Lead exposures in the human environment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elias, R.W.
Humans consume lead by inhaling air, drinking beverages, eating food and ingesting dust. The natural source of this lead is primarily soil. Anthropogenic sources are lead in gasoline, fossil fuels and industrial products and processes. Lead is ubiquitous in the human environment, and pinpointing the primary sources of lead in any particular environmental component is difficult. Nevertheless, our purpose is to describe the total exposure of humans to environmental lead and to determine the sources of lead contributing to this exposure. The total exposure is the total amount of lead consumed by ingestion and inhalation. Excluding lead exposure from choicemore » or circumstance, a baseline level of potential human exposure can be defined for a normal individual eating a typical diet and living in a non-urban community remote from industrial sources of lead in a house without lead-based paints. Beyond this level, additive exposure factors can be determined for other environments (e.g. urban, occupational and smelter communities) and for certain habits and activities (e.g. pica, smoking, drinking and hobbies), with variation for age, sex or socioeconomic status.« less
The objectives of this field study are to determine the distributions of total human exposures to multi-media pollutants in the classes of metals, pesticides, and volatile organic compounds (VOCs) by studying a proportionate-based sample of the total population (with a nested des...
Kulaga, Vivian; Caprara, Daniela; Iqbal, Umar; Kapur, Bhushan; Klein, Julia; Reynolds, James; Brien, James; Koren, Gideon
2006-01-01
To compare the incorporation rate (ICR) of fatty acid ethyl esters (FAEE) in hair between guinea pigs and humans, and to assess the relationship between ethanol exposure and FAEE concentrations in hair. Published data from pregnant guinea pigs, including maximum blood ethanol concentration (BEC), dosage regimen, and total hair FAEE concentration, were compared with published data from alcoholic patients, where dose of ethanol consumed and total hair FAEE concentration were reported. Mean values of ethanol Vmax for pregnant guinea pigs and humans were obtained from published data (26.2 and 24 mg/dl/h, respectively). Total and individual FAEE ICRs, defined as the ratio of hair FAEE to the area under the BEC-time curve (total systemic ethanol exposure), were found to be on average an order of magnitude lower in the guinea pig than in the human. The profiles of ester incorporation also differed slightly between species, with ethyl stearate being highly incorporated in guinea pig hair and less so in human hair. The results may reflect in the human greater FAEE production, greater FAEE deposition in hair, slower FAEE catabolism, differential sebum production and composition, or a combination thereof. Also, ethyl oleate was found to correlate with total systemic ethanol exposure for both guinea pigs and humans, correlation coefficients equalling 0.67 (P < 0.05) and 0.49 (P < 0.05), respectively. No other ethyl esters, nor total FAEE, were found to correlate with systemic ethanol exposure. When extrapolating FAEE concentrations in hair from guinea pigs to humans, an order of magnitude difference should be considered, with humans incorporating more FAEE per unit of ethanol exposure. Also, the results suggest caution should be taken when interpreting values of single esters because of their differential incorporation among species. Lastly, our findings suggest ethyl oleate may be of keen interest in FAEE hair analysis, particularly across species.
Total Risk Integrated Methodology (TRIM) - TRIM.Expo
The Exposure Event module of TRIM (TRIM.Expo), similar to most human exposure models, provides an analysis of the relationships between various chemical concentrations in the environment and exposure levels of humans.
Hydroquinone PBPK model refinement and application to dermal exposure.
Poet, Torka S; Carlton, Betsy D; Deyo, James A; Hinderliter, Paul M
2010-11-01
A physiologically based pharmacokinetic (PBPK) model for hydroquinone (HQ) was refined to include an expanded description of HQ-glucuronide metabolites and a description of dermal exposures to support route-to-route and cross-species extrapolation. Total urinary excretion of metabolites from in vivo rat dermal exposures was used to estimate a percutaneous permeability coefficient (K(p); 3.6×10(-5) cm/h). The human in vivo K(p) was estimated to be 1.62×10(-4) cm/h, based on in vitro skin permeability data in rats and humans and rat in vivo values. The projected total multi-substituted glutathione (which was used as an internal dose surrogate for the toxic glutathione metabolites) was modeled following an exposure scenario based on submersion of both hands in a 5% aqueous solution of HQ (similar to black and white photographic developing solution) for 2 h, a worst-case exposure scenario. Total multi-substituted glutathione following this human dermal exposure scenario was several orders of magnitude lower than the internal total glutathione conjugates in rats following an oral exposure to the rat NOEL of 20 mg/kg. Thus, under more realistic human dermal exposure conditions, it is unlikely that toxic glutathione conjugates (primarily the di- and, to a lesser degree, the tri-glutathione conjugate) will reach significant levels in target tissues. Copyright © 2010. Published by Elsevier Ltd.
The objective of the National Human Exposure Assessment Survey (NHEXAS) in Arizona is to determine the multimedia distribution of total human exposure to environmental pollutants in the classes of metals, pesticides, and volatile organic compounds (VOCs) for the population of Ari...
A systematic review on human exposure to organophosphorus pesticides in Iran.
Shadboorestan, Amir; Vardanjani, Hossein Molavi; Abdollahi, Mohammad; Goharbari, Mohammad Hadi; Khanjani, Narges
2016-07-02
Human exposure to organophosphorus (OP) pesticides is a serious health challenge. We conducted a systematic review by searching international and national databases for published literature on any human exposure to OPs in Iran from 1990 to March 2015. Qualified papers were in two categories including studies in which biomarkers of exposure were assessed (n = 13; total no. of subjects = 759) and studies that had reported prevalence of OPs-induced poisoning (OPP) and mortality (n = 26; total no. of subjects = 5428). The mean level of activity of acetyl-cholinesterase and butyryl-cholinesterase were 68.65% and 74.2%, respectively. Overall proportion (%) of OPP was estimated (16; 95% CI, 14 to 19).
Multifactorial analysis of human blood cell responses to clinical total body irradiation
NASA Technical Reports Server (NTRS)
Yuhas, J. M.; Stokes, T. R.; Lushbaugh, C. C.
1972-01-01
Multiple regression analysis techniques are used to study the effects of therapeutic radiation exposure, number of fractions, and time on such quantal responses as tumor control and skin injury. The potential of these methods for the analysis of human blood cell responses is demonstrated and estimates are given of the effects of total amount of exposure and time of protraction in determining the minimum white blood cell concentration observed after exposure of patients from four disease groups.
Li, Zijian; Jennings, Aaron A.
2017-01-01
Worldwide jurisdictions are making efforts to regulate pesticide standard values in residential soil, drinking water, air, and agricultural commodity to lower the risk of pesticide impacts on human health. Because human may exposure to pesticides from many ways, such as ingestion, inhalation, and dermal contact, it is important to examine pesticide standards by considering all major exposure pathways. Analysis of implied maximum dose limits for commonly historical and current used pesticides was adopted in this study to examine whether worldwide pesticide standard values are enough to prevent human health impact or not. Studies show that only U.S. has regulated pesticides standard in the air. Only 4% of the total number of implied maximum dose limits is based on three major exposures. For Chlorpyrifos, at least 77.5% of the total implied maximum dose limits are above the acceptable daily intake. It also shows that most jurisdictions haven't provided pesticide standards in all major exposures yet, and some of the standards are not good enough to protect human health. PMID:29546224
Yuan, Haodong; Jin, Jun; Bai, Yao; Li, Qiuxu; Wang, Ying; Wang, Qinghua
2017-02-15
The concentrations and distributions of organochlorine pesticides (OCPs) in West China were investigated and internal and external exposure of humans to OCPs were assessed by analyzing samples of human hair and tree bark collected in Kaiyuan, in Yunnan Province, China. Dichlorodiphenyltrichloroethane and its metabolites (collectively called DDTs), hexachlorocyclohexanes (HCHs), and hexachlorobenzene (HCB) were the dominant OCPs in the human hair and tree bark samples. The mean total DDT, total HCH, and HCB concentrations in the tree bark samples were 298pg/g dry weight (dw), 100pg/g dw, and 183pg/g dw, respectively, and the mean total DDT, total HCH, and HCB concentrations in the hair samples were 2850pg/g dw, 348pg/g dw, and 1026pg/g dw, respectively. The results indicated that relatively new DDT and lindane inputs have occurred in the study area. DDT and lindane may have been released in products that are used locally. The HCB in the environment in the study area is mainly supplied by long-range atmospheric transport. External exposure was found to be the main factor controlling the p,p'-DDT, γ-HCH, and HCB concentrations in human hair, whereas p,p'-DDE and β-HCH were found to be mainly controlled by internal exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
This research constitutes the MCEARD base dietary exposure research program and is conducted to complement the NERL total human exposure program. The research builds on previous work to reduce the level of uncertainty in exposure assessment by improving NERL's ability to evaluat...
LESSONS LEARNED FROM THE NATIONAL HUMAN EXPOSURE ASSESSMENT SURVEY (NHEXAS)
Three NHEXAS Studies were conducted from 1995-1997 to evaluate total human exposure to multiple chemicals on community and regional scales. EPA established cooperative agreements with three Consortia to conduct three interrelated NHEXAS field studies. The University of Arizona...
Effect of centrifuge test on blood serum lipids index of cadet pilots.
Wochyński, Zbigniew; Kowalczuk, Krzysztof; Kłossowski, Marek; Sobiech, Krzysztof A
2016-01-01
This study aimed at investigating the relationship between the lipid index (WS) in the examined cadets and duration of exposure to +Gz in the human centrifuge. The study involved 19 first-year cadets of the Polish Air Force Academy in Dęblin. Tests in the human centrifuge were repeated twice, i.e. prior to (test I) and 45 days after (test II). After exposure to +Gz, the examined cadets were divided into 2 groups. Group I (N=11) included cadets subjected to a shorter total duration of exposure to +Gz, while group II (N=8) included cadets with a longer total duration of exposure to +Gz. Total cholesterol (TC), high density lipoprotein (HDL), triglycerides (TG), and apolipoproteins A1 and B were assayed in blood serum prior to (assay A) and after (assay B) both exposures to +Gz. Low density lipoprotein (LDL) level was estimated from the Friedewald formula. WS is an own mathematical algorithm. WS was higher in group II, assay A - 10.0 and B - 10.08 of test I in the human centrifuge than in group I where the WS values were 6.91 and 6.96, respectively. WS was also higher in group II in assay A - 10.0 and B -10.1 of test II in the human centrifuge than in group I - 6.96 and 6.80, respectively. The higher value of WS in group II, both after the first and second exposure to +Gz in human centrifuge, in comparison with group I, indicated its usefulness for determination of the maximum capability of applying acceleration of the interval type during training in the human centrifuge.
Impacts of environment on human diseases: a web service for the human exposome
NASA Astrophysics Data System (ADS)
Karssenberg, Derek; Vaartjes, Ilonca; Kamphuis, Carlijn; Strak, Maciek; Schmitz, Oliver; Soenario, Ivan; de Jong, Kor
2017-04-01
The exposome is the totality of human environmental exposures from conception onwards. Identifying the contribution of the exposome to human diseases and health is a key issue in health research. Examples include the effect of air pollution exposure on cardiovascular diseases, the impact of disease vectors (mosquitos) and surface hydrology exposure on malaria, and the effect of fast food restaurant exposure on obesity. Essential to health research is to disentangle the effects of the exposome and genome on health. Ultimately this requires quantifying the totality of all human exposures, for each individual in the studied human population. This poses a massive challenge to geoscientists, as environmental data are required at a high spatial and temporal resolution, with a large spatial and temporal coverage representing the area inhabited by the population studied and the time span representing several decades. Then, these data need to be combined with space-time paths of individuals to calculate personal exposures for each individual in the population. The Global and Geo Health Data Centre is taking this challenge by providing a web service capable of enriching population data with exposome information. Our web service can generate environmental information either from archived national (up to 5 m spatial and 1 h temporal resolution) and global environmental information or generated on the fly using environmental models running as microservices. On top of these environmental data services runs an individual exposure service enabling health researchers to select different spatial and temporal aggregation methods and to upload space-time paths of individuals. These are then enriched with personal exposures and eventually returned to the user. We illustrate the service in an example of individual exposures to air pollutants calculated from hyper resolution air pollution data and various approaches to estimate space-time paths of individuals.
Total Human Exposure Risk Database and Advance Simulaiton Environment
THERdbASE is no longer supported by EPA and is no longer available as download.
THERdbASE is a collection of databases and models that are useful to assist in conducting assessments of human exposure to chemical pollutants, especial...
The US EPA National Exposure Research Laboratory (NERL) is currently developing an integrated human exposure source-to-dose modeling system (HES2D). This modeling system will incorporate population exposure modules that use a probabilistic approach to predict population exposu...
Development of a Sampler for Total Aerosol Deposition in the Human Respiratory Tract
Koehler, Kirsten A.; Clark, Phillip; Volckens, John
2009-01-01
Studies that seek to associate reduced human health with exposure to occupational and environmental aerosols are often hampered by limitations in the exposure assessment process. One limitation involves the measured exposure metric itself. Current methods for personal exposure assessment are designed to estimate the aspiration of aerosol into the human body. Since a large proportion of inhaled aerosol is subsequently exhaled, a portion of the aspirated aerosol will not contribute to the dose. This leads to variable exposure misclassification (for heterogenous exposures) and increased uncertainty in health effect associations. Alternatively, a metric for respiratory deposition would provide a more physiologically relevant estimate of risk. To address this challenge, we have developed a method to estimate the deposition of aerosol in the human respiratory tract using a sampler engineered from polyurethane foam. Using a semi-empirical model based on inertial, gravitational, and diffusional particle deposition, a foam was engineered to mimic aerosol total deposition in the human respiratory tract. The sampler is comprised of commercially available foam with fiber diameter = 49.5 μm (equivalent to industry standard 100 PPI foam) of 8 cm thickness operating at a face velocity of 1.3 m s−1. Additionally, the foam sampler yields a relatively low-pressure drop, independent of aerosol loading, providing uniform particle collection efficiency over time. PMID:19638392
Praveena, S M; Omar, N A
2017-11-15
Heavy metal in rice studies has attracted a greater concern worldwide. However, there have been limited studies on marketed rice samples although it represents a vital ingestion portion for a real estimation of human health risk. This study was aimed to determine both total and bioaccessible of trace elements and heavy metals (Cd, Cr, Cu, Co, Al, Zn, As, Pb and Fe) in 22 varieties of cooked rice using an inductively coupled plasma-optical emission spectroscopy. Both total and bioaccessible of trace elements and heavy metals were digested using closed-nitric acid digestion and Rijksinstituut voor Volksgezondheid en Milieu (RIVM) in vitro digestion model, respectively. Human health risks via Health Risk Assessment (HRA) were conducted to understand exposure risks involving adults and children representing Malaysian population. Zinc was the highest while As was the lowest contents for total and in their bioavailable forms. Four clusters were identified: (1) Pb, As, Co, Cd and Cr; (2) Cu and Al; (3) Fe and (4) Zn. For HRA, there was no any risks found from single element exposure. While potential carcinogenic health risks present for both adult and children from single As exposure (Life time Cancer Risk, LCR>1×10 -4 ). Total Hazard Quotient values for adult and children were 27.0 and 18.0, respectively while total LCR values for adult and children were 0.0049 and 0.0032, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Klepeis, N E
1999-01-01
Indirect exposure approaches offer a feasible and accurate method for estimating population exposures to indoor pollutants, including environmental tobacco smoke (ETS). In an effort to make the indirect exposure assessment approach more accessible to people in the health and risk assessment fields, this paper provides examples using real data from (italic>a(/italic>) a week-long personal carbon monoxide monitoring survey conducted by the author; and (italic>b(/italic>) the 1992 to 1994 National Human Activity Pattern Survey (NHAPS) for the United States. The indirect approach uses measurements of exposures in specific microenvironments (e.g., homes, bars, offices), validated microenvironmental models (based on the mass balance equation), and human activity pattern data obtained from questionnaires to predict frequency distributions of exposure for entire populations. This approach requires fewer resources than the direct approach to exposure assessment, for which the distribution of monitors to a representative sample of a given population is necessary. In the indirect exposure assessment approach, average microenvironmental concentrations are multiplied by the total time spent in each microenvironment to give total integrated exposure. By assuming that the concentrations encountered in each of 10 location categories are the same for different members of the U.S. population (i.e., the NHAPS respondents), the hypothetical contribution that ETS makes to the average 24-hr respirable suspended particle exposure for Americans working their main job is calculated in this paper to be 18 microg/m3. This article is an illustrative review and does not contain an actual exposure assessment or model validation. Images Figure 3 Figure 4 PMID:10350522
Xing, Guan Hua; Chan, Janet Kit Yan; Leung, Anna Oi Wah; Wu, Sheng Chun; Wong, M H
2009-01-01
PCB levels in fish (collected from local rivers), atmosphere and human milk samples have been studied to determine the exposure levels of PCBs for local residents and e-waste workers in Guiyu, a major electronic waste scrapping center in China. The source appointment and correlation analyses showed that homologue composition of PCBs in 7 species of fish were consistent and similar to commercial PCBs Aroclor 1248. PCB levels in air surrounding the open burning site were significantly higher than those in residential area. Inhalation exposure contributed 27% and 93% to the total body loadings (the sum of dietary and inhalation exposure) of the local residents, and e-waste workers engaged in open burning respectively. Total PCB concentrations in human milk ranged from N.D. to 57.6 ng/g lipid, with an average of 9.50 ng/g lipid. The present results indicated that commercial PCBs derived from e-waste recycling are major sources of PCBs accumulating in different environmental media, leading to the accumulation of high chlorinated biphenyls in human beings.
Dialkyl phosphate urinary metabolites and chromosomal abnormalities in human sperm.
Figueroa, Zaida I; Young, Heather A; Meeker, John D; Martenies, Sheena E; Barr, Dana Boyd; Gray, George; Perry, Melissa J
2015-11-01
The past decade has seen numerous human health studies seeking to characterize the impacts of environmental exposures, such as organophosphate (OP) insecticides, on male reproduction. Despite an extensive literature on OP toxicology, many hormone-mediated effects on the testes are not well understood. This study investigated environmental exposures to OPs and their association with the frequency of sperm chromosomal abnormalities (i.e., disomy) among adult men. Men (n=159) from a study assessing the impact of environmental exposures on male reproductive health were included in this investigation. Multi-probe fluorescence in situ hybridization (FISH) for chromosomes X, Y, and 18 was used to determine XX18, YY18, XY18 and total disomy in sperm nuclei. Urine was analyzed using gas chromatography coupled with mass spectrometry for concentrations of dialkyl phosphate (DAP) metabolites of OPs [dimethylphosphate (DMP); dimethylthiophosphate (DMTP); dimethyldithiophosphate (DMDTP); diethylphosphate (DEP); diethylthiophosphate (DETP); and diethyldithiophosphate (DEDTP)]. Poisson regression was used to model the association between OP exposures and disomy measures. Incidence rate ratios (IRRs) were calculated for each disomy type by exposure quartiles for most metabolites, controlling for age, race, BMI, smoking, specific gravity, total sperm concentration, motility, and morphology. A significant positive trend was seen for increasing IRRs by exposure quartiles of DMTP, DMDTP, DEP and DETP in XX18, YY18, XY18 and total disomy. A significant inverse association was observed between DMP and total disomy. Findings for total sum of DAP metabolites concealed individual associations as those results differed from the patterns observed for each individual metabolite. Dose-response relationships appeared nonmonotonic, with most of the increase in disomy rates occurring between the second and third exposure quartiles and without additional increases between the third and fourth exposure quartiles. This is the first epidemiologic study of this size to examine the relationship between environmental OP exposures and human sperm disomy outcomes. Our findings suggest that increased disomy rates were associated with specific DAP metabolites, suggesting that the impacts of OPs on testis function need further characterization in epidemiologic studies. Copyright © 2015 Elsevier Inc. All rights reserved.
The Modeling Environment for Total Risks studies (MENTOR) system, combined with an extension of the SHEDS (Stochastic Human Exposure and Dose Simulation) methodology, provide a mechanistically consistent framework for conducting source-to-dose exposure assessments of multiple pol...
Downs, Nathan; Parisi, Alfio
2012-01-01
In this research, the erythemally effective UV measured using miniaturized polysulphone dosimeters to over 1250 individual body sites and collected over a 4-year period is presented relative to the total exposed skin surface area (SSA) of a life-size manikin model. A new term is also introduced, the mean exposure fraction (MEF). The MEF is used to weight modeled or measured horizontal plane UV exposures to the total unprotected SSA of an individual and is defined as the ratio of exposure per unit area received by the unprotected skin surfaces of the body relative to the exposure received on a horizontal plane. The MEF has been calculated for a range of solar zenith angles (SZA) to provide a sunburning energy data set weighted to the actual SSA of a typically clothed individual. For this research, the MEF was determined as 0.15, 0.26 and 0.41 in the SZA ranges 0°-30°, 30°-50° and 50°-80° providing information that can be used in a variety of different ambient, latitudinal and seasonal climates where total human body UV exposure information is not available. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Backer, Lorraine C; Coss, Angela M; Wolkin, Amy F; Flanders, W Dana; Reif, John S
2008-06-01
To assess the risk of bladder cancer in dogs from exposure to drinking water disinfection by-products and determine whether dogs could serve as sentinels for human bladder cancer associated with such exposures. Case-control study. 100 dogs with cancer of the urinary bladder and 100 control dogs. Case and control dogs were frequency-matched by age (within 2 years) and sex. Owners of dogs enrolled provided verbal informed consent and were interviewed by telephone. The telephone questionnaire included a complete residence history for each dog. Each dog's total exposure history to trihalomethanes was reconstructed from its residence history and corresponding drinking water utility company data. No association was detected between increasing years of exposure to chlorinated drinking water and risk of bladder cancer. Dogs with bladder cancer were exposed to higher total trihalomethanes concentrations than control dogs; however, the difference was not significant. Although humans and their dogs live in the same household, the activity patterns of dogs may lead to lower exposures to household tap water. Thus, although exposure to disinfection by-products in tap water may be a risk factor for human bladder cancer, this may not be true for canine bladder cancer at the concentrations at which dogs are exposed.
Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic
Georgopoulos, Panos G.; Wang, Sheng-Wei; Yang, Yu-Ching; Xue, Jianping; Zartarian, Valerie G.; Mccurdy, Thomas; Özkaynak, Halûk
2011-01-01
This article presents an integrated, biologically based, source-to-dose assessment framework for modeling multimedia/multipathway/multiroute exposures to arsenic. Case studies demonstrating this framework are presented for three US counties (Hunderton County, NJ; Pima County, AZ; and Franklin County, OH), representing substantially different conditions of exposure. The approach taken utilizes the Modeling ENvironment for TOtal Risk studies (MENTOR) in an implementation that incorporates and extends the approach pioneered by Stochastic Human Exposure and Dose Simulation (SHEDS), in conjunction with a number of available databases, including NATA, NHEXAS, CSFII, and CHAD, and extends modeling techniques that have been developed in recent years. Model results indicate that, in most cases, the food intake pathway is the dominant contributor to total exposure and dose to arsenic. Model predictions are evaluated qualitatively by comparing distributions of predicted total arsenic amounts in urine with those derived using biomarker measurements from the NHEXAS — Region V study: the population distributions of urinary total arsenic levels calculated through MENTOR and from the NHEXAS measurements are in general qualitative agreement. Observed differences are due to various factors, such as interindividual variation in arsenic metabolism in humans, that are not fully accounted for in the current model implementation but can be incorporated in the future, in the open framework of MENTOR. The present study demonstrates that integrated source-to-dose modeling for arsenic can not only provide estimates of the relative contributions of multipathway exposure routes to the total exposure estimates, but can also estimate internal target tissue doses for speciated organic and inorganic arsenic, which can eventually be used to improve evaluation of health risks associated with exposures to arsenic from multiple sources, routes, and pathways. PMID:18073786
Human biomonitoring studies measuring BPA in urine have shown widespread exposure in the general population. Diet is thought to be a major route of exposure. We studied urinary BPA patterns in five individuals over a 48-hr period of fasting (bottled water only). Personal acti...
In-Home Toxic Exposures and the Community of Individuals Who Are Developmentally Disabled
ERIC Educational Resources Information Center
Trousdale, Kristie A.; Martin, Joyce; Abulafia, Laura; Del Bene Davis, Allison
2010-01-01
Chemicals are ubiquitous in the environment, and human exposure to them is inevitable. A benchmark investigation of industrial chemicals, pollutants, and pesticides in umbilical cord blood indicated that humans are born with an average of 200 pollutants already present in their bodies. The study found a total of 287 chemicals, of which, 180 are…
The human early-life exposome (HELIX): project rationale and design.
Vrijheid, Martine; Slama, Rémy; Robinson, Oliver; Chatzi, Leda; Coen, Muireann; van den Hazel, Peter; Thomsen, Cathrine; Wright, John; Athersuch, Toby J; Avellana, Narcis; Basagaña, Xavier; Brochot, Celine; Bucchini, Luca; Bustamante, Mariona; Carracedo, Angel; Casas, Maribel; Estivill, Xavier; Fairley, Lesley; van Gent, Diana; Gonzalez, Juan R; Granum, Berit; Gražulevičienė, Regina; Gutzkow, Kristine B; Julvez, Jordi; Keun, Hector C; Kogevinas, Manolis; McEachan, Rosemary R C; Meltzer, Helle Margrete; Sabidó, Eduard; Schwarze, Per E; Siroux, Valérie; Sunyer, Jordi; Want, Elizabeth J; Zeman, Florence; Nieuwenhuijsen, Mark J
2014-06-01
Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure-health effect relationships. The "exposome" concept encompasses the totality of exposures from conception onward, complementing the genome. The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the "early-life exposome." Here we describe the general design of the project. In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother-child pairs, and biomarkers will be measured in a subset of 1,200 mother-child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure-response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome.
Bioaccessibility and human health risk assessment of lead in soil from Daye City
NASA Astrophysics Data System (ADS)
Li, Q.; Li, F.; Xiao, M. S.; Cai, Y.; Xiong, L.; Huang, J. B.; Fu, J. T.
2018-01-01
Lead (Pb) in soil from 4 sampling sites of Daye City was studied. Bioaccessibilities of Pb in soil were determined by the method of simplified bioaccessible extraction test (SBET). Since traditional health risk assessment was built on the basis of metal total content, the risk may be overestimated. Modified human health risk assessment model considering bioaccessibility was built in this study. Health risk of adults and children exposure to Pb based on total contents and bioaccessible contents were evaluated. The results showed that bioaccessible content of Pb in soil was much lower than its total content, and the average bioaccessible factor (BF) was only 25.37%. The hazard indexes (HIs) for adults and children calculated by two methods were all lower than 1. It indicated that there were no no-carcinogenic risks of Pb for human in Daye. By comparing with the results, the average bioaccessible HIs for adults and children were lower than the total one, which was due to the lower hazard quotient (HQ). Proportions of non-carcinogenic risk exposure to Pb via different pathways have also changed. Particularly, the most main risk exposure pathway for adults turned from the oral ingestion to the inhalation.
Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review.
Li, Zijian; Jennings, Aaron
2017-07-22
Abstract : The impact of pesticide residues on human health is a worldwide problem, as human exposure to pesticides can occur through ingestion, inhalation, and dermal contact. Regulatory jurisdictions have promulgated the standard values for pesticides in residential soil, air, drinking water, and agricultural commodity for years. Until now, more than 19,400 pesticide soil regulatory guidance values (RGVs) and 5400 pesticide drinking water maximum concentration levels (MCLs) have been regulated by 54 and 102 nations, respectively. Over 90 nations have provided pesticide agricultural commodity maximum residue limits (MRLs) for at least one of the 12 most commonly consumed agricultural foods. A total of 22 pesticides have been regulated with more than 100 soil RGVs, and 25 pesticides have more than 100 drinking water MCLs. This research indicates that those RGVs and MCLs for an individual pesticide could vary over seven (DDT drinking water MCLs), eight (Lindane soil RGVs), or even nine (Dieldrin soil RGVs) orders of magnitude. Human health risk uncertainty bounds and the implied total exposure mass burden model were applied to analyze the most commonly regulated and used pesticides for human health risk control. For the top 27 commonly regulated pesticides in soil, there are at least 300 RGVs (8% of the total) that are above all of the computed upper bounds for human health risk uncertainty. For the top 29 most-commonly regulated pesticides in drinking water, at least 172 drinking water MCLs (5% of the total) exceed the computed upper bounds for human health risk uncertainty; while for the 14 most widely used pesticides, there are at least 310 computed implied dose limits (28.0% of the total) that are above the acceptable daily intake values. The results show that some worldwide standard values were not derived conservatively enough to avoid human health risk by the pesticides, and that some values were not computed comprehensively by considering all major human exposure pathways.
Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review
Jennings, Aaron
2017-01-01
The impact of pesticide residues on human health is a worldwide problem, as human exposure to pesticides can occur through ingestion, inhalation, and dermal contact. Regulatory jurisdictions have promulgated the standard values for pesticides in residential soil, air, drinking water, and agricultural commodity for years. Until now, more than 19,400 pesticide soil regulatory guidance values (RGVs) and 5400 pesticide drinking water maximum concentration levels (MCLs) have been regulated by 54 and 102 nations, respectively. Over 90 nations have provided pesticide agricultural commodity maximum residue limits (MRLs) for at least one of the 12 most commonly consumed agricultural foods. A total of 22 pesticides have been regulated with more than 100 soil RGVs, and 25 pesticides have more than 100 drinking water MCLs. This research indicates that those RGVs and MCLs for an individual pesticide could vary over seven (DDT drinking water MCLs), eight (Lindane soil RGVs), or even nine (Dieldrin soil RGVs) orders of magnitude. Human health risk uncertainty bounds and the implied total exposure mass burden model were applied to analyze the most commonly regulated and used pesticides for human health risk control. For the top 27 commonly regulated pesticides in soil, there are at least 300 RGVs (8% of the total) that are above all of the computed upper bounds for human health risk uncertainty. For the top 29 most-commonly regulated pesticides in drinking water, at least 172 drinking water MCLs (5% of the total) exceed the computed upper bounds for human health risk uncertainty; while for the 14 most widely used pesticides, there are at least 310 computed implied dose limits (28.0% of the total) that are above the acceptable daily intake values. The results show that some worldwide standard values were not derived conservatively enough to avoid human health risk by the pesticides, and that some values were not computed comprehensively by considering all major human exposure pathways. PMID:28737697
Suspect Screening and Non-Targeted Analysis of Drinking Water Using Point-Of-Use Filters
Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort t...
Potential human exposures to neonicotinoid insecticides: A review.
Zhang, Q; Li, Z; Chang, C H; Lou, J L; Zhao, M R; Lu, C
2018-05-01
Due to their systemic character and high efficacy to insect controls, neonicotinoid insecticides (neonics) have been widely used in global agriculture since its introduction in early 1990. Recent studies have indicated that neonics may be ubiquitous, have longer biological half-lives in the environment once applied, and therefore implicitly suggested the increasing probability for human exposure to neonics. Despite of neonics' persistent characters and widespread uses, scientific literature in regard of pathways in which human exposure could occur is relatively meager. In this review, we summarized results from peer-reviewed articles published prior to 2017 that address potential human exposures through ingestion and inhalation, as well as results from human biomonitoring studies. In addition, we proposed the use of relative potency factor approach in order to facilitate the assessment of concurrent exposure to a mixture of neonics with similar chemical structures and toxicological endpoints. We believe that the scientific information that we presented in this review will aid to future assessment of total neonic exposure and subsequently human health risk characterization. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Influence of Human and Environmental Exposure Factors on Personal NO2 Exposures
The US Environmental Protection Agency’s (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) deployed a total of over 2000 nitrogen dioxide, NO2, passive monitors during 3 years of field data collections. These 24-h based personal, residential outdoor and comm...
Hammond, Davyda; Croghan, Carry; Shin, Hwashin; Burnett, Richard; Bard, Robert; Brook, Robert D; Williams, Ron
2014-07-01
The US Environmental Protection Agency's (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) has provided extensive data on human exposures to a wide variety of air pollutants and their impact on human health. Previous analyses in the DEARS revealed select cardiovascular (CV) health outcomes such as increase in heart rate (HR) associated with hourly based continuous personal fine particulate matter (PM2.5) exposures in this adult, non-smoking cohort. Examination of time activity diary (TAD), follow-up questionnaire (FQ) and the continuous PM2.5 personal monitoring data provided the means to more fully examine the impact of discreet human activity patterns on personal PM2.5 exposures and changes in CV outcomes. A total of 329 343 min-based PM2.5 personal measurements involving 50 participants indicated that ∼75% of these total events resulted in exposures <35 μg/m(3). Cooking and car-related events accounted for nearly 10% of the hourly activities that were identified with observed peaks in personal PM2.5 exposures. In-residence cooking often resulted in some of the highest incidents of 1 min exposures (33.5-17.6 μg/m(3)), with average peaks for such events in excess of 209 μg/m(3). PM2.5 exposure data from hourly based personal exposure activities (for example,, cooking, cleaning and household products) were compared with daily CV data from the DEARS subject population. A total of 1300 hourly based lag risk estimates associated with changes in brachial artery diameter and flow-mediated dilatation (BAD and FMD, respectively), among others, were defined for this cohort. Findings indicate that environmental tobacco smoke (ETS) exposures resulted in significant HR changes between 3 and 7 h following the event, and exposure to smells resulted in increases in BAD on the order of 0.2-0.7 mm/μg/m(3). Results demonstrate that personal exposures may be associated with several biological responses, sometimes varying in degree and direction in relation to the extent of the exposure.
Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China.
Liu, Li-Hua; Ma, Wan-Li; Liu, Li-Yan; Huo, Chun-Yan; Li, Wen-Long; Gao, Chong-Jing; Li, Hai-Ling; Li, Yi-Fan; Chan, Hing Man
2017-06-01
Short-chain chlorinated paraffins (SCCPs) are widely used chemicals in household products and might cause adverse human health effects. However, limited information is available on the occurrence of SCCPs in indoor environments and their exposure risks on humans. In this study the concentrations, profiles and human exposure of SCCPs in indoor dust from five different indoor environments, including commercial stores, residential apartments, dormitories, offices and laboratories were characterized. The SCCPs levels ranged from 10.1 to 173.0 μg/g, with the median and mean concentration of 47.2 and 53.6 μg/g, respectively. No significant difference was found on concentrations among the five microenvironments. The most abundant compounds in indoor dust samples were homologues of C 13 group, Cl 7 group and N 20 (N is the total number of C and Cl) group. In the five microenvironments, commercial stores were more frequently exposed to shorter carbon chained and higher chlorinated homologues. Three potential sources for SCCPs were identified by the multiple linear regression of factor score model and correspondence analysis. The major sources of SCCPs in indoor dust were technical mixtures of CP-42 (42% chlorine, w/w) and CP-52 b (52% chlorine, w/w). The total daily exposure doses and hazard quotients (HQ) were calculated by the human exposure models, and they were all below the reference doses and threshold values, respectively. Monte Carlo simulation was applied to predict the human exposure risk of SCCPs. Infants and toddlers were at risk of SCCPs based on predicted HQ values, which were exceeded the threshold for neoplastic effects in the worst case. Our results on the occurrences, sources and human exposures of SCCPs will be useful to provide a better understanding of SCCPs behaviors in indoor environment in China, and to support environmental risk evaluation and regulation of SCCPs in the world. Copyright © 2017. Published by Elsevier Ltd.
Sedman, R M; Polisini, J M; Esparza, J R
1994-01-01
Potential public health effects associated with exposure to metal emissions from hazardous waste incinerators through noninhalation pathways were evaluated. Instead of relying on modeling the movement of toxicants through various environmental media, an approach based on estimating changes from baseline levels of exposure was employed. Changes in soil and water As, Cd, Hg, Pb, Cr, and Be concentrations that result from incinerator emissions were first determined. Estimates of changes in human exposure due to direct contact with shallow soil or the ingestion of surface water were then ascertained. Projected changes in dietary intakes of metals due to incinerator emissions were estimated based on changes from baseline dietary intakes that are monitored in U.S. Food and Drug Administration total diet studies. Changes from baseline intake were deemed to be proportional to the projected changes in soil or surface water metal concentrations. Human exposure to metals emitted from nine hazardous waste incinerators were then evaluated. Metal emissions from certain facilities resulted in tangible human exposure through noninhalation pathways. However, the analysis indicated that the deposition of metals from ambient air would result in substantially greater human exposure through noninhalation pathways than the emissions from most of the facilities. PMID:7925180
Risk assessment of bioaccessible organochlorine pesticides exposure via indoor and outdoor dust
NASA Astrophysics Data System (ADS)
Wang, Wei; Huang, Min-Juan; Wu, Fu-Yong; Kang, Yuan; Wang, Hong-Sheng; Cheung, Kwai Chung; Wong, Ming Hung
2013-10-01
Dust, enriched by dichlorodiphenyltrichloroethanes (DDTs), was defined as a new route of organochlorine pesticides (OCPs) exposure, especially for children. Chemical analyses showed the medians of ∑OCPs were 171 (outdoor) and 520 (indoor) μg kg-1 in Guangzhou (GZ) while 130 (outdoor) and 115 (indoor) μg kg-1 in Hong Kong (HK). Significantly higher accumulative effect of OCPs occurred in the size fractions of <63 and 63-100 μm than 100-280 and 280-2000 μm, therefore 0-100 μm dust particles were used for risk evaluation. Different cytotoxic effects on human hepatocellular live carcinoma cell (HepG2) and human skin keratinocyte cell line (KERTr) were found for extracts of indoor dust and outdoor dust from different functional areas. For total exposure (dust and food), OCPs intake via dust was low for adults (accounting for 0.16-3.78% of total exposure), while for children it was high (8.16-24.4% of total exposure). Non-carcinogenic OCPs exposure via dust was safe for adults; however DDT and Dieldrin exposure for children was higher than Reference Dose (RfD). The cancer risk related to indoor dust exposure for GZ and HK was moderate, below 10-4, while 42% of residences in GZ should be of concern (10-5). However, when bioaccessible OCPs used, daily intake and health risk were found to be greatly lower than the estimates without considering bioaccessibility.
NASA Technical Reports Server (NTRS)
Zelac, R. E.; Cromroy, H. L.; Bolch, W. E., Jr.; Dunavant, B. G.; Bevis, H. A.
1971-01-01
Exposure-adjusted break frequencies for chromosome aberrations produced in Chinese hamster circulating blood lymphocytes were the quantitative indicator of damage from 5 hrs of exposure to X-radiation and/or to ozone. Radiation produced 5.51 x 0.0001 breaks/cell rad for cells withdrawn 2 weeks after exposure, a reasonable value when compared with data from in vivo exposure of human lymphocytes and Chinese hamster bone marrow cells. Animals exposed to the two agents simultaneously exhibited more than 70% of the total breaks anticipated assuming the expected equal contributions to be additive. Extending to humans, at presently permitted levels, exposure to ozone would be much more detrimental than exposure to radiati*n.
Evaluation of the bleached human enamel by Scanning Electron Microscopy.
Miranda, Carolina Baptista; Pagani, Clovis; Benetti, Ana Raquel; Matuda, Fábio da Silva
2005-06-01
Since bleaching has become a popular procedure, the effect of peroxides on dental hard tissues is of great interest in research. The aim of this in vitro study was to perform a qualitative analysis of the human enamel after the application of in-office bleaching agents, using Scanning Electron Microscopy (SEM). Twenty intact human third molars extracted for orthodontic reasons were randomly divided into four groups (n=5) treated as follows: G1- storage in artificial saliva (control group); G2- four 30-minute applications of 35% carbamide peroxide (total exposure: 2h); G3- four 2-hour exposures to 35% carbamide peroxide (total exposure: 8h); G4- two applications of 35% hydrogen peroxide, which was light-activated with halogen lamp at 700mW/cm² during 7min and remained in contact with enamel for 20min (total exposure: 40min). All bleaching treatments adopted in this study followed the application protocols advised by manufacturers. Evaluation of groups submitted to 35% carbamide peroxide was carried out after two time intervals (30 minutes and 2 hours per session), following the extreme situations recommended by the manufacturer. Specimens were prepared for SEM analysis performing gold sputter coating under vacuum and were examined using 15kV at 500x and 2000x magnification. Morphological alterations on the enamel surface were similarly detected after bleaching with either 35% carbamide peroxide or 35% hydrogen peroxide. Surface porosities were characteristic of an erosive process that took place on human enamel. Depression areas, including the formation of craters, and exposure of enamel rods could also be detected. Bleaching effects on enamel morphology were randomly distributed throughout enamel surface and various degrees of enamel damage could be noticed. In-office bleaching materials may adversely affect enamel morphology and therefore should be used with caution.
Zheng, Huang; Xing, Xinli; Hu, Tianpeng; Zhang, Yuan; Zhang, Jiaquan; Zhu, Gehao; Li, Ying; Qi, Shihua
2018-05-03
The purpose of this study was to assess the human cancer risk due to the exposure to the soil-bound polycyclic aromatic hydrocarbons (PAHs) from Chengdu Economic Region (CER), western China with the main concern on cancer risk source apportionment. The total concentrations of sixteen PAHs ranged from 12.5 to 75431 ng g -1 , with a mean value of 3106 ng g -1 , which suggested that the most areas of CER were contaminated. Source apportionment of PAHs was conducted by the positive matrix factorization (PMF) model and the biomass burning contributed most (63.6%) to the total PAHs, followed by petroleum combustion (16.0%), coke source (11.3%), and petrogenic source (9.2%). Results from incremental lifetime cancer risk (ILCR) calculation showed that soil ingestion exerted the highest cancer risk (accounted for 98.1 - 99.3% of the total cancer risk) on human health among three different exposure pathways, followed by dermal contact (0.66 - 1.83%) and inhalation (0.03 - 0.04%). Among different age groups, adult suffered the highest cancer risk via any exposure pathways. Based on PMF and ILCR methods, the cancer risk source apportionment was conducted and the biomass burning showed moderate cancer risk. The petrogenic, coke, and petroleum sources showed low cancer risks to human. To analyze the sensitivity of the parameters used in ILCR calculation, Monte Carlo simulation was employed. The results indicated that the contribution of each source and exposure duration (ED) were the influential parameters on human health associated with soil-bound PAHs. Therefore, much attentions should be paid to biomass burning to avoid cumulative cancer risk. Copyright © 2018 Elsevier Inc. All rights reserved.
Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom
Qian, J; Hospodsky, D; Yamamoto, N; Nazaroff, W W; Peccia, J
2012-01-01
The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants. PMID:22257156
Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review.
Huijbers, Patricia M C; Blaak, Hetty; de Jong, Mart C M; Graat, Elisabeth A M; Vandenbroucke-Grauls, Christina M J E; de Roda Husman, Ana Maria
2015-10-20
To establish a possible role for the natural environment in the transmission of clinically relevant AMR bacteria to humans, a literature review was conducted to systematically collect and categorize evidence for human exposure to extended-spectrum β-lactamase-producing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus spp. in the environment. In total, 239 datasets adhered to inclusion criteria. AMR bacteria were detected at exposure-relevant sites (35/38), including recreational areas, drinking water, ambient air, and shellfish, and in fresh produce (8/16). More datasets were available for environmental compartments (139/157), including wildlife, water, soil, and air/dust. Quantitative data from exposure-relevant sites (6/35) and environmental compartments (11/139) were scarce. AMR bacteria were detected in the contamination sources (66/66) wastewater and manure, and molecular data supporting their transmission from wastewater to the environment (1/66) were found. The abundance of AMR bacteria at exposure-relevant sites suggests risk for human exposure. Of publications pertaining to both environmental and human isolates, however, only one compared isolates from samples that had a clear spatial and temporal relationship, and no direct evidence was found for transmission to humans through the environment. To what extent the environment, compared to the clinical and veterinary domains, contributes to human exposure needs to be quantified. AMR bacteria in the environment, including sites relevant for human exposure, originate from contamination sources. Intervention strategies targeted at these sources could therefore limit emission of AMR bacteria to the environment.
Boberg, Julie; Johansson, Hanna K L; Hadrup, Niels; Dreisig, Karin; Berthelsen, Line; Almstrup, Kristian; Vinggaard, Anne Marie; Hass, Ulla
2015-02-01
Elevated levels of endogenous or exogenous estrogens during fetal life can induce permanent disturbances in prostate growth and predispose to precancerous lesions. Recent studies have indicated that also early anti-androgen exposure may affect prostate cancer risk. We examined the influence of perinatal exposure to mixtures of anti-androgenic and estrogenic chemicals on prostate development. Wistar rats were exposed from gestation day 7 to postnatal day 22 to a mixture of 8 anti-androgenic compounds (AAMix), a mixture of four estrogenic compounds (EMix), or paracetamol or a mixture of all 13 compounds (TotalMix) in mixture ratios reflecting human exposure levels. Ventral prostate weights were reduced by the TotalMix and AAMix in pre-pubertal rats. Histological changes in prostate appeared with increasing age and indicated a shift from the normal age-dependent epithelial atrophy towards hyperplasia. These lesions showed similarities to pre-cancerous lesions in humans. Increased proliferation was observed already in pre-puberty and it was hypothesized that this could be associated with reduced ERβ signaling, but no clear conclusions could be made from gene expression studies on ERβ-related pathways. The influences of the estrogenic chemicals and paracetamol on prostate morphology were minor, but in young adulthood the estrogen mixture reduced ventral prostate mRNA levels of Igf1 and paracetamol reduced the mRNA level ofPbpc3. Mixtures of endocrine disrupters relevant for human exposure was found to elicit persistent effects on the rat prostate following perinatal exposure, suggesting that human perinatal exposure to environmental chemicals may increase the risk of prostate cancer later in life. © 2014 Wiley Periodicals, Inc.
Liang, Peng; Feng, Xinbin; Zhang, Chan; Zhang, Jin; Cao, Yucheng; You, Qiongzhi; Leung, Anna Oi Wah; Wong, Ming-Hung; Wu, Sheng-Chun
2015-03-01
To investigate human Hg exposure by food consumption and occupation exposure in a compact fluorescent lamp (CFL) manufacturing area, human hair and rice samples were collected from Gaohong town, Zhejiang Province, China. The mean values of total mercury (THg) and methylmercury (MeHg) concentrations in local cultivated rice samples were significantly higher than in commercial rice samples which indicated that CFL manufacturing activities resulted in Hg accumulation in local rice samples. For all of the study participants, significantly higher THg concentrations in human hair were observed in CFL workers compared with other residents. In comparison, MeHg concentrations in human hair of residents whose diet consisted of local cultivated rice were significantly higher than those who consumed commercial rice. These results demonstrated that CFL manufacturing activities resulted in THg accumulation in the hair of CFL workers. However, MeHg in hair were mainly affected by the sources of rice of the residents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Exposomics research using suspect screening and non ...
High-resolution mass spectrometry (HRMS) is used for suspect screening (SSA) and non-targeted analysis (NTA) in an attempt to characterize xenobiotic chemicals in various samples broadly and efficiently. These important techniques aid characterization of the exposome, the totality of human exposures, and provide critical information on thousands of chemicals in commerce for which exposure data are lacking. The Environmental Protection Agency (EPA) SSA and NTA capabilities consist of analytical instrumentation [liquid chromatography (LC) with time of flight (TOF) and quadrupole-TOF (Q-TOF) HRMS], workflows (feature extraction, formula generation, structure prediction, spectral matching, chemical confirmation), and tools (databases; models for predicting retention time, functional use, media occurrence, and media concentration; and schemes for ranking features and chemicals). Suspect screening (SSA) and non-targeted analysis (NTA) are used to characterize xenobiotic chemicals in various samples and aid characterization of the exposome, the totality of human exposures, and provide critical information on thousands of chemicals in commerce for which exposure data are lacking.
Taylor, David L.; Williamson, Patrick R.
2016-01-01
Total mercury (Hg) was measured in coastal fishes from Southern New England (RI, USA), and Hg exposure was estimated for anglers and family members that consumed these resources. Fish Hg was positively related to total length (n = 2028 across 7 fish species), and interspecies differences were evident among legally harvestable fish. Many recreational anglers and their families experienced excessively high Hg exposure rates, which was attributed to the enriched Hg content of frequently consumed fishes. Specifically, 51.5% of participants in this study had Hg exposures exceeding the US EPA reference dose, including 50.0% of women of childbearing years. These results are noteworthy given that Hg neurotoxicity occurs in adults and children from direct and prenatal low-dose exposure. Moreover, this study underscores the need for geographic-specific research that accounts for small-scale spatial variations in fish Hg and dietary habits of at-risk human populations. PMID:27595617
TOWARD GREATER IMPLEMENTATION OF THE EXPOSOME RESEARCH PARADIGM WITHIN ENVIRONMENTAL EPIDEMIOLOGY
Stingone, Jeanette A.; Buck Louis, Germaine M.; Nakayama, Shoji F.; Vermeulen, Roel C. H.; Kwok, Richard K.; Cui, Yuxia; Balshaw, David M.; Teitelbaum, Susan L.
2017-01-01
Investigating a single environmental exposure in isolation does not reflect the actual human exposure circumstance nor does it capture the multifactorial etiology of health and disease. The exposome, defined as the totality of environmental exposures from conception onward, may advance our understanding of environmental contributors to disease by more fully assessing the multitude of human exposures across the life course. Implementation into studies of human health has been limited, in part owing to theoretical and practical challenges including a lack of infrastructure to support comprehensive exposure assessment, difficulty in differentiating physiologic variation from environmentally induced changes, and the need for study designs and analytic methods that accommodate specific aspects of the exposome, such as high-dimensional exposure data and multiple windows of susceptibility. Recommendations for greater data sharing and coordination, methods development, and acknowledgment and minimization of multiple types of measurement error are offered to encourage researchers to embark on exposome research to promote the environmental health and well-being of all populations. PMID:28125387
Martínez Vidal, Jose L; Egea González, Francisco J; Garrido Frenich, Antonia; Martínez Galera, María; Aguilera, Pedro A; López Carrique, Enrique
2002-08-01
Principal component analysis (PCA) was applied to the gas chromatographic data obtained from 23 different greenhouse trials. This was used to establish which factors, including application technique (very small, small, medium and large drop-size), crop characteristics (short/tall, thin/dense) and pattern application of the operator (walking towards or away from the treated area) are relevant to the dermal exposure levels of greenhouse applicators. The results showed that the highest exposure by pesticides during field applications in greenhouses, in the climatic conditions and in the crop conditions typical of a southern European country, occurs on the lower legs and front thighs of the applicators. Similar results were obtained by hierarchical cluster analysis (HCA). Drop-size seems to be very important in determining total exposure, while height and density of crops have little influence on total exposure under the conditions of the present study. No pesticide type is a major factor in total exposure. The application of multiple regression analysis (MRA) allowed assessment of the relationships between the pesticide exposure of the less affected parts of the body with the most affected parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
This report is a transcript of an interview with Dr. Helen Vodopick by representatives of the US DOE Office of Human Radiation Experiments. Dr. Vodopick was chosen for this interview because of her involvement with the Oak Ridge Institute of Nuclear Studies (ORINS) and Oak Ridge Associated Universities (ORAU) experimental cancer-therapy program involving total-body irradiation. After a short biographical sketch Dr. Vodopick relates her remembrances of the Medium-Exposure-Rate Total Body Irradiator (METBI), ORINS radioisotope tracer studies, treatment of cancer patients with the METBI, radiation treatment for leukemia patients, bone marrow treatment of leukemia, the Low-Exposure-Rate Total Body Irradiation (LETBI), treatmentmore » of radiation accident victims at ORAU, research with radioactive phosphorus and sulfur, and public opinion issues.« less
EPAseeks applications for research on how pollution affects human health in the context of the total environment – built, natural, and social environments interacting together with inherent characteristics and interactions.
Ethanol inhibits human bone cell proliferation and function in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friday, K.E.; Howard, G.A.
1991-06-01
The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantlymore » reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.« less
Most of the existing arsenic dietary databases were developed from the analysis of total arsenic in water and dietary samples. These databases have been used to estimate arsenic exposure and in turn human health risk. However, these dietary databases are becoming obsolete as the ...
DIETARY EXPOSURE FROM PESTICIDE APPLICATION ON FARMS IN THE AGRICULTURAL HEALTH PILOT STUDY
As part of total human exposure measurements performed on six farms in Iowa and North Carolina during the Agricultural Health Pilot Study, a household duplicate diet, several locally grown foods, an applicator meal, a child duplicate diet, and drinking water samples were collecte...
Castellanos, Marie-Josée; Fuente, Adrian
2016-12-09
Exposure to some chemicals in the workplace can lead to occupational chemical-induced hearing loss. Attention has mainly focused on the adverse auditory effects of solvents. However, other chemicals such as heavy metals have been also identified as ototoxic agents. The aim of this work was to review the current scientific knowledge about the adverse auditory effects of heavy metal exposure with and without co-exposure to noise in humans. PubMed and Medline were accessed to find suitable articles. A total of 49 articles met the inclusion criteria. Results from the review showed that no evidence about the ototoxic effects in humans of manganese is available. Contradictory results have been found for arsenic, lead and mercury as well as for the possible interaction between heavy metals and noise. All studies found in this review have found that exposure to cadmium and mixtures of heavy metals induce auditory dysfunction. Most of the studies investigating the adverse auditory effects of heavy metals in humans have investigated human populations exposed to lead. Some of these studies suggest peripheral and central auditory dysfunction induced by lead exposure. It is concluded that further evidence from human studies about the adverse auditory effects of heavy metal exposure is still required. Despite this issue, audiologists and other hearing health care professionals should be aware of the possible auditory effects of heavy metals.
Chan, Janet Kit Yan; Wong, Ming H
2013-10-01
This paper reviews the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in different environmental media, human body burdens and health risk assessment results at e-waste recycling sites in China. To provide an indication of the seriousness of the pollution levels in the e-waste recycling sites in China, the data are compared with guidelines and available existing data for other areas. The comparison clearly shows that PCDD/Fs derived from the recycling processes lead to serious pollution in different environmental compartments (such as air, soil, sediment, dust and biota) and heavy body burdens. Of all kinds of e-waste recycling operations, open burning of e-waste and acid leaching activities are identified as the major sources of PCDD/Fs. Deriving from the published data, the estimated total exposure doses via dietary intake, inhalation, soil/dust ingestion and dermal contact are calculated for adults, children and breast-fed infants living in two major e-waste processing locations in China. The values ranged from 5.59 to 105.16 pg WHO-TEQ/kg bw/day, exceeding the tolerable daily intakes recommended by the WHO (1-4 pg WHO-TEQ/kg bw/day). Dietary intake is the most important exposure route for infants, children and adults living in these sites, contributing 60-99% of the total intakes. Inhalation is the second major exposure route, accounted for 12-30% of the total exposure doses of children and adults. In order to protect the environment and human health, there is an urgent need to control and monitor the informal e-waste recycling operations. Knowledge gaps, such as comprehensive dietary exposure data, epidemiological and clinical studies, body burdens of infants and children, and kinetics about PCDD/Fs partitions among different human tissues should be addressed. Copyright © 2012 Elsevier B.V. All rights reserved.
Brominated flame retardants - Exposure and risk assessment for the general population.
Fromme, H; Becher, G; Hilger, B; Völkel, W
2016-01-01
Brominated flame retardants (BFRs) are a large group of different substances used in numerous products to prevent fire hazards. Some of them are persistent in the environment, accumulate in the food chain and are of toxicological concern, while for others current data are limited. Meanwhile, BFRs have been found in many environmental media, foods, and biota including humans. This review presents recent findings obtained from monitoring data in environmental media relevant for human exposure, as well as dietary exposure. In this context, concentrations in indoor and ambient air and in house dust are outlined. Furthermore, we summarize human biomonitoring data on BFR levels in blood and breast milk. Current estimates of the overall exposure of the general population using different relevant subsets are also addressed. All of these data are discussed in relation to currently available toxicological reference values used for risk assessment purposes. Obviously, the exposure of the general population varies considerably in different parts of the world and even within countries. Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) show the highest intake during infancy. While the highest intake for BDE 47 for all groups was observed in the US, the total BDE 209 and HBCD intake was highest in the UK. For HBCD and all PBDEs except BDE 209, diet accounts for a large proportion of the total intake during infancy in all countries. With regard to toddlers and adults, the contribution of diet to total intake is high in Germany and the UK, while in the US, the high concentrations of PBDE in dust resulted in a notably smaller proportion of the intake being attributed to diet. Copyright © 2015 Elsevier GmbH. All rights reserved.
Effects of Ambient Air Pollution Exposure on Olfaction: A Review.
Ajmani, Gaurav S; Suh, Helen H; Pinto, Jayant M
2016-11-01
Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured pollution exposures and to link pollution exposure with olfactory dysfunction and related pathology. Citation: Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect 124:1683-1693; http://dx.doi.org/10.1289/EHP136.
Evaluating microcystin exposure risk through fish consumption.
Poste, Amanda E; Hecky, Robert E; Guildford, Stephanie J
2011-07-01
Microcystin is a cyanobacterial hepatotoxin that is found worldwide, and poses a serious threat to the ecological communities in which it is found as well as to those who rely on these waters for drinking, sanitation, or as a food source. Microcystin is known to accumulate in fish and other aquatic biota, however the prevalence of microcystin in fish tissue and the human health risks posed by microcystin exposure through fish consumption remain poorly resolved. Here we show that microcystin is pervasive in water and fish from several tropical (Ugandan) and temperate (North American) lakes, including lakes that support some of the largest freshwater fisheries in the world. We establish that fish consumption can be an important and sometimes dominant route of microcystin exposure for humans, and can cause consumers to exceed recommended total daily intake guidelines for microcystin. These results highlight the importance of monitoring microcystin concentrations in fish, and the need to consider potential exposure to microcystin through fish consumption in order to adequately assess human exposure risk.
Evaluating microcystin exposure risk through fish consumption
Poste, Amanda E.; Hecky, Robert E.; Guildford, Stephanie J.
2011-01-01
Microcystin is a cyanobacterial hepatotoxin that is found worldwide, and poses a serious threat to the ecological communities in which it is found as well as to those who rely on these waters for drinking, sanitation, or as a food source. Microcystin is known to accumulate in fish and other aquatic biota, however the prevalence of microcystin in fish tissue and the human health risks posed by microcystin exposure through fish consumption remain poorly resolved. Here we show that microcystin is pervasive in water and fish from several tropical (Ugandan) and temperate (North American) lakes, including lakes that support some of the largest freshwater fisheries in the world. We establish that fish consumption can be an important and sometimes dominant route of microcystin exposure for humans, and can cause consumers to exceed recommended total daily intake guidelines for microcystin. These results highlight the importance of monitoring microcystin concentrations in fish, and the need to consider potential exposure to microcystin through fish consumption in order to adequately assess human exposure risk. PMID:21671629
2016 Annual Report of the University of Kansas Health System Poison Control Center.
Thornton, Stephen L; Oller, Lisa; Coons, Doyle M
2018-05-01
This is the 2016 Annual Report of the University of Kansas Health System Poison Control Center (PCC). The PCC is one of 55 certified poison control centers in the United States and serves the state of Kansas 24-hours a day, 365 days a year, with certified specialists in poison information and medical toxicologists. The PCC receives calls from the public, law enforcement, health care professionals, and public health agencies. All calls to the PCC are recorded electronically in the Toxicall® data management system and uploaded in near real-time to the National Poison Data System (NPDS), which is the data repository for all poison control centers in the United States. All encounters reported to the PCC from January 1, 2016 to December 31, 2016 were analyzed. Data recorded for each exposure includes caller location, age, weight, gender, substance exposed to, nature of exposure, route of exposure, interventions, medical outcome, disposition and location of care. Encounters were classified further as human exposure, animal exposure, confirmed non-exposure, or information call (no exposure reported). The PCC logged 21,965 total encounters in 2016, including 20,713 human exposure cases. The PCC received calls from every county in Kansas. The majority of human exposure cases (50.4%, n = 10,174) were female. Approximately 67% (n = 13,903) of human exposures involved a child (defined as age 19 years or less). Most encounters occurred at a residence (94.0%, n = 19,476) and most calls (72.3%, n = 14,964) originated from a residence. The majority of human exposures (n = 18,233) were acute cases (exposures occurring over eight hours or less). Ingestion was the most common route of exposure documented (86.3%, n = 17,882). The most common reported substance in pediatric encounters was cosmetics/personal care products (n = 1,362), followed by household cleaning product (n = 1,301). For adult encounters, sedatives/hypnotics/antipsychotics (n = 1,130) and analgesics (n = 1,103) were the most frequently involved substances. Unintentional exposures were the most common reason for exposures (81.3%, n = 16,836). Most encounters (71.1%, n = 14,732) were managed in a non-healthcare facility (i.e., a residence). Among human exposures, 14,679 involved exposures to pharmaceutical agents while 10,176 involved exposure to non-pharmaceuticals. Medical outcomes were 32% (n = 6,582) no effect, 19% (n = 3,911) minor effect, 8% (n = 1,623) moderate effect, and 2% (n = 348) major effects. There were 15 deaths in 2016 reported to the PCC. Number of exposures, calls from healthcare facilities, cases with moderate or major medical outcomes, and deaths all increased in 2016 compared to 2015. The results of the 2016 University of Kansas Health System Poison Control annual report demonstrates that the center receives calls from the entire state of Kansas totaling over 20,000 human exposures per year. While pediatric exposures remain the most common, there is an increasing number of calls from healthcare facilities and for cases with serious outcomes. The experience of the PCC is similar to national data. This report supports the continued value of the PCC to both public and acute health care in the state of Kansas.
2016 Annual Report of the University of Kansas Health System Poison Control Center
Thornton, Stephen L.; Oller, Lisa; Coons, Doyle M.
2018-01-01
Introduction This is the 2016 Annual Report of the University of Kansas Health System Poison Control Center (PCC). The PCC is one of 55 certified poison control centers in the United States and serves the state of Kansas 24-hours a day, 365 days a year, with certified specialists in poison information and medical toxicologists. The PCC receives calls from the public, law enforcement, health care professionals, and public health agencies. All calls to the PCC are recorded electronically in the Toxicall® data management system and uploaded in near real-time to the National Poison Data System (NPDS), which is the data repository for all poison control centers in the United States. Methods All encounters reported to the PCC from January 1, 2016 to December 31, 2016 were analyzed. Data recorded for each exposure includes caller location, age, weight, gender, substance exposed to, nature of exposure, route of exposure, interventions, medical outcome, disposition and location of care. Encounters were classified further as human exposure, animal exposure, confirmed non-exposure, or information call (no exposure reported). Results The PCC logged 21,965 total encounters in 2016, including 20,713 human exposure cases. The PCC received calls from every county in Kansas. The majority of human exposure cases (50.4%, n = 10,174) were female. Approximately 67% (n = 13,903) of human exposures involved a child (defined as age 19 years or less). Most encounters occurred at a residence (94.0%, n = 19,476) and most calls (72.3%, n = 14,964) originated from a residence. The majority of human exposures (n = 18,233) were acute cases (exposures occurring over eight hours or less). Ingestion was the most common route of exposure documented (86.3%, n = 17,882). The most common reported substance in pediatric encounters was cosmetics/personal care products (n = 1,362), followed by household cleaning product (n = 1,301). For adult encounters, sedatives/hypnotics/antipsychotics (n = 1,130) and analgesics (n = 1,103) were the most frequently involved substances. Unintentional exposures were the most common reason for exposures (81.3%, n = 16,836). Most encounters (71.1%, n = 14,732) were managed in a non-healthcare facility (i.e., a residence). Among human exposures, 14,679 involved exposures to pharmaceutical agents while 10,176 involved exposure to non-pharmaceuticals. Medical outcomes were 32% (n = 6,582) no effect, 19% (n = 3,911) minor effect, 8% (n = 1,623) moderate effect, and 2% (n = 348) major effects. There were 15 deaths in 2016 reported to the PCC. Number of exposures, calls from healthcare facilities, cases with moderate or major medical outcomes, and deaths all increased in 2016 compared to 2015. Conclusion The results of the 2016 University of Kansas Health System Poison Control annual report demonstrates that the center receives calls from the entire state of Kansas totaling over 20,000 human exposures per year. While pediatric exposures remain the most common, there is an increasing number of calls from healthcare facilities and for cases with serious outcomes. The experience of the PCC is similar to national data. This report supports the continued value of the PCC to both public and acute health care in the state of Kansas. PMID:29796151
Wyatt, Lauren; Ortiz, Ernesto J; Feingold, Beth; Berky, Axel; Diringer, Sarah; Morales, Ana Maria; Jurado, Elvis Rojas; Hsu-Kim, Heileen; Pan, William
2017-12-15
Artisanal and small-scale gold mining (ASGM) is a primary contributor to global mercury and its rapid expansion raises concern for human exposure. Non-occupational exposure risks are presumed to be strongly tied to environmental contamination; however, the relationship between environmental and human mercury exposure, how exposure has changed over time, and risk factors beyond fish consumption are not well understood in ASGM settings. In Peruvian riverine communities ( n = 12), where ASGM has increased 4-6 fold over the past decade, we provide a large-scale assessment of the connection between environmental and human mercury exposure by comparing total mercury contents in human hair (2-cm segment, n = 231) to locally caught fish tissue, analyzing temporal exposure in women of child bearing age (WCBA, 15-49 years, n = 46) over one year, and evaluating general mercury exposure risks including fish and non-fish dietary items through household surveys and linear mixed models. Calculations of an individual's oral reference dose using the total mercury content in locally-sourced fish underestimated the observed mercury exposure for individuals in many communities. This discrepancy was particularly evident in communities upstream of ASGM, where mercury levels in river fish, water, and sediment measurements from a previous study were low, yet hair mercury was chronically elevated. Hair from 86% of individuals and 77% of children exceeded a USEPA (U.S. Environmental Protection Agency) provisional level (1.2 µg/g) that could result in child developmental impairment. Chronically elevated mercury exposure was observed in the temporal analysis in WCBA. If the most recent exposure exceeded the USEPA level, there was a 97% probability that the individual exceeded that level 8-10 months of the previous year. Frequent household consumption of some fruits (tomato, banana) and grains (quinoa) was significantly associated with 29-75% reductions in hair mercury. Collectively, these data demonstrate that communities located hundreds of kilometers from ASGM are vulnerable to chronically elevated mercury exposure. Furthermore, unexpected associations with fish mercury contents and non-fish dietary intake highlight the need for more in-depth analyses of exposure regimes to identify the most vulnerable populations and to establish potential interventions.
Wyatt, Lauren; Ortiz, Ernesto J.; Feingold, Beth; Berky, Axel; Diringer, Sarah; Morales, Ana Maria; Jurado, Elvis Rojas; Hsu-Kim, Heileen; Pan, William
2017-01-01
Artisanal and small-scale gold mining (ASGM) is a primary contributor to global mercury and its rapid expansion raises concern for human exposure. Non-occupational exposure risks are presumed to be strongly tied to environmental contamination; however, the relationship between environmental and human mercury exposure, how exposure has changed over time, and risk factors beyond fish consumption are not well understood in ASGM settings. In Peruvian riverine communities (n = 12), where ASGM has increased 4–6 fold over the past decade, we provide a large-scale assessment of the connection between environmental and human mercury exposure by comparing total mercury contents in human hair (2-cm segment, n = 231) to locally caught fish tissue, analyzing temporal exposure in women of child bearing age (WCBA, 15–49 years, n = 46) over one year, and evaluating general mercury exposure risks including fish and non-fish dietary items through household surveys and linear mixed models. Calculations of an individual’s oral reference dose using the total mercury content in locally-sourced fish underestimated the observed mercury exposure for individuals in many communities. This discrepancy was particularly evident in communities upstream of ASGM, where mercury levels in river fish, water, and sediment measurements from a previous study were low, yet hair mercury was chronically elevated. Hair from 86% of individuals and 77% of children exceeded a USEPA (U.S. Environmental Protection Agency) provisional level (1.2 µg/g) that could result in child developmental impairment. Chronically elevated mercury exposure was observed in the temporal analysis in WCBA. If the most recent exposure exceeded the USEPA level, there was a 97% probability that the individual exceeded that level 8–10 months of the previous year. Frequent household consumption of some fruits (tomato, banana) and grains (quinoa) was significantly associated with 29–75% reductions in hair mercury. Collectively, these data demonstrate that communities located hundreds of kilometers from ASGM are vulnerable to chronically elevated mercury exposure. Furthermore, unexpected associations with fish mercury contents and non-fish dietary intake highlight the need for more in-depth analyses of exposure regimes to identify the most vulnerable populations and to establish potential interventions. PMID:29244775
Turconi, Giovanna; Minoia, Claudio; Ronchi, Anna; Roggi, Carla
2009-04-01
The significant role of trace elements in human health is well documented. Trace elements are those compounds that need to be present in the human diet to maintain normal physiological functions. However, some microelements may become harmful at high levels of exposure, or, on the other hand, may give rise to malnutrition, when their exposure is too low. The aim of the present study was to provide a reliable estimate of the dietary exposure of twenty-one trace elements in a Northern Italian area. For this purpose, trace element analyses were undertaken on total diet samples collected from a university cafeteria in Pavia, Northern Italy. The average daily exposure for the adult people was calculated on the basis of food consumption frequency, portion size and trace element levels in foodstuffs. The mean exposure values satisfy the Italian RDA for all the essential trace elements, except for Fe exposure in females, and are well below the Provisional Tolerable Daily Intake for all the toxic compounds, showing that the probability of dietary exposure to health risks is overall small. As far as Fe exposure is concerned, a potential risk of anaemia in the female adult population should be considered, then studies aimed at evaluating the Fe nutritional status of adult Italian women should be addressed. In conclusion, while not excluding the possibility that the daily exposure determined in the present study may not be representative of the population as a whole, this study provides a good estimate of the Italian adult consumer exposure to twenty-one trace elements.
Assessment of human deoxynivalenol exposure using an LC-MS/MS based biomarker method.
Warth, Benedikt; Sulyok, Michael; Fruhmann, Philipp; Berthiller, Franz; Schuhmacher, Rainer; Hametner, Christian; Adam, Gerhard; Fröhlich, Johannes; Krska, Rudolf
2012-05-20
The Fusarium toxin deoxynivalenol (DON) is one of the most abundant mycotoxins worldwide and poses many adverse health effects to human and animals. Consequently, regulatory limits and a provisional maximum tolerable daily intake (PMTDI) for this important type B-trichothecene were assigned. We conducted a pilot survey to investigate the level of DON exposure in Austrian adults by measurements of DON and its glucuronide conjugates (DON-GlcA's), as biomarkers of exposure, in first morning urine. The average concentration of total DON (free DON+DON-GlcA's) was estimated to be 20.4±2.4 μg L⁻¹ (max. 63 μg L⁻¹). Surprisingly, we found that one third of the volunteers (n=27) exceeded the established PMTDI when consuming regular diet. DON-GlcA's were directly quantified by LC-MS/MS and the results were compared with indirect quantification after enzymatic hydrolysis and confirmed the suitability of the direct method. Moreover, we investigated the in vivo metabolism of DON in humans and were able to determine two closely eluting DON-GlcA's in naturally contaminated urine samples for the first time. In contrast to previous findings we have tentatively identified DON-15-glucuronide as a major DON metabolite in human urine based on the analysis of these samples. About 75% of total glucuronides were derived from this metabolite while DON-3-glucuronide accounted for approximately 25%. The reported new findings clearly demonstrate the great potential of suitable biomarkers to critically assess exposure of humans and animals to DON. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
[Epidemiology of human infection with avian influenza A(H7N9) virus in China, 2013-2017].
Han, D D; Han, C X; Li, L Y; Wang, M; Yang, J H; Li, M
2018-01-10
Objective: To understand the epidemiological characteristics of human infection with avian influenza A (H7N9) virus in China, and provide evidence for the prevention and control of human infection with H7N9 virus. Methods: The published incidence data of human infection with H7N9 virus in China from March 2013 to April 2017 were collected. Excel 2007 software was used to perform the analysis. The characteristics of distribution of the disease, exposure history, cluster of the disease were described. Results: By the end of April 2017, a total of 1 416 cases of human infection with H7N9 virus were confirmed in China, including 559 deaths, the case fatality rate was 39.5%. In 2016, the case number was lowest (127 cases), with the highest fatality rate (57.5%). The first three provinces with high case numbers were Zhejiang, Guangdong and Jiangsu. The median age of the cases was 55 years and the male to female ratio was 2.3∶1. Up to 66% of cases had clear live poultry exposure history before illness onset, 31% of cases had unknown exposure history and only 3% of the cases had no live poultry exposure history. There were 35 household clusters (5 in 2013, 9 in 2014, 6 in 2015, 5 in 2016, 10 in 2017), which involved 72 cases, accounting for 5% of the total cases. Conclusions: The epidemic of human infection with H7N9 virus in China during 2013-2017 had obvious seasonality and spatial distribution. There was limited family clustering. Infection cases were mostly related to poultry contact.
Toxicity of lunar dust assessed in inhalation-exposed rats
Lam, Chiu-wing; Scully, Robert R.; Zhang, Ye; Renne, Roger A.; Hunter, Robert L.; McCluskey, Richard A.; Chen, Bean T.; Castranova, Vincent; Driscoll, Kevin E.; Gardner, Donald E.; McClellan, Roger O.; Cooper, Bonnie L.; McKay, David S.; Marshall, Linda; James, John T.
2015-01-01
Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m3 of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m3. This 4-week exposure study in rats showed that 6.8 mg/m3 was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats. PMID:24102467
Toxicity of lunar dust assessed in inhalation-exposed rats.
Lam, Chiu-wing; Scully, Robert R; Zhang, Ye; Renne, Roger A; Hunter, Robert L; McCluskey, Richard A; Chen, Bean T; Castranova, Vincent; Driscoll, Kevin E; Gardner, Donald E; McClellan, Roger O; Cooper, Bonnie L; McKay, David S; Marshall, Linda; James, John T
2013-10-01
Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats.
Gebbink, Wouter A; Berger, Urs; Cousins, Ian T
2015-01-01
Contributions of direct and indirect (via precursors) pathways of human exposure to perfluorooctane sulfonic acid (PFOS) isomers and perfluoroalkyl carboxylic acids (PFCAs) are estimated using a Scenario-Based Risk Assessment (SceBRA) modelling approach. Monitoring data published since 2008 (including samples from 2007) are used. The estimated daily exposures (resulting from both direct and precursor intake) for the general adult population are highest for PFOS and perfluorooctanoic acid (PFOA), followed by perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA), while lower daily exposures are estimated for perfluorobutanoic acid (PFBA) and perfluorododecanoic acid (PFDoDA). The precursor contributions to the individual perfluoroalkyl acid (PFAA) daily exposures are estimated to be 11-33% for PFOS, 0.1-2.5% for PFBA, 3.7-34% for PFHxA, 13-64% for PFOA, 5.2-66% for PFDA, and 0.7-25% for PFDoDA (ranges represent estimated precursor contributions in a low- and high-exposure scenario). For PFOS, direct intake via diet is the major exposure pathway regardless of exposure scenario. For PFCAs, the dominant exposure pathway is dependent on perfluoroalkyl chain length and exposure scenario. Modelled PFOS and PFOA concentrations in human serum using the estimated intakes from an intermediate-exposure scenario are in agreement with measured concentrations in different populations. The isomer pattern of PFOS resulting from total intakes (direct and via precursors) is estimated to be enriched with linear PFOS (84%) relative to technical PFOS (70% linear). This finding appears to be contradictory to the observed enrichment of branched PFOS isomers in recent human serum monitoring studies and suggests that either external exposure is not fully understood (e.g. there are unknown precursors, missing or poorly quantified exposure pathways) and/or that there is an incomplete understanding of the isomer-specific human pharmacokinetic processes of PFOS, its precursors and intermediates. Copyright © 2014. Published by Elsevier Ltd.
[Effects of rare earth compounds on human peripheral mononuclear cell telomerase and apoptosis].
Yu, Li; Dai, Yu-Cheng; Yuan, Zhao-Kang; Li, Jie
2004-07-01
To study the effects of rare earth exposure on human telomerase and apoptosis of human peripheral mononuclear cells (PBMNs). Rare earth mine lot in Xunwu county, the biggest ion absorptive rare earth mine lot of China, was selected as the study site. Another village of Xunwu county, with comparable geological structure and social environment was selected as the control site. Thirty healthy adults were randomly selected from the study site as exposure group and another 30 healthy adults randomly selected from the control site as control group. The blood content of 15 rare earth elements, including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y, were determined by inductive coupled plasma-source mass spectrometry (ICP-MS). The total contents of rare earth elements in the blood were calculated. The TRAP and FCM assays were carried out to analyse the telomerase and apoptosis of human PBMNCs respectively. In the exposure group, the concentration of La, Ce, Dy and Y were significantly higher (P<0.001), and Pr, Nd, Sm, Gd and Yb were higher than those in the control group (P<0.05). The total content of rare earth in the blood of exposure group showed significant difference compared with control group (P<0.001). Telomerase activity in PBMNs of the exposure group was higher than that in the control group (P<0.05); there were 11 adults in the exposure group (30 adults) and 5 adults in control group (30 adults) showed positive telomerase activity. The average age of the exposure group was (38.69 +/- 8.02) years-old, while the control group was (40.45 +/- 9.02) years-old (P >0.05). It was found that there was a significant relationship between telomerase activity and the total content of rare earth elements (P <0.01). 3. The proportion of apoptosis was not different between the two groups (P >0.05), but the cells in the S-phase and G2-M phase were increased (P <0.01) in the exposed group. The telomerase activity of PBMNs in the rare earth elements exposed group was higher than that of the control group, and there is no effect on apoptotic rate of PBMNs, but may promote the diploid DNA replication, and increase the percentage of G2/M and S phase cells.
Kim, Seung-Kyu; Kim, Kyoung-Soo; Sang, Hee Hong
2016-11-15
Human exposure studies to polybrominated diphenyl ethers (PBDEs) have reached different results about the relative importance of diet intake and house dust ingestion. In the present study, concentrations of PBDEs in Korean house dust (n=15) from geographically different cities were measured, which were in agreement with a previous result, and compared with those for 22 countries of five continents collected from the most recent scientific literature. Compared with other exposure pathways, diet intake was the most important contributor to total PBDEs exposure of Korean adults (i.e., 71% of overall intake). On global comparison, total PBDE levels in house dust differed by two to three orders of magnitude among the countries investigated, with a significant relationship with gross domestic product (GDP). Whereas, dietary daily intakes exhibited a narrow difference within one order of magnitude worldwide and no relationship with GDP. Consequently, the relative importance of major two pathways depended on the contamination extent of PBDEs in house dust, which may be associated with the amount of PBDE products in use. In most countries except for UK and USA, the contribution of house dust ingestion was less important than diet intake in the current and are expected to much more mitigate in the future. However, how fast the effect of regulation will be reflected to house dust and human exposure is necessary to be monitored steadily. Copyright © 2016 Elsevier B.V. All rights reserved.
Paganelli, Matteo; De Palma, Giuseppe; Apostoli, Pietro
2017-11-01
As Genomics aims at the collective characterization and quantification of genes, exposomics refers to the totality of lifetime environmental exposures, consisting in a novel approach to studying the role of the environment in human disease. The aim is to assess all human environmental and occupational exposures in order to better understand their contribution to human diseases. The "omics" revolution infact mostly regards the underlying method: scientific knowledge is expected to come from the analysis of increasingly extensive databases. The primary focus is on air pollution and water contaminants, but all the determinants of human exposure are conceptually part of the idea of exposome, including physical and psychological factors. Using 'omic' techniques the collected exposure data can be linked to biochemical and molecular changes in our body. Since the first formulation of the idea itself of Exposome many efforts have been made to translate the concept into research, in particular two important studies have been started in Europe. We herein suggest that Occupational Medicine could be a precious contributor to the growth of exposure science also in its omic side thanks to the methods and to the knowledges part of our background. Copyright© by Aracne Editrice, Roma, Italy.
Anaplasma spp. in dogs and owners in north-western Morocco.
Elhamiani Khatat, Sarah; Daminet, Sylvie; Kachani, Malika; Leutenegger, Christian M; Duchateau, Luc; El Amri, Hamid; Hing, Mony; Azrib, Rahma; Sahibi, Hamid
2017-04-24
Anaplasma phagocytophilum is an emerging tick-borne zoonotic pathogen of increased interest worldwide which has been detected in northern Africa. Anaplasma platys is also present in this region and could possibly have a zoonotic potential. However, only one recent article reports on the human esposure to A. phagocytophilum in Morocco and no data are available on canine exposure to both bacteria. Therefore, we conducted a cross-sectional epidemiological study aiming to assess both canine and human exposure to Anaplasma spp. in Morocco. A total of 425 dogs (95 urban, 160 rural and 175 working dogs) and 11 dog owners were sampled from four cities of Morocco. Canine blood samples were screened for Anaplasma spp. antibodies by an enzyme-linked immunosorbent assay (ELISA) and for A. phagocytophilum and A. platys DNA by a real-time polymerase chain reaction (RT-PCR) targeting the msp2 gene. Human sera were tested for specific A. phagocytophilum immunoglobulin G (IgG) using a commercial immunofluorescence assay (IFA) kit. Anaplasma spp. antibodies and A. platys DNA were detected in 21.9 and 7.5% of the dogs, respectively. Anaplasma phagocytophilum DNA was not amplified. Anaplasma platys DNA was significantly more frequently amplified for working dogs. No statistically significant differences in the prevalence of Anaplasma spp. antibodies or A. platys DNA detection were observed between sexes, age classes or in relation to exposure to ticks. A total of 348 Rhipicephalus sanguineus (sensu lato) ticks were removed from 35 urban and working dogs. The majority of dog owners (7/10) were seroreactive to A. phagoyctophilum IgG (one sample was excluded because of hemolysis). This study demonstrates the occurrence of Anaplasma spp. exposure and A. platys infection in dogs, and A. phagocytophilum exposure in humans in Morocco.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
Dr. Earl R. Miller was interviewed by representatives of US DOE Office of Human Radiation Research (OHRE). The interview covers Dr. Miller`s involvement with the Manhattan Engineer District, with total body irradiation, and heavy-ion therapy. Dr. Miller`s remembrances include wartime work on radiation exposure, Joe Hamilton, Neutron Therapy research, means of obtaining isotopes, consent forms, infinite laminograms, invention of a baby holder to alleviate exposure of radiological technicians in diagnostic procedures involving infants, and several personages.
Rodrigues, S M; Coelho, C; Cruz, N; Monteiro, R J R; Henriques, B; Duarte, A C; Römkens, P F A M; Pereira, E
2014-10-15
The objective of this study was to characterize the link between bioaccessibility and fractionation of mercury (Hg) in soils and to provide insight into human exposure to Hg due to inhalation of airborne soil particles and hand-to-mouth ingestion of Hg-bearing soil. Mercury in soils from mining, urban and industrial areas was fractionated in organometallic forms; mobile; semi-mobile; and non-mobile forms as well as HCl-extractable Hg. The in vitro bioaccessibility of Hg was obtained by extracting soils with (1) a simulated human gastric fluid (pH1.5), and (2) a simulated human lung fluid (pH7.4). Total soil Hg concentrations ranged from 0.72 to 1.8 mg kg(-1) (urban areas), 0.28 to 94 mg kg(-1) (industrial area) and 0.92 to 37 mg kg(-1) (mining areas). Both organometallic Hg as well as 0.1M HCl extractable Hg were lower (<0.5% of total Hg) than Hg extracted by gastric fluid (up to 1.8% of total Hg) and lung fluid (up to 12% of total Hg). In addition, Hg extracted by lung fluid was significantly higher in urban and industrial soils (average 5.0-6.6% of total Hg) compared to mining soils. Such differences were related to levels of mobile Hg species in urban and industrial soils compared to mining soils. These results strengthen the need to measure site-specific Hg fractionation when determining Hg bioaccessibility. Results also show that ingestion and/or inhalation of Hg from soil particles can contribute up to 8% of adult total Hg intake when compared to total Hg intake via consumption of contaminated fish and animal products from contaminated areas. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasperczyk, Aleksandra; Dobrakowski, Michał; Czuba, Zenon P.
We investigated the associations between environmental exposure to lead and a repertoire of cytokines in seminal plasma of males with normal semen profile according to the WHO criteria. Based on the median lead concentration in seminal plasma, 65 samples were divided into two groups: low (LE) and high exposure to lead (HE). Differences in semen volume and the pH, count, motility and morphology of sperm cells were not observed between the examined groups. The total oxidant status value and the level of protein sulfhydryl groups as well as the activities of manganese superoxide dismutase and catalase were significantly higher inmore » the HE group, whereas the total antioxidant capacity value and the activities of glutathione reductase and glutathione-S-transferase were depressed. IL-7, IL-10, IL-12, and TNF-α levels were significantly higher in the HE group compared with the LE group. Environmental exposure to lead is sufficient to induce oxidative stress in seminal plasma and to modulate antioxidant defense system. - Highlights: • Lead induces oxidative stress in seminal plasma in human. • Lead modulates antioxidant defense system in seminal plasma in human. • Lead does not change a Th1/Th2 imbalance in seminal plasma in human.« less
Aerts, Sam; Plets, David; Verloock, Leen; Martens, Luc; Joseph, Wout
2014-12-01
The indoor coverage of a mobile service can be drastically improved by deployment of an indoor femtocell base station (FBS). However, the impact of its proximity on the total exposure of the human body to radio-frequency (RF) electromagnetic fields (EMFs) is unknown. Using a framework designed for the combination of near-field and far-field exposure, the authors assessed and compared the RF-EMF exposure of a mobile-phone (MP) user that is either connected to an FBS or a conventional macrocell base station while in an office environment. It is found that, in average macrocell coverage and MP use-time conditions and for Universal Mobile Telecommunications System technology, the total exposure can be reduced by a factor of 20-40 by using an FBS, mostly due to the significant decrease in the output power of the MP. In general, the framework presented in this study can be used for any exposure scenario, featuring any number of technologies, base stations and/or access points, users and duration. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of Ambient Air Pollution Exposure on Olfaction: A Review
Ajmani, Gaurav S.; Suh, Helen H.; Pinto, Jayant M.
2016-01-01
Background: Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. Objectives: To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. Methods: We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. Results: We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Conclusions: Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution–related olfactory impacts on the general population using measured pollution exposures and to link pollution exposure with olfactory dysfunction and related pathology. Citation: Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect 124:1683–1693; http://dx.doi.org/10.1289/EHP136 PMID:27285588
Wang, Xiaofei; Liu, Liangpo; Zhang, Weibing; Zhang, Jie; Du, Xiaoyan; Huang, Qingyu; Tian, Meiping; Shen, Heqing
2017-10-01
Previous in vivo and in vitro studies have linked perfluorinated compound (PFC) exposure with metabolic interruption, but the inter-species difference and high treatment doses usually make the results difficult to be extrapolated to humans directly. The best strategy for identifying the metabolic interruption may be to establish the direct correlations between monitored PFCs data and metabolic data on human samples. In this study, serum metabolome data and PFC concentrations were acquired for a Chinese adult male cohort. The most abundant PFCs are PFOA and PFOS with concentration medians 7.56 and 12.78 nM, respectively; in together they count around 81.6% of the total PFCs. PFC concentration-related serum metabolic profile changes and the related metabolic biomarkers were explored by using partial least squares-discriminant analysis (PLS-DA). Respectively taking PFOS, PFOA and total PFC as the classifiers, serum metabolome can be differentiated between the lowest dose group (1st quartile PFCs) and the highest PFC dose group (4th quartile PFCs). Ten potential PFC biomarkers were identified, mainly involving in pollutant detoxification, antioxidation and nitric oxide (NO) signal pathways. These suggested that low-level environmental PFC exposure has significantly adverse impacts on glutathione (GSH) cycle, Krebs cycle, nitric oxide (NO) generation and purine oxidation in humans. To the best of our knowledge, this is the first report investigating the association of environmental PFC exposure with human serum metabolome alteration. Given the important biological functions of the identified biomarkers, we suggest that PFC could increase the metabolism syndromes risk including diabetes and cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Long-term human exposure to lead from different media and intake pathways.
Pizzol, Massimo; Thomsen, Marianne; Andersen, Mikael Skou
2010-10-15
Lead (Pb) is well known as an environmental pollutant: it can accumulate in various media, so actual lead exposure reflects both historical and present contaminations. Two main challenges then emerge: obtaining updated information to gain an overall picture of the sources of exposure, and predicting the resulting internal body exposure levels and effects that occur under long-term exposure conditions. In this paper, a modeling approach is used to meet these challenges with reference to Danish exposure conditions. Levels of lead content in various media have been coupled with data for lead intake and absorption in the human body, for both children and adults. An age-dependent biokinetic model allows then for determination of the blood lead levels resulting from chronic exposure. The study shows that the actual intake of lead is up to 27% of the Provisional Tolerable Daily Intake (PTDI) for children and around 8% for adults. It is confirmed that the critical route of exposure is via ingestion, accounting for 99% of total lead intake, while inhalation contributes only to 1% of total lead intake. The resulting lead levels in the blood after 2 years of exposure to actual contamination conditions have been estimated as up to 2.2μg/dl in children and almost 1μg/dl in adults. Impacts from lead can occur even at such levels. The role of historical and present sources to lead in the environment is discussed, and, for specific child and adult exposure scenarios, external-internal concentration relationships for the direct linkage between lead in environmental media and resulting concentrations of lead in blood are then presented. Copyright © 2010 Elsevier B.V. All rights reserved.
An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water
Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.
2010-01-01
Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that prescribed and total estrogens that may potentially be present in drinking water in the United States are not causing adverse effects in U.S. residents, including sensitive subpopulations. PMID:20194073
Bisphenol A in supermarket receipts and its exposure to human in Shenzhen, China.
Lu, Shao-You; Chang, Wen-Jing; Sojinu, Samuel O; Ni, Hong-Gang
2013-08-01
Paper receipt has been documented as one major source of bisphenol A (BPA) for human exposure but little has been done by researchers to elaborate the potential health risk caused by handling paper receipt up to date. In the present study, BPA was analyzed in 42 supermarket receipts collected from Shenzhen, China. BPA was detected in all samples at concentrations ranging from 2.58 to 14.7mgg(-1). In most cases, the total amount of BPA on the receipt was at least one thousand times the amount found in the epoxy lining of a food can, another controversial use of the chemical. The estimated daily intakes (EDI) of BPA via handling of supermarket receipt ranged from 2 to 347μgday(-1) (mean, 40.4μgday(-1)) for a supermarket cashier and from 0.24 to 3.98μgday(-1) (mean, 0.69μgday(-1)) for general population. Based on the cumulative probability distribution of the calculated daily exposure to BPA via handling supermarket receipt, the EDI at the 0.1th and 1th percentile for supermarket cashier and general population, were already larger than 100ng (kgbw)(-1)day(-1), while at the 0.2th and 71th percentile, the EDI for both populations reached 1000ng (kgbw)(-1)day(-1). Considering the adverse endocrine disruptive effects of BPA and the dosage exposure level (from tens to hundreds ng (kgbw)(-1)day(-1)), human exposure to BPA in Shenzhen deserves more attention. Sensitivity analysis result showed that the handling time and frequency of supermarket receipts are the most important variables that contributed to most of the total variance of exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cheng, Chen; Lin, Jia-zhen; Li, Li; Yang, Jun-ling; Jia, Wei-wei; Huang, Yu-hong; Du, Fei-fei; Wang, Feng-qing; Li, Mei-juan; Li, Yan-fen; Xu, Fang; Zhang, Na-ting; Olaleye, Olajide E; Sun, Yan; Li, Jian; Sun, Chang-hai; Zhang, Gui-ping; Li, Chuan
2016-04-01
Monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) are believed to be pharmacologically important for the antiseptic herbal injection XueBiJing. This study was designed to characterize the pharmacokinetics and disposition of monoterpene glycosides. Systemic exposure to Chishao monoterpene glycosides was assessed in human subjects receiving an intravenous infusion and multiple infusions of XueBiJing injection, followed by assessment of the pharmacokinetics of the major circulating compounds. Supportive rat studies were also performed. Membrane permeability and plasma-protein binding were assessed in vitro. A total of 18 monoterpene glycosides were detected in XueBiJing injection (content levels, 0.001-2.47 mmol/L), and paeoniflorin accounted for 85.5% of the total dose of monoterpene glycosides detected. In human subjects, unchanged paeoniflorin exhibited considerable levels of systemic exposure with elimination half-lives of 1.2-1.3 h; no significant metabolite was detected. Oxypaeoniflorin and albiflorin exhibited low exposure levels, and the remaining minor monoterpene glycosides were negligible or undetected. Glomerular-filtration-based renal excretion was the major elimination pathway of paeoniflorin, which was poorly bound to plasma protein. In rats, the systemic exposure level of paeoniflorin increased proportionally as the dose was increased. Rat lung, heart, and liver exposure levels of paeoniflorin were lower than the plasma level, with the exception of the kidney level, which was 4.3-fold greater than the plasma level; brain penetration was limited by the poor membrane permeability. Due to its significant systemic exposure and appropriate pharmacokinetic profile, as well as previously reported antiseptic properties, paeoniflorin is a promising XueBiJing constituent of therapeutic importance.
Mohd Redzwan, S; Rosita, Jamaluddin; Mohd Sokhini, A M; Nurul 'Aqilah, A R; Wang, Jia-Sheng; Kang, Min-Su; Zuraini, Ahmad
2014-01-01
Aflatoxin is ubiquitously found in many foodstuffs and produced by Aspergillus species of fungi. Of many aflatoxin metabolites, AFB1 is classified by the International Agency for Research on Cancer (IARC) as group one carcinogen and linked to the development of hepatocellular carcinoma (HCC). The study on molecular biomarker of aflatoxin provides a better assessment on the extent of human exposure to aflatoxin. In Malaysia, the occurrences of aflatoxin-contaminated foods have been documented, but there is a lack of data on human exposure to aflatoxin. Hence, this study investigated the occurrence of AFB1-lysine adduct in serum samples and its association with liver and kidney functions. 5ml fasting blood samples were collected from seventy-one subjects (n=71) for the measurement of AFB1-lysine adduct, albumin, total bilirubin, AST (aspartate aminotransferase), ALT (alanine transaminase), ALP (alkaline phosphatase), GGT (gamma-glutamyl transpeptidase), creatinine and BUN (blood urea nitrogen). The AFB1-lysine adduct was detected in all serum samples (100% detection rate) with a mean of 6.85±3.20pg/mg albumin (range: 1.13-18.85pg/mg albumin). Male subjects (mean: 8.03±3.41pg/mg albumin) had significantly higher adduct levels than female subjects (mean: 5.64±2.46pg/mg albumin) (p<0.01). It was noteworthy that subjects with adduct levels greater than average (>6.85pg/mg albumin) had significantly elevated level of total bilirubin (p<0.01), GGT (p<0.05) and creatinine (p<0.01). Nevertheless, only the level of total bilirubin, (r=0.347, p-value=0.003) and creatinine (r=0.318, p-value=0.007) showed significant and positive correlation with the level of AFB1-lysine adduct. This study provides a valuable insight on human exposure to aflatoxin in Malaysia. Given that aflatoxin can pose serious problem to the health, intervention strategies should be implemented to limit/reduce human exposure to aflatoxin. Besides, a study with a big sample size should be warranted in order to assess aflatoxin exposure in the general population of Malaysia. Copyright © 2013 Elsevier GmbH. All rights reserved.
Isling, Louise Krag; Boberg, Julie; Jacobsen, Pernille Rosenskjold; Mandrup, Karen Riiber; Axelstad, Marta; Christiansen, Sofie; Vinggaard, Anne Marie; Taxvig, Camilla; Kortenkamp, Andreas; Hass, Ulla
2014-01-01
This study examined late-life effects of perinatal exposure of rats to a mixture of endocrine-disrupting contaminants. Four groups of 14 time-mated Wistar rats were exposed by gavage from gestation day 7 to pup day 22 to a mixture of 13 anti-androgenic and estrogenic chemicals including phthalates, pesticides, u.v.-filters, bisphenol A, parabens, and the drug paracetamol. The groups received vehicle (control), a mixture of all 13 chemicals at 150-times (TotalMix150) or 450-times (TotalMix450) high-end human exposure, or 450-times a mixture of nine predominantly anti-androgenic chemicals (AAMix450). Onset of puberty and estrous cyclicity at 9 and 12 months of age were assessed. Few female offspring showed significantly regular estrus cyclicity at 12 months of age in the TotalMix450 and AAMix450 groups compared with controls. In 19-month-old male offspring, epididymal sperm counts were lower than controls, and in ventral prostate an overrepresentation of findings related to hyperplasia was observed in exposed groups compared with controls, particularly in the group dosed with anti-androgens. A higher incidence of pituitary adenoma at 19 months of age was found in males and females in the AAMix450 group. Developmental exposure of rats to the highest dose of a human-relevant mixture of endocrine disrupters induced adverse effects late in life, manifested as earlier female reproductive senescence, reduced sperm counts, higher score for prostate atypical hyperplasia, and higher incidence of pituitary tumors. These delayed effects highlight the need for further studies on the role of endocrine disrupters in hormone-related disorders in aging humans.
2014-01-01
Background Human health risk assessment from exposure to disinfection by-products (DBPs) during drinking and bathing water vary from country to country as per life expectancy, body mass index, water consumption pattern and individual concentration of DBPs component, etc. Methods Present study considered average direct water intake per person for adult males and females as 4 & 3 L/day, respectively as per Indian literature for risk evaluation from another component of pollutant. While other important factor like average life expectancy, body weight & body surface area for male and female were considered 64 & 67 years, 51.9 & 45.4 Kg and 1.54 & 1.38 m2 respectively as per Indian Council of Medical Research and WHO report. The corresponding lifetime cancer risk of the formed THMs to human beings was estimated by the USEPA and IRIS method as per Indian population. Results The total cancer risk reached 8.99 E-04 and 8.92 E-04 for males and females, respectively, the highest risk from THMs seems to be from the inhalation route followed by ingestion and dermal contacts. Conclusions The multipath way evaluations of lifetime cancer risks for THMs exposure through ingestion, dermal absorption, and inhalation exposure were examined at the highest degree of danger. Results reveals that water containing THMs of the selected water treatment plant of the eastern part of India was unsafe in terms of risk evaluation through inhalation and ingestion, while dermal route of risk was found very close to permissible limit of USEPA. Sensitivity analysis shows that every input parameter is sole responsible for total risk potential, whereas exposure duration playing important role for estimation of total risk. PMID:24872885
The presence of over six hundred disinfection by-products (DBPs) and less than half of the total organic halides present in finished water has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. . We are using a normal...
NASA Astrophysics Data System (ADS)
Keeble-Toll, A. K.; Monohan, C.; Brown, D. L.; Pearson, G.
2016-12-01
The primary pathway of human exposure to mercury is the consumption of contaminated fish. Identification of patterns of fish tissue mercury levels are a key mechanism for understanding risk drivers and human exposure potential. Site-specific fish tissue data aid the Office of Environmental Health Hazard Assessment (OEHHA) in the development of consumption advisories. This research consists of Year 1 of a three year project to collect fish data from six reservoirs downstream of historic hydraulic mines in the Cosumnes, American, Bear, Yuba watershed region. Angler survey data informed sampling to ensure that commonly caught and consumed species were harvested from Lake Clementine and Rollins Reservoir and was used to evaluate posted fish consumption advice as a mechanism for protecting human health. A total of 72 samples from four species groups were collected in 2015. Geometric mean THg (ppm, wet weight) were highest for black bass at both Lake Clementine (n = 8, THg = 0.40) and Rollins Reservoir (n = 26, THg = 0.54), with a significant positive relationship between fish total length and THg at both water bodies (Lake Clementine: rho = 0.85, p<0.05; Rollins Reservoir: rho = 0.85, p<0.01). Sunfish data for both reservoirs were lower in THg than black bass (Rollins Reservoir: n = 24, THg= 0.16; Lake Clementine: n = 29; THg = 0.12), with a significant positive relationship between fish total length and THg at Lake Clementine (rho = 0.83, p<0.01) but not Rollins Reservoir. These data allow OEHHA to develop site-specific fish consumption advice at both locations and can be used as baseline data to determine if future actions to address inorganic mercury (Hg) sources at legacy gold mines results in reduced human exposure risk at downstream water bodies.
Yang, Mingming; Zhao, Yuting; Wang, Limin; Paulsen, Michael; Simpson, Christopher D; Liu, Fengquan; Du, Dan; Lin, Yuehe
2018-05-01
A novel sandwich immunoassay based immunochromatographic test strip (ICTS) has been developed for simultaneously measuring both butyrylcholinesterase (BChE) activity and the total amount of BChE (including inhibited and active enzyme) from 70 μLpost-exposure human plasma sample. The principle of this method is based on the BChE monoclonal antibody (MAb) capable of acting as both capture antibody and detection antibody. The BChE MAb which was immobilized on the test line was able to recognize both organophosphorus BChE adducts (OP-BChE) and BChE and provided equal binding affinity, permitting detection of the total enzyme amount in post-exposure human plasma samples. The formed immunocomplexes on the test line can further be excised from the test-strip for subsequent off-line measurement of BChE activity using the Ellman assay. Therefore, dual biomarkers of BChE activity and phosphorylation (OP-BChE) will be obtained simultaneously. The whole sandwich-immunoassay was performed on one ICTS, greatly reducing analytical time. The ICTS sensor showed excellent linear responses for assaying total amount of BChE and active BChE ranging from 0.22 to 3.58nM and 0.22-7.17nM, respectively. Both the signal detection limits are 0.10nM. We validated the practical application of the proposed method to measure 124 human plasma samples from orchard workers and cotton farmers with long-term exposure to organophosphorus pesticides (OPs). The results were in highly agreement with LC/MS/MS which verified our method is extremely accurate. Combining the portability and rapidity of test strip and the compatibility of BChE MAb as both capture antibody and detection antibody, the developed method provides a baseline-free, low-cost and rapid tool for in-field monitoring of OP exposures. Copyright © 2018 Elsevier B.V. All rights reserved.
[Epidemiology of human rabies in China, 2016].
Li, Y R; Zhu, L L; Zhu, W Y; Tao, X Y
2018-01-10
Objective: To understand the epidemiological characteristics of human rabies in China in 2016 and provide evidence for the control and prevention of human rabies. Methods: The incidence data of human rabies in China in 2016 were collected from national infectious disease reporting information management system. The surveillance data were collected from provinces of Shandong, Guizhou, Anhui, Hunan, Jiangsu and Guangxi Zhuang Autonomous Region. Excel 2013 software was used to process and summarize the data, the epidemiological characteristics of human rabies in China in 2016 were described by using indicators such as morbidity, mortality and constituent ratio. Results: A total of 644 human rabies cases were reported in 28 provinces in China in 2016, a decrease of 19.60% (157/801) compared with 2015. The provinces reporting high incidences of human rabies were Henan, Hunan, Guangxi and Guizhou, accounting for 39.44% (254/644) of the total cases. One case was reported in Qinghai province and Xinjiang Uygur Autonomous Region respectively. The male to female ratio of the cases was 2.14∶1 (439/205), and the majority of the patients were farmers (444/644). Surveillance points in 6 provinces reported 1 281 340 persons seeking post-exposure treatment, of whom 1 018 367 were treated for dog bite or scratch. A total of 764 234 persons completed the vaccination series, accounting for 63.90% (764 234/1 195 956) of the persons with grade Ⅱ and Ⅲ exposures, and 28.89% (165 677/573 571) of the persons with grade Ⅲ exposure were treated with passive immunization product. The average density of dogs in each surveillance area was 7.03/100 persons, the average canine immunization rate was 37.64%. Conclusion: The incidence of human rabies has remained decline in China in 2016, the number of the affected provinces has increased and that has the tendency of spreading to low-risk regions. The cases mainly occurred in men and farmers, and caused by dog bite or scratch. It is necessary to strengthen the health education about rabies prevention and control in rural areas and expand the coverage of canine immunization to prevent and control human rabies.
Carreras, Hebe A; Wannaz, Eduardo D; Pignata, María L
2009-01-01
The evaluation of metal contents in the environment is of vital importance for the assessment of human exposure. Thus the species Usnea amblyoclada, Ramalina celastri and Tillandsia capillaris were tested as bioaccumulators of transition metals in the urban area of Córdoba city, Argentina. The level of metals on biomonitors was compared to that of total deposition samples. All three species discriminated zones within the urban area of Córdoba city with different pollution levels; they revealed high levels of Zn in the downtown area and confirmed high levels of some transition metals in an industrial area. The correlation analysis revealed that the lichen R. celastri had the highest correlation rates with total deposition samples, suggesting it is a valuable biomonitor of atmospheric pollution. A significant relationship was also observed between respiratory diseases in children and the contents of metal accumulated in R. celastri and T. capillaris, indicating their usefulness when assessing human exposure to metals.
Antimony exposure and speciation in human biomarkers near an active mining area in Hunan, China.
Ye, Li; Qiu, Shixin; Li, Xinhai; Jiang, Yuxuan; Jing, Chuanyong
2018-05-28
Antimony (Sb) exposure threatens human health. To identify human biomarkers for Sb exposure, we analyzed 480 environmental samples from an active Sb mining area in Hunan, China. Elevated Sb concentrations exceeding the reference level were detected in drinking water (70% of n = 83 total samples), foods (80%, n = 188), urine (95%, n = 63), saliva (44%, n = 48), hair (80%, n = 51) and nails (83%, n = 47). Drinking water contributed 85%-100% of the average daily dose (ADD) of Sb, and the total ADD (11.7 μg/kg bodyweight/day) was up to thirty times higher than the oral reference dose (0.4 μg/kg bodyweight/day) as recommended by USEPA. A positive correlation was found between ADD and Sb content in hair (p = 0.02), but not in urine (p = 0.051), saliva (p = 0.52) or nails (p = 0.85), suggesting that hair is the best non-invasive biomarker. Micro X-ray fluorescence analysis indicated that Sb is distributed in discrete spots in hair and nails, and Sb distribution is correlated with other metals. Methylated Sb species were predominant in urine (46%-100%) and saliva (74%-100%) in collected samples, implying that the human metabolic system adopts methylation as an effective pathway to detoxify and excrete Sb. Copyright © 2018 Elsevier B.V. All rights reserved.
Huong, Bui Thi Mai; Tuyen, Le Danh; Tuan, Do Huu; Brimer, Leon; Dalsgaard, Anders
2016-12-01
Aflatoxins, fumonisins and ochratoxin A that contaminate various agricultural commodities are considered of significant toxicity and potent human carcinogens. This study took a total dietary study approach and estimated the dietary exposure of these mycotoxins for adults living in Lao Cai province, Vietnam. A total of 42 composite food samples representing 1134 individual food samples were prepared according to normal household practices and analysed for the three mycotoxins. Results showed that the dietary exposure to aflatoxin B1 (39.4 ng/kg bw/day) and ochratoxin A (18.7 ng/kg bw/day) were much higher than recommended provisional tolerable daily intake (PTDI) values mainly due to contaminated cereals and meat. The exposure to total fumonisins (1400 ng/kg bw/day) was typically lower than the PTDI value (2000 ng/kg bw/day). The estimated risk of liver cancer associated with exposure to aflatoxin B1 was 2.7 cases/100,000 person/year. Margin of exposure (MOE) of renal cancer linked to ochratoxin A and liver cancer associated with fumonisins were 1124 and 1954, respectively indicating risk levels of public health concern. Further studies are needed to evaluate the efficiency of technical solutions which could reduce mycotoxin contamination as well as to determine the health effects of the co-exposure to different types of mycotoxins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schecter, Arnold; Colacino, Justin; Haffner, Darrah; Patel, Keyur; Opel, Matthias; Päpke, Olaf
2010-01-01
This paper presents new data on the levels of polybrominated diphenyl ethers (PBDEs) in American airline workers. This pilot study did not find elevated total PBDEs in the blood of nine flight attendants and one aircraft pilot who have worked in airplanes for at least the past 5 years. These findings are not consistent with the findings of elevated blood levels of PBDEs from the 2008 Christiansson et al. publication "Polybrominated diphenyl ethers in aircraft cabins - A source of human exposure?" We agree that more research needs to be done on larger, more representative samples of airline workers to better characterize exposure of airline workers and other frequent flyers to PBDEs.
Human Space Exploration and Radiation Exposure from EVA: 1981-2011
NASA Astrophysics Data System (ADS)
Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.
2011-12-01
There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.
Cho, YongMin; Ryu, Seung-Hun; Lee, Byeo Ri; Kim, Kyung Hee; Lee, Eunil; Choi, Jaewook
2015-01-01
It has frequently been reported that exposure to artificial light at night (ALAN) may cause negative health effects, such as breast cancer, circadian phase disruption and sleep disorders. Here, we reviewed the literature assessing the effects of human exposure to ALAN in order to list the health effects of various aspects of ALAN. Several electronic databases were searched for articles, published through August 2014, related to assessing the effects of exposure to ALAN on human health; these also included the details of experiments on such exposure. A total of 85 articles were included in the review. Several observational studies showed that outdoor ALAN levels are a risk factor for breast cancer and reported that indoor light intensity and individual lighting habits were relevant to this risk. Exposure to artificial bright light during the nighttime suppresses melatonin secretion, increases sleep onset latency (SOL) and increases alertness. Circadian misalignment caused by chronic ALAN exposure may have negative effects on the psychological, cardiovascular and/or metabolic functions. ALAN also causes circadian phase disruption, which increases with longer duration of exposure and with exposure later in the evening. It has also been reported that shorter wavelengths of light preferentially disturb melatonin secretion and cause circadian phase shifts, even if the light is not bright. This literature review may be helpful to understand the health effects of ALAN exposure and suggests that it is necessary to consider various characteristics of artificial light, beyond mere intensity.
Exposure assessment for trihalomethanes in municipal drinking water and risk reduction strategy.
Chowdhury, Shakhawat
2013-10-01
Lifetime exposure to disinfection byproducts (DBPs) in municipal water may pose risks to human health. Current approaches of exposure assessments use DBPs in cold water during showering, while warming of chlorinated water during showering may increase trihalomethane (THM) formation in the presence of free residual chlorine. Further, DBP exposure through dermal contact during showering is estimated using steady-state condition between the DBPs in shower water impacting on human skin and skin exposed to shower water. The lag times to achieve steady-state condition between DBPs in shower water and human skin can vary in the range of 9.8-391.2 min, while shower duration is often less than the lag times. Assessment of exposure without incorporating these factors might have misinterpreted DBP exposure in some previous studies. In this study, exposure to THMs through ingestion was estimated using cold water THMs, while THM exposure through inhalation and dermal contact during showering was estimated using THMs in warm water. Inhalation of THMs was estimated using THM partition into the shower air, while dermal uptake was estimated by incorporating lag times (e.g., unsteady and steady-state phases of exposure) during showering. Probabilistic approach was followed to incorporate uncertainty in the assessment. Inhalation and dermal contact during showering contributed 25-60% of total exposure. Exposure to THMs during showering can be controlled by varying shower stall volume, shower duration and air exchange rate following power law equations. The findings might be useful in understanding exposure to THMs, which can be extended to other volatile compounds in municipal water. © 2013 Elsevier B.V. All rights reserved.
Langeland, Aubrey L.; Hardin, Rebecca D.; Neitzel, Richard L.
2017-01-01
Artisanal and small-scale gold mining (ASGM) has been an important source of income for communities in the Madre de Dios River Basin in Peru for hundreds of years. However, in recent decades, the scale of ASGM activities in the region has increased dramatically, and exposures to a variety of occupational and environmental hazards related to ASGM, including mercury, are becoming more widespread. The aims of our study were to: (1) examine patterns in the total hair mercury level of human participants in several communities in the region and compare these results to the 2.2 µg/g total hair mercury level equivalent to the World Health Organization (WHO) Expert Committee of Food Additives (JECFA)’s Provisional Tolerable Weekly Intake (PTWI); and (2), to measure the mercury levels of paco (Piaractus brachypomus) fish raised in local aquaculture ponds, in order to compare these levels to the EPA Fish Tissue Residue Criterion of 0.3 µg Hg/g fish (wet weight). We collected hair samples from 80 participants in four communities (one control and three where ASGM activities occurred) in the region, and collected 111 samples from fish raised in 24 local aquaculture farms. We then analyzed the samples for total mercury. Total mercury levels in hair were statistically significantly higher in the mining communities than in the control community, and increased with increasing geodesic distance from the Madre de Dios headwaters, did not differ by sex, and frequently exceeded the reference level. Regression analyses indicated that higher hair mercury levels were associated with residence in ASGM communities. The analysis of paco fish samples found no samples that exceeded the EPA tissue residue criterion. Collectively, these results align with other recent studies showing that ASGM activities are associated with elevated human mercury exposure. The fish farmed through the relatively new process of aquaculture in ASGM areas appeared to have little potential to contribute to human mercury exposure. More research is needed on human health risks associated with ASGM to discern occupational, residential, and nutritional exposure, especially through tracking temporal changes in mercury levels as fish ponds age, and assessing levels in different farmed fish species. Additionally, research is needed to definitively determine that elevated mercury levels in humans and fish result from the elemental mercury from mining, rather than from a different source, such as the mercury released from soil erosion during deforestation events from mining or other activities. PMID:28335439
Langeland, Aubrey L; Hardin, Rebecca D; Neitzel, Richard L
2017-03-14
Artisanal and small-scale gold mining (ASGM) has been an important source of income for communities in the Madre de Dios River Basin in Peru for hundreds of years. However, in recent decades, the scale of ASGM activities in the region has increased dramatically, and exposures to a variety of occupational and environmental hazards related to ASGM, including mercury, are becoming more widespread. The aims of our study were to: (1) examine patterns in the total hair mercury level of human participants in several communities in the region and compare these results to the 2.2 µg/g total hair mercury level equivalent to the World Health Organization (WHO) Expert Committee of Food Additives (JECFA)'s Provisional Tolerable Weekly Intake (PTWI); and (2), to measure the mercury levels of paco ( Piaractus brachypomus ) fish raised in local aquaculture ponds, in order to compare these levels to the EPA Fish Tissue Residue Criterion of 0.3 µg Hg/g fish (wet weight). We collected hair samples from 80 participants in four communities (one control and three where ASGM activities occurred) in the region, and collected 111 samples from fish raised in 24 local aquaculture farms. We then analyzed the samples for total mercury. Total mercury levels in hair were statistically significantly higher in the mining communities than in the control community, and increased with increasing geodesic distance from the Madre de Dios headwaters, did not differ by sex, and frequently exceeded the reference level. Regression analyses indicated that higher hair mercury levels were associated with residence in ASGM communities. The analysis of paco fish samples found no samples that exceeded the EPA tissue residue criterion. Collectively, these results align with other recent studies showing that ASGM activities are associated with elevated human mercury exposure. The fish farmed through the relatively new process of aquaculture in ASGM areas appeared to have little potential to contribute to human mercury exposure. More research is needed on human health risks associated with ASGM to discern occupational, residential, and nutritional exposure, especially through tracking temporal changes in mercury levels as fish ponds age, and assessing levels in different farmed fish species. Additionally, research is needed to definitively determine that elevated mercury levels in humans and fish result from the elemental mercury from mining, rather than from a different source, such as the mercury released from soil erosion during deforestation events from mining or other activities.
Ackerman, Janet M.; Attfield, Kathleen R.; Brody, Julia Green
2014-01-01
Background: Exposure to chemicals that cause rodent mammary gland tumors is common, but few studies have evaluated potential breast cancer risks of these chemicals in humans. Objective: The goal of this review was to identify and bring together the needed tools to facilitate the measurement of biomarkers of exposure to potential breast carcinogens in breast cancer studies and biomonitoring. Methods: We conducted a structured literature search to identify measurement methods for exposure biomarkers for 102 chemicals that cause rodent mammary tumors. To evaluate concordance, we compared human and animal evidence for agents identified as plausibly linked to breast cancer in major reviews. To facilitate future application of exposure biomarkers, we compiled information about relevant cohort studies. Results: Exposure biomarkers have been developed for nearly three-quarters of these rodent mammary carcinogens. Analytical methods have been published for 73 of the chemicals. Some of the remaining chemicals could be measured using modified versions of existing methods for related chemicals. In humans, biomarkers of exposure have been measured for 62 chemicals, and for 45 in a nonoccupationally exposed population. The Centers for Disease Control and Prevention has measured 23 in the U.S. population. Seventy-five of the rodent mammary carcinogens fall into 17 groups, based on exposure potential, carcinogenicity, and structural similarity. Carcinogenicity in humans and rodents is generally consistent, although comparisons are limited because few agents have been studied in humans. We identified 44 cohort studies, with a total of > 3.5 million women enrolled, that have recorded breast cancer incidence and stored biological samples. Conclusions: Exposure measurement methods and cohort study resources are available to expand biomonitoring and epidemiology related to breast cancer etiology and prevention. Citation: Rudel RA, Ackerman JM, Attfield KR, Brody JG. 2014. New exposure biomarkers as tools for breast cancer epidemiology, biomonitoring, and prevention: a systematic approach based on animal evidence. Environ Health Perspect 122:881–895; http://dx.doi.org/10.1289/ehp.1307455 PMID:24818537
Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men
Li, De-kun; Yang, Fen; Pan, Hongjie; Li, Tianqi; Miao, Maohua; Li, Runsheng; Yuan, Wei
2017-01-01
Environmental BPA exposure has been shown to impact human sperm concentration and motility, as well as rodent spermatogenesis. However, it is unclear whether BPA exposure is associated with alteration in DNA hydroxymethylation, a marker for epigenetic modification, in human sperm. A genome-wide DNA hydroxymethylation study was performed using sperm samples of men who were occupationally exposed to BPA. Compared with controls who had no occupational BPA exposure, the total levels of 5-hydroxymethylcytosine (5hmc) increased significantly (19.37% increase) in BPA-exposed men, with 72.69% of genome regions harboring 5hmc. A total of 9,610 differential 5hmc regions (DhMRs) were revealed in BPA-exposed men relative to controls, which were mainly located in intergenic and intron regions. These DhMRs were composed of 8,670 hyper-hMRs and 940 hypo-hMRs, affecting 2,008 genes and the repetitive elements. The hyper-hMRs affected genes were enriched in pathways associated with nervous system, development, cardiovascular diseases and signal transduction. Additionally, enrichment of 5hmc was observed in the promoters of eight maternally expressed imprinted genes in BPA-exposed sperm. Some of the BPA-affected genes, for example, MLH1, CHD2, SPATA12 and SPATA20 might participate in the response to DNA damage in germ cells caused by BPA. Our analysis showed that enrichment of 5hmc both in promoters and gene bodies is higher in the genes whose expression has been detected in human sperm than those whose expression is absent. Importantly, we observed that BPA exposure affected the 5hmc level in 11.4% of these genes expressed in sperm, and in 6.85% of the sperm genome. Finally, we also observed that BPA exposure tends to change the 5hmc enrichment in the genes which was previously reported to be distributed with the trimethylated Histone 3 (H3K27me3, H3K4me2 or H3K4me3) in sperm. Thus, these results suggest that BPA exposure likely interferes with gene expression via affecting DNA hydroxymethylation in a way partially dependent on trimethylation of H3 in human spermatogenesis. Our current study reveals a new mechanism by which BPA exposure reduces human sperm quality. PMID:28582417
Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men.
Zheng, Huajun; Zhou, Xiaoyu; Li, De-Kun; Yang, Fen; Pan, Hongjie; Li, Tianqi; Miao, Maohua; Li, Runsheng; Yuan, Wei
2017-01-01
Environmental BPA exposure has been shown to impact human sperm concentration and motility, as well as rodent spermatogenesis. However, it is unclear whether BPA exposure is associated with alteration in DNA hydroxymethylation, a marker for epigenetic modification, in human sperm. A genome-wide DNA hydroxymethylation study was performed using sperm samples of men who were occupationally exposed to BPA. Compared with controls who had no occupational BPA exposure, the total levels of 5-hydroxymethylcytosine (5hmc) increased significantly (19.37% increase) in BPA-exposed men, with 72.69% of genome regions harboring 5hmc. A total of 9,610 differential 5hmc regions (DhMRs) were revealed in BPA-exposed men relative to controls, which were mainly located in intergenic and intron regions. These DhMRs were composed of 8,670 hyper-hMRs and 940 hypo-hMRs, affecting 2,008 genes and the repetitive elements. The hyper-hMRs affected genes were enriched in pathways associated with nervous system, development, cardiovascular diseases and signal transduction. Additionally, enrichment of 5hmc was observed in the promoters of eight maternally expressed imprinted genes in BPA-exposed sperm. Some of the BPA-affected genes, for example, MLH1, CHD2, SPATA12 and SPATA20 might participate in the response to DNA damage in germ cells caused by BPA. Our analysis showed that enrichment of 5hmc both in promoters and gene bodies is higher in the genes whose expression has been detected in human sperm than those whose expression is absent. Importantly, we observed that BPA exposure affected the 5hmc level in 11.4% of these genes expressed in sperm, and in 6.85% of the sperm genome. Finally, we also observed that BPA exposure tends to change the 5hmc enrichment in the genes which was previously reported to be distributed with the trimethylated Histone 3 (H3K27me3, H3K4me2 or H3K4me3) in sperm. Thus, these results suggest that BPA exposure likely interferes with gene expression via affecting DNA hydroxymethylation in a way partially dependent on trimethylation of H3 in human spermatogenesis. Our current study reveals a new mechanism by which BPA exposure reduces human sperm quality.
Overall human mortality and morbidity due to exposure to air pollution.
Samek, Lucyna
2016-01-01
Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10) and diameter ≤ 2.5 mm (PM2.5) as well as nitrogen dioxide (NO2) have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005-2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ) software was successfully applied. The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS) in Kraków, was used in this study. Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Li, Peng; Wu, Hui; Li, Qiuxu; Jin, Jun; Wang, Ying
2015-11-01
Human exposure to brominated flame retardants (BFRs: decabromodiphenyl ether (BDE209), decabromodiphenyl ethane (DBDPE), hexabromobenzene (HBB), pentabromoethylbenzene (PBEB), pentabromotoluene (PBT), 1,2,3,4,5-pentabromobenzene (PBBz), and 2,3,5,6-tetrabromo-p-xylene (TBX)) in a brominated flame retardant production area (Weifang, Shandong Province, China) was estimated. Thirty food samples, 14 air samples, and 13 indoor dust samples were analyzed. BDE209 and DBDPE were the dominant BFRs in all samples. Higher alternative brominated flame retardant (including DBDPE, HBB, PBEB, PBT, PBBz, and TBX) concentrations were found in vegetables than in fish and meat; thus, plant-original foods might be important alternative BFR sources in the study area. The BDE209 and alternative BFR concentrations in air were 1.5×10(4) to 2.2×10(5) and 620 to 3.6×10(4) pg/m3, respectively. Mean total BFR exposures through the diet, inhalation, and indoor dust ingestion were 570, 3000, and 69 ng/d, respectively (16, 82, and 2% of total intake, respectively). Inhalation was the dominant BFR source except for DBDPE, for which diet dominated. BDE209 contributed 85% of the total BFR intake in the study area.
USDA-ARS?s Scientific Manuscript database
Renewed interests in home gardening heighten the concern of human lead exposure. Negative effects of lead on human health are well known. Horizontal and vertical movement of lead (Pb) around houses has been studied, but Pb bioaccessiblity as a function of distance and depth from the house needs to...
Hair methylmercury levels of mummies of the Aleutian Islands, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egeland, G.M.; Ponce, Rafael; Bloom, Nicolas S.
2009-04-15
Ancient human hair specimens can shed light on the extent of pre-historic exposures to methylmercury and provide valuable comparison data with current-day exposures, particularly for Indigenous Peoples who continue to rely upon local traditional food resources. Human hair from ancient Aleutian Island Native remains were tested for total and methylmercury (Hg, MeHg) and were radiocarbon dated. The remains were approximately 500 years old (1450 A.D.). For four adults, the mean and median total hair mercury concentration was 5.8 ppm (SD=0.9). In contrast, MeHg concentrations were lower with a mean of 1.2 ppm (SD=1.8) and a median of 0.54 ppm (0.12-3.86).more » For the five infants, the mean and median MeHg level was 1.2 ppm (SD=1.8) and 0.20 ppm (0.007-4.61), respectively. Segmental analyses showed variations in MeHg concentrations in 1-cm segments, consistent with fluctuations in naturally occurring exposure to mercury through dietary sources. The levels are comparable to or lower than those found in fish and marine mammal-eating populations today who rely far less on subsistence food than pre-historic humans. The findings are, therefore, compatible with increased anthropogenic release of trace metals during the past several centuries.« less
Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach.
Abia, Wilfred A; Warth, Benedikt; Sulyok, Michael; Krska, Rudolf; Tchana, Angele; Njobeh, Patrick B; Turner, Paul C; Kouanfack, Charles; Eyongetah, Mbu; Dutton, Mike; Moundipa, Paul F
2013-12-01
Bio-monitoring of human exposure to mycotoxin has mostly been limited to a few individually measured mycotoxin biomarkers. This study aimed to determine the frequency and level of exposure to multiple mycotoxins in human urine from Cameroonian adults. 175 Urine samples (83% from HIV-positive individuals) and food frequency questionnaire responses were collected from consenting Cameroonians, and analyzed for 15 mycotoxins and relevant metabolites using LC-ESI-MS/MS. In total, eleven analytes were detected individually or in combinations in 110/175 (63%) samples including the biomarkers aflatoxin M1, fumonisin B1, ochratoxin A and total deoxynivalenol. Additionally, important mycotoxins and metabolites thereof, such as fumonisin B2, nivalenol and zearalenone, were determined, some for the first time in urine following dietary exposures. Multi-mycotoxin contamination was common with one HIV-positive individual exposed to five mycotoxins, a severe case of co-exposure that has never been reported in adults before. For the first time in Africa or elsewhere, this study quantified eleven mycotoxin biomarkers and bio-measures in urine from adults. For several mycotoxins estimates indicate that the tolerable daily intake is being exceeded in this study population. Given that many mycotoxins adversely affect the immune system, future studies will examine whether combinations of mycotoxins negatively impact Cameroonian population particularly immune-suppressed individuals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shi, Zhixiong; Zhang, Lei; Li, Jingguang; Zhao, Yunfeng; Sun, Zhiwei; Zhou, Xianqing; Wu, Yongning
2016-11-01
On the basis of the fifth Chinese total diet study (TDS) performed in 2011, the dietary exposure of the Chinese population to novel brominated flame retardants (NBFRs) was assessed. Six NBFRs were determined in 80 composite samples from four animal origin food groups and 29 pooled human milk samples. Based on gas chromatography-negative chemical ionization mass spectrometry (GC-NCI/MS) analysis, the levels of the total NBFRs ranged from
Delgado, João; Longhurst, Phil; Hickman, Gordon A W; Gauntlett, Daniel M; Howson, Simon F; Irving, Phil; Hart, Alwyn; Pollard, Simon J T
2010-06-15
An enhanced methodology for the policy-level prioritization of intervention options during carcass disposal is presented. Pareto charts provide a semiquantitative analysis of opportunities for multiple exposures to human health, animal health, and the wider environment during carcass disposal; they identify critical control points for risk management and assist in waste technology assessment. Eighty percent of the total availability of more than 1300 potential exposures to human, animal, or environmental receptors is represented by 16 processes, these being dominated by on-farm collection and carcass processing, reinforcing the criticality of effective controls during early stages of animal culling and waste processing. Exposures during mass burials are dominated by ground- and surface-water exposures with noise and odor nuisance prevalent for mass pyres, consistent with U.K. experience. Pareto charts are discussed in the context of other visualization formats for policy officials and promoted as a communication tool for informing the site-specific risk assessments required during the operational phases of exotic disease outbreaks.
Health consequences of exposure to brominated flame retardants: a systematic review.
Kim, Young Ran; Harden, Fiona A; Toms, Leisa-Maree L; Norman, Rosana E
2014-07-01
Brominated flame retardants (BFRs), are chemicals widely used in consumer products including electronics, vehicles, plastics and textiles to reduce flammability. Experimental animal studies have confirmed that these compounds may interfere with thyroid hormone homeostasis and neurodevelopment but to date health effects in humans have not been systematically examined. To conduct a systematic review of studies on the health impacts of exposure to BFRs in humans, with a particular focus on children. A systematic review was conducted using the MEDLINE and EMBASE electronic databases up to 1 February 2012. Published cohort, cross-sectional, and case-control studies exploring the relationship between BFR exposure and various health outcomes were included. In total, 36 epidemiological studies meeting the pre-determined inclusion criteria were included. Plausible outcomes associated with BFR exposure include diabetes, neurobehavioral and developmental disorders, cancer, reproductive health effects and alteration in thyroid function. Evidence for a causal relationship between exposure to BFRs and health outcomes was evaluated within the Bradford Hill framework. Although there is suggestive evidence that exposure to BFRs is harmful to health, further epidemiological investigations particularly among children, and long-term monitoring and surveillance of chemical impacts on humans are required to confirm these relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.
Millard, Yvette C; Slaughter, Robin J; Shieffelbien, Lucy M; Schep, Leo J
2014-09-26
To investigate poisoning exposures to chemicals that were unlabelled, mislabelled or not in their original containers in New Zealand over the last 10 years, based on calls to the New Zealand National Poisons Centre (NZNPC). Call data from the NZNPC between 2003 and 2012 were analysed retrospectively. Parameters reviewed included patient age, route and site of exposure, product classification and recommended intervention. Of the 324,411 calls received between 2003 and 2012, 100,465 calls were associated with acute human exposure to chemicals. There were 757 inquiries related to human exposure to mislabelled or unlabelled chemicals consisting of 0.75% of chemical exposures. Adults were involved in 51% of incidents, children, <5 years 32%, 5-10 years 10%, and adolescents 5%. Child exploratory behaviour was responsible for 38% of calls and adult unintentional exposures 61%. Medical attention was advised in 26% of calls. Inadvertent exposure to toxic products stored in unlabelled or mislabelled containers is a problem for all age groups. Although it represents a small proportion of total calls to the NZNPC it remains a potential risk for serious poisoning. It is important that chemicals are stored securely, in their original containers, and never stored in drinking vessels.
Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacasana, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.e; CIBER de Epidemiologia y Salud Publica; Lopez-Flores, Inmaculada
The ability of organophosphate pesticides to disturb thyroid gland function has been demonstrated by experimental studies on animal, but evidence of such effects on human remains scarce. The aim of this study was to assess the association between exposure to organophosphate compounds and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the State of Mexico and Morelos, Mexico, occupationally exposed to organophosphate pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on sociodemographic characteristics,more » anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Urine and blood samples were taken the day after pesticide application to determine urine dialkylphosphate (DAP) levels, serum levels of TSH, total T{sub 3}, total T{sub 4}, serum PON1 activity, and serum p,p'-DEE levels. The analysis of the association between DAP levels and thyroid hormonal profile was carried out using multivariate generalized estimating equation (GEE) models. Our results showed an increase in both TSH and T{sub 4} hormones in serum associated with a increase in total dimethylphosphate levels (SIGMADMP) in urine (p-trend < 0.001) and a decrease in total T{sub 3} serum levels with an increase of SIGMADMP levels in the urine (p-trend = 0.053). These results suggest that exposure to organophosphate pesticides may be responsible of increasing TSH and T{sub 4} serum hormone levels and decreasing T{sub 3} serum hormone levels, therefore supporting the hypothesis that organophosphate pesticides act as endocrine disruptors in humans.« less
Association between organochlorine pesticide exposure and thyroid hormones in floriculture workers.
Blanco-Muñoz, Julia; Lacasaña, Marina; López-Flores, Inmaculada; Rodríguez-Barranco, Miguel; González-Alzaga, Beatriz; Bassol, Susana; Cebrian, Mariano E; López-Carrillo, Lizbeth; Aguilar-Garduño, Clemente
2016-10-01
Several studies have suggested that exposure to DDT may be related to changes in thyroid hormone levels in animals and humans, even though results across studies are inconsistent. The aim of this study was to assess the association between exposure to p,p'-DDE (a stable metabolite of DDT) and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the States of Mexico and Morelos, Mexico, who were occupationally exposed to pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on socio-demographic characteristics, anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Blood and urine samples were collected to determine serum levels of TSH, total T3, total T4, and p,p'-DDE, and metabolites of organophosphate pesticides (OP), respectively. The analysis of the associations between p,p'-DDE levels and thyroid hormone profile adjusting by potential confounding variables including urinary OP metabolites was carried out using multivariate generalized estimating equation (GEE) models. Our results showed that the geometric means of p,p'-DDE levels were 6.17 ng/ml and 4.71 ng/ml in the rainy and dry seasons, respectively. We observed positive associations between the serum levels of p,p'-DDE and those of total T3 (β=0.01, 95% CI: -0.009, 0.03), and total T4 (β=0.08, 95% CI:0.03, 0.14) and negative but no significant changes in TSH in male floricultural workers, supporting the hypothesis that acts as thyroid disruptor in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Assessing human exposure to power-frequency electric and magnetic fields.
Kaune, W T
1993-01-01
This paper reviews published literature and current problems relating to the assessment of occupational and residential human exposures to power-frequency electric and magnetic fields. Available occupational exposure data suggest that the class of job titles known as electrical workers may be an effective surrogate for time-weighted-average (TWA) magnetic-field (but not electric-field) exposure. Current research in occupational-exposure assessment is directed to the construction of job-exposure matrices based on electric- and magnetic-field measurements and estimates of worker exposures to chemicals and other factors of interest. Recent work has identified five principal sources of residential magnetic fields: electric power transmission lines, electric power distribution lines, ground currents, home wiring, and home appliances. Existing residential-exposure assessments have used one or more of the following techniques: questionnaires, wiring configuration coding, theoretical field calculations, spot electric- and magnetic-field measurements, fixed-site magnetic-field recordings, personal- exposure measurements, and geomagnetic-field measurements. Available normal-power magnetic-field data for residences differ substantially between studies. It is not known if these differences are due to geographical differences, differences in measurement protocols, or instrumentation differences. Wiring codes and measured magnetic fields (but not electric fields) are associated weakly. Available data suggest, but are far from proving, that spot measurements may be more effective than wire codes as predictors of long-term historical magnetic-field exposure. Two studies find that away-from-home TWA magnetic-field exposures are less variable than at-home exposures. The importance of home appliances as contributors to total residential magnetic-field exposure is not known at this time. It also is not known what characteristics (if any) of residential electric and magnetic fields are determinants of human health effects. PMID:8206021
Ruggiero, Simona; Moro, Paola Angela; Davanzo, Franca; Capuano, Annalisa; Rossi, Francesco; Sautebin, Lidia
2012-12-01
To the average consumer, "cosmetics" are not considered to cause damage to human health under normal conditions of use. Thus, cosmetic "safety" does not require any particular attention to the possibility that cosmetics may result in a toxic exposure, especially for children. Poison Control Centres (PCCs) provide specialized and rapid information for consumers and health professionals to ensure management of events related to the exposures to different agents, including Cosmetics. Poison Control Centres also represent a unique source of information to investigate the frequency and type of exposures to cosmetic and the related risks. An analysis of cases concerning human exposures to cosmetics collected from 2005 to 2010 by the PCC at the Ospedale Niguarda Ca' Granda (Milan, Italy) was performed. During this period, 11 322 human exposure cases related to cosmetics were collected accounting for 4.5% of the total human clinical cases. Almost, all the requests for assistance came from consumers (53%) and hospitals (40%). The most frequently reported site of exposure was the consumer's own residence (94%). The exposures mainly involved children younger than 4 years (77%). No difference in gender distribution was observed (female 49%, male 51%). Almost, all of the exposures were unintentional (94%). Intentional exposures, mainly related to suicide attempts and accounted for 6% of cases involving persons aged more than 12 years. Personal hygiene products (30%), perfumes and hair care products (excluding hair dyes) (both 13%) were the most frequently involved categories. Symptoms were present only in 26% of the exposures and were mostly gastrointestinal (46%). Most of the cases were managed at home (43%) whereas hospital intervention was required in 38%. Since the exposure frequency seems more likely to reflect product availability and accessibility to ingestors, our results call for closer attention to this type of hazard, especially for children younger than 4 years of age.
Avagyan, Rozanna; Sadiktsis, Ioannis; Bergvall, Christoffer; Westerholm, Roger
2014-10-01
Urban particulate matter (PM), asphalt, and tire samples were investigated for their content of benzothiazole and benzothiazole derivates. The purpose of this study was to examine whether wear particles, i.e., tire tread wear or road surface wear, could contribute to atmospheric concentrations of benzothiazole derivatives. Airborne particulate matter (PM10) sampled at a busy street in Stockholm, Sweden, contained on average 17 pg/m(3) benzothiazole and 64 pg/m(3) 2-mercaptobenzothiazole, and the total suspended particulate-associated benzothiazole and 2-mercaptobenzothiazole concentrations were 199 and 591 pg/m(3), respectively. This indicates that tire tread wear may be a major source of these benzothiazoles to urban air PM in Stockholm. Furthermore, 2-mercaptobenzothiazole was determined in urban air particulates for the first time in this study, and its presence in inhalable PM10 implies that the human exposure to this biocide is underestimated. This calls for a revision of the risk assessments of 2-mercaptobenzothiazole exposure to humans which currently is limited to occupational exposure.
A Quantitative ADME-base Tool for Exploring Human ...
Exposure to a wide range of chemicals through our daily habits and routines is ubiquitous and largely unavoidable within modern society. The potential for human exposure, however, has not been quantified for the vast majority of chemicals with wide commercial use. Creative advances in exposure science are needed to support efficient and effective evaluation and management of chemical risks, particularly for chemicals in consumer products. The U.S. Environmental Protection Agency Office of Research and Development is developing, or collaborating in the development of, scientifically-defensible methods for making quantitative or semi-quantitative exposure predictions. The Exposure Prioritization (Ex Priori) model is a simplified, quantitative visual dashboard that provides a rank-ordered internalized dose metric to simultaneously explore exposures across chemical space (not chemical by chemical). Diverse data streams are integrated within the interface such that different exposure scenarios for “individual,” “population,” or “professional” time-use profiles can be interchanged to tailor exposure and quantitatively explore multi-chemical signatures of exposure, internalized dose (uptake), body burden, and elimination. Ex Priori has been designed as an adaptable systems framework that synthesizes knowledge from various domains and is amenable to new knowledge/information. As such, it algorithmically captures the totality of exposure across pathways. It
Parrish, Randall R; Horstwood, Matthew; Arnason, John G; Chenery, Simon; Brewer, Tim; Lloyd, Nicholas S; Carpenter, David O
2008-02-01
Inhaled depleted uranium (DU) aerosols are recognised as a distinct human health hazard and DU has been suggested to be responsible in part for illness in both military and civilian populations that may have been exposed. This study aimed to develop and use a testing procedure capable of detecting an individual's historic milligram-quantity aerosol exposure to DU up to 20 years after the event. This method was applied to individuals associated with or living proximal to a DU munitions plant in Colonie New York that were likely to have had a significant DU aerosol inhalation exposure, in order to improve DU-exposure screening reliability and gain insight into the residence time of DU in humans. We show using sensitive mass spectrometric techniques that when exposure to aerosol has been unambiguous and in sufficient quantity, urinary excretion of DU can be detected more than 20 years after primary DU inhalation contamination ceased, even when DU constitutes only approximately 1% of the total excreted uranium. It seems reasonable to conclude that a chronically DU-exposed population exists within the contamination 'footprint' of the munitions plant in Colonie, New York. The method allows even a modest DU exposure to be identified where other less sensitive methods would have failed entirely. This should allow better assessment of historical exposure incidence than currently exists.
Dosimetry for radiobiological studies of the human hematopoietic system
NASA Technical Reports Server (NTRS)
Beck, W. L.; Stokes, T. R.; Lushbaugh, C. C.
1972-01-01
A system for estimating individual bone marrow doses in therapeutic radiation exposures of leukemia patients was studied. These measurements are used to make dose response correlations and to study the effect of dose protraction on peripheral blood cell levels. Three irradiators designed to produce a uniform field of high energy gamma radiation for total body exposures of large animals and man are also used for radiobiological studies.
Heffernan, A.L.; Baduel, C.; Toms, L.M.L.; Calafat, A.M.; Ye, X.; Hobson, P.; Broomhall, S.; Mueller, J.F.
2017-01-01
Parabens, benzophenone-3 and triclosan are common ingredients used as preservatives, ultraviolet radiation filters and antimicrobial agents, respectively. Human exposure occurs through consumption of processed food and use of cosmetics and consumer products. The aim of this study was to provide a preliminary characterisation of exposure to selected personal care product chemicals in the general Australian population. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n = 24 pools of 100). Concentrations of free and total (sum of free plus conjugated) species of methyl, ethyl, propyl and butyl paraben, benzophenone-3 and triclosan were quantified using isotope dilution tandem mass spectrometry; with geometric means 232, 33.5, 60.6, 4.32, 61.5 and 87.7 ng/mL, respectively. Age was inversely associated with paraben concentration, and females had concentrations approximately two times higher than males. Total paraben and benzophenone-3 concentrations are significantly higher than reported worldwide, and the average triclosan concentration was more than one order of magnitude higher than in many other populations. This study provides the first data on exposure of the general Australian population to a range of common personal care product chemical ingredients, which appears to be prevalent and warrants further investigation. PMID:26368661
Tittlemier, Sheryl A; Pepper, Karen; Seymour, Carol; Moisey, John; Bronson, Roni; Cao, Xu-Liang; Dabeka, Robert W
2007-04-18
Human exposure to perfluorinated compounds is a worldwide phenomenon; however, routes of human exposure to these compounds have not been well-characterized. Fifty-four solid food composite samples collected as part of the Canadian Total Diet Study (TDS) were analyzed for perfluorocarboxylates and perfluorooctanesulfonate (PFOS) using a methanol extraction liquid chromatography tandem mass spectrometry method. Foods analyzed included fish and seafood, meat, poultry, frozen entrées, fast food, and microwave popcorn collected from 1992 to 2004 and prepared as for consumption. Nine composites contained detectable levels of perfluorinated compounds-four meat-containing, three fish and shellfish, one fast food, and one microwave popcorn. PFOS and perfluorooctanoate (PFOA) were detected the most frequently; concentrations ranged from 0.5 to 4.5 ng/g. The average dietary intake of total perfluorocarboxylates and PFOS for Canadians was estimated to be 250 ng/day, using results from the 2004 TDS composites. A comparison with intakes of perfluorocarboxylates and PFOS via other routes (air, water, dust, treated carpeting, and apparel) suggested that diet is an important source of these compounds. There was a substantial margin of exposure between the toxicological points of reference and the magnitude of dietary intake of perfluorinated compounds for Canadians >/= 12 years old.
Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.
Ewa, Błaszczyk; Danuta, Mielżyńska-Švach
2017-08-01
Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.
Donham, K J; Reynolds, S J; Whitten, P; Merchant, J A; Burmeister, L; Popendorf, W J
1995-03-01
Human respiratory health hazards for people working in livestock confinement buildings have been recognized since 1974. However, before comprehensive control programs can be implemented, more knowledge is needed of specific hazardous substances present in the air of these buildings, and at what concentrations they are harmful. Therefore, a medical epidemiological and exposure-response study was conducted on 207 swine producers using intensive housing systems (108 farms). Dose-response relationships between pulmonary function and exposures are reported here. Positive correlations were seen between change in pulmonary function over a work period and exposure to total dust, respirable dust, ammonia, respirable endotoxin, and the interactions of age-of-producer and dust exposure and years-of-working-in-the-facility and dust exposure. Relationships between baseline pulmonary function and exposures were not strong and therefore, not pursued in this study. The correlations between exposure and response were stronger after 6 years of exposure. Multiple regression models were used to identify total dust and ammonia as the two primary environmental predictors of pulmonary function decrements over a work period. The regression models were then used to determine exposure concentrations related to pulmonary function decrements suggestive of a health hazard. Total dust concentrations > or = 2.8 mg/m3 were predictive of a work period decrement of > or = 10% in FEV1. Ammonia concentrations of > or = 7.5 ppm were predictive of a > or = 3% work period decrement in FEV1. These predictive concentrations were similar to a previous dose-response study, which suggested 2.5 mg/m3 of total dust and 7 ppm of NH3 were associated with significant work period decrements. Therefore, dust > or = 2.8 mg/m3 and ammonia > or = 7.5 ppm should be considered reasonable evidence for guidelines regarding hazardous exposure concentrations in this work environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, S.; Suffield, S. R.; Recknagle, K. P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathingmore » conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.« less
Wang, Lijun; Zhang, Shengwei; Wang, Li; Zhang, Wenjuan; Shi, Xingmin; Lu, Xinwei; Li, Xiaoping; Li, Xiaoyun
2018-03-27
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, presenting potential threats to the ecological environment and human health. Sixty-two urban soil samples were collected in the typical semi-arid city of Xi'an in Northwest China. They were analyzed for concentration, pollution, and ecological and health risk of sixteen U.S. Environmental Protection Agency priority PAHs. The total concentrations of the sixteen PAHs (Σ16PAHs) in the urban soil ranged from 390.6 to 10,652.8 µg/kg with an average of 2052.6 µg/kg. The concentrations of some individual PAHs in the urban soil exceeded Dutch Target Values of Soil Quality and the Σ16PAHs represented heavy pollution. Pyrene and dibenz[a,h]anthracene had high ecological risk to aquatic/soil organisms, while other individual PAHs showed low ecological risk. The total ecological risk of PAHs to aquatic/soil organisms is classified as moderate. Toxic equivalency quantities (TEQs) of the sixteen PAHs varied between 21.16 and 1625.78 µg/kg, with an average of 423.86 µg/kg, indicating a relatively high toxicity potential. Ingestion and dermal adsorption of soil dust were major pathways of human exposure to PAHs from urban soil. Incremental lifetime cancer risks (ILCRs) of human exposure to PAHs were 2.86 × 10 -5 for children and 2.53 × 10 -5 for adults, suggesting that the cancer risk of human exposure to PAHs from urban soil is acceptable.
Weight-of-evidence evaluation of short-term ozone exposure and cardiovascular effects.
Goodman, Julie E; Prueitt, Robyn L; Sax, Sonja N; Lynch, Heather N; Zu, Ke; Lemay, Julie C; King, Joseph M; Venditti, Ferdinand J
2014-10-01
There is a relatively large body of research on the potential cardiovascular (CV) effects associated with short-term ozone exposure (defined by EPA as less than 30 days in duration). We conducted a weight-of-evidence (WoE) analysis to assess whether it supports a causal relationship using a novel WoE framework adapted from the US EPA's National Ambient Air Quality Standards causality framework. Specifically, we synthesized and critically evaluated the relevant epidemiology, controlled human exposure, and experimental animal data and made a causal determination using the same categories proposed by the Institute of Medicine report Improving the Presumptive Disability Decision-making Process for Veterans ( IOM 2008). We found that the totality of the data indicates that the results for CV effects are largely null across human and experimental animal studies. The few statistically significant associations reported in epidemiology studies of CV morbidity and mortality are very small in magnitude and likely attributable to confounding, bias, or chance. In experimental animal studies, the reported statistically significant effects at high exposures are not observed at lower exposures and thus not likely relevant to current ambient ozone exposures in humans. The available data also do not support a biologically plausible mechanism for CV effects of ozone. Overall, the current WoE provides no convincing case for a causal relationship between short-term exposure to ambient ozone and adverse effects on the CV system in humans, but the limitations of the available studies preclude definitive conclusions regarding a lack of causation. Thus, we categorize the strength of evidence for a causal relationship between short-term exposure to ozone and CV effects as "below equipoise."
A hybrid modeling with data assimilation to evaluate human exposure level
NASA Astrophysics Data System (ADS)
Koo, Y. S.; Cheong, H. K.; Choi, D.; Kim, A. L.; Yun, H. Y.
2015-12-01
Exposure models are designed to better represent human contact with PM (Particulate Matter) and other air pollutants such as CO, SO2, O3, and NO2. The exposure concentrations of the air pollutants to human are determined by global and regional long range transport of global and regional scales from Europe and China as well as local emissions from urban and road vehicle sources. To assess the exposure level in detail, the multiple scale influence from background to local sources should be considered. A hybrid air quality modeling methodology combing a grid-based chemical transport model with a local plume dispersion model was used to provide spatially and temporally resolved air quality concentration for human exposure levels in Korea. In the hybrid modeling approach, concentrations from a grid-based chemical transport model and a local plume dispersion model are added to provide contributions from photochemical interactions, long-range (regional) transport and local-scale dispersion. The CAMx (Comprehensive Air quality Model with Extensions was used for the background concentrations from anthropogenic and natural emissions in East Asia including Korea while the road dispersion by vehicle emission was calculated by CALPUFF model. The total exposure level of the pollutants was finally assessed by summing the background and road contributions. In the hybrid modeling, the data assimilation method based on the optimal interpolation was applied to overcome the discrepancies between the model predicted concentrations and observations. The air quality data from the air quality monitoring stations in Korea. The spatial resolution of the hybrid model was 50m for the Seoul Metropolitan Ares. This example clearly demonstrates that the exposure level could be estimated to the fine scale for the exposure assessment by using the hybrid modeling approach with data assimilation.
A review on recent progress in observations, and health effects of bioaerosols.
Humbal, Charmi; Gautam, Sneha; Trivedi, Ujwalkumar
2018-06-06
Bioaerosol is a particulate mixture of solid and semi-solid matter combined with biotic matter like pollens, microbes and their fragments. The present review stresses on a cumulative understanding of sources, components, quantification and distribution of bioaerosols with respect to size, and its significant impacts on human health. The present review will be instrumental in devising strategies to understand and manage bioaerosols and reducing their human exposure and associated health hazards. The present review aims explore the relationship between particle and associated biological agents responsible for behaviours like dispersal, total potential health hazards and toxicology level during exposure to bioaerosol. Copyright © 2018. Published by Elsevier Ltd.
Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model
2011-01-01
Background Human exposure to nanoparticles (NPs) and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu) NPs using a model of lung inflammation and host defense. Methods We used Klebsiella pneumoniae (K.p.) in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3) and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse). Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH) activity, and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid. Results Cu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse). Conclusions Cu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection. PMID:21943386
NASA Astrophysics Data System (ADS)
Requia, Weeberb J.; Dalumpines, Ron; Adams, Matthew D.; Arain, Altaf; Ferguson, Mark; Koutrakis, Petros
2017-06-01
Understanding the relationship between mobile source emissions and subsequent human exposure is crucial for emissions control. Determining this relationship over space is fundamental to improve the accuracy and precision of public policies. In this study, we evaluated the spatial patterns of link-based PM2.5 emissions and subsequent human exposure in a large Canadian metropolitan area - the Greater Toronto and Hamilton Area (GTHA). This study was performed in three stages. First, we estimated vehicle emissions using transportation models and emission simulators. Then we evaluated human exposure to PM2.5 emissions using the Intake fraction (iF) approach. Finally, we applied geostatistical methods to assess spatial patterns of vehicle emissions and subsequent human exposure based on three prospective goals: i) classification of emissions (Global Moran's I test), ii) level of emission exposure (Getis-Ord General G test), and; iii) location of emissions (Anselin Local Moran's I). Our results showed that passenger vehicles accounted for the highest total amount of PM2.5 emissions, representing 57% emissions from all vehicles. Examining only the emissions from passenger vehicles, on average, each person in the GTHA inhales 2.58 × 10-3 ppm per day. Accounting the emissions from buses and trucks, on average each person inhales 0.12 × 10-3 and 1.91 × 10-3 ppm per day, respectively. For both PM2.5 emissions and human exposure using iF approach, our analysis showed Moran's Index greater than 0 for all vehicle categories, suggesting the presence of significant clusters (p-value <0.01) in the region. Our study indicates that air pollution control policy must be developed for the whole region, because of the spatial distribution of housing and businesses centers and inter-connectivity of transportation networks across the region, where a policy cannot simply be based on a municipal or other boundaries.
Blood-Based Detection of Radiation Exposure in Humans Based on Novel Phospho-Smc1 ELISA
Ivey, Richard G.; Moore, Heather D.; Voytovich, Uliana J.; Thienes, Cortlandt P.; Lorentzen, Travis D.; Pogosova-Agadjanyan, Era L.; Frayo, Shani; Izaguirre, Venissa K.; Lundberg, Sally J.; Hedin, Lacey; Badiozamani, Kas Ray; Hoofnagle, Andrew N.; Stirewalt, Derek L.; Wang, Pei; Georges, George E.; Gopal, Ajay K.; Paulovich, Amanda G.
2011-01-01
The structural maintenance of chromosome 1 (Smc1) protein is a member of the highly conserved cohesin complex and is involved in sister chromatid cohesion. In response to ionizing radiation, Smc1 is phosphorylated at two sites, Ser-957 and Ser-966, and these phosphorylation events are dependent on the ATM protein kinase. In this study, we describe the generation of two novel ELISAs for quantifying phospho-Smc1Ser-957 and phospho-Smc1Ser-966. Using these novel assays, we quantify the kinetic and biodosimetric responses of human cells of hematological origin, including immortalized cells, as well as both quiescent and cycling primary human PBMC. Additionally, we demonstrate a robust in vivo response for phospho-Smc1Ser-957 and phospho-Smc1Ser-966 in lymphocytes of human patients after therapeutic exposure to ionizing radiation, including total-body irradiation, partial-body irradiation, and internal exposure to 131I. These assays are useful for quantifying the DNA damage response in experimental systems and potentially for the identification of individuals exposed to radiation after a radiological incident. PMID:21388270
Orta-García, Sandra; Pérez-Vázquez, Francisco; González-Vega, Carolina; Varela-Silva, José Antonio; Hernández-González, Lidia; Pérez-Maldonado, Iván
2014-02-15
Studies in Mexico have demonstrated exposure to persistent organic pollutants (POPs) in people living in different sites through the country. However, studies evaluating exposure to POPs in people living in Mexico City (one of most contaminated places in the world) are scarce. Therefore, the aim of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) in the blood as exposure biomarkers in people living in Mexico City. A total of 123 participants (blood donors aged 20-60 years) were recruited during 2010 in Mexico City. Quantitative analyses of blood samples were performed using gas chromatography coupled with mass spectrometry. Levels of the assessed compounds ranged from non-detectable (
PBPK-Based Probabilistic Risk Assessment for Total Chlorotriazines in Drinking Water
Breckenridge, Charles B.; Campbell, Jerry L.; Clewell, Harvey J.; Andersen, Melvin E.; Valdez-Flores, Ciriaco; Sielken, Robert L.
2016-01-01
The risk of human exposure to total chlorotriazines (TCT) in drinking water was evaluated using a physiologically based pharmacokinetic (PBPK) model. Daily TCT (atrazine, deethylatrazine, deisopropylatrazine, and diaminochlorotriazine) chemographs were constructed for 17 frequently monitored community water systems (CWSs) using linear interpolation and Krieg estimates between observed TCT values. Synthetic chemographs were created using a conservative bias factor of 3 to generate intervening peaks between measured values. Drinking water consumption records from 24-h diaries were used to calculate daily exposure. Plasma TCT concentrations were updated every 30 minutes using the PBPK model output for each simulated calendar year from 2006 to 2010. Margins of exposure (MOEs) were calculated (MOE = [Human Plasma TCTPOD] ÷ [Human Plasma TCTEXP]) based on the toxicological point of departure (POD) and the drinking water-derived exposure to TCT. MOEs were determined based on 1, 2, 3, 4, 7, 14, 28, or 90 days of rolling average exposures and plasma TCT Cmax, or the area under the curve (AUC). Distributions of MOE were determined and the 99.9th percentile was used for risk assessment. MOEs for all 17 CWSs were >1000 at the 99.9th percentile. The 99.9th percentile of the MOE distribution was 2.8-fold less when the 3-fold synthetic chemograph bias factor was used. MOEs were insensitive to interpolation method, the consumer’s age, the water consumption database used and the duration of time over which the rolling average plasma TCT was calculated, for up to 90 days. MOEs were sensitive to factors that modified the toxicological, or hyphenated appropriately no-observed-effects level (NOEL), including rat strain, endpoint used, method of calculating the NOEL, and the pharmacokinetics of elimination, as well as the magnitude of exposure (CWS, calendar year, and use of bias factors). PMID:26794141
PBPK-Based Probabilistic Risk Assessment for Total Chlorotriazines in Drinking Water.
Breckenridge, Charles B; Campbell, Jerry L; Clewell, Harvey J; Andersen, Melvin E; Valdez-Flores, Ciriaco; Sielken, Robert L
2016-04-01
The risk of human exposure to total chlorotriazines (TCT) in drinking water was evaluated using a physiologically based pharmacokinetic (PBPK) model. Daily TCT (atrazine, deethylatrazine, deisopropylatrazine, and diaminochlorotriazine) chemographs were constructed for 17 frequently monitored community water systems (CWSs) using linear interpolation and Krieg estimates between observed TCT values. Synthetic chemographs were created using a conservative bias factor of 3 to generate intervening peaks between measured values. Drinking water consumption records from 24-h diaries were used to calculate daily exposure. Plasma TCT concentrations were updated every 30 minutes using the PBPK model output for each simulated calendar year from 2006 to 2010. Margins of exposure (MOEs) were calculated (MOE = [Human Plasma TCTPOD] ÷ [Human Plasma TCTEXP]) based on the toxicological point of departure (POD) and the drinking water-derived exposure to TCT. MOEs were determined based on 1, 2, 3, 4, 7, 14, 28, or 90 days of rolling average exposures and plasma TCT Cmax, or the area under the curve (AUC). Distributions of MOE were determined and the 99.9th percentile was used for risk assessment. MOEs for all 17 CWSs were >1000 at the 99.9(th)percentile. The 99.9(th)percentile of the MOE distribution was 2.8-fold less when the 3-fold synthetic chemograph bias factor was used. MOEs were insensitive to interpolation method, the consumer's age, the water consumption database used and the duration of time over which the rolling average plasma TCT was calculated, for up to 90 days. MOEs were sensitive to factors that modified the toxicological, or hyphenated appropriately no-observed-effects level (NOEL), including rat strain, endpoint used, method of calculating the NOEL, and the pharmacokinetics of elimination, as well as the magnitude of exposure (CWS, calendar year, and use of bias factors). © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.
The Use of Gamma-H2AX as a Biodosimeter for Total-Body Radiation Exposure in Non-Human Primates
2010-11-23
Services University, Bethesda, Maryland, United States of America Abstract Background: There is a crucial shortage of methods capable of determining the...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Background: There is a crucial shortage of methods capable of... Veterinarian , Dr. Jennifer Mitchell, and her colleagues in AFRRI’s Veterinary Science Department, radiation exposure and dosimetry support from AFRRI’s
Mojska, Hanna; Gielecińska, Iwona; Cendrowski, Andrzej
2016-09-01
Acrylamide is a "probably human carcinogen" monomer that can form in heated starchy food as a result of a reaction between asparagine and reducing sugars via Maillard reaction. The main source of acrylamide in human diet are potato products, cereal products and coffee. Tobacco smoke may be another significant source of exposure to acrylamide. The aim of our study was to determine acrylamide content in cigarettes available on the Polish market and to estimate the exposure to acrylamide originating from tobacco smoke in smokers in Poland. The material was cigarettes of the top five brands bought in Poland and tobacco from non-smoked cigarettes. Acrylamide content in cigarettes mainstream smoke was determined by LC-MS/MS. Exposure assessment was carried out using analytical data of acrylamide content in cigarettes and the mean quantity of cigarettes smoked daily by smokers in Poland, assuming body weight at 70 kg. The mean content of acrylamide was 679.3 ng/cigarette (range: 455.0 - 822.5 ng/cigarette). The content of acrylamide was evidenced to correlate positively with total particulate matter (TPM) content in cigarettes. The estimated average exposure to acrylamide from tobacco smoke in adult smokers in Poland is 0.17 μg/kg b.w./day. Our results demonstrate that tobacco smoke is a significant source of acrylamide and total exposure to acrylamide in the population of smokers, on average, is higher by more than 50% in comparison with non-smokers. Our estimation of exposure to acrylamide from tobacco smoke is the first estimation taking into account the actual determined acrylamide content in the cigarettes available on the market.
Investigation of biochemical responses of Bacopa monnieri L. upon exposure to arsenate.
Mishra, Seema; Srivastava, Sudhakar; Dwivedi, Sanjay; Tripathi, Rudra Deo
2013-08-01
Widespread contamination of arsenic (As) is recognized as a global problem due to its well-known accumulation by edible and medicinal plants and associated health risks for the humans. In this study, phytotoxicity imposed upon exposure to arsenate [As(V); 0-250 μM for 1-7 days] and ensuing biochemical responses were investigated in a medicinal herb Bacopa monnieri L. vis-à-vis As accumulation. Plants accumulated substantial amount of As (total 768 μg g(-1) dw at 250 μM As(V) after 7 days) with the maximum As retention being in roots (60%) followed by stem (23%) and leaves (17%). The level of cysteine and total nonprotein thiols (NP-SH) increased significantly at all exposure concentrations and durations. Besides, the level of metalloid binding ligands viz., glutathione (GSH) and phytochelatins (PCs) increased significantly at the studied concentrations [50 and 250 μM As(V)] in both roots and leaves. The activities of various enzymes viz., arsenate reductase (AR), glutathione reductase (GR), superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and catalase (CAT) showed differential but coordinated stimulation in leaves and roots to help plants combat As toxicity up to moderate exposure concentrations (50 μM). However, beyond 50 μM, biomass production was found to decrease along with photosynthetic pigments and total soluble proteins, whereas lipid peroxidation increased. In conclusion, As accumulation potential of Bacopa may warrant its use as a phytoremediator but if Bacopa growing in contaminated areas is consumed by humans, it may prove to be toxic for health. Copyright © 2011 Wiley Periodicals, Inc.
Walia, Rasna R.; Nolting, Jacqueline M.; Vincent, Amy L.; Killian, Mary Lea; Zentkovich, Michele M.; Lorbach, Joshua N.; Lauterbach, Sarah E.; Anderson, Tavis K.; Davis, C. Todd; Zanders, Natosha; Jones, Joyce; Jang, Yunho; Lynch, Brian; Rodriguez, Marisela R.; Blanton, Lenee; Lindstrom, Stephen E.; Wentworth, David E.; Schiltz, John; Averill, James J.; Forshey, Tony
2017-01-01
In 2016, a total of 18 human infections with influenza A(H3N2) virus occurred after exposure to influenza-infected swine at 7 agricultural fairs. Sixteen of these cases were the result of infection by a reassorted virus with increasing prevalence among US swine containing a hemagglutinin gene from 2010–11 human seasonal H3N2 strains. PMID:28820376
Wang, Zhen-xing; Chen, Jian-qun; Chai, Li-yuan; Yang, Zhi-hui; Huang, Shun-hong; Zheng, Yu
2011-06-15
Previous studies often neglected the direct exposure to soil heavy metals in human health risk assessment. The purpose of this study was to assess the environmental impact and site-specific health risks of chromium (Cr) by both direct and indirect exposure assessment method. Results suggested that total Cr was shown a substantial buildup with a significant increase in the industrial and cultivated soils (averaged 1910 and 986 mg kg(-1), respectively). The Cr contents of vegetables exceeded the maximum permissible concentration by more than four times in every case. Human exposure to Cr was mainly due to dietary food intake in farming locations and due to soil ingestion in both industrial and residential sites. Soil ingestion was the main contributor pathway for direct exposure, followed by inhalation, and then dermal contact. The highest risks of vegetable ingestion were associated with consumption of Chinese cabbage. The results also indicated that plant tissues are able to convert the potentially toxic Cr (VI) species into the non-toxic Cr (III) species. The analyses of human health risks indicated that an important portion of the population is at risk, especially in the industrial site. Copyright © 2011 Elsevier B.V. All rights reserved.
Eliyahu, Ilan; Luria, Roy; Hareuveny, Ronen; Margaliot, Menachem; Meiran, Nachshon; Shani, Gad
2006-02-01
The present study examined the effects of exposure to Electromagnetic Radiation emitted by a standard GSM phone at 890 MHz on human cognitive functions. This study attempted to establish a connection between the exposure of a specific area of the brain and the cognitive functions associated with that area. A total of 36 healthy right-handed male subjects performed four distinct cognitive tasks: spatial item recognition, verbal item recognition, and two spatial compatibility tasks. Tasks were chosen according to the brain side they are assumed to activate. All subjects performed the tasks under three exposure conditions: right side, left side, and sham exposure. The phones were controlled by a base station simulator and operated at their full power. We have recorded the reaction times (RTs) and accuracy of the responses. The experiments consisted of two sections, of 1 h each, with a 5 min break in between. The tasks and the exposure regimes were counterbalanced. The results indicated that the exposure of the left side of the brain slows down the left-hand response time, in the second-later-part of the experiment. This effect was apparent in three of the four tasks, and was highly significant in only one of the tests. The exposure intensity and its duration exceeded the common exposure of cellular phone users.
Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions.
Mushak, Paul
2003-02-15
This paper presents a qualitative and quantitative analysis of the various aspects of lead remediation effectiveness with particular reference to human health risk assessment. One of the key elements of lead remediation efforts at such sites as those under the Superfund program deals with populations at elevated exposure and toxicity risk in the proximity of, or at, the site of remediation, especially remediation workers, workers at other tasks on sites that were remediated down to some action level of lead concentration in soils, and groups at risk in nearby communities. A second element has to do with how one measures or models lead exposure changes with special reference to baseline and post-remediation conditions. Various biomarkers of lead exposure can be employed, but their use requires detailed knowledge of what results using each means. The most commonly used approach is measurement of blood lead (Pb-B). Recognized limitations in the use of Pb-B has led to the use of predictive Pb exposure models, which are less vulnerable to the many behavioral, physiological, and environmental parameters that can distort isolated or 'single shot' Pb-B testings. A third aspect covered in this paper presents various physiological factors that affect the methods by which one evaluates Pb remediation effectiveness. Finally, this article offers an integrated look at how lead remediation actions directed at one lead source or pathway affect the total lead exposure picture for human populations at elevated lead exposure and toxicity risk.
[Total dietary exposure assessment of emerging brominated flame retardants in Beijing].
Lü, Surong; Niu, Yumin; Zhang, Jing; Shao, Bing; Du, Zhenxia
2016-05-01
To estimate the exposure characteristic of six emerging brominated flame retardant for Beijing residents by dietary intake. 2,3,5,6-tetrabromo-p-xylene (pTBX), pentabromotoluene (PBT), 1, 2, 3, 4, 5-pentabromo-6- ethylbenzene (PBEB), hexahromobenzene (HBB), hexachlorocyclopentadienyl- dibromocyclooctane (DBHCTD) and 1,2-bis(2 ,4 ,6-tribromo phenoxy) ethane (BTBPE) were detected by atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS) in total dietary samples from Beijing. Dietary intake assessments of human exposure were carried out according to results of determination. PBT, PBEB, HBB and BTBPE were occurred with concentration between 1.2-29.4 pg/g wet weight. The detection rates of HBB and BTBPE in animal--origin samples were higher than those in plant-origin samples, and there were significant differences (P < 0.05). The exposure level of Beijing residents to six emerging brominated flame retardants were 296.8 pg/(kg-d). The exposure level of emerging brominated flame retardants by dietary intake in Beijing is relatively low, and meat is the main source of BTBPE dietary intake.
Comparative assessment of three in vitro exposure methods for combustion toxicity.
Lestari, Fatma; Markovic, Boban; Green, Anthony R; Chattopadhyay, Gautam; Hayes, Amanda J
2006-01-01
A comparative assessment of three approaches for the use of human cells in vitro to investigate combustion toxicity was conducted. These included one indirect and two direct (passive and dynamic) exposure methods. The indirect method used an impinger system in which culture medium was used to trap the toxicants, whilst the direct exposure involved the use of a Horizontal Harvard Navicyte Chamber at the air/liquid interface. The cytotoxic effects of thermal decomposition products were assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (Promega) on a selection of human cells including: HepG2, A549 and skin fibroblasts. A small scale laboratory fire test using a vertical tube furnace was designed for the generation of combustion products. Polymethyl methacrylate (PMMA) was selected as a model polymer to study the cytotoxic effects of combustion products. NOAEC (no observable adverse effect concentration), IC10 (10% inhibitory concentration), IC50 (50% inhibitory concentration) and TLC (total lethal concentration) values were determined from dose response curves. Assessment using the NRU (neutral red uptake) and ATP (adenosine triphosphate) assays on human lung derived cells (A549) was also undertaken. Comparison between in vitro cytotoxicity results against published toxicity data for PMMA combustion and predicted LC50 (50% lethal concentration) values calculated from identified compounds using GCMS (gas chromatography mass spectrometry) was determined. The results suggested that the indirect exposure method did not appear to simulate closely exposure via inhalation, whilst exposure at the air/liquid interface by using the dynamic method proved to be a more representative method of human inhalation. This exposure method may be a potential system for in vitro cytotoxicity testing in combustion toxicity. Copyright 2005 John Wiley & Sons, Ltd.
Arsenic exposure and type 2 diabetes: results from the 2007-2009 Canadian Health Measures Survey.
Feseke, S K; St-Laurent, J; Anassour-Sidi, E; Ayotte, P; Bouchard, M; Levallois, P
2015-06-01
Inorganic arsenic and its metabolites are considered dangerous to human health. Although several studies have reported associations between low-level arsenic exposure and diabetes mellitus in the United States and Mexico, this association has not been studied in the Canadian population. We evaluated the association between arsenic exposure, as measured by total arsenic concentration in urine, and the prevalence of type 2 diabetes (T2D) in 3151 adult participants in Cycle 1 (2007-2009) of the Canadian Health Measures Survey (CHMS). All participants were tested to determine blood glucose and glycated hemoglobin. Urine analysis was also performed to measure total arsenic. In addition, participants answered a detailed questionnaire about their lifestyle and medical history. We assessed the association between urinary arsenic levels and T2D and prediabetes using multivariate logistic regression while adjusting for potential confounders. Total urinary arsenic concentration was positively associated with the prevalence of T2D and prediabetes: adjusted odds ratios were 1.81 (95% CI: 1.12-2.95) and 2.04 (95% CI: 1.03-4.05), respectively, when comparing the highest (fourth) urinary arsenic concentration quartile with the lowest (first) quartile. Total urinary arsenic was also associated with glycated hemoglobin levels in people with untreated diabetes. We found significant associations between arsenic exposure and the prevalence of T2D and prediabetes in the Canadian population. Causal inference is limited due to the cross-sectional design of the study and the absence of long-term exposure assessment.
Roosens, Laurence; Covaci, Adrian; Neels, Hugo
2007-11-01
Synthetic musks, such as 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran (HHCB), musk ketone (MK) and musk xylene (MX), are used as an alternative for natural musk. Due to their widespread use, these synthetic compounds turned up in different environmental compartments, such as wastewater, human and animal tissues. Yet, little is known about their distribution and occurrence in personal care and household products, information needed in order to evaluate the different human exposure routes. This paper gives an overview of the synthetic musk levels in six different product categories: body lotions, perfumes, deodorants, hair care products, shower products and sanitation products. Especially body lotions, perfumes and deodorants contained high levels of synthetic musks. Maximum concentrations of HHCB, AHTN, MX and MK were 22 mg g(-1), 8 mg g(-1), 26 microg g(-1) and 0.5 microg g(-1), respectively. By combining these results with the average usage of consumer products, low-, medium- and high-exposure profiles through dermal application could be estimated. HHCB was the highest contributor to the total amount of synthetic musks in every exposure profile (18-23 700 microg d(-1)). Exposure to MK and MX did not increase substantially (10-20-fold) between low- and high-exposure profiles, indicating that these compounds cover a less broad range. In comparison, exposure to HHCB and AHTN increased up to 10 000 fold between low- and high-exposure.
Human exposures to monomers resulting from consumer contact with polymers.
Leber, A P
2001-06-01
Many consumer products are composed completely, or in part, of polymeric materials. Direct or indirect human contact results in potential exposures to monomers as a result of migrations of trace amounts from the polymeric matrix into foods, into the skin or other bodily surfaces. Typically, residual monomer levels in these polymers are <100 p.p.m., and represent exposures well below those observable in traditional toxicity testing. These product applications thus require alternative methods for evaluating health risks relating to monomer exposures. A typical approach includes: (a) assessment of potential human contacts for specific polymer uses; (b) utilization of data from toxicity testing of pure monomers, e.g. cancer bioassay results; and (c) mathematical risk assessment methods. Exposure potentials are measured in one of two analytical procedures: (1) migration of monomer from polymer into a simulant solvent (e.g. alcohol, acidic water, vegetable oil) appropriate for the intended use of the product (e.g. beer cans, food jars, packaging adhesive, dairy hose); or (2) total monomer content of the polymer, providing worse-case values for migratable monomer. Application of toxicity data typically involves NOEL or benchmark values for non-cancer endpoints, or tumorigenicity potencies for monomers demonstrated to be carcinogens. Risk assessments provide exposure 'safety margin' ratios between levels that: (1) are projected to be safe according to toxicity information, and (2) are potential monomer exposures posed by the intended use of the consumer product. This paper includes an example of a health risk assessment for a chewing gum polymer for which exposures to trace levels of butadiene monomer occur.
Mercury transport and human exposure from global marine fisheries.
Lavoie, Raphael A; Bouffard, Ariane; Maranger, Roxane; Amyot, Marc
2018-04-30
Human activities have increased the global circulation of mercury, a potent neurotoxin. Mercury can be converted into methylmercury, which biomagnifies along aquatic food chains and leads to high exposure in fish-eating populations. Here we quantify temporal trends in the ocean-to-land transport of total mercury and methylmercury from fisheries and we estimate potential human mercury intake through fish consumption in 175 countries. Mercury export from the ocean increased over time as a function of fishing pressure, especially on upper-trophic-level organisms. In 2014, over 13 metric tonnes of mercury were exported from the ocean. Asian countries were important contributors of mercury export in the last decades and the western Pacific Ocean was identified as the main source. Estimates of per capita mercury exposure through fish consumption showed that populations in 38% of the 175 countries assessed, mainly insular and developing nations, were exposed to doses of methylmercury above governmental thresholds. Our study shows temporal trends and spatial patterns of Hg transport by fisheries. Given the high mercury intake through seafood consumption observed in several understudied yet vulnerable coastal communities, we recommend a comprehensive assessment of the health exposure risk of those populations.
ACUTE CHANGES IN SPUTUM COLLECTED FROM EXPOSED HUMAN SUBJECTS IN MINING CONDITIONS
Wong, Simon S.; Sun, Nina N.; Miller, Hugh B.; Witten, Mark L.; Burgess, Jefferey L.
2015-01-01
Neprilysin (NEP) is a key cell surface peptidase in the maintenance of airway homeostasis and the development of pulmonary disorders. However, little information is available about the effect of particulate matter (PM) on airway NEP. In this controlled human exposure study, changes in induced sputum were measured in eleven subjects at baseline, overshot (OS) mucking, and diesel exhaust (DE) exposure days. Neither OS condition nor DE exposure was found to induce significant changes in total protein, but DE induced significant increases in cell numbers of macrophages and epithelium. Moreover, significant increases in soluble NEP were observed following OS mining dust particulates (0.43 ± 0.06, p = 0.023) and DE exposure (0.30 ± 0.04, p = 0.035) when compared with the baseline control (0.40 ± 0.03), with 42% and 31% average net increase, respectively. Pearson’s correlation analyses indicated that sputum NEP activity were significantly associated with personal exposure product [Elemental carbon concentration, mg/m3 X time, min. (C X T)]. Data suggest that the changes in NEP activity may be an early, accurate endpoint for airway epithelial injury and provided a new insight into the mechanism of the airway effects in these exposure conditions. PMID:20384431
Epidemiologic studies of glyphosate and cancer: a review.
Mink, Pamela J; Mandel, Jack S; Sceurman, Bonnielin K; Lundin, Jessica I
2012-08-01
The United States Environmental Protection Agency and other regulatory agencies around the world have registered glyphosate as a broad-spectrum herbicide for use on multiple food and non-food use crops. Glyphosate is widely considered by regulatory authorities and scientific bodies to have no carcinogenic potential, based primarily on results of carcinogenicity studies of rats and mice. To examine potential cancer risks in humans, we reviewed the epidemiologic literature to evaluate whether exposure to glyphosate is associated causally with cancer risk in humans. We also reviewed relevant methodological and biomonitoring studies of glyphosate. Seven cohort studies and fourteen case-control studies examined the association between glyphosate and one or more cancer outcomes. Our review found no consistent pattern of positive associations indicating a causal relationship between total cancer (in adults or children) or any site-specific cancer and exposure to glyphosate. Data from biomonitoring studies underscore the importance of exposure assessment in epidemiologic studies, and indicate that studies should incorporate not only duration and frequency of pesticide use, but also type of pesticide formulation. Because generic exposure assessments likely lead to exposure misclassification, it is recommended that exposure algorithms be validated with biomonitoring data. Copyright © 2012 Elsevier Inc. All rights reserved.
Wang, Lijun; Zhang, Shengwei; Wang, Li; Zhang, Wenjuan; Shi, Xingmin; Lu, Xinwei; Li, Xiaoping; Li, Xiaoyun
2018-01-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, presenting potential threats to the ecological environment and human health. Sixty-two urban soil samples were collected in the typical semi-arid city of Xi’an in Northwest China. They were analyzed for concentration, pollution, and ecological and health risk of sixteen U.S. Environmental Protection Agency priority PAHs. The total concentrations of the sixteen PAHs (Σ16PAHs) in the urban soil ranged from 390.6 to 10,652.8 µg/kg with an average of 2052.6 µg/kg. The concentrations of some individual PAHs in the urban soil exceeded Dutch Target Values of Soil Quality and the Σ16PAHs represented heavy pollution. Pyrene and dibenz[a,h]anthracene had high ecological risk to aquatic/soil organisms, while other individual PAHs showed low ecological risk. The total ecological risk of PAHs to aquatic/soil organisms is classified as moderate. Toxic equivalency quantities (TEQs) of the sixteen PAHs varied between 21.16 and 1625.78 µg/kg, with an average of 423.86 µg/kg, indicating a relatively high toxicity potential. Ingestion and dermal adsorption of soil dust were major pathways of human exposure to PAHs from urban soil. Incremental lifetime cancer risks (ILCRs) of human exposure to PAHs were 2.86 × 10−5 for children and 2.53 × 10−5 for adults, suggesting that the cancer risk of human exposure to PAHs from urban soil is acceptable. PMID:29584654
Li, Hai-Ling; Song, Wei-Wei; Zhang, Zi-Feng; Ma, Wan-Li; Gao, Chong-Jing; Li, Jia; Huo, Chun-Yan; Mohammed, Mohammed O A; Liu, Li-Yan; Kannan, Kurunthachalam; Li, Yi-Fan
2016-09-15
Phthalates are widely used chemicals in household products, which severely affect human health. However, there were limited studies emphasized on young adults' exposure to phthalates in dormitories. In this study, seven phthalates were extracted from indoor dust that collected in university dormitories in Harbin, Shenyang, and Baoding, in the north of China. Dust samples were also collected in houses in Harbin for comparison. The total concentrations of phthalates in dormitory dust in Harbin and Shenyang samples were significantly higher than those in Baoding samples. The total geometric mean concentration of phthalates in dormitory dust in Harbin was lower than in house dust. Di-(2-ethylhexyl) phthalate (DEHP) was the most abundant phthalate in both dormitory and house dust. The daily intakes of the total phthalates, carcinogenic risk (CR) of DEHP, hazard index (HI) of di-isobutyl phthalate (DiBP), dibutyl phthalate (DBP), and DEHP were estimated, the median values for all students in dormitories were lower than adults who live in the houses. Monte Carlo simulation was applied to predict the human exposure risk of phthalates. HI of DiBP, DBP, and DEHP was predicted according to the reference doses (RfD) provided by the United States Environmental Protection Agency (U.S.EPA) and the reference doses for anti-androgenicity (RfD AA) developed by Kortenkamp and Faust. The results indicated that the risks of some students had exceeded the limitation, however, the measured results were not exceeded the limitation. Risk quotients (RQ) of DEHP were predicted based on China specific No Significant Risk Level (NSRL) and Maximum Allowable Dose Level (MADL). The predicted results of CR and RQ of DEHP suggested that DEHP could pose a health risk through intake of indoor dust. Copyright © 2016 Elsevier B.V. All rights reserved.
Human Body Burden and Dietary Methylmercury Intake: The Relationship in a Rice-Consuming Population.
Li, Ping; Feng, Xinbin; Chan, Hing-Man; Zhang, Xiaofeng; Du, Buyun
2015-08-18
Rice can be the main route of methylmercury (MeHg) exposure for rice-consuming populations living in area where mercury (Hg) is mined. However, the current risk assessment paradigm for MeHg exposure is based on epidemiological data collected from fish-consuming populations. This study was designed to evaluate the relationship between dietary MeHg intake and human body burden in a rice -consuming population from the Wanshan Hg mining area in China. Hair MeHg concentrations averaged 2.07 ± 1.79 μg/g, and the average blood MeHg concentration across the study area ranged from 2.20 to 9.36 μg/L. MeHg constituted 52.8 ± 17.5% and 71.7 ± 18.2% of total Hg (THg) on average in blood and hair samples, respectively. Blood and hair MeHg concentrations, rather than THg, can be used as a proxy of human MeHg exposure. Hair MeHg levels showed no significant monthly variation; however, hair THg can be impacted by inorganic Hg exposure. The toxicokinetic model of MeHg exposure based on fish consumption underestimated the human hair MeHg levels, and this may be a consequence of the high hair-to-blood MeHg ratio (361 ± 105) in the studied rice-consuming population. The use of risk assessment models based on fish consumption may not be appropriate for inland mining areas where rice is the staple food.
Nonphotic entrainment of the human circadian pacemaker
NASA Technical Reports Server (NTRS)
Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.
1998-01-01
In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.
Walser, Tobias; Juraske, Ronnie; Demou, Evangelia; Hellweg, Stefanie
2014-01-01
A pronounced presence of toluene from rotogravure printed matter has been frequently observed indoors. However, its consequences to human health in the life cycle of magazines are poorly known. Therefore, we quantified human-health risks in indoor environments with Risk Assessment (RA) and impacts relative to the total impact of toxic releases occurring in the life cycle of a magazine with Life Cycle Assessment (LCA). We used a one-box indoor model to estimate toluene concentrations in printing facilities, newsstands, and residences in a best, average, and worst-case scenario. The modeled concentrations are in the range of the values measured in on-site campaigns. Toluene concentrations can be close or even surpass the occupational legal thresholds in printing facilities in realistic worst-case scenarios. The concentrations in homes can surpass the US EPA reference dose (69 μg/kg/day) in worst-case scenarios, but are still at least 1 order of magnitude lower than in press rooms or newsstands. However, toluene inhaled at home becomes the dominant contribution to the total potential human toxicity impacts of toluene from printed matter when assessed with LCA, using the USEtox method complemented with indoor characterization factors for toluene. The significant contribution (44%) of toluene exposure in production, retail, and use in households, to the total life cycle impact of a magazine in the category of human toxicity, demonstrates that the indoor compartment requires particular attention in LCA. While RA works with threshold levels, LCA assumes that every toxic emission causes an incremental change to the total impact. Here, the combination of the two paradigms provides valuable information on the life cycle stages of printed matter.
Exposure to wood smoke particles produces inflammation in healthy volunteers.
Ghio, Andrew J; Soukup, Joleen M; Case, Martin; Dailey, Lisa A; Richards, Judy; Berntsen, Jon; Devlin, Robert B; Stone, Susan; Rappold, Ana
2012-03-01
Human exposure to wood smoke particles (WSP) impacts on human health through changes in indoor air quality, exposures from wild fires, burning of biomass and air pollution. This investigation tested the postulate that healthy volunteers exposed to WSP would demonstrate evidence of both pulmonary and systemic inflammation. Ten volunteers were exposed to filtered air and, 3 weeks or more later, WSP. Each exposure included alternating 15 min of exercise and 15 min of rest for a total duration of 2 h. Wood smoke was generated by heating an oak log on an electric element and then delivered to the exposure chamber. Endpoints measured in the volunteers included symptoms, pulmonary function tests, measures of heart rate variability and repolarisation, blood indices and analysis of cells and fluid obtained during bronchoalveolar lavage. Mean particle mass for the 10 exposures to air and WSP was measured using the mass of particles collected on filters and found to be below the detectable limit and 485±84 μg/m(3), respectively (mean±SD). There was no change in either symptom prevalence or pulmonary function with exposure to WSP. At 20 h after wood smoke exposure, blood tests demonstrated an increased percentage of neutrophils, and bronchial and bronchoalveolar lavage revealed a neutrophilic influx. We conclude that exposure of healthy volunteers to WSP may be associated with evidence of both systemic and pulmonary inflammation.
Leeds, Janet M; Fenneteau, Frederique; Gosselin, Nathalie H; Mouksassi, Mohamad-Samer; Kassir, Nastya; Marier, J F; Chen, Yali; Grosenbach, Doug; Frimm, Annie E; Honeychurch, Kady M; Chinsangaram, Jarasvech; Tyavanagimatt, Shanthakumar R; Hruby, Dennis E; Jordan, Robert
2013-03-01
Although smallpox has been eradicated, the United States government considers it a "material threat" and has funded the discovery and development of potential therapeutic compounds. As reported here, the human efficacious dose for one of these compounds, ST-246, was determined using efficacy studies in nonhuman primates (NHPs), together with pharmacokinetic and pharmacodynamic analysis that predicted the appropriate dose and exposure levels to provide therapeutic benefit in humans. The efficacy analysis combined the data from studies conducted at three separate facilities that evaluated treatment following infection with a closely related virus, monkeypox virus (MPXV), in a total of 96 NHPs. The effect of infection on ST-246 pharmacokinetics in NHPs was applied to humans using population pharmacokinetic models. Exposure at the selected human dose of 600 mg is more than 4-fold higher than the lowest efficacious dose in NHPs and is predicted to provide protection to more than 95% of the population.
SPECIATION OF ARSENIC IN TARGET FOODS AND COMPOSITE DIET SAMPLES
For the general population, food may surpass drinking water as the major source of ingestion of total elemental arsenic. Accurate assessments of inorganic arsenic intake via food are needed to understand the relative contributions of drinking water and foods to human exposures t...
PIGE as a screening tool for Per- and polyfluorinated substances in papers and textiles
NASA Astrophysics Data System (ADS)
Ritter, Evelyn E.; Dickinson, Margaret E.; Harron, John P.; Lunderberg, David M.; DeYoung, Paul A.; Robel, Alix E.; Field, Jennifer A.; Peaslee, Graham F.
2017-09-01
Per- and polyfluoroalkyl substances (PFASs) comprise a large array of man-made fluorinated chemicals. It is an emerging chemical class of concern because many PFASs are environmentally persistent and some have known ecological and human toxicity. Consumer products treated with PFASs result in human exposure to PFASs through inhalation, ingestion, and environmental exposure to emissions from wastewater or from landfills. A rapid screening method based on total fluorine was developed and applied to quantify PFASs on consumer papers and textiles. Particle-Induced Gamma Ray Emission (PIGE) spectroscopy provides a non-destructive and quantitative measurement of total fluorine on papers and textiles. This technique is both rapid and sensitive, with a limit of detection (LOD) of 13 nmol F/cm2 for papers and 24-45 nmol F/cm2 for textiles, with reproducibility of ±12% RSD for both. PIGE is a high throughput (>20 samples/hr typically) method that was applied to 50 papers and 50 textiles in commerce to demonstrate the method.
Li, Tianyuan; Chang, Qing; Yuan, Xuyin; Li, Jizhou; Ayoko, Godwin A; Frost, Ray L; Chen, Hongyan; Zhang, Xinjian; Song, Yinxian; Song, Wenzhi
2017-06-21
Consumption of crops grown in cadmium-contaminated soils is an important Cd exposure route to humans. The present study utilizes statistical analysis and in vitro digestion experiments to uncover the transfer processes of Cd from soils to the human body through rice consumption. Here, a model was created to predict the levels of bioaccessible Cd in rice grains using phytoavailable Cd quantities in the soil. During the in vitro digestion, a relatively constant ratio between the total and bioaccessible Cd in rice was observed. About 14.89% of Cd in soils was found to be transferred into rice grains and up to 3.19% could be transferred from rice grains to the human body. This model was able to sufficiently predict rice grain cadmium concentrations based on CaCl 2 extracted zinc and cadmium concentrations in soils (R 2 = 0.862). The bioaccessible Cd concentration in rice grains was also able to be predicted using CaCl 2 extracted cadmium from soil (R 2 = 0.892). The models established in this study demonstrated that CaCl 2 is a suitable indicator of total rice Cd concentrations and bioaccessible rice grain Cd concentrations. The chain model approach proposed in this study can be used for the fast and accurate evaluation of human Cd exposure through rice consumption based on the soil conditions in contaminated regions.
Trudel, David; Tlustos, Christina; Von Goetz, Natalie; Scheringer, Martin; Hungerbühler, Konrad
2011-01-01
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants added to plastics, polyurethane foam, electronics, textiles, and other products. These products release PBDEs into the indoor and outdoor environment, thus causing human exposure through food and dust. This study models PBDE dose distributions from ingestion of food for Irish adults on congener basis by using two probabilistic and one semi-deterministic method. One of the probabilistic methods was newly developed and is based on summary statistics of food consumption combined with a model generating realistic daily energy supply from food. Median (intermediate) doses of total PBDEs are in the range of 0.4-0.6 ng/kg(bw)/day for Irish adults. The 97.5th percentiles of total PBDE doses lie in a range of 1.7-2.2 ng/kg(bw)/day, which is comparable to doses derived for Belgian and Dutch adults. BDE-47 and BDE-99 were identified as the congeners contributing most to estimated intakes, accounting for more than half of the total doses. The most influential food groups contributing to this intake are lean fish and salmon which together account for about 22-25% of the total doses.
Occurrence of toluene in Canadian total diet foods and its significance to overall human exposure.
Cao, Xu-Liang; Pelletier, Luc; Sparling, Melissa; Dabeka, Robert
2018-01-01
Levels of most VOCs in foods are usually low because of their volatility, and human exposure to VOCs is expected to be mainly via inhalation of ambient and indoor air. However, dietary exposures to VOCs can be significant to overall exposures if elevated concentrations of VOCs are present in foods consumed in high amounts and/or on a regular basis, and this was demonstrated in this study with the occurrence data of toluene from the recent 2014 Canadian Total Diet Study (TDS). Concentrations of toluene in the composite samples of most food types from the 2014 TDS are low and similar to the results from the previous 2007 TDS with some exceptions, such as beef steak (670 ng/g (2014 TDS) vs. 14 ng/g (2007 TDS)), poultry, chicken and turkey (307 ng/g (2014 TDS) vs. 8.8 ng/g (2007 TDS)). Toluene concentrations in most of the grain-based and fast food composite samples from the 2014 TDS are considerably higher than those from the 2007 TDS, with the highest level of 4655 ng/g found in the composite sample of crackers from the 2014 TDS (compared to 18 ng/g from 2007 TDS). Dietary exposure estimates for toluene based on the occurrence results from the 2014 TDS show that for most of the age groups, grain-based foods are the primary source, accounting for an average of 77.5% of the overall toluene intake from the diet. The highest dietary exposures to toluene were observed for the adult age groups, with estimated average exposures ranging from 177.4 to 184.5 µg/d. Dietary exposure estimates to toluene are well below oral doses associated with toxicological effects and also below the maximum estimated intake (819 µg/d) from air inhalation for adult group (20 - 70 years) based on the results from CEPA (Canadian Environmental Protection Act) assessment in 1992.
Yousaf, Balal; Amina; Liu, Guijian; Wang, Ruwei; Imtiaz, Muhammad; Rizwan, Muhammad Shahid; Zia-Ur-Rehman, Muhammad; Qadir, Abdul; Si, Youbin
2016-05-01
The human population boom, urbanization and rapid industrialization have either directly or indirectly resulted in the serious environmental toxification of the soil-food web by metal exposure from anthropogenic sources in most of the developing industrialized world. The present study was conducted to analyze concentrations of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in soil and vegetables in the urban-periurban areas influenced by emerging industry. Vegetables and their corresponding soil samples were collected and analyzed for heavy metals contents from six random sites. According to the results, the potential health risks from metals to the local communities were assessed by following the methodology described by the US-EPA. In general, the total non-carcinogenic risks were shown to be less than the limits set by the US-EPA. However, the potential risk of developing carcinogenicity in humans over a lifetime of exposure could be increased through the dietary intake of Cd, Cr and Ni. In some cases, Pb was also marginally higher than the safe level. It was concluded that some effective remedial approaches should be adopted to mitigate the risks of Cd, Cr, Ni and Pb in the study area because these metal levels have exceeded the safe limits for human health. However, new studies on gastrointestinal bioaccessibility in human are required to heighten our understanding about metals exposure and health risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, De-Gao; Alaee, Mehran; Byer, Jonathan D; Brimble, Samantha; Pacepavicius, Grazina
2013-02-15
A screening level human health risk assessment based on the worst-case scenario was conducted on the occupational and residential exposures to dechlorane plus (DP) in the manufacturing facility region and an electronic-waste (e-waste) recycling site in China, which are two of the most polluted areas of DP in the world. Total estimated exposure doses (EEDs) via dietary intake, dermal contact, and inhalation was approximately 0.01 mg kg(-1) d(-1) for people living in the manufacturing facility region. In comparison, total EEDs (approximate 0.03 μg kg(-1), d(-1)) were 300-fold lower in people living near an e-waste recycling site in China. Chronic oral, dermal, and inhalation reference doses (RfDs) were estimated to be 5.0, 2.0, and 0.01 mg kg(-1)d (-1), respectively. The oral RfD was markedly greater than Mirex (2×10(-4) mg kg(-1) d(-1)) and decabromodiphenyl ether (BDE-209; 7×10(-3) mg kg(-1) d(-1)), which have been or might be replaced by DP as a flame retardant with less toxicity. Monte Carlo simulation was used to generate the probability densities and functions for the hazard index which was calculated from the EEDs and RfDs to assess the human health risk. The hazard index was three orders of magnitude lower than 1, suggesting that occupational and residential exposures were relatively safe in the manufacturing facility region and e-waste recycling site. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J.; Kannan, K.; Cheng, J.
2008-11-15
Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
Dynamic disulfide/thiol homeostasis in lead exposure denoted by a novel method.
Bal, Ceylan; Ağış, Erol Rauf; Gündüzöz, Meşide; Büyükşekerci, Murat; Alışık, Murat; Şen, Orhan; Tutkun, Engin; Yılmaz, Ömer Hınç
2017-05-01
Lead is a toxic heavy metal, and prevention of human exposure to lead has not been accomplished yet. The toxicity of lead is continually being investigated, and the molecular mechanisms of its toxicity are still being revealed. In this study, we used a novel method to examine thiol (SH)/disulfide homeostasis in workers who were occupationally exposed to lead. A total of 80 such workers and 70 control subjects were evaluated, and their native and total SH values were measured in serum using a novel method; their blood lead levels were also assessed. The novel method used for SH measurements was based on the principle of measuring native SH, after which disulfide bonds were reduced and total SHs were measured. These measurements allowed us to calculate disulfide amounts, disulfide/total SH percent ratios, disulfide/native SH percent ratios, and native SH /total SH percent ratios. We found that disulfide levels were significantly higher in workers who were exposed to lead (21.08(11.1-53.6) vs. 17.9(1.7-25), p < 0.001). Additionally, the disulfide/native SH and disulfide/total SH percent ratios were higher in exposed workers, while the native SH/total SH percent ratios were higher in the control subjects. Furthermore, the lead and disulfide levels showed a positive correlation, with p < 0.001 and a correlation coefficient of 0.378. Finally, the novel method used in this study successfully showed a switch from SH to disulfide after lead exposure, and the method is fully automated, easy, cheap, reliable, and reproducible. Use of this method in future cases may provide valuable insights into the management of lead exposure.
Andra, Syam S; Austin, Christine; Yang, Juan; Patel, Dhavalkumar; Arora, Manish
2016-12-01
Human exposures to bisphenol A (BPA) has attained considerable global health attention and represents one of the leading environmental contaminants with potential adverse health effects including endocrine disruption. Current practice of measuring of exposure to BPA includes the measurement of unconjugated BPA (aglycone) and total (both conjugated and unconjugated) BPA; the difference between the two measurements leads to estimation of conjugated forms. However, the measurement of BPA as the end analyte leads to inaccurate estimates from potential interferences from background sources during sample collection and analysis. BPA glucuronides (BPAG) and sulfates (BPAS) represent better candidates for biomarkers of BPA exposure, since they require in vivo metabolism and are not prone to external contamination. In this work, the primary focus was to review the current state of the art in analytical methods available to quantitate BPA conjugates. The entire analytical procedure for the simultaneous extraction and detection of aglycone BPA and conjugates is covered, from sample pre-treatment, extraction, separation, ionization, and detection. Solid phase extraction coupled with liquid chromatograph and tandem mass spectrometer analysis provides the most sensitive detection and quantification of BPA conjugates. Discussed herein are the applications of BPA conjugates analysis in human exposure assessment studies. Measuring these potential biomarkers of BPA exposure has only recently become analytically feasible and there are limitations and challenges to overcome in biomonitoring studies. Copyright © 2016 Elsevier B.V. All rights reserved.
The efficacy of ultrasound treatment as a reversible male contraceptive in the rhesus monkey.
VandeVoort, Catherine A; Tollner, Theodore L
2012-09-12
The use of therapeutic ultrasound as a contraceptive approach has involved nonhuman primates as well as rats and dogs. The current study was undertaken to determine whether this treatment could be a method for reversible contraception, using a model with testes size similar to adult humans. Two methods of ultrasound exposure were used, either the transducer probe at the bottom of a cup filled with saline (Cup) or direct application to the surface of the scrotum (Direct). Four adult rhesus (Macaca mulatta) males with normal semen parameters were treated with therapeutic ultrasound at 2.5 W/cm(2) for 30 min. Treatment was given 3 times, one every other day on a Monday-Wednesday-Friday schedule. For each male, semen quality was evaluated a minimum of three times over several months prior to ultrasound exposure and weekly for two months following ultrasound treatment. Semen samples from all males, regardless of exposure method, exhibited a decrease in the percentage of motile sperm following ultrasound treatment. There was an average reduction in motility of 40% the week following treatment. Similarly, curvilinear velocity and the percentage of sperm with a normally shaped flagellum were also reduced in all males following ultrasound treatment. A significant reduction in the total number of sperm in an ejaculate (total sperm count) was only observed in males that received ultrasound via the cup method. Following treatment via the cup method, males exhibited up to a 91.7% decrease in average total sperm count (n = 2). Sperm count did not approach pre-treatment levels until 8 weeks following ultrasound exposure. The sustained reduction in sperm count, percent motility, normal morphology, and sperm vigor with the cup exposure method provides proof of principle that testicular treatment with ultrasound can be an effective contraceptive approach in humans.
Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter
Liu, Xiaozhen; Frey, H. Christopher
2012-01-01
A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000
Tran, Tri Manh; Le, Hanh Thi; Vu, Nam Duc; Minh Dang, Giang Huong; Minh, Tu Binh; Kannan, Kurunthachalam
2017-10-01
Earlier studies have reported the occurrence of cyclic and linear siloxanes in personal care and household products. Nevertheless, there is a lack of information on the occurrence of siloxanes in indoor air. In this study, four cyclic and six linear siloxanes were measured in 97 indoor air samples collected from various micro-environments in four cities in northern, Vietnam, during September 2016 to January 2017. The total concentrations of siloxanes (TSi) in particulate and gas phases ranged from 141 to 7220 μg g -1 (mean: 1880) and 23.8-1580 ng m -3 (mean: 321), respectively. The total concentrations of cyclic siloxanes (TCSi), linear siloxanes (TLSi), and TSi in indoor air were 1.91-1500 ng m -3 , 21.8-817 ng m -3 , and 41.8-1950 ng m -3 , respectively. The highest mean concentration of siloxanes was found in indoor air from hair salons in Hanoi. The concentrations of siloxanes in air collected from homes in Hanoi were higher than those from other smaller cities such as Bacninh, Thaibinh, and Tuyenquang. The human exposures to siloxanes through inhalation were estimated for various age groups based on the measured concentrations. The mean inhalation exposure doses to total siloxanes for infants, toddlers, children, teenagers, and adults were 352, 219, 188, 132, and 95.9 ng kg-bw -1 d -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arashiro, Maiko; Lin, Ying-Hsuan; Zhang, Zhenfa; Sexton, Kenneth G; Gold, Avram; Jaspers, Ilona; Fry, Rebecca C; Surratt, Jason D
2018-02-21
Isoprene-derived secondary organic aerosol (SOA), which comprise a large portion of atmospheric fine particulate matter (PM 2.5 ), can be formed through various gaseous precursors, including isoprene epoxydiols (IEPOX), methacrylic acid epoxide (MAE), and isoprene hydroxyhydroperoxides (ISOPOOH). The composition of the isoprene-derived SOA affects its reactive oxygen species (ROS) generation potential and its ability to alter oxidative stress-related gene expression. In this study we assess effects of isoprene SOA derived solely from ISOPOOH oxidation on human bronchial epithelial cells by measuring the gene expression changes in 84 oxidative stress-related genes. In addition, the thiol reactivity of ISOPOOH-derived SOA was measured through the dithiothreitol (DTT) assay. Our findings show that ISOPOOH-derived SOA alter more oxidative-stress related genes than IEPOX-derived SOA but not as many as MAE-derived SOA on a mass basis exposure. More importantly, we found that the different types of SOA derived from the various gaseous precursors (MAE, IEPOX, and ISOPOOH) have unique contributions to changes in oxidative stress-related genes that do not total all gene expression changes seen in exposures to atmospherically relevant compositions of total isoprene-derived SOA mixtures. This study suggests that amongst the different types of known isoprene-derived SOA, MAE-derived SOA are the most potent inducer of oxidative stress-related gene changes but highlights the importance of considering isoprene-derived SOA as a total mixture for pollution controls and exposure studies.
From the exposome to mechanistic understanding of chemical-induced adverse effects
BACKGROUND: Current definitions of the exposome expand beyond the initial idea to consider the totality of exposure and aim to relate to biological effects. While the exposome has been established for human health, its principles can be extended to include broader ecological issu...
Lyons, Michael A.; Yang, Raymond S.H.; Mayeno, Arthur N.; Reisfeld, Brad
2008-01-01
Background One problem of interpreting population-based biomonitoring data is the reconstruction of corresponding external exposure in cases where no such data are available. Objectives We demonstrate the use of a computational framework that integrates physiologically based pharmacokinetic (PBPK) modeling, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of environmental chloroform source concentrations consistent with human biomonitoring data. The biomonitoring data consist of chloroform blood concentrations measured as part of the Third National Health and Nutrition Examination Survey (NHANES III), and for which no corresponding exposure data were collected. Methods We used a combined PBPK and shower exposure model to consider several routes and sources of exposure: ingestion of tap water, inhalation of ambient household air, and inhalation and dermal absorption while showering. We determined posterior distributions for chloroform concentration in tap water and ambient household air using U.S. Environmental Protection Agency Total Exposure Assessment Methodology (TEAM) data as prior distributions for the Bayesian analysis. Results Posterior distributions for exposure indicate that 95% of the population represented by the NHANES III data had likely chloroform exposures ≤ 67 μg/L in tap water and ≤ 0.02 μg/L in ambient household air. Conclusions Our results demonstrate the application of computer simulation to aid in the interpretation of human biomonitoring data in the context of the exposure–health evaluation–risk assessment continuum. These results should be considered as a demonstration of the method and can be improved with the addition of more detailed data. PMID:18709138
Case Report: Human Exposure to Dioxins from Clay
Franzblau, Alfred; Hedgeman, Elizabeth; Chen, Qixuan; Lee, Shih-Yuan; Adriaens, Peter; Demond, Avery; Garabrant, David; Gillespie, Brenda; Hong, Biling; Jolliet, Olivier; Lepkowski, James; Luksemburg, William; Maier, Martha; Wenger, Yvan
2008-01-01
Context For the general population, the dominant source of exposure to dioxin-like compounds is food. As part of the University of Michigan Dioxin Exposure Study (UMDES), we measured selected polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (PCBs) in serum of 946 subjects who were a representative sample of the general population in five Michigan counties. Case presentation The total toxic equivalency (TEQ; based on 2005 World Health Organization toxic equivalency factors) of serum from the index case was 211 ppt on a lipid-adjusted basis, which was the highest value observed in the UMDES study population. This subject had no apparent opportunity for exposure to dioxins, except that she had lived on property with soil contaminated with dioxins for almost 30 years, and had been a ceramics hobbyist for > 30 years. Soil from her property and clay that she used for ceramics were both contaminated with dioxins, but the congener patterns differed. Discussion The congener patterns in this subject’s serum, soil, and ceramic clay suggest strongly that the dioxin contamination in clay and not soil was the dominant source of dioxin contamination in her serum. Relevance to public health practice: It appears that ceramic clay, in particular the process of firing clay with unvented kilns, can be a significant nonfood and nonindustrial source of human exposure to dioxins among ceramics hobbyists. The extent of human exposure from ceramic clay is unclear, but it may be widespread. Further work is needed to more precisely characterize the routes of exposure. PMID:18288324
Li, Junqi; Dong, Zheng; Wang, Ying; Bao, Junsong; Yan, Yijun; Liu, Anming; Jin, Jun
2018-08-01
Brominated flame retardants (BFRs) can accumulate in humans and are associated with adverse health effects. The study was conducted to determine the differences in Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardant (Alt-BFR) concentrations between men and women. We analyzed hair samples from 14 male and 20 female university students, paired dust samples from their dormitories (10 for males and 8 for females), and six dust samples from university teaching buildings. The total PBDE concentrations in hair from females were significantly (three times) higher (p = 0.012) than that from males (means 372 and 109 ng/g, respectively). The mean total PBDE concentrations in classroom and dormitory dust were 36100 and 2012 ng/g, respectively. The PBDE patterns were different in the male and female hair samples, as were the patterns in the classroom and dormitory dust. There are no reports concerning human exposure to BFRs through dust that was assessed considering academic and residential environments simultaneously. The differences between BFR exposure for males and females and the differences between BFR concentrations in hair samples from males and females were consistent for 71.4% of the compounds. However, using only dormitory dust in the calculations gave consistent differences only for 28.6% of the compounds, suggesting that the BFR concentration differences in hair were mainly because females spent much more time than males in classrooms. Copyright © 2018 Elsevier Ltd. All rights reserved.
Parham, Fred; Portier, Christopher J.; Chang, Xiaoqing; Mevissen, Meike
2016-01-01
Using in vitro data in human cell lines, several research groups have investigated changes in gene expression in cellular systems following exposure to extremely low frequency (ELF) and radiofrequency (RF) electromagnetic fields (EMF). For ELF EMF, we obtained five studies with complete microarray data and three studies with only lists of significantly altered genes. Likewise, for RF EMF, we obtained 13 complete microarray datasets and 5 limited datasets. Plausible linkages between exposure to ELF and RF EMF and human diseases were identified using a three-step process: (a) linking genes associated with classes of human diseases to molecular pathways, (b) linking pathways to ELF and RF EMF microarray data, and (c) identifying associations between human disease and EMF exposures where the pathways are significantly similar. A total of 60 pathways were associated with human diseases, mostly focused on basic cellular functions like JAK–STAT signaling or metabolic functions like xenobiotic metabolism by cytochrome P450 enzymes. ELF EMF datasets were sporadically linked to human diseases, but no clear pattern emerged. Individual datasets showed some linkage to cancer, chemical dependency, metabolic disorders, and neurological disorders. RF EMF datasets were not strongly linked to any disorders but strongly linked to changes in several pathways. Based on these analyses, the most promising area for further research would be to focus on EMF and neurological function and disorders. PMID:27656641
Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua
2008-11-15
Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion and dermal exposure (2.3 and 0.363 pg TEQ/kg bw/day for children and adults, respectively) were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site (0.021 and 0.0053 pg TEQ/kg bw/day for children and adults, respectively), implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations.
Fang, Qiang; Mahmoud, Seedahmed S; Yan, Jiayong; Li, Hui
2016-11-23
For this investigation, we studied the effects of extremely low frequency pulse electromagnetic fields (ELF-PEMF) on the human cardiac signal. Electrocardiograms (ECGs) of 22 healthy volunteers before and after a short duration of ELF-PEMF exposure were recorded. The experiment was conducted under single-blind conditions. The root mean square (RMS) value of the recorded data was considered as comparison criteria. We also measured and analysed four important ECG time intervals before and after ELF-PEMF exposure. Results revealed that the RMS value of the ECG recordings from 18 participants (81.8% of the total participants) increased with a mean value of 3.72%. The increase in ECG voltage levels was then verified by a second experimental protocol with a control exposure. In addition to this, we used hyperbolic T-distributions (HTD) in the analysis of ECG signals to verify the change in the RR interval. It was found that there were small shifts in the frequency-domain signal before and after EMF exposure. This shift has an influence on all frequency components of the ECG signals, as all spectrums were shifted. It is shown from this investigation that a short time exposure to ELF-PEMF can affect the properties of ECG signals. Further study is needed to consolidate this finding and discover more on the biological effects of ELF-PEMF on human physiological processes.
A translatable predictor of human radiation exposure.
Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P
2014-01-01
Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.
Loh, Miranda M; Houseman, E Andres; Levy, Jonathan I; Spengler, John D; Bennett, Deborah H
2009-11-01
Many people spend time in stores and restaurants, yet there has been little investigation of the influence of these microenvironments on personal exposure. Relative to the outdoors, transportation, and the home, these microenvironments have high concentrations of several volatile organic compounds (VOCs). We developed a stochastic model to examine the effect of VOC concentrations in these microenvironments on total personal exposure for (1) non-smoking adults working in offices who spend time in stores and restaurants or bars and (2) non-smoking adults who work in these establishments. We also compared the effect of working in a smoking versus non-smoking restaurant or bar. Input concentrations for each microenvironment were developed from the literature whereas time activity inputs were taken from the National Human Activity Patterns Survey. Time-averaged exposures were simulated for 5000 individuals over a weeklong period for each analysis. Mean contributions to personal exposure from non-working time spent in stores and restaurants or bars range from <5% to 20%, depending on the VOC and time-activity patterns. At the 95th percentile of the distribution of the proportion of personal exposure attributable to time spent in stores and restaurants or bars, these microenvironments can be responsible for over half of a person's total exposure to certain VOCs. People working in restaurants or bars where smoking is allowed had the highest fraction of exposure attributable to their workplace. At the median, people who worked in stores or restaurants tended to have 20-60% of their total exposures from time spent at work. These results indicate that stores and restaurants can be large contributors to personal exposure to VOCs for both workers in those establishments and for a subset of people who visit these places, and that incorporation of these non-residential microenvironments can improve models of personal exposure distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-09-30
The William Dick Lagoon site consists of three unlined lagoons (approximately 2.5 acres total area) which previously contained over four million gallons of rinse water from cleaning chemical tank trailers. In 1970, two of the lagoons breached and released approximately 300,000 gallons of wastewater into the nearby area and a small tributary. Trichloroethylene, toluene, 4,4-DDE, and polynuclear aromatic hydrocarbons have been reported in the soil on the site. Trichloroethylene was detected in a nearby spring, previously used as a water source by a small number of residents. Potential human exposure pathways include ingestion of contaminated water, dermal exposure to contaminatedmore » water and soil, and inhalation of contaminated dust and organics in the contaminated groundwater. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances. However, it does not appear that a human population is currently exposed to site contaminants at levels of health concern.« less
Zheng, Jiajia; Huynh, Trang; Gasparon, Massimo; Ng, Jack; Noller, Barry
2013-12-01
Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0-7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean ± SE, 0.9 % ± 0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children's blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children's blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.
Hou, Minmin; Wang, Yan; Zhao, Hongxia; Zhang, Qiaonan; Xie, Qing; Zhang, Xiaojing; Chen, Ruize; Chen, Jingwen
2018-07-01
In this study, polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and dechlorane plus (DPs) were analyzed in seven categories of building and decoration materials. The total concentrations of analyzed FRs ranged from 1.19 ng/g (diatomite powder) to 9532 ng/g (expanded polystyrene panel). Relatively high concentrations were detected in foam samples and PVC materials, followed by sealing materials, boards, wallpaper, paints, and wall decoration powders. BDE209 was the most detected compound with the highest concentrations in almost all materials, followed by decabromodiphenyl ethane (DBDPE), which was consistent with their productions and consumptions in China. The estimated PBDE concentrations in air and dust based on material concentration and emission rate were comparable with those detected in real samples. Adult and infant exposures via inhalation and dust ingestion were assessed. The estimated exposures to BDE209 via dust ingestion were 1.36 and 0.12 ng/(kg bw d), which were 19- and 4-fold higher than those via inhalation for infants and adults, respectively. This suggested that dust ingestion was a significant pathway of human BDE209 exposure, especially for infants. For the other PBDE congeners (∑ 7 PBDEs), the estimated exposures via inhalation were 2.60 and 1.32 ng/(kg bw d) for infants and adults, respectively. Despite the low estimated human exposures to PBDEs compared to the oral reference doses, the exposure associated with building and decoration materials still requires more attention because of the potential risks from other exposure pathways and undetected FRs in those materials. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Shuang; Zhang, Qing-Zhao; Zhang, De-Qin; Feng, Jiang-Bin; Luo, Qun; Lu, Xue; Wang, Xin-Ru; Li, Kun-Peng; Chen, De-Qing; Mu, Xiao-Feng; Gao, Ling; Liu, Qing-Jie
2017-01-01
The identification of rapid, sensitive and high-throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH-1 human lymphoblastoid cells, following exposure to γ-rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF-15 gene expression in AHH-1 cells and human peripheral blood lymphocytes (HPBLs). GDF-15 mRNA and protein expression levels following exposure to γ-rays and neutron radiation were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis in AHH-1 cells. In addition, alterations in GDF-15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF-15 mRNA and protein expression levels in AHH-1 cells were significantly upregulated following exposure to γ-ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose-response relationship was identified in AHH-1 cells at γ-ray doses between 0.4 and 1.6 Gy. GDF-15 mRNA levels in HPBLs were significantly upregulated following exposure to γ-ray doses between 1 and 8 Gy, within 4–48 h following irradiation. These results suggested that significant time- and dose-dependent alterations in GDF-15 mRNA and protein expression occur in AHH-1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF-15 gene expression may have potential as a biomarker to evaluate radiation exposure. PMID:28440431
Fang, Fengman; Wang, Haidong; Lin, Yuesheng
2011-08-01
Total mercury (Hg(T)) and bioavailability Hg (Hg(HCl)) concentrations in soil were determined in five districts in Wuhu urban area. Spatial pattern of soil Hg concentration was generated through kriging technology. Results showed that Hg concentration in soil ranged from 0.024 to 2.844 mg kg( -1) with an average of 0.207 mg kg( -1). Hg concentration in soil appeared to have a block distribution and decreased from downtown to surrounding district. And Hg concentrations appeared to have a medium scale spatial auto correlation, strongly affected by human activity. The maximal Hg average concentration (0.332 mg kg( -1)) in soil appeared in Jinghu district, where the high intensity of human activities is. Second highest Hg average concentration (0.263 mg kg( -1)) in soil appeared in development district, where the intensive industrial activities are. Bioavailability Hg concentration in soil ranged from 2.6 to 4.9 μg kg( -1) with an average of 3.8 μg kg( -1), which had a ratio of 0.28~6.44% to total Hg. The ratios of bioavailability Hg to total Hg in vegetable soil were bigger than those of park soil. Correlation analysis showed that total Hg, organic matter, total phosphorus, and bioavailability Hg concentrations in soil were significantly positively correlated. Hg concentration in vegetable ranged from 2.7 to 15.2 μg kg( -1) with an average of 6.5 μg kg( -1). Hg concentration in vegetable was positively correlated with Hg(HCl) concentration in soil. According to the calculation on hazard quotient (HQ) for children, inhalation of Hg vapor from soil is the main exposure pathway, in which HQ is 2.517 × 10( -2), accounting for 80.3% of the four exposure pathways. Hazard index (HI) of the four exposure pathways is lower than the "safe" level of HI = 1; therefore, exposure of soil Hg exhibited little potential health risk to children in Wuhu urban area.
Hofmann, Ute; Priem, Melanie; Bartzsch, Christine; Winckler, Thomas; Feller, Karl-Heinz
2014-01-01
In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B' promoter were constructed. Exposure of HaCaT sensor cells to 25 μM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ∼300-fold induction of transcript level of the gene coding for heat shock protein HSP70B'. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B' gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B' promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 μM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (μTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings. PMID:24967604
Naphthalene distributions and human exposure in Southern California
NASA Astrophysics Data System (ADS)
Lu, Rong; Wu, Jun; Turco, Richard P.; Winer, Arthur M.; Atkinson, Roger; Arey, Janet; Paulson, Suzanne E.; Lurmann, Fred W.; Miguel, Antonio H.; Eiguren-Fernandez, Arantzazu
The regional distribution of, and human exposure to, naphthalene are investigated for Southern California. A comprehensive approach is taken in which advanced models are linked for the first time to quantify population exposure to the emissions of naphthalene throughout Southern California. Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons found in polluted urban environments, and has been detected in both outdoor and indoor air samples. Exposure to high concentrations of naphthalene may have adverse health effects, possibly causing cancer in humans. Among the significant emission sources are volatilization from naphthalene-containing products, petroleum refining, and combustion of fossil fuels and wood. Gasoline and diesel engine exhaust, with related vaporization from fuels, are found to contribute roughly half of the daily total naphthalene burden in Southern California. As part of this study, the emission inventory for naphthalene has been verified against new field measurements of the naphthalene-to-benzene ratio in a busy traffic tunnel in Los Angeles, supporting the modeling work carried out here. The Surface Meteorology and Ozone Generation (SMOG) airshed model is used to compute the spatial and temporal distributions of naphthalene and its photooxidation products in Southern California. The present simulations reveal a high degree of spatial variability in the concentrations of naphthalene-related species, with large diurnal and seasonal variations as well. Peak naphthalene concentrations are estimated to occur in the early morning hours in the winter season. The naphthalene concentration estimates obtained from the SMOG model are employed in the Regional Human Exposure (REHEX) model to calculate population exposure statistics. Results show average hourly naphthalene exposures in Southern California under summer and winter conditions of 270 and 430 ng m -3, respectively. Exposure to significantly higher concentrations may occur for individuals close to local sources, or in naphthalene "hotspots" revealed by simulations and observations. Such levels of naphthalene exposure may be used to gauge the potential health impacts of long-term naphthalene exposure. Results are also given for the distributions of 1,4-naphthoquinone, a naphthalene reaction product that may have significant health effects.
NASA Technical Reports Server (NTRS)
George, Kerry; Hada, Megumi; Cucinotta, F. A.
2011-01-01
Chromosomal aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to neon ions at energies of 64, 89, 142, or 267. The corresponding LET values for these energies of neon ranged from 38-103 keV/micrometers and doses delivered were in the 10 to 80 cGy range. Chromosome exchanges were assessed in metaphase and G2 phase cells at first division after exposure using fluorescence in situ hybridization (FISH) with whole chromosome probes and dose response curves were generated for different types of chromosomal exchanges. The yields of total chromosome exchanges were similar for the 64, 89, and 142 MeV exposures, whereas the 267 MeV/u neon with LET of 38 keV/micrometers produced about half as many exchanges per unit dose. The induction of complex type chromosome exchanges (exchanges involving three or more breaks and two or more chromosomes) showed a clear LET dependence for all energies. The ratio of simple to complex type exchanges increased with LET from 18 to 51%. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The RBE(sub max) values for total chromosome exchanges for the 64 MeV/u was around 30.
Animal studies of life shortening and cancer risk from space radiation
NASA Astrophysics Data System (ADS)
Wood, D. H.; Yochmowitz, M. G.; Hardy, K. A.; Salmon, Y. L.
The U. S. Air Force study of the delayed effects of single, total body exposures to simulated space radiation in rhesus monkeys is now in its 21st year. Observations on 301 irradiated and 57 age-matched control animals indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be expressed as a logarithmic function of the dose. The primary causes of life shortening are cancer and endometriosis (an abnormal proliferation of the lining of the uterus in females). Life shortening estimates permit comparison of the risk associated with space radiation exposures to be compared with that of other occupational and environmental hazards, thereby facilitating risk/benefit decisions in the planning and operational phases of manned space missions. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of human is, therefore, critical to the assessment of life-time cancer risk.
Dyble, Julianne; Gossiaux, Duane; Landrum, Peter; Kashian, Donna R.; Pothoven, Steven
2011-01-01
Fish consumption is a potential route of human exposure to the hepatotoxic microcystins, especially in lakes and reservoirs that routinely experience significant toxic Microcystis blooms. Understanding the rates of uptake and elimination for microcystins as well as the transfer efficiency into tissues of consumers are important for determining the potential for microcystins to be transferred up the food web and for predicting potential human health impacts. The main objective of this work was to conduct laboratory experiments to investigate the kinetics of toxin accumulation in fish tissue. An oral route of exposure was employed in this study, in which juvenile yellow perch (Perca flavescens) were given a single oral dose of 5 or 20 μg of microcystin-LR (MC-LR) via food and accumulation in the muscle, liver, and tank water were measured over 24 h. Peak concentrations of the water soluble fraction of microcystin were generally observed 8–10 h after dosing in the liver and after 12–16 h in the muscle, with a rapid decline in both tissues by 24 h. Up to 99% of the total recoverable (i.e., unbound) microcystin was measured in the tank water by 16 h after exposure. The relatively rapid uptake and elimination of the unbound fraction of microcystin in the liver and muscle of juvenile yellow perch within 24 h of exposure indicates that fish consumption may not be a major route of human exposure to microcystin, particularly in the Great Lakes. PMID:22363240
Mowry, James B.; Spyker, Daniel A.; Cantilena, Louis R.; McMillan, Naya; Ford, Marsha
2014-01-01
ABSTRACT Background: This is the 31st Annual Report of the American Association of Poison Control Centers’ (AAPCC) National Poison Data System (NPDS). As of January 1, 2013, 57 of the nation's poison centers (PCs) uploaded case data automatically to NPDS. The upload interval was 8.08 [7.10, 11.63] (median [25%, 75%]) minutes, creating a near real-time national exposure and information database and surveillance system. Methodology: We analyzed the case data tabulating specific indices from NPDS. The methodology was similar to that of previous years. Where changes were introduced, the differences are identified. Poison center (PC) cases with medical outcomes of death were evaluated by a team of 38 medical and clinical toxicologist reviewers using an ordinal scale of 1–6 to assess the Relative Contribution to Fatality (RCF) of the exposure to the death. Results: In 2013, 3,060,122 closed encounters were logged by NPDS: 2,188,013 human exposures, 59,496 animal exposures, 806,347 information calls, 6,116 human-confirmed nonexposures, and 150 animal-confirmed nonexposures. Total encounters showed a 9.3% decline from 2012, while health care facility human exposure calls were essentially flat, decreasing by 0.1%.All information calls decreased 21.4% and health care facility (HCF) information calls decreased 8.5%, medication identification requests (drug ID) decreased 26.8%, and human exposures reported to US PCs decreased 3.8%. Human exposures with less serious outcomes have decreased 3.7% per year since 2008 while those with more serious outcomes (moderate, major or death) have increased by 4.7% per year since 2000. The top five substance classes most frequently involved in all human exposures were analgesics (11.5%), cosmetics/personal care products (7.7%), household cleaning substances (7.6%), sedatives/hypnotics/antipsychotics (5.9%), and antidepressants (4.2%). Sedative/hypnotics/antipsychotics exposures as a class increased most rapidly (2,559 calls/year) over the last 13 years for cases showing more serious outcomes. The top five most common exposures in children of 5 years or less were cosmetics/personal care products (13.8%), household cleaning substances (10.4%), analgesics (9.8%), foreign bodies/toys/miscellaneous (6.9%), and topical preparations (6.1%). Drug identification requests comprised 50.7% of all information calls. NPDS documented 2,477 human exposures resulting in death with 2,113 human fatalities judged related (RCF of 1, undoubtedly responsible; 2, probably responsible; or 3, contributory). Conclusions: These data support the continued value of PC expertise and need for specialized medical toxicology information to manage the more severe exposures, despite a decrease in calls involving less severe exposures. Unintentional and intentional exposures continue to be a significant cause of morbidity and mortality in the United States. The near real-time, always current status of NPDS represents a national public health resource to collect and monitor US exposure cases and information calls. The continuing mission of NPDS is to provide a nationwide infrastructure for public health surveillance for all types of exposures, public health event identification, resilience response and situational awareness tracking. NPDS is a model system for the nation and global public health. PMID:25559822
Infant dietary exposure to dioxins and dioxin-like compounds in Greece.
Costopoulou, Danae; Vassiliadou, Irene; Leondiadis, Leondios
2013-09-01
The dietary exposure of infants to polychlorinated dibenzo dioxins and furans (PCDD/Fs) and dioxin like polychlorinated biphenyls (dl-PCBs) is an issue of great social impact. We investigated for the first time the dietary intake of these compounds in infants living in Greece. We included in our study two age groups: 0-6 months, when infants are fed exclusively by human milk and/or formula milk, and 6 to 12 months, when solid food is introduced to nutrition. We took into consideration analytical results for PCDD/Fs and dl-PCBs concentrations in the most popular infant formulae in the Greek market, previous data for mother milk concentrations of PCDD/Fs and dl-PCBs from Greece, and finally analytical data for fat-containing food products from the Greek market. In the first study group, it was found than in infants exclusively fed by breast milk, the calculated sum of PCDD/Fs and dioxin-like PCBs (60.3-80.4 TEQ pg/kg body weight) was significantly higher than that of infants that consume a combination of human milk and formula (31.2-41.6 TEQ pg/kg body weight). In the second study group, separate daily intake estimations were performed for babies receiving human milk (estimated total daily intake 19.76-24.95 TEQ pg/kg body weight) and formula milk (estimated total daily intake 1.60-2.24 TEQ pg/kg body weight). The risks of this exposure should not be overestimated because nursing is restricted to a limited period of human life and besides, the potential consumption of higher levels of dioxin-like compounds is fully compensated by the significant benefits of breast-feeding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Disorders Induced by Direct Occupational Exposure to Noise: Systematic Review
Domingo-Pueyo, Andrea; Sanz-Valero, Javier; Wanden-Berghe, Carmina
2016-01-01
Background: To review the available scientific literature about the effects on health by occupational exposure to noise. Materials and Methods: A systematic review of the retrieved scientific literature from the databases MEDLINE (via PubMed), ISI-Web of Knowledge (Institute for Scientific Information), Cochrane Library Plus, SCOPUS, and SciELO (collection of scientific journals) was conducted. The following terms were used as descriptors and were searched in free text: “Noise, Occupational,” “Occupational Exposure,” and “Occupational Disease.” The following limits were considered: “Humans,” “Adult (more than 18 years),” and “Comparative Studies.” Results: A total of 281 references were retrieved, and after applying inclusion/exclusion criteria, 25 articles were selected. Of these selected articles, 19 studies provided information about hearing disturbance, four on cardiovascular disorders, one regarding respiratory alteration, and one on other disorders. Conclusions: It can be interpreted that the exposure to noise causes alterations in humans with different relevant outcomes, and therefore appropriate security measures in the work environment must be employed to minimize such an exposure and thereby to reduce the number of associated disorders. PMID:27762251
Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S
2016-01-01
Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.
Shin, Hyeong-Moo; McKone, Thomas E; Sohn, Michael D; Bennett, Deborah H
2014-01-01
The work addresses current knowledge gaps regarding causes for correlations between environmental and biomarker measurements and explores the underappreciated role of variability in disaggregating exposure attributes that contribute to biomarker levels. Our simulation-based study considers variability in environmental and food measurements, the relative contribution of various exposure sources (indoors and food), and the biological half-life of a compound, on the resulting correlations between biomarker and environmental measurements. For two hypothetical compounds whose half-lives are on the order of days for one and years for the other, we generate synthetic daily environmental concentrations and food exposures with different day-to-day and population variability as well as different amounts of home- and food-based exposure. Assuming that the total intake results only from home-based exposure and food ingestion, we estimate time-dependent biomarker concentrations using a one-compartment pharmacokinetic model. Box plots of modeled R2 values indicate that although the R2 correlation between wipe and biological (e.g., serum) measurements is within the same range for the two compounds, the relative contribution of the home exposure to the total exposure could differ by up to 20%, thus providing the relative indication of their contribution to body burden. The novel method introduced in this paper provides insights for evaluating scenarios or experiments where sample, exposure, and compound variability must be weighed in order to interpret associations between exposure data.
NASA Technical Reports Server (NTRS)
Gelfand, R.; Lambertsen, C. J.; Clark, J. M.; Hopkin, E.
1998-01-01
Potential adverse effects on the O2-sensing function of the carotid body when its cells are exposed to toxic O2 pressures were assessed during investigations of human organ tolerance to prolonged continuous and intermittent hyperoxia (Predictive Studies V and VI). Isocapnic hypoxic ventilatory responses (HVR) were determined at 1.0 ATA before and after severe hyperoxic exposures: 1) continuous O2 breathing at 1.5, 2.0, and 2.5 ATA for 17.7, 9.0, and 5.7 h and 2) intermittent O2 breathing at 2.0 ATA (30 min O2-30 min normoxia) for 14.3 O2 h within 30-h total time. Postexposure curvature of HVR hyperbolas was not reduced compared with preexposure controls. The hyperbolas were temporarily elevated to higher ventilations than controls due to increments in respiratory frequency that were proportional to O2 exposure time, not O2 pressure. In humans, prolonged hyperoxia does not attenuate the hypoxia-sensing function of the peripheral chemoreceptors, even after exposures that approach limits of human pulmonary and central nervous system O2 tolerance. Current applications of hyperoxia in hyperbaric O2 therapy and in subsea- and aerospace-related operations are guided by and are well within these exposure limits.
Qi, Li; Su, Kun; Shen, Tao; Tang, Wenge; Xiao, Bangzhong; Long, Jiang; Zhao, Han; Chen, Xi; Xia, Yu; Xiong, Yu; Xiao, Dayong; Feng, Liangui; Li, Qin
2018-01-03
According to the global framework of eliminating human rabies, China is responding to achieve the target of zero human death from dog-mediated rabies by 2030. Chongqing is the largest municipality directly under central government in China. We described the epidemiological characteristics and post-exposure prophylaxis (PEP) of human rabies in this area, in order to provide a reliable epidemiology basis for further control and prevention of human rabies. The most updated epidemiological data for human rabies cases from 2007 to 2016 in Chongqing were collected from the National Disease Reporting Information System. A standardized questionnaire was applied to the human rabies cases or family members of cases as proxy to investigate the PEP situation. A total of 809 fatal human rabies cases were reported in Chongqing from 2007 to 2016. There was a trend of gradual annual decline about number of cases from 2007 to 2013, followed by stable levels until 2016. Rabies was mostly reported in summer and autumn; a majority of cases were noted in farmers (71.8%), especially in males (65.3%). The cases aged 35-74 and 5-14 years old accounted for 83.8% of all the cases. We collected information of 548 human rabies cases' rabies exposure and PEP situation. Of those, 95.8% of human rabies cases were victims of dog bites or scratch, and 53.3% of these dogs were identified as stray dogs. Only 4.0% of the domestic dogs were reported to have been vaccinated previously. After exposure, 87.8% of the 548 human rabies cases did not seek any medical services. Further investigation showed that none of the 548 cases received timely and properly standardized PEP. Human rabies remains a major public health problem in Chongqing, China. Dogs are the main reservoir and source of human rabies infection. Unsuccessful control of canine rabies and inadequate PEP of cases might be the main factors leading to the serious human rabies epidemic in this area. An integrated "One Health" approach should be encouraged and strengthened in this area; with combined effort it would be possible to achieve the elimination of human rabies in the expected date.
Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100 ng/mL of MWCNTs for 24 and 48 hr. MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for 1H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure exper
Turtle-Associated Salmonellosis, United States, 2006–2014
Tauxe, Robert V.; Behravesh, Casey Barton
2016-01-01
During 2006–2014, a total of 15 multistate outbreaks of turtle-associated salmonellosis in humans were reported in the United States. Exposure to small pet turtles has long been recognized as a source of human salmonellosis. The risk to public health has persisted and may be increasing. Turtles are a popular reptilian pet among children, and numerous risky behaviors for the zoonotic transmission of Salmonella bacteria to children have been reported in recent outbreaks. Despite a long-standing federal ban against the sale and distribution of turtles <4 in (<10.16 cm) long, these small reptiles can be readily acquired through multiple venues and continue to be the main source of turtle-associated salmonellosis in children. Enhanced efforts are needed to minimize the disease risk associated with small turtle exposure. Prevention will require novel partnerships and a comprehensive One Health approach involving human, animal, and environmental health. PMID:27315584
Turtle-Associated Salmonellosis, United States, 2006-2014.
Bosch, Stacey; Tauxe, Robert V; Behravesh, Casey Barton
2016-07-01
During 2006-2014, a total of 15 multistate outbreaks of turtle-associated salmonellosis in humans were reported in the United States. Exposure to small pet turtles has long been recognized as a source of human salmonellosis. The risk to public health has persisted and may be increasing. Turtles are a popular reptilian pet among children, and numerous risky behaviors for the zoonotic transmission of Salmonella bacteria to children have been reported in recent outbreaks. Despite a long-standing federal ban against the sale and distribution of turtles <4 in (<10.16 cm) long, these small reptiles can be readily acquired through multiple venues and continue to be the main source of turtle-associated salmonellosis in children. Enhanced efforts are needed to minimize the disease risk associated with small turtle exposure. Prevention will require novel partnerships and a comprehensive One Health approach involving human, animal, and environmental health.
Berger, Kimberly; Gunier, Robert B; Chevrier, Jonathan; Calafat, Antonia M; Ye, Xiaoyun; Eskenazi, Brenda; Harley, Kim G
2018-05-24
Environmental phenols and parabens are commonly used in personal care products and other consumer products and human exposure to these chemicals is widespread. Although human and animal studies suggest an association between exposure to phenols and parabens and thyroid hormone levels, few studies have investigated the association of in utero exposure to these chemicals and thyroid hormones in pregnant women and their neonates. We measured four environmental phenols (triclosan, benzophenone-3, and 2,4- and 2,5-dichlorophenol), and three parabens (methyl-, propyl-, and butyl paraben) in urine collected from mothers at two time points during pregnancy as part of the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We measured free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in serum of the pregnant women (N = 454) and TSH in their neonates (N = 365). We examined potential confounding by a large number of additional chemical exposures and used Bayesian Model Averaging (BMA) to select the most influential chemicals to include in regression models. We observed negative associations of prenatal urinary concentrations of propyl paraben and maternal TSH (β for two-fold increase = -3.26%, 95% CI: -5.55, -0.90) and negative associations of 2,4-dichlorophenol and maternal free T4 (β for two-fold increase = -0.05, 95% CI: -0.08, -0.02), after controlling for other chemical exposures. We observed negative associations of triclosan with maternal total T4 after controlling for demographic variables, but this association became non-significant after controlling for other chemicals (β for two-fold increase = -0.05, 95% CI: -0.11, 0.00). We found evidence that environmental phenols and parabens are associated with lower TSH and free T4 in pregnant women after controlling for related chemical exposures. Copyright © 2018 Elsevier Inc. All rights reserved.
von Goetz, N; Lorenz, C; Windler, L; Nowack, B; Heuberger, M; Hungerbühler, K
2013-09-03
Engineered nanoparticles (ENP) are increasingly used to functionalize textiles taking advantage, e.g., of the antimicrobial activity of silver (Ag)-ENP or the UV-absorption of titania (TiO2)-ENP. Mobilization and migration of ENPs from the textile into human sweat can result in dermal exposure to these nanoobjects and their aggregates and agglomerates (NOAA). In this study we assessed exposure to NOAA migrating from commercially available textiles to artificial sweat by an experimental setup that simulates wear-and-tear during physical activity. By combining physical stress with incubation in alkaline and acidic artificial sweat solutions we experimentally realized a worst case scenario for wearing functionalized textiles during sports activities. This experimental approach is not limited to NOAA, but can be used for any other textile additive. Out of four investigated textiles, one T-shirt and one pair of trousers with claimed antimicrobial properties were found to release Ag <450 nm in detectable amounts (23-74 μg/g/L). Textiles containing TiO2 for UV protection did not release significant amounts of TiO2 <450 nm, but the antimicrobial T-shirt released both TiO2 and Ag <450 nm. The silver was present in dissolved and particulate form, whereas TiO2 was mainly found as particulate. On the basis of our experimental results we calculated external dermal exposure to Ag and TiO2 for male and female adults per use. For silver, maximal amounts of 17.1 and 8.2 μg/kg body weight were calculated for total and particulate Ag <450 nm, respectively. For TiO2, the exposure levels amount to maximal 11.6 μg/kg body weight for total (mainly particulate) TiO2. In comparison with other human exposure pathways, dermal exposure to NOAA from textiles can be considered comparably minor for TiO2-NOAA, but not for Ag-NOAA.
Shin, Ho-Sang; Lim, Hyun-Hee
2017-05-01
Seven halogenated volatile organic compounds (HVOCs) and two haloacetic acids were detected and quantified in 15 household products, including sodium hypochlorite, by gas chromatography-mass spectrometry (GC-MS). Chloroform was detected in a range of 0.2-30.2 mg kg -1 in all products, and carbon tetrachloride was observed in 13 samples in a range of 0.05-352 mg kg -1 . Dichloroacetic acid and trichloroacetic acid were also detected up to 94 and 146 mg kg -1 in household products. The estimated human exposures of chloroform, carbon tetrachloride, dichloroacetic acid and trichloroacetic acid were calculated to 0.041, 0.240, 0.913 and 2.39 mg/kg/day by the exposure algorithm from the Japan National Institute of Technology and Evaluation, respectively. According to the calculated result, the total estimated human exposure of chloroform were determined to exceed the tolerable concentration of inhalation exposure presented by the World Health Organization. The DBPs should be controlled to the lowest concentrations in the chlorine-containing household cleansing products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Public magnetic field exposure based on internal current density for electric low voltage systems.
Keikko, Tommi; Seesvuori, Reino; Hyvönen, Martti; Valkealahti, Seppo
2009-04-01
A measurement concept utilizing a new magnetic field exposure metering system has been developed for indoor substations where voltage is transformed from a medium voltage of 10 or 20 kV to a low voltage of 400 V. The new metering system follows the guidelines published by the International Commission on Non-Ionizing Radiation Protection. It can be used to measure magnetic field values, total harmonic distortion of the magnetic field, magnetic field exposure ratios for public and workers, load current values, and total harmonic distortion of the load current. This paper demonstrates how exposure to non-sinusoidal magnetic fields and magnetic flux density exposure values can be compared directly with limit values for internal current densities in a human body. Further, we present how the magnetic field and magnetic field exposure behaves in the vicinity of magnetic field sources within the indoor substation and in the neighborhood. Measured magnetic fields around the substation components have been used to develop a measurement concept by which long-term measurements in the substations were performed. Long-term measurements revealed interesting and partly unexpected dependencies between the measured quantities, which have been further analyzed. The principle of this paper is to substitute a demanding exposure measurement with measurements of the basic quantities like the 50 Hz fundamental magnetic field component, which can be estimated based on the load currents for certain classes of substation lay-out.
Antizar-Ladislao, Blanca
2008-02-01
Tributyltin (TBT) is a toxic chemical used for various industrial purposes such as slime control in paper mills, disinfection of circulating industrial cooling waters, antifouling agents, and the preservation of wood. Due to its widespread use as an antifouling agent in boat paints, TBT is a common contaminant of marine and freshwater ecosystems exceeding acute and chronic toxicity levels. TBT is the most significant pesticide in marine and freshwaters in Europe and consequently its environmental level, fate, toxicity and human exposure are of current concern. Thus, the European Union has decided to specifically include TBT compounds in its list of priority compounds in water in order to control its fate in natural systems, due to their toxic, persistent, bioaccumulative and endocrine disruptive characteristics. Additionally, the International Maritime Organization has called for a global treaty that bans the application of TBT-based paints starting 1 of January 2003, and total prohibition by 1 of January 2008. This paper reviews the state of the science regarding TBT, with special attention paid to the environmental levels, toxicity, and human exposure. TBT compounds have been detected in a number of environmental samples. In humans, organotin compounds have been detected in blood and in the liver. As for other persistent organic pollutants, dietary intake is most probably the main route of exposure to TBT compounds for the general population. However, data concerning TBT levels in foodstuffs are scarce. It is concluded that investigations on experimental toxicity, dietary intake, potential human health effects and development of new sustainable technologies to remove TBT compounds are clearly necessary.
van Breda, Simone G J; Wilms, Lonneke C; Gaj, Stan; Jennen, Danyel G J; Briedé, Jacob J; Kleinjans, Jos C S; de Kok, Theo M C M
2015-11-01
The application of transcriptome analyses in molecular epidemiology studies has become a promising tool in order to evaluate the impact of environmental exposures. These analyses have a great value in establishing the exposome, the totality of human exposures, both by identifying the chemical nature of the exposures and the induced molecular responses. Transcriptomic signatures can be regarded as biomarker of exposure as well as markers of effect which reflect the interaction between individual genetic background and exposure levels. However, the biological interpretation of modulated gene expression profiles is a challenging task and translating affected molecular pathways into risk assessment, for instance in terms of cancer promoting or disease preventing responses, is a far from standardised process. Here, we describe the in-depth analyses of the gene expression responses in a human dietary intervention in which the interaction between genotype and exposure to a blueberry-apple juice containing a complex mixture of phytochemicals is investigated. We also describe how data on differences in genetic background combined with different effect markers can provide a better understanding of gene-environment interactions. Pathway analyses of differentially expressed genes in combination with gene were used to identify complex but strong changes in several biological processes like immune response, cell adhesion, lipid metabolism and apoptosis. These observed changes may lead to upgraded growth control, induced immunity, reduced platelet aggregation and activation, diminished production of reactive oxidative species by platelets, blood glucose homeostasis, regulation of blood lipid levels and increased apoptosis. Our findings demonstrate that applying transcriptomics to well-controlled human dietary intervention studies can provide insight into mechanistic pathways involved in disease prevention by dietary factors. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chao, Linda L.; Rothlind, Johannes C.; Cardenas, Valerie A.; Meyerhoff, Dieter J.; Weiner, Michael W.
2010-01-01
Background Potentially more than 100,000 US troops may have been exposed to the organophosphate chemical warfare agents sarin (GB) and cyclosarin (GF) when a munitions dump at Khamisiyah, Iraq was destroyed during the Gulf War (GW) in 1991. Although little is known about the long-term neurobehavioral or neurophysiological effects of low-dose exposure to GB/GF in humans, recent studies of GW veterans from the Devens Cohort suggest decrements in certain cognitive domains and atrophy in brain white matter occur individuals with higher estimated levels of presumed GB/GF exposure. The goal of the current study is to determine the generalizability of these findings in another cohort of GW veterans with suspected GB/GF exposure. Methods Neurobehavioral and imaging data collected in a study on Gulf War Illness between 2002–2007 were used in this study. We focused on the data of 40 GW-deployed veterans categorized as having been exposed to GB/GF at Khamisiyah, Iraq and 40 matched controls. Magnetic resonance images (MRI) of the brain were analyzed using automated and semi-automated image processing techniques that produced volumetric measurements of gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) and hippocampus. Results GW veterans with suspected GB/GF exposure had reduced total GM and hippocampal volumes compared to their unexposed peers (p≤0.01). Although there were no group differences in measures of cognitive function or total WM volume, there were significant, positive correlations between total WM volume and measures of executive function and visuospatial abilities in veterans with suspected GB/GF exposure. Conclusions These findings suggest that low-level exposure to GB/GF can have deleterious effects on brain structure and brain function more than decade later. PMID:20580739
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek
2015-04-01
Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged concentration values. We demonstrate the approach by using six land use regression (LUR) models developed in the ESCAPE (European Study of Cohorts for Air Pollution Effects) project. These models calculate several air pollutants (e.g. NO2, NOx, PM2.5) for the entire Netherlands at a high (5 m) resolution. Using these air pollution maps, we compare exposure of individuals calculated at their x, y location of their home, their work place, and aggregated over the close surroundings of these locations. In addition, total exposure is accumulated over daily activity patterns, summing exposure at home, at the work place, and while travelling between home and workplace, by routing individuals over the Dutch road network, using the shortest route. Finally, we illustrate how routes can be calculated with the minimum total exposure (instead of shortest distance).
Meany, Holly J; Fox, Elizabeth; McCully, Cynthia; Tucker, Chris; Balis, Frank M
2008-08-01
Erlotinib hydrochloride is a small molecule inhibitor of epidermal growth factor receptor (EGFR). EGFR is over-expressed in primary brain tumors and solid tumors that metastasize to the central nervous system. We evaluated the plasma and cerebrospinal fluid (CSF) pharmacokinetics of erlotinib and its active metabolite OSI-420 after an intravenous (IV) dose in a non-human primate model. Erlotinib was administered as a 1 h IV infusion to four adult rhesus monkeys. Serial blood and CSF samples were drawn over 48 h and erlotinib and OSI-420 were quantified with an HPLC/tandem mass spectroscopic assay. Pharmacokinetic parameters were estimated using non-compartmental and compartmental methods. CSF penetration was calculated from the AUC(CSF):AUC(plasma). Erlotinib disappearance from plasma after a short IV infusion was biexponential with a mean terminal half-life of 5.2 h and a mean clearance of 128 ml/min per m(2). OSI-420 exposure (AUC) in plasma was 30% (range 12-59%) of erlotinib, and OSI-420 clearance was more than 5-fold higher than erlotinib. Erlotinib and OSI-420 were detectable in CSF. The CSF penetration (AUC(CSF):AUC(plasma)) of erlotinib and OSI-420 was <5% relative to total plasma concentration, but CSF drug exposure was approximately 30% of plasma free drug exposure, which was calculated from published plasma protein binding values. The IV administration of erlotinib was well tolerated. Erlotinib and its active metabolite OSI-420 are measurable in CSF after an IV dose. The drug exposure (AUC) in the CSF is limited relative to total plasma concentrations but is substantial relative the free drug exposure in plasma.
Technologically enhanced naturally occurring radioactive materials.
Vearrier, David; Curtis, John A; Greenberg, Michael I
2009-05-01
Naturally occurring radioactive materials (NORM) are ubiquitous throughout the earth's crust. Human manipulation of NORM for economic ends, such as mining, ore processing, fossil fuel extraction, and commercial aviation, may lead to what is known as "technologically enhanced naturally occurring radioactive materials," often called TENORM. The existence of TENORM results in an increased risk for human exposure to radioactivity. Workers in TENORM-producing industries may be occupationally exposed to ionizing radiation. TENORM industries may release significant amounts of radioactive material into the environment resulting in the potential for widespread exposure to ionizing radiation. These industries include mining, phosphate processing, metal ore processing, heavy mineral sand processing, titanium pigment production, fossil fuel extraction and combustion, manufacture of building materials, thorium compounds, aviation, and scrap metal processing. A search of the PubMed database ( www.pubmed.com ) and Ovid Medline database ( ovidsp.tx.ovid.com ) was performed using a variety of search terms including NORM, TENORM, and occupational radiation exposure. A total of 133 articles were identified, retrieved, and reviewed. Seventy-three peer-reviewed articles were chosen to be cited in this review. A number of studies have evaluated the extent of ionizing radiation exposure both among workers and the general public due to TENORM. Quantification of radiation exposure is limited because of modeling constraints. In some occupational settings, an increased risk of cancer has been reported and postulated to be secondary to exposure to TENORM, though these reports have not been validated using toxicological principles. NORM and TENORM have the potential to cause important human health effects. It is important that these adverse health effects are evaluated using the basic principles of toxicology, including the magnitude and type of exposure, as well as threshold and dose response.
Rylander, Charlotta; Odland, Jon Ø; Sandanger, Torkjel M
2011-01-01
In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed specifically considering their exposure and sensitivity to long range transported contaminants. Considering that the different parts of pregnancy are particularly sensitive time periods for the effects of environmental exposure, this review focuses on the impacts on maternal and newborn health. Environmental stressors known to affects human health and how these will change with the predicted climate change are addressed. Air pollution and food security are crucial issues for the pregnant population in a changing climate, especially indoor climate and food security in Arctic areas. The total number of environmental factors is today responsible for a large number of the global deaths, especially in young children. Climate change will most likely lead to an increase in this number. Exposure to the different environmental stressors especially air pollution will in most parts of the world increase with climate change, even though some areas might face lower exposure. Populations at risk today are believed to be most heavily affected. As for the persistent organic pollutants a warming climate leads to a remobilisation and a possible increase in food chain exposure in the Arctic and thus increased risk for Arctic populations. This is especially the case for mercury. The perspective for the next generations will be closely connected to the expected temperature changes; changes in housing conditions; changes in exposure patterns; predicted increased exposure to Mercury because of increased emissions and increased biological availability. A number of environmental stressors are predicted to increase with climate change and increasingly affecting human health. Efforts should be put on reducing risk for the next generation, thus global politics and research effort should focus on maternal and newborn health.
Li, Han; Wan, Yanjian; Chen, Xiao; Cheng, Lu; Yang, Xueyu; Xia, Wei; Xu, Shunqing; Zhang, Hongling
2018-05-01
Nickel is a widespread environmental contaminant, and it is toxic to humans in certain forms at high doses. Despite this, nationwide data on nickel in outdoor air particulate matter and human exposure to nickel through inhalation in China are limited. In the present study, 662 outdoor air samples from seven representative provinces such as Shanghai, Hubei, Hunan, Hebei, Guangdong, Yunnan, and Shanxi were collected between March 2013 and February 2014 and analyzed by inductively coupled plasma mass spectrometry. The concentrations of nickel in the air were in the range of 2.1-80.9 ng/m 3 (geometric mean: 14.4 ng/m 3 ). In most areas, the concentrations of nickel were higher in winter and spring than those measured in summer and autumn. The daily intake (median) of nickel through inhalation of air particulate matter was estimated. Although the nickel concentrations in some air samples were high, inhalation of the air particulate matter accounted for a minor part of the total nickel intake; however, the adverse effects of human exposure to nickel through inhalation and its potential sources require more attention, particularly in Shanghai. This is a multiregional survey of nickel in outdoor air particulate matter in China. Copyright © 2018 Elsevier Ltd. All rights reserved.
Relevance of drinking water as a source of human exposure to bisphenol A.
Arnold, Scott M; Clark, Kathryn E; Staples, Charles A; Klecka, Gary M; Dimond, Steve S; Caspers, Norbert; Hentges, Steven G
2013-03-01
A comprehensive search of studies describing bisphenol A (BPA) concentrations in drinking water and source waters (i.e., surface water and groundwater) was conducted to evaluate the relevance of drinking water as a source of human exposure and risk. Data from 65 papers were evaluated from North America (31), Europe (17), and Asia (17). The fraction of drinking water measurements reported as less than the detection limit is high; 95%, 48%, and 41%, for North America, Europe, and Asia, respectively. The maximum quantified (in excess of the detection limit) BPA concentrations from North America, Europe, and Asia are 0.099 μg/l, 0.014 μg/l, and 0.317 μg/l. The highest quantified median and 95th percentile concentrations of BPA in Asian drinking water are 0.026 μg/l and 0.19 μg/l, while high detection limits restricted the determination of representative median and 95th percentile concentrations in North America and Europe. BPA in drinking water represents a minor component of overall human exposure, and compared with the lowest available oral toxicity benchmark of 16 μg/kg-bw/day (includes an uncertainty factor of 300) gives margins of safety >1100. Human biomonitoring data indicate that ingestion of drinking water represents <2.8% of the total intake of BPA.
Occupational Electromagnetic Field Exposures Associated with Sleep Quality: A Cross-Sectional Study
Liu, Hui; Chen, Guangdi; Pan, Yifeng; Chen, Zexin; Jin, Wen; Sun, Chuan; Chen, Chunjing; Dong, Xuanjun; Chen, Kun; Xu, Zhengping; Zhang, Shanchun; Yu, Yunxian
2014-01-01
Background Exposure to electromagnetic field (EMF) emitted by mobile phone and other machineries concerns half the world’s population and raises the problem of their impact on human health. The present study aims to explore the effects of electromagnetic field exposures on sleep quality and sleep duration among workers from electric power plant. Methods A cross-sectional study was conducted in an electric power plant of Zhejiang Province, China. A total of 854 participants were included in the final analysis. The detailed information of participants was obtained by trained investigators using a structured questionnaire, which including socio-demographic characteristics, lifestyle variables, sleep variables and electromagnetic exposures. Physical examination and venous blood collection were also carried out for every study subject. Results After grouping daily occupational electromagnetic exposure into three categories, subjects with long daily exposure time had a significantly higher risk of poor sleep quality in comparison to those with short daily exposure time. The adjusted odds ratios were 1.68 (95%CI: 1.18, 2.39) and 1.57 (95%CI: 1.10, 2.24) across tertiles. Additionally, among the subjects with long-term occupational exposure, the longer daily occupational exposure time apparently increased the risk of poor sleep quality (OR (95%CI): 2.12 (1.23∼3.66) in the second tertile; 1.83 (1.07∼3.15) in the third tertile). There was no significant association of long-term occupational exposure duration, monthly electric fee or years of mobile-phone use with sleep quality or sleep duration. Conclusions The findings showed that daily occupational EMF exposure was positively associated with poor sleep quality. It implies EMF exposure may damage human sleep quality rather than sleep duration. PMID:25340654
Guerquin, Marie-Justine; Matilionyte, Gabriele; Kilcoyne, Karen; N’Tumba-Byn, Thierry; Messiaen, Sébastien; Deceuninck, Yoann; Pozzi-Gaudin, Stéphanie; Benachi, Alexandra; Livera, Gabriel; Antignac, Jean-Philippe; Mitchell, Rod; Rouiller-Fabre, Virginie
2018-01-01
Background Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. Methods Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks. Results With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. Conclusions Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures. PMID:29385186
Rabies in Captive Deer, Pennsylvania, USA, 2007–2010
Tack, Danielle M.; Longenberger, Allison; Simeone, Aliza; Moll, Mària E.; Deasy, Marshall P.; Blanton, Jesse D.; Rupprecht, Charles E.
2012-01-01
Since January 2007, a total of 11 rabid deer from 4 deer farms have been identified in 2 neighboring Pennsylvania counties. Vaccination of deer against rabies, decreasing wildlife animal contact with deer, and education of deer farmers may prevent further cases of rabies in captive deer and exposures to humans. PMID:22260956
BREATH MEASUREMENT OF TOTAL BODY BURDEN OF JP-8 JET FUEL FOR EPIDEMIOLOGICAL STUDY
A complex epidemiological investigation of the effects of acute exposure to JP-8 jet fuel in the U.S. Air Force was performed through the study of about 350 human subjects across six Air Force bases. The focus was on fuels system maintenance personnel as the "exposed"...
Individual- and scattered-tree influences on ultraviolet irradiance
Gordon M. Heisler; Richard H. Gao, Wei Grant
2003-01-01
Many of the potential effects of ultraviolet radiation (UVR--damage to materials, altered herbivory of insects and activity of microbes, modified growth of vegetation, and adverse or beneficial effects on human health?are modified by the presence of trees that influence UVR exposure to various degrees. Though tree effects on total solar irradiance have been...
Comparative Exposure Assessment of ESBL-Producing Escherichia coli through Meat Consumption
Pielaat, Annemarie; Smid, Joost H.; van Duijkeren, Engeline; Vennemann, Francy B. C.; Wijnands, Lucas M.; Chardon, Jurgen E.
2017-01-01
The presence of extended-spectrum β-lactamase (ESBL) and plasmidic AmpC (pAmpC) producing Escherichia coli (EEC) in food animals, especially broilers, has become a major public health concern. The aim of the present study was to quantify the EEC exposure of humans in The Netherlands through the consumption of meat from different food animals. Calculations were done with a simplified Quantitative Microbiological Risk Assessment (QMRA) model. The model took the effect of pre-retail processing, storage at the consumers home and preparation in the kitchen (cross-contamination and heating) on EEC numbers on/in the raw meat products into account. The contribution of beef products (78%) to the total EEC exposure of the Dutch population through the consumption of meat was much higher than for chicken (18%), pork (4.5%), veal (0.1%) and lamb (0%). After slaughter, chicken meat accounted for 97% of total EEC load on meat, but chicken meat experienced a relatively large effect of heating during food preparation. Exposure via consumption of filet americain (a minced beef product consumed raw) was predicted to be highest (61% of total EEC exposure), followed by chicken fillet (13%). It was estimated that only 18% of EEC exposure occurred via cross-contamination during preparation in the kitchen, which was the only route by which EEC survived for surface-contaminated products. Sensitivity analysis showed that model output is not sensitive for most parameters. However, EEC concentration on meat other than chicken meat was an important data gap. In conclusion, the model assessed that consumption of beef products led to a higher exposure to EEC than chicken products, although the prevalence of EEC on raw chicken meat was much higher than on beef. The (relative) risk of this exposure for public health is yet unknown given the lack of a modelling framework and of exposure studies for other potential transmission routes. PMID:28056081
Liu, Jin-Ling; Xu, Xiang-Rong; Yu, Shen; Cheng, Hefa; Peng, Jia-Xi; Hong, Yi-Guo; Feng, Xin-Bin
2014-11-01
Hair has long been recognized as a good biomarker for human exposure to Hg. The mercury concentrations in 14 species of marine fish and hair samples from 177 coastal residents in Hainan, South China Sea were investigated to assess the status of mercury exposure associated with marine fish consumption. Concentrations of total Hg (THg) and methylmercury (MeHg) in the fish muscles were 0.094 ± 0.008 and 0.066 ± 0.006 μg/gww, respectively, which were far below the limit considered safe for consumption (0.5 μg/g). The average THg concentrations in hair of adults (1.02 ± 0.92 μg/g) were lower than the provisional tolerable weekly intake (PTWI) level of 2.2 μg/g. However, 23.7% of children had a hair THg level exceeding the RfD level of 1μg/g, indicating a great risk of Hg exposure to children via fish consumption. The concentration of THg in hair was significantly correlated with fish consumption but not with gender-specific fish intake. With higher fish consumption frequency, the fishermen had significantly elevated hair Hg levels compared to the students and the other general public, who had similar hair THg levels but different fish consumption patterns, indicating the existence of other sources of Hg exposure to the residents of Hainan Island. Copyright © 2014 Elsevier Inc. All rights reserved.
Post, Gloria B; Cohn, Perry D; Cooper, Keith R
2012-07-01
Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other well-studied drinking water contaminants, the human dose-response curve for several effects appears to be steepest at the lower exposure levels, including the general population range, with no apparent threshold for some endpoints. There is concordance in animals and humans for some effects, while humans and animals appear to react differently for other effects such as lipid metabolism. PFOA was classified as "likely to be carcinogenic in humans" by the USEPA Science Advisory Board. In animal studies, developmental effects have been identified as more sensitive endpoints for toxicity than carcinogenicity or the long-established hepatic effects. Notably, exposure to an environmentally relevant drinking water concentration caused adverse effects on mammary gland development in mice. This paper reviews current information relevant to the assessment of PFOA as an emerging drinking water contaminant. This information suggests that continued human exposure to even relatively low concentrations of PFOA in drinking water results in elevated body burdens that may increase the risk of health effects. Copyright © 2012 Elsevier Inc. All rights reserved.
Population exposure to heat-related extremes: Demographic change vs climate change
NASA Astrophysics Data System (ADS)
Jones, B.; O'Neill, B. C.; Tebaldi, C.; Oleson, K. W.
2014-12-01
Extreme heat events are projected to increase in frequency and intensity in the coming decades [1]. The physical effects of extreme heat on human populations are well-documented, and anticipating changes in future exposure to extreme heat is a key component of adequate planning/mitigation [2, 3]. Exposure to extreme heat depends not only on changing climate, but also on changes in the size and spatial distribution of the human population. Here we focus on systematically quantifying exposure to extreme heat as a function of both climate and population change. We compare exposure outcomes across multiple global climate and spatial population scenarios, and characterize the relative contributions of each to population exposure to extreme heat. We consider a 2 x 2 matrix of climate and population output, using projections of heat extremes corresponding to RCP 4.5 and RCP 8.5 from the NCAR community land model, and spatial population projections for SSP 3 and SSP 5 from the NCAR spatial population downscaling model. Our primary comparison is across RCPs - exposure outcomes from RCP 4.5 versus RCP 8.5 - paying particular attention to how variation depends on the choice of SSP in terms of aggregate global and regional exposure, as well as the spatial distribution of exposure. We assess how aggregate exposure changes based on the choice of SSP, and which driver is more important, population or climate change (i.e. does that outcome vary more as a result of RCP or SSP). We further decompose the population component to analyze the contributions of total population change, migration, and changes in local spatial structure. Preliminary results from a similar study of the US suggests a four-to-six fold increase in total exposure by the latter half of the 21st century. Changes in population are as important as changes in climate in driving this outcome, and there is regional variation in the relative importance of each. Aggregate population growth, as well as redistribution of the population across larger US regions, strongly affects outcomes while smaller-scale spatial patterns of population change have smaller effects. [1] Collins, M. et al. (2013) Contribution of WG I to the 5th AR of the IPCC[2] Romero-Lankao, P. et al (2014) Contribution of WG II to the 5th AR of the IPCC[3] Walsh, J. et al. (2014) The 3rd National Climate Assessment
NASA Astrophysics Data System (ADS)
Brouwer, Derk H.; van Duuren-Stuurman, Birgit; Berges, Markus; Bard, Delphine; Jankowska, Elzbieta; Moehlmann, Carsten; Pelzer, Johannes; Mark, Dave
2013-11-01
Manufactured nano-objects, agglomerates, and aggregates (NOAA) may have adverse effect on human health, but little is known about occupational risks since actual estimates of exposure are lacking. In a large-scale workplace air-monitoring campaign, 19 enterprises were visited and 120 potential exposure scenarios were measured. A multi-metric exposure assessment approach was followed and a decision logic was developed to afford analysis of all results in concert. The overall evaluation was classified by categories of likelihood of exposure. At task level about 53 % showed increased particle number or surface area concentration compared to "background" level, whereas 72 % of the TEM samples revealed an indication that NOAA were present in the workplace. For 54 out of the 120 task-based exposure scenarios, an overall evaluation could be made based on all parameters of the decision logic. For only 1 exposure scenario (approximately 2 %), the highest level of potential likelihood was assigned, whereas in total in 56 % of the exposure scenarios the overall evaluation revealed the lowest level of likelihood. However, for the remaining 42 % exposure to NOAA could not be excluded.
Flaherty, Mary; Dent, Micheal L.; Sawusch, James R.
2017-01-01
The influence of experience with human speech sounds on speech perception in budgerigars, vocal mimics whose speech exposure can be tightly controlled in a laboratory setting, was measured. Budgerigars were divided into groups that differed in auditory exposure and then tested on a cue-trading identification paradigm with synthetic speech. Phonetic cue trading is a perceptual phenomenon observed when changes on one cue dimension are offset by changes in another cue dimension while still maintaining the same phonetic percept. The current study examined whether budgerigars would trade the cues of voice onset time (VOT) and the first formant onset frequency when identifying syllable initial stop consonants and if this would be influenced by exposure to speech sounds. There were a total of four different exposure groups: No speech exposure (completely isolated), Passive speech exposure (regular exposure to human speech), and two Speech-trained groups. After the exposure period, all budgerigars were tested for phonetic cue trading using operant conditioning procedures. Birds were trained to peck keys in response to different synthetic speech sounds that began with “d” or “t” and varied in VOT and frequency of the first formant at voicing onset. Once training performance criteria were met, budgerigars were presented with the entire intermediate series, including ambiguous sounds. Responses on these trials were used to determine which speech cues were used, if a trading relation between VOT and the onset frequency of the first formant was present, and whether speech exposure had an influence on perception. Cue trading was found in all birds and these results were largely similar to those of a group of humans. Results indicated that prior speech experience was not a requirement for cue trading by budgerigars. The results are consistent with theories that explain phonetic cue trading in terms of a rich auditory encoding of the speech signal. PMID:28562597
Flaherty, Mary; Dent, Micheal L; Sawusch, James R
2017-01-01
The influence of experience with human speech sounds on speech perception in budgerigars, vocal mimics whose speech exposure can be tightly controlled in a laboratory setting, was measured. Budgerigars were divided into groups that differed in auditory exposure and then tested on a cue-trading identification paradigm with synthetic speech. Phonetic cue trading is a perceptual phenomenon observed when changes on one cue dimension are offset by changes in another cue dimension while still maintaining the same phonetic percept. The current study examined whether budgerigars would trade the cues of voice onset time (VOT) and the first formant onset frequency when identifying syllable initial stop consonants and if this would be influenced by exposure to speech sounds. There were a total of four different exposure groups: No speech exposure (completely isolated), Passive speech exposure (regular exposure to human speech), and two Speech-trained groups. After the exposure period, all budgerigars were tested for phonetic cue trading using operant conditioning procedures. Birds were trained to peck keys in response to different synthetic speech sounds that began with "d" or "t" and varied in VOT and frequency of the first formant at voicing onset. Once training performance criteria were met, budgerigars were presented with the entire intermediate series, including ambiguous sounds. Responses on these trials were used to determine which speech cues were used, if a trading relation between VOT and the onset frequency of the first formant was present, and whether speech exposure had an influence on perception. Cue trading was found in all birds and these results were largely similar to those of a group of humans. Results indicated that prior speech experience was not a requirement for cue trading by budgerigars. The results are consistent with theories that explain phonetic cue trading in terms of a rich auditory encoding of the speech signal.
Tian, Lin; Shang, Yidan; Chen, Rui; Bai, Ru; Chen, Chunying; Inthavong, Kiao; Tu, Jiyuan
2017-07-12
Exposure to nanoparticles in the workplace is a health concern to occupational workers with increased risk of developing respiratory, cardiovascular, and neurological disorders. Based on animal inhalation study and human lung tumor risk extrapolation, current authoritative recommendations on exposure limits are either on total mass or number concentrations. Effects of particle size distribution and the implication to regional airway dosages are not elaborated. Real time production of particle concentration and size distribution in the range from 5.52 to 98.2 nm were recorded in a wire-cut electrical discharge machine shop (WEDM) during a typical working day. Under the realistic exposure condition, human inhalation simulations were performed in a physiologically realistic nasal and upper airway replica. The combined experimental and numerical study is the first to establish a realistic exposure condition, and under which, detailed dose metric studies can be performed. In addition to mass concentration guided exposure limit, inhalation risks to nano-pollutant were reexamined accounting for the actual particle size distribution and deposition statistics. Detailed dosimetries of the inhaled nano-pollutants in human nasal and upper airways with respect to particle number, mass and surface area were discussed, and empirical equations were developed. An astonishing enhancement of human airway dosages were detected by current combined experimental and numerical study in the WEDM machine shop. Up to 33 folds in mass, 27 folds in surface area and 8 folds in number dosages were detected during working hours in comparison to the background dosimetry measured at midnight. The real time particle concentration measurement showed substantial emission of nano-pollutants by WEDM machining activity, and the combined experimental and numerical study provided extraordinary details on human inhalation dosimetry. It was found out that human inhalation dosimetry was extremely sensitive to real time particle concentration and size distribution. Averaged particle concentration over 24-h period will inevitably misrepresent the sensible information critical for realistic inhalation risk assessment. Particle size distribution carries very important information in determining human airway dosimetry. A pure number or mass concentration recommendation on the exposure limit at workplace is insufficient. A particle size distribution, together with the deposition equations, is critical to recognize the actual exposure risks. In addition, human airway dosimetry in number, mass and surface area varies significantly. A complete inhalation risk assessment requires the knowledge of toxicity mechanisms in response to each individual metric. Further improvements in these areas are needed.
Celada, Lindsay J.; Whalen, Margaret M.
2013-01-01
Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145
Human Occupancy as a Source of Indoor Airborne Bacteria
Hospodsky, Denina; Qian, Jing; Nazaroff, William W.; Yamamoto, Naomichi; Bibby, Kyle; Rismani-Yazdi, Hamid; Peccia, Jordan
2012-01-01
Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM10 and PM2.5 size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM10. On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments. PMID:22529946
Bost, Phillip C; Strynar, Mark J; Reiner, Jessica L; Zweigenbaum, Jerry A; Secoura, Patricia L; Lindstrom, Andrew B; Dye, Janice A
2016-11-01
Perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are persistent, globally distributed, anthropogenic compounds. The primary source(s) for human exposure are not well understood although within home exposure is likely important since many consumer products have been treated with different PFAS, and people spend much of their lives indoors. Herein, domestic cats were used as sentinels to investigate potential exposure and health linkages. PFAS in serum samples of 72 pet and feral cats, including 11 healthy and 61 with one or more primary disease diagnoses, were quantitated using high-resolution time-of-flight mass spectroscopy. All but one sample had detectable PFAS, with PFOS and perfluorohexane sulfonate (PFHxS) ranging from
Ismail, Hager Tarek H.; Mahboub, Heba Hassan H.
2016-01-01
Aim: This study was aimed to evaluate some biochemical, hormonal, hematological, and histopathological changes in Nile tilapia, Oreochromis niloticus, after acute exposure to nonylphenol (NP). In addition to detection of NP residues in the fish, muscle tissues for human health concern. Materials and Methods: A total of 90 apparently healthy Nile tilapia, O. niloticus, were randomly divided into three equal groups; each containing 30 fish (three replicates). Groups 1 and 2 kept as a control and solvent control (acetone), respectively, and Group 3 exposed to NP at a dose level of 500 µg/L water for 7 successive days. Blood and tissue samples were collected 2 times randomly from each group after 7 days from fish exposure to NP and 10 days from exposure stopping. Results: Fish exposed to NP Group 3 showed anorexia, sluggish movement, erythema of the skin, areas of scales loss, and hemorrhagic ulcers in some areas of body region leading to exposing the viscera. Biochemical results revealed a significant increase in serum total proteins and globulins levels, a highly significant increase in serum alanine aminotransferase and aspartate aminotransferase activities, triglycerides, cholesterol, and creatinine levels, insignificant increase in serum uric acid level, and a highly significant decrease in serum testosterone and estradiol-β17 levels in Group 3 in compare with the control group. Histopathological finding confirms these results. While hematological results of the same group revealed a significant increase in red blood cells count and packed cell volume value, insignificant increase in hemoglobin concentration, leukopenia, lymphopenia, and monocytopenia in compared with the control group. All of these changes appeared after 7 days from fish exposure to NP. Most of these alterations returned toward the normal level after 10 days from stopping exposure to NP. NP residues detected in fish muscle tissues of Group 3 during exposure and after stopping exposure to it. Conclusion: It is concluded that NP is a toxic pollutant and has an adverse effect on fish health and reproduction as well as accumulates in fish muscle tissues which may cause human health hazard. PMID:27397986
Human Life History Strategies.
Chua, Kristine J; Lukaszewski, Aaron W; Grant, DeMond M; Sng, Oliver
2017-01-01
Human life history (LH) strategies are theoretically regulated by developmental exposure to environmental cues that ancestrally predicted LH-relevant world states (e.g., risk of morbidity-mortality). Recent modeling work has raised the question of whether the association of childhood family factors with adult LH variation arises via (i) direct sampling of external environmental cues during development and/or (ii) calibration of LH strategies to internal somatic condition (i.e., health), which itself reflects exposure to variably favorable environments. The present research tested between these possibilities through three online surveys involving a total of over 26,000 participants. Participants completed questionnaires assessing components of self-reported environmental harshness (i.e., socioeconomic status, family neglect, and neighborhood crime), health status, and various LH-related psychological and behavioral phenotypes (e.g., mating strategies, paranoia, and anxiety), modeled as a unidimensional latent variable. Structural equation models suggested that exposure to harsh ecologies had direct effects on latent LH strategy as well as indirect effects on latent LH strategy mediated via health status. These findings suggest that human LH strategies may be calibrated to both external and internal cues and that such calibrational effects manifest in a wide range of psychological and behavioral phenotypes.
Zhong, Yun-Xi; Jin, Xiao-Liang; Gu, Shi-Yin; Peng, Ying; Zhang, Ke-Rong; Ou-Yang, Bing-Chen; Wang, Yu; Xiao, Wei; Wang, Zhen-Zhong; Aa, Ji-Ye; Wang, Guang-Ji; Sun, Jian-Guo
2016-01-01
Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites, and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human. PMID:27527657
Zhong, Yun-Xi; Jin, Xiao-Liang; Gu, Shi-Yin; Peng, Ying; Zhang, Ke-Rong; Ou-Yang, Bing-Chen; Wang, Yu; Xiao, Wei; Wang, Zhen-Zhong; Aa, Ji-Ye; Wang, Guang-Ji; Sun, Jian-Guo
2016-08-16
Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites, and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human.
Proteomic Analysis of the Human Skin Proteome after In Vivo Treatment with Sodium Dodecyl Sulphate
Parkinson, Erika; Skipp, Paul; Aleksic, Maja; Garrow, Andrew; Dadd, Tony; Hughes, Michael; Clough, Geraldine; O′Connor, C. David
2014-01-01
Background Skin has a variety of functions that are incompletely understood at the molecular level. As the most accessible tissue in the body it often reveals the first signs of inflammation or infection and also represents a potentially valuable source of biomarkers for several diseases. In this study we surveyed the skin proteome qualitatively using gel electrophoresis, liquid chromatography tandem mass spectrometry (GeLC-MS/MS) and quantitatively using an isobaric tagging strategy (iTRAQ) to characterise the response of human skin following exposure to sodium dodecyl sulphate (SDS). Results A total of 653 skin proteins were assigned, 159 of which were identified using GeLC-MS/MS and 616 using iTRAQ, representing the most comprehensive proteomic study in human skin tissue. Statistical analysis of the available iTRAQ data did not reveal any significant differences in the measured skin proteome after 4 hours exposure to the model irritant SDS. Conclusions This study represents the first step in defining the critical response to an irritant at the level of the proteome and provides a valuable resource for further studies at the later stages of irritant exposure. PMID:24849295
Investigating the American Time Use Survey from an exposure modeling perspective.
George, Barbara Jane; McCurdy, Thomas
2011-01-01
This paper describes an evaluation of the US Bureau of Labor Statistics' American Time Use Survey (ATUS) for potential use in modeling human exposures to environmental pollutants. The ATUS is a large, on-going, cross-sectional survey of where Americans spend time and what activities they undertake in those locations. The data are reported as a series of sequential activities over a 24-h time period--a "diary day"--starting at 0400 hours. Between 12,000 and 13,000 surveys are obtained each year and the Bureau has plans to continue ATUS for the foreseeable future. The ATUS already has about 73,000 diary days of data, more than twice as many as that which currently exists in the US Environmental Protection Agency's (EPA) "Consolidated Human Activity Database" (CHAD) that the Agency uses for exposure modeling purposes. There are limitations for using ATUS in modeling human exposures to environmental pollutants. The ATUS does not report the location for a number of activities regarded as "personal." For 2006, personal activities with missing location information totaled 572 min/day, on average, for survey participants: about 40% of their day. Another limitation is that ATUS does not distinguish between indoor and outdoor activities at home, two of the traditional locational demarcations used in human exposure modeling. This lack of information affects exposure estimates to both indoor and outdoor air pollutants and potentially affects non-dietary ingestion estimates for children, which can vary widely depending on whether or not a child is indoors. Finally, a detailed analysis of the work travel activity in a subsample from ATUS 2006 indicates that the coding scheme is not fully consistent with a CHAD-based exposure modeling approach. For ATUS respondents in this subsample who reported work as an activity, roughly 48% of their days were missing work travel at one or both ends of the work shift or reported within work-shift travel inconsistently. An extensive effort would be needed to recode work travel data from ATUS for EPA's exposure modeling purposes.
NASA Technical Reports Server (NTRS)
Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.
2012-01-01
Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.
Esposito, Francesco; Fasano, Evelina; Scognamiglio, Gelsomina; Nardone, Antonio; Triassi, Maria; Cirillo, Teresa
2016-11-01
Fumonisins are mycotoxins produced by Fusarium species and affecting maize crops. Some analogues of fumonisins are known for their toxic and possible carcinogenic effects on humans and animals. Because of their occurrence in corn-based food, diet is the main source of exposure to these mycotoxins, especially among people affected by celiac disease. Hence, the purpose of this paper was to evaluate the amount of fumonisins B1, B2 and B3 in maize-based products and to assess the exposure of people affected by celiac disease to fumonisins. The sample consisted of 154 gluten-free products analyzed according to method UNI EN 14352:2005. Results showed a heterogeneous contamination by fumoninisin B1, B2 and B3, although below limits of Commission Regulation No 1126/2007 and consistent with other European literature data. Exposure to fumonisins was evaluated for different age groups. In some cases exposure to fumonisins could not be ignored since the total intake could exceed EFSA Provisional Maximum Tolerable Intake up to 150%. Therefore, in the light of an overall contamination by fumonisins the total dietary exposure could be underrated not only in people affected by celiac disease, but also in non-celiac population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Risk assessment from exposure to arsenic, antimony, and selenium in urban gardens (Madrid, Spain).
De Miguel, Eduardo; Izquierdo, Miguel; Gómez, Amaia; Mingot, Juan; Barrio-Parra, Fernando
2017-02-01
The authors discuss the geochemical behavior of arsenic (As), antimony (Sb), and selenium (Se) in urban gardens and the human health implications associated with urban agriculture. A total of 42 samples from 7 urban gardens in Madrid, Spain, were collected from the top 20 cm of soil. Concentrations of As, Sb, and Se and the main soil properties (i.e., total iron, pH, texture, calcium carbonate, and organic matter) were determined. A significant correlation was found between As and Sb and calcium carbonate, indicating the possibility of surface adsorption or ligand exchange with the carbonate group. Also, Sb seemed to form stable chelates with soil organic matter. On the other hand, Se showed a significant association with clay and iron content. The concentration of Sb in soil exceeded the recommended value for agricultural use in 70% of the urban gardens. A human health risk assessment resulted in acceptable levels of both noncarcinogenic and carcinogenic risks (although with elevated values of the latter), with As as the main risk driver and soil and food ingestion as the main exposure pathways. The numerical results of the risk assessment should be interpreted with caution given the considerable uncertainties in some exposure variables and the lack of quantitative values for the suspected carcinogenicity of Sb and Se. Environ Toxicol Chem 2017;36:544-550. © 2016 SETAC. © 2016 SETAC.
Curcio, Giuseppe
2018-01-01
In the past 20 years of research regarding effects of mobile phone-derived electromagnetic fields (EMFs) on human cognition, attention has been one of the first and most extensively investigated functions. Different domains investigated covered selective, sustained, and divided attention. Here, the most relevant studies on this topic have been reviewed and discussed. A total of 43 studies are reported and summarized: of these, 31 indicated a total absence of statistically significant difference between real and sham signal, 9 showed a partial improvement of attentional performance (mainly increase in speed of performance and/or improvement of accuracy) as a function of real exposure, while the remaining 3 showed inconsistent results (i.e., increased speed in some tasks and slowing in others) or even a worsening in performance (reduced speed and/or deteriorated accuracy). These results are independent of the specific attentional domain investigated. This scenario allows to conclude that there is a substantial lack of evidence about a negative influence of non-ionizing radiations on attention functioning. Nonetheless, published literature is very heterogeneous under the point of view of methodology (type of signal, exposure time, blinding), dosimetry (accurate evaluation of specific absorption rate-SAR or emitted power), and statistical analyses, making arduous a conclusive generalization to everyday life. Some remarks and suggestions regarding future research are proposed.
Effects of dim or bright-light exposure during the daytime on human gastrointestinal activity.
Sone, Yoshiaki; Hyun, Ki-Ja; Nishimura, Shinya; Lee, Young-Ah; Tokura, Hiromi
2003-01-01
On the basis of our previous findings that bright-light exposure during the daytime has profound influence on physiological parameters such as melatonin secretion and tympanic temperature in humans, we proposed the hypothesis that bright vs. dim light-exposure during the daytime has a different influence on the activity of the digestive system via the endocrine and/or autonomic nervous system. To examine this hypothesis, we conducted a series of counterbalanced experiments in which subjects stayed the daytime (7:00 to 15:00h) under either a dim (80 lux) or bright (5,000 lux) light condition. We measured gastrointestinal activity using a breath hydrogen (indicative of carbohydrate malabsorption) and an electrogastrography (EGG, indicative of gastric myoelectric activity) test. The results showed the postprandial breath hydrogen excretion during the following nighttime period after daytime exposure to the dim-light condition was significantly higher than under the bright-light condition (p < 0.05). In addition, the spectrum total power of the EGG recorded after taking the evening meal was significantly lower for the dim than bright-light condition (p < 0.05). These results support our hypothesis and indicate that dim-light exposure during the daytime suppresses the digestion of the evening meal, resulting in malabsorption of dietary carbohydrates in it.
Zhang, Tao; Sun, Hongwen; Lin, Yan; Wang, Lei; Zhang, Xianzhong; Liu, Ya; Geng, Xia; Zhao, Lijie; Li, Fasong; Kannan, Kurunthachalam
2011-10-26
Despite the growing public interest in perfluorinated compounds (PFCs), very few studies have reported the sources and pathways of human exposure to these compounds in China. In this study, concentrations of 10 PFCs were measured in human blood, water (tap water and surface water), freshwater fish, and seafood samples collected from China. On the basis of the data, we calculated daily intakes of PFCs, regional differences in human exposures, and potential risks associated with ingestion of PFCs from diet, drinking water, and indoor dust for the Chinese population. Perfluorooctane sulfonate (PFOS) was the most predominant PFC found with a mean concentration of 12.5 ng/mL in human blood from Tianjin and 0.92 ng/g wet wt in freshwater fish and seafood; perfluorooctanoic acid (PFOA) was the major PFC found in drinking water at a concentration range of 0.10 to 0.92 ng/L. The estimated daily intake of PFOS and PFOA via fish and seafood consumption (EDI(fish&seafood)) ranged from 0.10 to 2.51 and 0.13 to 0.38 ng/kg bw/day, respectively, for different age groups (i.e., toddlers, adolescents and children, and adults) from selected locations (i.e., Tianjin, Nanchang, Wuhan, and Shenyang). The EDI(fish&seafood) of PFCs decreased (p < 0.05) with age. The estimated daily intake of PFOS and PFOA via drinking water consumption (EDI(drinking water)) ranged from 0.006 to 0.014 and 0.010 to 0.159 ng/kg bw/day, respectively. Comparison of EDI(fish&seafood) and EDI(drinking water) values with those of the modeled total dietary intake (TDI) of PFCs by adults from Tianjin, Nanchang, Wuhan, and Shenyang showed that contributions of fish and seafood to TDI of PFOS varied depending on the location. Fish and seafood accounted for 7%, 24%, 80%, and 84% of PFOS intake in Nanchang, Shenyang, Wuhan, and Tianjin, respectively, suggesting regional differences in human exposure to PFOS. Drinking water was a minor source of PFOS (<1%) exposure in adults from all the study locations.
Novel Human Radiation Exposure Biomarker Panel Applicable for Population Triage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazan, Jose G.; Chang, Polly; Balog, Robert
2014-11-01
Purpose: To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Methods and Materials: Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groupsmore » were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. Results: A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). Conclusions: A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear or other radiologic events.« less
Novel human radiation exposure biomarker panel applicable for population triage.
Bazan, Jose G; Chang, Polly; Balog, Robert; D'Andrea, Annalisa; Shaler, Thomas; Lin, Hua; Lee, Shirley; Harrison, Travis; Shura, Lei; Schoen, Lucy; Knox, Susan J; Cooper, David E
2014-11-01
To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groups were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear or other radiologic events. Copyright © 2014 Elsevier Inc. All rights reserved.
Setton, Eleanor M; Veerman, Basil; Erickson, Anders; Deschenes, Steeve; Cheasley, Roz; Poplawski, Karla; Demers, Paul A; Keller, C Peter
2015-08-22
Emissions inventories aid in understanding the sources of hazardous air pollutants and how these vary regionally, supporting targeted reduction actions. Integrating information on the relative toxicity of emitted pollutants with respect to cancer in humans helps to further refine reduction actions or recommendations, but few national programs exist in North America that use emissions estimates in this way. The CAREX Canada Emissions Mapping Project provides key regional indicators of emissions (total annual and total annual toxic equivalent, circa 2011) of 21 selected known and suspected carcinogens. The indicators were calculated from industrial emissions reported to the National Pollutant Release Inventory (NPRI) and estimates of emissions from transportation (airports, trains, and car and truck traffic) and residential heating (oil, gas and wood), in conjunction with human toxicity potential factors. We also include substance-specific annual emissions in toxic equivalent kilograms and annual emissions in kilograms, to allow for ranking substances within any region. For provinces and territories in Canada, the indicators suggest the top five substances contributing to the total toxic equivalent emissions in any region could be prioritized for further investigation. Residents of Quebec and New Brunswick may be more at risk of exposure to industrial emissions than those in other regions, suggesting that a more detailed study of exposure to industrial emissions in these provinces is warranted. Residential wood smoke may be an important emission to control, particularly in the north and eastern regions of Canada. Residential oil and gas heating, along with rail emissions contribute little to regional emissions and therefore may not be an immediate regional priority. The developed indicators support the identification of pollutants and sources for additional investigation when planning exposure reduction actions among Canadian provinces and territories, but have important limitations similar to other emissions inventory-based tools. Additional research is required to evaluate how the Emissions Mapping Project is used by different groups and organizations with respect to informing actions aimed at reducing Canadians' potential exposure to harmful air pollutants.
Mantovani, Alberto; Maranghi, Francesca; La Rocca, Cinzia; Tiboni, Gian Mario; Clementi, Maurizio
2008-09-01
The paper discusses current knowledge and possible research priorities on biomarkers of exposure, effect and susceptibility for potential endocrine activities of agrochemicals (dicarboximides, ethylene bisdithiocarbammates, triazoles, etc.). Possible widespread, multiple-pathway exposure to agrochemicals highlights the need to assess internal exposure of animals or humans, which is the most relevant exposure measure for hazard and risk estimation; however, exposure data should be integrated by early indicators predictive of possible health effects, particularly for vulnerable groups such as mother-child pairs. Research need include: non-invasive biomarkers for children biomonitoring; novel biomarkers of total exposure to measure whole endocrine disrupter-related burden; characterization of biomarkers of susceptibility, including the role of markers of nutritional status; anchoring early molecular markers to established toxicological endpoints to support their predictivity; integrating "omics"-based approaches in a system-toxicology framework. As biomonitoring becomes increasingly important in the environment-and-health scenario, toxicologists can substantially contribute both to the characterization of new biomarkers and to the predictivity assessment and improvement of the existing ones.
Sonar-induced temporary hearing loss in dolphins
Mooney, T. Aran; Nachtigall, Paul E.; Vlachos, Stephanie
2009-01-01
There is increasing concern that human-produced ocean noise is adversely affecting marine mammals, as several recent cetacean mass strandings may have been caused by animals' interactions with naval ‘mid-frequency’ sonar. However, it has yet to be empirically demonstrated how sonar could induce these strandings or cause physiological effects. In controlled experimental studies, we show that mid-frequency sonar can induce temporary hearing loss in a bottlenose dolphin (Tursiops truncatus). Mild-behavioural alterations were also associated with the exposures. The auditory effects were induced only by repeated exposures to intense sonar pings with total sound exposure levels of 214 dB re: 1 μPa2 s. Data support an increasing energy model to predict temporary noise-induced hearing loss and indicate that odontocete noise exposure effects bear trends similar to terrestrial mammals. Thus, sonar can induce physiological and behavioural effects in at least one species of odontocete; however, exposures must be of prolonged, high sound exposures levels to generate these effects. PMID:19364712
Bettaieb, Jihene; Abdeladhim, Maha; Hadj Kacem, Saoussen; Abdelkader, Rania; Gritli, Sami; Chemkhi, Jomaa; Aslan, Hamide; Kamhawi, Shaden; Ben Salah, Afif; Louzir, Hechmi; Valenzuela, Jesus G.; Ben Ahmed, Melika
2015-01-01
Background During a blood meal, female sand flies, vectors of Leishmania parasites, inject saliva into the host skin. Sand fly saliva is composed of a large variety of components that exert different pharmacological activities facilitating the acquisition of blood by the insect. Importantly, proteins present in saliva are able to elicit the production of specific anti-saliva antibodies, which can be used as markers for exposure to vector bites. Serological tests using total sand fly salivary gland extracts are challenging due to the difficulty of obtaining reproducible salivary gland preparations. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and established that humans exposed to P. perniciosus bites do not recognize it. Methodology/Principal Findings Herein, we have validated, in a large cohort of 522 individuals, the use of the Phlebotomus papatasi recombinant salivary protein PpSP32 (rPpSP32) as an alternative method for testing exposure to the bite of this sand fly. We also demonstrated that screening for total anti-rPpSP32 IgG antibodies is sufficient, being comparable in efficacy to the screening for IgG2, IgG4 and IgE antibodies against rPpSP32. Additionally, sera obtained from dogs immunized with saliva of P. perniciosus, a sympatric and widely distributed sand fly in Tunisia, did not recognize rPpSP32 demonstrating its suitability as a marker of exposure to P. papatasi saliva. Conclusions/Significance Our data indicate that rPpSP32 constitutes a useful epidemiological tool to monitor the spatial distribution of P. papatasi in a particular region, to direct control measures against zoonotic cutaneous leishmaniasis, to assess the efficiency of vector control interventions and perhaps to assess the risk of contracting the disease. PMID:26368935
Goodman, Julie E; Kerper, Laura E; Boyce, Catherine Petito; Prueitt, Robyn L; Rhomberg, Lorenz R
2010-10-01
Thyroid hormones play a critical role in the proper development of brain function and cell growth. Several epidemiological studies have been conducted to assess potential associations between pre- and post-natal exposure to dioxins or dioxin-like compounds (DLCs) and the levels of circulating thyroid hormones during early development. Dioxins and DLCs include chlorinated dibenzo-p-dioxins, chlorinated dibenzofurans, and mono- and non-ortho polychlorinated biphenyls (PCBs). We identified a total of 23 relevant epidemiological studies (21 cohort studies and 1 case-control study) that measured exposures to various types of dioxins and DLCs as well as markers of thyroid function, such as thyroid stimulating hormone (TSH), total thyroxine (T4), free T4, total triiodothyroxine (T3), free T3, and thyroid-binding globulin concentrations in cord blood or circulation. While some of the studies reported associations between concentrations of dioxins and/or DLCs and some biomarkers of thyroid function, the majority of the observed associations were not statistically significant. Moreover, there were no clear and consistent effects across studies for any of the hormone levels examined, and while a number of studies showed a statistically significant association with exposure for a given marker of thyroid function, other studies showed either no change or changes in the opposite direction for the same thyroid function marker. Similarly, when the results were analyzed considering developmental stage, there generally were no clear and consistent effects at any age from birth through 12 years of age. The absence of a clear correlation between background exposures to dioxins and DLCs and thyroid function biomarkers during development is not consistent with the hypothesis that background exposures to these chemicals cause effects on thyroid function during development. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Duarte-Salles, Talita; Mendez, Michelle A; Pessoa, Verónica; Guxens, Mònica; Aguilera, Inmaculada; Kogevinas, Manolis; Sunyer, Jordi
2010-12-01
To estimate the dietary intake of total polycyclic aromatic hydrocarbons (PAH) and benzo(a)pyrene (BaP), and to characterise factors associated with higher intake during pregnancy. Recent studies suggest that prenatal exposure to PAH is associated with adverse reproductive outcomes. Other than tobacco smoke and occupational exposures, diet is the main source of human PAH exposure. Prospective birth cohort study. Dietary exposure to total PAH and BaP was calculated combining food consumption data and estimated PAH concentrations in foods. One-way ANOVA was used to assess differences in intake among non-smokers, passive or active smokers. Linear regression was used to assess factors related to higher intake, and associations between dietary PAH and birth weight. Sabadell, Spain, 2004-2006. Women (n 657) recruited during the first trimester of pregnancy. The mean dietary intake of BaP and total PAH was significantly higher among active (0·199 and 10·207 μg/d, respectively) and passive smokers (0·196 and 9·458 μg/d) than among non-smokers (0·181 and 8·757 μg/d; P value < 0·005). Maternal age, educational level and region of origin were also associated with higher BaP intake. In all women, major contributors to PAH intake were processed/cured meats, cereals/potatoes and shellfish. Elevated first trimester dietary BaP was associated with a significant reduction in birth weight (fourth v. first quartile: β = -142·73 g, P value < 0·05). Active and passive smokers had higher dietary PAH exposure during pregnancy because of higher intake of processed meats and shellfish. As tobacco smoke is an additional route of PAH exposure, the added dietary burden in these women is of concern.
Natarajan, M; Nayak, B K; Galindo, C; Mathur, S P; Roldan, F N; Meltz, M L
2006-06-01
The objective of this study was to investigate whether exposure of human monocytes to a pulsed ultra-wideband electromagnetic field (EMF) of 1 kV/cm average peak power triggers a signaling pathway responsible for the transcriptional regulation of NFKB (NF-kappaB)-dependent gene expression. Human Mono Mac 6 (MM6) cells were exposed intermittently to EMF pulses for a total of 90 min. The pulse width was 0.79+/-0.01 ns and the pulse repetition rate was 250 pps. The temperature of the medium was maintained at 37 degrees C in both sham- and EMF-exposed flasks. Total NFKB DNA-binding activity was measured in the nuclear extracts by the electrophoretic mobility shift assay. Cells exposed to the EMFs and incubated for 24 h postexposure showed a 3.5+/-0.2-fold increase in the NFKB DNA-binding activity. Since activation of NFKB was observed, the possibility of kappaB-dependent gene expression in response to exposure to the EMFs was investigated using NFKB signal-specific gene arrays. The results revealed no difference in the NFKB-dependent gene expression profiles at 8 or 24 h postexposure, indicating that activated NFKB does not lead to the differential expression of kappaB-dependent target genes. To determine whether the absence of the kappaB-dependent gene expression was due to compromised transcriptional regulation of NFKB, the functional activity of NFKB was examined in cells transiently transfected with Mercury Pathway constructs containing 4x NFKB binding sites associated either with the luciferase reporter system or a control vector. Pulsed EMF exposure did not induce NFKB-driven luciferase activity in these cells, indicating that the activation of NFKB at 24 h after the 1 kV/cm EMF exposure is functionally inactive. From these results, it is clear that the EMF-induced NFKB activation is only a transient response, with minimal or no downstream effect.
DEMONSTRATION OF HUMAN EXPOSURE TOOLS
The Human Exposure and Atmospheric Sciences Division (HEASD) of the National Exposure Research Laboratory (NERL) conducts research on exposure measurements, human activity patterns, exposure and dose models, and cumulative exposures critical for the Agency to make scientificall...
[Estimation of exposure to fluoride in "Los Altos de Jalisco", México].
Hurtado-Jiménez, Roberto; Gardea-Torresdey, Jorge
2005-01-01
To estimate the level of fluoride exposure and human health risks in Los Altos de Jalisco (Jalisco State Heights) region. This study was conducted between May and July 2002. The fluoride concentrations of 105 water wells and six tap water samples were electrochemically measured. Exposure doses to fluoride and total intake of fluoride were estimated for babies (10 kg), children (20 kg), and adults (70 kg). The fluoride concentration of the water samples ranged from 0.1 to 17.7 mg/l. More than 45% of the water samples exceeded the national guideline value for fluoride of 1.5 mg/l. The estimated values of the exposure doses to fluoride and total intake of fluoride were in the range of 0.04-1.8 mg/kg/d and 0.5-18.4 mg/d, respectively. Dental fluorosis, skeletal fluorosis, and bone fractures are some of the potential health risks due to the intake of high doses of fluoride for the population of Los Altos de Jalisco. In order to reduce health risks, fluoridated salt,fluoridated toothpastes, and drinking water containing more than 0.7 mg/l of fluoride should be avoided.
Joseph, W; Vermeeren, G; Verloock, L; Heredia, Mauricio Masache; Martens, Luc
2008-09-01
In this paper, personal electromagnetic field exposure of the general public due to 12 different radiofrequency sources is characterized. Twenty-eight different realistic exposure scenarios based upon time, environment, activity, and location have been defined and a relevant number of measurements were performed with a personal exposure meter. Indoor exposure in office environments can be higher than outdoor exposure: 95th percentiles of field values due to WiFi ranged from 0.36 to 0.58 V m(-1), and for DECT values of 0.33 V m(-1) were measured. The downlink signals of GSM and DCS caused the highest outdoor exposures up to 0.52 V m(-1). The highest total field exposure occurred for mobile scenarios (inside a train or bus) from uplink signals of GSM and DCS (e.g., mobile phones) due to changing environmental conditions, handovers, and higher required transmitted signals from mobile phones due to penetration through windows while moving. A method to relate the exposure to the actual whole-body absorption in the human body is proposed. An application is shown where the actual absorption in a human body model due to a GSM downlink signal is determined. Fiftieth, 95th, and 99 th percentiles of the whole-body specific absorption rate (SAR) due to this GSM signal of 0.58 microW kg(-1), 2.08 microW kg(-1), and 5.01 microW kg(-1) are obtained for a 95th percentile of 0.26 V m(-1). A practical usable function is proposed for the relation between the whole-body SAR and the electric fields. The methodology of this paper enables epidemiological studies to make an analysis in combination with both electric field and actual whole-body SAR values and to compare exposure with basic restrictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Jodie; Berntsen, Hanne Friis; Zimmer, Karin Elisabeth
Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds,more » chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p’-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2 h and 48 h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC + Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br + Cl, PFC + Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. - Highlights: • High content analysis (HCA) is a novel approach for determining toxicity of complex mixtures. • Multiple cytotoxic endpoints were investigated for defined mixtures of persistent organic pollutants (POPs). • POP mixtures are based on levels relevant to human exposure. • POP mixtures can increase ROS induction and impact mitochondrial health, which could result in apoptosis. • HCA can detect pre-lethal and reversible signs of cellular stress.« less
Behl, Mamta; Rao, Deepa; Aagaard, Kjersti; Davidson, Terry L.; Levin, Edward D.; Slotkin, Theodore A.; Srinivasan, Supriya; Wallinga, David; White, Morris F.; Walker, Vickie R.; Thayer, Kristina A.
2012-01-01
Background: An emerging literature suggests that environmental chemicals may play a role in the development of childhood obesity and metabolic disorders, especially when exposure occurs early in life. Objective: Here we assess the association between these health outcomes and exposure to maternal smoking during pregnancy as part of a broader effort to develop a research agenda to better understand the role of environmental chemicals as potential risk factors for obesity and metabolic disorders. Methods: PubMed was searched up to 8 March 2012 for epidemiological and experimental animal studies related to maternal smoking or nicotine exposure during pregnancy and childhood obesity or metabolic disorders at any age. A total of 101 studies—83 in humans and 18 in animals—were identified as the primary literature. Discussion: Current epidemiological data support a positive association between maternal smoking and increased risk of obesity or overweight in offspring. The data strongly suggest a causal relation, although the possibility that the association is attributable to unmeasured residual confounding cannot be completely ruled out. This conclusion is supported by findings from laboratory animals exposed to nicotine during development. The existing literature on human exposures does not support an association between maternal smoking during pregnancy and type 1 diabetes in offspring. Too few human studies have assessed outcomes related to type 2 diabetes or metabolic syndrome to reach conclusions based on patterns of findings. There may be a number of mechanistic pathways important for the development of aberrant metabolic outcomes following perinatal exposure to cigarette smoke, which remain largely unexplored. Conclusions: From a toxicological perspective, the linkages between maternal smoking during pregnancy and childhood overweight/obesity provide proof-of-concept of how early-life exposure to an environmental toxicant can be a risk factor for childhood obesity. PMID:23232494
Li, Tong; Wan, Yi; Ben, Yujie; Fan, Senrong; Hu, Jianying
2017-07-01
The potential health effects of toxic chemicals (e.g. heavy metals) emitted by municipal solid waste incinerators (MSWIs) are of great concern to local residents, however there have been few studies on the contributions of different exposure pathways and their subsequent effects on the body burden of residents living near MSWIs. In this study, multiple exposure routes of heavy metals including Pb, Cr, Cd and Mn were assessed by investigating the metals in foods (such as vegetables, crops, meats and fruits etc.), drinking water, ambient air and soil collected surrounding an MSWI in Shenzhen, south China. Vegetable ingestion played the most important role in the total average daily dose of Pb and Cr, and cereals were the key exposure routes for Mn and Cd. Compound-specific contaminations were observed in the investigated areas, with Pb and Cr present in the surrounding environment, having accumulated to relatively high levels in the local vegetables, and the intake of contaminated vegetable foods greatly influencing the body burden of Pb and Cr. Consistently, significantly high blood concentrations of Pb and Cr were detected in the local residents compared to a referenced population, and a lack of significant differences was found for Cd and Mn. The results possibly suggested that emission of MSWI influenced the external exposure doses of the major pathways of Pb and Cr in this study, and resulted in the different body burden of metals in humans living near a MSWI. MSWI-local food-humans is an important exposure pathway for residents living near MSWI, and thus should not be neglected in developing future strategies and policies to prevent the high risks suffered by residents living near MSWIs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dumas-Campagna, Josée; Tardif, Robert; Charest-Tardif, Ginette; Haddad, Sami
2014-02-01
Uncertainty exists regarding the validity of a previously developed physiologically-based pharmacokinetic model (PBPK) for inhaled ethanol in humans to predict the blood levels of ethanol (BLE) at low level exposures (<1000 ppm). Thus, the objective of this study is to document the BLE resulting from low levels exposures in order to refine/validate this PBPK model. Human volunteers were exposed to ethanol vapors during 4 h at 5 different concentrations (125-1000 ppm), at rest, in an inhalation chamber. Blood and exhaled air were sampled. Also, the impact of light exercise (50 W) on the BLE was investigated. There is a linear relationship between the ethanol concentrations in inhaled air and (i) BLE (women: r²= 0.98/men: r²= 0.99), as well as (ii) ethanol concentrations in the exhaled air at end of exposure period (men: r²= 0.99/women: r²= 0.99). Furthermore, the exercise resulted in a net and significant increase of BLE (2-3 fold). Overall, the original model predictions overestimated the BLE for all low exposures performed in this study. To properly simulate the toxicokinetic data, the model was refined by adding a description of an extra-hepatic biotransformation of high affinity and low capacity in the richly perfused tissues compartment. This is based on the observation that total clearance observed at low exposure levels was much greater than liver blood flow. The results of this study will facilitate the refinement of the risk assessment associated with chronic inhalation of low levels of ethanol in the general population and especially among workers.
Determination of fluorine in biological materials: reaction paper.
Ophaug, R
1994-06-01
Although the fluorine in human tissues may exist in both inorganic and organic (covalently bound) forms, the inorganic fraction is clearly the most relevant for assessing human exposure to, and utilization of, environmental fluoride. There is now general agreement that the inorganic fraction of total tissue fluorine can be accurately determined by a variety of analytical techniques. One of the basic questions considered at this workshop is whether the analysis of a specific tissue or body fluid can provide an estimate of how much of the fluoride to which an individual is exposed actually enters and accumulates in the body. The analysis of hair and nails has been used as an indicator of exposure and utilization for several trace elements, including fluoride. Due to methodological uncertainties regarding sampling and pre-analysis treatment, however, it is presently not possible clearly to distinguish fluoride which is incorporated into hair and nails during formation (endogenous) from that which becomes associated with the tissues following exposure to the environment (exogenous). Consequently, although the fluoride content of hair and nails is clearly increased by environmental exposure to fluoride, the conclusion that these tissues are suitable indicators of fluoride utilization and accumulation in the body is premature.
Predicting disease onset in clinically healthy people
2016-01-01
Virtually all human disease is induced by oxidative stress. Oxidative stress, which is caused by toxic environmental exposure, the presence of disease, lifestyle choices, stress, chronic inflammation or combinations of these, is responsible for most disease. Oxidative stress from all sources is additive and it is the total oxidative stress from all sources that induces the onset of most disease. Oxidative stress leads to lipid peroxidation, which in turn produces Malondialdehyde. Serum malondialdehyde level is an additive parameter resulting from all sources of oxidative stress and, therefore, is a reliable indicator of total oxidative stress which can be used to predict the onset of disease in clinically asymptomatic individuals and to suggest the need for treatment that can prevent much human disease. PMID:28652846
Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Harris, Craig; Dolinoy, Dana C.
2014-01-01
While urine has been an easily accessible and feasible matrix for human biomonitoring, analytical measurements in internal tissues and organs can provide more accurate exposure assessments to understand disease etiology. This is especially important for the endocrine active compound, bisphenol A (BPA), where studies investigating internal doses at sensitive periods of human development are currently lacking. Herein, BPA concentrations, BPA-specific metabolizing enzyme gene expression, and global DNA methylation were characterized across three matched tissues from elective pregnancy terminations of 2nd trimester human fetuses: the placenta, liver, and kidney (N=12 each; N=36 total). Compared to liver (free: 0.54-50.5 ng/g), BPA concentrations were lower in matched placenta (<0.05-25.4 ng/g) and kidney (0.08-11.1 ng/g) specimens. BPA-specific metabolism gene expression of GUSB, UGT2B15, STS, and SULT1A1 differed across each tissue type; however, conjugation and deconjugation expression patterns were similar across the fetus. Average LINE1 and CCGG global methylation were 58.3 and 59.2% in placenta, 79.5 and 66.4% in fetal liver, and 77.9 and 77.0% in fetal kidney, with significant tissue-specific DNA methylation differences in both LINE1 (p-value <0.001) and CCGG content (p-value <0.001). Total BPA concentrations were positively associated with global methylation for the placenta only using the LINE1 assay (p-value: 0.002), suggesting organ-specific biological effects after fetal exposure. Utilizing sensitive human clinical specimens, results are informative for BPA toxicokinetics and toxicodynamics assessment in the developing human fetus. PMID:25434263
Kwaansa-Ansah, E E; Basu, N; Nriagu, J O
2010-11-01
Total mercury concentrations in human hair and urine samples were determined to ascertain the extent of environmental and occupational mercury exposure in Dunkwa-On-Offin, a small scale gold mining area of the central-west region of Ghana. In all ninety-four (94) hair and urine samples comprising of forty (40) small scale miners and fifty-four (54) farmers were collected and analyzed for their total mercury levels using the cold vapour atomic absorption spectrometry. The hair total mercury concentrations ranged from 0.63 to 7.19 ug/g with a mean of 2.35 ± 1.58 ug/g for the farmers and 0.57-6.07 ug/g with a mean of 2.14 ± 1.53 ug/g for the small scale gold miners. There was no significant correlation between the total mercury concentration and the average weekly fish diet. The total mercury concentrations in urine of the miners were higher than those of the farmers and ranged from 0.32 to 3.62 ug/L with a mean of 1.23 ± 0.86 ug/L. The urine concentrations of farmers ranged from 0.075 to 2.31 ug/L with a mean of 0.69 ± 0.39 ug/L. Although the results indicate elevated internal dose of mercury the current levels of exposures do not appear to pose a significant health threat to the people.
NASA Astrophysics Data System (ADS)
Pervez, S.; Koshle, A.; Pervez, Y.
2010-01-01
Mercury release by coal combustion has been significantly increased in India. Mercury content in coal has been analyzed to 0.272 ppm by Central Pollution Control Board. Toxicological effects of elemental Hg (Hg0) exposure include respiratory and renal failures, cardiac arrest, and cerebral oedema, while subclinical exposure may induce kidney, behavioral, and cognitive dysfunctions. The present work is focused on dispersion pattern and inter-phase exchange phenomena of ambient mercury between air-particulate matter evaluations of alongwith dominance of various major routes of human exposure-dose response using regression analysis around an integrated steel plant in central India. Source-downwind type stratified random sampling plan using longitudinal study design has been adopted for ambient monitoring of total mercury, while representative sampling plant has been adopted for persona exposure-dose response study In space-time framework. Control sites and subjects have been chosen from uncontaminated area (100 km away from any industrial activities). 06 ambient air monitoring stations and 17 subjects from workers, non-workers but local residents' categories and from controlled sites have been chosen for the study. Samples of mercury biomarkers (blood, breast milk and urine) have also been collected from same subjects in each month during sampling period. The sampling period was March 2005 to February 2006 . Samples of 30% acidified KMnO4 for air-Hg absorption, PM10, RPM and biological samples were analyzed for total mercury by ICP-AES using standard methods. Local soils and ground water were also monitored for total mercury content during the sampling period. Results have shown that mercury concentration is very high compared to prescribed limits in all receptors. Results of exchange phenomenon have shown the higher transfer of mercury from air to particulate during combustion in steel plant environment due to presence of huge amount of iron particles, in contrast to results obtained in other industrial locations earlier. Plant workers have shown 1.5 to 2.5 times higher personal RPM-Hg levels compared to Category 2 and 20-30 times higher than Category 3. All biomarkers have shown higher Hg presence compared to prescribed standards. Regression analysis between exposure routes and bio-receptors has been investigated. Dominance status of selected routes of bio-accumulation has been varied from category to category.
NASA Astrophysics Data System (ADS)
Pervez, S.; Koshle, A.; Pervez, Y.
2010-06-01
Mercury release by coal combustion has been significantly increased in India. Mercury content in coal has been analyzed to 0.272 ppm by Central Pollution Control Board. Toxicological effects of elemental Hg (Hg0) exposure include respiratory and renal failures, cardiac arrest, and cerebral oedema, while subclinical exposure may induce kidney, behavioral, and cognitive dysfunctions. The present work is focused on dispersion pattern and inter-phase exchange phenomena of ambient mercury between air-particulate matter evaluations of alongwith dominance of various major routes of human exposure-dose response using regression analysis around an integrated steel plant in central India. Source-downwind type stratified random sampling plan using longitudinal study design has been adopted for ambient monitoring of total mercury, while representative sampling plant has been adopted for persona exposure-dose response study In space-time framework. Control sites and subjects have been chosen from uncontaminated area (100 km away from any industrial activities). 06 ambient air monitoring stations and 17 subjects from workers, non-workers but local residents' categories and from controlled sites have been chosen for the study. Samples of mercury biomarkers (blood, breast milk and urine) have also been collected from same subjects in each month during sampling period. The sampling period was March 2005 to February 2006 . Samples of 30% acidified KMnO4 for air-Hg absorption, PM10, RPM and biological samples were analyzed for total mercury by ICP-AES using standard methods. Local soils and ground water were also monitored for total mercury content during the sampling period. Results have shown that mercury concentration is very high compared to prescribed limits in all receptors. Results of exchange phenomenon have shown the higher transfer of mercury from air to particulate during combustion in steel plant environment due to presence of huge amount of iron particles, in contrast to results obtained in other industrial locations earlier. Plant workers have shown 1.5 to 2.5 times higher personal RPM-Hg levels compared to Category 2 and 20-30 times higher than Category 3. All biomarkers have shown higher Hg presence compared to prescribed standards. Regression analysis between exposure routes and bio-receptors has been investigated. Dominance status of selected routes of bio-accumulation has been varied from category to category.
2012-01-01
Background Accumulating evidence indicates that in utero exposure to arsenic is associated with congenital defects and long-term disease consequences including cancers. Recent studies suggest that arsenic carcinogenesis results from epigenetic changes, particularly in DNA methylation. This study aimed to investigate DNA methylation changes as a result of arsenic exposure in utero and in vitro. Methods For the exposure in utero study, a total of seventy-one newborns (fifty-five arsenic-exposed and sixteen unexposed newborns) were recruited. Arsenic concentrations in the drinking water were measured, and exposure in newborns was assessed by measurement of arsenic concentrations in cord blood, nails and hair by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the in vitro study, human lymphoblasts were treated with arsenite at 0-100 μM for two, four and eight hours (short-term) and at 0, 0.5 and 1.0 μM for eight-weeks period (long-term). DNA methylation was analyzed in cord blood lymphocytes and lymphoblasts treated with arsenite in vitro. Global DNA methylation was determined as LINE-1 methylation using combined bisulfite restriction analysis (COBRA) and total 5-methyldeoxycytidine (5MedC) content which was determined by HPLC-MS/MS. Methylation of p53 was determined at the promoter region using methylation-specific restriction endonuclease digestion with MspI and HpaII. Results Results showed that arsenic-exposed newborns had significantly higher levels of arsenic in cord blood, fingernails, toenails and hair than those of the unexposed subjects and a slight increase in promoter methylation of p53 in cord blood lymphocytes which significantly correlated with arsenic accumulation in nails (p < 0.05) was observed, while LINE-1 methylation was unchanged. Short-term in vitro arsenite treatment in lymphoblastoid cells clearly demonstrated a significant global hypomethylation, determined as reduction in LINE-1 methylation and total 5-MedC content, and p53 hypermethylation (p < 0.05). However, a slight LINE-1 hypomethylation and transient p53 promoter hypermethylation were observed following long-term in vitro treatment. Conclusions This study provides an important finding that in utero arsenic exposure affects DNA methylation, particularly at the p53 promoter region, which may be linked to the mechanism of arsenic carcinogenesis and the observed increased incidence of cancer later in life. PMID:22551203
Tran, Lee; Hanavan, Paul D.; Campbell, Latoya E.; De Filippis, Elena; Lake, Douglas F.; Coletta, Dawn K.; Roust, Lori R.; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.
2016-01-01
Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity. PMID:27532680
Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury
Acharya, Sanket S.; Fendler, Wojciech; Watson, Jacqueline; Hamilton, Abigail; Pan, Yunfeng; Gaudiano, Emily; Moskwa, Patryk; Bhanja, Payel; Saha, Subhrajit; Guha, Chandan; Parmar, Kalindi; Chowdhury, Dipanjan
2015-01-01
Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34+ HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation. PMID:25972001
Lead suppresses chimeric human transferrin gene expression in transgenic mouse liver.
Adrian, G S; Rivera, E V; Adrian, E K; Lu, Y; Buchanan, J; Herbert, D C; Weaker, F J; Walter, C A; Bowman, B H
1993-01-01
The major iron-transport protein in serum is transferrin (TF) which also has the capacity to transport other metals. This report presents evidence that synthesis of human TF can be regulated by the metal lead. Transgenic mice carrying chimeric human TF-chloramphenicol acetyl transferase (CAT) genes received lead or sodium salts by intraperitoneal injections or in drinking water. Transgene expression in liver was suppressed 31 to 50% by the lead treatment. Lead regulates human TF transgenes at the mRNA level since liver CAT enzyme activity, CAT protein, and TF-CAT mRNA levels were all suppressed. The dosages of lead did not alter synthesis of the other liver proteins, mouse TF and albumin, as measured by Northern blot analysis of total liver RNA and rocket immunoelectrophoresis of mouse sera. Moderate levels of lead exposure were sufficient to evoke the human TF transgene response; blood lead levels in mice that received lead acetate in drinking water ranged from 30 micrograms/dl to 56 micrograms/dl. In addition to suppressing expression of TF-CAT genes in transgenic mice, lead also suppressed synthesis of TF protein in cultured human hepatoma HepG2 cells. The regulation of human TF apparently differs from the regulation of mouse TF which is unresponsive to lead exposure.
In utero arsenic exposure induces early onset of atherosclerosis in ApoE−/− mice
Srivastava, Sanjay; D’Souza, Stanley E.; Sen, Utpal; States, J. Christopher
2007-01-01
Consumption of arsenic contaminated drinking water has been linked to higher rates of coronary disease, stroke, and peripheral arterial disease. Recent evidence suggests that early life exposures may play a significant role in the onset of chronic adult diseases. To investigate the potential for in utero exposure to accelerate the onset of cardiovascular disease we exposed pregnant ApoE-knockout (ApoE−/−) mice to arsenic in their drinking water and examined the aortic trees of their male offspring for evidence of early disease 10 and 16 weeks after birth. Mice were maintained on normal chow after weaning. ApoE−/− mice are a commonly used model for atherogenesis and spontaneously develop atherosclerotic disease. Mice exposed to arsenic in utero showed a >2-fold increase in lesion formation in the aortic roots as well as the aortic arch compared to control mice at both 10 and 16 weeks of age. The mice exposed to arsenic also had a 20 – 40% decrease in total triglycerides, but no change in total cholesterol, phospholipids and total abundance of VLDL or HDL particles. Subfractionation of VLDL particles showed a decrease in large VLDL particles. In addition, the arsenic exposed mice showed a vasorelaxation defect in response to acetylcholine suggesting disturbance of endothelial cell signalling. These results indicate that in utero arsenic exposure induces an early onset of atherosclerosis in ApoE−/− mice without a hyperlipidemic diet and support the hypothesis that in utero arsenic exposure may be atherogenic in humans. PMID:17317095
Duydu, Yalçın; Başaran, Nurşen; Üstündağ, Aylin; Aydin, Sevtap; Ündeğer, Ülkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçın; Ickstadt, Katja; Waltrup, Britta Schulze; Golka, Klaus; Bolt, Hermann M
2011-06-01
Boric acid and sodium borates have been considered as being "toxic to reproduction and development", following results of animal studies with high doses. Experimentally, a NOAEL (no observed adverse effect level) of 17.5 mg B/kg-bw/day has been identified for the (male) reproductive effects of boron in a multigeneration study of rats, and a NOAEL for the developmental effects in rats was identified at 9.6 mg B/kg-bw/day. These values are being taken as the basis of current EU safety assessments. The present study was conducted to investigate the reproductive effects of boron exposure in workers employed in boric acid production plant in Bandirma, Turkey. In order to characterize the external and internal boron exposures, boron was determined in biological samples (blood, urine, semen), in workplace air, in food, and in water sources. Unfavorable effects of boron exposure on the reproductive toxicity indicators (concentration, motility, morphology of the sperm cells and blood levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and total testosterone) were not observed. The mean calculated daily boron exposure (DBE) of the highly exposed group was 14.45 ± 6.57 (3.32-35.62) mg/day. These human exposures represent worst-case exposure conditions to boric acid/borates in Turkey. These exposure levels are considerably lower than exposures, which have previously led to reproductive effects in experimental animals. In conclusion, this means that dose levels of boron associated with developmental and reproductive toxic effects in animals are by far not reachable for humans under conditions of normal handling and use.
Residual pyrethroids in fresh horticultural products in Sonora, Mexico.
Aldana-Madrid, Maria L; Valenzuela-Quintanar, Ana I; Silveira-Gramont, Maria I; Rodríguez-Olibarría, Guillermo; Grajeda-Cota, Patricia; Zuno-Floriano, Fabiola G; Miller, Marion G
2011-10-01
This study was conducted to evaluate the presence of cyhialothrin, cyfluthrin, cypermethrin, fenvalerate, and deltamethrin in vegetables produced and consumed in Sonora, Mexico. A total of 345 samples were collected from cluster sampling of markets and fields. Approximately 9% of the samples tested positive for pyrethroids (residue range 0.004-0.573 mg kg(-1)). Based on the results, the potential toxicological risk of human exposure to the pyrethroid insecticides measured in vegetables appears to be minimal, with the estimated exposure being 1,000 times lower than admissible levels. © Springer Science+Business Media, LLC 2011
Wang, Li; Liu, Aiping; Zhao, Yuan; Mu, Xi; Huang, Tao; Gao, Hong; Ma, Jianmin
2018-06-01
We investigated in this paper the presence of PAHs in human milk from lactating women residing in Lanzhou, a petrochemical industrialized valley city in Northwest China. The PAH concentration levels in human milk samples from 98 healthy women were determined by gas chromatography/mass spectrometry (GC/MS). The associations between the lifestyle factors and the PAHs levels of human milk were analyzed. Moreover, we applied principal component analysis (PCA) method to gain a better insight into the similarities or dissimilarities of the human milk PAH loads and different pathways of source exposure. In addition, the exposure risks of breastfed infants due to PAH ingestion via breast milk were assessed and the relative breast-feeding risk to the total intake dose of infants was addressed. The results showed that the average fat-normalized human milk ∑ 15 PAHs concentrations for the lactating women residing in four districts of Lanzhou, namely, Xigu, Anning, Qilihe, and Chengguan were 320.40, 270.36, 374.04, and 259.84 ng/g of fat, respectively. The ∑ 15 PAHs of human milk from the lactating women of Qilihe District exhibited the highest concentration level, while the concentration level for women from Xigu District is the second highest for the observed human milk ∑ 15 PAHs. And the corresponding BaPeq concentrations for women in Xigu, Anning, Qilihe, and Chengguan districts were 58.29, 47.95, 65.13, and 45.60 ng/g of fat, respectively. A significant correlation was only found between human milk and living district environment (p < 0.05). Although the Spearman correlation analysis showed that there were no significant correlation existing between other lifestyle and human milk PAHs, we confirmed that consuming barbecue food could elevate PAHs levels in human milk: the barbecue intake frequency caused 10% fluctuation of ∑ 15 PAHs concentration between high frequency and low frequency group in our study. Furthermore, the exposure to second-hand smoke can also increase the ∑ 15 PAHs levels in human milk by 4 to 11% here. Ingestion doses of PAHs by infants (19.37-77.75 ng kg -1 day -1 ) were much higher than the inhalation doses (2.83-16.48 ng kg -1 day -1 ), which indicated that the ingestion is the main exposure risk pathway for infants. Since there are limited guidelines and standards for PAHs ingestion dose in human milk by infant, we compared the ingestion dose of BaP with the upper bound estimates of BaP dietary exposure of 108 ng kg -1 day -1 for toddlers of ages between 1.5 and 2.5 years of age in the UK reported by Committee on Toxicity of Chemicals in Food (COT) and the data we obtained were lower than this upper bound. However, the estimated margin of exposure (MOE) values of BaP-MOE, PAH2-MOE, PAH4-MOE, and PAH8-MOE were smaller than 10,000 which indicated that there are potential hazard for breastfed infants consuming these human milk samples.
NASA Astrophysics Data System (ADS)
Sasaki, Syota; Yamada, Tadashi; Yamada, Tomohito J.
2014-05-01
We aim to propose a kinematic-based methodology similar with runoff analysis for readily understandable radiological protection. A merit of this methodology is to produce sufficiently accurate effective doses by basic analysis. The great earthquake attacked the north-east area in Japan on March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power plant was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive isotopes had leaked and been diffused in the vicinity of the plant. Radiological internal exposure caused by ingestion of food containing radioactive isotopes has become an issue of great interest to the public, and has caused excessive anxiety because of a deficiency of fundamental knowledge concerning radioactivity. Concentrations of radioactivity in the human body and internal exposure have been studied extensively. Previous radiologic studies, for example, studies by International Commission on Radiological Protection(ICRP), employ a large-scale computational simulation including actual mechanism of metabolism in the human body. While computational simulation is a standard method for calculating exposure doses among radiology specialists, these methods, although exact, are too difficult for non-specialists to grasp the whole image owing to the sophistication. In this study, the human body is treated as a vessel. The number of radioactive atoms in the human body can be described by an equation of continuity, which is the only governing equation. Half-life, the period of time required for the amount of a substance decreases by half, is only parameter to calculate the number of radioactive isotopes in the human body. Half-life depends only on the kinds of nuclides, there are no arbitrary parameters. It is known that the number of radioactive isotopes decrease exponentially by radioactive decay (physical outflow). It is also known that radioactive isotopes decrease exponentially by excretion (biological outflow). The total outflow is the sum of physical outflow and biological outflow. As a result, the number of radioactive atoms in the human body also decreases exponentially. Half-life can be determined by outflow flux from the definition. Intensity of radioactivity is linear respect to the number of radioactive atoms, both are equivalent analytically. Internal total exposure can be calculated by the time integral of intensity of radioactivity. The absorbed energy into the human body per radioactive decay and the effective dose are calculated by aid of Fermi's theory of beta decay and special relativity. The effective doses calculated by the present method almost agree with those of a study by ICRP. The present method shows that standard limit in general foods for radioactive cesium enforced in Japan, 100 Bq/kg, is too excessive. When we eat foods which contain cesium-137 of 100 Bq/kg at 1 kg/d during 50 years, we receive the effective dose less than natural exposure. Similarly, it is shown that we cannot find significant health damage medically and statistically by ingestion of rice which is harvested from a paddy field deposited current (January, 2014) radioactive cesium.
Epidemiological evidence for a health risk from mobile phone base stations.
Khurana, Vini G; Hardell, Lennart; Everaert, Joris; Bortkiewicz, Alicja; Carlberg, Michael; Ahonen, Mikko
2010-01-01
Human populations are increasingly exposed to microwave/radiofrequency (RF) emissions from wireless communication technology, including mobile phones and their base stations. By searching PubMed, we identified a total of 10 epidemiological studies that assessed for putative health effects of mobile phone base stations. Seven of these studies explored the association between base station proximity and neurobehavioral effects and three investigated cancer. We found that eight of the 10 studies reported increased prevalence of adverse neurobehavioral symptoms or cancer in populations living at distances < 500 meters from base stations. None of the studies reported exposure above accepted international guidelines, suggesting that current guidelines may be inadequate in protecting the health of human populations. We believe that comprehensive epidemiological studies of long-term mobile phone base station exposure are urgently required to more definitively understand its health impact.
NASA Astrophysics Data System (ADS)
Azizan, A.; Zali, Z.; Padil, H.
2018-05-01
Despite the automotive industry’s interest in how vibration affects the level of human comfort, there is little focus on the effect of vibration on drowsiness level. Thus, this study involves eighteen healthy male participants to study the effect of exposure to vibration on the drowsiness level. Prior to the experiment, the total transmitted vibration measured at interfaces between the seat pan and seat back to the human body for each participant was modified to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s. During the experiment, the participants were seated and exposed to 20-minutes of Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude (low vibration amplitude and medium vibration amplitude) on separate days. The level of drowsiness was measured using a PVT test prior and after exposure to the vibration while participants rated their subjective drowsiness by using the Karolinska Sleepiness Scale (KSS). The significant increase in the number of lapse and reaction time because of the exposure to vibration in both conditions provide strong evidence of drowsiness. In this regard, the medium vibration amplitude shows a more prominent effect. All participants have shown a steady increase of drowsiness level in KSS. Meanwhile, there are no significant differences found between low vibration amplitude and medium vibration amplitude in the KSS. These findings suggest that human alertness level is greatly affected by the exposure to vibration and these effects are more pronounced at higher vibration amplitude. Both findings indicate that the presence of vibration promotes drowsiness, especially at higher vibration amplitude.
Person, Rachel J.; Whalen, Margaret M.
2010-01-01
Natural Killer (NK) cells are a major immune defense mechanism against cancer development and viral infection. The butyltins (BTs), tributyltin (TBT) and dibutyltin (DBT) have been widely used in industrial and other applications and significantly contaminate the environment. Both TBT and DBT have been detected in human blood. These compounds inhibit the lytic and binding function of human NK cells and thus could increase the incidence of cancer and viral infections. Butyltin (BT)-induced loss of NK function is accompanied by activation of mitogen activated protein kinases (MAPKs) and decreases in expression of cell-surface and cytolytic proteins. MAPKs activate components of the transcription regulator AP-1 and activate the transcription regulator Elk-1. Based on the fact that BTs activate MAPKs and alter protein expression, the current study examined the effect of BT exposures on the levels and phosphorylation states of the components of AP-1 and the phosphorylation state of Elk-1. Exposure to 300 nM TBT for 10 min increased the phosphorylation of c-Jun in NK cells. 1 h exposures to 300 nM and 200 nM TBT increased the phosphorylation and overall level of c-Jun. During a 300 nM treatment with TBT for 1 h the binding activity of AP-1 was significantly decreased. There were no significant alterations of AP-1 components or of Elk-1 with DBT exposures. Thus, it appears that TBT-induced alterations on phosphorylation, total levels and binding activity of c-Jun might contribute to, but are not fully responsible for, TBT-induced alterations of NK protein expression. PMID:20370538
Person, Rachel J; Whalen, Margaret M
2010-06-01
Natural killer (NK) cells are a major immune defense mechanism against cancer development and viral infection. The butyltins (BTs), tributyltin (TBT) and dibutyltin (DBT), have been widely used in industrial and other applications and significantly contaminate the environment. Both TBT and DBT have been detected in human blood. These compounds inhibit the lytic and binding function of human NK cells and thus could increase the incidence of cancer and viral infections. Butyltin (BT)-induced loss of NK function is accompanied by activation of mitogen activated protein kinases (MAPKs) and decreases in expression of cell-surface and cytolytic proteins. MAPKs activate components of the transcription regulator AP-1 and activate the transcription regulator Elk-1. Based on the fact that BTs activate MAPKs and alter protein expression, the current study examined the effect of BT exposures on the levels and phosphorylation states of the components of AP-1 and the phosphorylation state of Elk-1. Exposure to 300 nM TBT for 10 min increased the phosphorylation of c-Jun in NK cells. One hour exposures to 300 nM and 200 nM TBT increased the phosphorylation and overall level of c-Jun. During a 300 nM treatment with TBT for 1 h the binding activity of AP-1 was significantly decreased. There were no significant alterations of AP-1 components or of Elk-1 with DBT exposures. Thus, it appears that TBT-induced alterations on phosphorylation, total levels, and binding activity of c-Jun might contribute to, but are not fully responsible for, TBT-induced alterations of NK protein expression.
Pandey, Piyush Kant; Yadav, Sushma; Pandey, Madhurima
2007-03-01
The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.
Hardell, Lennart; Carlberg, Michael; Hedendahl, Lena K
2018-05-01
Exposure to radiofrequency (RF) radiation was classified in 2011 as a possible human carcinogen, Group 2B, by the International Agency for Research on Cancer of the World Health Organisation. Evidence of the risk of cancer risk has since strengthened. Exposure is changing due to the rapid development of technology resulting in increased ambient radiation. RF radiation of sufficient intensity heats tissues, but the energy is insufficient to cause ionization, hence it is called non-ionizing radiation. These non-thermal exposure levels have resulted in biological effects in humans, animals and cells, including an increased cancer risk. In the present study, the levels of RF radiation were measured in an apartment close to two groups of mobile phone base stations on the roof. A total of 74,531 measurements were made corresponding to ~83 h of recording. The total mean RF radiation level was 3,811 µW/m 2 (range 15.2-112,318 µW/m 2 ) for the measurement of the whole apartment, including balconies. Particularly high levels were measured on three balconies and 3 of 4 bedrooms. The total mean RF radiation level decreased by 98% when the measured down-links from the base stations for 2, 3 and 4 G were disregarded. The results are discussed in relation to the detrimental health effects of non-thermal RF radiation. Due to the current high RF radiation, the apartment is not suitable for long-term living, particularly for children who may be more sensitive than adults. For a definitive conclusion regarding the effect of RF radiation from nearby base stations, one option would be to turn them off and repeat the measurements. However, the simplest and safest solution would be to turn them off and dismantle them.
Hardell, Lennart; Carlberg, Michael; Hedendahl, Lena K.
2018-01-01
Exposure to radiofrequency (RF) radiation was classified in 2011 as a possible human carcinogen, Group 2B, by the International Agency for Research on Cancer of the World Health Organisation. Evidence of the risk of cancer risk has since strengthened. Exposure is changing due to the rapid development of technology resulting in increased ambient radiation. RF radiation of sufficient intensity heats tissues, but the energy is insufficient to cause ionization, hence it is called non-ionizing radiation. These non-thermal exposure levels have resulted in biological effects in humans, animals and cells, including an increased cancer risk. In the present study, the levels of RF radiation were measured in an apartment close to two groups of mobile phone base stations on the roof. A total of 74,531 measurements were made corresponding to ~83 h of recording. The total mean RF radiation level was 3,811 µW/m2 (range 15.2–112,318 µW/m2) for the measurement of the whole apartment, including balconies. Particularly high levels were measured on three balconies and 3 of 4 bedrooms. The total mean RF radiation level decreased by 98% when the measured down-links from the base stations for 2, 3 and 4 G were disregarded. The results are discussed in relation to the detrimental health effects of non-thermal RF radiation. Due to the current high RF radiation, the apartment is not suitable for long-term living, particularly for children who may be more sensitive than adults. For a definitive conclusion regarding the effect of RF radiation from nearby base stations, one option would be to turn them off and repeat the measurements. However, the simplest and safest solution would be to turn them off and dismantle them. PMID:29725476
Chevrier, Jonathan; Gunier, Robert B; Bradman, Asa; Holland, Nina T; Calafat, Antonia M; Eskenazi, Brenda; Harley, Kim G
2013-01-01
Bisphenol A (BPA) is widely used in the manufacture of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt thyroid function. Although thyroid hormones play a determinant role in human growth and brain development, no studies have investigated relations between BPA exposure and thyroid function in pregnant women or neonates. Our goal was to evaluate whether exposure to BPA during pregnancy is related to thyroid hormone levels in pregnant women and neonates. We measured BPA concentration in urine samples collected during the first and second half of pregnancy in 476 women participating in the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We also measured free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in women during pregnancy, and TSH in neonates. Associations between the average of the two BPA measurements and maternal thyroid hormone levels were not statistically significant. Of the two BPA measurements, only the one taken closest in time to the TH measurement was significantly associated with a reduction in total T4 (β = -0.13 µg/dL per log2 unit; 95% CI: -0.25, 0.00). The average of the maternal BPA concentrations was associated with reduced TSH in boys (-9.9% per log2 unit; 95% CI: -15.9%, -3.5%) but not in girls. Among boys, the relation was stronger when BPA was measured in the third trimester of pregnancy and decreased with time between BPA and TH measurements. Results suggest that exposure to BPA during pregnancy is related to reduced total T4 in pregnant women and decreased TSH in male neonates. Findings may have implications for fetal and neonatal development.
Notch, Emily G; Goodale, Britton C; Barnaby, Roxanna; Coutermarsh, Bonita; Berwin, Brent; Taylor, Vivien F; Jackson, Brian P; Stanton, Bruce A
2015-01-01
Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa) induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa.
Bhat, Virunya S; Durham, Jennifer L; English, J Caroline
2014-10-01
Di-(2-propylheptyl) phthalate (DPHP) is a high molecular weight polyvinyl chloride plasticizer. Since increasing production volume and broad utility may result in human exposure, an oral reference dose (RfD) was derived from laboratory animal data due to the lack of human data. In addition to liver and kidney, target organs were the thyroid, pituitary and adrenal glands in rats, recognizing that reproductive performance was not altered in two successive generations of DPHP-exposed rats. DPHP caused a reduction in pup and maternal body weights but not developmental or testicular effects typical of "phthalate syndrome." DPHP was not genotoxic. Due to the lack of carcinogenicity data, there is inadequate information to assess carcinogenic potential. The RfD of 0.1mg/kg-day was derived from the human equivalent BMDL10 of 10mg/kg-day for thyroid hypertrophy/hyperplasia in male F1 adults from the two-generation study. While in utero exposure did not alter sensitivity to thyroid lesions compared to subchronic exposures beginning at 6weeks of age, F1 adult males were the longest-term exposed population. The total uncertainty factor of 100x was comprised of intraspecies (10x), study duration (3x), and database (3x) factors but not an interspecies factor since rodents are more sensitive than humans to thyroid gland effects. Copyright © 2014 Elsevier Inc. All rights reserved.
Relevance of drinking water as a source of human exposure to bisphenol A
Arnold, Scott M; Clark, Kathryn E; Staples, Charles A; Klecka, Gary M; Dimond, Steve S; Caspers, Norbert; Hentges, Steven G
2013-01-01
A comprehensive search of studies describing bisphenol A (BPA) concentrations in drinking water and source waters (i.e., surface water and groundwater) was conducted to evaluate the relevance of drinking water as a source of human exposure and risk. Data from 65 papers were evaluated from North America (31), Europe (17), and Asia (17). The fraction of drinking water measurements reported as less than the detection limit is high; 95%, 48%, and 41%, for North America, Europe, and Asia, respectively. The maximum quantified (in excess of the detection limit) BPA concentrations from North America, Europe, and Asia are 0.099 μg/l, 0.014 μg/l, and 0.317 μg/l. The highest quantified median and 95th percentile concentrations of BPA in Asian drinking water are 0.026 μg/l and 0.19 μg/l, while high detection limits restricted the determination of representative median and 95th percentile concentrations in North America and Europe. BPA in drinking water represents a minor component of overall human exposure, and compared with the lowest available oral toxicity benchmark of 16 μg/kg-bw/day (includes an uncertainty factor of 300) gives margins of safety >1100. Human biomonitoring data indicate that ingestion of drinking water represents <2.8% of the total intake of BPA. PMID:22805988
Bouwman, Hindrik; Bornman, Riana; van Dyk, Cobus; Barnhoorn, Irene
2015-10-01
In malaria-endemic areas, where DDT is still used for vector control by indoor residual spraying (IRS), the concentrations of DDT in human blood and breast milk are high, and there are indications of human health impacts. To identify the possible avenues of exposure reduction, we created the concept of a Total Homestead Environment Approach (THEA). THEA characterizes the interactions between DDT, humans, and the biota within and around homesteads. One dietary route of human exposure and uptake of DDT, namely, chicken egg consumption, has to our knowledge never been studied. The ΣDDT in eggs from a DDT-sprayed village ranged between 5200 and 48,000 ng/g wm (wet mass), with a median of 11,000 ng/g wm. On a lipid mass-basis (lm), the mean ΣDDT for eggs from the sprayed village was 100,000 ng/g lm. The maximum egg concentration observed was three orders of magnitude higher than the median. The acceptable daily intake (ADI) was not exceeded based on the consumption of three eggs per week for a 60 kg person. This equates to an intake of 0.089 g DDT per person per year. Chicken egg consumption is therefore a possible target for exposure reduction, probably best achieved by reducing the DDT concentrations in soils. Copyright © 2015 Elsevier Ltd. All rights reserved.
Suspect screening and non-targeted analysis of drinking water using point-of-use filters.
Newton, Seth R; McMahen, Rebecca L; Sobus, Jon R; Mansouri, Kamel; Williams, Antony J; McEachran, Andrew D; Strynar, Mark J
2018-03-01
Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita ® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditionsmore » using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.« less
Adverse effects of e-cigarette exposures.
Cantrell, F Lee
2014-06-01
In 2007, a new source of nicotine exposure was introduced to the United States market, the electronic cigarette (ECIG) or "e-cigarette". Since then, the USA ECIG market has been doubling annually. Despite their widespread popularity, there is a paucity of existing data regarding ECIG toxicity. We report the experience of a statewide poison system. The database of a statewide poison system was queried for human ECIG exposures from 2010 (when Poisindex code first generated) through 2012. Year, age, manner and route of exposure, estimate exposure amount, product concentration, if evaluated at healthcare facility and symptoms were recorded. A total of 35 cases were identified--4 in 2010, 12 in 2011, 19 in 2012. Age range 8 months-60 years. Reported symptoms were mild and transient. Five patients were evaluated in an emergency department and none were admitted. Product concentrations ranged from 4 to 30 mg of nicotine per ml. Poison centers are likely to see an increase in exposures to ECIG given their growing popularity. Our modest results suggest that adverse effects and accidental exposures to ECIG cartridges are unlikely to result in serious toxicity.
The Pregnancy Exposome: Multiple Environmental Exposures in the INMA-Sabadell Birth Cohort.
Robinson, Oliver; Basagaña, Xavier; Agier, Lydiane; de Castro, Montserrat; Hernandez-Ferrer, Carles; Gonzalez, Juan R; Grimalt, Joan O; Nieuwenhuijsen, Mark; Sunyer, Jordi; Slama, Rémy; Vrijheid, Martine
2015-09-01
The "exposome" is defined as "the totality of human environmental exposures from conception onward, complementing the genome" and its holistic approach may advance understanding of disease etiology. We aimed to describe the correlation structure of the exposome during pregnancy to better understand the relationships between and within families of exposure and to develop analytical tools appropriate to exposome data. Estimates on 81 environmental exposures of current health concern were obtained for 728 women enrolled in The INMA (INfancia y Medio Ambiente) birth cohort, in Sabadell, Spain, using biomonitoring, geospatial modeling, remote sensors, and questionnaires. Pair-wise Pearson's and polychoric correlations were calculated and principal components were derived. The median absolute correlation across all exposures was 0.06 (5th-95th centiles, 0.01-0.54). There were strong levels of correlation within families of exposure (median = 0.45, 5th-95th centiles, 0.07-0.85). Nine exposures (11%) had a correlation higher than 0.5 with at least one exposure outside their exposure family. Effectively all the variance in the data set (99.5%) was explained by 40 principal components. Future exposome studies should interpret exposure effects in light of their correlations to other exposures. The weak to moderate correlation observed between exposure families will permit adjustment for confounding in future exposome studies.
HUMAN EXPOSURE ACTIVITY PATTERNS
Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...
Evaluation of an exposure setup for studying effects of diesel exhaust in humans.
Rudell, B; Sandström, T; Hammarström, U; Ledin, M L; Hörstedt, P; Stjernberg, N
1994-01-01
Diesel exhaust is a common air pollutant and work exposure has been reported to cause discomfort and affect lung function. The aim of this study was to develop an experimental setup which would allow investigation of acute effects on symptoms and lung function in humans exposed to diluted diesel exhaust. Diluted diesel exhaust was fed from an idling lorry through heated tubes into an exposure chamber. During evaluations of the setup we found the size and the shape of the exhaust particles to appear unchanged during the transport from the tail pipe to the exposure chamber. The composition of the diesel exhaust expressed as the ratios CO/NO, total hydrocarbons/NO, particles/NO, NO2/NO, and formaldehyde/NO were almost constant at different dilutions. The concentrations of NO2 and particles in the exposure chamber showed no obvious gradients. New steady state concentrations in the exposure chamber were obtained within 5-7 min. In a separate experiment eight healthy nonsmoking subjects were exposed to diluted exhaust at a median steady state concentration of 1.6 ppm NO2 for the duration of 1 h in the exposure chamber. All subjects experienced unpleasant smell, eye irritation, and nasal irritation. Throat irritation, headache, dizziness, nausea, tiredness, and coughing were experienced by some subjects. Lung function was not found to be affected during the exposure. The experimental setup was found to be appropriate for creating different predetermined steady state concentrations in the exposure chamber of diluted exhaust from a continuously idling vehicle. The acute symptoms reported by the subjects were relatively similar to what patients reported at different workplaces.
Pauwels, A; Cenijn, P H; Schepens, P J; Brouwer, A
2000-01-01
We assessed exposure to dioxin-like compounds using chemical and bioassay analysis in different matrices in a female population. A total of 106 serum and 9 follicular fluid samples were collected from infertile women attending Centers for Reproductive Medicine in Belgium from 1996 to 1998. Major polychlorinated biphenyl (PCB) congeners were quantified by chemical analysis using gas chromatography with electron-capture detection, and the chemical-activated luciferase gene expression (CALUX) bioassay was used to determine the total dioxin-like toxic equivalence (TEQ) of mixtures of polyhalogenated aromatic hydrocarbons present in body fluids, such as serum and follicular fluid. To the best of our knowledge, this is the first investigation to determine TEQ values by the CALUX bioassay in follicular fluid. The TEQ levels in both matrices are well correlated (r = 0.83, p = 0.02). As the chemical and bioassay analysis executed in this study do not cover the same span of polyhalogenated aromatic hydrocarbons, we did not expect totally correlated results. Moreover, the sample workup and quantification of the analytes differed completely. Nonetheless, the TEQ values in human extracts correlated well with the sum of four major PCB congeners chemically determined in both serum and follicular fluid. These results indicate that the CALUX bioassay may serve as a simple, relatively inexpensive prescreening tool for exposure assessment in epidemiologic surveys. Images Figure 1 Figure 2 PMID:10856030
Yu, Rosie Z; Lemonidis, Kristina M; Graham, Mark J; Matson, John E; Crooke, Rosanne M; Tribble, Diane L; Wedel, Mark K; Levin, Arthur A; Geary, Richard S
2009-03-01
The in vivo pharmacokinetics/pharmacodynamics of 2'-O-(2-methoxyethyl) (2'-MOE) modified antisense oligonucleotides (ASOs), targeting apolipoprotein B-100 (apoB-100), were characterized in multiple species. The species-specific apoB antisense inhibitors demonstrated target apoB mRNA reduction in a drug concentration and time-dependent fashion in mice, monkeys, and humans. Consistent with the concentration-dependent decreases in liver apoB mRNA, reductions in serum apoB, and LDL-C, and total cholesterol were concurrently observed in animal models and humans. Additionally, the long duration of effect after cessation of dosing correlated well with the elimination half-life of 2'-MOE modified apoB ASOs studied in mice (t(1/2) congruent with 20 days) and humans (t(1/2) congruent with 30 days) following parental administrations. The plasma concentrations of ISIS 301012, observed in the terminal elimination phase of both mice and monkeys were in equilibrium with liver. The partition ratios between liver and plasma were similar, approximately 6000:1, across species, and thus provide a surrogate for tissue exposure in humans. Using an inhibitory E(max) model, the ASO liver EC(50s) were 101+/-32, 119+/-15, and 300+/-191 microg/g of ASO in high-fat-fed (HF) mice, transgenic mice containing the human apoB transgene, and monkeys, respectively. The estimated liver EC(50) in man, extrapolated from trough plasma exposure, was 81+/-122 microg/g. Therefore, extraordinary consistency of the exposure-response relationship for the apoB antisense inhibitor was observed across species, including human. The cross-species PK/PD relationships provide confidence in the use of pharmacology animal models to predict human dosing for second-generation ASOs targeting the liver.
Lledó, Lourdes; Domínguez-Peñafiel, Gerardo; Giménez-Pardo, Consuelo; Gegúndez, Isabel; González, Rosario; Saz, José Vicente
2014-06-01
Limited information is available on the presence of rickettsial infection in humans and animal reservoirs in Spain. Exposure to spotted fever group rickettsia in healthy humans and in farm and wild animals in the Province of Burgos, Spain, was examined by serological methods. Rickettsial DNA was also sought by PCR in animal samples. Of 102 human serum samples examined by indirect immunofluorescence assays (IFA), 5.88% were positive for antibodies against Rickettsia conorii (titers 1/128-1/512). Significant differences were detected in human seroprevalence with respect to age. In further IFAs, 102 out of 375 (27.2%) serum samples from the wild animals reacted with R. conorii antigens (titers 1/64-1/1024); 32 out of 281 (11.38%) samples from farm animals were also positive for R. conorii (titers 1/64-1/2048). The prevalence detected among total wild animals was significantly higher than among total farm animals. No rickettsial DNA was found by PCR in any farm or wild animal sample.
Hypobaric Hypoxia (380 Torr) Decreases Intracellular and Total Body Water in Goats
1989-01-01
109-111, 1989. 16. Jain, S.C., J. Bardhan , Y.V. Swamy, B. Krishna, and H.S. Nayar. Body fluid compartments in humans during acute high- altitude...exposure. Aviat. Space Environ. Med. 51:234-236, 1980. 17. Jain, S.C., J. Bardhan , Y.V. Swamy, A. Grover, and H.S. Nayar. Body water metabolism in high
The RTI/EOHSI Consortium scoping studies were designed to be part of the total NHEXAS framework that was developed as a result of a series scientific discussions and workshops conducted by the US EPA from 1992 through 1993. Several scientific issues needed to be addressed to eval...
Prior to initiation of the Arizona Border Survey, a quality systems implementation plan (QSIP) addressing all aspects of the project was developed by the investigating consortium composed of researchers from The University of Arizona (UA), Battelle Memorial Institute (BMI), and t...
Galson, Jacob D; Trück, Johannes; Fowler, Anna; Clutterbuck, Elizabeth A; Münz, Márton; Cerundolo, Vincenzo; Reinhard, Claudia; van der Most, Robbert; Pollard, Andrew J; Lunter, Gerton; Kelly, Dominic F
2015-12-01
Generating a diverse B cell immunoglobulin repertoire is essential for protection against infection. The repertoire in humans can now be comprehensively measured by high-throughput sequencing. Using hepatitis B vaccination as a model, we determined how the total immunoglobulin sequence repertoire changes following antigen exposure in humans, and compared this to sequences from vaccine-specific sorted cells. Clonal sequence expansions were seen 7 days after vaccination, which correlated with vaccine-specific plasma cell numbers. These expansions caused an increase in mutation, and a decrease in diversity and complementarity-determining region 3 sequence length in the repertoire. We also saw an increase in sequence convergence between participants 14 and 21 days after vaccination, coinciding with an increase of vaccine-specific memory cells. These features allowed development of a model for in silico enrichment of vaccine-specific sequences from the total repertoire. Identifying antigen-specific sequences from total repertoire data could aid our understanding B cell driven immunity, and be used for disease diagnostics and vaccine evaluation.
Kuo, Janice R; Kaloupek, Danny G; Woodward, Steven H
2012-10-01
Data from animal models demonstrate a link between stress exposure and hypertrophic changes in the amygdala; however, studies of adults with posttraumatic stress disorder (PTSD) have failed to find analogous structural alterations. To compare amygdala volumes between a sample of combat veterans with and without PTSD (analysis 1) and examine whether our observation of larger amygdala volume in individuals with PTSD could be accounted for by the presence of trauma exposure in childhood and the severity of combat exposure in adulthood (analysis 2). Cross-sectional magnetic resonance imaging. Veterans Affairs Palo Alto Health Care System Inpatient Trauma Recovery Program and Veterans Affairs New England Health Care System Outpatient PTSD program. Ninety-nine combat-exposed veterans from the Vietnam Conflict or the Persian Gulf War who had been exposed to substantial military operational stress. Amygdala volume adjusted for total cerebral volume, Life Events Checklist, and the Combat Exposure Scale. Analysis 1 indicated that combat-exposed individuals with PTSD exhibited larger total amygdala volume compared with their non-PTSD counterparts (99 individuals, P = .047). Analysis 2 indicated that greater severity of combat exposure (87 individuals, P = .02), as well as the interaction between the presence of early life trauma and the severity of combat exposure (87 individuals, P = .008), were significantly associated with smaller total amygdala volume. The PTSD diagnosis continued to explain larger amygdala volume (87 individuals, P = .006). Posttraumatic stress disorder is associated with enlarged amygdala volume, above the variance accounted for by a history of early life trauma and severity of adult trauma exposure. The discrepancy between our and prior findings may be explained by variability in these trauma indices in previous investigations. These findings support additional study of amygdala structure in human stress disorders and further delineation of the role of early and adult trauma on associated neurologic changes.
Chao, Linda L; Rothlind, Johannes C; Cardenas, Valerie A; Meyerhoff, Dieter J; Weiner, Michael W
2010-09-01
Potentially more than 100,000 US troops may have been exposed to the organophosphate chemical warfare agents sarin (GB) and cyclosarin (GF) when a munitions dump at Khamisiyah, Iraq was destroyed during the Gulf War (GW) in 1991. Although little is known about the long-term neurobehavioral or neurophysiological effects of low-dose exposure to GB/GF in humans, recent studies of GW veterans from the Devens Cohort suggest decrements in certain cognitive domains and atrophy in brain white matter occur individuals with higher estimated levels of presumed GB/GF exposure. The goal of the current study is to determine the generalizability of these findings in another cohort of GW veterans with suspected GB/GF exposure. Neurobehavioral and imaging data collected in a study on Gulf War Illness between 2002 and 2007 were used in this study. We focused on the data of 40 GW-deployed veterans categorized as having been exposed to GB/GF at Khamisiyah, Iraq and 40 matched controls. Magnetic resonance images (MRI) of the brain were analyzed using automated and semi-automated image processing techniques that produced volumetric measurements of gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) and hippocampus. GW veterans with suspected GB/GF exposure had reduced total GM and hippocampal volumes compared to their unexposed peers (p< or =0.01). Although there were no group differences in measures of cognitive function or total WM volume, there were significant, positive correlations between total WM volume and measures of executive function and visuospatial abilities in veterans with suspected GB/GF exposure. These findings suggest that low-level exposure to GB/GF can have deleterious effects on brain structure and brain function more than decade later. Copyright © 2010 Elsevier Inc. All rights reserved.
Xu, Weifeng; Jiang, Hao; Titsch, Craig; Gadkari, Snaehal; Batog, Alicja; Wang, Bonnie; Hippeli, Lauren; Yamamoto, Brent; Chadwick, Kristina; Wheeler, Jennifer; Thompson, Chris; Stahl, James; Willett, Scott; DeSilva, Binodh S; Myler, Heather; Dodge, Robert W; Pillutla, Renuka C
2018-06-20
A ligand-binding assay (LBA) was used to measure exposure of PRM-151, the recombinant form of human pentraxin-2 (PTX-2), a complex pentamer with multiple binding partners. However, the assay showed a lack of dose-dependent exposure in select preclinical species and it could not differentiate the infused PRM-151 from the endogenous PTX-2 in nonhuman primates. Instead of assessing interference from its multiple binding partners, which could be time consuming and laborious, a LC-MS assay avoid of these interference was implemented to measure 'total' drug without the use of immunoaffinity capture reagents. The resultant LC-MS data confirmed the original data and the lack of dose-dependent exposure is now understood to be due to the multiple and diverse targets and functions and resultant complex biodistribution rather than an assay artifact.
Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)
NASA Astrophysics Data System (ADS)
Woods, D. H.; Hardy, K. A.; Cox, A. B.; Salmon, Y. L.; Yochmowitz, M. G.; Cordts, R. E.
1989-05-01
Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.
Comparison of human exposure pathways in an urban brownfield: reduced risk from paving roads.
James, Kyle; Farrell, Richard E; Siciliano, Steven D
2012-10-01
Risk assessments often do not quantify the risk associated with soil inhalation. This pathway generally makes a negligible contribution to the cumulative risk, because soil ingestion is typically the dominant exposure pathway. Conditions in northern or rural centers in Canada characterized by large areas of exposed soil, including unpaved roads, favor the resuspension of soil particles, making soil inhalation a relevant risk pathway. The authors determined and compared human exposure to metals and polycyclic aromatic hydrocarbons (PAHs) from soil ingestion and inhalation and analyzed the carcinogenic and noncarcinogenic risks before and after roads were paved in a northern community. To determine the inhalation exposure, three size fractions of airborne particulate matter were collected (total suspended particulates [TSP], particulate matter with an aerodynamic diameter less than 10 µm [PM10], and particulate matter with an aerodynamic diameter less than 2.5 µm [PM2.5]) before and after roads were paved. Road paving reduced the concentration of many airborne contaminants by 25 to 75%, thus reducing risk. For example, before paving, the carcinogenic risk associated with inhalation of Cr was 3.4 excess cancers per 100,000 people exposed, whereas after paving, this risk was reduced to 1.6 in 100,000. Paving roads reduced the concentrations of total suspended particulates (TSP; p < 0.1) and PM10 (p < 0.05) but not PM25. Consequently, the ingestion of inhaled soil particles was substantially reduced. The authors conclude that resuspended soil is likely an important source of risk for many northern communities and that paving roads is an effective method of reducing risk from the inhalation of soil particles. Copyright © 2012 SETAC.
Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, T.; Chen, L.C.; Fine, J.M.
1992-08-01
Occupational exposure to freshly formed zinc oxide (ZnO) particles (less than 1.0 micron aerodynamic diameter) produces a well-characterized response known as metal fume fever. An 8-hr threshold limit value (TLV) of 5 mg/m3 has been established to prevent adverse health effects because of exposure to ZnO fumes. Because animal toxicity studies have demonstrated pulmonary effects near the current TLV, the present study examined the time course and dose-response of the pulmonary injury produced by inhaled ZnO in guinea pigs, rats, rabbits, and human volunteers. The test animals were exposed to 0, 2.5, or 5.0 mg/m3 ZnO for up to 3more » hr and their lungs lavaged. Both the lavage fluid and recovered cells were examined for evidence of inflammation or altered cell function. The lavage fluid from guinea pigs and rats exposed to 5 mg/m3 had significant increases in total cells, lactate dehydrogenase, beta-glucuronidase, and protein content. These changes were greatest 24 hr after exposure. Guinea pig alveolar macrophage function was depressed as evidenced by in vitro phagocytosis of opsonized latex beads. Significant changes in lavage fluid parameters were also observed in guinea pigs and rats exposed to 2.5 mg/m3 ZnO. In contrast, rabbits showed no increase in biochemical or cellular parameters following a 2-hr exposure to 5 mg/m3 ZnO. Differences in total lung burden of ZnO, as determined in additional animals by atomic absorption spectroscopy, appeared to account for the observed differences in species responses. Although the lungs of guinea pigs and rats retained approximately 20% and 12% of the inhaled dose, respectively, rabbits retained only 5%.« less
Gautam, Poonam; Mushahary, Dolly; Hassan, Wazid; Upadhyay, Santosh Kumar; Madan, Taruna; Sirdeshmukh, Ravi; Sundaram, Curam Sreenivasacharlu; Sarma, Puranam Usha
2016-07-01
Aspergillus fumigatus (A. fumigatus) is a medically important opportunistic fungus that may lead to invasive aspergillosis in humans with weak immune system. Proteomic profiling of this fungus on exposure to itraconazole (ITC), an azole antifungal drug, may lead to identification of its molecular targets and better understanding on the development of drug resistance against ITC in A. fumigatus. Here, proteome analysis was performed using 2-DE followed by mass spectrometric analysis which resulted in identification of a total of 259 unique proteins. Further, proteome profiling of A. fumigatus was carried out on exposure to ITC, 0.154 μg/ml, the minimum inhibitory concentration (MIC50). Image analysis showed altered levels of 175 proteins (66 upregulated and 109 downregulated) of A. fumigatus treated with ITC as compared to the untreated control. Peptide mass fingerprinting led to the identification of 54 proteins (12 up-regulated and 42 down-regulated). The differentially expressed proteins include proteins related to cell stress, carbohydrate metabolism and amino acid metabolism. We also observed four proteins, including nucleotide phosphate kinase (NDK), that are reported to interact with calcineurin, a protein involved in regulation of cell morphology and fungal virulence. Comparison of differentially expressed proteins on exposure to ITC with artemisinin (ART), an antimalarial drug with antifungal activity(1), revealed a total of 26 proteins to be common among them suggesting that common proteins and pathways are targeted by these two antifungal agents. The proteins targeted by ITC may serve as important leads for development of new antifungal drugs. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Acute and Subchronic Toxicity of Inhaled Toluene in Male ...
The effects of exposure to volatile organic compounds (VOCs), which are of concern to the EPA, are poorly understood, in part because of insufficient characterization of how human exposure duration impacts VOC effects. Two inhalation studies with multiple endpoints, one acute and one subchronic, were conducted to seek effects of the VOC, toluene, in rats and to compare the effects between acute and subchronic exposures. Adult male Long-Evans rats were exposed to toluene vapor (n = 6 per group) at a concentration of 0 or l 019 ± 14 ppm for 6 h in the acute study and at 0 ± 0, 10 ± 1.4, 97 ± 7, or 995 ± 43 ppm for 6 h/d, 5 d/week for 13 weeksin the subchronic study. For the acute study, brains were dissected on ice within 30 min of the end of exposure, while for the subchronic study, brains were dissected 18 h after the last exposure. Frontal cortex, hippocampus, cerebellum, and striatum were assayed for a variety of oxidative stress (OS) parameters including total aconitase (TA), protein carbonyls, glutathione peroxidase (GPX), glutathione reductase (GRD), glutathione transferase (GST), y-glutamylcysteine synthetase (GCS), superoxide dismutase (SOD), total antioxidants (TAS), NADPH quinone oxidoreductase- 1 (NQO1 ), and NADH ubiquinone reductase (UBIQ-RD) activities using commercially available kits. Following acute exposure, UBIQ-RD, GCS and GRD were increased significantly only in the cerebellum, while TAS was increased in frontal cortex. On the other
Teeguarden, Justin G; Hanson-Drury, Sesha
2013-12-01
Human exposure to the chemical Bisphenol A is almost ubiquitous in surveyed industrialized societies. Structural features similar to estrogen confer the ability of Bisphenol A (BPA) to bind estrogen receptors, giving BPA membership in the group of environmental pollutants called endocrine disruptors. References by scientists, the media, political entities, and non-governmental organizations to many toxicity studies as "low dose" has led to the belief that exposure levels in these studies are similar to humans, implying that BPA is toxic to humans at current exposures. Through systematic, objective comparison of our current, and a previous compilation of the "low-dose" literature to multiple estimates of human external and internal exposure levels, we found that the "low-dose" moniker describes exposures covering 8-12 orders of magnitude, the majority (91-99% of exposures) being greater than the upper bound of human exposure in the general infant, child and adult U.S. Population. "low dose" is therefore a descriptor without specific meaning regarding human exposure. Where human exposure data are available, for BPA and other environmental chemicals, reference to toxicity study exposures by direct comparison to human exposure would be more informative, more objective, and less susceptible to misunderstanding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rahman, M Azizur; Rahman, A; Khan, M Zaved Kaiser; Renzaho, Andre M N
2018-04-15
Arsenic contamination of drinking water, which can occur naturally or because of human activities such as mining, is the single most important public health issue in Bangladesh. Fifty out of the 64 districts in the country have arsenic concentration of groundwater exceeding 50µgL -1 , the Bangladeshi threshold, affecting 35-77 million people or 21-48% of the total population. Chronic arsenic exposure through drinking water and other dietary sources is an important public health issue worldwide affecting hundreds of millions of people. Consequently, arsenic poisoning has attracted the attention of researchers and has been profiled extensively in the literature. Most of the literature has focused on characterising arsenic poisoning and factors associated with it. However, studies examining the socio-economic aspects of chronic exposure of arsenic through either drinking water or foods remain underexplored. The objectives of this paper are (i) to review arsenic exposure pathways to humans; (ii) to summarise public health impacts of chronic arsenic exposure; and (iii) to examine socio-economic implications and consequences of arsenicosis with a focus on Bangladesh. This scoping review evaluates the contributions of different exposure pathways by analysing arsenic concentrations in dietary and non-dietary sources. The socio-economic consequences of arsenicosis disease in Bangladesh are discussed in this review by considering food habits, nutritional status, socio-economic conditions, and socio-cultural behaviours of the people of the country. The pathways of arsenic exposure in Bangladesh include drinking water, various plant foods and non-dietary sources such as soil. Arsenic affected people are often abandoned by the society, lose their jobs and get divorced and are forced to live a sub-standard life. The fragile public health system in Bangladesh has been burdened by the management of thousands of arsenicosis victims in Bangladesh. Copyright © 2017 Elsevier Inc. All rights reserved.
MacLeod, D; Lee, K; Santoro, A; DeMasi, DK; Hawk, T; Feinglos, M; Rowland, M; Noveck, RJ
2017-01-01
Abstract Intra‐Target Microdosing (ITM) is a novel drug development approach aimed at increasing the efficiency of first‐in‐human (FIH) testing of new molecular entities (NMEs). ITM combines intra‐target drug delivery and “microdosing,” the subpharmacological systemic exposure. We hypothesized that when the target tissue is small (about 1/100th of total body mass), ITM can lead to target therapeutic‐level exposure with minimal (microdose) systemic exposure. Each of five healthy male volunteers received insulin microdose into the radial artery or full therapeutic dose intravenously in separate visits. Insulin and glucose levels were similar between systemic administration and ITM administration in the ipsilateral hand, and glucose levels demonstrated a reduction in the ipsilateral hand but not in the contralateral hand. Positron emission tomography (PET) imaging of 18F‐fluorodeoxyglucose (FDG) uptake demonstrated differences between the ipsilateral and contralateral arms. The procedures were safe and well‐tolerated. Results are consistent with ITM proof‐of‐concept (POC) and demonstrate the ethical, regulatory, and logistical feasibility of the approach. PMID:28689370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Ji-Young; Lee, Jinheon; Paek, Domyung
2009-08-15
In Korea, there have been a number of efforts to measure levels of exposure to environmental pollutants among the population. This paper focuses on investigating the distribution of, extent of, and factors influencing the blood levels of lead, cadmium, and mercury in the Korean population, working from data obtained from the Second Korean National Human Exposure and Bio-monitoring Examination. To that end, blood metal concentrations were analyzed from a total of 2369 participants who were 18 years of age and older. The geometric mean concentrations and their 95% confidence intervals of metals in blood were found to be lead, 1.72more » {mu}g/dL (95% CI, 1.68-1.76); cadmium, 1.02 {mu}g/L (95% CI, 1.00-1.05); and mercury, 3.80 {mu}g/L (95% CI, 3.66-3.93). Regression analyses indicate that the levels of metals in the blood are mainly influenced by gender, age, and the education levels of the participants. Current smoking status is also found to be a significant factor for increasing both lead and cadmium levels. Although our study, as the first nationwide survey of exposure to environmental pollutants in Korea, has value on its own, it should be expanded and extended in order to provide information on environmental exposure pathways and to watch for changes in the level of exposure to environmental pollutants among the population.« less
[Analysis of perfluoroalkyl substances precursors in human milk from 12 provinces of China].
Yang, Lin; Yu, Xinping; Wang, Meng; Li, Jingguang; Wang, Yuxin; Zhao, Yunfeng; Wu, Yongning
2015-06-01
To explore the level of perfluoroalkyl substances (PFASs) precursors in Chinese human milk samples. The human milk samples were collected during the performance of Stockholm convention on survey of human milk in China in 2007. Based on the geographical location and dietary habits, China was divided into the south area and north area which 6 provinces were chosen from each area and there were 12 provinces in all. In each province, one urban site and two rural sites were selected to collect 80-110 samples. Mothers were randomly selected in each site to collect their breast milk. There were 1 237 individual human milk samples in all. For each province, the individual samples from the urban areas and the rural areas were pooled separately resulting in 24 pooled human milk samples. 11 PFAS precursors were measured in pooled samples by ultra-high performance liquid chromatography-tandem quadruple mass spectrometry (UPLC-MS/MS). The dietary exposure assessment of newborns was made. Three PFAS precursors were found above the detection limits, namely, 6:2 FTS, FHUEA, and 6:2 diPAP. Their concentration ranges were < Limit of determination (LOD) -47.46 pg/ml, < LOD -70.68 pg/ml and < LOD -35.08 pg/ml, respectively. The highest total PFAS precursor concentration 77.70 pg/ml was found in urban area samples from Shannxi Province. Rural area samples from Hubei had the lowest total PFAS precursor concentration, which was below the LOD. There were significant differences between rural and urban areas in many provinces, such as Shannxi (rural: 1.51 pg/ml; urban: 77.70 pg/ml), Shanghai (rural: 1.13 pg/ml; urban: 71.88 pg/ml), Jiangxi (rural: 65.39 pg/ml; urban: 0.55 pg/ml) and so on. The ranges estimated daily intake of 6:2 FTS, FHUEA and 6:2 diPAP of the samples from 12 provinces were 0.05-4.51, 1.13-6.72 and 1.15-3.34 ng · kg⁻¹ · d⁻¹. The results suggested the human exposure of PFAS precursors in China and the potential health impact of postnatal exposure through breastfeeding to infants. The level of PFAS precursors showed differences in regions, rural and urban places.
Outdoor blue spaces, human health and well-being: A systematic review of quantitative studies.
Gascon, Mireia; Zijlema, Wilma; Vert, Cristina; White, Mathew P; Nieuwenhuijsen, Mark J
2017-11-01
A growing number of quantitative studies have investigated the potential benefits of outdoor blue spaces (lakes, rivers, sea, etc) and human health, but there is not yet a systematic review synthesizing this evidence. To systematically review the current quantitative evidence on human health and well-being benefits of outdoor blue spaces. Following PRISMA guidelines for reporting systematic reviews and meta-analysis, observational and experimental quantitative studies focusing on both residential and non-residential outdoor blue space exposure were searched using specific keywords. In total 35 studies were included in the current systematic review, most of them being classified as of "good quality" (N=22). The balance of evidence suggested a positive association between greater exposure to outdoor blue spaces and both benefits to mental health and well-being (N=12 studies) and levels of physical activity (N=13 studies). The evidence of an association between outdoor blue space exposure and general health (N=6 studies), obesity (N=8 studies) and cardiovascular (N=4 studies) and related outcomes was less consistent. Although encouraging, there remains relatively few studies and a large degree of heterogeneity in terms of study design, exposure metrics and outcome measures, making synthesis difficult. Further research is needed using longitudinal research and natural experiments, preferably across a broader range of countries, to better understand the causal associations between blue spaces, health and wellbeing. Copyright © 2017 Elsevier GmbH. All rights reserved.
Estimation of the total daily oral intake of NDMA attributable to drinking water.
Fristachi, Anthony; Rice, Glenn
2007-09-01
Disinfection with chlorine and chloramine leads to the formation of many disinfection by-products including N-Nitrosodimethylamine (NDMA). Because NDMA is a probable human carcinogen, public health officials are concerned with its occurrence in drinking water. The goal of this study was to estimate NDMA concentrations from exogenous (i.e., drinking water and food) and endogenous (i.e., formed in the human body) sources, calculate average daily doses for ingestion route exposures and estimate the proportional oral intake (POI) of NDMA attributable to the consumption of drinking water relative to other ingestion sources of NDMA. The POI is predicted to be 0.02% relative to exogenous and endogenous NDMA sources combined. When only exogenous sources are considered, the POI was predicted to be 2.7%. The exclusion of endogenously formed NDMA causes the POI to increase dramatically, reflecting its importance as a potentially major source of exposure and uncertainty in the model. Although concentrations of NDMA in foods are small and human exposure to NDMA from foods is quite low, the contribution from food is predicted to be high relative to that of drinking water. The mean concentration of NDMA in drinking water would need to increase from 2.1 x 10(-3) microg/L to 0.10 microg/L, a 47-fold increase, for the POI to reach 1%, relative to all sources of NDMA considered in our model, suggesting that drinking water consumption is most likely a minor source of NDMA exposure.
Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms.
Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome
2010-01-01
Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken.
Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms
Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome
2009-01-01
Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure. This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period. These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken. PMID:20161425
Ngole-Jeme, Veronica M; Ekosse, Georges-Ive E; Songca, Sandile P
2018-01-01
Fifty-seven samples of soils commonly ingested in South Africa, Swaziland, Democratic Republic of Congo (DRC), and Togo were analyzed for the concentrations of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) and their bioaccessibility in the human gastrointestinal tract. Bioaccessibility values were used to calculate daily intake, and hazard quotient of each trace element, and chronic hazard index (CHI) of each sample. Carcinogenic risk associated with As and Ni exposure were also calculated. Mean pseudo-total concentrations of trace elements in all samples were 7.2, 83.3, 77.1, 15.4, 28.6, 24.9, 56.1, 2.8, and 26.5 mg/kg for As, Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb, respectively. Percent bioaccessibility of Pb (13-49%) and Zn (38-56%) were highest among trace elements studied. Average daily intake values were lower than their respective reference doses for ell elements except for Pb in selected samples. Samples from DRC presented the highest health risks associated with trace element exposure with most of the samples having CHI values between 0.5 and 1.0. Some samples had higher than unacceptable values of carcinogenic risk associated with As and Ni exposure. Results indicate low trace element exposure risk from ingesting most of the soil samples.
Devoy, Jérôme; Géhin, Antoine; Müller, Samuel; Melczer, Mathieu; Remy, Aurélie; Antoine, Guillaume; Sponne, Isabelle
2016-07-25
Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Do frequent exposures to threats and violence at work affect later workforce participation?
Biering, Karin; Andersen, Lars Peter Sønderbo; Hogh, Annie; Andersen, Johan Hviid
2018-05-01
Threats and violence at work are common problems in the human service sector. It can result in physical and psychological health symptoms. The aim of this study was to examine the association between exposure to threats and violence and workforce participation in four human service sectors. 5170 employees answered questionnaires about threats and violence in 2010 and were followed in a register for public transfer incomes for 3.5 years to identify episodes of sick leave, general workforce participation, and permanent health-related benefits. We found associations between exposures to threats and violence at work and workforce participation, though only a few specific types of threats and violence were associated on their own. Self-rated severity of both threatening and violent episodes was associated with overall low workforce participation, new sick leave episodes, and permanent health-related benefits. However, the latter was not statistically significant. The same pattern seems to be present in the relation between the total amount of exposure to threats and violence (threats score and violence score), respectively, and overall low workforce participation and new sick leave episodes. The threats score was also related to permanent health-related benefits. Exposure to threats and violence is associated with temporary and permanent health-related benefits as well as with low workforce participation in general, although some of the associations were not statistically significant.
ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza
2015-01-01
Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. A multi-pollutant method (implemented as a MATLAB program) was explored for configur-ing an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a sta-tion's dosage to the total dosage in the network. Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health.
ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza
2015-01-01
Background: Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. Methods: A multi-pollutant method (implemented as a MATLAB program) was explored for configuring an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a station’s dosage to the total dosage in the network. Results: Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. Conclusion: The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health. PMID:26933646
ANALYSIS OF HUMAN ACTIVITY DATA FOR USE IN MODELING ENVIRONMENTAL EXPOSURES
Human activity data are a critical part of exposure models being developed by the US EPA's National Exposure Research Laboratory (NERL). An analysis of human activity data within NERL's Consolidated Human Activity Database (CHAD) was performed in two areas relevant to exposure ...
Li, Jinpeng; Bach, Anthony; Crawford, Robert B; Phadnis-Moghe, Ashwini S; Chen, Weimin; D'Ingillo, Shawna; Kovalova, Natalia; Suarez-Martinez, Jose E; Zhou, Jiajun; Kaplan, Barbara L F; Kaminski, Norbert E
2018-03-01
Bisphenol A (BPA) is extensively used in manufacturing of a broad range of consumer products worldwide. Due to its widespread use, human exposure to BPA is virtually ubiquitous. Broad human exposure coupled with a large scientific literature describing estrogenic activity of BPA in animals has raised public health concerns. To comprehensively evaluate the health effects of BPA exposure, a chronic toxicity study using a wide-range of BPA doses (2.5-25000 μg/kg bw/day) was conducted jointly by the NTP, thirteen NIEHS-supported grantees, and the FDA, which is called the Consortium Linking Academic and Regulatory Insights on Toxicity of BPA (CLARITY-BPA). As a participant in the CLARITY-BPA project, the objective of the current study was to evaluate the effects of chronic BPA exposure in Sprague-Dawley rats on the relative number and proportion of defined leukocyte populations in the spleen and the thymus. Toward this end, lymphoid tissues from a total of 641 rats were assayed after being continuously dosed with BPA or controls for up to one year. To comprehensively evaluate the effects of BPA on leukocyte compositions, extensive endpoints that cover major populations of leukocytes were assessed, including B cells, T cells, NK cells, granulocytes, monocytes, macrophages and dendritic cells. In total, of the 530 measurements in BPA-treated rats, 10 measurements were statistically different from vehicle controls and were mainly associated with either the macrophage or dendritic cell populations. Most, if not all, of these alterations were found to be transient with no persistent trend over the one-year time period. In addition, the observed BPA-associated alterations were mostly moderate in magnitude and not dose-dependent. Due to the aforementioned, it is unlikely that the observed BPA-mediated changes alone would adversely affect immune competence. Copyright © 2018 Elsevier B.V. All rights reserved.
Mineral oil and synthetic hydrocarbons in cosmetic lip products.
Niederer, M; Stebler, T; Grob, K
2016-04-01
Lipsticks and lip care products may contain saturated hydrocarbons which either stem from mineral oil saturated hydrocarbons (MOSH) or are synthetic, that is polyolefin oligomeric saturated hydrocarbons (POSH). Some of these hydrocarbons are strongly accumulated and form granulomas in human tissues, which prompted Cosmetics Europe (former Colipa) to issue a recommendation for their use in lip care and oral products. From 2012 to 2014, MOSH+POSH were determined in 175 cosmetic lip products taken from the Swiss market in order to estimate their contribution to human exposure. Mineral oil saturated hydrocarbons and POSH were extracted and analysed by GC with FID. Areas were integrated as a total as well as by mass ranges with cuts at n-C25 and n-C34 to characterize the molecular mass distribution. About 68% of the products contained at least 5% MOSH+POSH (total concentration). For regular users, these products would be major contributors to their MOSH+POSH exposure. About 31% of the products contained more than 32% MOSH+POSH. Their regular usage would amount in an estimated MOSH+POSH exposure exceeding the highest estimated dietary exposure. The majority of the products contained hydrocarbons with a molecular mass range which was not in line with the recommendations of Cosmetics Europe. Taking into account that material applied to the lips largely ends up being ingested, MOSH and POSH levels should be reduced in the majority of cosmetic lip products. As the extensive evaluation of the data available on MOSH (EFSA J., 10, 2012, 2704) did not enable the specification of limits considered as safe, the present level of dietary exposure and its evaluation as 'of potential concern' provide the relevant bench mark, which means that lip products should contain clearly less than 5% MOSH+POSH. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function
Evans, Gary W.; Swain, James E.; King, Anthony P.; Wang, Xin; Javanbakht, Arash; Ho, S. Shaun; Angstadt, Michael; Phan, K. Luan; Xie, Hong; Liberzon, Israel
2015-01-01
Considerable work indicates that early cumulative risk exposure is aversive to human development, but very little research has examined neurological underpinnings of these robust findings. We investigated amygdala volume and reactivity to facial stimuli among adults (M = 23.7 years, n = 54) as a function of cumulative risk exposure during childhood (ages 9 and 13). In addition, we tested whether expected, cumulative risk elevations in amygdala volume would mediate functional reactivity of the amygdala during socio-emotional processing. Risks included substandard housing quality, noise, crowding, family turmoil, child separation from family, and violence. Total and left hemisphere adult amygdala volumes, respectively were positively related to cumulative risk exposure during childhood. The links between childhood cumulative risk exposure and elevated amygdala responses to emotionally neutral facial stimuli in adulthood were mediated by the respective amygdala volumes. Cumulative risk exposure in later adolescence (17 years), however, was unrelated to subsequent, adult amygdala volume or function. Physical and socioemotional risk exposures early in life appear to alter amygdala development, rendering adults more reactive to ambiguous stimuli such as neutral faces. These stress-related differences in childhood amygdala development might contribute to well-documented psychological distress as a function of early risk exposure. PMID:26469872
Unthank, Joseph L; Miller, Steven J; Quickery, Ariel K; Ferguson, Ethan L; Wang, Meijing; Sampson, Carol H; Chua, Hui Lin; DiStasi, Matthew R; Feng, Hailin; Fisher, Alexa; Katz, Barry P; Plett, P Artur; Sandusky, George E; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P; MacVittie, Thomas J; Orschell, Christie M
2015-11-01
The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.
Faulk, Christopher; Barks, Amanda; Sánchez, Brisa N; Zhang, Zhenzhen; Anderson, Olivia S; Peterson, Karen E; Dolinoy, Dana C
2014-01-01
Developmental lead (Pb) exposure has been associated with lower body weight in human infants and late onset obesity in mice. We determined the association of perinatal Pb exposure in mice with changes in obesity-related phenotypes into adulthood. Mice underwent exposure via maternal drinking water supplemented with 0 (control), 2.1 (low), 16 (medium), or 32 (high) ppm Pb-acetate two weeks prior to mating through lactation. Offspring were phenotyped at ages 3, 6, and 9 months for energy expenditure, spontaneous activity, food intake, body weight, body composition, and at age 10 months for glucose tolerance. Data analyses were stratified by sex and adjusted for litter effects. Exposed females and males exhibited increased energy expenditure as compared to controls (p<0.0001 for both). In females, horizontal activity differed significantly from controls (p = 0.02) over the life-course. Overall, food intake increased in exposed females and males (p<0.0008 and p<0.0001, respectively) with significant linear trends at 9 months in females (p = 0.01) and 6 months in males (p<0.01). Body weight was significantly increased in males at the medium and high exposures (p = 0.001 and p = 0.006). Total body fat differed among exposed females and males (p<0.0001 and p<0.0001, respectively). Insulin response was significantly increased in medium exposure males (p<0.05). Perinatal Pb exposure at blood lead levels between 4.1 µg/dL and 32 µg/dL is associated with increased food intake, body weight, total body fat, energy expenditure, activity, and insulin response in mice. Physiological effects of developmental Pb exposure persist and vary according to sex and age.
Sánchez, Brisa N.; Zhang, Zhenzhen; Anderson, Olivia S.; Peterson, Karen E.; Dolinoy, Dana C.
2014-01-01
Developmental lead (Pb) exposure has been associated with lower body weight in human infants and late onset obesity in mice. We determined the association of perinatal Pb exposure in mice with changes in obesity-related phenotypes into adulthood. Mice underwent exposure via maternal drinking water supplemented with 0 (control), 2.1 (low), 16 (medium), or 32 (high) ppm Pb-acetate two weeks prior to mating through lactation. Offspring were phenotyped at ages 3, 6, and 9 months for energy expenditure, spontaneous activity, food intake, body weight, body composition, and at age 10 months for glucose tolerance. Data analyses were stratified by sex and adjusted for litter effects. Exposed females and males exhibited increased energy expenditure as compared to controls (p<0.0001 for both). In females, horizontal activity differed significantly from controls (p = 0.02) over the life-course. Overall, food intake increased in exposed females and males (p<0.0008 and p<0.0001, respectively) with significant linear trends at 9 months in females (p = 0.01) and 6 months in males (p<0.01). Body weight was significantly increased in males at the medium and high exposures (p = 0.001 and p = 0.006). Total body fat differed among exposed females and males (p<0.0001 and p<0.0001, respectively). Insulin response was significantly increased in medium exposure males (p<0.05). Perinatal Pb exposure at blood lead levels between 4.1 µg/dL and 32 µg/dL is associated with increased food intake, body weight, total body fat, energy expenditure, activity, and insulin response in mice. Physiological effects of developmental Pb exposure persist and vary according to sex and age. PMID:25105421
Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water.
Ryan, P B; Huet, N; MacIntosh, D L
2000-08-01
Arsenic, cadmium, and lead have been associated with various forms of cancer, nephrotoxicity, central nervous system effects, and cardiovascular disease in humans. Drinking water is a well-recognized pathway of exposure to these metals. To improve understanding of the temporal dimension of exposure to As, Cd, and Pb in drinking water, we obtained 381 samples of tap and/or tap/filtered water and self-reported rates of drinking water consumption from 73 members of a stratified random sample in Maryland. Data were collected at approximately 2-month intervals from September 1995 through September 1996. Concentrations of As (range < 0.2-13.8 microg/L) and Pb (< 0.1-13.4 microg/L) were within the ranges reported for the United States, as were the rates of drinking water consumption (median < 0.1-4.1 L/day). Cd was present at a detectable level in only 8.1% of the water samples. Mean log-transformed concentrations and exposures for As and Pb varied significantly among sampling cycles and among respondents, as did rates of drinking water consumption, according to a generalized linear model that accounted for potential correlation among repeated measures from the same respondent. We used the intraclass correlation coefficient of reliability to attribute the total variance observed for each exposure metric to between-person and within-person variability. Between-person variability was estimated to account for 67, 81, and 55% of the total variance in drinking water consumption, As exposure (micrograms per day), and Pb exposure (micrograms per day), respectively. We discuss these results with respect to their implications for future exposure assessment research, quantitative risk assessment, and environmental epidemiology.
Effects of inhalation of acidic compounds on pulmonary function in allergic adolescent subjects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenig, J.Q.; Covert, D.S.; Pierson, W.E.
There is concern about the human health effects of inhalation of acid compounds found in urban air pollution. It was the purpose of this study to investigate three of these acid compounds, sulfur dioxide (SO/sub 2/), sulfuric acid (H/sub 2/SO/sub 4/), and nitric acid (HNO/sub 3/) in a group of allergic adolescent subjects. Subjects were exposed during rest and moderate exercise to 0.7 mumole/m/sup 3/ (68 micrograms/m/sup 3/) H/sub 2/SO/sub 4/, 4.0 mumole/m/sup 3/ (0.1 ppm) SO/sub 2/, or 2.0 mumole/m/sup 3/ (0.05 ppm) HNO/sub 3/. Pulmonary functions (FEV1, total respiratory resistance, and maximal flow) were measured before and aftermore » exposure. Preliminary analysis based on nine subjects indicates that exposure to 0.7 mumole/m/sup 3/ H/sub 2/SO/sub 4/ alone and in combination with SO/sub 2/ caused significant changes in pulmonary function, whereas exposure to air or SO/sub 2/ alone did not. FEV1 decreased an average of 6% after exposure to H/sub 2/SO/sub 4/ alone and 4% when the aerosol was combined with SO/sub 2/. The FEV1 decrease was 2% after both air and SO/sub 2/ exposures. Total respiratory resistance (RT) increased 15% after the combined H/sub 2/SO/sub 4/ exposures, 12% after H/sub 2/SO/sub 4/ alone, and 7% after exposure to air. After exposures to HNO3 alone, FEV1 decreased by 4%, and RT increased by 23%. These results are preliminary; final conclusions must wait for completion of the study.« less
NASA Technical Reports Server (NTRS)
Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.
2011-01-01
Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.
Henderson, W Matthew; Bouchard, Dermont; Chang, Xiaojun; Al-Abed, Souhail R; Teng, Quincy
2016-09-15
Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics-based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100ng/mL of MWCNTs for 24 and 48h; MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for (1)H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure experiments were extremely low (i.e. [Ni]≤2×10(-10)g/mL). Preliminary data suggested that MWCNT exposure causes perturbations in biochemical processes involved in cellular oxidation as well as fluxes in amino acid metabolism and fatty acid synthesis. Dose-response trajectories were apparent and spectral peaks related to both dose and MWCNT dispersion methodologies were determined. Correlations of the significant changes in metabolites will help to identify potential biomarkers associated with carbonaceous nanoparticle exposure. Published by Elsevier B.V.
Slaughter, Robin J; Beasley, D Michael G; Lambie, Bruce S; Wilkins, Gerard T; Schep, Leo J
2012-12-14
New Zealand has a number of plants, both native and introduced, contact with which can lead to poisoning. The New Zealand National Poisons Centre (NZNPC) frequently receives enquiries regarding exposures to poisonous plants. Poisonous plants can cause harm following inadvertent ingestion, via skin contact, eye exposures or inhalation of sawdust or smoked plant matter. The purpose of this article is to determine the 15 most common poisonous plant enquiries to the NZNPC and provide a review of current literature, discussing the symptoms that might arise upon exposure to these poisonous plants and the recommended medical management of such poisonings. Call data from the NZNPC telephone collection databases regarding human plant exposures between 2003 and 2010 were analysed retrospectively. The most common plants causing human poisoning were selected as the basis for this review. An extensive literature review was also performed by systematically searching OVID MEDLINE, ISI Web of Science, Scopus and Google Scholar. Further information was obtained from book chapters, relevant news reports and web material. For the years 2003-2010 inclusive, a total of 256,969 enquiries were received by the NZNPC. Of these enquiries, 11,049 involved exposures to plants and fungi. The most common poisonous plant enquiries, in decreasing order of frequency, were: black nightshade (Solanum nigrum), arum lily (Zantedeschia aethiopica), kowhai (Sophora spp.), euphorbia (Euphorbia spp.), peace lily (Spathiphyllum spp.), agapanthus (Agapanthus spp.), stinking iris (Iris foetidissima), rhubarb (Rheum rhabarbarum), taro (Colocasia esculentum), oleander (Nerium oleander), daffodil (Narcissus spp.), hemlock (Conium maculatum), karaka (Corynocarpus laevigatus), foxglove (Digitalis purpurea) and ongaonga/New Zealand tree nettle (Urtica ferox). The combined total of enquiries for these 15 species was 2754 calls (representing approximately 25% of all enquiries regarding plant exposures). The signs and symptoms resulting from poisoning from these plants are discussed. Medical treatment recommendations are made. Poisoning following ingestion or other forms of exposures to plants in New Zealand is relatively common, particularly among children. However, serious adverse reactions are comparatively rare. Accurate plant identification and details on the type of exposure can be important in assessing the likely risks. Effective medical management of these poisonings can be achieved by following the principles outlined in this review.
Schiffman, Susan S; Studwell, Clare E; Landerman, Lawrence R; Berman, Katherine; Sundy, John S
2005-05-01
Aerial emissions from a swine house at North Carolina State University's field laboratory were diluted to a level that could occur at varying distances downwind from a confined animal feeding operation (CAFO) both within and beyond the property line, and these emissions were delivered to an environmental exposure chamber. The study design consisted of two 1-hr sessions, one in which 48 healthy human adult volunteers were exposed to diluted swine air and another in which they were exposed to clean air (control). Objective measures of blood pressure, temperature, heart rate, respiratory rate, lung function, nasal inflammation, secretory immunity, mood, attention, and memory were correlated with objective measures of air quality. Ratings of perceived (self-reported) health symptoms were also obtained. The mean levels of airborne constituents in the swine air condition were hydrogen sulfide (24 ppb), ammonia (817 ppb), total suspended particulates (0.0241 mg/m3), endotoxin (7.40 endotoxin units/m3), and odor (57 times above odor threshold). No statistical differences on objective measures of physical symptoms, mood, or attention resulted from the 1-hr exposure to swine emissions in the environmental chamber when compared with clean air for healthy human volunteers. However, subjects were 4.1 (p = 0.001) times more likely to report headaches, 6.1 (p = 0.004) times more likely to report eye irritation, and 7.8 (p = 0.014) times more likely to report nausea in the swine air (experimental) condition than in the control condition. These results indicate that short-term exposure in an environmental chamber to malodorous emissions from a swine house at levels expected downwind can induce clinically important symptoms in healthy human volunteers.
Cao, Xianghui; Lu, Yonglong; Zhang, Yueqing; Khan, Kifayatullah; Wang, Chenchen; Baninla, Yvette
2018-05-01
Hexabromocyclododecanes (HBCDs) are the subject of recent interest and potential risk assessment particularly in China due to its ubiquitous existence in a variety of environmental media. This paper reviews the recent studies conducted on HBCDs in different environmental media (air, soil, water, river sediment, sewage sludge, biota and daily food) in China. At the same time, human health risks via food and occupational exposure of HBCDs in production plants, expanded polystyrene (EPS) and extruded polystyrene (XPS) plants were assessed. The review reveals that HBCDs levels of air, soil, sediment, sewage sludge, biota and food presented a geographical variation in the eastern coastal regions of China. There were many factors resulting in the variation, such as sampling sites, climate and analytical method. In terms of diastereoisomer, α-HBCD and γ-HBCD were the predominant diastereoisomers in air, soil, sediment, and sewage sludge. In the water, α-HBCD and γ-HBCD shared the major proportion to the total HBCDs. However, only α-HBCD was the predominant diastereoisomer in biota. With regard to human exposure pathway to HBCDs, food was the major route for human exposure to HBCDs, especially meat. In addition, soil and road dust were also important exposure pathways. Furthermore, workers and residents, especially infants in and around waste dumping sites and industrial areas are exposed to the highest HBCDs levels among all the populations studied thus far. HBCDs posed a potential threat to the environment and human health. Therefore, risk assessment and management have an important role to play in preventing and mitigating HBCDs risks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ultra-trace measurement of Dechloranes to investigate food as a route of human exposure.
L'Homme, Benjamin; Calaprice, Chiara; Calvano, Cosima Damiana; Zambonin, Carlo; Leardi, Riccardo; Focant, Jean-François
2015-11-01
Dechloranes, including Dechlorane Plus (syn- and anti-isomers), Dechlorane 602, Dechlorane 603, Dechlorane 604, Chlordene Plus, and Mirex are used as flame-retardants and were recently found in human serum of the European population. In order to investigate if food consumption would possibly be a significant route of exposure, we developed a method for the measurement of Dechloranes in food and feed. We showed that it was possible to extend the scope of the regular polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin like (DL-), and non-dioxin like (NDL-) regulated PCBs clean-up and fractionation procedure to Dechloranes and that no compound degradation occurred during the strong acidic treatments used for lipid digestion. Dechloranes were measured by gas chromatography coupled to triple quadrupole mass spectrometry (GC-QQQMS/MS). We optimized injection parameters by face centered experimental design (FCD). The electron ionization fragmentation was investigated to set appropriate multiple reaction monitoring (MRM) transitions. Instrumental and method limits of quantitation (iLOQs and mLOQs) were determined following EU guidelines for dioxin analyses in food. A total of 88 samples were analyzed to assess the prevalence of this route of exposure to humans. Average levels of the sum of Dechloranes ranged from 10 to 31pg/g fat, with the exception of fish, feed additives, and corn that were reported in pg/g wet weight at average levels of 9, 12, and 2pg/g ww. Based on Belgian food habits, a dietary intake was estimated to be 136pg/day. The relatively low reported levels indicate that other routes of human exposure should be considered. Copyright © 2015 Elsevier Ltd. All rights reserved.
Politi, Luigi; Biondi-Zoccai, Giuseppe; Nocetti, Luca; Costi, Tiziana; Monopoli, Daniel; Rossi, Rosario; Sgura, Fabio; Modena, Maria Grazia; Sangiorgi, Giuseppe M
2012-01-01
Occupational radiation exposure is a growing problem due to the increasing number and complexity of interventional procedures performed. Radial artery access has reduced the number of complications at the price of longer procedure duration. Radpad® scatter protection is a sterile, disposable bismuth-barium radiation shield drape that should be able to decrease the dose of operator radiation during diagnostic and interventional procedures. Such radiation shield has never been tested in a randomized study in humans. Sixty consecutive patients undergoing coronary angiography by radial approach were randomized 1:1 to Radpad use versus no radiation shield protection. The sterile shield was placed around the area of right radial artery sheath insertion and extended medially to the patient trunk. All diagnostic procedures were performed by the same operator to reduce variability in radiation absorption. Radiation exposure was measured blindly using thermoluminescence dosimeters positioned at the operator's chest, left eye, left wrist, and thyroid. Despite similar fluoroscopy time (3.52 ± 2.71 min vs. 3.46 ± 2.77 min, P = 0.898) and total examination dose (50.5 ± 30.7 vs. 45.8 ± 18.0 Gycm(2), P = 0.231), the mean total radiation exposure to the operator was significantly lower when Radpad was utilized (282.8 ± 32.55 μSv vs. 367.8 ± 105.4 μSv, P < 0.0001) corresponding to a 23% total reduction. Moreover, mean radiation exposure was lower with Radpad utilization at all body locations ranging from 13 to 34% reduction. This first-in-men randomized trial demonstrates that Radpad significantly reduces occupational radiation exposure during coronary angiography performed through right radial artery access. Copyright © 2011 Wiley Periodicals, Inc.
Wogan, Gerald N; Kensler, Thomas W; Groopman, John D
2012-01-01
The aflatoxins were discovered in toxic peanut meal causing "turkey X" disease, which killed large numbers of turkey poults, ducklings and chicks in the UK in the early 1960s. Extracts of toxic feed induced the symptoms in experimental animals, and purified metabolites with properties identical to aflatoxins B(1) and G(1) (AFB(1) and AFG(1)) were isolated from Aspergillus flavus cultures. Structure elucidation of aflatoxin B(1) was accomplished and confirmed by total synthesis in 1963. AFB(1) is a potent liver carcinogen in rodents, non-human primates, fish and birds, operating through a genotoxic mechanism involving metabolic activation to an epoxide, formation of DNA adducts and, in humans, modification of the p53 gene. Aflatoxins are unique among environmental carcinogens, in that elucidation of their mechanisms of action combined with molecular epidemiology provides a foundation for quantitative risk assessment; extensive evidence confirms that contamination of the food supply by AFB(1) puts an exposed population at increased risk of developing hepatocellular carcinoma (HCC). Molecular biomarkers to quantify aflatoxin exposure in individuals were essential to link aflatoxin exposure with liver cancer risk. Biomarkers were validated in populations with high HCC incidence in China and The Gambia, West Africa; urinary AFB(1)-N (7)-Guanine excretion was linearly related to aflatoxin intake, and levels of aflatoxin-serum albumin adducts also reflected aflatoxin intake. Two major cohort studies employing aflatoxin biomarkers identified their causative role in HCC etiology. Results of a study in Shanghai men strongly support a causal relationship between HCC risk and the presence of biomarkers for aflatoxin and HBV infection, and also show that the two risk factors act synergistically. Subsequent cohort studies in Taiwan confirm these results. IARC classified aflatoxin as a Group 1 human carcinogen in 1993, based on sufficient evidence in humans and experimental animals indicating the carcinogenicity of naturally occurring mixtures of aflatoxins, aflatoxin B(1), G(1) and M(1). Aflatoxin biomarkers have also been used to show that primary prevention to reduce aflatoxin exposure can be achieved by low-technology approaches at the subsistence farm level in sub-Saharan Africa. Also, in residents of Qidong, China, oral dosing with chlorophyllin, a chlorophyll derivative, prior to each meal led to significant reduction in aflatoxin-DNA biomarker excretion, supporting the feasibility of preventive measures to reduce HCC risk in populations experiencing unavoidable aflatoxin exposure. The systematic, comprehensive approach used to create the total aflatoxin database justifies optimism for potential success of preventive interventions to ameliorate cancer risk attributable to aflatoxin exposure. This strategy could serve as a template for the development, validation and application of molecular and biochemical markers for other carcinogens and cancers as well as other chronic diseases resulting from environmental exposures.
Wogan, Gerald N.; Kensler, Thomas W.; Groopman, John D.
2015-01-01
The aflatoxins were discovered in toxic peanut meal causing “turkey X” disease, which killed large numbers of turkey poults, ducklings and chicks in the UK in the early 1960s. Extracts of toxic feed induced the symptoms in experimental animals, and purified metabolites with properties identical to aflatoxins B1 and G1 (AFB1 and AFG1) were isolated from Aspergillus flavus cultures. Structure elucidation of aflatoxin B1 was accomplished and confirmed by total synthesis in 1963. AFB1 is a potent liver carcinogen in rodents, non-human primates, fish and birds, operating through a genotoxic mechanism involving metabolic activation to an epoxide, formation of DNA adducts and, in humans, modification of the p53 gene. Aflatoxins are unique among environmental carcinogens, in that elucidation of their mechanisms of action combined with molecular epidemiology provides a foundation for quantitative risk assessment; extensive evidence confirms that contamination of the food supply by AFB1 puts an exposed population at increased risk of developing hepatocellular carcinoma (HCC). Molecular biomarkers to quantify aflatoxin exposure in individuals were essential to link aflatoxin exposure with liver cancer risk. Biomarkers were validated in populations with high HCC incidence in China and The Gambia, West Africa; urinary AFB1–N7-Guanine excretion was linearly related to aflatoxin intake, and levels of aflatoxin– serum albumin adducts also reflected aflatoxin intake. Two major cohort studies employing aflatoxin biomarkers identified their causative role in HCC etiology. Results of a study in Shanghai men strongly support a causal relationship between HCC risk and the presence of biomarkers for aflatoxin and HBV infection, and also show that the two risk factors act synergistically. Subsequent cohort studies in Taiwan confirm these results. IARC classified aflatoxin as a Group 1 human carcinogen in 1993, based on sufficient evidence in humans and experimental animals indicating the carcinogenicity of naturally occurring mixtures of aflatoxins, aflatoxin B1, G1 and M1. Aflatoxin biomarkers have also been used to show that primary prevention to reduce aflatoxin exposure can be achieved by low-technology approaches at the subsistence farm level in sub-Saharan Africa. Also, in residents of Qidong, China, oral dosing with chlorophyllin, a chlorophyll derivative, prior to each meal led to significant reduction in aflatoxin–DNA biomarker excretion, supporting the feasibility of preventive measures to reduce HCC risk in populations experiencing unavoidable aflatoxin exposure. The systematic, comprehensive approach used to create the total aflatoxin database justifies optimism for potential success of preventive interventions to ameliorate cancer risk attributable to aflatoxin exposure. This strategy could serve as a template for the development, validation and application of molecular and biochemical markers for other carcinogens and cancers as well as other chronic diseases resulting from environmental exposures. PMID:21623489
Human health risk assessment related to contaminated land: state of the art.
Swartjes, F A
2015-08-01
Exposure of humans to contaminants from contaminated land may result in many types of health damage ranging from relatively innocent symptoms such as skin eruption or nausea, on up to cancer or even death. Human health protection is generally considered as a major protection target. State-of-the-art possibilities and limitations of human health risk assessment tools are described in this paper. Human health risk assessment includes two different activities, i.e. the exposure assessment and the hazard assessment. The combination of these is called the risk characterization, which results in an appraisal of the contaminated land. Exposure assessment covers a smart combination of calculations, using exposure models, and measurements in contact media and body liquids and tissue (biomonitoring). Regarding the time frame represented by exposure estimates, biomonitoring generally relates to exposure history, measurements in contact media to actual exposures, while exposure calculations enable a focus on exposure in future situations. The hazard assessment, which is different for contaminants with or without a threshold for effects, results in a critical exposure value. Good human health risk assessment practice accounts for tiered approaches and multiple lines of evidence. Specific attention is given here to phenomena such as the time factor in human health risk assessment, suitability for the local situation, background exposure, combined exposure and harmonization of human health risk assessment tools.
Hesterberg, T W; Hart, G A
1994-12-01
In a recent rat inhalation study, 2 years of exposure to high concentrations of fiberglass (FG) resulted in no treatment-related fibrosis or thoracic tumors. To determine the relevancy of this study for human risk assessment, it is important to compare the rat experimental exposure levels with those of humans. Data on human exposures were taken from several studies and included FG manufacturing, installation and removal, and ambient air. FG levels in the rat aerosol were 200,000-fold higher than indoor air, > 2000-fold higher than during FG insulation manufacturing, and > 1000-fold higher than FG batt installation. The rat aerosol was 30-fold more concentrated than the highest human exposure (blowing installation of unbound FG). Rat FG lung burden also vastly exceeded that of FG workers, which was not significantly elevated above nonworker levels. The amount of fibers/mg dry lung for the rat after lifetime exposure was > 4000-fold greater than for the FG worker, average exposure 11 years. Aerosol and lung fiber dimensions in the rat study were comparable to those of human exposures. From these comparisons, it can be concluded that the exposure level in the rat inhalation study was sufficiently, if not excessively, high in comparison to human exposures. Increasing the experimental exposure in the rat studies would not serve to mirror human environmental or occupational exposures.
Zhang, Zifeng; Alomirah, Husam; Cho, Hyeon-Seo; Li, Yi-Fan; Liao, Chunyang; Minh, Tu Binh; Mohd, Mustafa Ali; Nakata, Haruhiko; Ren, Nanqi; Kannan, Kurunthachalam
2011-08-15
Bisphenol A (BPA) is an industrial chemical used in the manufacture of polycarbonate plastics and epoxy resins. Due to the potential of this compound to disrupt normal endocrinal functions, concerns over human exposure to BPA have been raised. Although several studies have reported human exposure to BPA in Western nations, little is known about exposure in Asian countries. In this study, we determined total urinary BPA concentrations (free plus conjugated) in 296 urine samples (male/female: 153/143) collected from the general population in seven Asian countries, China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam, using high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). On the basis of urinary BPA concentrations, we estimated the total daily intake. The results indicated that BPA was detected in 94.3% of the samples analyzed, at concentrations ranging from <0.1 to 30.1 ng/mL. The geometric mean concentration of BPA for the entire sample set from seven countries was 1.20 ng/mL. The highest concentration of BPA was found in samples from Kuwait (median: 3.05 ng/mL, 2.45 μg/g creatinine), followed by Korea (2.17 ng/mL, 2.40 μg/g), India (1.71 ng/mL, 2.09 μg/g), Vietnam (1.18 ng/mL, 1.15 μg/g), China (1.10 ng/mL, 1.38 μg/g), Malaysia (1.06 ng/mL, 2.31 μg/g), and Japan (0.95 ng/mL, 0.58 μg/g). Among the five age groups studied (≤ 19, 20-29, 30-39, 40-49, and ≥ 50 years), the highest median concentration of BPA was found in urine samples from the age group of ≤ 19 years. There was no significant difference in BPA concentrations between genders (male and female) or domicile of residence (rural and urban). The estimated median daily intakes of BPA for the populations in Kuwait, Korea, India, China, Vietnam, Malaysia, and Japan were 5.19, 3.69, 2.90, 2.13, 2.01, 1.80, and 1.61 μg/day, respectively. The estimated daily intake of BPA in the seven Asian countries was significantly lower than the tolerable daily intake recommended by the U.S. Environmental Protection Agency. This is the first study to document the occurrence of and human exposure to BPA in several Asian countries.
Human Plant Exposures Reported to a Regional (Southwestern) Poison Control Center Over 8 Years.
Enfield, Ben; Brooks, Daniel E; Welch, Sharyn; Roland, Maureen; Klemens, Jane; Greenlief, Kim; Olson, Rachel; Gerkin, Richard D
2018-03-01
There is little published data about human plant exposures reported to US poison control centers (PCCs). A retrospective chart review of all reported plant exposures to a single regional PCC between January 1, 2003 and December 31, 2010 was done to understand better the characteristics of plant exposure cases. Specific generic plant codes were used to identify cases. Recorded variables included patient demographics, plant involved, exposure variables, symptoms, management site, treatments, and outcome. Univariate and multivariate regression was used to identify outcome predictors. A total of 6492 charts met inclusion criteria. The average age was 16.6 years (2 months-94 years); 52.4% were male. The most common exposure reason was unintentional (98%), and the majority (92.4%) occurred at the patient's home. Ingestions (58.3%) and dermal exposures (34.3%) accounted for most cases. Cactus (27.5%), oleander (12.5%), Lantana (5.7%), and Bougainvillea (3.8%) were most commonly involved. Symptoms developed in 47.1% of patients, and were more likely to occur following Datura (66.7%), and Morning Glory or Milkweed (25% each) exposures. Almost 94% of patients were managed onsite (home) and only 5.2% involved evaluation in a health care facility (HCF). Only 37 (0.6%) patients required hospital admission, and 2.9% of cases resulted in more than minimal effects. Exposures resulting in more than minimal clinical effects were predicted by several variables: abnormal vital signs (OR = 35.62), abnormal labs (OR = 14.87), and management at a HCF (OR = 7.37). Hospital admissions were increased for patients already at a HCF (OR = 54.01), abnormal vital signs (OR = 23.28), and intentional exposures (OR = 14.7). Plant exposures reported to our poison control center were typically unintentional ingestions occurring at home. Most patients were managed onsite and few developed significant symptoms.
Jiang, Hong; Lin, Zhenkun; Wu, Yuanyuan; Chen, Xiangping; Hu, Yabing; Li, Yanyan; Huang, Changjiang; Dong, Qiaoxiang
2014-07-15
This study was designed to estimate the human risk to polybrominated diphenyl ethers (PBDEs) exposure via two main exposure routes (dust and diet) in an e-waste recycling area in southern China. A total of 134 dust samples and 129 food samples were analyzed by gas chromatography/mass spectrometry (GC/MS). The mean concentration of ΣPBDE in in-house dust (38,685ng/g dw) was higher than that in out-house dust (24,595ng/g). For food samples, the highest concentration of ΣPBDE was found in fish and shellfish (2755ng/kg ww), followed in descending order by eggs (2423ng/kg), cereals (2239ng/kg) and meat (1799ng/kg). The estimated total daily dietary intake of PBDEs was 1671ng/day for adults and 952ng/day for children. The present study indicated that dust intake was the dominant PBDE exposure route for children, and the dietary intake was the dominant PBDE exposure route for adults. Our findings revealed high PBDE concentrations in dust and food samples collected at the center of e-waste recycling area, raising significant health concerns for residents in this particular region, especially for children. Copyright © 2014 Elsevier B.V. All rights reserved.
Aufderheide, Michaela; Emura, Makito
2017-07-05
3D constructs composed of differentiated immortalized primary normal human bronchial epithelial (NHBE) cells (CL-1548) were repeatedly exposed at the air-liquid interface to non-lethal concentrations of mainstream cigarette smoke (4 cigarettes a day, 5days/week, 8 repetitions in total) and e-cigarette vapor (50 puffs a day, 5 days/week, 8 repetitions in total) to build up a permanent burden on the cells. Samples were taken after 4, 6 and 8 times of repeated smoke exposure and the cultures were investigated using histopathological methods Compared to the clean air-exposed cultures (process control) and incubator control, the aerosol-exposed cultures showed a reduction of ciliated, mucus-producing and club cells. At the end of the exposure phase, we even found metaplastic areas positive for CK13 antibody in the cultures exposed to mainstream cigarette smoke and e-liquid vapor, commonly seen in squamous cells as a marker for non-cornified squamous epithelium. The control cultures (incubator cells) showed no comparable phenotypical changes. In conclusion, our in vitro model presents a valuable tool to study the induction of phenotypical changes after exposure to hazardous airborne material. Copyright © 2017. Published by Elsevier GmbH.
Accurately quantifying human exposures and doses of various populations to environmental pollutants is critical for the Agency to assess and manage human health risks. For example, the Food Quality Protection Act of 1996 (FQPA) requires EPA to consider aggregate human exposure ...
40 CFR 159.170 - Human epidemiological and exposure studies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...
40 CFR 159.170 - Human epidemiological and exposure studies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...
40 CFR 159.170 - Human epidemiological and exposure studies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...
40 CFR 159.170 - Human epidemiological and exposure studies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...
NASA Astrophysics Data System (ADS)
Stolarski, David J.; Cain, Clarence P.; Schuster, Kurt J.; Imholte, Michelle; Carothers, Val C.; Buffington, Gavin D.; Edwards, Michael; Thomas, Robert J.; Rockwell, Benjamin A.
2005-04-01
To assess the retinal hazards related to simultaneous exposure from two lasers of separate wavelengths, the retinal effects of 5-second laser irradiation from 532 nm and 647 nm were determined in non-human primates. A total of six eyes were exposed using equal amounts of power to determine the damage levels. The results were combined with those of previous, two-wavelength studies done by our group and compared to damage models developed in our lab. The data were also compared to the calculations resulting from use of the currently accepted method of predicting hazards from simultaneous lasing.
Effect of Sustained Human Centrifugation on Autonomic Cardiovascular and Vestibular Function
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Benavides, Edgar W.; Harm, Deborah L.; Rupert, A. H.
2002-01-01
Repeated exposure to +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, both sustained exposure to +Gx and changes in otolith function resulting from the gravitational changes of space flight and parabolic flight may adversely affect autonomic cardiovascular function and orthostatic tolerance. HYPOTHESES: Baroreflex function and orthostatic tolerance are acutely improved by a single sustained (30 min) exposure to +3Gz but not +3Gx. Moreover, after 30 min of +3Gx, any changes that occur in autonomic cardiovascular function will relate commensurately to changes in otolith function. METHODS: Twenty-two healthy human subjects were first exposed to 5 min of +3 Gz centrifugation and then subsequently up to a total of30 min of either +3Gz (n = 15) or +3Gx (n = 7) centrifugation. Tests of autonomic cardiovascular function both before and after both types of centrifugation included: (a) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; (b) carotid-cardiac baroreflex tests; ( c) Valsalva tests; and (d) 30-min head-up tilt (HUT) tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: All four +3Gz subjects who were intolerant to HUT before centrifugation became tolerant to HUT after centrifugation. The operational point of the carotid-cardiac baroreflex and the Valsalva-related baroreflex were also enhanced in the +3Gz group but not in the +3Gx group. No significant vestibular-autonomic relationships were detected, other than a significant vestibular-cerebrovascular interaction reported previously. CONCLUSIONS: A single, sustained exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance whereas a similar exposure to +3 Gx centrifugation appears to have less effect.
Husari, Ahmad; Shihadeh, Alan; Talih, Soha; Hashem, Yasmine
2016-01-01
Abstract Background: Smoking electronic cigarettes (ECIG) is promoted as a safer alternative to smoking combustible cigarettes. This study investigates the effects of ECIG aerosol and cigarette smoke (CS) in an animal model and in human alveolar cell cultures (A549). Methods: Mice were divided into Control, ECIG, and CS. Animals were exposed for 6h/d to either lab air, ECIG or CS, for of 3 days. Total particulate matter exposure for the ECIG was set at higher levels compared to CS. Lung injury was determined by: (1) measurement of wet-to-dry ratio; (2) albumin concentration in the bronchoalveolar lavage fluid; (3) transcriptional expression of inflammatory mediators IL-1β, IL-6, TNF-α; (4) oxidative stress; (5) assessment of cell death; and (6) lung histopathology. Human alveolar cell cultures were treated with various concentrations of ECIG and CS aerosol extracts and the effects on cell proliferation were evaluated. Results: Wet-to-dry ratio was higher in CS when compared to ECIG. Albumin leak in bronchoalveolar lavage fluid was evident in CS but not in ECIG. ECIG exposure was only associated with a significant increase in IL-1β. In contrast, CS exposure resulted in significant increases in IL-1β, IL-6, TNF-α expression, and oxidative stress. TUNEL staining demonstrated significant cell death in CS but not in ECIG. At the cellular level, ECIG and CS extracts reduced cell proliferation, however, CS exhibited effects at lower concentrations. Conclusion: Despite higher exposure conditions, ECIG exhibited less toxic effects on lungs of experimental animals and on A549 cell cultures when compared to CS. PMID:26272212
Husari, Ahmad; Shihadeh, Alan; Talih, Soha; Hashem, Yasmine; El Sabban, Marwan; Zaatari, Ghazi
2016-05-01
Smoking electronic cigarettes (ECIG) is promoted as a safer alternative to smoking combustible cigarettes. This study investigates the effects of ECIG aerosol and cigarette smoke (CS) in an animal model and in human alveolar cell cultures (A549). Mice were divided into Control, ECIG, and CS. Animals were exposed for 6h/d to either lab air, ECIG or CS, for of 3 days. Total particulate matter exposure for the ECIG was set at higher levels compared to CS. Lung injury was determined by: (1) measurement of wet-to-dry ratio; (2) albumin concentration in the bronchoalveolar lavage fluid; (3) transcriptional expression of inflammatory mediators IL-1β, IL-6, TNF-α; (4) oxidative stress; (5) assessment of cell death; and (6) lung histopathology. Human alveolar cell cultures were treated with various concentrations of ECIG and CS aerosol extracts and the effects on cell proliferation were evaluated. Wet-to-dry ratio was higher in CS when compared to ECIG. Albumin leak in bronchoalveolar lavage fluid was evident in CS but not in ECIG. ECIG exposure was only associated with a significant increase in IL-1β. In contrast, CS exposure resulted in significant increases in IL-1β, IL-6, TNF-α expression, and oxidative stress. TUNEL staining demonstrated significant cell death in CS but not in ECIG. At the cellular level, ECIG and CS extracts reduced cell proliferation, however, CS exhibited effects at lower concentrations. Despite higher exposure conditions, ECIG exhibited less toxic effects on lungs of experimental animals and on A549 cell cultures when compared to CS. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Assessment of Volatile Organic Compounds (VOCs) in indooor parking facilities at Houston, Texas
NASA Astrophysics Data System (ADS)
Kristanto, Gabriel Andari
This dissertation identified the types, magnitudes, sources, and assessed risk exposure of VOCs in different types of indoor parking facilities. VOCs are ones of major pollutants emitted from automobiles. The indoor parking facilities included were attached garages, grounds, and underground parking. Modification of method TO15 by EPA had been applied for identifying types and magnitudes of VOCs. Results of these identifications are presented. Eight most abundant VOCs could be identified in every sampling location with toluene as the most abundant compound followed by m,p-xylene, ethylbenzene and benzene. Compare to ground and underground parking, attached garages have the highest concentration of TVOCs. For sources identification, BTEX, m,p-xylene and benzene, and toluene and benzene ratios are calculated. BTEX ratios for ground and underground parking are similar compare to attached garage due to the similar pattern of driving speed and the content of gasoline fuel. On the other hand the ratios of m,p-xylene and benzene and toluene and benzene in attached garage are higher compare to the same ratios for ground and underground parking due to other significant contributor of VOCs such as solvent, household cleanings stored. Cancer and noncancer risk assessment were also calculated. Results showed that cancer and noncancer risk due human exposures to VOC in indoor parking facilities were relatively low. However the risk of the human exposure to VOCs from indoor parking facilities has to be considered as a part of total risks of VOC exposures on human during their daily activities. When people in Houston have already exposed to high VOC concentrations from outdoor environment activities such as traffic and refineries and petrochemical facilities, additional activities causing VOC exposures will add the risk significantly.
Veillette, Marc; Knibbs, Luke D.; Pelletier, Ariane; Charlebois, Remi; Blais Lecours, Pascale; He, Congrong; Morawska, Lidia
2013-01-01
Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability, and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run, and their airborne emissions were sampled with closed-face cassettes. Dust samples were also collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus, and total Clostridium cluster 1 were quantified with specific quantitative PCR protocols, and emission rates were calculated. Clostridium botulinum and antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gradient gel electrophoresis (DGGE), image analysis, and band sequencing. We demonstrated that emission of bacteria and molds (Penicillium/Aspergillus) can reach values as high as 1E5 cell equivalents/min and that those emissions are not related to each other. The bag dust bacterial and mold content was also consistent across the vacuums we assessed, reaching up to 1E7 bacterial or mold cell equivalents/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum was detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of molds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols. PMID:23934489
Rehman, Zahir Ur; Khan, Sardar; Qin, Kun; Brusseau, Mark L; Shah, Mohammad Tahir; Din, Islamud
2016-04-15
Human exposures to arsenic (As) through different pathways (dietary and non-dietary) are considered to be one of the primary worldwide environmental health risks to humans. This study was conducted to investigate the presence of As in soil and vegetable samples collected from agricultural lands located in selected southern districts of Khyber Pakhtunkhwa (KPK) Province, Pakistan. We examined the concentrations of total arsenic (TAs), organic species of As such as monomethylarsonic acid (MMA) and dimethylarsonic acid (DMA), and inorganic species including arsenite (AsIII) and arsenate (AsV) in both soil and vegetables. The data were used to determine several parameters to evaluate human health risk, including bioconcentration factor (BCF) from soil to plant, average daily intake (ADI), health risk index (HRI), incremental lifetime cancer risk (ILTCR), and hazard quotient (HQ). The total As concentration in soil samples of the five districts ranged from 3.0-3.9mgkg(-1), exhibiting minimal variations from site to site. The mean As concentration in edible portions of vegetable samples ranged from 0.03-1.38mgkg(-1). It was observed that As concentrations in 75% of the vegetable samples exceeded the safe maximum allowable limit (0.1mgkg(-1)) set by WHO/FAO. The highest value of ADI for As was measured for Momordica charantia, while the lowest was for Allium chinense. The results of this study revealed minimal health risk (HI<1) associated with consumption of vegetables for the local inhabitants. The ILTCR values for inorganic As indicated a minimal potential cancer risk through ingestion of vegetables. In addition, the HQ values for total As were <1, indicating minimal non-cancer risk. Copyright © 2016 Elsevier B.V. All rights reserved.
Rehman, Zahir Ur; Khan, Sardar; Qin, Kun; Brusseau, Mark L; Shah, Mohammad Tahir; Din, Islamud
2016-01-01
Human exposures to arsenic (As) through different pathways (dietary and non-dietary) are considered to be one of the primary worldwide environmental health risks to humans. This study was conducted to investigate the presence of As in soil and vegetable samples collected from agricultural lands located in selected southern districts of Khyber Pakhtunkhwa (KPK) Province, Pakistan. We examined the concentrations of total arsenic (TAs), organic species of As such as monomethylarsonic acid (MMA) and dimethylarsonic acid (DMA), and inorganic species including arsenite (AsIII) and arsenate (AsV) in both soil and vegetable. The data were used to determine several parameters to evaluate human health risk, including bioconcentration factor (BCF) from soil to plant, average daily intake (ADI), health risk index (HRI), incremental lifetime cancer risk (ILTCR), and hazard quotient (HQ). The total As concentration in soil samples of the five districts ranged from 3.0-3.9 mg kg−1, exhibiting minimal variations from site to site. The mean As concentration in edible portions of vegetable samples ranged from 0.03-1.38 mg kg−1. It was observed that As concentrations in 75% of the vegetable samples exceeded the safe maximum allowable limit (0.1 mg kg−1) set by WHO/FAO. The highest value of ADI for As was measured for M. charantia, while the lowest was for A. chinense. The results of this study revealed minimal health risk (HI <1) associated with consumption of vegetables for the local inhabitants. The ILTCR values for inorganic As indicated a minimal potential cancer risk through ingestion of vegetables. In addition, the HQ values for total As were <1, indicating minimal non-cancer risk. PMID:26820935
Mercury, Cadmium, and Lead Levels in Human Placenta: A Systematic Review
Esteban-Vasallo, María D.; Aragonés, Nuria; Pollan, Marina; López-Abente, Gonzalo
2012-01-01
Background: Placental tissue may furnish information on the exposure of both mother and fetus. Mercury (Hg), cadmium (Cd), and lead (Pb) are toxicants of interest in pregnancy because they are associated with alterations in child development. Objectives: The aim of this study was to summarize the available information regarding total Hg, Cd, and Pb levels in human placenta and possible related factors. Methods: We performed a systematic search of PubMed/MEDLINE, EMBASE, Lilacs, OSH, and Web of Science for original papers on total Hg, Cd, or Pb levels in human placenta that were published in English or Spanish (1976–2011). Data on study design, population characteristics, collection and analysis of placenta specimens, and main results were extracted using a standardized form. Results: We found a total of 79 papers (73 different studies). Hg, Cd, and Pb levels were reported in 24, 46, and 46 studies, respectively. Most studies included small convenience samples of healthy pregnant women. Studies were heterogeneous regarding populations selected, processing of specimens, and presentation of results. Hg concentrations > 50 ng/g were found in China (Shanghai), Japan, and the Faroe Islands. Cd levels ranged from 1.2 ng/g to 53 ng/g and were highest in the United States, Japan, and Eastern Europe. Pb showed the greatest variability, with levels ranging from 1.18 ng/g in China (Shanghai) to 500 ng/g in a polluted area of Poland. Conclusion: The use of the placenta as a biomarker to assess heavy metals exposure is not properly developed because of heterogeneity among the studies. International standardized protocols are needed to enhance comparability and increase the usefulness of this promising tissue in biomonitoring studies. PMID:22591711
Edenborough, Kathryn M.; Lowther, Suzanne; Laurie, Karen; Yamada, Manabu; Long, Fenella; Bingham, John; Payne, Jean; Harper, Jennifer; Haining, Jessica; Arkinstall, Rachel; Gilbertson, Brad; Middleton, Deborah
2015-01-01
ABSTRACT Although avian H5N1 influenza virus has yet to develop the capacity for human-to-human spread, the severity of the rare cases of human infection has warranted intensive follow-up of potentially exposed individuals that may require antiviral prophylaxis. For countries where antiviral drugs are limited, the World Health Organization (WHO) has developed a risk categorization for different levels of exposure to environmental, poultry, or human sources of infection. While these take into account the infection source, they do not account for the likely mode of virus entry that the individual may have experienced from that source and how this could affect the disease outcome. Knowledge of the kinetics and spread of virus after natural routes of exposure may further inform the risk of infection, as well as the likely disease severity. Using the ferret model of H5N1 infection, we compared the commonly used but artificial inoculation method that saturates the total respiratory tract (TRT) with virus to upper respiratory tract (URT) and oral routes of delivery, those likely to be encountered by humans in nature. We show that there was no statistically significant difference in survival rate with the different routes of infection, but the disease characteristics were somewhat different. Following URT infection, viral spread to systemic organs was comparatively delayed and more focal than after TRT infection. By both routes, severe disease was associated with early viremia and central nervous system infection. After oral exposure to the virus, mild infections were common suggesting consumption of virus-contaminated liquids may be associated with seroconversion in the absence of severe disease. IMPORTANCE Risks for human H5N1 infection include direct contact with infected birds and frequenting contaminated environments. We used H5N1 ferret infection models to show that breathing in the virus was more likely to produce clinical infection than swallowing contaminated liquid. We also showed that virus could spread from the respiratory tract to the brain, which was associated with end-stage disease, and very early viremia provided a marker for this. With upper respiratory tract exposure, infection of the brain was common but hard to detect, suggesting that human neurological infections might be typically undetected at autopsy. However, viral spread to systemic sites was slower after exposure to virus by this route than when virus was additionally delivered to the lungs, providing a better therapeutic window. In addition to exposure history, early parameters of infection, such as viremia, could help prioritize antiviral treatments for patients most at risk of succumbing to infection. PMID:26656692
Yin, Shanshan; Tang, Mengling; Chen, Fangfang; Li, Tianle; Liu, Weiping
2017-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a type of ubiquitous pollutant with the potential ability to cause endocrine disruption that would have an adverse health impact on the general population. To assess the maternal exposure to PAHs in neonates and evaluate the possible impact of PAHs on reproductive hormone levels, the concentration of PAHs and reproductive hormone levels in the umbilical cord serum of 98 mother-infant pairs in the Shengsi Islands were investigated. The median concentration of total PAHs was determined to be 164 (Inter-Quartile Range, IQR 93.6-267) ng g -1 lipid, and 68% of the PAHs were lower-molecule congeners. The highest level was found for pyrene (PYR) and naphthalene (NAP), which contributed 54.6% of all the PAHs present in the samples. The exposure to PAHs negatively affected estradiol (E2) and Anti-Mullerian hormones (AMH) and positively affected FSH in the umbilical cord serum. The result expanded the database of the human burden of PAHs and suggested that PAHs can act as a type of Endocrine-Disrupting Chemical (EDC). These results may help to understand the complex pathways involved in disorders of human reproductive health associated with prenatal exposure to PAHs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chromium oxidation state mapping in human cells
NASA Astrophysics Data System (ADS)
Ortega, R.; Fayard, B.; Salomé, M.; Devès, G.; Susini, J.
2003-03-01
The widespread use of chromium in industrial applications such as chemical production of pigments, refractory brick production, tanning, metallurgy, electroplating, and combustion of fuels has lead to human occupational exposure and to its increased introduction into the environment. Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation is not known. Up to now, no microanalytical technique was sensitive enough to allow the observation of chromium distribution, and oxidation state identification, within isolated cells at carcinogenic concentrations. In this experiment, we used successfully the ID-21 X-ray microscope to map Cr(VI) and total Cr distributions in cells exposed in vitro to soluble, and insoluble, Cr(VI) compounds. Exposure to soluble compounds, weak carcinogens, resulted in a homogeneous intracellular distribution of Cr, confirming by in situ measurement that Cr is present in the cell nucleus. Cr(VI) was never detected in cells which suggests a mechanism of rapid intracellular reducticn. On the other hand, exposure to insoluble compounds, strong carcinogens, also resulted in a homogeneous distribution of reduced forms of Cr in cells, and their nucleus. However, in this case, Cr(VI)-rich structures were observed into the cells suggesting that carcinogenicity is enhanced when oxidation reactions due to Cr(VI) chronic exposure are associated to Cr-DNA alterations.
The impact of PFOS on health in the general population: a review.
Saikat, Sohel; Kreis, Irene; Davies, Bethan; Bridgman, Stephen; Kamanyire, Robie
2013-02-01
Perfluorooctane sulphonate (PFOS) is a persistent organic pollutant that is toxic, bioaccumulative and undergoes wide transportation across all environmental media. It has been widely detected in environmental samples but there is limited information about the health effects on humans from environmental exposure. This paper presents the findings of a review of the literature on the impact of PFOS on the health of the general population. Fifteen relevant epidemiological studies were identified that looked at the association between human PFOS exposure and a range of health related outcomes. Small but statistically significant associations have been reported with PFOS and total cholesterol, glucose metabolism, body mass index (BMI), thyroid function, infertility, breast feeding, uric acid and attention deficit/hyperactivity disorder (ADHD). The true significance of these findings is uncertain due to the inconsistencies in some of the study results and the limitations of the literature. The majority of studies were cross-sectional and considered surrogate markers of health (e.g. cholesterol levels). The available literature is also limited in ascertaining the link between PFOS concentrations in the environment, exposure pathways and health effects. We conclude that the current evidence is inconclusive and further large-scale prospective cohort studies would be useful to assess the association between environmental exposure to PFOS, appropriate biomarkers (e.g. serum levels of PFOS) and health outcomes.
[Toxicological and analytical lists: chromium and its compounds].
Minoia, C; Apostoli, P; Battaglia, A; Catenacci, G; Cottica, D; Franco, G; Pozzoli, L; Vanola, C; Candura, F; Capodaglio, E
1987-03-01
The main aspects of occupational exposure to chromium and chromium compounds are surveyed. Special attention is paid to the toxic action of this metal at the different target organs. The nutritional aspect of CrIII is examined preliminarily, and data detailing the metal contents in water and food are provided. As far the different working processes that entail occupational exposure to chromium are concerned, hygienic and environmental problems are discussed while identifying the average environment exposure to the different chemical forms of chromium (CrIII, CrIV, soluble and not soluble), as a function of the worker's tasks, and the relevant human response (total human Cr). Different hygienic and environmental standards in force in various countries and applicable to chromium compounds are compared. Additional information is given on the main aspects of chromium metabolism (absorption, distribution, excretion), and on the prevailing toxic actions, with specific reference to cancerogenesis. As far as biologic monitoring of the exposed people is concerned, the significance of Cr-U as dose-exposure indicator is discussed, also in the light of a critical review of the reference values. The report describes a series of analytical methods for the identification of chromium in aqueous and biologic matrices. The problems connected with health monitoring and fitness for work are eventually covered.
Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie; Ichinose, Takamichi; Shimada, Akinori; Yoshikawa, Toshikazu
2005-10-01
Although several studies have reported that diesel exhaust particles (DEP) affect cardiorespiratory health in animals and humans, the effect of DEP on animal models with spontaneous allergic disorders has been far less intensively studied. The Nc/Nga mouse is known to be a typical animal model for human atopic dermatitis (AD). In the present study, we investigated the effects of repeated pulmonary exposure to DEP on airway inflammation and cytokine expression in NC/Nga mice. The animals were randomized into two experimental groups that received vehicle or DEP by intratracheal instillation weekly for six weeks. Cellular profiles of bronchoalveolar lavage (BAL) fluid and expressions of cytokines and chemokines in both the BAL fluid and lung tissues were evaluated 24 h after the last instillation. The DEP challenge produced an increase in the numbers of total cells, neutrophils, and mononuclear cells in BAL fluid as compared to the vehicle challenge (P<0.01). DEP exposure significantly induced the lung expressions of interleukin (IL)-4, keratinocyte chemoattractant (KC), and macrophage inflammatory protein (MIP)-1alpha when compared to the vehicle challenge. These results indicate that intratracheal exposure to DEP induces the recruitment of inflammatory cells, at least partially, through the local expression of IL-4 and chemokines in NC/Nga mice.
From the exposome to mechanistic understanding of chemical ...
BACKGROUND: Current definitions of the exposome expand beyond the initial idea to consider the totality of exposure and aim to relate to biological effects. While the exposome has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. OBJECTIVES: We explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept - a framework to structure and organize the sequence of toxicological events from an initial molecular interaction of a chemical to an adverse outcome.METHODS: This review was informed by a Workshop organized by the Integrated Project EXPOSOME at the UFZ Helmholtz Centre for Environmental Research in Leipzig, Germany. DISCUSSION: The exposome encompasses all chemicals, including exogenous chemicals and endogenous compounds that are produced in response to external factors. By complementing the exposome research with the AOP concept, we can achieve a better mechanistic understanding, weigh the importance of various components of the exposome, and determine primary risk drivers. The ability to interpret multiple exposures and mixture effects at the mechanistic level requires a more holistic approach facilitated by the exposome concept.CONCLUSION: Incorporating the AOP conc
Reviews of the environmental effects of pollutants: IV. Cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammons, A.S.; Huff, J.E.; Braunstein, H.M.
This report is a comprehensive, multidisciplinary review of the health and environmental effects of cadmium and specific cadmium derivatives. More than 500 references are cited. The cadmium body burden in animals and humans results mainly from the diet. In the United States, the normal intake of cadmium for adult humans is estimated at about 50 ..mu..g per day. Tobacco smoke is a significant additional source of cadmium exposure. The kidneys and liver together contain about 50% of the total cadmium body burden. Acute cadmium poisoning is primarily an occupational problem, generally from inhalation of cadmium fumes or dusts. In themore » general population, incidents of acute poisoning by inhaled or ingested cadmium or its compounds are relatively rare. The kidney is the primary target organ for toxicity from prolonged low-level exposure to cadmium. No causal relationship has been established between cadmium exposure and human cancer, although a possible link between cadmium and prostate cancer has been indicated. Cadmium has been shown to be teratogenic in rats, hamsters, and mice, but no such effects have been proven in humans. Cadmium has been reported to increase the frequency of chromosomal aberrations in cultured Chinese hamster ovary cells and in human peripheral leukocytes. The major concern about environmental cadmium is the potential effects on the general population. There is no substantial evidence of hazard from current levels of cadmium in air, water, or food. However, because cadmium is a cumulative poison and because present intake provides a relatively small safety margin, there are adequate reasons for concern over possible future increases in background levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, S.G.; Braunstein, G.D.
1991-03-01
Recent studies have shown that insulin regulates placental lactogen, progesterone, and estrogen production from human trophoblast cells. This study was performed to examine whether insulin also regulates the production of hCG by this type of cell. After 24-36 h of preincubation, JEG-3 and JAR cells (2-3 x 10(5) cells/ml.well) or human term trophoblast cells (1 x 10(6) cells/ml.well) were exposed to the test hormone in serum-free Dulbecco's Modified Eagle's Medium for 24-96 h. Secretion of hCG from JEG-3 cells was stimulated by human insulin, human proinsulin, or porcine insulin in a dose-dependent manner, with lowest effective doses of 6.7, 96,more » and 53 mg/L, respectively. Time-course studies showed that hCG secretion peaked at 72-96 h with insulin exposure; in contrast, no decernable peak was seen without insulin in serum-free media. Exposure of JEG-3 cells for 24 h to 209 mg/liter insulin stimulated hCG synthesis, with 40 +/- 3% more immunoreactive intracellular hCG (P less than 0.05). Cells grown in the presence of insulin and (35S)methionine had 47 +/- 21% more labeled intracellular hCG and 56 +/- 13% more immunoprecipitable (35S)methionine-hCG secreted into the medium than the control cultures (P less than 0.05). During this time period, human placental lactogen release and total trichloroacetice acid-precipitable (35S)methionine protein were not increased. The insulin-induced stimulation of hCG synthesis was inhibited by cycloheximide. Additionally, insulin did not significantly affect total intracellular protein during 24-96 h of incubation. Insulin also increased hCG release from JAR cells, but not from human term trophoblast cells. A mouse monoclonal antibody to the IGF-I receptor inhibited the stimulation of insulin in JEG-3 cells.« less
Costs of Rabies Control: An Economic Calculation Method Applied to Flores Island
Wera, Ewaldus; Velthuis, Annet G. J.; Geong, Maria; Hogeveen, Henk
2013-01-01
Background Rabies is a zoonotic disease that, in most human cases, is fatal once clinical signs appear. The disease transmits to humans through an animal bite. Dogs are the main vector of rabies in humans on Flores Island, Indonesia, resulting in about 19 human deaths each year. Currently, rabies control measures on Flores Island include mass vaccination and culling of dogs, laboratory diagnostics of suspected rabid dogs, putting imported dogs in quarantine, and pre- and post-exposure treatment (PET) of humans. The objective of this study was to estimate the costs of the applied rabies control measures on Flores Island. Methodology/principal findings A deterministic economic model was developed to calculate the costs of the rabies control measures and their individual cost components from 2000 to 2011. The inputs for the economic model were obtained from (i) relevant literature, (ii) available data on Flores Island, and (iii) experts such as responsible policy makers and veterinarians involved in rabies control measures in the past. As a result, the total costs of rabies control measures were estimated to be US$1.12 million (range: US$0.60–1.47 million) per year. The costs of culling roaming dogs were the highest portion, about 39 percent of the total costs, followed by PET (35 percent), mass vaccination (24 percent), pre-exposure treatment (1.4 percent), and others (1.3 percent) (dog-bite investigation, diagnostic of suspected rabid dogs, trace-back investigation of human contact with rabid dogs, and quarantine of imported dogs). Conclusions/significance This study demonstrates that rabies has a large economic impact on the government and dog owners. Control of rabies by culling dogs is relatively costly for the dog owners in comparison with other measures. Providing PET for humans is an effective way to prevent rabies, but is costly for government and does not provide a permanent solution to rabies in the future. PMID:24386244
Park, Youngja H; Lee, Kichun; Soltow, Quinlyn A; Strobel, Frederick H; Brigham, Kenneth L; Parker, Richard E; Wilson, Mark E; Sutliff, Roy L; Mansfield, Keith G; Wachtman, Lynn M; Ziegler, Thomas R; Jones, Dean P
2012-05-16
High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses, we applied HPMP and bioinformatics analysis to plasma of humans, rhesus macaques, marmosets, pigs, sheep, rats and mice to determine: (1) whether more chemicals are detected in humans living in a less controlled environment than captive species and (2) whether a subset of plasma chemicals with similar inter-species and intra-species variation could be identified for use in comparative toxicology. Results show that the number of chemicals detected was similar in humans (3221) and other species (range 2537-3373). Metabolite patterns were most similar within species and separated samples according to family and order. A total of 1485 chemicals were common to all species; 37% of these matched chemicals in human metabolomic databases and included chemicals in 137 out of 146 human metabolic pathways. Probability-based modularity clustering separated 644 chemicals, including many endogenous metabolites, with inter-species variation similar to intra-species variation. The remaining chemicals had greater inter-species variation and included environmental chemicals as well as GSH and methionine. Together, the data suggest that HPMP provides a platform that can be useful within human populations and controlled animal studies to simultaneously evaluate environmental exposures and biological responses to such exposures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice.
Phan, Jennifer A; Kicic, Anthony; Berry, Luke J; Fernandes, Lynette B; Zosky, Graeme R; Sly, Peter D; Larcombe, Alexander N
2014-01-01
Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms.
The computational modeling of human exposure to environmental pollutants is one of the primary activities of the US Environmental Protection Agency (USEPA)'s National Exposure Research Laboratory (NERL). Assessment of human exposures is a critical part of the overall risk assessm...
40 CFR 158.1060 - Post-application exposure-criteria for testing
Code of Federal Regulations, 2012 CFR
2012-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing
Code of Federal Regulations, 2011 CFR
2011-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing
Code of Federal Regulations, 2010 CFR
2010-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
Fromme, Hermann; Körner, Wolfgang; Shahin, Nabil; Wanner, Antonia; Albrecht, Michael; Boehmer, Sigrun; Parlar, Harun; Mayer, Richard; Liebl, Bernhard; Bolte, Gabriele
2009-11-01
Polybrominated diphenyl ethers (PBDE) are used as flame retardants in a wide variety of products. As part of the Integrated Exposure Assessment Survey (INES), this study aimed to characterize the exposure of an adult German population using duplicate diet samples, which were collected daily over seven consecutive days, and indoor air and house dust measurements. Our study population consisted of 27 female and 23 male healthy subjects, aged 14-60 years, all of whom resided in 34 homes in southern Bavaria. In these 34 residences the air was sampled using glass fiber filters and polyurethane foams and the dust was collected from used vacuum cleaner bags. The median (95th percentile) daily dietary intake of six Tetra- to HeptaBDE congeners was 1.2 ng/kg b.w. (3.3 ng/kg b.w.) or 67.8 ng/day (208 ng/day) (calculated from the 7-day median values of each study subject). Concentrations in indoor air and dust (cumulative Tri- to DecaBDE congener readings) ranged from 8.2 to 477 pg/m(3) (median: 37.8 pg/m(3)) and 36.6 to 1580 ng/g (median: 386 ng/g), respectively. For some congeners, we identified a significant correlation between air and dust levels. The median (95th percentile) blood concentration of total Tetra- to HexaBDE congener readings was 5.6 (13.2)ng/g lipid. No significant sex differences were observed, but higher blood concentrations were found in younger participants. Using a simplified toxicokinetic model to predict the body burden from exposure doses led to results that were of the same order of magnitude as the measured blood concentrations. Based on these measurements and given our exposure assumptions, we estimated for the total tetra- to heptabrominated congener count an average (high) comprehensive total daily intake of 1.2 ng/kg b.w. (2.5 ng/kg b.w.). Overall, our results suggest that dietary exposure is the dominant intake pathway at least in our study population, responsible for 97% (average intake) and 95% (high intake) of the total intake of an adult population.
An exposome perspective: Early-life events and immune development in a changing world.
Renz, Harald; Holt, Patrick G; Inouye, Michael; Logan, Alan C; Prescott, Susan L; Sly, Peter D
2017-07-01
Advances in metagenomics, proteomics, metabolomics, and systems biology are providing a new emphasis in research; interdisciplinary work suggests that personalized medicine is on the horizon. These advances are illuminating sophisticated interactions between human-associated microbes and the immune system. The result is a transformed view of future prevention and treatment of chronic noncommunicable diseases, including allergy. Paradigm-shifting gains in scientific knowledge are occurring at a time of rapid global environmental change, urbanization, and biodiversity losses. Multifactorial and multigenerational implications of total environmental exposures, the exposome, require coordinated interdisciplinary efforts. It is clear that the genome alone cannot provide answers to urgent questions. Here we review the historical origins of exposome research and define a new concept, the metaexposome, which considers the bidirectional effect of the environment on human subjects and the human influence on all living systems and their genomes. The latter is essential for human health. We place the metaexposome in the context of early-life immune functioning and describe how various aspects of a changing environment, especially through microbiota exposures, can influence health and disease over the life course. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Monagail, Michéal Mac; Cummins, Enda; Bermejo, Ricardo; Daly, Eve; Costello, Declan; Morrison, Liam
2018-06-20
Seaweed has a long-associated history of use as a supplemented livestock feed, providing nutrients and vitamins essential to maintaining animal health. Some species of seaweed, particularly the fucoids, are well-known accumulators of the metalloid arsenic (As). Arsenic toxicity to humans is well established even at low exposure levels and is considered a class 1 human carcinogen. As mankind's appetite for livestock produce continues to grow unabated, there is a concern that consumption of livestock produce reared on a diet supplemented with seaweed animal feed (SAF) may pose a threat to the human population due to potentially high levels of As present in seaweed. To address this concern and provide end users, including industry, consumers, policymakers and regulators with information on the exposure associated with As in commercial seaweed animal feed, the estimated daily intake (EDI) of As was calculated to evaluate potential human exposure levels. Using As data from a commercially available seaweed meal over a five-year period (2012-2017) a population exposure assessment was carried out. A Monte Carlo simulation model was developed to characterise the feed to food transfer of As from animal feed to animal produce such as beef, milk, chicken, and eggs. The model examined initial levels in seaweed, inclusion rate in animal feed, animal feeding rates and potential transfer to food produced from a supplemented diet of SAF. The analysis of seaweed animal feed showed that inorganic As was a small fraction of the total As found in seaweed meal (80:1). Statistical analysis found significant differences in the concentration of As in seaweed animal feed depending on the grain size (p < 0.001), with higher As concentrations in smaller sized grain fractions. Due to several detoxification steps and subsequent rapid excretion from the bodies of livestock, a very low carryover rate of As compounds from seaweed animal feed into livestock produce was observed. The EDI calculated in this study for the livestock produce evaluated at the 95th confidence interval was <0.01% of suggested safe levels of inorganic As intake. The threat to the general population as a result of consumption of livestock products reared on a diet consisting of SAF is found to be negligible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Islam, Md Rafiqul; Attia, John; Alauddin, Mohammad; McEvoy, Mark; McElduff, Patrick; Slater, Christine; Islam, Md Monirul; Akhter, Ayesha; d'Este, Catherine; Peel, Roseanne; Akter, Shahnaz; Smith, Wayne; Begg, Stephen; Milton, Abul Hasnat
2014-12-04
Early life exposure to inorganic arsenic may be related to adverse health effects in later life. However, there are few data on postnatal arsenic exposure via human milk. In this study, we aimed to determine arsenic levels in human milk and the correlation between arsenic in human milk and arsenic in mothers and infants urine. Between March 2011 and March 2012, this prospective study identified a total of 120 new mother-baby pairs from Kashiani (subdistrict), Bangladesh. Of these, 30 mothers were randomly selected for human milk samples at 1, 6 and 9 months post-natally; the same mother baby pairs were selected for urine sampling at 1 and 6 months. Twelve urine samples from these 30 mother baby pairs were randomly selected for arsenic speciation. Arsenic concentration in human milk was low and non-normally distributed. The median arsenic concentration in human milk at all three time points remained at 0.5 μg/L. In the mixed model estimates, arsenic concentration in human milk was non-significantly reduced by -0.035 μg/L (95% CI: -0.09 to 0.02) between 1 and 6 months and between 6 and 9 months. With the progression of time, arsenic concentration in infant's urine increased non-significantly by 0.13 μg/L (95% CI: -1.27 to 1.53). Arsenic in human milk at 1 and 6 months was not correlated with arsenic in the infant's urine at the same time points (r = -0.13 at 1 month and r = -0.09 at 6 month). Arsenite (AsIII), arsenate (AsV), monomethyl arsonic acid (MMA), dimethyl arsinic acid (DMA) and arsenobetaine (AsB) were the constituents of total urinary arsenic; DMA was the predominant arsenic metabolite in infant urine. We observed a low arsenic concentration in human milk. The concentration was lower than the World Health Organization's maximum permissible limit (WHO Permissible Limit 15 μg/kg-bw/week). Our findings support the safety of breastfeeding even in arsenic contaminated areas.
Exposure assessment of workplace manufacturing titanium dioxide particles
NASA Astrophysics Data System (ADS)
Xu, Huadong; Zhao, Lin; Chen, Zhangjian; Zhou, Jingwen; Tang, Shichuan; Kong, Fanling; Li, Xinwei; Yan, Ling; Zhang, Ji; Jia, Guang
2016-10-01
With the widespread use of titanium dioxide (TiO2) human exposure is inevitable, but the exposure data on TiO2 are still limited. This study adopted off-line filter-based sampling combined with real-time activity-based monitoring to measure the concentrations in a workplace manufacturing TiO2 (primary diameter: 194 ± 108 nm). Mass concentrations (MCs) of aerosol particles in the packaging workshop (total dust: 3.17 mg/m3, nano dust: 1.22 mg/m3) were much higher than those in the milling workshop (total dust: 0.79 mg/m3, nano dust: 0.31 mg/m3) and executive office (total dust: 0.44 mg/m3, nano dust: 0.19 mg/m3). However, the MCs of TiO2 were at a relatively low level in the packaging workshop (total TiO2: 46.4 μg/m3, nano TiO2: 16.7 μg/m3) and milling workshop (total TiO2: 39.4 μg/m3, nano TiO2: 19.4 μg/m3) by ICP-MS. The number concentration (NC), surface area concentration (SAC) of aerosol particles potentially deposited in alveolar (SACA), and tracheobronchial (SACTB) regions of lungs in the packaging workshop were (1.04 ± 0.89) × 105 particles/cm3, 414.49 ± 395.07, and 86.01 ± 83.18 μm2/cm3, respectively, which were all significantly higher than those of the milling workshop [(0.12 ± 0.40) × 105 particles/cm3, 75.38 ± 45.23, and 17.60 ± 9.22 μm2/cm3, respectively] as well as executive office and outdoor background ( p < 0.05). Activity-related characteristics were found in both workshops, and the time-variant characteristics showed very similar trends for 3 days in the packaging workshop. Our study provides important data of TiO2 particles exposure in the workplace.
Bittencourt-Oliveira, Maria do Carmo; Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; de Oliveira, Ênio Tiago; dos Santos, Flávio
2016-06-01
The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.
Caparrós, Toni; Alentorn-Geli, Eduard; Myer, Gregory D; Capdevila, Lluís; Samuelsson, Kristian; Hamilton, Bruce; Rodas, Gil
2016-09-01
The objectives of this study were to determine the relationship among game performance, injury rate, and practice exposure in a professional male basketball team. A retroospective analysis of prospective collected data was conducted over seven consecutive seasons (2007/2008 to 2013/2014). Data collection included sports performance during competition (statistical evaluation), injury rate, and total exposure (games and practices). Over the surveillance period, 162 injuries (91 practice; 71 matches) occurred over 32,668 hours of exposure (556 games and 2005 practices). There was a strong positive correlation between: 1) exposure (total number of practices and hours of exposure) and the total number of injuries (r = 0.77; p = 0.04); 2) exposure (total hours of exposure and total hours of practice exposure) and performance (total team ranking) (r = 0.77 and p = 0.04, and r = 0.8 and p = 0.03, respectively); and 3) total number of injuries and performance (total team ranking) (r = 0.84; p = 0.02). While increasing practice and competition time is related to greater team performance, it also increases the number of injuries. However, higher injury rates were not associated with worse overall team performance. Efforts to reduce high-risk activity during practice, optimally replaced with injury prevention training, might help to reduce injury risk.
Development of a Consumer Product Ingredient Database for ...
Consumer products are a primary source of chemical exposures, yet little structured information is available on the chemical ingredients of these products and the concentrations at which ingredients are present. To address this data gap, we created a database of chemicals in consumer products using product Material Safety Data Sheets (MSDSs) publicly provided by a large retailer. The resulting database represents 1797 unique chemicals mapped to 8921 consumer products and a hierarchy of 353 consumer product “use categories” within a total of 15 top-level categories. We examine the utility of this database and discuss ways in which it will support (i) exposure screening and prioritization, (ii) generic or framework formulations for several indoor/consumer product exposure modeling initiatives, (iii) candidate chemical selection for monitoring near field exposure from proximal sources, and (iv) as activity tracers or ubiquitous exposure sources using “chemical space” map analyses. Chemicals present at high concentrations and across multiple consumer products and use categories that hold high exposure potential are identified. Our database is publicly available to serve regulators, retailers, manufacturers, and the public for predictive screening of chemicals in new and existing consumer products on the basis of exposure and risk. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts resear
Perfluorinated substances in human food and other sources of human exposure.
D'Hollander, Wendy; de Voogt, Pim; De Coen, Wim; Bervoets, Lieven
2010-01-01
The widespread distribution and degradation of PFCs in the environment results in a very complex exposure pattern, which makes it difficult to define the relative contribution to human exposure from different exposure pathways. The present review is designed to provide an overview of the existing data on levels of PFCs measured in the human diet and in drinking water. Data on levels of PFCs in the human diet are rather scarce, but the level in the fish appear to be well documented. Among PFCs, PFOS and PFOA are the best studied compounds in fish from both experimental and monitoring studies. Recently, the number of publications that address other PFCs has increased, but the total number available is still limited. In general, we discovered that care should be exercised when using the reviewed data, because, in the majority of publications, quality control and/or details on analysis are, at least partly, lacking. It has been well documented that PFOA and PFOS have the potential to accumulate in fish and concentrations up to 7 and 170 ng/g wwt, respectively in edible fish species have been found. PFOS is the most crucial and prominent compound identified, followed by the PFOA. Also, in aquatic invertebrate such as shrimps, mussels, clams, and oysters, high PFOS levels have been reported (up to 387 ng/g wwt). However in most publications PFC level reported in molluscs were less than 1 ng/g wwt. Positive correlations were found between PFC body burden and self reported fish consumption. In recognition of the potential for human exposure to PFCs via fish consumption, the Minnesota Department of Health has recently issued fish consumption advisories for contaminated sections of the Mississippi River. It is interesting to note that 79% of the reviewed publications on PFCs in the whole fish homogenates exceed the that threshold. Moreover, five of the PFC concentration reported in muscles tissue exceeded the advisory level of 38 ng/g wwt. Even though several authors concluded that consumption of contaminated food and drinking water constitutes the major exposure pathway for humans, only a few reports on PFCs in composite food exist. Food can be contaminated in an indirect way, because PFCs are widely used in food-packaging coatings and cooking materials. On the other hand, PFCs can also enter food organisms via environmental routes such as inhalation or adsorption from air. In a few studies, composite samples, duplicate diet samples, or other food items were analyzed for several PFCs, PFOS and PFOA, PFHpA, PFHxA, and PFHxS were meAsured and displayed concentrations ranging from-detected up to 15 ng/g wwt. In one study, a very high PFOA concentration of 118 ng/g were reported, but overall, PFC levels are below 10 ng/g wwt. It is important to note that, among all studies reviewed, PFCs were found in a maximum of 50% of the analyzed samples and generally only in 10% or less of samples analyzed. In contrast to what is observed in fish and other food items PFOA levels in drinking water (ND - 50 ng/L) and other PFCs (1-3 ng/L). In one study, extremely high values (519 ng/L) were measured in drinking water of a contaminated area in the Ruhr region. In Spain, bottled water was analyzed and four PFCs (PFOA, PFNA,PFDA and PFHpA) were found at low levels (<1 ng/L). Because of higher levels found in drinking water at several locations, some provisional drinking water guideline values for PFOS and PFOA have already been established, e.g., in the UK, Bavaria, and Minnesota. Since PFCs are present both in food and drinking water, Tolerable Daily Intake values for PFOS and PFOA have also been proposed by several institutes in Europe and in the USA. The ingestion of dust through hand-to-mouth transfer from indoor house dust can also be a potential source of PFC exposure, especially for toddlers and children. In publications on PFCs in indoor dust, the mean PFOS and PFOA levels varied between 39 and 1,200 ng/g and between 11 and 220 ng/g, respectively. Overall, it is clear that there is still lack of PFC exposure data for food and beverages, which renders the assessment of the contribution of the diet to total human PFC exposure uncertain. It is, therefore, appropriate that several scientific projects have recently been launched that addresses the assessment of human exposure to PFCs and related compounds from dietary sources.
The US EPA is developing an open and publically available software program called the Human Exposure Model (HEM) to provide near-field exposure information for Life Cycle Impact Assessments (LCIAs). Historically, LCIAs have often omitted impacts from near-field sources of exposur...
Kaplan, L C
1985-12-01
While the warfarin embryopathy is well defined, central nervous system abnormalities associated with gestational warfarin exposure require further definition. Based on the timing of warfarin exposure in humans, it has been proposed that second- and third-trimester exposure predisposes to CNS abnormalities while first-trimester exposure more typically is associated with the warfarin embryopathy. A case is presented of a liveborn male with Dandy Walker malformation, agenesis of the corpus callosum, and Peter anomaly of the right eye who was exposed to warfarin between the 8th and 12th weeks of gestation who had none of the stigmata of the warfarin embryopathy. His is the first known case of exposure confined to the first trimester, and the fifth case of Dandy Walker malformation among a total of 15 CNS cases associated with this drug. This case offers evidence that Dandy Walker malformation may represent a distinct complication of in utero first-trimester exposure, and consideration of these particular abnormalities with exposure limited to a period prior to the known appearance of vitamin K-dependent clotting factors suggests that warfarin has a direct teratogenic effect on central nervous system morphogenesis.
NASA Astrophysics Data System (ADS)
Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.
Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental characterizations for the chemicals of interest. Consistent with many earlier studies, personal exposures are difficult to predict using data from regional outdoor monitors.
Arriola, Carmen S; Nelson, Deborah I; Deliberto, Thomas J; Blanton, Lenee; Kniss, Krista; Levine, Min Z; Trock, Susan C; Finelli, Lyn; Jhung, Michael A
2015-12-01
Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014-March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission.
OVERVIEW OF THE U.S. EPA NERL'S HUMAN EXPOSURE MODELING
Computational modeling of human exposure to environmental pollutants is one of the primary activities of the US Environmental Protection Agency's National Exposure Research Laboratory (NERL). Assessment of human exposures is a critical part of the overall risk assessment para...
Vijayalaxmi; Prihoda, Thomas J
2012-12-12
Based on the 'limited' evidence suggesting an association between exposure to radiofrequency fields (RF) emitted from mobile phones and two types of brain cancer, glioma and acoustic neuroma, the International Agency for Research on Cancer has classified RF as 'possibly carcinogenic to humans' in group 2B. In view of this classification and the positive correlation between increased genetic damage and carcinogenesis, a meta-analysis was conducted to determine whether a significant increase in genetic damage in human cells exposed to RF provides a potential mechanism for its carcinogenic potential. The extent of genetic damage in human cells, assessed from various end-points, viz., single-/double-strand breaks in the DNA, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges, reported in a total of 88 peer-reviewed scientific publications during 1990-2011 was considered in the meta-analysis. Among the several variables in the experimental protocols used, the influence of five specific variables related to RF exposure characteristics was investigated: (i) frequency, (ii) specific absorption rate, (iii) exposure as continuous wave, pulsed wave and occupationally exposed/mobile phone users, (iv) duration of exposure, and (v) different cell types. The data indicated the following. (1) The magnitude of difference between RF-exposed and sham-/un-exposed controls was small with some exceptions. (2) In certain RF exposure conditions there was a statistically significant increase in genotoxicity assessed from some end-points: the effect was observed in studies with small sample size and was largely influenced by publication bias. Studies conducted within the generally recommended RF exposure guidelines showed a smaller effect. (3) The multiple regression analyses and heterogeneity goodness of fit data indicated that factors other than the above five variables as well as the quality of publications have contributed to the overall results. (4) More importantly, the mean indices for chromosomal aberrations, micronuclei and sister chromatid exchange end-points in RF-exposed and sham-/un-exposed controls were within the spontaneous levels reported in a large data-base. Thus, the classification of RF as possibly carcinogenic to humans in group 2B was not supported by genotoxicity-based mechanistic evidence. Copyright © 2012 Elsevier B.V. All rights reserved.
Cardiovascular adaptations supporting human exercise-heat acclimation.
Périard, Julien D; Travers, Gavin J S; Racinais, Sébastien; Sawka, Michael N
2016-04-01
This review examines the cardiovascular adaptations along with total body water and plasma volume adjustments that occur in parallel with improved heat loss responses during exercise-heat acclimation. The cardiovascular system is well recognized as an important contributor to exercise-heat acclimation that acts to minimize physiological strain, reduce the risk of serious heat illness and better sustain exercise capacity. The upright posture adopted by humans during most physical activities and the large skin surface area contribute to the circulatory and blood pressure regulation challenge of simultaneously supporting skeletal muscle blood flow and dissipating heat via increased skin blood flow and sweat secretion during exercise-heat stress. Although it was traditionally held that cardiac output increased during exercise-heat stress to primarily support elevated skin blood flow requirements, recent evidence suggests that temperature-sensitive mechanisms may also mediate an elevation in skeletal muscle blood flow. The cardiovascular adaptations supporting this challenge include an increase in total body water, plasma volume expansion, better sustainment and/or elevation of stroke volume, reduction in heart rate, improvement in ventricular filling and myocardial efficiency, and enhanced skin blood flow and sweating responses. The magnitude of these adaptations is variable and dependent on several factors such as exercise intensity, duration of exposure, frequency and total number of exposures, as well as the environmental conditions (i.e. dry or humid heat) in which acclimation occurs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Klocke, Carolyn; Allen, Joshua L; Sobolewski, Marissa; Mayer-Pröschel, Margot; Blum, Jason L; Lauterstein, Dana; Zelikoff, Judith T; Cory-Slechta, Deborah A
2017-04-01
Increasing evidence indicates that the central nervous system (CNS) is a target of air pollution. We previously reported that postnatal exposure of mice to concentrated ambient ultrafine particles (UFP; ≤100 nm) via the University of Rochester HUCAPS system during a critical developmental window of CNS development, equivalent to human 3rd trimester, produced male-predominant neuropathological and behavioral characteristics common to multiple neurodevelopmental disorders, including autism spectrum disorder (ASD), in humans. The current study sought to determine whether vulnerability to fine (≤2.5 μm) and UFP air pollution exposure extends to embryonic periods of brain development in mice, equivalent to human 1st and 2nd trimesters. Pregnant mice were exposed 6 h/day from gestational days (GDs) 0.5-16.5 using the New York University VACES system to concentrated ambient fine/ultrafine particles at an average concentration of 92.69 μg/m3 over the course of the exposure period. At postnatal days (PNDs) 11-15, neuropathological consequences were characterized. Gestational air pollution exposures produced ventriculomegaly, increased corpus callosum (CC) area and reduced hippocampal area in both sexes. Both sexes demonstrated CC hypermyelination and increased microglial activation and reduced total CC microglia number. Analyses of iron deposition as a critical component of myelination revealed increased iron deposition in the CC of exposed female offspring, but not in males. These findings demonstrate that vulnerability of the brain to air pollution extends to gestation and produces features of several neurodevelopmental disorders in both sexes. Further, they highlight the importance of the commonalities of components of particulate matter exposures as a source of neurotoxicity and common CNS alterations. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NATIONAL HUMAN EXPOSURE ASSESSMENT SURVEY (NHEXAS): OPPORTUNITIES AND LESSONS LEARNED
The National Human Exposure Assessment Survey (NHEXAS) in its fullest sense is a conceptual design, which upon implementation, will have long-term implications to exposure research and assessment. The ultimate goal is to document national distribution of human exposure to pote...
AN APPROACH TO METHODS DEVELOPMENT FOR HUMAN EXPOSURE ASSESSMENT STUDIES
Human exposure assessment studies require methods that are rapid, cost-effective and have a high sample through-put. The development of analytical methods for exposure studies should be based on specific information for individual studies. Human exposure studies suggest that di...
Current exposure of 200 pregnant Danish women to phthalates, parabens and phenols.
Tefre de Renzy-Martin, Katrine; Frederiksen, Hanne; Christensen, Jeppe Schultz; Boye Kyhl, Henriette; Andersson, Anna-Maria; Husby, Steffen; Barington, Torben; Main, Katharina M; Jensen, Tina Kold
2014-01-01
Many phthalates, parabens and phenols are suspected to have endocrine-disrupting properties in humans. They are found in consumer products, including food wrapping, cosmetics and building materials. The foetus is particularly vulnerable and exposure to these chemicals therefore is of concern for pregnant women. We investigated current exposure to several commonly used phthalates, parabens and phenols in healthy, pregnant Danish women. A total of 200 spot urine samples were collected between 8 and 30 weeks of gestation and analysed for metabolites of ten phenols, seven parabens and 16 phthalate by liquid chromatography-tandem mass spectrometry representing 26 non-persistent compounds. The majority of analytes were present in the urine sample collected from most women who participated. Thus, in 174 of the 200 women, metabolites of more than 13 (>50%) of 26 compounds were detected simultaneously. The number of compounds detected per woman (either as the parent compound or its metabolite(s)) ranged from 7 to 21 with a median of 16. The majority of compounds correlated positively with each other within and between chemical groups, suggesting combined exposure sources. Estimated daily intakes (DIs) of phthalates and bisphenol A (BPA) were below their individual tolerable DI (TDI) and with hazard quotients below 1. In conclusion, we found detectable levels of phthalate metabolites, parabens and phenols in almost all pregnant women, suggesting combined multiple exposures. Although the estimated DI of phthalates and BPA for an individual was below TDI, our results still raise concern, as current toxicological risk assessments in humans do not take into account simultaneous exposure. The true cumulative risk for the foetus may therefore be underestimated.
Tian, Zhexi; Kim, Seung-Kyu; Shoeib, Mahiba; Oh, Jeong-Eun; Park, Jong-Eun
2016-05-15
A wide range of per- and polyfluoroalkyl substances (PFASs), including fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamidoethanols (FOSEs), perfluoroalkyl carboxylic acids (PFCAs), and perfluoroalkane sulfonic acids (PFSAs), were measured in fifteen house dust and two nonresidential indoor dust of Korea. Total concentrations of PFASs in house dust ranged from 29.9 to 97.6 ng g(-1), with a dominance of perfluorooctane sulfonic acid (PFOS), followed by 8:2 FTOH, N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE), perfluoroctanoic acid (PFOA). In a typical exposure scenario, the estimated daily intakes (EDIs) of total PFASs via house dust ingestion were 2.83 ng d(-1) for toddlers and 1.13 ng d(-1) for adults, which were within the range of the mean EDIs reported from several countries. For PFOA and PFOS exposure via house dust ingestion, indirect exposure (via precursors) was a minor contributor, accounting for 5% and 12%, respectively. An aggregated exposure (hereafter, overall-EDIs) of PFOA and PFOS occurring via all pathways, estimated using data compiled from the literature, were 53.6 and 14.8 ng d(-1) for toddlers, and 20.5 and 40.6 ng d(-1) for adults, respectively, in a typical scenario. These overall-EDIs corresponded to 82% (PFOA) and 92% (PFOS) of a pharmacokinetic model-based EDIs estimated from adults' serum data. Direct dietary exposure was a major contributor (>89% of overall-EDI) to PFOS in both toddlers and adults, and PFOA in toddlers. As for PFOA exposure of adults, however direct exposure via tap water drinking (37%) and indirect exposure via inhalation (22%) were as important as direct dietary exposure (41%). House dust-ingested exposure (direct+indirect) was responsible for 5% (PFOS in toddlers) and <1% (PFOS in adults, and PFOA in both toddlers and adults) of the overall-EDIs. In conclusion, house-dust ingestion was a minor contributor in this study, but should not be ignored for toddlers' PFOS exposure due to its significance in the worst-case scenario. Copyright © 2016 Elsevier B.V. All rights reserved.
Mokhtari, Amirhossein; Christopher Frey, H; Zheng, Junyu
2006-11-01
Sensitivity analyses of exposure or risk models can help identify the most significant factors to aid in risk management or to prioritize additional research to reduce uncertainty in the estimates. However, sensitivity analysis is challenged by non-linearity, interactions between inputs, and multiple days or time scales. Selected sensitivity analysis methods are evaluated with respect to their applicability to human exposure models with such features using a testbed. The testbed is a simplified version of a US Environmental Protection Agency's Stochastic Human Exposure and Dose Simulation (SHEDS) model. The methods evaluated include the Pearson and Spearman correlation, sample and rank regression, analysis of variance, Fourier amplitude sensitivity test (FAST), and Sobol's method. The first five methods are known as "sampling-based" techniques, wheras the latter two methods are known as "variance-based" techniques. The main objective of the test cases was to identify the main and total contributions of individual inputs to the output variance. Sobol's method and FAST directly quantified these measures of sensitivity. Results show that sensitivity of an input typically changed when evaluated under different time scales (e.g., daily versus monthly). All methods provided similar insights regarding less important inputs; however, Sobol's method and FAST provided more robust insights with respect to sensitivity of important inputs compared to the sampling-based techniques. Thus, the sampling-based methods can be used in a screening step to identify unimportant inputs, followed by application of more computationally intensive refined methods to a smaller set of inputs. The implications of time variation in sensitivity results for risk management are briefly discussed.
Pulmonary effects of exposure to fine fibreglass: irregular opacities and small airways obstruction.
Kilburn, K H; Powers, D; Warshaw, R H
1992-01-01
OBJECTIVE--Man made mineral fibres imitate asbestos and produce tumours of the pleura in animals. To answer the question, Does prolonged exposure to fibreglass adversely affect pulmonary function or produce radiographic abnormalities in human subjects? we studied workers in a midwestern appliance plant where refrigerator doors and previously entire cabinets were insulated with fibreglass sheeting and loose rotary spun fibreglass. METHODS--Spirometry and lung volumes were measured, respiratory and occupational questionnaires were administered, and chest x-ray films were read for pneumoconiosis using International Labour Office (ILO) 1980 criteria in 284 workers with exposure of 20 years or more. RESULTS--Expiratory flows were reduced including FEV1 (mean 90.3% of predicted (pr), FEF25-75 (85.5% pr), and FEF75-85 (76.2% pr). Forced vital capacity was significantly reduced (92.8% pr) and total lung capacity was significantly increased (109.2% pr). In white male smokers, a group large enough for comparisons, parameters of pulmonary function were reduced further in the presence of irregular opacities. Forty three workers (15.1%) had evidence of pneumoconiosis on chest radiographs: 26 of these (9.1%), had no known exposure to asbestos and 17 (6.0%) had some exposure. The best judgement was that in 36 (13.0%), pulmonary opacities or pleural abnormalities were due to fibreglass. CONCLUSION--Commercial rotary spun fibreglass used for insulating appliances appears to produce human disease that is similar to asbestosis. PMID:1419860
Leong, Yin-Hui; Chiang, Pui-Nyuk; Jaafar, Hajjaj Juharullah; Gan, Chee-Yuen; Majid, Mohamed Isa Abdul
2014-04-01
A total of 126 food samples, categorised into three groups (seafood and seafood products, meat and meat products, as well as milk and dairy products) from Malaysia were analysed for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The concentration of PCDD/Fs that ranged from 0.16 to 0.25 pg WHO05-TEQ g(-1) fw was found in these samples. According to the food consumption data from the Global Environment Monitoring System (GEMS) of the World Health Organization (WHO), the dietary exposures to PCDD/F from seafood and seafood products, meat and meat products, as well as milk and dairy products for the general population in Malaysia were 0.064, 0.183 and 0.736 pg WHO05-TEQ kg(-1) bw day(-1), respectively. However, the exposure was higher in seafood and seafood products (0.415 pg WHO05-TEQ kg(-1) bw day(-1)) and meat and meat products (0.317 pg WHO05-TEQ kg(-1) bw day(-1)) when the data were estimated using the Malaysian food consumption statistics. The lower exposure was observed in dairy products with an estimation of 0.365 pg WHO05-TEQ kg(-1) bw day(-1). Overall, these dietary exposure estimates were much lower than the tolerable daily intake (TDI) as recommended by WHO. Thus, it is suggested that the dietary exposure to PCDD/F does not represent a risk for human health in Malaysia.
Assessing Worker Exposures during Composite Material and Fiberglass Repair: A Special
2015-01-01
zinc, or lead chromate. 3.2.3 Clean Wiping. Removal of dust, dirt, and oil from depainted surfaces. After depainting, residual dust is present on...aspiration and deposition characteristics of the human respiratory tract. The primary size distributions of interest during advanced composite...the respiratory tract, while the respirable mass is that portion of the total aerosol that ends up in the gas -exchange region of the lungs
Nitrite in feed: From Animal health to human health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa
Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case ofmore » livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also carried out taking into account all direct and indirect sources of nitrite from the human diet, including carry-over of nitrite in animal-based products such as milk, eggs and meat products. Human exposure was then compared with the acceptable daily intake (ADI) for nitrite of 0-0.07 mg/kg b.w. per day. Overall, the low levels of nitrite in fresh animal products represented only 2.9% of the total daily dietary exposure and thus were not considered to raise concerns for human health. It is concluded that the potential health risk to animals from the consumption of feed or to man from eating fresh animal products containing nitrite, is very low.« less
Donald, Kirsten Ann; Eastman, Emma; Howells, Fleur Margaret; Adnams, Colleen; Riley, Edward Patrick; Woods, Roger Paul; Narr, Katherine Louise; Stein, Dan Joseph
2015-10-01
This paper reviews the magnetic resonance imaging (MRI) literature on the effects of prenatal alcohol exposure on the developing human brain. A literature search was conducted through the following databases: PubMed, PsycINFO and Google Scholar. Combinations of the following search terms and keywords were used to identify relevant studies: 'alcohol', 'fetal alcohol spectrum disorders', 'fetal alcohol syndrome', 'FAS', 'FASD', 'MRI', 'DTI', 'MRS', 'neuroimaging', 'children' and 'infants'. A total of 64 relevant articles were identified across all modalities. Overall, studies reported smaller total brain volume as well as smaller volume of both the white and grey matter in specific cortical regions. The most consistently reported structural MRI findings were alterations in the shape and volume of the corpus callosum, as well as smaller volume in the basal ganglia and hippocampi. The most consistent finding from diffusion tensor imaging studies was lower fractional anisotropy in the corpus callosum. Proton magnetic resonance spectroscopy studies are few to date, but showed altered neurometabolic profiles in the frontal and parietal cortex, thalamus and dentate nuclei. Resting-state functional MRI studies reported reduced functional connectivity between cortical and deep grey matter structures. Discussion There is a critical gap in the literature of MRI studies in alcohol-exposed children under 5 years of age across all MRI modalities. The dynamic nature of brain maturation and appreciation of the effects of alcohol exposure on the developing trajectory of the structural and functional network argue for the prioritisation of studies that include a longitudinal approach to understanding this spectrum of effects and potential therapeutic time points.
AC field exposure study: human exposure to 60-Hz electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, J.M.
1985-04-01
The objective of this study was to develop a method of estimating human exposure to the 60 Hz electric fields created by transmission lines. The Activity Systems Model simulates human activities in a variety of situations where exposure to electric fields is possible. The model combines maps of electric fields, activity maps, and experimentally determined activity factors to provide histograms of time spent in electric fields of various strengths in the course of agricultural, recreational, and domestic activities. For corroboration, the study team measured actual human exposure at locations across the United States near transmission lines ranging in voltage frommore » 115 to 1200 kV. The data were collected with a specially designed vest that measures exposure. These data demonstrate the accuracy of the exposure model presented in this report and revealed that most exposure time is spent in fields of magnitudes similar to many household situations. The report provides annual exposure estimates for human activities near transmission lines and in the home and compares them with exposure data from typical laboratory animal experiments. For one exposure index, the cumulative product of time and electric field, exposure during some of the laboratory animal experiments is two to four orders of magnitude greater than cumulative exposure for a human during one year of outdoor work on a farm crossed by a transmission line.« less
Impact of Orientation on the Vitamin D Weighted Exposure of a Human in an Urban Environment.
Schrempf, Michael; Thuns, Nadine; Lange, Kezia; Seckmeyer, Gunther
2017-08-16
The vitamin D₃-weighted UV exposure of a human with vertical posture was calculated for urban locations to investigate the impact of orientation and obstructions on the exposure. Human exposure was calculated by using the 3D geometry of a human and integrating the radiance, i.e., the radiant energy from the direct solar beam and the diffuse sky radiation from different incident and azimuth angles. Obstructions of the sky are derived from hemispherical images, which are recorded by a digital camera with a fisheye lens. Due to the low reflectivity of most surfaces in the UV range, the radiance from obstructed sky regions was neglected. For spring equinox (21 March), the exposure of a human model with winter clothing in an environment where obstructions cover 40% of the sky varies by up to 25%, depending on the orientation of the human model to the sun. The calculation of the accumulated vitamin D₃-weighted exposure of a human with winter clothing walking during lunch break shows that human exposure is reduced by the obstruction of buildings and vegetation by 40%.
HEDS - EPA DATABASE SYSTEM FOR PUBLIC ACCESS TO HUMAN EXPOSURE DATA
Human Exposure Database System (HEDS) is an Internet-based system developed to provide public access to human-exposure-related data from studies conducted by EPA's National Exposure Research Laboratory (NERL). HEDS was designed to work with the EPA Office of Research and Devel...
THE HUMAN EXPOSURE DATABASE SYSTEM (HEDS)-PUTTING THE NHEXAS DATA ON-LINE
The EPA's National Exposure Research Laboratory (NERL) has developed an Internet accessible Human Exposure Database System (HEDS) to provide the results of NERL human exposure studies to both the EPA and the external scientific communities. The first data sets that will be ava...
Devi, J Jai; Gupta, Tarun; Tripathi, S N; Ujinwal, Kamal K
2009-12-01
Human exposure to particulate matter can have significant harmful effects on the respiratory and cardiovascular system. These effects vary with number, size, and chemical composition of particulate matter, which vary significantly with space and time. The Indian Institute of Technology-Kanpur (IITK), Kanpur, India, is a relatively clean academic campus in the northwest of a heavily polluted city, Kanpur. The major objectives of the study were to evaluate total exposure of fine and coarse fractions of PM(10) to a typical IITK student resident in different indoor microenvironments within the campus; to evaluate personal exposure to student residents during outdoor trips; and to evaluate personal exposure to a typical student resident carrying out routine activities. In order to account for all the sources of particulate matter exposure, measurements on several different days during the pre-monsoon season were carried out in the most common indoor microenvironments in the campus and during outdoor trips outside the campus. A 15-channel optical particle counter (model 1.108, GRIMM) was used to measure continuous real-time particle size distribution from 0.3 to 20 microm diameter. Using this instrument, exposure for 1 h at different indoor microenvironments was determined. Both the effects of location and activity, which, in turn, account for specific indoor sources and number of occupants, respectively, were carefully evaluated. Re-suspension of particles due to movement of people was found to be a major source of coarse particulate matter exposure. On the other hand, combustion sources led to elevated fine particulate levels. Chalk dust was found to be the major source of fine particulate matter in classrooms. Similar results on other sources of particulate matter are discussed in the paper. To assess the personal average size resolved particulate exposure on a student making a day trip outside the campus, study trips to most common public places in the city in a commonly preferred vehicle were made. Striking correlations between sources/activities and increase in fine and/or coarse particle concentration were clearly visible. To investigate the daily personal exposure and its relation to the activities of a typical student residing in the campus, a 24-h exposure study was done on a student who maintained a time-activity diary. The results provide insight into possible sources and their interaction with human activities in modifying the human exposure levels. A comparison between different microenvironments has been attempted for the first time in an Indian scenario using a real-time aerosol measuring instrument.
Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function.
Evans, Gary W; Swain, James E; King, Anthony P; Wang, Xin; Javanbakht, Arash; Ho, S Shaun; Angstadt, Michael; Phan, K Luan; Xie, Hong; Liberzon, Israel
2016-06-01
Considerable work indicates that early cumulative risk exposure is aversive to human development, but very little research has examined the neurological underpinnings of these robust findings. This study investigates amygdala volume and reactivity to facial stimuli among adults (mean 23.7 years of age, n = 54) as a function of cumulative risk exposure during childhood (9 and 13 years of age). In addition, we test to determine whether expected cumulative risk elevations in amygdala volume would mediate functional reactivity of the amygdala during socioemotional processing. Risks included substandard housing quality, noise, crowding, family turmoil, child separation from family, and violence. Total and left hemisphere adult amygdala volumes were positively related to cumulative risk exposure during childhood. The links between childhood cumulative risk exposure and elevated amygdala responses to emotionally neutral facial stimuli in adulthood were mediated by the corresponding amygdala volumes. Cumulative risk exposure in later adolescence (17 years of age), however, was unrelated to subsequent adult amygdala volume or function. Physical and socioemotional risk exposures early in life appear to alter amygdala development, rendering adults more reactive to ambiguous stimuli such as neutral faces. These stress-related differences in childhood amygdala development might contribute to the well-documented psychological distress as a function of early risk exposure. © 2015 Wiley Periodicals, Inc.
Cheong, Hae-Kwan; Lee, Jong Seong; Kwon, Hojang; Ha, Eun-Hee; Hong, Yun-Chul; Choi, Yeyong; Jeong, Woo-Chul; Hur, Jongil; Lee, Seung-Min; Kim, Eun-Jung; Im, Hosub
2011-01-01
Objectives This study was conducted to examine the relationship between crude oil exposure and physical symptoms among residents participating in clean-up work associated with the Hebei Spirit oil spill, 2007 in Korea. Methods A total of 288 residents responded to a questionnaire regarding subjective physical symptoms, sociodemographic characteristics and clean-up activities that occurred between two and eight weeks after the accident. Additionally, the urine of 154 of the respondents was analyzed for metabolites of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) and heavy metals. To compare the urinary levels of exposure biomarkers, the urine of 39 inland residents who were not directly exposed to the oil spill were analyzed. Results Residents exposed to oil remnants through clean-up work showed associations between physical symptoms and the exposure levels defined in various ways, including days of work, degree of skin contamination, and levels of some urinary exposure biomarkers of VOCs, metabolites and metals, although no major abnormalities in urinary exposure biomarkers were observed. Conclusions This study provides evidence of a relationship between crude oil exposure and acute human health effects and suggests the need for follow-up to evaluate the exposure status and long-term health effects of clean-up participants. PMID:22125768
Goldstein, Bernard D; Liu, Yan; Wu, Felicia; Lioy, Paul
2011-12-01
We used 2 approaches based on published information to compare the impacts on leukemia incidence and benzene exposure of the 1990 US Clean Air Act (CAA) amendments and smoking prevention and cessation efforts. We extrapolated leukemia mortality related to community air pollution levels and to cigarette smoking from data from the US Environmental Protection Agency and the US Surgeon General. We also estimated relative decline in total exposures to benzene (a known human leukemogen) owing to the CAA amendments and to smoking prevention and cessation efforts. We estimated that because of the CAA, there will be approximately 300 fewer leukemia deaths in the United States during the period 2000 through 2020. During the closest comparable period (1987-2007), we estimated that decline in cigarette smoking led to 7120 fewer leukemia deaths, of which 1282 to 3702 were attributable to benzene. Similarly, the decline in smoking led to about a tenfold greater decrease in total-population benzene exposure than did the 1990 CAA amendments. Both the CAA and smoking cessation activities contribute to a decrease in leukemia incidence. Smoking cessation activities have had a greater effect in the past.
An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China.
Zhang, Weiwei; Liu, Yungang; Liu, Yufei; Liang, Boheng; Zhou, Hongwei; Li, Yingyue; Zhang, Yuhua; Huang, Jie; Yu, Chao; Chen, Kuncai
2018-03-20
Cadmium and its compounds are human carcinogens with severe organ toxicity, and their contamination of agricultural soil in China has been frequently reported; however, the dietary exposure to cadmium in residents and the relevant health risk have seldom been reported. In this study, the concentration of cadmium in various types of food collected from 2013 to 2015 were analyzed using graphite furnace atomic absorption spectrometry, and the dietary exposure to cadmium assessed based on a dietary survey in 2976 Guangzhou residents. In total, 3074 out of 4039 food samples had cadmium levels above the limit of detection. The mean ± standard deviation (50th, 95th percentile) cadmium content in all samples was 159.0 ± 112.7 (8.6, 392.4) μg/kg, with levels ranging from 1.0 to 7830 μg/kg. Using the mean cadmium concentrations, the average monthly dietary exposure of Guangzhou residents to cadmium was 14.4 (μg/kg body weight (BW), accounting for 57.6% of the provisional tolerable monthly intake (PTMI). Rice, laver, vegetables, and live aquatic products were the main sources of cadmium intake, on average accounting for 89% of the total value. The dietary cadmium exposure in high consumers (95th percentile food consumption) was 41.0 μg/kg·BW/month, accounting for 163% of the PTMI. Additionally, dietary cadmium exposure at mean consumption but high cadmium food concentration (95th percentile) was 32.3 μg/kg·BW/month, corresponding to 129% of the PTMI. The level of dietary exposure to cadmium in most Guangzhou residents was within the safety limit, thus increased health risk from dietary cadmium exposure is low at present. However, continued efforts by local governments to monitor the levels of cadmium in the four main food categories contributing to exposure are necessary.
An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China
Zhang, Weiwei; Liu, Yungang; Liu, Yufei; Liang, Boheng; Zhou, Hongwei; Li, Yingyue; Zhang, Yuhua; Huang, Jie; Yu, Chao; Chen, Kuncai
2018-01-01
Cadmium and its compounds are human carcinogens with severe organ toxicity, and their contamination of agricultural soil in China has been frequently reported; however, the dietary exposure to cadmium in residents and the relevant health risk have seldom been reported. In this study, the concentration of cadmium in various types of food collected from 2013 to 2015 were analyzed using graphite furnace atomic absorption spectrometry, and the dietary exposure to cadmium assessed based on a dietary survey in 2976 Guangzhou residents. In total, 3074 out of 4039 food samples had cadmium levels above the limit of detection. The mean ± standard deviation (50th, 95th percentile) cadmium content in all samples was 159.0 ± 112.7 (8.6, 392.4) μg/kg, with levels ranging from 1.0 to 7830 μg/kg. Using the mean cadmium concentrations, the average monthly dietary exposure of Guangzhou residents to cadmium was 14.4 (μg/kg body weight (BW), accounting for 57.6% of the provisional tolerable monthly intake (PTMI). Rice, laver, vegetables, and live aquatic products were the main sources of cadmium intake, on average accounting for 89% of the total value. The dietary cadmium exposure in high consumers (95th percentile food consumption) was 41.0 μg/kg·BW/month, accounting for 163% of the PTMI. Additionally, dietary cadmium exposure at mean consumption but high cadmium food concentration (95th percentile) was 32.3 μg/kg·BW/month, corresponding to 129% of the PTMI. The level of dietary exposure to cadmium in most Guangzhou residents was within the safety limit, thus increased health risk from dietary cadmium exposure is low at present. However, continued efforts by local governments to monitor the levels of cadmium in the four main food categories contributing to exposure are necessary. PMID:29558399
Surveillance of laboratory exposures to human pathogens and toxins: Canada 2016.
Bienek, A; Heisz, M; Su, M
2017-11-02
Canada recently enacted legislation to authorize the collection of data on laboratory incidents involving a biological agent. This is done by the Public Health Agency of Canada (PHAC) as part of a comprehensive national program that protects Canadians from the health and safety risks posed by human and terrestrial animal pathogens and toxins. To describe the first year of data on laboratory exposure incidents and/or laboratory-acquired infections in Canada since the Human Pathogens and Toxins Regulations came into effect. Incidents that occurred between January 1 and December 31, 2016 were self-reported by federally-regulated parties across Canada using a standardized form from the Laboratory Incident Notification Canada (LINC) surveillance system. Exposure incidents were described by sector, frequency of occurrence, timeliness of reporting, number of affected persons, human pathogens and toxins involved, causes and corrective actions taken. Microsoft Excel 2010 was used for basic descriptive analyses. In 2016, 46 exposure incidents were reported by holders of 835 active licences in Canada representing 1,352 physical areas approved for work involving a biological agent, for an overall incidence of 3.4%. The number of incidents was highest in the academic (n=16; 34.8%) and hospital (n=12; 26.1%) sectors, while the number of reported incidents was relatively low in the private industry sector. An average of four to five incidents occurred each month; the month of September presented as an outlier with 10 incidents. : A total of 100 people were exposed, with no reports of secondary exposure. Four incidents led to suspected (n=3) or confirmed (n=1) cases of laboratory-acquired infection. Most incidents involved pathogens classified at a risk group 2 level that were manipulated in a containment level 2 laboratory (91.3%). Over 22 different species of human pathogens and toxins were implicated, with bacteria the most frequent (34.8%), followed by viruses (26.1%). Eleven (23.9%) incidents involved a security sensitive biologic agent. Procedure breaches (n=15) and sharps-related incidents (n=14) were the most common antecedents to an exposure. In 10 (21.7%) cases, inadvertent possession (i.e., isolation of an unexpected biological agent during routine work) played a role. Possible improvements to standard operating procedures were cited in 71.7% of incidents. Improvements were also indicated for communication (26.1%) and management (23.9%). The Laboratory Incident Notification Canada is one of the first surveillance systems in the world to gather comprehensive data on laboratory incidents involving human pathogens and toxins. Exposure incidents reported in the first year were relatively rare, occurring in less than 4% of containment zones within laboratory settings.
Surveillance of laboratory exposures to human pathogens and toxins: Canada 2016
Bienek, A; Heisz, M; Su, M
2017-01-01
Background Canada recently enacted legislation to authorize the collection of data on laboratory incidents involving a biological agent. This is done by the Public Health Agency of Canada (PHAC) as part of a comprehensive national program that protects Canadians from the health and safety risks posed by human and terrestrial animal pathogens and toxins. Objective To describe the first year of data on laboratory exposure incidents and/or laboratory-acquired infections in Canada since the Human Pathogens and Toxins Regulations came into effect. Methods Incidents that occurred between January 1 and December 31, 2016 were self-reported by federally-regulated parties across Canada using a standardized form from the Laboratory Incident Notification Canada (LINC) surveillance system. Exposure incidents were described by sector, frequency of occurrence, timeliness of reporting, number of affected persons, human pathogens and toxins involved, causes and corrective actions taken. Microsoft Excel 2010 was used for basic descriptive analyses. Results In 2016, 46 exposure incidents were reported by holders of 835 active licences in Canada representing 1,352 physical areas approved for work involving a biological agent, for an overall incidence of 3.4%. The number of incidents was highest in the academic (n=16; 34.8%) and hospital (n=12; 26.1%) sectors, while the number of reported incidents was relatively low in the private industry sector. An average of four to five incidents occurred each month; the month of September presented as an outlier with 10 incidents. A total of 100 people were exposed, with no reports of secondary exposure. Four incidents led to suspected (n=3) or confirmed (n=1) cases of laboratory-acquired infection. Most incidents involved pathogens classified at a risk group 2 level that were manipulated in a containment level 2 laboratory (91.3%). Over 22 different species of human pathogens and toxins were implicated, with bacteria the most frequent (34.8%), followed by viruses (26.1%). Eleven (23.9%) incidents involved a security sensitive biologic agent. Procedure breaches (n=15) and sharps-related incidents (n=14) were the most common antecedents to an exposure. In 10 (21.7%) cases, inadvertent possession (i.e., isolation of an unexpected biological agent during routine work) played a role. Possible improvements to standard operating procedures were cited in 71.7% of incidents. Improvements were also indicated for communication (26.1%) and management (23.9%). Conclusions The Laboratory Incident Notification Canada is one of the first surveillance systems in the world to gather comprehensive data on laboratory incidents involving human pathogens and toxins. Exposure incidents reported in the first year were relatively rare, occurring in less than 4% of containment zones within laboratory settings. PMID:29770052
Exposure Assessment to Environmental Chemicals in Children from Ciudad Juarez, Chihuahua, Mexico.
Ochoa-Martinez, Angeles C; Orta-Garcia, Sandra T; Rico-Escobar, Edna M; Carrizales-Yañez, Leticia; Del Campo, Jorge D Martin; Pruneda-Alvarez, Lucia G; Ruiz-Vera, Tania; Gonzalez-Palomo, Ana K; Piña-Lopez, Iris G; Torres-Dosal, Arturo; Pérez-Maldonado, Ivan N
2016-05-01
It has been demonstrated that the human biomonitoring of susceptible populations is a valuable method for the identification of critical contaminants. Therefore, the purpose of this study was to assess the exposure profile for arsenic (As), lead (Pb), mercury (Hg), 1-hydroxypyrene (1-OHP), 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in children living in Ciudad Juarez, Chihuahua, Mexico (a major manufacturing center in Mexico). In 2012, we evaluated a total of 135 healthy children living in Ciudad Juarez since birth. The total PBDEs levels ranged from nondetectable (< LOD) to 215 ng/g lipid, with a mean total PBDEs level of 29.5 ± 53.0 ng/g lipid (geometric mean ± standard deviation). The mean total PCBs level in the study participants was 29.0 ± 10.5 ng/g lipid (range 4.50-50.0 ng/g lipid). The mean concentration of total DDT (DDT + DDE) was 11.9 ± 6.70 ng/g lipid (range 3.00-26.0 ng/g lipid). The mean 1-OHP levels was 1.2 ± 1.1 µmol/mol creatinine (range
Mercury in fish and adverse reproductive outcomes: results from South Carolina
2014-01-01
Background Mercury is a metal with widespread distribution in aquatic ecosystems and significant neurodevelopmental toxicity in humans. Fish biomonitoring for total mercury has been conducted in South Carolina (SC) since 1976, and consumption advisories have been posted for many SC waterways. However, there is limited information on the potential reproductive impacts of mercury due to recreational or subsistence fish consumption. Methods To address this issue, geocoded residential locations for live births from the Vital Statistics Registry (1995–2005, N = 362,625) were linked with spatially interpolated total mercury concentrations in fish to estimate potential mercury exposure from consumption of locally caught fish. Generalized estimating equations were used to test the hypothesis that risk of low birth weight (LBW, <2,500 grams) or preterm birth (PTB, <37 weeks clinical gestation) was greater among women living in areas with elevated total mercury in fish, after adjustment for confounding. Separate analyses estimated term LBW and PTB risks using residential proximity to rivers with fish consumption advisories to characterize exposure. Results Term LBW was more likely among women residing in areas in the upper quartile of predicted total mercury in fish (odds ratio [OR] = 1.04; 95% confidence interval [CI]: 1.00-1.09) or within 8 kilometers of a river with a ‘do not eat’ fish advisory (1.05; 1.00-1.11) compared to the lowest quartile, or rivers without fish consumption restrictions, respectively. When stratified by race, risks for term LBW or PTB were 10-18% more likely among African-American (AA) mothers living in areas with the highest total fish mercury concentrations. Conclusions To our knowledge, this is the first study to examine the relationship between fish total mercury concentrations and adverse reproductive outcomes in a large population-based sample that included AA women. The ecologic nature of exposure assessment in this study precludes causal inference. However, the results suggest a need for more detailed investigations to characterize patterns of local fish consumption and potential dose–response relationships between mercury exposure and adverse reproductive outcomes, particularly among AA mothers. PMID:25127892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Gabriel A., E-mail: gabriel.knudsen@nih.gov; Hughes, Michael F.; McIntosh, Katelyn L.
Tetrabromobisphenol A (TBBPA) is currently the world's highest production volume brominated flame retardant. Humans are frequently exposed to TBBPA by the dermal route. In the present study, a parallelogram approach was used to make predictions of internal dose in exposed humans. Human and rat skin samples received 100 nmol of TBBPA/cm{sup 2} skin and absorption and penetrance were determined using a flow-through in vitro system. TBBPA-derived [{sup 14}C]-radioactivity was determined at 6 h intervals in the media and at 24 h post-dosing in the skin. The human skin and media contained an average of 3.4% and 0.2% of the totalmore » dose at the terminal time point, respectively, while the rat skin and media contained 9.3% and 3.5%, respectively. In the intact rat, 14% of a dermally-administered dose of ~ 100 nmol/cm{sup 2} remained in the skin at the dosing site, with an additional 8% reaching systemic circulation by 24 h post-dosing. Relative absorption and penetrance were less (10% total) at 24 h following dermal administration of a ten-fold higher dose (~ 1000 nmol/cm{sup 2}) to rats. However, by 72 h, 70% of this dose was either absorbed into the dosing-site skin or had reached systemic circulation. It is clear from these results that TBBPA can be absorbed by the skin and dermal contact with TBBPA may represent a small but important route of exposure. Together, these in vitro data in human and rat skin and in vivo data from rats may be used to predict TBBPA absorption in humans following dermal exposure. Based on this parallelogram calculation, up to 6% of dermally applied TBBPA may be bioavailable to humans exposed to TBBPA. - Highlights: • Tetrabromobisphenol A is the brominated flame retardant with highest global production volumes. • Humans are frequently exposed to TBBPA by the dermal route, especially via contaminated dust. • Human and rat skin data were integrated using a parallelogram method to predict human absorption. • TBBPA was dermally absorbed and skin contact may represent a small but important route of exposure. • Up to 6% of dermally applied TBBPA may be bioavailable to humans exposed to TBBPA.« less
Effect of Gender on the Radiation Sensitivity of Murine Blood Cells
Billings, Paul C; Romero-Weaver, Ana L; Kennedy, Ann R
2014-01-01
Space travel beyond the Earth’s protective magnetosphere risks exposing astronauts to ionizing radiation, such as that generated during a solar particle event (SPE). Ionizing radiation has well documented effects on blood cells and it is generally assumed that these effects contribute to the hematopoietic syndrome (HS), observed in animals and humans, following exposure to total body irradiation (TBI). The purpose of the current study was to assess the role of gender on the effects of gamma radiation on blood cells. C3H/HeN mice were irradiated with a 137Cs gamma source. Radiation had similar effects on white blood cells (WBCs), lymphocytes, and granulocytes in male and female C3H/HeN mice, while red blood cell (RBC) counts and hematocrit values remained stable following radiation exposure. Non-irradiated male mice had 13% higher platelet counts, compared with their female counterparts, and showed enhanced recovery of platelets on day 16 following radiation exposure. Hence, gender differences influence the response of platelets to TBI exposure. PMID:25221782
Ultraviolet laser effects on the cornea
NASA Astrophysics Data System (ADS)
Zuclich, Joseph A.
1990-07-01
Ultraviolet radiation in the ambient environment or from artificial sources may pose both acute and chronic hazards to the skin and the ocular tissues. In general terrestrial conditions have evolved such that there are only narrow safety margins between ambient UV levels and exposure levels harmful to the human. Obvious examples of acute consequences ofUV overexposure are sunburn and snowblindness as well as analogous conditions induced by artificial sources such as the welder''s arc mercury vapor lamps and UV-emitting lasers. Further chronic UV exposure is strongly implicated as a causative agent in certain types of cataract and skin cancer. This presentation will summarize a number of specific cases where UV radiation affected the primate cornea. Data presented will include the action spectra for far- and near-UV induced ocular damage the pulsewidth and total energy dependencies of ocular thresholds studies of cumulative effects of repeated UV exposures and quantitative determinations of tissue repair or recovery rates. Depending on the exposure parameters utilized photochemical thermal or photoablative damage mechanisms may prevail. 1.
Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, D.H.; Hardy, K.A.; Cox, A.B.
1989-05-15
Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total bodymore » surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.« less
40 CFR 158.250 - Experimental use permit data requirements for human exposure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Experimental use permit data requirements for human exposure. 158.250 Section 158.250 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for human exposure. No data for applicator exposure and post...
40 CFR 158.250 - Experimental use permit data requirements for human exposure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Experimental use permit data requirements for human exposure. 158.250 Section 158.250 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for human exposure. No data for applicator exposure and post...
40 CFR 158.250 - Experimental use permit data requirements for human exposure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Experimental use permit data requirements for human exposure. 158.250 Section 158.250 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for human exposure. No data for applicator exposure and post...
40 CFR 158.250 - Experimental use permit data requirements for human exposure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Experimental use permit data requirements for human exposure. 158.250 Section 158.250 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for human exposure. No data for applicator exposure and post...
Xiong, TianTian; Dumat, Camille; Pierart, Antoine; Shahid, Muhammad; Kang, Yuan; Li, Ning; Bertoni, Georges; Laplanche, Christophe
2016-12-01
The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil-plant-atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg -1 ): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China's Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60-79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.
Exposure to ultrafine particles in different transport modes in the city of Rome.
Grana, Mario; Toschi, Nicola; Vicentini, Laura; Pietroiusti, Antonio; Magrini, Andrea
2017-09-01
There is evidence of adverse health impacts from human exposure to particulate air pollution, including increased rates of respiratory and cardiovascular illness, hospitalizations, and pre-mature mortality. Most recent hypotheses assign an important role to ultrafine particles (UFP) (<0.1 μm) and to associated transition metals (in particular Fe). In a large city like Rome, where many active people spend more than one hour per day in private or public transportation, it may be important to evaluate the level of exposure to harmful pollutants which occurs during urban travelling. In this context, the aim of this work was to examine the relative contribution of different transport modes to total daily exposure. We performed experimental measurements during both morning and evening traffic peak hours throughout the winter season (December 2013-March 2014), for a total of 98 trips. Our results suggest that the lowest UFP exposures are experienced by underground train commuters, with an average number concentration of 14 134 cm -3 , and are largely a reflection of the routes being at greater distance from vehicular traffic. Motorcyclists experienced significantly higher average concentrations (73 168 cm -3 ) than all other exposure classes, and this is most likely a result of the presence of high-concentration and short-duration peaks which do not occur when the same routes are traveled by car. UFP concentrations in subway train environments were found to be comparable to urban background levels. Still, in underground trains we found the highest values of PM 10 mass concentration with a maximum value of 422 μg/m 3 . PM 10 concentration in trains was found to be four and two times higher than what was measured in car and motorbike trips, respectively. Transport mode contribution to total integrated UFP daily exposure was found to be 16.3%-20.9% while travelling by car, 28.7% for motorbike trips, and 8.7% for subway trips. Due to lower exposure times, commuting by car and motorbike is comparable to other daily activities in terms of exposure. Our data can provide relevant information for transport decision-making and increase environmental awareness in the hope that the information about inhaled pollutants can translate into a more rational approach to urban travelling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bellanger, Martine; Pichery, Céline; Aerts, Dominique; Berglund, Marika; Castaño, Argelia; Cejchanová, Mája; Crettaz, Pierre; Davidson, Fred; Esteban, Marta; Fischer, Marc E; Gurzau, Anca Elena; Halzlova, Katarina; Katsonouri, Andromachi; Knudsen, Lisbeth E; Kolossa-Gehring, Marike; Koppen, Gudrun; Ligocka, Danuta; Miklavčič, Ana; Reis, M Fátima; Rudnai, Peter; Tratnik, Janja Snoj; Weihe, Pál; Budtz-Jørgensen, Esben; Grandjean, Philippe
2013-01-07
Due to global mercury pollution and the adverse health effects of prenatal exposure to methylmercury (MeHg), an assessment of the economic benefits of prevented developmental neurotoxicity is necessary for any cost-benefit analysis. Distributions of hair-Hg concentrations among women of reproductive age were obtained from the DEMOCOPHES project (1,875 subjects in 17 countries) and literature data (6,820 subjects from 8 countries). The exposures were assumed to comply with log-normal distributions. Neurotoxicity effects were estimated from a linear dose-response function with a slope of 0.465 Intelligence Quotient (IQ) point reduction per μg/g increase in the maternal hair-Hg concentration during pregnancy, assuming no deficits below a hair-Hg limit of 0.58 μg/g thought to be safe. A logarithmic IQ response was used in sensitivity analyses. The estimated IQ benefit cost was based on lifetime income, adjusted for purchasing power parity. The hair-mercury concentrations were the highest in Southern Europe and lowest in Eastern Europe. The results suggest that, within the EU, more than 1.8 million children are born every year with MeHg exposures above the limit of 0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World Health Organization (WHO). The total annual benefits of exposure prevention within the EU were estimated at more than 600,000 IQ points per year, corresponding to a total economic benefit between €8,000 million and €9,000 million per year. About four-fold higher values were obtained when using the logarithmic response function, while adjustment for productivity resulted in slightly lower total benefits. These calculations do not include the less tangible advantages of protecting brain development against neurotoxicity or any other adverse effects. These estimates document that efforts to combat mercury pollution and to reduce MeHg exposures will have very substantial economic benefits in Europe, mainly in southern countries. Some data may not be entirely representative, some countries were not covered, and anticipated changes in mercury pollution all suggest a need for extended biomonitoring of human MeHg exposure.
Vinceti, Marco; Grill, Peter; Malagoli, Carlotta; Filippini, Tommaso; Storani, Simone; Malavolti, Marcella; Michalke, Bernhard
2015-01-01
Observational studies addressing the relation between selenium and human health, particularly cancer risk, yielded inconsistent results, while most recent randomized trials showed a fairly consistent pattern suggesting null or adverse effects of the metalloid. One of the most plausible explanations for such inconsistencies is inadequate exposure assessment in observational studies, commonly carried out by measuring total Se content without taking into account the specific exposure to the individual chemical forms of the metalloid, whose toxic and nutritional properties may vary greatly. Data on the distribution of these species in human blood and their correlation with overall selenium levels are very limited. The concentrations of organic and inorganic selenium species were analyzed in serum of fifty subjects sampled from the general population of the municipality of Modena, northern Italy, aged from 35 to 70 years. Samples were collected during a 30-month period, and determinations of selenium species were carried out using high pressure liquid chromatography coupled with inductively coupled plasma dynamic reaction cell mass spectrometry. The majority of selenium was found to be present as organic species, but the inorganic forms showed higher levels than expected. These species showed limited correlations with age, sex and body mass index, while the organic forms increased in subjects consuming selenium-containing dietary supplements and decreased in smokers. The length of the sample storage period strongly influenced the distribution of selenium compounds, with a clear tendency towards higher inorganic and lower organic selenium levels over time. In multivariate analysis adjusting for potential confounders, total serum selenium correlated with human serum albumin-bound selenium and, in males, with two organic species of the metalloid (selenocysteine and glutathione peroxidase-bound selenium), while little association existed with the other organic forms and the inorganic ones. These findings highlight the potential for exposure misclassification of observational epidemiologic investigations based on overall selenium content in blood and possibly other tissues, and the critical role of the storage conditions for speciation analysis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Li, Zijian
2018-08-01
To evaluate whether pesticide maximum residue limits (MRLs) can protect public health, a deterministic dietary risk assessment of maximum pesticide legal exposure was conducted to convert global MRLs to theoretical maximum dose intake (TMDI) values by estimating the average food intake rate and human body weight for each country. A total of 114 nations (58% of the total nations in the world) and two international organizations, including the European Union (EU) and Codex (WHO) have regulated at least one of the most currently used pesticides in at least one of the most consumed agricultural commodities. In this study, 14 of the most commonly used pesticides and 12 of the most commonly consumed agricultural commodities were identified and selected for analysis. A health risk analysis indicated that nearly 30% of the computed pesticide TMDI values were greater than the acceptable daily intake (ADI) values; however, many nations lack common pesticide MRLs in many commonly consumed foods and other human exposure pathways, such as soil, water, and air were not considered. Normality tests of the TMDI values set indicated that all distributions had a right skewness due to large TMDI clusters at the low end of the distribution, which were caused by some strict pesticide MRLs regulated by the EU (normally a default MRL of 0.01 mg/kg when essential data are missing). The Box-Cox transformation and optimal lambda (λ) were applied to these TMDI distributions, and normality tests of the transformed data set indicated that the power transformed TMDI values of at least eight pesticides presented a normal distribution. It was concluded that unifying strict pesticide MRLs by nations worldwide could significantly skew the distribution of TMDI values to the right, lower the legal exposure to pesticide, and effectively control human health risks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Human exposure to the jet fuel, JP-8.
Tu, Raymond H; Mitchell, Clifford S; Kay, Gary G; Risby, Terence H
2004-01-01
This study investigates anecdotal reports that have suggested adverse health effects associated with acute or chronic exposure to jet fuel. JP-8 exposure during the course of the study day was estimated using breath analysis. Health effects associated with exposure were measured using a neurocognitive testing battery and liver and kidney function tests. Breath analysis provided an estimate of an individual's recent JP-8 exposure that had occurred via inhalation and dermal routes. All individuals studied on base exhaled aromatic and aliphatic hydrocarbons that are found in JP-8. The subject who showed evidence of the most exposure to JP-8 had a breath concentration of 11.5 mg x m(-3) for total JP-8. This breath concentration suggested that exposure to JP-8 at an Air Guard Base is much less than exposure observed at other Air Force Bases. This reduction in exposure to JP-8 is attributed to the safety practices and standard operating procedures carried out by base personnel. The base personnel who exhibited the highest exposures to JP-8 were fuel cell workers, fuel specialists and smokers, who smoked downwind from the flightline. Although study-day exposures appear to be much less than current guidelines, chronic exposure at these low levels appeared to affect neurocognitive functioning. JP-8-exposed individuals performed significantly poorer than a sample of non-exposed age- and education-matched individuals on 20 of 47 measures of information processing and other cognitive functions.
Liu, Qiang; Cao, Jia; Li, Ke Qiu; Miao, Xu Hong; Li, Guang; Fan, Fei Yue; Zhao, Yong Cheng
2009-05-01
It has been known that the pollutants of electronic wastes (E-wastes) can lead to severe pollution to the environment. It has been reported that about 50% to 80% of E-wastes from developed countries are exported to Asia and Africa. It has become a major global environmental problem to deal with 'E-wastes'. E-waste recycling has remained primitive in Jinghai, China. This not only produces enormous environmental pollution but also can bring about toxic or genotoxic effects on the human body, threatening the health of both current residents and future generations living in the local environment. The concentration of lead in the blood of children in the E-waste polluted area in China is higher than that of the control area. But little is known about the cytogenetic effect to human beings caused by the pollution of E-wastes. In the present study, experiments have been performed to investigate the genetics of permanent residents of three villages with numerous E-waste disposal sites and to analyze the harmful effects of exposure to E-wastes. In total, 171 villagers (exposed group) were randomly selected from permanent residents of three villages located in Jinghai County of Tianjin, China, where there has been massive disposal of E-wastes. Thirty villagers were selected from the neighboring towns without E-waste disposal sites to serve as controls. Chromosomal aberrations and cytokinesis blocking micronucleus were performed to detect the cytogenetic effect, dic + r (dicentric and ring chromosome), monomer, fragments (acentric fragments, minute chromosomes, and acentric rings), translocation, satellite, quadriradial, total aberrations, and micronuclear rate were scored for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes. The total chromosome aberration rates (5.50%) and micronuclear rates (16.99%) of the exposure group were significantly higher than in the control group (P = 0.000). The percentage of DNA in the comet tail, tail moment, and Olive tail moment detected by comet assay showed that there was a significant difference in DNA damage in the exposure group (P = 0.000). The chromosome aberration, micronucleus rate, and DNA damage observed in women were significantly higher than those in men. Chromosome aberration and micronuclear rates of both smokers and non-smokers in the exposure group are obviously higher than that in the control group (P = 0.000). The use of outdated (and unsafe) ways to deal with E-wastes can lead to exposure to a variety of substances harmful to human health. The components of pollution may enter the human body through the air, drinking water, and food chain to damage human genetic material, resulting in genomic instability. The rates of chromosomal aberration, micronucleus formation, and the degree of DNA damage in women in the group exposed to electronic waste were significantly higher than in men. The reason for this may be concerned with the traditional lifestyle of the local residents or the difference of sensitivity to the exposure to E-wastes or any others. Further investigations are needed to provide evidence to demonstrate this. Here, we report the obviously cytogenetic toxicity to the exposure population by the E-waste pollution for the first time. E-waste pollution may be a potential agent of genetic mutation, and may induce cytogenetic damage within the general population exposed to the pollution. These findings need to be considered, and steps should be taken to protect the current population and future generations from the effects of pollution with E-wastes. The above results remind us that the impact of E-waste recycling on environmental quality of Jinghai should be evaluated soon. Moreover, it is urgent for the government to prohibit E-waste import and its processing by outdated ways. The future studies such as pollutant details of drinking water, air, and soil in the area as well as epidemiological investigations on the harmful effect to children must be performed eagerly. All the data available do provide a compelling case for immediate action in both countries to address workplace health and safety and waste management.
Tian, Y; Liu, Y; Misztal, P K; Xiong, J; Arata, C M; Goldstein, A H; Nazaroff, W W
2018-04-06
Residences represent an important site for bioaerosol exposure. We studied bioaerosol concentrations, emissions, and exposures in a single-family residence in northern California with 2 occupants using real-time instrumentation during 2 monitoring campaigns (8 weeks during August-October 2016 and 5 weeks during January-March 2017). Time- and size-resolved fluorescent biological aerosol particles (FBAP) and total airborne particles were measured in real time in the kitchen using an ultraviolet aerodynamic particle sizer (UVAPS). Time-resolved occupancy status, household activity data, air-change rates, and spatial distribution of size-resolved particles were also determined throughout the house. Occupant activities strongly influenced indoor FBAP levels. Indoor FBAP concentrations were an order of magnitude higher when the house was occupied than when the house was vacant. Applying an integral material-balance approach, geometric mean of total FBAP emissions from human activities observed to perturb indoor levels were in the range of 10-50 million particles per event. During the summer and winter campaigns, occupants spent an average of 10 and 8.5 hours per day, respectively, awake and at home. During these hours, the geometric mean daily-averaged FBAP exposure concentration (1-10 μm diameter) was similar for each subject at 40 particles/L for summer and 29 particles/L for winter. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Direct measurement of human exposure to environmental contaminants in real time (when the exposure is actually occurring) is rare and difficult to obtain. This frustrates both exposure assessments and investigations into the linkage between chemical exposure and human disease. ...
Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure.
Schlummer, Martin; Gruber, Ludwig; Fiedler, Dominik; Kizlauskas, Markus; Müller, Josef
2013-07-01
Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds. Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5ng/m(3) for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for <0.8-7.6, 12.1-180.9 and 4.65-105.7μg/dm(2) for 6:2, 8:2 and 10:2 FTOHs, respectively. Emission from selected textiles revealed emission rates of up to 494ng/h. The measured data show that a) FTOHs are present in indoor textiles (e.g. carpets), b) they are released at ambient temperatures and c) indoor air of shops selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Wood smoke condensate induced epithelial-mesenchymal transition in human airway epithelial cells].
Li, Wenxi; Zou, Weifeng; Li, Bing; Ran, Pixin
2014-01-01
To observe the detrimental effects of wood smoke condensate (WSC) exposure on human bronchial epithelial cells (HBEC), and to explore the expression of epithelial-mesenchymal transition (EMT) markers in HBEC exposed to WSC. HBEC were exposed respectively to 5, 10, 20, 40 and 50 mg/L of WSC /CSC for 7 days, with control groups only in cell culture medium at the same time, then the total cytoactivity was detected by cell counting kit-8. After observing the cellular morphology of WSC-stimulated HBEC. Western blot and immunofluorescence method were used to evaluate the expression levels of type I collagen, vimentin, E-cad and MMP-9 in HBEC exposed to WSC (10 mg/L) and cigarette smoke condensate (CSC) (10 mg/L) for 7 days. Statistical evaluation of the continuous data was performed by ANOVA. Independent-Samples t-test for between-group comparisons. After 7 days of exposure to WSC, HBEC manifested a morphological characteristic of loss of cell-cell contact and elongated shape. The level of E-cad was decreased in WSC exposure groups (Western blot: 0.30 ± 0.05, F = 22.07, P < 0.05) compared with the groups without WSC exposure (Western blot: 0.59 ± 0.08, F = 22.07, P < 0.05). In contrast, an upregulation in expression of type I collagen (Western blot: 0.58 ± 0.04 vs 0.26 ± 0.02, F = 119.72, P < 0.05) and MMP-9 (0.56 ± 0.08 vs 0.19 ± 0.03, F = 21.79, P < 0.05) was observed in the presence of WSC, compared with the control groups. Immunofluorescence analysis showed that after a 7-day exposure to WSC in these cells, the E-cad protein was lost whereas type I collagen, vimentin and MMP-9 were acquired. Both Western blot and immunofluorescence analysis showed no difference in expression levels of E-cad, type I collagen, vimentin and MMP-9 between WSC and CSC exposure groups. WSC exposure could induce EMT-like process in human airway epithelial cells.
Gautret, Philippe; Blanton, Jesse; Dacheux, Laurent; Ribadeau-Dumas, Florence; Brouqui, Philippe; Parola, Philippe; Esposito, Douglas H.; Bourhy, Hervé
2014-01-01
Background The nonhuman primate (NHP)-related injuries in rabies-enzootic countries is a public health problem of increasing importance. The aims of this work are to collect data concerning rabies transmission from NHPs to humans; to collate medical practices regarding rabies postexposure prophylaxis (PEP) in different countries, and to provide an evidence base to support the decision to apply rabies PEP in this context. Methodology To retrieve information, we conducted a literature search from 1960 to January 2013. All reports of rabies in NHPs and rabies transmission to humans by infected NHPs were included. Also included were studies of travelers seeking care for rabies PEP in various settings. Data collected by the French National Reference Centre for Rabies concerning NHPs submitted for rabies diagnosis in France and human rabies exposure to NHPs in travelers returning to France were analyzed for the periods 1999–2012 and 1994–2011, respectively. Principal findings A total of 159 reports of rabies in NHPs have been retrieved from various sources in South America, Africa, and Asia, including 13 cases in animals imported to Europe and the US. 134 were laboratory confirmed cases. 25 cases of human rabies following NHP-related injuries were reported, including 20 from Brazil. Among more than 2000 international travelers from various settings, the proportion of injuries related to NHP exposures was about 31%. NHPs rank second, following dogs in most studies and first in studies conducted in travelers returning from Southeast Asia. In France, 15.6% of 1606 travelers seeking PEP for exposure to any animal were injured by monkeys. Conclusions/significance Although less frequently reported in published literature than human rabies, confirmed rabies cases in NHPs occur. The occurrence of documented transmission of rabies from NHPs to human suggests that rabies PEP is indicated in patients injured by NHPs in rabies-enzootic countries. PMID:24831694
Grönroos, Mira; Parajuli, Anirudra; Laitinen, Olli H; Roslund, Marja I; Vari, Heli K; Hyöty, Heikki; Puhakka, Riikka; Sinkkonen, Aki
2018-05-29
Immune-mediated diseases have increased during the last decades in urban environments. The hygiene hypothesis suggests that increased hygiene level and reduced contacts with natural biodiversity are related to the increase in immune-mediated diseases. We tested whether short-time contact with microbiologically diverse nature-based materials immediately change bacterial diversity on human skin. We tested direct skin contact, as two volunteers rubbed their hands with sixteen soil and plant based materials, and an exposure via fabric packets filled with moss material. Skin swabs were taken before and after both exposures. Next-generation sequencing showed that exposures increased, at least temporarily, the total diversity of skin microbiota and the diversity of Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria and Alpha-, Beta- and Gammaproteobacteria suggesting that contact with nature-based materials modify skin microbiome and increase skin microbial diversity. Until now, approaches to cure or prevent immune system disorders using microbe-based treatments have been limited to use of a few microbial species. We propose that nature-based materials with high natural diversity, such as the materials tested here, might be more effective in modifying human skin microbiome, and eventually, in reducing immune system disorders. Future studies should investigate how long-term changes in skin microbiota are achieved and if the exposure induces beneficial changes in the immune system markers. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
The impact of variation in scaling factors on the estimation of ...
Many physiologically based pharmacokinetic (PBPK) models include values for metabolic rate parameters extrapolated from in vitro metabolism studies using scaling factors such as mg of microsomal protein per gram of liver (MPPGL) and liver mass (FVL). Variation in scaling factor values impacts metabolic rate parameter estimates (Vmax) and hence estimates of internal dose used in dose response analysis. The impacts of adult human variation in MPPGL and FVL on estimates of internal dose were assessed using a human PBPK model for BDCM for several internal dose metrics for two exposure scenarios (single 0.25 liter drink of water or 10 minute shower) under plausible (5 micrograms/L) and high level (20 micrograms/L) water concentrations. For both concentrations, all internal dose metrics were changed less than 5% for the showering scenario (combined inhalation and dermal exposure). In contrast, a 27-fold variation in area under the curve for BDCM in venous blood was observed at both oral exposure concentrations, whereas total amount of BDCM metabolized in liver was relatively unchanged. This analysis demonstrates that variability in the scaling factors used for in vitro to in vivo extrapolation (IVIVE) for metabolic rate parameters can have a significant route-dependent impact on estimates of internal dose under environmentally relevant exposure scenarios. This indicates the need to evaluate both uncertainty and variability for scaling factors used for IVIVE. Sca
Huang, Minjuan; Deng, Sixin; Dong, Hanying; Dai, Wei; Pang, Jiongming; Wang, Xuemei
2016-10-04
A preliminary projection was performed to determine human multimedia exposure to mercury (Hg) based on deposition flux observations and to identify the impacts of atmospheric Hg deposition in Pearl River Delta (PRD) region, South China. The Monte Carlo technique was used to propagate the variability throughout the projection. The regional specific probability density functions (PDFs) of the studied parameters were regressed from the provincial/national published data, except when the data were deficient. The atmospheric Hg deposition flux ranged from 43.70 to 321.19 μg/m 2 /year and did not significantly contribute to Hg accumulation in the regional topsoil, freshwater bodies, and most food items except fish. The consumption of fish and milk/dairy products was the major contributor to the total exposure for adults (>18 years)/6- to 12-year children and 0- to 6-year children, respectively. The projected concentrations and exposure levels were the results combining MeHg and inorganic Hg (Hg 2+ ). Under the 30-year projection, the probability of risks caused by Hg deposition (combining Hg 2+ and MeHg) was the highest for 0- to 6-year children, followed by 6- to 12-year children and adults. The ground effects driven by precipitation had a significantly greater effect relative to the mass transport effects in this region.
Abdallah, Mohamed F; Krska, Rudolf; Sulyok, Michael
2016-11-18
This study was conducted to investigate the natural co-occurrence of multiple toxic fungal and bacterial metabolites in sugarcane grass and juice intended for human consumption in Upper Egypt. Quantification of the target analytes has been done using the "dilute and shoot" approach followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total number of 29 and 33 different metabolites were detected in 21 sugarcane grass and 40 juice samples, respectively, with a trend of concentrations being higher in grass than in juice. Among the regulated mycotoxins, only aflatoxin B₁ (AFB₁) and aflatoxin G₁ (AFG₁) were detected. The prevalence of AFB₁ was in 48% of grass samples and in 58% of juice with a maximum concentration of 30.6 μg/kg and 2.10 μg/kg, respectively. AFG₁ was detected in 10% of grass samples (7.76 μg/kg) and 18% of juice samples (34 μg/kg). Dietary exposure was assessed using a juice frequency questionnaire of adult inhabitants in Assiut City. The assessment revealed different levels of exposure to AFB₁ between males and females in winter and summer seasons. The estimated seasonal exposure ranged from 0.20 to 0.40 ng/kg b.w./day in winter and from 0.38 to 0.90 ng/kg b.w./day in summer.
Human exposure models estimate population distributions of exposure to air pollutants by combining ambient (outdoor) concentration data with human activity patterns to account for the time people spend in different locations (e.g., outdoors, indoors, in vehicles) and the various ...
RATIONALE: Ozone (Os) isa ubiquitous air pollutant that has been shown to have a detrimental effect on human health. Controlled exposure studies in humans have demonstrated that acute exposure to 03 results in reversible reduction in lung function immediately post-exposure, incre...
Researchers in the National Exposure Research Laboratory (NERL) have performed a number of large human exposure measurement studies during the past decade. It is the goal of the NERL to make the data available to other researchers for analysis in order to further the scientific ...
Human exposure in low Earth orbit
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F.
1984-01-01
Human exposure to trapped electrons and protons in low Earth orbit (LEO) is evaluated on a basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. Detailed shielding studies should be performed before final design considerations. A sample impact assessment is discussed on the basis of presently accepted allowable exposure limits. A brief discussion is given on the anticipated impact of an ongoing reassessment of allowable exposure limits.
Human Exposure Modeling - Databases to Support Exposure Modeling
Human exposure modeling relates pollutant concentrations in the larger environmental media to pollutant concentrations in the immediate exposure media. The models described here are available on other EPA websites.
Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution.
Asaduzzaman, Khandoker; Khandaker, Mayeen Uddin; Binti Baharudin, Nurul Atiqah; Amin, Yusoff Bin Mohd; Farook, Mohideen Salihu; Bradley, D A; Mahmoud, Okba
2017-06-01
With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of Orientation on the Vitamin D Weighted Exposure of a Human in an Urban Environment
Schrempf, Michael; Thuns, Nadine; Lange, Kezia
2017-01-01
The vitamin D3-weighted UV exposure of a human with vertical posture was calculated for urban locations to investigate the impact of orientation and obstructions on the exposure. Human exposure was calculated by using the 3D geometry of a human and integrating the radiance, i.e., the radiant energy from the direct solar beam and the diffuse sky radiation from different incident and azimuth angles. Obstructions of the sky are derived from hemispherical images, which are recorded by a digital camera with a fisheye lens. Due to the low reflectivity of most surfaces in the UV range, the radiance from obstructed sky regions was neglected. For spring equinox (21 March), the exposure of a human model with winter clothing in an environment where obstructions cover 40% of the sky varies by up to 25%, depending on the orientation of the human model to the sun. The calculation of the accumulated vitamin D3-weighted exposure of a human with winter clothing walking during lunch break shows that human exposure is reduced by the obstruction of buildings and vegetation by 40%. PMID:28813022
Cognitive effects of radiation emitted by cellular phones: the influence of exposure side and time.
Luria, Roy; Eliyahu, Ilan; Hareuveny, Ronen; Margaliot, Menachem; Meiran, Nachshon
2009-04-01
This study examined the time dependence effects of exposure to radiofrequency radiation (RFR) emitted by standard GSM cellular phones on the cognitive functions of humans. A total of 48 healthy right-handed male subjects performed a spatial working memory task (that required either a left-hand or a right-hand response) while being exposed to one of two GSM phones placed at both sides of the head. The subjects were randomly divided into three groups. Each group was exposed to one of three exposure conditions: left-side of the head, right-side, or sham-exposure. The experiment consisted of 12 blocks of trials. Response times (RTs) and accuracy of the responses were recorded. It was found that the average RT of the right-hand responses under left-side exposure condition was significantly longer than those of the right-side and sham-exposure groups averaged together during the first two time blocks. These results confirmed the existence of an effect of exposure on RT, as well as the fact that exposure duration (together with the responding hand and the side of exposure) may play an important role in producing detectable RFR effects on performance. Differences in these parameters might be the reason for the failure of certain studies to detect or replicate RFR effects. (c) 2008 Wiley-Liss, Inc.
Oakes, Jennifer; Seifert, Steven
2008-12-01
Tilmicosin is a veterinary antibiotic with significant human toxicity at doses commonly used in animals, but the parenteral dose-response relationship has not been well characterized. Human exposures to tilmicosin in the database of the American Association of Poison Control Centers (AAPCC) from 2001 to 2005 were analyzed for demographic associations, exposure dose, clinical effects and outcomes. Over the 5-year period, there were 1,291 single-substance human exposures to tilmicosin. The mean age was 39.1 years, and 80% were male. By route there were 768 (54%) parenteral exposures. Patients with parenteral exposures had a significantly increased likelihood of being seen at a healthcare facility, admission, and admission to an ICU. With nonparenteral exposure, most had no clinical effects or minor effects, and there were no major effects or deaths. With parenteral exposure, moderate effects occurred in 46 (6%), major effects in 2 (0.3%) and there were 4 (0.5%) deaths, two of which were suicides. A dose-response relationship could be demonstrated. Clinical effect durations of up to a week occurred at even the lowest dose range. Over 250 cases of human tilmicosin exposure are reported to poison centers per year and over 150 of those are parenteral. Most exposures produce no or minor effects, but fatalities have occurred with parenteral exposure. The case fatality rate in parenteral exposures is 10 times the case fatality rate for all human exposures in the AAPCC database. Significant adverse and prolonged effects are reported at parenteral doses > 0.5 mL, suggesting that all parenteral exposures should be referred for healthcare facility evaluation.
Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...
Bessems, Jos G M; Paini, Alicia; Gajewska, Monika; Worth, Andrew
2017-12-01
Route-to-route extrapolation is a common part of human risk assessment. Data from oral animal toxicity studies are commonly used to assess the safety of various but specific human dermal exposure scenarios. Using theoretical examples of various user scenarios, it was concluded that delineation of a generally applicable human dermal limit value is not a practicable approach, due to the wide variety of possible human exposure scenarios, including its consequences for internal exposure. This paper uses physiologically based kinetic (PBK) modelling approaches to predict animal as well as human internal exposure dose metrics and for the first time, introduces the concept of Margin of Internal Exposure (MOIE) based on these internal dose metrics. Caffeine was chosen to illustrate this approach. It is a substance that is often found in cosmetics and for which oral repeated dose toxicity data were available. A rat PBK model was constructed in order to convert the oral NOAEL to rat internal exposure dose metrics, i.e. the area under the curve (AUC) and the maximum concentration (C max ), both in plasma. A human oral PBK model was constructed and calibrated using human volunteer data and adapted to accommodate dermal absorption following human dermal exposure. Use of the MOIE approach based on internal dose metrics predictions provides excellent opportunities to investigate the consequences of variations in human dermal exposure scenarios. It can accommodate within-day variation in plasma concentrations and is scientifically more robust than assuming just an exposure in mg/kg bw/day. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Teklu, Gebreyohans Gebru; Hailu, Teweldemedhn Gebretinsae; Eshetu, Gebremedhin Romha
2017-01-01
Background Rabies is a fatal zoonotic disease that has been known in Ethiopia for centuries in society as “Mad Dog Disease”. It is an important disease with veterinary and public health significance in the North western zone of Tigray where previous studies have not been conducted. Frequent occurrence of outbreaks in the area led the researchers to carry out a four year retrospective study to estimate the incidence of human rabies exposure in Northwestern Tigray, Ethiopia. Methodology A referent study was conducted on human rabies exposure cases recorded from 2012 to 2015 at Suhul hospital, Shire Endaselase, Northwestern Tigray, Ethiopia. Exposure cases included in this research constituted victims bitten by unprovoked dogs and who received post exposure prophylaxis (PEP) at the hospital. Two thousand one hundred eighty human rabies exposure cases retrieved from the rabies case database were included in this study. Principal findings The majority of the exposed cases were males (1363/2180, 63%). Age wise, the most exposed age group was ≥15 years in all the study years: 166 (58%), 335 (65%), 492 (66%) and 394 (63%) in 2012, 2013, 2014 and 2015, respectively. Similarly, exposure cases for human rabies increased with age in both males and females across the study years. The incidence of human rabies exposure cases calculated per 100,000 populations was 35.8, 63.0, 89.8 and 73.1 in 2012, 2013, 2014 and 2015, respectively. Binary logistic regression analysis revealed that being male was a risk for human rabies exposure in all the study years. Conclusion The study discovered the highest annual human rabies exposure incidence in Ethiopia. This suggests an urgent need for synergistic efforts of human and animal health sectors to implement prevention and control strategies in this area. PMID:28060935
Genotoxic effects of occupational exposure to benzene in gasoline station workers
SALEM, Eman; EL-GARAWANI, Islam; ALLAM, Heba; EL-AAL, Bahiga Abd; HEGAZY, Mofrih
2017-01-01
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability. PMID:29070767
NASA Astrophysics Data System (ADS)
Kuskowska, Karolina; Rogula-Kozłowska, Wioletta; Rogula-Kopiec, Patrycja
2018-01-01
The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) associated with total suspended particles (TSP) and their respirable fraction (PM4) in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air) of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.
Blood biochemical and cellular changes during decompression and simulated extravehicular activity
NASA Technical Reports Server (NTRS)
Jauchem, J. R.; Waligora, J. M.; Johnson, P. C. Jr
1990-01-01
Blood biochemical and cellular parameters were measured in human subjects before and after exposure to a decompression schedule involving 6 h of oxygen prebreathing. The exposure was designed to simulate extravehicular activity for 6 h (subjects performed exercise while exposed to 29.6 kPa). There were no significant differences between blood samples from subjects who were susceptible (n = 11) versus those who were resistant (n = 27) to formation of venous gas emboli. Although several statistically significant (P less than 0.05) changes in blood parameters were observed following the exposure (increases in white blood cell count, prothrombin time, and total bilirubin, and decreases in triglycerides, very-low-density lipoprotein cholesterol, and blood urea nitrogen), the changes were small in magnitude and blood factor levels remained within normal clinical ranges. Thus, the decompression schedule used in this study is not likely to result in blood changes that would pose a threat to astronauts during extravehicular activity.
Genotoxic effects of occupational exposure to benzene in gasoline station workers.
Salem, Eman; El-Garawani, Islam; Allam, Heba; El-Aal, Bahiga Abd; Hegazy, Mofrih
2018-04-07
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.
Exposure of resident sparrows to West Nile virus evidenced in South Tunisia.
Hammouda, A; Lecollinet, S; Hamza, F; Nasri, I; Neb, A; Selmi, S
2015-12-01
During the last few years, several cases of West Nile virus (WNV) infection in humans have been reported in Tunisia. However, detailed information on WNV infection in wild birds, the primary amplifying host of WNV, are lacking. In this work, we investigated the exposure of wild sparrows (hybrid Passer domesticus × hispaniolensis) living in two oases in southern Tunisia (Gabès and Kébili oases) to WNV, through the detection of WNV-specific antibodies by using ELISA and microneutralization tests. In total, 208 birds were sampled (54 from Kébili, 154 from Gabès). Anti-WNV antibodies were detected in two birds, corresponding to an overall seroprevalence of 1%. There was no significant difference between the two sampled populations [1·85% (1/54) in Kébili, 0·65% (1/154) in Gabès]. These data provide indirect evidence of the exposure of resident sparrows in southern Tunisia to WNV.
Appraisal of levels and patterns of occupational exposure to 1,3-butadiene.
Scarselli, Alberto; Corfiati, Marisa; Di Marzi, Davide; Iavicoli, Sergio
2017-09-01
Objectives 1,3-butadiene is classified as carcinogenic to human by inhalation and the association with leukemia has been observed in several epidemiological studies. The aim of this study was to evaluate data about occupational exposure levels to 1,3-butadiene in the Italian working force. Methods Airborne concentrations of 1,3-butadiene were extracted from the Italian database on occupational exposure to carcinogens in the period 1996-2015. Descriptive statistics were calculated for exposure-related variables. An analysis through linear mixed model was performed to determine factors influencing the exposure level. The probability of exceeding the exposure limit was predicted using a mixed-effects logistic model. Concurrent exposures with other occupational carcinogens were investigated using the two-step cluster analysis. Results The total number of exposure measurements selected was 23 885, with an overall arithmetic mean of 0.12 mg/m3. The economic sector with the highest number of measurements was manufacturing of chemicals (18 744). The most predictive variables of the exposure level resulted to be the occupational group and its interaction with the measurement year. The highest likelihood of exceeding the exposure limit was found in the manufacture of coke and refined petroleum products. Concurrent exposures were frequently detected, mainly with benzene, acrylonitrile and ethylene dichloride, and three main clusters were identified. Conclusions Exposure to 1,3-butadiene occurs in a wide variety of activity sectors and occupational groups. The use of several statistical analysis methods applied to occupational exposure databases can help to identify exposure situations at high risk for workers' health and better target preventive interventions and research projects.
Rogers, P J; Hogenkamp, P S; de Graaf, C; Higgs, S; Lluch, A; Ness, A R; Penfold, C; Perry, R; Putz, P; Yeomans, M R; Mela, D J
2016-01-01
By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning' paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and body mass index (−0.002 kg m−2 per year, 95% confidence interval (CI) −0.009 to 0.005). Meta-analysis of short-term randomized controlled trials (129 comparisons) showed reduced total EI for LES versus sugar-sweetened food or beverage consumption before an ad libitum meal (−94 kcal, 95% CI −122 to −66), with no difference versus water (−2 kcal, 95% CI −30 to 26). This was consistent with EI results from sustained intervention randomized controlled trials (10 comparisons). Meta-analysis of sustained intervention randomized controlled trials (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; −1.35 kg, 95% CI –2.28 to −0.42), and a similar relative reduction in BW versus water (three comparisons; −1.24 kg, 95% CI –2.22 to −0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human randomized controlled trials indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (for example, water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also when compared with water. PMID:26365102
Berger-Preiss, Edith; Koch, Wolfgang; Gerling, Susanne; Kock, Heiko; Appel, Klaus E
2009-09-01
Five commercially available insect sprays were applied in a model room. Spraying was performed in accordance with the manufacturers' instructions and in an overdosed manner in order to simulate worst-case conditions or an unforeseeable misuse. In addition, we examined electro-vaporizers. The Respicon aerosol monitoring system was applied to determine inhalation exposure. During normal spraying (10 seconds) and during the following 2-3 minutes, exposure concentrations ranged from 70 to 590 microg/m3 for the pyrethroids tetramethrin, d-phenothrin, cyfluthrin, bioallethrin, and the pyrethrins. Calculated inhalable doses were 2-16 microg. A concentration of approximately 850 microg chlorpyrifos/m(3) (inhalable dose: approximately 20 microg) was determined when the "Contra insect fly spray" was applied. Highest exposure concentrations (1100-2100 microg/m3) were measured for piperonyl butoxide (PBO), corresponding to an inhalation intake of 30-60microg. When simulating worst-case conditions, exposure concentrations of 200-3400microg/m3 and inhalable doses of 10-210microg were determined for the various active substances. Highest concentrations (4800-8000 microg/m3) were measured for PBO (inhalable: 290-480 microg). By applying the electro-vaporizer "Nexa Lotte" plug-in mosquito killer concentrations for d-allethrin were in the range of 5-12microg/m3 and 0.5-2 microg/m3 for PBO while with the "Paral" plug-in mosquito killer concentrations of 0.4-5microg/m3 for pyrethrins and 1-7 microg/m3 for PBO were measured. Potential dermal exposures were determined using exposure pads. Between 80 and 1000microg active substance (tetramethrin, phenothrin, cyfluthrin, bioallethrin, pyrethrins, chlorpyrifos) were deposited on the clothing of the total body surface area of the spray user. Highest levels (up to 3000 microg) were determined for PBO. Worst-case uses of the sprays led to 5-9 times higher concentrations. Also a 2-hour stay nearby an operating electro-vaporizer led to a contamination of the clothing (total amounts on the whole body were 450 microg d-allethrin and 50 microg PBO for "Nexa Lotte" plug-in mosquito killer and 80 microg pyrethrins and 190 microg PBO for "Paral" plug-in mosquito killer). Human biomonitoring data revealed urine concentrations of the metabolite (E)-trans-chrysanthemum dicarboxylic acid ((E)-trans-CDCA) between 1.7 microg/l and 7.1 microg/l after 5 minutes of exposure to the different sprays. Also the use of electro-vaporizers led to (E)-trans-CDCA concentrations in the urine in the range of 1.0 microg/l to 6.2 microg/l (1-3 hours exposure period). The exposure data presented can be used for performing human risk assessment when these biocidal products were applied indoors. The airborne concentrations of the non-volatile active chemical compounds could be predicted from first principles using a deterministic exposure model (SprayExpo).
Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per
2015-08-07
Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.
Asante, Kwadwo Ansong; Agusa, Tetsuro; Biney, Charles Augustus; Agyekum, William Atuobi; Bello, Mohammed; Otsuka, Masanari; Itai, Takaaki; Takahashi, Shin; Tanabe, Shinsuke
2012-05-01
To understand human contamination by multi-trace elements (TEs) in electrical and electronic waste (e-waste) recycling site at Agbogbloshie, Accra in Ghana, this study analyzed TEs and As speciation in urine of e-waste recycling workers. Concentrations of Fe, Sb, and Pb in urine of e-waste recycling workers were significantly higher than those of reference sites after consideration of interaction by age, indicating that the recycling workers are exposed to these TEs through the recycling activity. Urinary As concentration was relatively high, although the level in drinking water was quite low. Speciation analysis of As in human urine revealed that arsenobetaine and dimethylarsinic acid were the predominant As species and concentrations of both species were positively correlated with total As concentration as well as between each other. These results suggest that such compounds may be derived from the same source, probably fish and shellfish and greatly influence As exposure levels. To our knowledge, this is the first study on human contamination resulting from the primitive recycling of e-waste in Ghana. This study will contribute to the knowledge about human exposure to trace elements from an e-waste site in a less industrialized region so far scantly covered in the literature. Copyright © 2012 Elsevier B.V. All rights reserved.
Woskie, S R; Smith, T J; Hallock, M F; Hammond, S K; Rosenthal, F; Eisen, E A; Kriebel, D; Greaves, I A
1994-01-01
The current metal-working fluid exposures at three locations that manufacture automotive parts were assessed in conjunction with epidemiological studies of the mortality and respiratory morbidity experiences of workers at these plants. A rationale is presented for selecting and characterizing epidemiologic exposure groups in this environment. More than 475 full-shift personal aerosol samples were taken using a two-stage personal cascade impactor with median size cut-offs of 9.8 microns and 3.5 microns, plus a backup filter. For a sample of 403 workers exposed to aerosols of machining or grinding fluids, the mean total exposure was 706 micrograms/m3 (standard error (SE) = 21 micrograms/m3). Among 72 assemblers unexposed to machining fluids, the mean total exposure was 187 +/- 10 (SE) micrograms/m3. An analysis of variance model identified factors significantly associated with exposure level and permitted estimates of exposure for workers in the unsampled machine type/metal-working fluid groups. Comparison of the results obtained from personal impactor samples with predictions from an aerosol-deposition model for the human respiratory tract showed high correlation. However, the amount collected on the impactor stage underestimates extrathoracic deposition and overestimates tracheobronchial and alveolar deposition, as calculated by the deposition model. When both the impactor concentration and the deposition-model concentration were used to estimate cumulative thoracic concentrations for the worklives of a subset of auto workers, there was no significant difference in the rank order of the subjects' cumulative concentration. However, the cumulative impactor concentration values were significantly higher than the cumulative deposition-model concentration values for the subjects.
Collins, Bradley J.; Stout, Matthew D.; Levine, Keith E.; Kissling, Grace E.; Fennell, Timothy R.; Walden, Ramsey; Abdo, Kamal; Pritchard, John B.; Fernando, Reshan A.; Burka, Leo T.; Hooth, Michelle J.
2010-01-01
In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight3/4 (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI). PMID:20843897
Collins, Bradley J; Stout, Matthew D; Levine, Keith E; Kissling, Grace E; Melnick, Ronald L; Fennell, Timothy R; Walden, Ramsey; Abdo, Kamal; Pritchard, John B; Fernando, Reshan A; Burka, Leo T; Hooth, Michelle J
2010-12-01
In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight(3/4) (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI).
NASA Astrophysics Data System (ADS)
Stout, D. M.; Mason, M. A.
A study was conducted in the US EPA Indoor Air Quality (IAQ) Research House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, den and master bedroom over 21 days. Airborne concentrations were collected using both polyurethane foam (PUF) and the OSHA versatile sampler composed of XAD and PUF media located in tandem. Measured airborne concentrations were similar for the two samplers and were higher in the three rooms following the application. The highest measured concentrations were reached during the initial 24-h following application; concentrations subsequently declined over the 21-day study period to levels slightly above background. Spatial and temporal distributions onto surfaces were measured using 10-cm 2 rayon deposition coupons located on the floor. Sections were cut from existing carpet to determine the total extractable residues. Chlorpyrifos was measured from all matrixes in the kitchen, den and bedroom and the data shows the transport of airborne residues from the point of application to remote locations in the house. The findings are compared and discussed relative to another study conducted in which total release aerosols containing chlorpyrifos were activated in the IAQ research house and the resulting distributions evaluated. For both studies dose estimates were constructed for the exposure pathways using the Stochastic Human Exposure and Dose Estimation Model for pesticides. The United States Environmental Protection Agency has been mandated to examine children's exposure to environmental pollutants such as pesticides. This research specifically reduces uncertainties associated with estimating children's potential exposures to residentially applied pesticides and provides inputs to further evaluate and validate residential exposure models which might be used to reduce exposures and perform risk assessments.
Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment
Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.
2012-01-01
Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278
NASA Astrophysics Data System (ADS)
Wöhrnschimmel, Henry; Zuk, Miriam; Martínez-Villa, Gerardo; Cerón, Julia; Cárdenas, Beatriz; Rojas-Bracho, Leonora; Fernández-Bremauntz, Adrián
Carbon monoxide (CO), benzene and other volatile organic compounds (VOCs) and suspended particles PM 2.5 and PM 10 were measured inside public transportation vehicles, before and after a new Bus Rapid Transit (BRT) system was implemented in Mexico City in June 2005. The objective was to evaluate the BRT system's impact on commuters' exposure to these air pollutants. The BRT system replaced conventional transport modes along 20 km of Insurgentes Avenue, and features confined corridors and new articulated diesel buses. We assessed the impact of the transportation mode on commuters' exposure using least squares regression models. We also analyzed the chemical composition of VOCs to evaluate the possible origin of these species. The implementation of the BRT system resulted in reductions in commuters' exposure to CO, benzene and PM 2.5 ranging between 20% and 70%. No significant reductions in PM 10 exposure were observed. Lower commuting times further reduced total commuters' exposure. Major sources affecting VOCs inside all transport modes are likely to be related to traffic and to emissions from the use of Liquefied Petroleum Gas. The results suggest that BRT systems could in general be an effective means of reducing human exposure to traffic related air pollutants and associated health impacts.
Human occupational and nonoccupational exposure to fibers.
Esmen, N A; Erdal, S
1990-01-01
Human exposure to fibers in occupational and nonoccupational environments has been a health concern for nearly a century. In this review, selected results from the literature are presented to highlight the availability, limitations, and interpretive difficulties associated with the past and current human fiber exposure data sets. In the traditionally defined asbestos fibers, large amounts of the data available suffer from the diversity of sample collection and analysis methods. Two simple generalizations suggest that occupational exposures are several orders of magnitude higher than that of environmental exposures; and currently extant data and the current routine measurement practices present significant difficulties in the consistent interpretation of the data with respect to health effects. The data on the human exposures to man-made vitreous fibers are much more complete than the data on asbestos exposure, while exposure data on other man-made fibrous materials are lacking. The human exposure data to many minerals which, at times, exist in fibrous habit, are very scanty, and in view of the biological activity of some of these fibers, this lack may be of significant concern. PMID:2272324
Stanton, M E; Crofton, K M; Gray, L E; Gordon, C J; Boyes, W K; Mole, M L; Peele, D B; Bushnell, P J
1995-11-01
The prospect of widespread human exposure associated with its use as an alternative fuel has sparked concern about the toxic potential of inhaled methanol (MeOH). Previous studies have revealed congenital malformations in rats following inhaled MeOH (Nelson et al. (1985). Fundam. Appl. Toxicol. 5, 727-736) but these studies did not include postnatal behavioral assessment. In the present study, pregnant Long-Evans rats were placed in exposure chambers containing 15,000 ppm MeOH or air for 7 hr/day on Gestational Days (GD) 7-19. The total alveolar dose of methanol was estimated at about 6.1 g/kg/day, for a total dose of about 42.7 g/kg for the entire study. Maternal body weights were recorded daily and blood methanol concentrations were determined at the end of exposure on GD 7, 10, 14, and 18. Following birth (Postnatal Day 0 [PND 0]), a number of tests were performed at various points in development, including: offspring mortality and body wt (PND 1,3), motor activity (PND 13-21, 30, 60), olfactory learning (PND 18), behavioral thermoregulation (PND 20-21), T-maze learning (PND 23-24), acoustic startle response (PND 24, 60), reflex modification audiometry (PND 60), pubertal landmarks (PND 31-56), passive avoidance (PND 72), and visual-evoked potentials (PND 160). Maternal blood MeOH levels, measured from samples taken within 15 min after removal from the exposure chamber, declined from about 3.8 mg/ml on the first day of exposure to 3.1 mg/ml on the 12th day of exposure. MeOH transiently reduced maternal body wt (4-7%) on GD 8-10, and offspring BW (5%) on PND 1. No other test revealed significant effects of MeOH. Prenatal exposure to high levels of inhaled MeOH appears to have little effect on this broad battery of tests beyond PND 1 in the rat.
Characterization of air manganese exposure estimates for residents in two Ohio towns
Colledge, Michelle A.; Julian, Jaime R.; Gocheva, Vihra V.; Beseler, Cheryl L.; Roels, Harry A.; Lobdell, Danelle T.; Bowler, Rosemarie M.
2016-01-01
This study was conducted to derive receptor-specific outdoor exposure concentrations of total suspended particulate (TSP) and respirable (dae ≤ 10 μm) air manganese (air-Mn) for East Liverpool and Marietta (Ohio) in the absence of facility emissions data, but where long-term air measurements were available. Our “site-surface area emissions method” used U.S. Environmental Protection Agency’s (EPA) AERMOD (AMS/EPA Regulatory Model) dispersion model and air measurement data to estimate concentrations for residential receptor sites in the two communities. Modeled concentrations were used to create ratios between receptor points and calibrated using measured data from local air monitoring stations. Estimated outdoor air-Mn concentrations were derived for individual study subjects in both towns. The mean estimated long-term air-Mn exposure levels for total suspended particulate were 0.35 μg/m3 (geometric mean [GM]) and 0.88 μg/m3 (arithmetic mean [AM]) in East Liverpool (range: 0.014–6.32 μg/m3) and 0.17 μg/m3 (GM) and 0.21 μg/m3 (AM) in Marietta (range: 0.03–1.61 μg/m3). Modeled results compared well with averaged ambient air measurements from local air monitoring stations. Exposure to respirable Mn particulate matter (PM10; PM <10 μm) was higher in Marietta residents. Implications Few available studies evaluate long-term health outcomes from inhalational manganese (Mn) exposure in residential populations, due in part to challenges in measuring individual exposures. Local long-term air measurements provide the means to calibrate models used in estimating long-term exposures. Furthermore, this combination of modeling and ambient air sampling can be used to derive receptor-specific exposure estimates even in the absence of source emissions data for use in human health outcome studies. PMID:26211636
Zhang, Xingli; Zou, Wei; Mu, Li; Chen, Yuming; Ren, Chaoxiu; Hu, Xiangang; Zhou, Qixing
2016-11-15
Although organophosphate flame retardants (OPFRs) have been shown to accumulate in abiotic and biotic environmental compartments, data about OPFRs concentrations in various foods are limited and are none in humans through diets. In this work, the concentrations of 6 typical OPFRs were investigated in 50 rice samples, 75 commonly consumed foods and 45 human hair samples from China. The dietary intakes of OPFRs for adult people via food ingestion were estimated. The concentrations of ΣOPFRs in foods ranged from 0.004ng/g to 287ng/g. OPFRs were detected in 53.3% of the human hair samples. The highest OPFRs concentrations were found in rice and vegetables. Tri(2-chloroethyl)phosphate(TCEP), tris(2-chloroisopropyl)phosphate(TCIPP), and tri(2-ethyltexyl)phosphate(TEHP) were predominant in all food samples. OPFRs concentrations in foods were not significantly affected by the packaging materials. The mean dietary intakes of ΣOPFRs for adult males and females were 539 and 601ng/kg body weight/day, respectively. The greatest contribution to these values is from rice, accounting for approximately 60% of the total intake, particularly from rice protein. Rice ingestion was considered a potential major pathway for human exposure to OPFRs, and regional differences in the levels of OPFRs in foods and dietary differences should be given more attention in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
Do fungi need to be included within environmental radiation protection assessment models?
Guillén, J; Baeza, A; Beresford, N A; Wood, M D
2017-09-01
Fungi are used as biomonitors of forest ecosystems, having comparatively high uptakes of anthropogenic and naturally occurring radionuclides. However, whilst they are known to accumulate radionuclides they are not typically considered in radiological assessment tools for environmental (non-human biota) assessment. In this paper the total dose rate to fungi is estimated using the ERICA Tool, assuming different fruiting body geometries, a single ellipsoid and more complex geometries considering the different components of the fruit body and their differing radionuclide contents based upon measurement data. Anthropogenic and naturally occurring radionuclide concentrations from the Mediterranean ecosystem (Spain) were used in this assessment. The total estimated weighted dose rate was in the range 0.31-3.4 μGy/h (5 th -95 th percentile), similar to natural exposure rates reported for other wild groups. The total estimated dose was dominated by internal exposure, especially from 226 Ra and 210 Po. Differences in dose rate between complex geometries and a simple ellipsoid model were negligible. Therefore, the simple ellipsoid model is recommended to assess dose rates to fungal fruiting bodies. Fungal mycelium was also modelled assuming a long filament. Using these geometries, assessments for fungal fruiting bodies and mycelium under different scenarios (post-accident, planned release and existing exposure) were conducted, each being based on available monitoring data. The estimated total dose rate in each case was below the ERICA screening benchmark dose, except for the example post-accident existing exposure scenario (the Chernobyl Exclusion Zone) for which a dose rate in excess of 35 μGy/h was estimated for the fruiting body. Estimated mycelium dose rate in this post-accident existing exposure scenario was close to the 400 μGy/h benchmark for plants, although fungi are generally considered to be less radiosensitive than plants. Further research on appropriate mycelium geometries and their radionuclide content is required. Based on the assessments presented in this paper, there is no need to recommend that fungi should be added to the existing assessment tools and frameworks; if required some tools allow a geometry representing fungi to be created and used within a dose assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stochastic Human Exposure and Dose Simulation Model for Pesticides
SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...
Kioumourtzoglou, Marianthi-Anna; Coull, Brent A; O'Reilly, Éilis J; Ascherio, Alberto; Weisskopf, Marc G
2018-05-21
Animal evidence suggests that endocrine disruptors affect germline cells and neurodevelopment. However, to date, the third-generation neurodevelopmental outcomes in humans have not been examined. To explore the potential consequences of exposure to diethylstilbestrol or DES across generations-specifically, third-generation neurodevelopment. This cohort study uses self-reported health information, such as exposure to diethylstilbestrol during pregnancy and attention-deficit/hyperactivity disorder (ADHD) diagnosis, from 47 540 participants enrolled in the ongoing Nurses' Health Study II. The 3 generations analyzed in this study were the participants (F1 generation), their mothers (F0 generation), and their live-born children (F2 generation). Participant- and mother-reported exposure to diethylstilbestrol during pregnancy and physician-diagnosed child ADHD. The total number of women included in this study was 47 540. Of the 47 540 F0 mothers, 861 (1.8%) used diethylstilbestrol and 46 679 (98.2%) did not while pregnant with the F1 participants. Use of diethylstylbestrol by F0 mothers was associated with an increased risk of ADHD among the F2 generation: 7.7% vs 5.2%, adjusted odds ratio (OR), 1.36 (95% CI, 1.10-1.67) and an OR of 1.63 (95% CI, 1.18-2.25) if diethylstilbestrol was taken during the first trimester of pregnancy. No effect modification was observed by the F2 children's sex. This study provides evidence that diethylstilbestrol exposure is associated with multigenerational neurodevelopmental deficits. The doses and potency level of environmental endocrine disruptors to which humans are exposed are lower than those of diethylstilbestrol, but the prevalence of such exposure and the possibility of cumulative action are potentially high and thus warrant consideration.
Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study.
Surowiec, Izabella; Karimpour, Masoumeh; Gouveia-Figueira, Sandra; Wu, Junfang; Unosson, Jon; Bosson, Jenny A; Blomberg, Anders; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Trygg, Johan; Nording, Malin L
2016-07-01
Metabolomics protocols are used to comprehensively characterize the metabolite content of biological samples by exploiting cutting-edge analytical platforms, such as gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS) assays, as well as nuclear magnetic resonance (NMR) assays. We have developed novel sample preparation procedures combined with GC-MS, LC-MS, and NMR metabolomics profiling for analyzing bronchial wash (BW) and bronchoalveolar lavage (BAL) fluid from 15 healthy volunteers following exposure to biodiesel exhaust and filtered air. Our aim was to investigate the responsiveness of metabolite profiles in the human lung to air pollution exposure derived from combustion of biofuels, such as rapeseed methyl ester biodiesel, which are increasingly being promoted as alternatives to conventional fossil fuels. Our multi-platform approach enabled us to detect the greatest number of unique metabolites yet reported in BW and BAL fluid (82 in total). All of the metabolomics assays indicated that the metabolite profiles of the BW and BAL fluids differed appreciably, with 46 metabolites showing significantly different levels in the corresponding lung compartments. Furthermore, the GC-MS assay revealed an effect of biodiesel exhaust exposure on the levels of 1-monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and pentadecanoic acid (in BW), whereas the LC-MS assay indicated a shift in the levels of niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being responsive to biodiesel exhaust exposure. Our findings demonstrate that the proposed multi-platform approach is useful for wide metabolomics screening of BW and BAL fluids and can facilitate elucidation of metabolites responsive to biodiesel exhaust exposure. Graphical Abstract Graphical abstract illustrating the study workflow. NMR Nuclear Magnetic Resonance, LC-TOFMS Liquid chromatography-Time Of Flight Mass Spectrometry, GC Gas Chromatography-Mass spectrometry.
Human exposure assessment resources on the World Wide Web.
Schwela, Dieter; Hakkinen, Pertti J
2004-05-20
Human exposure assessment is frequently noted as a weak link and bottleneck in the risk assessment process. Fortunately, the World Wide Web and Internet are providing access to numerous valuable sources of human exposure assessment-related information, along with opportunities for information exchange. Internet mailing lists are available as potential online help for exposure assessment questions, e.g. RISKANAL has several hundred members from numerous countries. Various Web sites provide opportunities for training, e.g. Web sites offering general human exposure assessment training include two from the US Environmental Protection Agency (EPA) and four from the US National Library of Medicine. Numerous other Web sites offer access to a wide range of exposure assessment information. For example, the (US) Alliance for Chemical Awareness Web site addresses direct and indirect human exposures, occupational exposures and ecological exposure assessments. The US EPA's Exposure Factors Program Web site provides a focal point for current information and data on exposure factors relevant to the United States. In addition, the International Society of Exposure Analysis Web site provides information about how this society seeks to foster and advance the science of exposure analysis. A major opportunity exists for risk assessors and others to broaden the level of exposure assessment information available via Web sites. Broadening the Web's exposure information could include human exposure factors-related information about country- or region-specific ranges in body weights, drinking water consumption, etc. along with residential factors-related information on air changeovers per hour in various types of residences. Further, country- or region-specific ranges on how various tasks are performed by various types of consumers could be collected and provided. Noteworthy are that efforts are underway in Europe to develop a multi-country collection of exposure factors and the European Commission is in the early stages of planning and developing a Web-accessible information system (EIS-ChemRisks) to serve as a single gateway to all major European initiatives on human exposure to chemicals contained and released from cleaning products, textiles, toys, etc.
Safety assessment for hair-spray resins: risk assessment based on rodent inhalation studies.
Carthew, Philip; Griffiths, Heather; Keech, Stephen; Hartop, Peter
2002-04-01
The methods involved in the safety assessment of resins used in hair-spray products have received little peer review, or debate in the published literature, despite their widespread use, in both hairdressing salons and the home. The safety assessment for these resins currently involves determining the type of lung pathology that can be caused in animal inhalation exposure studies, and establishing the no-observable-effect level (NOEL) for these pathologies. The likely human consumer exposure is determined by techniques that model the simulated exposure under "in use" conditions. From these values it is then possible to derive the likely safety factors for human exposure. An important part of this process would be to recognize the intrinsic differences between rodents and humans in terms of the respiratory doses that each species experiences during inhalation exposures, for the purpose of the safety assessment. Interspecies scaling factors become necessary when comparing the exposure doses experienced by rats, compared to humans, because of basic differences between species in lung clearance rates and the alveolar area in the lungs. The rodent inhalation data and modeled human exposure to Resin 6965, a resin polymer that is based on vinyl acetate, has been used to calculate the safety factor for human consumer exposure to this resin, under a range of "in use" exposure conditions. The use of this safety assessment process clearly demonstrates that Resin 6965 is acceptable for human consumer exposure under the conditions considered in this risk assessment.
Bone metabolism of male rats chronically exposed to cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina
2005-09-15
Recently, based on a female rat model of human exposure, we have reported that low-level chronic exposure to cadmium (Cd) has an injurious effect on the skeleton. The purpose of the current study was to investigate whether the exposure may also affect bone metabolism in a male rat model and to estimate the gender-related differences in the bone effect of Cd. Young male Wistar rats received drinking water containing 0, 1, 5, or 50 mg Cd/l for 12 months. The bone effect of Cd was evaluated using bone densitometry and biochemical markers of bone turnover. Renal handling of calcium (Ca)more » and phosphate, and serum concentrations of vitamin D metabolites, calcitonin, and parathormone were estimated as well. At treatment with 1 mg Cd/l, corresponding to the low environmental exposure in non-Cd-polluted areas, the bone mineral content (BMC) and density (BMD) at the femur and lumbar spine (L1-L5) and the total skeleton BMD did not differ compared to control. However, from the 6th month of the exposure, the Z score BMD indicated osteopenia in some animals and after 12 months the bone resorption very clearly tended to an increase. The rats' exposure corresponding to human moderate (5 mg Cd/l) and especially relatively high (50 mg Cd/l) exposure dose- and duration-dependently disturbed the processes of bone turnover and bone mass accumulation leading to formation of less dense than normal bone tissue. The effects were accompanied by changes in the serum concentration of calciotropic hormones and disorders in Ca and phosphate metabolism. It can be concluded that low environmental exposure to Cd may be only a subtle risk factor for skeletal demineralization in men. The results together with our previous findings based on an analogous model using female rats give clear evidence that males are less vulnerable to the bone effects of Cd compared to females.« less
Kastury, Farzana; Smith, Euan; Juhasz, Albert L
2017-01-01
Inhalation of metal(loid)s in ambient particulate matter (APM) represents a significant exposure pathway to humans. Although exposure assessment associated with this pathway is currently based on total metal(loid) content, a bioavailability (i.e. absorption in the systemic circulation) and/or bioaccessibility (i.e. solubility in simulated lung fluid) based approach may more accurately quantify exposure. Metal(loid) bioavailability-bioaccessibility assessment from APM is inherently complex and lacks consensus. This paper reviews the discrepancies that impede the adoption of a universal protocol for the assessment of inhalation bioaccessibility. Exposure assessment approaches for in-vivo bioavailability, in-vitro cell culture and in-vitro bioaccessibility (composition of simulated lungs fluid, physico-chemical and methodological considerations) are critiqued in the context of inhalation exposure refinement. An important limitation of bioavailability and bioaccessibility studies is the use of considerably higher than environmental metal(loid) concentration, which diminishing their relevance to human exposure scenarios. Similarly, individual metal(loid) studies have been criticised due to complexities of APM metal(loid) mixtures which may impart synergistic or antagonistic effects compared to single metal(loid) exposure. Although a number of different simulated lung fluid (SLF) compositions have been used in metal(loid) bioaccessibility studies, information regarding the comparative leaching efficiency among these different SLF and comparisons to in-vivo bioavailability data is lacking. In addition, the particle size utilised is often not representative of what is deposited in the lungs while assay parameters (extraction time, solid to liquid ratio, temperature and agitation) are often not biologically relevant. Research needs are identified in order to develop robust in-vitro bioaccessibility protocols for the assessment or prediction of metal(loid) bioavailability in APM for the refinement of inhalation exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
Moreira-Soto, Andrés; Carranza, Marco V; Taylor, Lizeth; Calderón-Arguedas, Olger; Hun, Laya; Troyo, Adriana
2016-07-01
The zoonotic transmission cycles of Rickettsia rickettsii and other spotted fever group (SFG) rickettsiae in Latin America have usually been associated with rural or sylvatic environments, although domestic dogs can be implicated in more populated settings. In this study, exposure of dogs to SFG rickettsiae in the Greater Metropolitan Area of Costa Rica was investigated. Dogs from sites associated with human cases and from dog shelters were evaluated by indirect immunofluorescence assay (IFA) using antigen of SFG rickettsiae. Rickettsia spp. were detected in ectoparasites by polymerase chain reaction (PCR). A total 18.5% (31/168) of dogs associated with human cases and 6.8% (11/161) of dogs in shelters had IgG end titers≥64 to Rickettsia spp. The odds of being seropositive were greater in dogs from areas associated with human cases when compared to shelters (OR: 3.2; 95% C.I: 1.5-5.6). Rhipicephalus sanguineus sensu lato (s. l.) was present in all sites associated with human cases. Rickettsia felis URRWXCal2 and R. felis-like RF2125 were detected in Ctenocephalides felis, and Rickettsia sp. IbR/CRC in Ixodes boliviensis. Results demonstrate that dogs from the main urban center of Costa Rica have been exposed to SFG rickettsiae, especially in areas with known human infection. Both human and animal health sectors must be aware of possible rickettsial diseases in urban areas, where dogs may also serve as sentinels for human infection. Copyright © 2016 Elsevier GmbH. All rights reserved.
Graessle, Dieter H; Dörr, Harald; Bennett, Alexander; Shapiro, Alla; Farese, Ann M; MacVittie, Thomas J; Meineke, Viktor
2015-11-01
Since controlled clinical studies on drug administration for the acute radiation syndrome are lacking, clinical data of human radiation accident victims as well as experimental animal models are the main sources of information. This leads to the question of how to compare and link clinical observations collected after human radiation accidents with experimental observations in non-human primate (NHP) models. Using the example of granulocyte counts in the peripheral blood following radiation exposure, approaches for adaptation between NHP and patient databases on data comparison and transformation are introduced. As a substitute for studying the effects of administration of granulocyte-colony stimulating factor (G-CSF) in human clinical trials, the method of mathematical modeling is suggested using the example of G-CSF administration to NHP after total body irradiation.
Systems exposure science has emerged from the traditional environmental exposure assessment framework and incorporates new concepts that link sources of human exposure to internal dose and metabolic processes. Because many human environmental studies are designed for retrospectiv...
Knowns and unknowns on burden of disease due to chemicals: a systematic review
2011-01-01
Background Continuous exposure to many chemicals, including through air, water, food, or other media and products results in health impacts which have been well assessed, however little is known about the total disease burden related to chemicals. This is important to know for overall policy actions and priorities. In this article the known burden related to selected chemicals or their mixtures, main data gaps, and the link to public health policy are reviewed. Methods A systematic review of the literature for global burden of disease estimates from chemicals was conducted. Global disease due to chemicals was estimated using standard methodology of the Global Burden of Disease. Results In total, 4.9 million deaths (8.3% of total) and 86 million Disability-Adjusted Life Years (DALYs) (5.7% of total) were attributable to environmental exposure and management of selected chemicals in 2004. The largest contributors include indoor smoke from solid fuel use, outdoor air pollution and second-hand smoke, with 2.0, 1.2 and 0.6 million deaths annually. These are followed by occupational particulates, chemicals involved in acute poisonings, and pesticides involved in self-poisonings, with 375,000, 240,000 and 186,000 annual deaths, respectively. Conclusions The known burden due to chemicals is considerable. This information supports decision-making in programmes having a role to play in reducing human exposure to toxic chemicals. These figures present only a number of chemicals for which data are available, therefore, they are more likely an underestimate of the actual burden. Chemicals with known health effects, such as dioxins, cadmium, mercury or chronic exposure to pesticides could not be included in this article due to incomplete data and information. Effective public health interventions are known to manage chemicals and limit their public health impacts and should be implemented at national and international levels. PMID:21255392
Caparrós, Toni; Alentorn-Geli, Eduard; Myer, Gregory D.; Capdevila, Lluís; Samuelsson, Kristian; Hamilton, Bruce; Rodas, Gil
2016-01-01
The objectives of this study were to determine the relationship among game performance, injury rate, and practice exposure in a professional male basketball team. A retroospective analysis of prospective collected data was conducted over seven consecutive seasons (2007/2008 to 2013/2014). Data collection included sports performance during competition (statistical evaluation), injury rate, and total exposure (games and practices). Over the surveillance period, 162 injuries (91 practice; 71 matches) occurred over 32,668 hours of exposure (556 games and 2005 practices). There was a strong positive correlation between: 1) exposure (total number of practices and hours of exposure) and the total number of injuries (r = 0.77; p = 0.04); 2) exposure (total hours of exposure and total hours of practice exposure) and performance (total team ranking) (r = 0.77 and p = 0.04, and r = 0.8 and p = 0.03, respectively); and 3) total number of injuries and performance (total team ranking) (r = 0.84; p = 0.02). While increasing practice and competition time is related to greater team performance, it also increases the number of injuries. However, higher injury rates were not associated with worse overall team performance. Efforts to reduce high-risk activity during practice, optimally replaced with injury prevention training, might help to reduce injury risk. Key points Increasing practice and competition time is related to greater team performance. Increasing practice and competition time increases the number of injuries. Higher injury rates were not associated with worse overall team performance. PMID:27803617
Guide to the evaluation of human exposure to noise from large wind turbines
NASA Technical Reports Server (NTRS)
Stephens, D. G.; Shepherd, K. P.; Hubbard, H. H.; Grosveld, F.
1982-01-01
Guidance for evaluating human exposure to wind turbine noise is provided and includes consideration of the source characteristics, the propagation to the receiver location, and the exposure of the receiver to the noise. The criteria for evaluation of human exposure are based on comparisons of the noise at the receiver location with the human perception thresholds for wind turbine noise and noise-induced building vibrations in the presence of background noise.
Dionisio, Kathie L; Nolte, Christopher G; Spero, Tanya L; Graham, Stephen; Caraway, Nina; Foley, Kristen M; Isaacs, Kristin K
2017-05-01
The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O 3 ) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O 3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O 3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O 3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O 3 are much larger than the impacts of changing demographics. These results indicate the potential for future changes in O 3 exposure as a result of changes in climate that could impact human health.
The consequence of phototherapy exposure on oxidative stress status of expressed human milk.
Unal, Sezin; Demirel, Nihal; Yaprak Sul, Deniz; Ulubas Isik, Dilek; Erol, Sara; Neselioglu, Salim; Erel, Ozcan; Bas, Ahmet Yagmur
2017-09-04
There exists evidence that phototherapy can disturb the oxidant/antioxidant balance in favor of oxidants. If phototherapy is continued during tube feeding in preterms, expressed human milk is subjected to phototherapy lights for about 20 min per feeding. We aimed to investigate the effects of phototherapy lights on oxidative/antioxidative status of expressed human milk. Milk samples of 50 healthy mothers were grouped as control and phototherapy and exposed to 20 min of day-light and phototherapy light, respectively. Total antioxidant capacity (mmol-Trolox equiv/L) and total oxidant status (mmol-H 2 O 2 /L) in expressed human milk samples were measured. Levels of antioxidant capacity of the expressed human milks in the phototherapy group were lower than those of the control group [mmol-Trolox equiv/L; median (interquartile-range): 1.30 (0.89-1.65) and 1.77 (1.51-2.06), p: < .001]. Levels of oxidant status were similar in both groups. We demonstrated that phototherapy decreased antioxidant capacity of expressed human milk without any alteration in oxidative status. We think that this observation is important for the care of very low birth weighted infants who have limited antioxidant capacity and are vulnerable to oxidative stress. It may be advisable either to turn off the phototherapy or cover the tube and syringe to preserve antioxidant capacity of human milk during simultaneous tube feeding and phototherapy treatment.
Koestel, Zoe L; Backus, Robert C; Tsuruta, Kaoru; Spollen, William G; Johnson, Sarah A; Javurek, Angela B; Ellersieck, Mark R; Wiedmeyer, Charles E; Kannan, Kurunthachalam; Xue, Jingchuan; Bivens, Nathan J; Givan, Scott A; Rosenfeld, Cheryl S
2017-02-01
Bisphenol A (BPA) is a widely present endocrine disruptor chemical found in many household items. Moreover, this chemical can bioaccumulate in various terrestrial and aquatic sources; thereby ensuring continual exposure of animals and humans. For most species, including humans, diet is considered the primary route of exposure. However, there has been little investigation whether commercial-brands of dog foods contain BPA and potential health ramifications of BPA-dietary exposure in dogs. We sought to determine BPA content within dog food, whether short-term consumption of these diets increases serum concentrations of BPA, and potential health consequences, as assessed by potential hematological, serum chemistry, cortisol, DNA methylation, and gut microbiome changes, in dogs associated with short-term dietary exposure to BPA. Fourteen healthy privately-owned dogs were used in this study. Blood and fecal samples were collected prior to dogs being placed for two-weeks on one of two diets (with one considered to be BPA-free), and blood and fecal samples were collected again. Serum/plasma samples were analyzed for chemistry and hematology profiles, cortisol concentrations, 5-methylcytosine in lymphocytes, and total BPA concentrations. Fecal samples were used for microbiome assessments. Both diets contained BPA, and after two-weeks of being on either diet, dogs had a significant increase in circulating BPA concentrations (pre-samples=0.7±0.15ng/mL, post-samples=2.2±0.15ng/mL, p<0.0001). Elevated BPA concentrations positively correlated with increased plasma bicarbonate concentrations and associated with fecal microbiome alterations. Short-term feeding of canned dog food increased circulating BPA concentrations in dogs comparable to amounts detected in humans, and greater BPA concentrations were associated with serum chemistry and microbiome changes. Dogs, who share our internal and external environments with us, are likely excellent indicators of potential human health concerns to BPA and other environmental chemicals. These findings may also have relevance to aquatic and terrestrial wildlife. Copyright © 2016 Elsevier B.V. All rights reserved.
Medications as a source of human exposure to phthalates.
Hauser, Russ; Duty, Susan; Godfrey-Bailey, Linda; Calafat, Antonia M
2004-01-01
Phthalates are a group of multifunctional chemicals used in consumer and personal care products, plastics, and medical devices. Laboratory studies show that some phthalates are reproductive and developmental toxicants. Recently, human studies have shown measurable levels of several phthalates in most of the U.S. general population. Despite their widespread use and the consistent toxicologic data on phthalates, information is limited on sources and pathways of human exposure to phthalates. One potential source of exposure is medications. The need for site-specific dosage medications has led to the use of enteric coatings that allow the release of the active ingredients into the small intestine or in the colon. The enteric coatings generally consist of various polymers that contain plasticizers, including triethyl citrate, dibutyl sebacate, and phthalates such as diethyl phthalate (DEP) and dibutyl phthalate (DBP). In this article we report on medications as a potential source of exposure to DBP in a man who took Asacol [active ingredient mesalamine (mesalazine)] for the treatment of ulcerative colitis. In a spot urine sample from this man collected 3 months after he started taking Asacol, the concentration of monobutyl phthalate, a DBP metabolite, was 16,868 ng/mL (6,180 micro g/g creatinine). This concentration was more than two orders of magnitude higher than the 95th percentile for males reported in the 1999-2000 National Health and Nutrition Examination Survey (NHANES). The patient's urinary concentrations of monoethyl phthalate (443.7 ng/mL, 162.6 micro g/g creatinine), mono-2-ethylhexyl phthalate (3.0 ng/mL, 1.1 micro g/g creatinine), and monobenzyl phthalate (9.3 ng/mL, 3.4 micro g/g creatinine) were unremarkable compared with the NHANES 1999-2000 values. Before this report, the highest estimated human exposure to DBP was more than two orders of magnitude lower than the no observable adverse effect level from animal studies. Further research is necessary to determine the proportional contribution of medications, as well as personal care and consumer products, to a person's total phthalate burden. PMID:15121520
Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USA.
Seong, Jeong C; Park, Tae H; Ko, Joon H; Chang, Seo I; Kim, Minho; Holt, James B; Mehdi, Mohammed R
2011-11-01
Environmental noise is a major source of public complaints. Noise in the community causes physical and socio-economic effects and has been shown to be related to adverse health impacts. Noise, however, has not been actively researched in the United States compared with the European Union countries in recent years. In this research, we aimed at modeling road traffic noise and analyzing human exposure in Fulton County, Georgia, United States. We modeled road traffic noise levels using the United States Department of Transportation Federal Highway Administration Traffic Noise Model implemented in SoundPLAN®. After analyzing noise levels with raster, vector and façade maps, we estimated human exposure to high noise levels. Accurate digital elevation models and building heights were derived from Light Detection And Ranging survey datasets and building footprint boundaries. Traffic datasets were collected from the Georgia Department of Transportation and the Atlanta Regional Commission. Noise level simulation was performed with 62 computers in a distributed computing environment. Finally, the noise-exposed population was calculated using geographic information system techniques. Results show that 48% of the total county population [N=870,166 residents] is potentially exposed to 55 dB(A) or higher noise levels during daytime. About 9% of the population is potentially exposed to 67 dB(A) or higher noises. At nighttime, 32% of the population is expected to be exposed to noise levels higher than 50 dB(A). This research shows that large-scale traffic noise estimation is possible with the help of various organizations. We believe that this research is a significant stepping stone for analyzing community health associated with noise exposures in the United States. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mercury Biogeochemical Cycling in the Ocean and Policy Implications
Mason, Robert P.; Choi, Anna L.; Fitzgerald, William F.; Hammerschmidt, Chad R.; Lamborg, Carl H.; Soerensen, Anne L.; Sunderland, Elsie M.
2012-01-01
Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as internal production of monomethylmercury (CH3Hg) and dimethylmercury ((CH3)2Hg). Impacts of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the water column and how this influences bioaccumulation into ocean food chains are also discussed. Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to open ocean systems, most of the CH3Hg accumulating in ocean fish is derived from in situ production within the upper waters (<1000 m). An analysis of the available data suggests that concentrations in the various ocean basins are changing at different rates due to differences in atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory control strategies. Migratory pelagic fish such as tuna and swordfish are an important component of CH3Hg exposure for many human populations and therefore any reduction in anthropogenic releases of Hg and associated deposition to the ocean will result in a decline in human exposure and risk. PMID:22559948
Mercury biogeochemical cycling in the ocean and policy implications.
Mason, Robert P; Choi, Anna L; Fitzgerald, William F; Hammerschmidt, Chad R; Lamborg, Carl H; Soerensen, Anne L; Sunderland, Elsie M
2012-11-01
Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as internal production of monomethylmercury (CH₃Hg) and dimethylmercury ((CH₃)₂Hg). Impacts of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the water column and how this influences bioaccumulation into ocean food chains are also discussed. Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to open ocean systems, most of the CH₃Hg accumulating in ocean fish is derived from in situ production within the upper waters (<1000 m). An analysis of the available data suggests that concentrations in the various ocean basins are changing at different rates due to differences in atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory control strategies. Migratory pelagic fish such as tuna and swordfish are an important component of CH₃Hg exposure for many human populations and therefore any reduction in anthropogenic releases of Hg and associated deposition to the ocean will result in a decline in human exposure and risk. Copyright © 2012 Elsevier Inc. All rights reserved.
Habazettl, H; Stahn, Alexander; Nitsche, Andrea; Nordine, Michael; Pries, A R; Gunga, H-C; Opatz, O
2016-01-01
We hypothesized that lower body microvessels are particularly challenged during exposure to gravity and hypergravity leading to failure of resistance vessels to withstand excessive transmural pressure during hypergravitation and gravitation-dependent microvascular blood pooling. Using a short-arm human centrifuge (SAHC), 12 subjects were exposed to +1Gz, +2Gz and +1Gz, all at foot level, for 4 min each. Laser Doppler imaging and near-infrared spectroscopy were used to measure skin perfusion and tissue haemoglobin concentrations, respectively. Pretibial skin perfusion decreased by 19% during +1Gz and remained at this level during +2Gz. In the dilated area, skin perfusion increased by 24 and 35% during +1Gz and +2Gz, respectively. In the upper arm, oxygenated haemoglobin (Hb) decreased, while deoxy Hb increased with little change in total Hb. In the calf muscle, O2Hb and deoxy Hb increased, resulting in total Hb increase by 7.5 ± 1.4 and 26.6 ± 2.6 µmol/L at +1Gz and +2Gz, respectively. The dynamics of Hb increase suggests a fast and a slow component. Despite transmural pressures well beyond the upper myogenic control limit, intact lower body resistance vessels withstand these pressures up to +2Gz, suggesting that myogenic control may contribute only little to increased vascular resistance. The fast component of increasing total Hb indicates microvascular blood pooling contributing to soft tissue capacitance. Future research will have to address possible alterations of these acute adaptations to gravity after deconditioning by exposure to micro-g.
Thermometry, calorimetry, and mean body temperature during heat stress.
Kenny, Glen P; Jay, Ollie
2013-10-01
Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.
Hardell, Lennart; Carlberg, Michael; Koppel, Tarmo; Hedendahl, Lena
2017-04-01
Exposure to radiofrequency (RF) radiation was classified as a possible human carcinogen, Group 2B, by the International Agency for Research on Cancer at WHO in 2011. The exposure pattern is changing due to the rapid development of technology. Outdoor RF radiation level was measured during five tours in Stockholm Old Town in April, 2016 using the EME Spy 200 exposimeter with 20 predefined frequencies. The results were based on 10,437 samples in total. The mean level of the total RF radiation was 4,293 µW/m 2 (0.4293 µW/cm 2 ). The highest mean levels were obtained for global system for mobile communications (GSM) + universal mobile telecommunications system (UMTS) 900 downlink and long-term evolution (LTE) 2600 downlink (1,558 and 1,265 µW/m 2 , respectively). The town squares displayed highest total mean levels, with the example of Järntorget square with 24,277 µW/m 2 (min 257, max 173,302 µW/m 2 ). These results were in large contrast to areas with lowest total exposure, such as the Supreme Court, with a mean level of 404 µW/m 2 (min 20.4, max 4,088 µW/m 2 ). In addition, measurements in the streets surrounding the Royal Castle were lower than the total for the Old Town, with a mean of 756 µW/m 2 (min 0.3, max 50,967 µW/m 2 ). The BioInitiative 2012 Report defined the scientific benchmark for possible health risks as 30-60 µW/m 2 . Our results of outdoor RF radiation exposure at Stockholm Old Town are significantly above that level. The mean exposure level at Järntorget square was 405-fold higher than 60 µW/m 2 . Our results were below the reference level on 10,000,000 µW/m 2 established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), which, however, are less credible, as they do not take non-thermal effects into consideration and are not based on sound scientific evaluation. Our highest measured mean level at Järntorget was 0.24% of the ICNIRP level. A number of studies have found adverse, non-thermal (no measurable temperature increase) health effects far below the ICNIRP guidelines.
Hardell, Lennart; Carlberg, Michael; Koppel, Tarmo; Hedendahl, Lena
2017-01-01
Exposure to radiofrequency (RF) radiation was classified as a possible human carcinogen, Group 2B, by the International Agency for Research on Cancer at WHO in 2011. The exposure pattern is changing due to the rapid development of technology. Outdoor RF radiation level was measured during five tours in Stockholm Old Town in April, 2016 using the EME Spy 200 exposimeter with 20 predefined frequencies. The results were based on 10,437 samples in total. The mean level of the total RF radiation was 4,293 µW/m2 (0.4293 µW/cm2). The highest mean levels were obtained for global system for mobile communications (GSM) + universal mobile telecommunications system (UMTS) 900 downlink and long-term evolution (LTE) 2600 downlink (1,558 and 1,265 µW/m2, respectively). The town squares displayed highest total mean levels, with the example of Järntorget square with 24,277 µW/m2 (min 257, max 173,302 µW/m2). These results were in large contrast to areas with lowest total exposure, such as the Supreme Court, with a mean level of 404 µW/m2 (min 20.4, max 4,088 µW/m2). In addition, measurements in the streets surrounding the Royal Castle were lower than the total for the Old Town, with a mean of 756 µW/m2 (min 0.3, max 50,967 µW/m2). The BioInitiative 2012 Report defined the scientific benchmark for possible health risks as 30–60 µW/m2. Our results of outdoor RF radiation exposure at Stockholm Old Town are significantly above that level. The mean exposure level at Järntorget square was 405-fold higher than 60 µW/m2. Our results were below the reference level on 10,000,000 µW/m2 established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), which, however, are less credible, as they do not take non-thermal effects into consideration and are not based on sound scientific evaluation. Our highest measured mean level at Järntorget was 0.24% of the ICNIRP level. A number of studies have found adverse, non-thermal (no measurable temperature increase) health effects far below the ICNIRP guidelines. PMID:28413651
40 CFR 158.2270 - Post-application exposure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and the human activities associated with the pesticide's use pattern can lead to potential adverse...) Occupational human post-application or bystander exposure to residues of antimicrobial pesticides could occur... human post-application or bystander exposure to residues of antimicrobial pesticides could occur...
40 CFR 158.2270 - Post-application exposure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and the human activities associated with the pesticide's use pattern can lead to potential adverse...) Occupational human post-application or bystander exposure to residues of antimicrobial pesticides could occur... human post-application or bystander exposure to residues of antimicrobial pesticides could occur...