine groups, which exceed the recommended reference dose value, these communities could be considered at risk. Therefore, it is necessary to consider regulatory measures and public education regarding fish consumption, particularly in vulnerable groups (i.e. children, pregnant women and women of childbearing age).
Maas, Jacinta J.; de Wilde, Rob B.; Aarts, Leon P.; Pinsky, Michael R.; Jansen, Jos R.
2012-01-01
Background Mean systemic filling pressure (Pmsf) can be determined at the bedside by measuring central venous pressure (Pcv) and cardiac output (CO) during inspiratory hold maneuvers. Critical closing pressure (Pcc) can be determined using the same method measuring arterial pressure (Pa) and CO. If Pcc > Pmsf there is then a vascular waterfall. In this study we assessed the existence of a waterfall and its implications for the calculation of vascular resistances by determining Pmsf and Pcc at the bedside. Methods In 10 mechanically ventilated postcardiac surgery patients inspiratory hold maneuvers were performed, transiently increasing Pcv and decreasing Pa and CO to four different steady-state levels. For each patient values of Pcv and CO were plotted in a venous return curve to determine Pmsf. Similarly, Pcc was determined with a ventricular output curve plotted for Pa and CO. Measurements were performed in each patient before and after volume expansion with 0.5 l colloid and vascular resistances were calculated. Results For every patient the relationship between the four measurements of Pcv and CO and of Pa and CO was linear. Baseline Pmsf was 18.7±4.0 (mean±SD) mmHg and differed significantly from Pcc 45.5±11.1 mmHg; (p<0.0001). The difference of Pcc and Pmsf was 26.8±10.7 mmHg, indicating the presence of a systemic vascular waterfall. Volume expansion increased Pmsf (26.3±3.2 mmHg), Pcc (51.5±9.0 mmHg) and CO (5.5±1.8 to 6.8±1.8 l·min−1). Arterial (upstream of Pcc) and venous (down-stream of Pmsf) vascular resistance were 8.27±4.45 and 2.75±1.23 mmHg·min·l−1; the sum of both (11.01 mmHg·min·l−1) was significantly different from total systemic vascular resistance (16.56±8.57 mmHg·min·l−1, p=0.005). Arterial resistance was related to total resistance. Conclusions Vascular pressure gradients in cardiac surgery patients suggest the presence of a vascular waterfall phenomenon, which is not affected by CO. Thus measures of total systemic vascular resistance may become irrelevant in assessing systemic vasomotor tone. PMID:22344243
Spatial characteristics of net methylmercury production hot spots in peatlands
Carl P.J. Mitchell; Brian A. Branfireun; Randall K. Kolka
2008-01-01
Many wetlands are sources of methylmercury (MeHg) to surface waters, yet little information exists about the distribution of MeHg within wetlands. Total mercury (THg) and MeHg in peat pore waters were studied in four peatlands in spring, summer, and fall 2005. Marked spatial variability in the distribution of MeHg, and %MeHg as a proxy for net MeHg production, was...
Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan.
Fang, Guor-Cheng; Lo, Chaur-Tsuen; Cho, Meng-Hsien; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Chao-Yang; Xiao, You-Fu
2017-08-01
The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000-2012.
Chin, Stephanie Y; Willson, John D; Cristol, Daniel A; Drewett, David V V; Hopkins, William A
2013-03-01
Maternal transfer is an important exposure pathway for contaminants because it can directly influence offspring development. Few studies have examined maternal transfer of contaminants, such as mercury (Hg), in snakes, despite their abundance and high trophic position in many ecosystems where Hg is prevalent. The objectives of the present study were to determine if Hg is maternally transferred in northern watersnakes (Nerodia sipedon) and to evaluate the effects of maternal Hg on reproduction. The authors captured gravid female watersnakes (n = 31) along the South River in Waynesboro, Virginia, USA, where an extensive Hg-contamination gradient exists. The authors measured maternal tissue and litter Hg concentrations and, following birth, assessed (1) reproductive parameters (i.e., litter size and mass, neonate mass); (2) rates of infertility, death during development, stillbirths, malformations, and runts; and (3) the overall viability of offspring. Mercury concentrations in females were strongly and positively correlated with concentrations in litters, suggesting that N. sipedon maternally transfer Hg in proportion to their tissue residues. Maternal transfer resulted in high concentrations (up to 10.10 mg/kg dry wt total Hg) of Hg in offspring. The authors found little evidence of adverse effects of Hg on these measures of reproductive output and embryonic survival, suggesting that N. sipedon may be more tolerant of Hg than other vertebrate species. Given that this is the first study to examine the effects of maternally transferred contaminants in snakes and that the authors did not measure all reproductive endpoints, further research is needed to better understand factors that influence maternal transfer and associated sublethal effects on offspring. Copyright © 2013 SETAC.
Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect
NASA Astrophysics Data System (ADS)
Cossa, Daniel; Heimbürger, Lars-Eric; Pérez, Fiz F.; García-Ibáñez, Maribel I.; Sonke, Jeroen E.; Planquette, Hélène; Lherminier, Pascale; Boutorh, Julia; Cheize, Marie; Lukas Menzel Barraqueta, Jan; Shelley, Rachel; Sarthou, Géraldine
2018-04-01
We report here the results of total mercury (HgT) determinations along the 2014 Geotraces Geovide cruise (GA01 transect) in the North Atlantic Ocean (NA) from Lisbon (Portugal) to the coast of Labrador (Canada). HgT concentrations in unfiltered samples (HgTUNF) were log-normally distributed and ranged between 0.16 and 1.54 pmol L-1, with a geometric mean of 0.51 pmol L-1 for the 535 samples analysed. The dissolved fraction (< 0.45 µm) of HgT (HgTF), determined on 141 samples, averaged 78 % of the HgTUNF for the entire data set, 84 % for open seawaters (below 100 m) and 91 % if the Labrador Sea data are excluded, where the primary production was high (with a winter convection down to 1400 m). HgTUNF concentrations increased eastwards and with depth from Greenland to Europe and from subsurface to bottom waters. The HgTUNF concentrations were similarly low in the subpolar gyre waters ( ˜ 0.45 pmol L-1), whereas they exceeded 0.60 pmol L-1 in the subtropical gyre waters. The HgTUNF distribution mirrored that of dissolved oxygen concentration, with highest concentration levels associated with oxygen-depleted zones. The relationship between HgTF and the apparent oxygen utilization confirms the nutrient-like behaviour of Hg in the NA. An extended optimum multiparameter analysis allowed us to characterize HgTUNF concentrations in the different source water types (SWTs) present along the transect. The distribution pattern of HgTUNF, modelled by the mixing of SWTs, show Hg enrichment in Mediterranean waters and North East Atlantic Deep Water and low concentrations in young waters formed in the subpolar gyre and Nordic seas. The change in anthropogenic Hg concentrations in the Labrador Sea Water during its eastward journey suggests a continuous decrease in Hg content in this water mass over the last decades. Calculation of the water transport driven by the Atlantic Meridional Overturning Circulation across the Portugal-Greenland transect indicates northward Hg transport within the upper limb and southward Hg transport within the lower limb, with resulting net northward transport of about 97.2 kmol yr-1.
Oxygen intrusion into anoxic fjords leads to increased methylmercury availability
NASA Astrophysics Data System (ADS)
Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy
2013-04-01
Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the surface layer to 6.5 ng/L at maximum depth (10 m). However, the pattern of MeHg concentrations in the water column changed with relatively high concentrations present already at 4.5 m depth (2.2 ng/L). The environmental consequence of this oxygen intrusion is the appearance in shallower water of toxic MeHg formed in the anoxic layer. As a result of this, MeHg can possibly undergo transport from the anoxic fjord to the surrounding areas.
Evers, David C.; Schmutz, Joel A.; Basu, Niladri; DeSorbo, Christopher R.; Fair, Jeff; Gray, Carrie E.; Paruk, James D.; Perkins, Marie; Regan, Kevin; Uher-Koch, Brian D.; Wright, Kenneth G.
2014-01-01
The Yellow-billed Loon (Gavia adamsii) is one of the rarest breeding birds in North America. Because of the small population size and patchy distribution, any stressor to its population is of concern. To determine risks posed by environmental mercury (Hg) loads, we captured 115 Yellow-billed Loons between 2002 and 2012 in the North American Arctic and sampled their blood and/or feather tissues and collected nine eggs. Museum samples from Yellow-billed Loons also were analyzed to examine potential changes in Hg exposure over time. An extensive database of published Hg concentrations and associated adverse effects in Common Loons (G. immer) is highly informative and representative for Yellow-billed Loons. Blood Hg concentrations reflect dietary uptake of methylmercury (MeHg) from breeding areas and are generally considered near background levels if less than 1.0 µg/g wet weight (ww). Feather (grown at wintering sites) and egg Hg concentrations can represent a mix of breeding and wintering dietary uptake of MeHg. Based on Common Loon studies, significant risk of reduced reproductive success generally occurs when adult Hg concentrations exceed 2.0 µg/g ww in blood, 20.0 µg/g fresh weight (fw) in flight feathers and 1.0 µg/g ww in eggs. Contemporary mercury concentrations for 176 total samples (across all study sites for 115 Yellow-billed Loons) ranged from 0.08 to 1.45 µg/g ww in blood, 3.0 to 24.9 µg/g fw in feathers and 0.21 to 1.23 µg/g ww in eggs. Mercury concentrations in blood, feather and egg tissues indicate that some individual Yellow-billed Loons in breeding populations across North America are at risk of lowered productivity resulting from Hg exposure. Most Yellow-billed Loons breeding in Alaska overwinter in marine waters of eastern Asia. Although blood Hg concentrations from most breeding loons in Alaska are within background levels, some individuals exhibit elevated feather and egg Hg concentrations, which likely indicate the uptake of MeHg originating from eastern Asia. Feather Hg concentrations tended to be highest in individuals overwintering farthest west (closer to Asia). A retrospective analysis of museum specimens (n = 25) found a two-fold increase in Yellow-billed Loon feather Hg concentrations from the pre-1920s (as early as 1845) to the present. The projected increase in Hg deposition (approximately four-fold by 2050) along with the uncertainty of Hg being released through the thawing of permafrost and Arctic sea ice suggest that Hg body burdens in Yellow-billed Loons may increase. These findings indicate that Hg is a current and potentially increasing environmental stressor for the Yellow-billed Loon and possibly other Nearctic-Palearctic migrant birds.
Toxic elements and speciation in seafood samples from different contaminated sites in Europe.
Maulvault, Ana Luísa; Anacleto, Patrícia; Barbosa, Vera; Sloth, Jens J; Rasmussen, Rie Romme; Tediosi, Alice; Fernandez-Tejedor, Margarita; van den Heuvel, Fredericus H M; Kotterman, Michiel; Marques, António
2015-11-01
The presence of cadmium (Cd), lead (Pb), mercury (THg), methylmercury (MeHg), arsenic (TAs), inorganic arsenic (iAs), cobalt (Co), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and iron (Fe) was investigated in seafood collected from European marine ecosystems subjected to strong anthropogenic pressure, i.e. hotspot areas. Different species (Mytilus galloprovincialis, n=50; Chamelea gallina, n=50; Liza aurata, n=25; Platichthys flesus, n=25; Laminaria digitata, n=15; and Saccharina latissima, n=15) sampled in Tagus estuary, Po delta, Ebro delta, western Scheldt, and in the vicinities of a fish farm area (Solund, Norway), between September and December 2013, were selected to assess metal contamination and potential risks to seafood consumers, as well as to determine the suitability of ecologically distinct organisms as bioindicators in environmental monitoring studies. Species exhibited different elemental profiles, likely as a result of their ecological strategies, metabolism and levels in the environment (i.e. seawater and sediments). Higher levels of Cd (0.15-0.94 mg kg(-1)), Pb (0.37-0.89 mg kg(-1)), Co (0.48-1.1 mg kg(-1)), Cu (4.8-8.4 mg kg(-1)), Zn (75-153 mg kg(-1)), Cr (1.0-4.5 mg kg(-1)) and Fe (283-930 mg kg(-1)) were detected in bivalve species, particularly in M. galloprovincialis from Ebro and Po deltas, whereas the highest content of Hg was found in P. flesus (0.86 mg kg(-1)). In fish species, most Hg was organic (MeHg; from 69 to 79%), whereas lower proportions of MeHg were encountered in bivalve species (between 20 and 43%). The highest levels of As were found in macroalgae species L. digitata and S. latissima (41 mg kg(-1) and 43 mg kg(-1), respectively), with iAs accounting almost 50% of the total As content in L. digitata but not with S. latissima nor in the remaining seafood samples. This work highlights that the selection of the most appropriate bioindicator species is a fundamental step in environmental monitoring of each contaminant, especially in coastal areas. Furthermore, data clearly shows that the current risk assessment and legislation solely based on total As or Hg data is limiting, as elemental speciation greatly varies according to seafood species, thus playing a key role in human exposure assessment via food. Copyright © 2015. Published by Elsevier Inc.
Ma, Shishuai; He, Man; Chen, Beibei; Deng, Wenchao; Zheng, Qi; Hu, Bin
2016-01-01
In this work, γ-mercaptopropyltrimethoxysilane (γ-MPTS) modified Fe3O4@SiO2 magnetic nanoparticles (MNPs) was successfully prepared, and characterized by Fourier transform infrared spectrometer (FT-IR), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM). The sorption performance of the prepared Fe3O4@SiO2@γ-MPTS MNPs towards methylmercury (CH3Hg(+)) and inorganic mercury (Hg(2+)) was investigated. It was found that CH3Hg(+) and Hg(2+) could be simultaneously retained on the prepared Fe3O4@SiO2@γ-MPTS MNPs, and the quantitative elution of CH3Hg(+) and total mercury (THg) was achieved by using 1.5 mol L(-1) HCl containing 0.01% and 3% thiourea (m/v), respectively. And the levels of Hg(2+) were obtained by subtracting CH3Hg(+) from THg. Based on the above facts, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the speciation of CH3Hg(+) and Hg(2+). Various experimental parameters affecting MSPE of CH3Hg(+) and Hg(2+) such as pH, eluent, sample volume, and co-existing ions have been studied. Under the optimized conditions, the limits of detection (LODs) for CH3Hg(+) and THg were 1.6 and 1.9 ng L(-1), respectively. The accuracy of the proposed method was validated by analysis of a Certified Reference Material NRCC DORM-2 dogfish muscle, and the determined values are in good agreement with the certified values. The proposed method has also been successfully applied for the speciation of CH3Hg(+) and Hg(2+) in environmental water and human hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Marvin-DiPasquale, M. C.; Agee, J.L.; Bouse, R.M.; Jaffe, B.E.
2003-01-01
San Pablo Bay is an estuary, within northern San Francisco Bay, containing elevated sediment mercury (Hg) levels because of historic loading of hydraulic mining debris during the California gold-rush of the late 1800s. A preliminary investigation of benthic microbial Hg cycling was conducted in surface sediment (0-4 cm) collected from one salt-marsh and three open-water sites. A deeper profile (0-26 cm) was evaluated at one of the open-water locations. Radiolabeled model Hg-compounds were used to measure rates of both methylmercury (MeHg) production and degradation by bacteria. While all sites and depths had similar total-Hg concentrations (0.3-0.6 ppm), and geochemical signatures of mining debris (as eNd, range: -3.08 to -4.37), in-situ MeHg was highest in the marsh (5.4??3.5 ppb) and ??? 0.7 ppb in all open-water sites. Microbial MeHg production (potential rate) in 0-4 surface sediments was also highest in the marsh (3.1 ng g-1 wet sediment day-1) and below detection (<0.06 ng g-1 wet sediment day-1) in open-water locations. The marsh exhibited a methylation/demethylation (M/D) ratio more than 25x that of all open-water locations. Only below the surface 0-4-cm horizon was significant MeHg production potential evident in the open-water sediment profile (0.2-1.1 ng g-1 wet sediment day-1). In-situ Hg methylation rates, calculated from radiotracer rate constants, and in-situ inorganic Hg(II) concentrations compared well with potential rates. However, similarly calculated in-situ rates of MeHg degradation were much lower than potential rates. These preliminary data indicate that wetlands surrounding San Pablo Bay represent important zones of MeHg production, more so than similarly Hg-contaminated adjacent open-water areas. This has significant implications for this and other Hg-impacted systems, where wetland expansion is currently planned.
Bastos, Wanderley R; Vieira, Solange M; Manzatto, Ângelo G; Dórea, José G; Rubira, Marcelo C; de Souza, Victor Francisco P; da Costa Junior, Walkimar A; Souza Bastos, Maria T
2017-10-01
Infant exposure to neurotoxic elements is a public health issue that needs monitoring with regard to breast milk composition. We studied six neurotoxic elements in breast milk samples at different stages of lactation in mothers from Porto Velho, Brazil. We used a flow-injection mercury system (FIMS) to determine total Hg concentrations and an inductively coupled plasma optical emission spectrometer (ICP-OES) to determine the concentrations of Al, As, Cd, Pb, and Mn in 106 donors of a human milk bank. Association rules analyses were applied to determine the pattern of binary and ternary mixtures of the measured exposants. The metal concentration was mostly below the limit of detection (LOD) for Cd (99%), Pb (84%), and Hg (72%), and it was above the LOD for As (53%), Mn (60%), and Al (82%), respectively. Median concentrations (dry weight) of Al, As, Hg, Mn, and Pb were 1.81 μg/g, 13.8 ng/g, 7.1 ng/g, 51.1 ng/g, and 0.43 μg/g, respectively. Al is singly the most frequent element to which infants are exposed. Occurring binary combination (> LOD) was 56% for Al-Mn, 41% for Al-As, 22% for Al-Hg, and 13% for Al-Pb. In 100% of neonates, exposure to Al-ethylmercury (EtHg) occurred through immunization with thimerosal-containing vaccines (TCV). Association rules analysis revealed that Al was present in all of the multilevel combinations and hierarchical levels and that it showed a strong link with other neurotoxic elements (especially with Mn, As, and Hg). (a) Nursing infants are exposed to combinations of neurotoxicants by different routes, dosages, and at different stages of development; (b) In breastfed infants, the binary exposures to Al and total Hg can occur through breast milk and additionally through TCV (EtHg and Al); (c) The measured neurotoxic elements were found at low frequencies in breast milk and at concentrations that pose no public health concerns for milk banking.
Tomiyasu, Takashi; Kodamatani, Hitoshi; Imura, Ryusuke; Matsuyama, Akito; Miyamoto, Junko; Akagi, Hirokatsu; Kocman, David; Kotnik, Jože; Fajon, Vesna; Horvat, Milena
2017-10-01
The distributions of the total mercury (T-Hg), methylmercury (MeHg), and ethylmercury (EtHg) concentrations in soil and their relationship to chemical composition of the soil and total organic carbon content (TOC, %) were investigated. Core samples were collected from hill slope on the right and left riverbanks of the Idrija River. Former smelting plant is located on the right bank. The T-Hg average in each of the core samples ranged from 0.25 to 1650 mg kg -1 . The vertical T-Hg variations in the samples from the left bank showed no significant change with depth. Conversely, the T-Hg varied with depth, with the surface, or layers several centimeters from the surface, tending to show the highest values in the samples from the right bank. Since the right and left bank soils have different chemical compositions, different pathways of mercury delivery into soils were suggested. The MeHg and EtHg concentrations ranged from n.d. (not detected) to 444 μg kg -1 and n.d. to 17.4 μg kg -1 , respectively. The vertical variations of MeHg and EtHg were similar to those of TOC, except for the near-surface layers containing TOC greater than 20%. These results suggest that the decomposition of organic matter is closely related to organic mercury formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sakamoto, Mineshi; Chan, Hing Man; Domingo, José L; Kawakami, Shoichi; Murata, Katsuyuki
2012-09-01
Fish is a major source of harmful methylmercury (MeHg) and beneficial docosahexaenoic acid (DHA) in the developing brain. In this study, we investigated the correlations among maternal and umbilical cord (cord) MeHg and DHA levels at parturition, and mercury (Hg) concentration in 1-cm incremental segments hair samples which grew during gestation representing monthly MeHg exposure levels throughout the period. Whole blood Hg and plasma DHA levels were measured in blood sample pairs collected from 54 mothers at early gestation and parturition, and in cord blood. Maternal hair samples were collected at parturition, and Hg concentrations were measured in 1-cm incremental segments. Hg level in mothers at parturition was slightly lower than that at early gestation and the level in cord blood were approximately 1.9 times higher than that in mothers at parturition. On the other hand, DHA level in mothers at parturition was approximately 2.3 and 1.6 times higher than those in mothers at early gestation and in cord plasma, respectively. These results indicate that kinetics of these chemicals in mothers during gestation and placental transfer are completely different. However, Hg and DHA levels had significant positive correlation in fetal circulation. The cord blood Hg showed the strongest correlation with maternal hair Hg in the first 1-cm segment from the scalp at parturition (r=0.87), indicating that fetal MeHg level reflects maternal MeHg burden at late gestation. In contrast, maternal and cord plasma DHA concentrations at parturition showed the highest correlation coefficients with Hg in the fifth (r=0.43) and fourth (r=0.38) 1-cm hair segments, suggesting that maternal and fetal DHA levels reflects maternal fish intake during mid-gestation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shanley, J.B.; Kamman, N.C.; Clair, T.A.; Chalmers, A.
2005-01-01
The physical factors controlling total mercury (HgT) and methylmercury (MeHg) concentrations in lakes and streams of northeastern USA were assessed in a regional data set containing 693 HgT and 385 corresponding MeHg concentrations in surface waters. Multiple regression models using watershed characteristics and climatic variables explained 38% or less of the variance in HgT and MeHg. Land cover percentages and soil permeability generally provided modest predictive power. Percent wetlands alone explained 19% of the variance in MeHg in streams at low-flow, and it was the only significant (p < 0.02) predictor for MeHg in lakes, albeit explaining only 7% of the variance. When stream discharge was added as a variable it became the dominant predictor for HgT in streams, improving the model r 2 from 0.19 to 0.38. Stream discharge improved the MeHg model more modestly, from r 2 of 0.25 to 0.33. Methylation efficiency (MeHg/HgT) was modeled well (r 2 of 0.78) when a seasonal term was incorporated (sine wave with annual period). Physical models explained 18% of the variance in fish Hg concentrations in 134 lakes and 55% in 20 reservoirs. Our results highlight the important role of seasonality and short-term hydrologic changes to the delivery of Hg to water bodies. ?? 2005 Springer Science+Business Media, Inc.
Páez-Osuna, F; Calderón-Campuzano, M F; Soto-Jiménez, M F; Ruelas-Inzunza, J
2011-06-01
Mercury concentrations were assessed in the sea turtle Lepidochelys olivacea from a nesting colony of Oaxaca, Mexico; 25 female turtles were sampled, a total of 250 eggs were collected during the season 2005-2006. Higher concentrations were found in yolk fraction, while in blood and albumen mean levels were below of 0.0010μg g(-1) dry wt. On the basis of one nesting season, the maternal transfer of Hg via eggs-laying was estimated in 2.0±1.1%. According to international norms, the health of this population and its habitats is acceptable for Hg and corresponds to baseline levels of a nearly pristine environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Potential Role of Oxidative Stress in mediating the Effect of Hypergravity on the Developing CNS.
NASA Astrophysics Data System (ADS)
Sajdel-Sulkowska, E. M.; Nguon, K.; Sulkowski, Z. L.; Lipinski, B.
The present studies will explore the mechanisms through which altered gravity affects the developing CNS We have previously shown that exposure to hypergravity during the perinatal period adversely impacts cerebellar structure and function Pregnant rat dams were exposed to 1 65 G on a 24-ft centrifuge at NASA-ARC from gestational day G 5 through giving birth Both dams and their offspring remained at 1 65 G until pups reached postnatal day P 21 Control rats were raised under identical conditions in stationary cages On P21 motor behavior as determined by performance on a rotorod was more negatively impacted in hypergravity-exposed HG male 39 5 than in HG female pups 29 1 The total number of Purkinje cells determined stereologically in cerebella isolated from a subset of P21 rats was decreased in both HG males and HG female pups but the correlation between Purkinje cell number and rotorod performance was more consistent in male pups The level of 3-nitrosotyrosine 3-NT an index of oxidative damage to proteins was determined by ELISA in cerebellar tissue derived from a separate subset of P21 rats The level of 3-NT was increased by 127 in HG males but only 42 in HG females These results suggest that the effect of altered gravity on the developing brain may be mediated by oxidative stress These results also suggest that the developing male CNS may be more sensitive to hypergravity-induced oxidative stress than the developing female CNS Supported by NIEHS grant ES11946-01
STATUS OF EPA/DOE MOU TECHNICAL WORKGROUP ACTIVITIES: HG WASTE TREATMENT
EPA's Land Disposal Restrictions program currently has technology-specific treatment standards for hazardous wastes containing greater than or equal to 260ppm total mercury (Hg) (i.e., high Hg subcategory wastes). The treatment standards specify RMERC for high Hg subcategory wast...
Litterfall mercury deposition in Atlantic forest ecosystem from SE-Brazil.
Teixeira, Daniel C; Montezuma, Rita C; Oliveira, Rogério R; Silva-Filho, Emmanoel V
2012-05-01
Litterfall is believed to be the major flux of Hg to soils in forested landscapes, yet much less is known about this input on tropical environment. The Hg litterfall flux was measured during one year in Atlantic Forest fragment, located within Rio de Janeiro urban perimeter, in the Southeastern region of Brazil. The results indicated a mean annual Hg concentration of 238 ± 52 ng g(-1) and a total annual Hg deposition of 184 ± 8.2 μg m(-2) y(-1). The negative correlation observed between rain precipitation and Hg concentrations is probably related to the higher photosynthetic activity observed during summer. The total Hg concentration in leaves from the most abundant species varied from 60 to 215 ng g(-1). Hg concentration showed a positive correlation with stomatal and trichomes densities. These characteristics support the hypothesis that Tropical Forest is an efficient mercury sink and litter plays a key role in Hg dynamics. Copyright © 2011 Elsevier Ltd. All rights reserved.
Taylor, David L.; Williamson, Patrick R.
2016-01-01
Total mercury (Hg) was measured in coastal fishes from Southern New England (RI, USA), and Hg exposure was estimated for anglers and family members that consumed these resources. Fish Hg was positively related to total length (n = 2028 across 7 fish species), and interspecies differences were evident among legally harvestable fish. Many recreational anglers and their families experienced excessively high Hg exposure rates, which was attributed to the enriched Hg content of frequently consumed fishes. Specifically, 51.5% of participants in this study had Hg exposures exceeding the US EPA reference dose, including 50.0% of women of childbearing years. These results are noteworthy given that Hg neurotoxicity occurs in adults and children from direct and prenatal low-dose exposure. Moreover, this study underscores the need for geographic-specific research that accounts for small-scale spatial variations in fish Hg and dietary habits of at-risk human populations. PMID:27595617
Sousa, Ana C A; Teixeira, Isa Sofia de Sá; Marques, Bruna; Vilhena, Hugo; Vieira, Lisete; Soares, Amadeu M V M; Nogueira, António J A; Lillebø, Ana I
2013-11-01
Pet cats and dogs have been successfully used as indicators of environmental pollution by a great variety of chemicals, including metals. However, information on mercury (a well know priority environmental pollutant) concentrations in household pets tissues and/or organs is scarce. Thus, in the present work we quantified total mercury (Hg(Total)) in blood and hair samples from twenty-six household dogs. The obtained results disclose relatively low levels of total mercury in the surveyed dogs, with values ranging from 0.16 to 12.38 ng g(-1) in blood; and from 24.16 to 826.30 ng g(-1) in hair. Mercury concentrations were independent of gender, age and diet type. A highly significant positive correlation was established between total mercury in blood and hair, validating the latter as a surrogate, non-invasive matrix for mercury exposure evaluation. Additionally, the obtained blood to hair ratio (200) is similar to the one described for humans reinforcing the suitability of dogs as sentinels. Overall, the determination of total mercury levels in dogs' hair samples proved to be a good screening method for the estimation of mercury burden in this species. We propose the quantification of Hg(Total) in hair as a screening method for sentinels like household pets to be performed in routine veterinary visits.
Teraoka, Hiroki; Miyagi, Hasumi; Haraguchi, Yuko; Takase, Kozo; Kitazawa, Takio; Noda, Jun
2018-05-31
The hooded crane is designated as an endangered species. The cranes breed primarily in wetlands in southeast Russia and China in summer. Most of the hooded crane population winters in the Izumi plain in Japan. It is difficult to know the contamination status of their habitat because of their vast breeding area. We determined the levels of Cd, Pb, As, (total) Hg, Se, Zn, and Cu in the liver, kidney, and muscle of hooded cranes that were found dead in Izumi in the periods 2003-2006 and 2014-2015 compared with the levels in red-crowned cranes in Hokkaido, Japan, as the only cranes in which these elements had been studied extensively. There were no notable differences between levels of the seven elements in the two periods. Overall, tissue levels of the elements examined in hooded cranes were comparable to those in red-crowned cranes except for Hg and Se. Tissue levels of Hg and Se were clearly lower in hooded cranes than in red-crowned cranes that were found dead from 2000. One lead poisoning case was confirmed. The results suggest that Hooded cranes wintering in Izumi are not extensively contaminated with the seven elements examined.
Su, Yen-Bin; Chang, Wei-Chun; Hsi, Hsing-Cheng; Lin, Chu-Ching
2016-07-01
Recent studies have shown that rice consumption is another critical route of human exposure to methylmercury (MeHg), the most toxic and accumulative form of mercury (Hg) in the food web. Yet, the mechanisms that underlie the production and accumulation of MeHg in the paddy ecosystem are still poorly understood. In 2013 and 2014, we conducted field campaigns and laboratory experiments over a rice growing season to examine Hg and MeHg cycling, as well as associated biogeochemistry in a suite of paddies close to a municipal solid waste incinerator and a coal-fired power plant station in Taiwan. Concentrations of total Hg and MeHg in paddy soil and rice grain at both sites were low and found not to exceed the control standards for farmland soil and edible rice in Taiwan. However, seasonal variations of MeHg concentrations observed in pore water samples indicate that the in situ bioavailability of inorganic Hg and activity of Hg-methylating microbes in the rhizosphere increased from the early-season and peaked at the mid-season, presumably due to the anoxia created under flooded conditions and root exudation of organic compounds. The presence of Hg-methylators was also confirmed by the hgcA gene detected in all root soil samples. Subsequent methylation tests performed by incubating the root soil with inorganic Hg and an inhibitor or stimulant specific for certain microbes further revealed that sulfate-reducers might have been the principal Hg-methylting guild at the study sites. Interestingly, results of hydroponic experiments conducted by cultivating rice in a defined nutrient solution amended with fixed MeHg and varying levels of MeHg-binding ligands suggested that chemical speciation in soil pore water may play a key role in controlling MeHg accumulation in rice, and both passive and active transport pathways seem to take place in the uptake of MeHg in rice roots. Copyright © 2016 Elsevier Ltd. All rights reserved.
Amirbahman, Aria; Massey, Delia I; Lotufo, Guilherme; Steenhaut, Nicholas; Brown, Lauren E; Biedenbach, James M; Magar, Victor S
2013-10-01
Mercury-specific diffusive gradient in thin films (DGTs) were used in laboratory microcosms as a biomonitoring tool to assess the lability of mercury (Hg) total and monomethylmercury Hg (MeHg), and to develop a relationship between chemical lability and bioavailability in estuarine sediments. Time-series deployment of DGTs in sediments showed that sediment-bound MeHg is more labile than sediment-bound inorganic Hg. In subsequent experiments, DGTs were deployed simultaneously with three benthic macroinvertebrates (the estuarine amphipod, Leptocheirus plumulosus; the estuarine polychaete, Nereis virens; and the marine clam, Macoma nasuta) in sediments for up to 55 days. All organisms and their co-deployed DGTs exhibited an initial period of rapid Hg uptake followed by slower uptake reaching apparent steady state. Strong correlative relationships were generally observed between paddle-type DGTs and macroinvertebrate tissue data (r(2) between 0.57 and 0.97). Further, %MeHg:Total Hg ratios for M. nasuta and N. virens (38.5 ± 12.2 and 19.2 ± 5.2) were similar to their corresponding ratios for the DGTs (33.1 ± 13.3 and 24.4 ± 11.0), and they were significantly higher than the same ratios for sediment (2.9 ± 0.3) and pore water (8.5 ± 4.9). The %MeHg:Total Hg ratios for L. plumulosus (68.5 ± 6.2) were significantly higher than those for the DGTs. This may be because the tissue and DGT data for this organism were not truly co-located as L. plumulosus burrows close to the sediment surface, and the DGTs sampled the sediment surface. Overall, our results suggest that for benthic macroinvertebrates in estuarine sediments studied here, (a) sediment MeHg is more bioavailable than inorganic Hg, (b) sediment and pore-water concentration measurements are not good predictors for the extent of bioaccumulation of Hg species, and (c) DGTs are an effective biomonitoring tool for the assessment of bioavailability of Hg species.
Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam
2013-01-01
8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t 1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417
Essential and toxic elements in honeys from a region of central Italy.
Meli, M A; Desideri, D; Roselli, C; Benedetti, C; Feduzi, L
2015-01-01
Levels of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), mercury (Hg), cadmium (Cd), and lead (Pb) in several types of honey produced in a region of Central Italy were determined by atomic absorption spectroscopy (AAS). The degree of humidity, sugar content, pH, free acidity, combined acidity (lactones), and total acidity were also measured. These elements were found to be present in honey in various proportions depending upon (1) the area foraged by bees, (2) flower type visited for collection of nectar, and (3) quality of water in the vicinity of the hive. Strong positive correlations occurred between Pb and Hg, Pb and Cd, Pb and Fe, Pb and Cr, Hg and Cd, and Hg and Fe. The honey products synthesized in Central Italy were of good quality, but not completely free of heavy metal contamination. Compared with established recommended daily intakes, heavy metals or trace element intoxication following honey consumption in Italy was found not to be a concern for human health.
Cutillas-Barreiro, Laura; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos
2016-08-15
We study the influence of phasing out a cement plant on the heavy metal (Hg, Pb and Cr) content in the surrounding soils, taking into account factors often neglected, such as contributions due to local lithology or land use. The range of total Hg was 10-144µg kg(-1), reaching up to 41 and 145mgkg(-1) for total contents of Pb and Cr, respectively. Forest soils showed higher concentration of Hg than prairie soils, indicating the importance of land use on the accumulation of volatile heavy metals in soils. In forest soils, total Hg showed a trend to decrease with soil depth, whereas in prairie soils the vertical pattern of heavy metal concentrations was quite homogeneous. In most cases, the distance to the cement plant was not a factor of influence in the soils content of the analyzed heavy metals. Total Pb and Cr contents in soils nearby the cement plant were quite similar to those found in the local lithology, resulting in enrichment factor values (EF's) below 2. This suggests that soil parent material is the main source of these heavy metals in the studied soils, while the contribution of the cement plant to Pb and Cr soil pollution was almost negligible. On the contrary, the soils surrounding the cement plant accumulate a significant amount of Hg, compared to the underlying lithology. This was especially noticeable in forest soils, where Hg EF achieved values up to 36. These results are of relevance, bearing in mind that Hg accumulation in soils may be an issue of environmental concern, particularly in prairie soils, where temporal flooding can favor Hg transformation to highly toxic methyl-Hg. In addition, the concurrence of acid soils and total-Cr concentrations in the range of those considered phytotoxic should be also stressed. Copyright © 2016 Elsevier B.V. All rights reserved.
Indicators of sediment and biotic mercury contamination in a southern New England estuary
Taylor, David L.; Linehan, Jennifer C.; Murray, David W.; Prell, Warren L.
2012-01-01
Total mercury (Hg) and methylmercury (MeHg) were analyzed in near surface sediments (0–2 cm) and biota (zooplankton, macro-invertebrates, finfish) collected from Narragansett Bay (Rhode Island/Massachusetts, USA) and adjacent embayments and tidal rivers. Spatial patterns in sediment contamination were governed by the high affinity of Hg for total organic carbon (TOC). Sediment MeHg and percent MeHg were also inversely related to summer bottom water dissolved oxygen (DO) concentrations, presumably due to the increased activity of methylating bacteria. For biota, Hg accumulation was influenced by inter-specific habitat preferences and trophic structure, and sediments with high TOC and percent silt-clay composition limited mercury bioavailability. Moreover, hypoxic bottom water limited Hg bioaccumulation, which is possibly mediated by a reduction in biotic foraging, and thus, dietary uptake of mercury. Finally, most biota demonstrated a significant positive relationship between tissue and TOC-normalized sediment Hg, but relationships were much weaker or absent for sediment MeHg. These results have important implications for the utility of estuarine biota as subjects for mercury monitoring programs. PMID:22317792
Determinants of systemic zero-flow arterial pressure.
Brunner, M J; Greene, A S; Sagawa, K; Shoukas, A A
1983-09-01
Thirteen pentobarbital-anesthetized dogs whose carotid sinuses were isolated and perfused at a constant pressure were placed on total cardiac bypass. With systemic venous pressure held at 0 mmHg (condition 1), arterial inflow was stopped for 20 s at intrasinus pressures of 50, 125, and 200 mmHg. Zero-flow arterial pressures under condition 1 were 16.2 +/- 1.3 (SE), 13.8 +/- 1.1, and 12.5 +/- 0.8 mmHg, respectively. In condition 2, the venous outflow tube was clamped at the instant of stopping the inflow, causing venous pressure to rise. The zero-flow arterial pressures were 19.7 +/- 1.3, 18.5 +/- 1.4, and 16.4 +/- 1.2 mmHg for intrasinus pressures of 50, 125, and 200 mmHg, respectively. At all levels of intrasinus pressure, the zero-flow arterial pressure in condition 2 was higher (P less than 0.005) than in condition 1. In seven dogs, at an intrasinus pressure of 125 mmHg, epinephrine increased the zero-flow arterial pressure by 3.0 mmHg, whereas hexamethonium and papaverine decreased the zero-flow arterial pressure by 2 mmHg. Reductions in the hematocrit from 52 to 11% resulted in statistically significant changes (P less than 0.01) in zero-flow arterial pressures. Thus zero-flow arterial pressure was found to be affected by changes in venous pressure, hematocrit, and vasomotor tone. The evidence does not support the literally interpreted concept of the vascular waterfall as the model for the finite arteriovenous pressure difference at zero flow.
Patiño Ropero, M J; Rodríguez Fariñas, N; Mateo, R; Berzas Nevado, J J; Rodríguez Martín-Doimeadios, R C
2016-04-01
The impact of mercury (Hg) pollution in the terrestrial environments and the terrestrial food chains including the impact on human food consumption is still greatly under-investigated. In particular, studies including Hg speciation and detoxification strategies in terrestrial animals are almost non-existing, but these are key information with important implications for human beings. Therefore, in this work, we report on Hg species (inorganic mercury, iHg, and monomethylmercury, MeHg) distribution among terrestrial animal tissues obtained from a real-world Hg exposure scenario (Almadén mining district, Spain). Thus, we studied Hg species (iHg and MeHg) and total selenium (Se) content in liver and kidney of red deer (Cervus elaphus; n = 41) and wild boar (Sus scrofa; n = 16). Similar mercury species distribution was found for both red deer and wild boar. Major differences were found between tissues; thus, in kidney, iHg was clearly the predominant species (more than 81%), while in liver, the species distribution was less homogeneous with a percentage of MeHg up to 46% in some cases. Therefore, Hg accumulation and MeHg transfer were evident in terrestrial ecosystems. The interaction between total Se and Hg species has been evaluated by tissue and by animal species. Similar relationships were found in kidney for both Hg species in red deer and wild boar. However, in liver, there were differences between animals. The possible underlying mechanisms are discussed.
Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Paquet, Serge; Beaulne, Jean-Sébastien; Maury-Brachet, Régine; Lucotte, Marc; Nedjai, Rachid; Ferrari, Christophe P
2011-04-15
Total mercury (THg) and methylmercury (MeHg) concentrations were measured in the muscle of Arctic charr (Salvelinus alpinus) and in the water column of 4 lakes that are located in the French Alps. Watershed characteristics were determined (6 coverage classes) for each lake in order to evaluate the influence of watershed composition on mercury and methylmercury concentrations in fish muscle and in the water column. THg and MeHg concentrations in surface water were relatively low and similar among lakes and watershed characteristics play a major role in determining water column Hg and MeHg levels. THg muscle concentrations for fish with either a standardized length of 220mm, a standardized age of 5 years or for individualuals did not exceed the 0.5mg kg(-1) fish consumption advisory limit established for Hg by the World Health Organization (WHO, 1990). These relatively low THg concentrations can be explained by watershed characteristics, which lead to short Hg residence time in the water column, and also by the short trophic chain that is characteristic of mountain lakes. Growth rate did not seem to influence THg concentrations in fish muscles of these lakes and we observed no relationship between fish Hg concentrations and altitude. This study shows that in the French Alps, high altitude lakes have relatively low THg and MeHg concentrations in both the water column and in Arctic charr populations. Therefore, Hg does not appear to present a danger for local populations and the fishermen of these lakes. Copyright © 2011 Elsevier B.V. All rights reserved.
Mercury in certain boletus mushrooms from Poland and Belarus.
Falandysz, Jerzy; Krasińska, Grażyna; Pankavec, Sviatlana; Nnorom, Innocent C
2014-01-01
This paper reports the results of the study of Hg contents of four species of Boletus mushroom (Boletus reticulatus Schaeff. 1763, B. pinophilus Pilát & Dermek 1973, B. impolitus Fr. 1838 and B. luridus Schaeff. 1774) and the surface soils (0-10 cm layer, ∼100 g) samples beneath the mushrooms from ten forested areas in Poland and Belarus by cold-vapour atomic absorption spectroscopy. The ability of the species to bioconcentrate Hg was calculated (as the BCF) while Hg intakes from consumption of these mushroom species were also estimated. The median Hg content of the caps of the species varied between 0.38 and 4.7 mg kg(-1) dm; in stipes between 0.13 and 2.5 mg kg(-1) dm and in the mean Hg contents of soils varied from 0.020 ± 0.01 mg kg(-1) dm to 0.17 ± 0.10 mg kg(-1) dm which is considered as "background" Hg level. The median Hg content of caps of B. reticulatus and B. pinophilus were up to 4.7 and 3.6 mg kg(-1) dm, respectively, and they very efficiently bioaccumulate Hg with median BCF values of up to 130 for caps and 58 for stipes. The caps and stipes of these mushrooms if eaten will expose consumer to elevated dose of total Hg estimated at 1.4 mg for caps of Boletus reticulatus from the Kacze Łęgi site, which is a nature reserve area. Nevertheless, the occasional consumption of the valued B. reticulatus and B. pinophilus mushrooms maybe safe.
Prenatal mercury exposure and infant birth weight in the Norwegian Mother and Child Cohort Study.
Vejrup, Kristine; Brantsæter, Anne Lise; Knutsen, Helle K; Magnus, Per; Alexander, Jan; Kvalem, Helen E; Meltzer, Helle M; Haugen, Margaretha
2014-09-01
To examine the association between calculated maternal dietary exposure to Hg in pregnancy and infant birth weight in the Norwegian Mother and Child Cohort Study (MoBa). Exposure was calculated with use of a constructed database of Hg in food items and reported dietary intake during pregnancy. Multivariable regression models were used to explore the association between maternal Hg exposure and infant birth weight, and to model associations with small-for-gestational-age offspring. The study is based on data from MoBa. The study sample consisted of 62 941 women who answered a validated FFQ which covered the habitual diet during the first five months of pregnancy. Median exposure to Hg was 0·15 μg/kg body weight per week and the contribution from seafood intake was 88 % of total Hg exposure. Women in the highest quintile compared with the lowest quintile of Hg exposure delivered offspring with 34 g lower birth weight (95 % CI -46 g, -22 g) and had an increased risk of giving birth to small-for-gestational-age offspring, adjusted OR = 1·19 (95 % CI 1·08, 1·30). Although seafood intake was positively associated with increased birth weight, stratified analyses showed negative associations between Hg exposure and birth weight within strata of seafood intake. Although seafood intake in pregnancy is positively associated with birth weight, Hg exposure is negatively associated with birth weight. Seafood consumption during pregnancy should not be avoided, but clarification is needed to identify at what level of Hg exposure this risk might exceed the benefits of seafood.
Marvin-Dipasquale, Mark; Lutz, Michelle A; Brigham, Mark E; Krabbenhoft, David P; Aiken, George R; Orem, William H; Hall, Britt D
2009-04-15
Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment-pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 microm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 +/- 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd's for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.
Variability of mercury concentrations in domestic well water, New Jersey Coastal Plain
Szabo, Zoltan; Barringer, Julia L.; Jacobsen, Eric; Smith, Nicholas P; Gallagher, Robert A; Sites, Andrew
2010-01-01
Concentrations of total (unfiltered) mercury (Hg) exceed the Maximum Contaminant Level (2 µg/L) in the acidic water withdrawn by more than 700 domestic wells from the areally extensive unconfined Kirkwood-Cohansey aquifer system. Background concentrations of Hg generally are <0.01 µg/L. The source of the Hg contamination has been hypothesized to arise from Hg of pesticide-application, atmospheric, and geologic origin being mobilized by some component(s) of septic-system effluent or urban leachates in unsewered residential areas. Initial results at many affected wells were not reproducible upon later resampling despite rigorous quality assurance, prompting concerns that duration of well flushing could affect the Hg concentrations. A cooperative study by the U.S. Geological Survey and the New Jersey Department of Environmental Protection examined variability in Hg results during the flushing of domestic wells. Samples were collected at regular intervals (about 10 minutes) during flushing for eight domestic wells, until stabilization criteria was met for field-measured parameters; the Hg concentrations in the final samples ranged from about 0.0005 to 11 µg/L. Unfiltered Hg concentrations in samples collected during purging varied slightly, but particulate Hg concentration (unfiltered – filtered (0.45 micron capsule) concentration) typically was highly variable for each well, with no consistent pattern of increase or decrease in concentration. Surges of particulates probably were associated with pump cycling. Pre-pumping samples from the holding tanks generally had the lowest Hg concentrations among the samples collected at the well that day. Comparing the newly obtained results at each well to results from previous sampling indicated that Hg concentrations in water from the Hg-contaminated areas were generally greater among samples collected on different dates (long-term variations, months to years) than among samples collected on the same day (short-term variations, minutes to hours). The long-term variations likely are caused by changes in local pumping regimes and time-varying capture of slugs of Hg-contaminated water moving on flowpaths.
Bai, Wei-yang; Zhang, Cheng; Zhao, Zheng; Tang, Zhen-ya; Wang, Ding-yong
2015-08-01
An investigation on the concentrations and the spatial distribution characteristics of different species of mercury in the water body of Changshou Lake in Three Gorges Reservoir region was carried out based on the AreGIS statistics module. The results showed that the concentration of the total mercury in Changshou Lake surface water ranged from 0.50 to 3.78 ng x L(-1), with an average of 1.51 ng x L(-1); the concentration of the total MeHg (methylmercury) ranged from 0.10 to 0.75 ng x L(-1), with an average of 0.23 ng x L(-1). The nugget effect value of total mercury in surface water (50.65%), dissolved mercury (49.80%), particulate mercury (29.94%) and the activity mercury (26.95%) were moderate spatial autocorrelation. It indicated that the autocorrelation was impacted by the intrinsic properties of sediments (such as parent materials and rocks, geological mineral and terrain), and on the other hand it was also disturbed by the exogenous input factors (such as aquaculture, industrial activities, farming etc). The nugget effect value of dissolved methylmercury (DMeHg) in Changshou lake surface water (3.49%) was less than 25%, showing significant strong spatial autocorrelation. The distribution was mainly controlled by environmental factors in water. The proportion of total MeHg in total Hg in Changshou Lake water reached 30% which was the maximum ratio of the total MeHg to total Hg in freshwater lakes and rivers. It implied that mercury was easily methylated in the environment of Chanashou Lake.
Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA.
Juillerat, Juliette I; Ross, Donald S; Bank, Michael S
2012-08-01
Mercury (Hg) is an atmospheric pollutant that, in forest ecosystems, accumulates in foliage and upper soil horizons. The authors measured soil and litterfall Hg at 15 forest sites (northern hardwood to mixed hardwood/conifer) throughout Vermont, USA, to examine variation among tree species, forest type, and soils. Differences were found among the 12 tree species sampled from at least two sites, with Acer pensylvanicum having significantly greater litterfall total Hg concentration. Senescent leaves had greater Hg concentrations if they originated lower in the canopy or had higher surface:weight ratios. Annual litterfall Hg flux had a wide range, 12.6 to 28.5 µg/m(2) (mean, 17.9 µg/m(2) ), not related to forest type. Soil and Hg pools in the Oi horizon (litter layer) were not related to the measured Hg deposition flux in litterfall or to total modeled Hg deposition. Despite having lower Hg concentrations, upper mineral soil (A horizons) had greater Hg pools than organic soil horizons (forest floor) due to greater bulk density. Significant differences were found in Hg concentration and Hg/C ratio among soil horizons but not among forest types. Overall, our findings highlight the importance of site history and the benefits of collecting litterfall and soils simultaneously. Observed differences in forest floor Hg pools were strongly correlated with carbon pools, which appeared to be a function of historic land-use patterns. Copyright © 2012 SETAC.
Evers, David C; Burgess, Neil M; Champoux, Louise; Hoskins, Bart; Major, Andrew; Goodale, Wing M; Taylor, Robert J; Poppenga, Robert; Daigle, Theresa
2005-03-01
A large data set of over 4,700 records of avian mercury (Hg) levels in northeastern North America was compiled and evaluated. As Hg emissions remain poorly regulated in the United States and Canada, atmospheric deposition patterns and associated ecological responses continue to elicit interest by landscape managers, conservation biologists, policy makers, and the general public. How avian Hg exposure is interpreted greatly influences decision-making practices. The geographic extent and size of this data set is valuable in understanding the factors that affect the exposure of Hg to birds. Featured are differences found among tissues, major aquatic habitats and geographic areas, between age class and gender, and among species. While Hg concentrations in egg and blood reflect short-term Hg exposure, Hg concentrations in liver and feather provide insight into long-term Hg exposure. Blood is a particularly important matrix for relating site-specific exposure to methylmercury (MeHg). The level of MeHg is generally 5-10x greater in adults compared to nestlings. Age also influences MeHg bioaccumulation, particularly for individuals where MeHg intake exceeds elimination. Gender is of interpretive concern when evaluating Hg exposure for species exhibiting sexual dimorphism and niche partitioning. Based on two indicator species, the belted kingfisher (Ceryle alcyon) and bald eagle (Haliaeetus leucocephalus), we found MeHg availability increased from marine, to estuarine and riverine systems, and was greatest in lake habitats. A large sample of > 1,800 blood and egg Hg levels from the common loon (Gavia immer) facilitated a suitable comparison of geographic differences. Although some clusters of highly elevated Hg exposure (i.e., blood levels > 3.0 microg/g, ww and egg levels > 1.3 microg/g, ww) were associated with hydrological and biogeochemical factors known to increase MeHg production and availability, others were not. Geographic areas without a relationship between Hg exposure and biogeochemical processes were associated with emission or waterborne point sources. Differences in Hg exposure among species are primarily correlated with trophic position and availability of MeHg. Although piscivorous species were repeatedly shown to have some of the highest MeHg levels of the 38 species analyzed, insectivorous birds in both aquatic and terrestrial habitats (such as montane areas) were also found with elevated MeHg levels. A better understanding of the factors confounding interpretation of Hg exposure provides an effective basis for choice of indicator species and tissues according to 12 selected scenarios. This and the national need for spatiotemporal monitoring of MeHg availability require careful consideration of indicator species choice. Only then will local, regional, continental, and even global monitoring efforts be effective.
David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.
2009-01-01
In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.
Meyer, Erik; Eagles-Smith, Collin A; Sparling, Donald; Blumenshine, Steve
2014-01-01
Mercury (Hg) is a global threat to wildlife health that can impair many physiological processes. Mercury has well-documented endocrine activity; however, little work on the effects of Hg on the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in aquatic wildlife exists despite the fact that it is a sensitive endpoint of contaminant exposure. An emerging body of evidence points to the toxicological susceptibility of aquatic reptiles to Hg exposure. We examined the endocrine disrupting potential of Hg in the western pond turtle (Emys marmorata), a long-lived reptile that is in decline throughout California and the Pacific Northwest. We measured total Hg (THg) concentrations in red blood cells (RBCs) and plasma T3 and T4 of turtles from several locations in California that have been impacted by historic gold mining. Across all turtles from all sites, the geometric mean and standard error THg concentration was 0.805 ± 0.025 μg/g dry weight. Sampling region and mass were the strongest determinants of RBC THg. Relationships between RBC THg and T3 and T4 were consistent with Hg-induced disruption of T4 deiodination, a mechanism of toxicity that may cause excess T4 levels and depressed concentrations of biologically active T3.
Meyer, Erik; Eagles-Smith, Collin A.; Sparling, Donald; Blumenshine, Steve
2014-01-01
Mercury (Hg) is a global threat to wildlife health that can impair many physiological processes. Mercury has well-documented endocrine activity; however, little work on the effects of Hg on the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in aquatic wildlife exists despite the fact that it is a sensitive endpoint of contaminant exposure. An emerging body of evidence points to the toxicological susceptibility of aquatic reptiles to Hg exposure. We examined the endocrine disrupting potential of Hg in the western pond turtle (Emys marmorata), a long-lived reptile that is in decline throughout California and the Pacific Northwest. We measured total Hg (THg) concentrations in red blood cells (RBCs) and plasma T3 and T4 of turtles from several locations in California that have been impacted by historic gold mining. Across all turtles from all sites, the geometric mean and standard error THg concentration was 0.805 ± 0.025 μg/g dry weight. Sampling region and mass were the strongest determinants of RBC THg. Relationships between RBC THg and T3 and T4 were consistent with Hg-induced disruption of T4 deiodination, a mechanism of toxicity that may cause excess T4 levels and depressed concentrations of biologically active T3.
Residual mercury content and leaching of mercury and silver from used amalgam capsules.
Stone, M E; Pederson, E D; Cohen, M E; Ragain, J C; Karaway, R S; Auxer, R A; Saluta, A R
2002-06-01
The objective of this investigation was to carry out residual mercury (Hg) determinations and toxicity characteristic leaching procedure (TCLP) analysis of used amalgam capsules. For residual Hg analysis, 25 capsules (20 capsules for one brand) from each of 10 different brands of amalgam were analyzed. Total residual Hg levels per capsule were determined using United States Environmental Protection Agency (USEPA) Method 7471. For TCLP analysis, 25 amalgam capsules for each of 10 brands were extracted using a modification of USEPA Method 1311. Hg analysis of the TCLP extracts was done with USEPA Method 7470A. Analysis of silver (Ag) concentrations in the TCLP extract was done with USEPA Method 6010B. Analysis of the residual Hg data resulted in the segregation of brands into three groups: Dispersalloy capsules, Group A, retained the most Hg (1.225 mg/capsule). These capsules were the only ones to include a pestle. Group B capsules, Valliant PhD, Optaloy II, Megalloy and Valliant Snap Set, retained the next highest amount of Hg (0.534-0.770 mg/capsule), and were characterized by a groove in the inside of the capsule. Group C, Tytin regular set double-spill, Tytin FC, Contour, Sybraloy regular set, and Tytin regular set single-spill retained the least amount of Hg (0.125-0.266 mg/capsule). TCLP analysis of the triturated capsules showed Sybraloy and Contour leached Hg at greater than the 0.2 mg/l Resource Conservation and Recovery Act (RCRA) limit. This study demonstrated that residual mercury may be related to capsule design features and that TCLP extracts from these capsules could, in some brands, exceed RCRA Hg limits, making their disposal problematic. At current RCRA limits, the leaching of Ag is not a problem.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.
2015-04-01
High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.
Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing
2015-02-01
In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.
Results of Total Mercury Analysis in Salt Marsh Invertebrates
Analysis of blood samples obtained from saltmarsh sparrows revealed high levels (> 1.0 µg/g(wet)) of mercury (Hg) in sparrows inhabiting a salt marsh site in the Narrow River, RI (also known as Pettaquamscutt River). These analyses were conducted by Oksana Lane at the Biodiversit...
NASA Astrophysics Data System (ADS)
Janssen, S.; Johnson, M. W.; Barkay, T.; Blum, J. D.; Reinfelder, J. R.
2014-12-01
Tracking monomethylmercury (MeHg) from its source in soils and sediments through various environmental compartments and transformations is critical to understanding its accumulation in aquatic and terrestrial food webs. Advances in the field of mercury (Hg) stable isotopes have allowed for the tracking of discrete Hg sources and the examination of photochemical and bacterial transformations. Despite analytical advances, measuring the Hg stable isotopic signature of MeHg in environmental samples or laboratory experiments remains challenging due to difficulties in the quantitative separation of MeHg from complex matrices with high concentrations of inorganic Hg. To address these challenges, we have developed a MeHg isolation method for sediments and bacterial cultures which involves separation by gas chromatography. The MeHg eluting from the GC is passed through a pyrolysis column and purged onto a gold amalgam trap which is then desorbed into a final oxidizing solution. A MeHg reference standard carried through our separation process retained its isotopic composition within 0.02 ‰ for δ202Hg, and for native estuarine sediments, MeHg recoveries were 80% to 100%. For sediment samples from the Hackensack and Passaic Rivers (New Jersey, USA), δ202Hg values for MeHg varied from -1.2 to +0.58 ‰ (relative to SRM 3133) and for individual samples were significantly different from that of total Hg (-0.38 ± 0.06 ‰). No mass independent fractionation was observed in MeHg or total Hg from these sediments. Pure cultures of Geobacter sulfurreducens, grown under fermentative conditions showed preferential enrichment of lighter isotopes (lower δ202Hg) during Hg methylation. The Hg stable isotope signatures of MeHg in sediments and laboratory methylation experiments will be discussed in the context of the formation and degradation of MeHg in the environment and the bioaccumulation of MeHg in estuarine food webs.
NASA Astrophysics Data System (ADS)
Ansari, N. R.; Correia, R. R. S.; Fernandez, M. A. S.; Cordeiro, R. C.; Guimarães, J. R. D.
2014-12-01
Mercury (Hg) can be a dangerous contaminant and has a complex biogeochemical cycling in aquatic environments. The sea anemone Bunodosoma caissarum is an endemic species in Brazil capable of bioaccumulating Hg from the ambient seawater. The radiotracer 203Hg was used in order to investigate mechanisms of Hg uptake and depuration of B. caissarum and the distribution of Hg in laboratory model systems, with and without B. caissarum. A single initial spike of 203Hg was added to each microcosm. Microcosms had continuous air renovation and trapping of Hg volatile forms. Total Hg in different compartments was measured by gamma spectrometry. In the uptake experiment 203Hg activity was determined periodically in seawater and specimens for 6 days. At the end, specimens had an average bioconcentration factor of 70. After the uptake experiment, methylmercury (MeHg) in seawater was extracted and measured by liquid scintillation. In microcosms with and without B. caissarum, respectively 0.05% and 0.32% of the initial spike was found as MeHg. Hg was probably less available for methylation in the first because of bioaccumulation and higher concentrations of suspended particulate matter that could form complexes with Hg. After that, specimens were transferred to unspiked microcosms. After a 48 day depuration specimens still retained 35 - 70% of the previously bioaccumulated Hg and 0.2 - 2.4% of the total Hg was MeHg. The presence of B. caissarum resulted in an unexpected higher volatilization of Hg (58%) compared to controls (17%). This increased volatilization is possibly a result of Hg2+ reduction mediated by microorganisms associated with its tissues and mucus secretions and/or an unknown defense mechanism of this species.
Smolinska, Beata; Leszczynska, Joanna
2017-05-01
The study was conducted to evaluate metabolic answer of Lepidium sativum L. on Hg, compost, and citric acid during assisted phytoextraction. The chlorophyll a and b contents, total carotenoids, and activity of peroxidase were determined in plants exposed to Hg and soil amendments. Hg accumulation in plant shoots was also investigated. The pot experiments were provided in soil artificially contaminated by Hg and/or supplemented with compost and citric acid. Hg concentration in plant shoots and soil substrates was determined by cold vapor atomic absorption spectroscopy (CV-AAS) method after acid mineralization. The plant photosynthetic pigments and peroxidase activity were measured by standard spectrophotometric methods. The study shows that L. sativum L. accumulated Hg in its aerial tissues. An increase in Hg accumulation was noticed when soil was supplemented with compost and citric acid. Increasing Hg concentration in plant shoots was correlated with enhanced activation of peroxidase activity and changes in total carotenoid concentration. Combined use of compost and citric acid also decreased the chlorophyll a and b contents in plant leaves. Presented study reveals that L. sativum L. is capable of tolerating Hg and its use during phytoextraction assisted by combined use of compost and citric acid lead to decreasing soil contamination by Hg.
Zhang, Cheng; Chen, Hong; Wang, Ding-Yong; Sun, Rong-Guo; Zhang, Jin-Yang
2014-03-01
To investigate pollution level and ecological risk of mercury in soils of the water-level-fluctuating zone in the Three Gorges Reservoir Region, 192 surface soil samples from 14 counties (districts) in Chongqing were obtained. Concentrations of THg and Hg species, bioavailable Hg were analyzed and discussed. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index (E(r)) were applied to assess the pollution status and potential ecological risk of THg and Hg species, respectively. The results showed that significant differences in the concentration of THg were found in soils of water-level-fluctuating zone in the Three Gorges Reservoir. The THg concentration ranged from 22.4 to 393.5 microg x kg(-1), with an average of (84.2 +/- 54.3) microg x kg(-1). 76.6% of the samples' THg content was higher than the soil background value in the Three Gorges Reservoir Region. The percentage of five mercury species (water-soluble Hg, HCl-soluble Hg, KOH-soluble Hg, H2O2-soluble Hg, residue Hg) in soils were 4.1%, 15.5%, 18.3%, 10.9%, 51.3%, respectively. The average concentrations of bioavailable mercury varied between 19.7-36.6 microg x kg(-1), and the percentage of bioavailable Hg was 22.1%-51.6% of THg. According to the geoaccumulation index, the soils were lightly polluted by Hg. Håkanson single potential ecological risk index evaluation showed that Hg species had a low potential ecological risk, moreover, soils of water-level-fluctuating zone in the Three Gorges Reservoir were at low ecological risk levels as evaluated by bioavailable Hg. While, the assessment results based on THg of soils was much higher than that based on the Hg species. Two methods of evaluation showed that the I(geo) and E(r) values calculated based on the Hg species better reflected the actual pollution levels of soils and its hazard to aquatic organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda
Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content wasmore » measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black-Right-Pointing-Pointer Accumulation of Hg in hair following exposure from fish was modified by genotype. Black-Right-Pointing-Pointer GSTP1, GSS, and SEPP1 polymorphisms influenced Hg accumulation in hair.« less
Krata, Agnieszka; Vassileva, Emilia; Bulska, Ewa
2016-11-01
The analytical procedures for reference measurements of the total Hg and methyl mercury (MeHg) mass fractions at various concentration levels in marine biota samples, candidates for certified reference materials (oyster and clam Gafrarium tumidum), were evaluated. Two modes of application of isotope dilution inductively coupled plasma mass spectrometry method (ID ICP-MS), namely direct isotope dilution and species-specific isotope dilution analysis with the use of two different quantification mass spectrometry techniques were compared. The entire ID ICP-MS measurement procedure was described by mathematical modelling and the combined uncertainty of measurement results was estimated. All factors influencing the final results as well as isotopic equilibrium were systematically investigated. This included the procedural blank, the moisture content in the biota samples and all factors affecting the blend ratio measurements (instrumental background, spectral interferences, dead time and mass discrimination effects as well as the repeatability of measured isotopic ratios). Modelling of the entire measurement procedures and the use of appropriate certified reference materials enable to assure the traceability of obtained values to the International System of Units (SI): the mole or the kilogram. The total mass fraction of mercury in oyster and clam biota samples, after correction for moisture contents, was found to be: 21.1 (1.1) 10(-9) kg kg(-1) (U =5.1% relative, k=2) and 390.0 (9.4) 10(-9) kg kg(-1) (U=2.4% relative, k=2), respectively. For the determination of mercury being present as methyl mercury, the non-chromatographic separation on anion-exchange resin AG1-X8 of the blended samples was applied. The content of MeHg (as Hg) in oyster sample was found: 4.81 (24) 10(-9)kgkg(-1) (U=5.0%, k=2) and 4.84 (21) 10(-9)kgkg(-1) (U=4.3%, k=2) with the use of quadrupole (ICP QMS) or sector field (ICP SFMS) inductively coupled plasma mass spectrometers, respectively. In the case of clam sample, the concentration of MeHg (as Hg) was found to be: 61.0 (2.3) 10(-)(9)kgkg(-1) (U=3.8%, k=2) and 61.3 (2.2) 10(-)(9)kgkg(-1) (U=3.6%, k=2), respectively. The mass fractions for total Hg and MeHg determined in this study were used as a contribution of the International Atomic Energy Agency (IAEA) Environment Laboratories in the characterisation of the IAEA 461 and IAEA 470 certified reference materials. The obtained good agreement with the reference values further validated the methods developed in this study. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havarinasab, Said; Bjoern, Erik; Nielsen, Jesper B.
2007-05-15
Methylmercury (MeHg) is present in the environment as a result of the global cycling of mercury, although anthropogenic sources may dramatically increase the availability in confined geographical areas. Accumulation of MeHg in the aquatic food chain is the dominating way of exposure in mammals, which accumulate MeHg in all organs, including Brain. Demethylation has been described in the organs, especially in phagocytic cells, but mainly in the flora of the intestinal tract. While most of the inorganic mercury (Hg{sup 2+}) formed in the intestine is excreted, a fraction is reabsorbed which together with the local demethylation increases the organ Hg{supmore » 2+} concentration. MeHg is a well-known immunosuppressive agent, while Hg{sup 2+} is associated with immunostimulation and autoimmunity especially in genetically susceptible rodents, creating a syndrome, i.e. mercury-induced autoimmunity (HgIA). This study aimed at exploring the effect of MeHg with regard to HgIA, and especially the immunological events after stopping treatment, correlated with the presence of MeHg and Hg{sup 2+} in the organs. Treatment of A.SW mice for 30 days with 4.2 mg MeHg/L drinking water (corresponding to approximately 420 {mu}g Hg/kg body weight/day) caused all the HgIA features observed after primary treatment with inorganic Hg, except systemic immune complex deposits. The total Hg concentration was 5-fold higher in the kidneys as compared with lymph nodes, but the fraction of Hg{sup 2+} was similar (17-20%). After stopping treatment, the renal and lymph node MeHg concentration declined according to first order kinetics during the initial 4-6 weeks, but then slower. A similar decline in the organ Hg{sup 2+} concentration occurred during the initial 2 weeks after stopping treatment but then ceased, causing the Hg{sup 2+} concentration to exceed that of MeHg in the lymph nodes and kidneys after 3 and 8 weeks, respectively. The selective increase in lymph node Hg{sup 2+} fraction is likely to be due to demethylation of MeHg in the macrophage-rich lymphoid tissue. The major autoantibody in HgIA, anti-fibrillarin antibodies, tended to increase during the initial 6 weeks after stopping treatment, while all other HgIA features including antichromatin antibodies declined to control levels after 2-4 weeks. This indicates differences in either dose requirement or induction mechanisms for the different HgIA parameters. The selective accumulation of Hg{sup 2+} in lymph nodes following MeHg treatment should be taken into account when the effect of MeHg on the immune system is evaluated.« less
Impact of Incremental Perfusion Loss on Oxygen Transport in a Capillary Network Mathematical Model.
Fraser, Graham M; Sharpe, Michael D; Goldman, Daniel; Ellis, Christopher G
2015-07-01
To quantify how incremental capillary PL, such as that seen in experimental models of sepsis, affects tissue oxygenation using a computation model of oxygen transport. A computational model was applied to capillary networks with dimensions 84 × 168 × 342 (NI) and 70 × 157 × 268 (NII) μm, reconstructed in vivo from rat skeletal muscle. FCD loss was applied incrementally up to ~40% and combined with high tissue oxygen consumption to simulate severe sepsis. A loss of ~40% FCD loss decreased median tissue PO2 to 22.9 and 20.1 mmHg in NI and NII compared to 28.1 and 27.5 mmHg under resting conditions. Increasing RBC SR to baseline levels returned tissue PO2 to within 5% of baseline. HC combined with a 40% FCD loss, resulted in tissue anoxia in both network volumes and median tissue PO2 of 11.5 and 8.9 mmHg in NI and NII respectively; median tissue PO2 was recovered to baseline levels by increasing total SR 3-4 fold. These results suggest a substantial increase in total SR is required in order to compensate for impaired oxygen delivery as a result of loss of capillary perfusion and increased oxygen consumption during sepsis. © 2015 John Wiley & Sons Ltd.
Ha, Tae-Sun; Choi, Ji-Young; Park, Hye-Young; Nam, Ja-Ae; Seong, Su-Bin
2014-10-15
The actin cytoskeleton in podocytes is essential for the maintenance of its normal structure and function. Its disruption is a feature of podocyte foot-process effacement and is associated with proteinuria. α-Actinin-4 in podocytes serves as a linker protein binding the actin filaments of the cytoskeleton. To investigate the effect of ginseng total saponin (GTS) on the pathological changes of podocyte α-actinin-4 induced by diabetic conditions, we cultured mouse podocytes under normal glucose (5mM) or high glucose (HG, 30mM) conditions, with or without the addition of advanced glycosylation end products (AGE), and treated with GTS. In confocal imaging, α-actinin-4 colocalized with the ends of F-actin fibers in cytoplasm, but diabetic conditions disrupted F-actin fibers and concentrated α-actinin-4 molecules at the peripheral cytoplasm. GTS upregulated α-actinin protein in a time- and dose-dependent manner, and suppressed the receptor for AGE levels in western blotting. Diabetic conditions, including HG, AGE, and both together, decreased cellular α-actinin-4 protein levels at 24 h and 48 h. Such quantitative and qualitative changes of α-actinin-4 protein induced by diabetic conditions were mitigated by GTS. These findings imply that both HG and AGE have an influence on the distribution and amount of α-actinin-4 in podocytes that can be recovered by GTS.
NASA Astrophysics Data System (ADS)
Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.
2016-12-01
The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream in all three tributaries. Tributary reaches with elevated THg in streambed sediment ("Hg hot spots") are near or downstream from historical Hg mines and Hg-enriched ore deposits. Future Hg load and cycling studies are needed to identify practical remediation approaches for decreasing THg and MeHg loads to Lake Berryessa.
Amirbahman, A.; Ruck, P.L.; Fernandez, I.J.; Haines, T.A.; Kahl, J.S.
2004-01-01
This study compares mercury (Hg) and methylmercury (MeHg) distribution in the soils of two forested stream watersheds at Acadia National Park, Maine, U.S.A. Cadillac Brook watershed, which burned in 1947, has thin soils and predominantly deciduous vegetation. It was compared to the unburned Hadlock Brook watershed, with thicker soil and predominantly coniferous vegetation. Soils in both watersheds were primarily well drained. The fire had a significant impact on the Cadillac watershed, by raising the soil pH, altering the vegetation, and reducing carbon and Hg pools. Total Hg content was significantly higher (P < 0.05) in Hadlock soils (0.18 kg Hg ha-1) compared to Cadillac soils (0. 13 kg Hg ha-1). Hadlock O horizon had an average Hg concentration of 134??48 ng Hg g-1 dry weight, compared to 103??23 ng Hg g-1 dry weight in Cadillac O horizon. Soil pH was significantly higher in all soil horizons at Cadillac compared to Hadlock soils. This difference was especially significant in the O horizon, where Cadillac soils had an average pH of 3.41??0.22 compared to Hadlock soils with an average pH of 2.99??0.13. To study the mobilization potential of Hg in the O horizons of the two watersheds, batch adsorption experiments were conducted, and the results were modeled using surface complexation modeling. The results of Hg adsorption experiments indicated that the dissolved Hg concentration was controlled by the dissolved organic carbon (DOC) concentration. The adsorption isotherms suggest that Hg is more mobile in the O horizon of the unburned Hadlock watershed because of higher solubility of organic carbon resulting in higher DOC concentrations in that watershed. Methylmercury concentrations, however, were consistently higher in the burned Cadillac O horizon (0.20??0.13 ng Hg g-1 dry weight) than in the unburned Hadlock O horizon (0.07??0.07 ng Hg g-1 dry weight). Similarly, Cadillac soils possessed a higher MeHg content (0.30 g MeHg ha-1) than Hadlock soils (0.16 g MeHg ha-1). The higher MeHg concentrations in Cadillac soils may reflect generally faster rates of microbial metabolism due to more rapid nutrient cycling and higher soil pH in the deciduous forest. In this research, we have shown that the amount of MeHg is not a function of the total pool of Hg in the watershed. Indeed, MeHg was inversely proportional to total Hg, suggesting that landscape factors such as soil pH, vegetation type, or land use history (e.g., fire) may be the determining factors for susceptibility to high Hg in biota. ?? 2004 Kluwer Academic Publisher. Printed in the Netherlands.
Unexpectedly high mercury concentration in commercial fish feed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, H.; Cech, J. Jr.
1995-12-31
Unexpectedly high mercury was found in a commercial fish pellet which has been widely used to feed fish in laboratory and fish farm settings. Researchers working with fish in mercury studies need to know that fish pellets contain mercury and consider the pellets, influence in their results. Mean mercury concentration in the commercial fish pellet was 47.4 ug/g (ranging from 35 to 56 ug Hg/g). Total mercury (T-Hg) in the blood of Sacramento blackfish (orthodon microlepidotus), fed the commercial feed for 8 months, was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Mean blood T-Hg reached a steady state at 41more » ug Hg/L (ranging from 34 to 51 ug Hg/L) during 5 months of feeding after capture from Clear Lake in California. The accumulation of mercury in blood followed a monoexponential pattern, in accordance with a one-compartment model. There were great variations in mercury levels in blood between individual fishes. The mercury concentrations in the blood did not tend to increase with the growth of the fish. In summary, feed sources of mercury need to be considered in mercury exposure experiments.« less
Mercury risk in poultry in the Wanshan Mercury Mine, China.
Yin, Runsheng; Zhang, Wei; Sun, Guangyi; Feng, Zhaohui; Hurley, James P; Yang, Liyuan; Shang, Lihai; Feng, Xinbin
2017-11-01
In this study, total mercury (THg) and methylmercury (MeHg) concentrations in muscles (leg and breast), organs (intestine, heart, stomach, liver) and blood were investigated for backyard chickens, ducks and geese of the Wanshan Mercury Mine, China. THg in poultry meat products range from 7.9 to 3917.1 ng/g, most of which exceeded the Chinese national standard limit for THg in meat (50 ng/g). Elevated MeHg concentrations (0.4-62.8 ng/g) were also observed in meat products, suggesting that poultry meat can be an important human MeHg exposure source. Ducks and geese showed higher Hg levels than chickens. For all poultry species, the highest Hg concentrations were observed in liver (THg: 23.2-3917.1 ng/g; MeHg: 7.1-62.8 ng/g) and blood (THg: 12.3-338.0 ng/g; MeHg: 1.4-17.6 ng/g). We estimated the Hg burdens in chickens (THg: 15.3-238.1 μg; MeHg: 2.2-15.6 μg), ducks (THg: 15.3-238.1 μg; MeHg: 3.5-14.7 μg) and geese (THg: 83.8-93.4 μg; MeHg: 15.4-29.7 μg). To not exceed the daily intake limit for THg (34.2 μg/day) and MeHg (6 μg/day), we suggested that the maximum amount (g) for chicken leg, breast, heart, stomach, intestine, liver, and blood should be 1384, 1498, 2315, 1214, 1081, 257, and 717, respectively; the maximum amount (g) for duck leg, breast, heart, stomach, intestine, liver, and blood should be 750, 1041, 986, 858, 752, 134, and 573, respectively; and the maximum amount (g) for goose leg, breast, heart, stomach, intestine, liver, and blood should be 941, 1051, 1040, 1131, 964, 137, and 562, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gaseous mercury from curing concretes that contain fly ash: laboratory measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danold W. Golightly; Ping Sun; Chin-Min Cheng
2005-08-01
Total gaseous mercury in headspace air was measured for enclosed concretes dry curing at 40 C for intervals of 2, 28, and 56 days. Release of mercury was confirmed for ordinary Portland cement concrete (OPC) and three concretes in which class F fly ash from coal-combustion substituted for a fraction of the cement: (a) 33% fly ash (FA33), (b) 55% fly ash (FA55), and (c) 33% fly ash plus 0.5% mercury-loaded powdered activated carbon (HgPAC). Mean rates of mercury release (0.10-0.43 ng/day per kg of concrete) over the standard first 28 days of curing followed the order OPC {lt} FA33more » {approximately} FA55 {lt} HgPAC. The mercury flux from exposed surfaces of these concretes ranged from 1.9 {+-} 0.5 to 8.1 {+-} 2.0 ng/m{sup 2}/h, values similar to the average flux for multiple natural substrates in Nevada, 4.2 {+-} 1.4 ng/m{sup 2}/h, recently published by others. Air sampling extending for 28 days beyond the initial 28-day maturation for OPC, FA55, and HgPAC suggested that the average Hg release rate by OPC is constant over 56 days and that mercury release rates for FA55 and HgPAC may ultimately diminish to levels exhibited by OPC concrete. The release of mercury from all samples was less than 0.1% of total mercury content over the initial curing period, implying that nearly all of the mercury was retained in the concrete. 20 refs., 3 figs., 3 tabs.« less
Neurobehavioral effects of combined prenatal exposure to low-level mercury vapor and methylmercury.
Yoshida, Minoru; Suzuki, Megumi; Satoh, Masahiko; Yasutake, Akira; Watanabe, Chiho
2011-01-01
We evaluated the effects of prenatal exposure to low-level mercury (Hg(0)) or methylmercury (MeHg) as well as combined exposure (Hg(0) + MeHg exposure) on the neurobehavioral function of mice. The Hg(0) exposure group was exposed to Hg(0) at a mean concentration of 0.030 mg/m(3) for 6 hr/day during gestation period. The MeHg exposure was supplied with food containing 5 ppm of MeHg from gestational day 1 to postnatal day 10. The combined exposure group was exposed to both Hg(0) vapor and MeHg according to above described procedure. After delivery, when their offspring reached the age of 8 weeks, behavioral analysis was performed. Open field (OPF) tests of the offspring showed an increase and decrease in voluntary activity in male and female mice, respectively, in the MeHg exposure group. In addition, the rate of central entries was significantly higher in this group than in the control group. The results of OPF tests in the Hg(0) + MeHg exposure group were similar to those in the MeHg exposure group in both males and females. The results in the Hg(0) exposure group did not significantly differ from those in the control group in males or females. Passive avoidance response (PA) tests revealed no significant differences in avoidance latency in the retention trial between the Hg(0), MeHg, or Hg(0) + MeHg exposure group and the control group in males or females. Morris water maze tests showed a delay in the latency to reach the platform in the MeHg and Hg(0) + MeHg exposure groups compared with the control group in males but no significant differences between the Hg(0), MeHg, or Hg(0) + MeHg exposure group and the control group in females. The results of OPF tests revealed only slight effects of prenatal low-level Hg(0) exposure (0.03 mg/m(3)), close to the no-observable-effect level (NOEL) stated by the WHO (0.025 mg/m(3)), on the subsequent neurobehavioral function. However, prenatal exposure to 5 ppm of MeHg affected exploratory activity in the OPF test, and, in particular, male mice were highly sensitive to MeHg. The MeHg and Hg(0) + MeHg exposure groups showed similar neurobehavioral effects. Concerning the effects of prenatal mercury exposure under the conditions of this study, the effects of MeHg exposure may be more marked than those of Hg(0) exposure.
Fischer, Urs; Cooney, Marie Therese; Bull, Linda M; Silver, Louise E; Chalmers, John; Anderson, Craig S; Mehta, Ziyah; Rothwell, Peter M
2014-01-01
Summary Background It is often assumed that blood pressure increases acutely after major stroke, resulting in so-called post-stroke hypertension. In view of evidence that the risks and benefits of blood pressure-lowering treatment in acute stroke might differ between patients with major ischaemic stroke and those with primary intracerebral haemorrhage, we compared acute-phase and premorbid blood pressure levels in these two disorders. Methods In a population-based study in Oxfordshire, UK, we recruited all patients presenting with stroke between April 1, 2002, and March 31, 2012. We compared all acute-phase post-event blood pressure readings with premorbid readings from 10-year primary care records in all patients with acute major ischaemic stroke (National Institutes of Health Stroke Scale >3) versus those with acute intracerebral haemorrhage. Findings Of 653 consecutive eligible patients, premorbid and acute-phase blood pressure readings were available for 636 (97%) individuals. Premorbid blood pressure (total readings 13 244) had been measured on a median of 17 separate occasions per patient (IQR 8–31). In patients with ischaemic stroke, the first acute-phase systolic blood pressure was much lower than after intracerebral haemorrhage (158·5 mm Hg [SD 30·1] vs 189·8 mm Hg [38·5], p<0·0001; for patients not on antihypertensive treatment 159·2 mm Hg [27·8] vs 193·4 mm Hg [37·4], p<0·0001), was little higher than premorbid levels (increase of 10·6 mm Hg vs 10-year mean premorbid level), and decreased only slightly during the first 24 h (mean decrease from <90 min to 24 h 13·6 mm Hg). By contrast with findings in ischaemic stroke, the mean first systolic blood pressure after intracerebral haemorrhage was substantially higher than premorbid levels (mean increase of 40·7 mm Hg, p<0·0001) and fell substantially in the first 24 h (mean decrease of 41·1 mm Hg; p=0·0007 for difference from decrease in ischaemic stroke). Mean systolic blood pressure also increased steeply in the days and weeks before intracerebral haemorrhage (regression p<0·0001) but not before ischaemic stroke. Consequently, the first acute-phase blood pressure reading after primary intracerebral haemorrhage was more likely than after ischaemic stroke to be the highest ever recorded (OR 3·4, 95% CI 2·3–5·2, p<0·0001). In patients with intracerebral haemorrhage seen within 90 min, the highest systolic blood pressure within 3 h of onset was 50 mm Hg higher, on average, than the maximum premorbid level whereas that after ischaemic stroke was 5·2 mm Hg lower (p<0·0001). Interpretation Our findings suggest that systolic blood pressure is substantially raised compared with usual premorbid levels after intracerebral haemorrhage, whereas acute-phase systolic blood pressure after major ischaemic stroke is much closer to the accustomed long-term premorbid level, providing a potential explanation for why the risks and benefits of lowering blood pressure acutely after stroke might be expected to differ. Funding Wellcome Trust, Wolfson Foundation, UK Medical Research Council, Stroke Association, British Heart Foundation, National Institute for Health Research. PMID:24582530
Robitaille, Stephan; Mailloux, Ryan J; Chan, Hing Man
2016-08-10
Methylmercury (MeHg) is a neurotoxin that binds strongly to thiol residues on protein and low molecular weight molecules like reduced glutathione (GSH). The mechanism of its effects on GSH homeostasis particularly at environmentally relevant low doses is not fully known. We hypothesized that exposure to MeHg would lead to a depletion of reduced glutathione (GSH) and an accumulation of glutathione disulfide (GSSG) leading to alterations in S-glutathionylation of proteins. Our results showed exposure to low concentrations of MeHg (1μM) did not significantly alter GSH levels but increased GSSG levels by ∼12-fold. This effect was associated with a significant increase in total cellular glutathione content and a decrease in GSH/GSSG. Immunoblot analyses revealed that proteins involved in glutathione synthesis were upregulated accounting for the increase in cellular glutathione. This was associated an increase in cellular Nrf2 protein levels which is required to induce the expression of antioxidant genes in response to cellular stress. Intriguingly, we noted that a key enzyme involved in reversing protein S-glutathionylation and maintaining glutathione homeostasis, glutaredoxin-1 (Grx1), was inhibited by ∼50%. MeHg treatment also increased the S-glutathionylation of a high molecular weight protein. This observation is consistent with the inhibition of Grx1 and elevated H2O2 production however; contrary to our original hypothesis we found few S-glutathionylated proteins in the astrocytoma cells. Collectively, MeHg affects multiple arms of glutathione homeostasis ranging from pool management to protein S-glutathionylation and Grx1 activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hou, Jing; Liu, Xinhui; Wang, Juan; Zhao, Shengnan; Cui, Baoshan
2015-02-03
The effects of heavy metals in agricultural soils have received special attention due to their potential for accumulation in crops, which can affect species at all trophic levels. Therefore, there is a critical need for reliable bioassays for assessing risk levels due to heavy metals in agricultural soil. In the present study, we used microarrays to investigate changes in gene expression of Lycopersicon esculentum in response to Cd-, Cr-, Hg-, or Pb-spiked soil. Exposure to (1)/10 median lethal concentrations (LC50) of Cd, Cr, Hg, or Pb for 7 days resulted in expression changes in 29 Cd-specific, 58 Cr-specific, 192 Hg-specific and 864 Pb-specific genes as determined by microarray analysis, whereas conventional morphological and physiological bioassays did not reveal any toxicant stresses. Hierarchical clustering analysis showed that the characteristic gene expression profiles induced by Cd, Cr, Hg, and Pb were distinct from not only the control but also one another. Furthermore, a total of three genes related to "ion transport" for Cd, 14 genes related to "external encapsulating structure organization", "reproductive developmental process", "lipid metabolic process" and "response to stimulus" for Cr, 11 genes related to "cellular metabolic process" and "cellular response to stimulus" for Hg, 78 genes related to 20 biological processes (e.g., DNA metabolic process, monosaccharide catabolic process, cell division) for Pb were identified and selected as their potential biomarkers. These findings demonstrated that microarray-based analysis of Lycopersicon esculentum was a sensitive tool for the early detection of potential toxicity of heavy metals in agricultural soil, as well as an effective tool for identifying the heavy metal-specific genes, which should be useful for assessing risk levels due to heavy metals in agricultural soil.
Kerfoot, W Charles; Urban, Noel R; McDonald, Cory P; Zhang, Huanxin; Rossmann, Ronald; Perlinger, Judith A; Khan, Tanvir; Hendricks, Ashley; Priyadarshini, Mugdha; Bolstad, Morgan
2018-04-25
A geographic enigma is that present-day atmospheric deposition of mercury in the Upper Peninsula of Michigan is low (48%) and that regional industrial emissions have declined substantially (ca. 81% reduction) relative to downstate. Mercury levels should be declining. However, state (MDEQ) surveys of rivers and lakes revealed elevated total mercury (THg) in Upper Peninsula waters and sediment relative to downstate. Moreover, Western Upper Peninsula (WUP) fish possess higher methyl mercury (MeHg) levels than Northern Lower Peninsula (NLP) fish. A contributing explanation for elevated THg loading is that a century ago the Upper Peninsula was a major industrial region, centered on mining. Many regional ores (silver, copper, zinc, massive sulfides) contain mercury in part per million concentrations. Copper smelters and iron furnace-taconite operations broadcast mercury almost continuously for 140 years, whereas mills discharged tailings and old mine shafts leaked contaminated water. We show that mercury emissions from copper and iron operations were substantial (60-650 kg per year) and dispersed over relatively large areas. Moreover, lake sediments in the vicinity of mining operations have higher THg concentrations. Sediment profiles from the Keweenaw Waterway show that THg accumulation increased 50- to 400-fold above modern-day atmospheric deposition levels during active mining and smelting operations, with lingering MeHg effects. High MeHg concentrations are geographically correlated with low pH and dissolved organic carbon (DOC), a consequence of biogeochemical cycling in wetlands, characteristic of the Upper Peninsula. DOC can mobilize metals and elevate MeHg concentrations. We argue that mercury loading from mining is historically superimposed upon strong regional wetland effects, producing a combined elevation of both THg and MeHg in the Western Upper Peninsula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemain, F.; Robin, I. C.; Feuillet, G.
2013-12-07
HgCdTe films grown by liquid phase epitaxy with different Cd compositions were post-annealed to control the Hg vacancy concentration. Then temperature-dependent Hall measurements and photoluminescence measurements allowed us to study the evolution of the Hg vacancy acceptor levels with the cadmium composition. For Cd compositions below 33% the Hg vacancies in HgCdTe present a negative-U property with the ionized state V{sup −} stabilized compared to the neutral state V{sup 0}. For Cd compositions higher than 45%, the Hg vacancies in HgCdTe present a more standard level ordering with the ionized state V{sup −} at higher energy than the neutral statemore » V{sup 0}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnivetskaya, Tatiana A.; Hu, Haiyan; Van Nostrand, Joy D.
In this paper, paddy soils from mercury (Hg)-contaminated rice fields in Guizhou, China were studied with respect to total mercury (THg) and methylmercury (MeHg) concentrations as well as Bacterial and Archaeal community composition. Total Hg (0.25–990 μg g –1) and MeHg (1.3–30.5 ng g –1) varied between samples. Pyrosequencing (454 FLX) of the hypervariable v1–v3 regions of the 16S rRNA genes showed that Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Euryarchaeota, and Crenarchaeota were dominant in all samples. The Bacterial α-diversity was higher in samples with relatively Low THg and MeHg and decreased with increasing THg and MeHg concentrations. In contrast, Archaeal α-diversitymore » increased with increasing of MeHg concentrations but did not correlate with changes in THg concentrations. Overall, the methylation gene hgcAB copy number increased with both increasing THg and MeHg concentrations. The microbial communities at High THg and High MeHg appear to be adapted by species that are both Hg resistant and carry hgcAB genes for MeHg production. The relatively high abundance of both sulfate-reducing δ- Proteobacteria and methanogenic Archaea, as well as their positive correlations with increasing THg and MeHg concentrations, suggests that these microorganisms are the primary Hg-methylators in the rice paddy soils in Guizhou, China.« less
Vishnivetskaya, Tatiana A.; Hu, Haiyan; Van Nostrand, Joy D.; ...
2018-03-05
In this paper, paddy soils from mercury (Hg)-contaminated rice fields in Guizhou, China were studied with respect to total mercury (THg) and methylmercury (MeHg) concentrations as well as Bacterial and Archaeal community composition. Total Hg (0.25–990 μg g –1) and MeHg (1.3–30.5 ng g –1) varied between samples. Pyrosequencing (454 FLX) of the hypervariable v1–v3 regions of the 16S rRNA genes showed that Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Euryarchaeota, and Crenarchaeota were dominant in all samples. The Bacterial α-diversity was higher in samples with relatively Low THg and MeHg and decreased with increasing THg and MeHg concentrations. In contrast, Archaeal α-diversitymore » increased with increasing of MeHg concentrations but did not correlate with changes in THg concentrations. Overall, the methylation gene hgcAB copy number increased with both increasing THg and MeHg concentrations. The microbial communities at High THg and High MeHg appear to be adapted by species that are both Hg resistant and carry hgcAB genes for MeHg production. The relatively high abundance of both sulfate-reducing δ- Proteobacteria and methanogenic Archaea, as well as their positive correlations with increasing THg and MeHg concentrations, suggests that these microorganisms are the primary Hg-methylators in the rice paddy soils in Guizhou, China.« less
Lactational transfer of mercury and polychlorinated biphenyls in polar bears.
Knott, Katrina K; Boyd, Daryle; Ylitalo, Gina M; O'Hara, Todd M
2012-07-01
We examined concentrations of total mercury (tHg, inorganic and methylated forms) and polychlorinated biphenyls (PCBs) in blood and milk from free-ranging Southern Beaufort-Chukchi Sea polar bears (Ursus maritimus) to assess maternal transfer of contaminants during lactation and the potential health risk to nursing young. Concentrations of contaminants in the blood of dependent and juvenile animals (ages 1-5 years) ranged from 35.9 to 52.2 μg kg(-1) ww for tHg and 13.9 to 52.2 μg kg(-1) ww (3255.81-11067.79 μg kg(-1) lw) for ΣPCB(7)s, similar to those of adult females, but greater than adult males. Contaminant concentrations in milk ranged from 5.7 to 71.8 μg tHg kg(-1)ww and 160 to 690 μg ΣPCB(11)s kg(-1) ww (547-5190 μg kg(-1) lw). The daily intake levels for tHg by milk consumption estimated for dependent young were below the tolerable daily intake level (TDIL) of tHg established for adult humans. Although the daily intake levels of PCBs through milk consumption for cubs of the year exceeded the TDIL thresholds, calculated dioxin equivalents for PCBs in milk were below adverse physiological thresholds for aquatic mammals. Relatively high concentrations of non-dioxin like PCBs in polar bear milk and blood could impact endocrine function of Southern Beaufort-Chukchi Sea polar bears, but this is uncertain. Transfer of contaminants during mid to late lactation likely limits bioaccumulation of dietary contaminants in female polar bears during spring. As polar bears respond to changes in their arctic sea ice habitat, the adverse health impacts associated with nutritional stress may be exacerbated by tHg and PCBs exposure, especially in ecologically and toxicologically sensitive polar bear cohorts such as reproductive females and young. Copyright © 2012. Published by Elsevier Ltd.
Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea
NASA Astrophysics Data System (ADS)
Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan; Guo, Jia
2016-04-01
The objectives of this study are to identify the spatial and temporal distributions of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and fine particulate mercury (HgP2.5) in the marine boundary layer (MBL) of the Bohai Sea (BS) and Yellow Sea (YS), and to investigate the relationships between mercury species and meteorological parameters. The mean concentrations of GEM, RGM, and HgP2.5 were 2.03 ng m-3, 2.5 pg m-3, and 8.2 pg m-3 in spring, and 2.09 ng m-3, 4.3 pg m-3, and 8.3 pg m-3 in fall. Reactive mercury (RGM + HgP2.5) represented < 1% of total atmospheric mercury (GEM + RGM + HgP2.5), which indicated that most mercury export in the MBL was GEM and the direct outflow of reactive mercury was very small. Moreover, GEM concentrations over the BS were generally higher than those over the YS both in spring and fall. Although RGM showed a homogeneous distribution over the BS and YS both in spring and fall, the mean RGM concentration in fall was significantly higher than that in spring. In contrast, the spatial distribution of HgP2.5 generally reflected a gradient with high levels near the coast of China and low levels in the open sea, suggesting the significant atmospheric mercury outflow from China. Interestingly, the mean RGM concentrations during daytime were significantly higher than those during nighttime both in spring and fall, while the opposite results were observed for HgP2.5. Additionally, RGM positively correlates with air temperature while negatively correlates with relative humidity. In conclusion, the elevated atmospheric mercury levels in the BS and YS compared to other open seas suggested that the human activities had a significant influence on the oceanic mercury cycle downwind of China.
Signa, Geraldina; Mazzola, Antonio; Tramati, Cecilia Doriana; Vizzini, Salvatrice
2017-11-01
Total mercury (T-Hg) and cadmium (Cd) were measured in twenty species of fish to study their bioaccumulation patterns and trophodynamics in the Augusta Bay food web. Adult and juvenile fish were caught in 2012 in Priolo Bay, south of the Augusta harbour (Central Mediterranean Sea), which is known for the high trace element and polycyclic aromatic hydrocarbon contamination level. T-Hg concentration was found to significantly increase along δ 15 N and from pelagic to benthic sedentary fish, revealing a marked influence of trophic position and habitat use (sensu Harmelin 1987) on T-Hg accumulation within ichthyofauna. Cd showed the opposite pattern, in line with the higher trace element (TE) excretion rates of high trophic level fish and the lower level of Cd environmental contamination. Trophic pathways were first characterised in the Priolo Bay food web using carbon and nitrogen stable isotopes (δ 13 C, δ 15 N) and a single main trophic pathway characterised the Priolo Bay food web. Biomagnification was then assessed, including basal sources (surface sediment, macroalgae), zooplankton, benthic invertebrates and fish. T-Hg and Cd were found to biomagnify and biodilute respectively based on the significant linear regressions between log[T-Hg] and log[Cd] vs. δ 15 N of sources and consumers and the trophic magnification factors (TMFs) of 1.22 and 0.83 respectively. Interestingly, different Cd behaviour was found considering only the benthic pathway which leads to the predatory gastropod Hexaplex trunculus. The positive slope and the higher TMF indicated active biomagnification in this benthic food web due to the high bioaccumulation efficiency of this benthic predator. Our findings provide new evidences about the role of Priolo sediments as a sources of pollutants for the food web, representing a threat to fish and, by domino effect, to humans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Landscape controls on mercury in streamwater at Acadia National Park, USA
Peckenham, J.M.; Kahl, J.S.; Nelson, S.J.; Johnson, K.B.; Haines, T.A.
2007-01-01
Fall and spring streamwater samples were analyzed for total mercury (Hg) and major ions from 47 locations on Mount Desert Island in Maine. Samples were collected in zones that were burned in a major wildfire in 1947 and in zones that were not burned. We hypothesized that Hg concentrations in streamwater would be higher from unburned sites than burned watersheds, because fire would volatilize stored Hg. The Hg concentrations, based on burn history, were not statistically distinct. However, significant statistical associations were noted between Hg and the amount of wetlands in the drainage systems and with streamwater dissolved organic carbon (DOC). An unexpected result was that wetlands mobilized more Hg by generating more DOC in total, but upland DOC was more efficient at transporting Hg because it transports more Hg per unit DOC. Mercury concentrations were higher in samples collected at lower elevations. Mercury was positively correlated with relative discharge, although this effect was not distinguished from the DOC association. In this research, sample site elevation and the presence of upstream wetlands and their associated DOC affected Hg concentrations more strongly than burn history. ?? Springer Science + Business Media B.V. 2007.
NASA Astrophysics Data System (ADS)
Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.
2017-12-01
Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of the Pearl River Delta, such as, Guangzhou, Dongguan, and Foshan et.al. These areas were characterized with large amounts of coal combustion, battery production and fluorescent production. With the implementation of ultra-low emission standards in coal-fired power plant, TMs emissions from industrial process sources should be emphasized.
Atmospheric deposition to forests in the eastern USA
Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.
2017-01-01
Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m2/yr) and ranged from 2.2 to 23.4 μg/m2/yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors.
Atmospheric mercury deposition to forests in the eastern USA.
Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P
2017-09-01
Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors. Published by Elsevier Ltd.
Weis, Peddrick; Ashley, Jeffrey T F
2007-01-01
The trace metal content and related safety (health risk) of Hackensack River fish were assessed within the Hackensack Meadowlands of New Jersey, USA. Eight elements were analyzed in the edible portion (i.e., muscle) of species commonly taken by anglers in the area. The white perch collection (Morone americana) was large enough (n = 168) to enable statistically significant inferences, but there were too few brown bullheads and carp to reach definite conclusions. Of the eight elements analyzed, the one that accumulates to the point of being a health risk in white perch is mercury (Hg). Relationships between mercury concentrations and size and with collection season were observed; correlation with lipid content, total polychlorinated biphenyl (PCB) content, or collection site were very weak. Only 18% of the Hg was methylated in October (n = 8), whereas June and July fish (n = 12) had 100% methylation of Hg. White perch should not be considered edible because the Hg level exceeded the "one meal per month" action level of 0.47 microg/g wet weight (ppm) in 32% of our catch and 2.5% exceeded the "no consumption at all" level of 1 microg/g. The larger fish represent greater risk for Hg. Furthermore, the warmer months, when more recreational fishing takes place, might present greater risk. A more significant reason for avoiding white perch is the PCB contamination because 40% of these fish exceeded the US Food and Drug Administration (FDA) action level of 2000 ng/g for PCBs and all white perch exceeded the US Environmental Protection Agency cancer/health guideline (49 ng/g) of no more than one meal/month. In fact, nearly all were 10 times that advisory level. There were differences between male and female white perch PCB levels, with nearly all of those above the US FDA action level being male. Forage fish (mummichogs and Atlantic silversides) were similarly analyzed, but no correlations were found with any other parameters. The relationship of collection site to contaminants cannot be demonstrated because sufficient numbers of game fish could not be collected at many sites at all seasons.
A Pulse of Mercury and Major Ions in Snowmelt Runoff from a Small Arctic Alaska Watershed.
Douglas, Thomas A; Sturm, Matthew; Blum, Joel D; Polashenski, Christopher; Stuefer, Svetlana; Hiemstra, Christopher; Steffen, Alexandra; Filhol, Simon; Prevost, Romain
2017-10-03
Atmospheric mercury (Hg) is deposited to Polar Regions during springtime atmospheric mercury depletion events (AMDEs) that require halogens and snow or ice surfaces. The fate of this Hg during and following snowmelt is largely unknown. We measured Hg, major ions, and stable water isotopes from the snowpack through the entire spring melt runoff period for two years. Our small (2.5 ha) watershed is near Barrow (now Utqiaġvik), Alaska. We measured discharge, made 10 000 snow depths, and collected over 100 samples of snow and meltwater for chemical analysis in 2008 and 2009 from the watershed snowpack and ephemeral stream channel. Results show an "ionic pulse" of mercury and major ions in runoff during both snowmelt seasons, but major ion and Hg runoff concentrations were roughly 50% higher in 2008 than in 2009. Though total discharge as a percent of total watershed snowpack water equivalent prior to the melt was similar in both years (36% in 2008 melt runoff and 34% in 2009), it is possible that record low precipitation in the summer of 2007 led to the higher major ion and Hg concentrations in 2008 melt runoff. Total dissolved Hg meltwater runoff of 14.3 (± 0.7) mg/ha in 2008 and 8.1 (± 0.4) mg/ha in 2009 is five to seven times higher than that reported from other arctic watersheds. We calculate 78% of snowpack Hg was exported with snowmelt runoff in 2008 and 41% in 2009. Our results suggest AMDE Hg complexed with Cl - or Br - may be less likely to be photochemically reduced and re-emitted to the atmosphere prior to snowmelt, and we estimate that roughly 25% of the Hg in snowmelt is attributable to AMDEs. Projected Arctic warming, with more open sea ice leads providing halogen sources that promote AMDEs, may provide enhanced Hg deposition, reduced Hg emission and, ultimately, an increase in snowpack and snowmelt runoff Hg concentrations.
Al-Karkhi, Isam; Al-Rubaiy, Raad; Rosenqvist, Ulf; Falk, Magnus; Nystrom, Fredrik H
2015-04-01
We aimed to compare blood pressure (BP) levels recorded using the semiautomatic oscillometric Omron i-C10 BP device in patients with or without hypertension in three different settings: (a) when used by a doctor or a nurse at the office (OBP); (b) when used for self-measurement by the patient at the office (SMOBP); and (c) when used for 7 consecutive days at home (HBP). A total of 247 individuals were invited to participate, but 78 of these individuals declined and a further seven were excluded, leaving a final cohort of 162 participants. The mean OBP was higher than HBP (difference 8.1±14/3.1±8.8 mmHg, P<0.0001) and so was SMOBP compared with HBP (difference 7.0±13/4.2±7.3 mmHg, P<0.0001). Sixteen participants (9.9%) had at least 10 mmHg higher systolic SMOBP than OBP and 28 (17%) participants had at least 10 mmHg lower systolic SMOBP than OBP. Participants who were current smokers had a larger mean difference between systolic OBP and SMOBP than nonsmokers (OBP-SMOBP in smokers: 6.6±9.4 mmHg, OBP-SMOBP in nonsmokers: 0.5±9.2 mmHg, P=0.011 between groups). Self-measurement of BP in the office does not preclude an increase in BP when levels in the individual patients are compared with HBP using the same equipment. Thus, SMOBP with a semiautomatic device does not lead to a reduction in the white-coat effect in the same manner as fully automatic devices.
Urinary mercury in people living near point sources of mercury emissions.
Barregard, Lars; Horvat, Milena; Mazzolai, Barbara; Sällsten, Gerd; Gibicar, Darija; Fajon, Vesna; Dibona, Sergio; Munthe, John; Wängberg, Ingvar; Haeger Eugensson, Marie
2006-09-01
As part of the European Mercury Emissions from Chlor Alkali Plants (EMECAP) project, we tested the hypothesis that contamination of ambient air with mercury around chlor alkali plants using mercury cells would increase the internal dose of mercury in people living close to the plants. Mercury in urine (U-Hg) was determined in 225 individuals living near a Swedish or an Italian chlor alkali plant, and in 256 age- and sex-matched individuals from two reference areas. Other factors possibly affecting mercury exposure were examined. Emissions and concentrations of total gaseous mercury (TGM) around the plants were measured and modeled. No increase in U-Hg could be demonstrated in the populations living close to the plants. This was the case also when the comparison was restricted to subjects with no dental amalgam and low fish consumption. The emissions of mercury to air doubled the background level, but contributed only about 2 ng/m(3) to long-term averages in the residential areas. The median U-Hg levels in subjects with dental amalgam were 1.2 microg/g creatinine (micro/gC) in Italy and 0.6 microg/gC in Sweden. In individuals without dental amalgam, the medians were 0.9 microg/gC and 0.2 microg/gC, respectively. The number of amalgam fillings, as well as chewing, fish consumption, and female sex were associated with higher U-Hg. The difference between the countries is probably due to higher fish consumption in Italy, demethylated methyl mercury (MeHg) being partly excreted in urine. Post hoc power calculations showed that if the background mercury exposure is low it may be possible to demonstrate an increase in U-Hg of as little as about 10 ng/m(3) as a contribution to ambient mercury from a point source.
NASA Astrophysics Data System (ADS)
Guerrini, Luca; Rodriguez-Loureiro, Ignacio; Correa-Duarte, Miguel A.; Lee, Yih Hong; Ling, Xing Yi; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.
2014-06-01
Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg2+ and the more toxicologically relevant methylmercury (CH3Hg+) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg2+ and CH3Hg+ to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms.Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg2+ and the more toxicologically relevant methylmercury (CH3Hg+) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg2+ and CH3Hg+ to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms. Electronic supplementary information (ESI) available: Representative TEM and ESEM images of AuNPs and PS@Au particles. Optical extinction spectra of AuNPs and PS@Au suspensions. SERS spectra of unmodified PS@Au suspension before and after the addition of CH3Hg+. SERS spectra of PS@Au-MPY upon addition of several metal solutions. Detailed SERS study of the MPY response to high concentration of CH3Hg+. See DOI: 10.1039/c4nr01464b
[Clinical, hemodynamic and angiographic results of total cavo-pulmonary connection].
Jimenez, A C; Neville, P; Chamboux, C; Crenn, R; Vaillant, M C; Marchand, M; Chantepie, A
1998-05-01
The aim of the study was to assess the short and medium term results of total cavo-pulmonary connection based on analysis of the functional status, the cavo-pulmonary circulation and the surgical techniques, and the hepatic consequences. Fifteen patients with congenital defects beyond repair were treated by total cavo-pulmonary connection at Tours between March 1st 1992 and July 30th 1996. There were 12 children (mean age: 6.3 years) and 3 adults aged 25 to 28. Results were assessed by clinical examination, hepatic function tests and cardiovascular investigations including right heart catheterisation with angiography in 14 patients. There were no fatalities. Seven patients were in functional Class I and 8 in Class II at medium term (average follow-up of 33 months). Hepatic function was mildly abnormal in all patients with an increase in serum bilirubin and gamma GT, and a decrease in the coagulation factors. The mean pressures in the atrial channel were 12 mmHg (9-16 mmHg), in the superior vena 13.2 mmHg (10-18 mmHg), in the right pulmonary artery 9.5 mmHg (7-15 mmHg) and 11.6 mmHg (8-16 mmHg) in the left pulmonary artery. Significant residual stenosis of a pulmonary branch was observed in 2 cases. The cavo-pulmonary anastomoses were out of line, one from the other, in all cases. The atrial channel was tubular in 9 cases and dilated with slight stagnation of the contrast medium in its inferior region in 5 cases. Total cavo-pulmonary connection transformed the clinical status of these patients but was associated with minor abnormalities of liver function. The quality of the cavo-pulmonary circulation and the surgical anastomoses was estimated to be satisfactory in the majority of cases.
Zhang, Tingting; Lu, Qianqian; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong
2017-09-01
Mercury uptake and its effects on physiology, biochemistry and genomic stability were investigated in Lemna minor after 2 and 6d of exposure to 0-30μM Hg. The accumulation of Hg increased in a concentration- and duration-dependent manner, and was positively correlated with the leaf damage. Oxidative stress after Hg exposure was evidenced in L. minor by a significant decrease in photosynthetic pigments, an increase in malondialdehyde and lipoxygenase activities (total enzyme activity and isoenzymes activity). Fronds of L. minor exposed to Hg showed an induction of peroxidase, catalase, and ascorbate peroxidase activities (total enzyme activity and some isoenzymes activities). Exposure of L. minor to Hg reduced the activity (total enzyme activity and some isoenzymes activities) of glutathione reductase, and superoxide dismutase. Exposure to Hg produced a transient increase in the content of glutathione and ascorbic acid. The content of dehydroascorbate and oxidized glutathione in L. minor were high during the entire exposure period. Exposure of L. minor to Hg also caused the accumulation of proline and soluble sugars. The amplification of new bands and the absence of normal DNA amplicons in treated plants in the random amplified polymorphic DNA (RAPD) profile indicated that genomic template stability (GTS) was affected by Hg treatment. The accumulation of Hsp70 indicated the occurrence of a heat shock response at all Hg concentrations. These results suggest that L. minor plants were able to cope with Hg toxicity through the activation of various mechanisms involving enzymatic and non-enzymatic antioxidants, up-regulation of proline, and induction of Hsp70. Copyright © 2017 Elsevier Inc. All rights reserved.
Marvin-DiPasquale, Mark; Lutz, Michelle A; Brigham, Mark E.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.
2009-01-01
Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment−pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 μm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 ± 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd’s) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd’s for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.
Dakova, Ivanka; Karadjova, Irina; Georgieva, Ventsislava; Georgiev, George
2009-04-30
Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2'-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4M HNO(3). The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 micromol g(-1) for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 microg L(-1) (3 sigma), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 microg L(-1) Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.
Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel
2016-01-19
Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).
Sediment-porewater partitioning, total sulfur, and methylmercury production in estuaries.
Schartup, Amina T; Balcom, Prentiss H; Mason, Robert P
2014-01-21
Mercury (Hg) speciation and the activity of Hg(II)-methylating bacteria are responsible for the rate of methylmercury production and thus bioaccumulation in marine foodwebs. Factors affecting porewater partitioning (Kd) and methylation of Hg(II) were examined at 11 sites in sediment of 4 biogeochemically diverse estuaries in the Northeast U.S. In Long Island Sound, 88% of total mercury (HgT) log Kd variability was described by porewater dissolved organic carbon concentration and sediment total sulfur (S) content. Whereas across all estuaries, regression analyses showed that S alone drives about 70% of Kd variability and 50% of changes in methylation rates; and the inclusion of DOC and sulfides did not improve the prediction. Thus, we demonstrated that S is a better predictor of HgT log Kd than the sediment organic matter across multiple estuaries, and while organic matter and S are interchangeable in small-scale studies, on a larger scale, sediment S content is the simplest and most effective variable to measure.
Usuki, Fusako; Fujimura, Masatake
2016-04-01
Manifestation of methylmercury (MeHg) toxicity depends on individual susceptibility to MeHg, as well as MeHg burden level. Therefore, biomarkers that reflect the protective capacity against MeHg are needed. The critical role of oxidative stress in the pathogenesis of MeHg cytotoxicity has been demonstrated. Because MeHg has high affinity for selenohydryl groups, sulfhydryl groups, and selenides, and causes posttranscriptional defects in selenoenzymes, proteins with selenohydryl and sulfhydryl groups should play a critical role in mediating MeHg-induced oxidative stress. Here, plasma oxidative stress markers and selenoproteins were investigated in MeHg-intoxicated rats showing neuropathological changes after 4 weeks of MeHg exposure. The thiol antioxidant barrier (-SHp) level significantly decreased 2 weeks after MeHg exposure, which is an early stage at which no systemic oxidative stress, histopathological changes, or clinical signs were detected. Diacron reactive oxidant metabolite (d-ROM) levels significantly increased 3 weeks after MeHg exposure, indicating the occurrence of systemic oxidative stress. Rats treated with lead acetate or cadmium chloride showed no changes in levels of -SHp and d-ROM. Selenoprotein P1 abundance significantly decreased in MeHg-treated rats, whereas it significantly increased in rats treated with Pb or Cd. Plasma selenium-dependent glutathione peroxidase (GPx3) activity also significantly decreased after MeHg exposure, whereas plasma non-selenoenzyme glutathione reductase activity significantly increased in MeHg-treated rats. The results suggest that decreased capacity of -SHp and selenoproteins (GPx3 and selenoprotein P) can be useful biomarkers of ongoing MeHg cytotoxicity and the individual protective capacity against the MeHg body burden.
NASA Technical Reports Server (NTRS)
Mann, Jacqueline L.; Long, Stephen E.; Shuman, Christopher A.; Kelly, W. Robert
2003-01-01
The total mercury Hg content was determined in 6 cm sections of a near-surface 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58 N, 38.53 W) in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICPMS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched Hg-201 isotopic spike is added to approximately 10 ml melted core and thoroughly mixed. The Hg(+2) in the sample is reduced on line with tin (II) chloride (SnCl2) and the elemental Hg (Hg(0)) vapor pre-concentrated on to gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank corrected Hg concentrations determined for all samples ranged from 0.25 ng/L to 1.74 ng/L (ppt) (average 0.59 ng/L plus or minus 0.28 ng/L) and fall within the range of those previously determined by Boutron et al., 1998 (less than or equal to 0.05 ng/L to 2.0 ng/L) for the Summit site. The average blank value was 0.19 ng/L plus or minus 0.045 ng/L (n=6). The Hg values specifically for the firn core range from 0.25 ng/L to 0.87 ng/L (average 0.51 ng/L plus or minus 0.13 ng/L) and show both values declining with time and larger variability in concentration in the top 1.8 m.
Surette, Céline; Lucotte, Marc; Tremblay, A
2006-09-01
It has been demonstrated that intensive fishing, i.e., removing more than 25% of the fish biomass, can reduce mercury levels in predator fish in a lake. We test here the hypothesis that, by removing an important part of the fish biomass from a lake, a significant amount of methylmercury can be eliminated, therefore reducing the mercury available to the remaining biota, at least in the short term. A mass burden approach is used to evaluate the partitioning of total mercury and methylmercury in natural lake ecosystems. Three small natural lakes from the James Bay territory, in northern Québec, Canada, were selected for intensive fishing. Mercury (Hg) and methylmercury (MeHg) concentrations were evaluated for sediments, water column (dissolved fraction and suspended particulate matter), plankton, aquatic invertebrates, and fish. Biomasses were determined for fish, plankton, and aquatic invertebrates. Two case scenarios are presented using different mercury contributions from the sediment component (1 cm depth, and no sediment). Our results for the scenario including the sediment contribution show that lake sediments represent over 98% of the total mercury while the biotic components represent less than 0.1% of the same burden. For methylmercury, fish account for up to 5% of the burden, while sediments make up 84.6% to 93.1%. If we put aside the sediment contribution, the methylmercury in fish partitioning can represent up to 48%. As for invertebrates, they can account for up to 48% of the total MeHg burden. We do not observe any change in the partitionings or the quantities of Hg and MeHg before and after fishing in either of the two case scenarios even when we do not take into account dynamics of the ecosystems. This will be all the more the case when the dynamics of the system are included in the analyses. Therefore, biological parameters such as growth rates or fish diet must be considered.
Kenow, K.P.; Hoffman, D.J.; Hines, R.K.; Meyer, M.W.; Bickham, J.W.; Matson, C.W.; Stebbins, K.R.; Montagna, P.; Elfessi, A.
2008-01-01
We quantified the level of dietary mercury (Hg), delivered as methylmercury chloride (CH3HgCl), associated with negative effects on organ and plasma biochemistries related to glutathione (GSH) metabolism and oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks reared from hatch to 105 days. Mercury-associated effects related to oxidative stress and altered glutathione metabolism occurred at 1.2 :g Hg/g and 0.4 :g Hg/g, an ecologically relevant dietary mercury level, but not at 0.08 :g Hg/g. Among the variables that contributed most to dissimilarities in tissue chemistries between control and treatment groups were increased levels of oxidized glutathione (GSSG), GSH peroxidase, and the ratio of GSSG to GSH in brain tissue; increased levels of hepatic GSH; and decreased levels of hepatic glucose-6-phosphate dehydrogenase (G-6-PDH). Our results also suggest that chronic exposure to environmentally relevant dietary Hg levels did not result in statistically significant somatic chromosomal damage in common loon chicks. Oxidative stress and altered glutathione metabolism were evident in common loon chicks exposed to >0.4 :g Hg as CH3HgCl per gram wet food intake.
DETERMINATION OF MERCURY IN HAIR OF CHILDREN.
Pino, A; Bocca, B; Forte, G; Majorani, C; Petrucci, F; Senofonte, O; Alimonti, A
2018-06-25
Although high or repeated exposure to different forms of Hg can have serious health consequences, the most important toxicity risk for humans is as methylmercury (MeHg) which exposure is mainly through consumption of fish. Generally, more than the 80% of Hg in hair is as MeHg, which is taken up by hair follicles as MeHg-cysteine complexes. In this context, hair samples were collected from 200 children (7 years) living in a site in the North East (A) and from 299 children (6-11 years) living in a urban area of South Italy (B) to determine the levels of MeHg. Considering the neurotoxicity of MeHg, children were subjected to cognitive and neuropsychological tests. The hair values of Hg in the children population groups were comparable with data reported in other international surveys. On the other hand, combining results of the neurological tests with Hg levels, a possible relationship between Hg and an increase of the errors average reported in some neurological has been noted. Although the Hg levels were not elevated, a possible neurological influence in children, a population more susceptible than adults, might not be excluded. But the influence on neurological performances of the children could be also due to the family environment (socio economic status, educational level, etc.). Copyright © 2018. Published by Elsevier B.V.
A review of worldwide atmospheric mercury measurements
NASA Astrophysics Data System (ADS)
Sprovieri, F.; Pirrone, N.; Ebinghaus, R.; Kock, H.; Dommergue, A.
2010-09-01
A large number of activities have been carried out to characterise the levels of mercury (Hg) species in ambient air and precipitation, in order to understand how they vary over time and how they depend on meteorological conditions. Following the discovery of atmospheric Hg depletion events (AMDEs) in Polar Regions, a significant research effort was made to assess the chemical-physical mechanisms behind the rapid conversion of atmospheric gaseous Hg (Hg0) into reactive and water-soluble forms which are potentially bioavailable. The understanding of the way in which Hg is released into the atmosphere, transformed, deposited and eventually incorporated into biota is of crucial importance not only for the polar regions but also for the marine environment in general. The oceans and seas are both sources and sinks of Hg and play a major role in the Hg cycle. In this work, the available Hg concentration datasets from a number of terrestrial sites (industrial, rural and remote) in both the Northern and Southern Hemispheres as well as over oceans and seas have been investigated. The higher Hg species concentration and variability observed in the Northern Hemisphere suggest that the majority of emissions and re-emissions occur there. The inter-hemispherical gradient with higher total gaseous mercury (TGM) concentrations in the Northern Hemisphere has remained nearly constant over the years for which data are available. The analysis of Hg concentration patterns indicates the differences in regional source/sink characteristics, with increasing variability toward areas strongly influenced by anthropogenic sources. The large increase in Hg emissions in rapidly developing countries (i.e., China, India) over the last decade, due primarily to a sharp increase in energy production from coal combustion, are not currently reflected in the long-term measurements of TGM in ambient air and precipitation at continuous monitoring sites in either Northern Europe or North America. The discrepancy between observed gaseous Hg concentrations (steady or decreasing) and global Hg emission inventories (increasing) has not yet been explained, though the potential oxidation of the atmosphere during the last decade is increasing. Currently, however, a coordinated observational network for Hg does not exist.
Selenium and mercury have a synergistic negative effect on fish reproduction.
Penglase, S; Hamre, K; Ellingsen, S
2014-04-01
Selenium (Se) can reduce the negative impacts of mercury (Hg) toxicity on growth and survival, but little is known about how these two elements interact in reproduction. In the following study we explored the effects of organic Hg and Se on the growth, survival and reproduction of female zebrafish (Danio rerio). Fish were fed one of four diets from 73 until 226 dpf in a 2 × 2 factorial design, using selenomethionine (SeMet) and methylmercury (MeHg) as the Se and Hg sources, respectively. Each diet contained Se at either requirement (0.7 mg Se/kg DM) or elevated levels (10 mg Se/kgDM), and Hg at either low (0.05 mg Hg/kg DM) or elevated (12 mg Hg/kg DM) levels. Between 151 and 206 dpf the female fish were pairwise crossed against untreated male fish and the mating success, fecundity, embryo survival, and subsequent overall reproductive success were measured. Elevated dietary Se reduced Hg levels in both the adult fish and their eggs. Elevated dietary Hg and Se increased egg Se levels to a greater extent than when dietary Se was elevated alone. At elevated maternal intake levels, egg concentrations of Se and Hg reflected the maternal dietary levels and not the body burdens of the adult fish. Elevated dietary Hg reduced the growth and survival of female fish, but these effects were largely prevented with elevated dietary Se. Elevated dietary Se alone did not affect fish growth or survival. Compared to other treatments, elevated dietary Hg alone increased both mating and overall reproductive success with <100 days of exposure, but decreased these parameters with >100 days exposure. Elevated dietary Se decreased fecundity, embryo survival, and overall reproductive success. The combination of elevated Se and Hg had a synergistic negative effect on all aspects of fish reproduction compared to those groups fed elevated levels of either Se or Hg. Overall the data demonstrate that while increased dietary Se may reduce adverse effects of Hg on the growth and survival in adult fish, it can negatively affect fish reproductive potential, and the effect on reproduction is enhanced in the presence of elevated Hg. Copyright © 2014 Elsevier B.V. All rights reserved.
Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments.
Cesário, Rute; Poissant, Laurier; Pilote, Martin; O'Driscoll, Nelson J; Mota, Ana M; Canário, João
2017-12-15
Intertidal sediments of Tagus estuary regularly experiences complex redistribution due to tidal forcing, which affects the cycling of mercury (Hg) between sediments and the water column. This study quantifies total mercury (Hg) and methylmercury (MMHg) concentrations and fluxes in a flooded mudflat as well as the effects on water-level fluctuations on the air-surface exchange of mercury. A fast increase in dissolved Hg and MMHg concentrations was observed in overlying water in the first 10min of inundation and corresponded to a decrease in pore waters, suggesting a rapid export of Hg and MMHg from sediments to the water column. Estimations of daily advective transport exceeded the predicted diffusive fluxes by 5 orders of magnitude. A fast increase in dissolved gaseous mercury (DGM) concentration was also observed in the first 20-30min of inundation (maximum of 40pg L -1 ). Suspended particulate matter (SPM) concentrations were inversely correlated with DGM concentrations. Dissolved Hg variation suggested that biotic DGM production in pore waters is a significant factor in addition to the photochemical reduction of Hg. Mercury volatilization (ranged from 1.1 to 3.3ngm -2 h -1 ; average of 2.1ngm -2 h -1 ) and DGM production exhibited the same pattern with no significant time-lag suggesting a fast release of the produced DGM. These results indicate that Hg sediment/water exchanges in the physical dominated estuaries can be underestimated when the tidal effect is not considered. Copyright © 2017 Elsevier B.V. All rights reserved.
Abeysinghe, Kasun S; Yang, Xiao-Dong; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Cao, Axiang; Feng, Xinbin; Liu, Shengjie; Mammides, Christos; Meng, Bo; Quan, Rui-Chang; Sun, Jing; Qiu, Guangle
2017-05-01
Mercury (Hg) deposited from emissions or from local contamination, can have serious health effects on humans and wildlife. Traditionally, Hg has been seen as a threat to aquatic wildlife, because of its conversion in suboxic conditions into bioavailable methylmercury (MeHg), but it can also threaten contaminated terrestrial ecosystems. In Asia, rice paddies in particular may be sensitive ecosystems. Earthworms are soil-dwelling organisms that have been used as indicators of Hg bioavailability; however, the MeHg concentrations they accumulate in rice paddy environments are not well known. Earthworm and soil samples were collected from rice paddies at progressive distances from abandoned mercury mines in Guizhou, China, and at control sites without a history of Hg mining. Total Hg (THg) and MeHg concentrations declined in soil and earthworms as distance increased from the mines, but the percentage of THg that was MeHg, and the bioaccumulation factors in earthworms, increased over this gradient. This escalation in methylation and the incursion of MeHg into earthworms may be influenced by more acidic soil conditions and higher organic content further from the mines. In areas where the source of Hg is deposition, especially in water-logged and acidic rice paddy soil, earthworms may biomagnify MeHg more than was previously reported. It is emphasized that rice paddy environments affected by acidifying deposition may be widely dispersed throughout Asia. Environ Toxicol Chem 2017;36:1202-1210. © 2016 SETAC. © 2016 SETAC.
Historical releases of mercury to air, land, and water from coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streets, David G.; Lu, Zifeng; Levin, Leonard
Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8–98.9, 80% C.I.) Gg (gigagrams, 10 9 g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01 Gg yr -1 in 1850 to 1 Gg yr -1 in 2010. Geographically, Asiamore » and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2–68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6–30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8 Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers.« less
Historical releases of mercury to air, land, and water from coal combustion
Streets, David G.; Lu, Zifeng; Levin, Leonard; ...
2018-02-15
Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8–98.9, 80% C.I.) Gg (gigagrams, 10 9 g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01 Gg yr -1 in 1850 to 1 Gg yr -1 in 2010. Geographically, Asiamore » and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2–68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6–30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8 Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers.« less