[Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].
Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia
2014-04-01
The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.
Predictors of Energy Compensation during Exercise Interventions: A Systematic Review
Riou, Marie-Ève; Jomphe-Tremblay, Simon; Lamothe, Gilles; Stacey, Dawn; Szczotka, Agnieszka; Doucet, Éric
2015-01-01
Weight loss from exercise-induced energy deficits is usually less than expected. The objective of this systematic review was to investigate predictors of energy compensation, which is defined as body energy changes (fat mass and fat-free mass) over the total amount of exercise energy expenditure. A search was conducted in multiple databases without date limits. Of 4745 studies found, 61 were included in this systematic review with a total of 928 subjects. The overall mean energy compensation was 18% ± 93%. The analyses indicated that 48% of the variance of energy compensation is explained by the interaction between initial fat mass, age and duration of exercise interventions. Sex, frequency, intensity and dose of exercise energy expenditure were not significant predictors of energy compensation. The fitted model suggested that for a shorter study duration, lower energy compensation was observed in younger individuals with higher initial fat mass (FM). In contrast, higher energy compensation was noted for younger individuals with lower initial FM. From 25 weeks onward, energy compensation was no longer different for these predictors. For studies of longer duration (about 80 weeks), the energy compensation approached 84%. Lower energy compensation occurs with short-term exercise, and a much higher level of energy compensation accompanies long-term exercise interventions. PMID:25988763
Norcross, Marc F; Blackburn, J Troy; Goerger, Benjamin M; Padua, Darin A
2010-12-01
Greater total energy absorption by the lower extremity musculature during landing may reduce stresses placed on capsuloligamentous tissues with differences in joint contributions to energy absorption potentially affecting anterior cruciate ligament injury risk. However, the relationships between energy absorption and prospectively identified biomechanical factors associated with non-contact anterior cruciate ligament injury have yet to be demonstrated. Sagittal plane total, hip, knee and ankle energy absorption, and peak vertical ground reaction force, anterior tibial shear force, knee flexion and knee valgus angles, and internal hip extension and knee varus moments were measured in 27 individuals (14 females, 13 males) performing double leg jump landings. Correlation coefficients assessed the relationships between energy absorption during three time intervals (initial impact phase, terminal phase, and total landing) and biomechanical factors related to anterior cruciate ligament injury. More favorable values of biomechanical factors related to non-contact anterior cruciate ligament injury were associated with: 1) Lesser total (R(2)=0.178-0.558), hip (R(2)=0.229-0.651) and ankle (R(2)=0.280), but greater knee (R(2)=0.147) energy absorption during the initial impact phase; 2) Greater total (R(2)=0.170-0.845), hip (R(2)=0.599), knee (R(2)=0.236-0.834), and ankle (R(2)=0.276) energy absorption during the terminal phase of landing; and 3) Greater knee (R(2)=0.158-0.709), but lesser hip (R(2)=0.309) and ankle (R(2)=0.210-0.319) energy absorption during the total landing period. These results suggest that biomechanical factors related to anterior cruciate ligament injury are influenced by both the magnitude and timing of lower extremity energy absorption during landing. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Romanova, Vanya; Hense, Andreas
2017-08-01
In our study we use the anomaly transform, a special case of ensemble transform method, in which a selected set of initial oceanic anomalies in space, time and variables are defined and orthogonalized. The resulting orthogonal perturbation patterns are designed such that they pick up typical balanced anomaly structures in space and time and between variables. The metric used to set up the eigen problem is taken either as the weighted total energy with its zonal, meridional kinetic and available potential energy terms having equal contributions, or the weighted ocean heat content in which a disturbance is applied only to the initial temperature fields. The choices of a reference state for defining the initial anomalies are such that either perturbations on seasonal timescales and or on interannual timescales are constructed. These project a-priori only the slow modes of the ocean physical processes, such that the disturbances grow mainly in the Western Boundary Currents, in the Antarctic Circumpolar Current and the El Nino Southern Oscillation regions. An additional set of initial conditions is designed to fit in a least square sense data from global ocean reanalysis. Applying the AT produced sets of disturbances to oceanic initial conditions initialized by observations of the MPIOM-ESM coupled model on T63L47/GR15 resolution, four ensemble and one hind-cast experiments were performed. The weighted total energy norm is used to monitor the amplitudes and rates of the fastest growing error modes. The results showed minor dependence of the instabilities or error growth on the selected metric but considerable change due to the magnitude of the scaling amplitudes of the perturbation patterns. In contrast to similar atmospheric applications, we find an energy conversion from kinetic to available potential energy, which suggests a different source of uncertainty generation in the ocean than in the atmosphere mainly associated with changes in the density field.
Total energy management for nursing homes and other long-term care institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; andmore » Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)« less
A mechanical energy analysis of gait initiation
NASA Technical Reports Server (NTRS)
Miller, C. A.; Verstraete, M. C.
1999-01-01
The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.
NASA Technical Reports Server (NTRS)
Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.
1985-01-01
Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.
EPA RE-Powering Mapper Completed Installations
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. Using publically available information, RE-Powering maintains a list of completed renewable energy installations on contaminated sites and landfills. To date, the RE-Powering Initiative has identified 179 renewable energy installations on 171 contaminated lands, landfills, and mine sites, with a cumulative installed capacity of just over 1,124 megawatts (MW) and consistent growth in total installations since the inception of the RE-Powering Initiative. This dataset is current as of April 2016.
Changes in the Cost of Energy in One State's School Districts. Issues & Answers. REL 2010-No. 088
ERIC Educational Resources Information Center
Cymrot, Donald J.; Martinez, Miguel; Jones, Joseph F.
2010-01-01
To support the work of Tennessee's Energy Efficient Schools Initiative (EESI) Council, this report describes data on energy expenditures in school districts for 2002/03-2007/08. Energy expenditures rose from about 2.6 percent to about 3.0 percent of total expenditures over the period, with some differences in the mix of energy types and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuejuan; Yuan, Ping; Cen, Jianyong
2014-03-15
Using the spectra of a cloud-to-ground (CG) lightning flash with multiple return strokes and combining with the synchronous radiated electrical field information, the linear charge density, the channel radius, the energy per unit length, the thermal energy, and the energy of dissociation and ionization in discharge channel are calculated with the aid of an electrodynamic model of lightning. The conclusion that the initial radius of discharge channel is determined by the duration of the discharge current is confirmed. Moreover, the correlativity of several parameters has been analyzed first. The results indicate that the total intensity of spectra is positive correlatedmore » to the channel initial radius. The ionization and thermal energies have a linear relationship, and the dissociation energy is correlated positively to the ionization and thermal energies, the energy per unit length is in direct proportion to the square of initial radius in different strokes of one CG lightning.« less
Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk.
Zhang, Tong; Mao, Chunlan; Zhai, Ningning; Wang, Xiaojiao; Yang, Gaihe
2015-01-01
The contradictions between the increasing energy demand and decreasing fossil fuels are making the use of renewable energy the key to the sustainable development of energy in the future. Biogas, a renewable clean energy, can be obtained by the anaerobic fermentation of manure waste and agricultural straw. This study examined the initial pH value had obvious effect on methane production and the process in the thermophilic anaerobic co-digestion. Five different initial pH levels with three different manure ratios were tested. All digesters in different initial pH showed a diverse methane production after 35 days. The VFA/alkalinity ratio of the optimum reaction condition for methanogens activity was in the range of 0.1-0.3 and the optimal condition that at the 70% dung ratio and initial pH 6.81, was expected to achieve maximum total biogas production (146.32 mL/g VS). Copyright © 2014 Elsevier Ltd. All rights reserved.
The effect of low velocity impact in the strength characteristics of composite materials laminates
NASA Technical Reports Server (NTRS)
Liebowitz, H.
1983-01-01
The nonlinear vibration response of a double cantilevered beam subjected to pulse loading over a central sector is studied. The initial response is generated in detail to ascertain the energetics of the response. The total energy is used as a gauge of the stability and accuracy of the solution. It is shown that to obtain accurate and stable initial solutions an extremely high spatial and time resolution is required. This requirement was only evident through an examination of the energy of the system. It is proposed, therefore, to use the total energy of the system as a necessary stability and accuracy criterion for the nonlinear response of conservative systems. The results also demonstrate that even for moderate nonlinearities, the effects of membrane forces have a significant influence on the system.
Horner, Neilann K; Patterson, Ruth E; Neuhouser, Marian L; Lampe, Johanna W; Beresford, Shirley A; Prentice, Ross L
2002-10-01
Errors in self-reported dietary intake threaten inferences from studies relying on instruments such as food-frequency questionnaires (FFQs), food records, and food recalls. The objective was to quantify the magnitude, direction, and predictors of errors associated with energy intakes estimated from the Women's Health Initiative FFQ. Postmenopausal women (n = 102) provided data on sociodemographic and psychosocial characteristics that relate to errors in self-reported energy intake. Energy intake was objectively estimated as total energy expenditure, physical activity expenditure, and the thermic effect of food (10% addition to other components of total energy expenditure). Participants underreported energy intake on the FFQ by 20.8%; this error trended upward with younger age (P = 0.07) and social desirability (P = 0.09) but was not associated with body mass index (P = 0.95). The correlation coefficient between reported energy intake and total energy expenditure was 0.24; correlations were higher among women with less education, higher body mass index, and greater fat-free mass, social desirability, and dissatisfaction with perceived body size (all P < 0.10). Energy intake is generally underreported, and both the magnitude of the error and the association of the self-reporting with objectively estimated intake appear to vary by participant characteristics. Studies relying on self-reported intake should include objective measures of energy expenditure in a subset of participants to identify person-specific bias within the study population for the dietary self-reporting tool; these data should be used to calibrate the self-reported data as an integral aspect of diet and disease association studies.
NASA Astrophysics Data System (ADS)
Gim, Yongwan; Kim, Wontae
2018-01-01
In this presentation, we are going to explain the thermodynamic origin of warm inflation scenarios by using the effetive Stefan-Boltzmann law. In the warm inflation scenarios, radiation always exists to avoid the graceful exit problem, for which the radiation energy density should be assumed to be finite at the starting point of the warm inflation. To find out the origin of the non-vanishing initial radiation energy density, we derive an effective Stefan-Boltzmann law by considering the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law successfully shows where the initial radiation energy density is thermodynamically originated from. And by using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation. This proceeding is based on Ref. [1
Theoretical L-shell Coster-Kronig energies 11 or equal to z or equal to 103
NASA Technical Reports Server (NTRS)
Chen, M. H.; Crasemann, B.; Huang, K. N.; Aoyagi, M.; Mark, H.
1976-01-01
Relativistic relaxed-orbital calculations of L-shell Coster-Kronig transition energies have been performed for all possible transitions in atoms with atomic numbers. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order approximation to the local approximation was thus included. Quantum-electrodynamic corrections were made. Each transition energy was computed as the difference between results of separate self-consistent-field calculations for the initial, singly ionized state and the final two-hole state. The following quantities are listed: total transition energy, 'electric' (Dirac-Hartree-Fock-Slater) contribution, magnetic and retardation contributions, and contributions due to vacuum polarization and self energy.
Terminal energy distribution of blast waves from bursting spheres
NASA Technical Reports Server (NTRS)
Adamczyk, A. A.; Strehlow, R. A.
1977-01-01
The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.
Total spectral distributions from Hawking radiation
NASA Astrophysics Data System (ADS)
Broda, Bogusław
2017-11-01
Taking into account the time dependence of the Hawking temperature and finite evaporation time of the black hole, the total spectral distributions of the radiant energy and of the number of particles have been explicitly calculated and compared to their temporary (initial) blackbody counterparts (spectral exitances).
Efficiency of the Inertia Friction Welding Process and Its Dependence on Process Parameters
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Mahaffey, D. W.; Tung, D. J.; Zhang, W.; Semiatin, S. L.
2017-07-01
It has been widely assumed, but never proven, that the efficiency of the inertia friction welding (IFW) process is independent of process parameters and is relatively high, i.e., 70 to 95 pct. In the present work, the effect of IFW parameters on process efficiency was established. For this purpose, a series of IFW trials was conducted for the solid-state joining of two dissimilar nickel-base superalloys (LSHR and Mar-M247) using various combinations of initial kinetic energy ( i.e., the total weld energy, E o), initial flywheel angular velocity ( ω o), flywheel moment of inertia ( I), and axial compression force ( P). The kinetics of the conversion of the welding energy to heating of the faying sample surfaces ( i.e., the sample energy) vs parasitic losses to the welding machine itself were determined by measuring the friction torque on the sample surfaces ( M S) and in the machine bearings ( M M). It was found that the rotating parts of the welding machine can consume a significant fraction of the total energy. Specifically, the parasitic losses ranged from 28 to 80 pct of the total weld energy. The losses increased (and the corresponding IFW process efficiency decreased) as P increased (at constant I and E o), I decreased (at constant P and E o), and E o (or ω o) increased (at constant P and I). The results of this work thus provide guidelines for selecting process parameters which minimize energy losses and increase process efficiency during IFW.
Schutz, Yves; Byrne, Nuala M.; Dulloo, Abdul; Hills, Andrew P.
2014-01-01
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the ‘efficiency’ with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty. PMID:24457473
Schutz, Yves; Byrne, Nuala M; Dulloo, Abdul; Hills, Andrew P
2014-01-01
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty. © 2014 S. Karger GmbH, Freiburg.
MITHRAS: A Program of Simultaneous Radar Observations of the High-Latitude Auroral Zone.
1982-11-01
Latitude * and Time for Chatanika ..... ................. ... 38 111-5 Cross Polar Cap Potential Versus Solar-Wind Energy Parameter...49 vii 9 III-10 Scatter Plot of Pedersen Conductivities as a Function of Average Energy for Two Levels of Total...Precipitated Energy ....... ....... ......... .. 51 -IIl-1 For Initial Time and Steady State, (a) Latitudinal Profile of the Meridional Electric-Field
NASA Astrophysics Data System (ADS)
Mirtadjieva, K. T.; Nuritdinov, S. N.; Ruzibaev, J. K.; Khalid, Muhammad
2011-06-01
This is an examination of the gravitational instability of the major large-scale perturbation modes for a fixed value of the azimuthal wave number m = 1 in nonlinearly nonstationary disk models with isotropic and anisotropic velocity diagrams for the purpose of explaining the displacement of the nucleus away from the geometric center (lopsidedness) in spiral galaxies. Nonstationary analogs of the dispersion relations for these perturbation modes are obtained. Critical diagrams of the initial virial ratio are constructed from the rotation parameters for the models in each case. A comparative analysis is made of the instability growth rates for the major horizontal perturbation modes in terms of two models, and it is found that, on the average, the instability growth rate for the m = 1 mode with a radial wave number N = 3 almost always has a clear advantage relative to the other modes. An analysis of these results shows that if the initial total kinetic energy in an isotropic model is no more than 12.4% of the initial potential energy, then, regardless of the value of the rotation parameter Ω, an instability of the radial motions always occurs and causes the nucleus to shift away from the geometrical center. This instability is aperiodic when Ω = 0 and is oscillatory when Ω ≠ 0 . For the anisotropic model, this kind of structure involving the nucleus develops when the initial total kinetic energy in the model is no more than 30.6% of the initial potential energy.
Metabolic fate of yolk fatty acids in the developing king penguin embryo.
Groscolas, René; Fréchard, Françoise; Decrock, Frédéric; Speake, Brian K
2003-10-01
This study examines the metabolic fate of total and individual yolk fatty acids (FA) during the embryonic development of the king penguin, a seabird characterized by prolonged incubation (53 days) and hatching (3 days) periods, and a high n-3/n-6 polyunsaturated FA ratio in the egg. Of the approximately 15 g of total FA initially present in the egg lipid, 87% was transferred to the embryo by the time of hatching, the remaining 13% being present in the internalized yolk sac of the chick. During the whole incubation, 83% of the transferred FA was oxidized for energy, with only 17% incorporated into embryo lipids. Prehatching (days 0-49), the fat stores (triacylglycerol) accounted for 58% of the total FA incorporated into embryo lipid. During hatching (days 49-53), 40% of the FA of the fat stores was mobilized, the mobilization of individual FA being nonselective. At hatch, 53% of the arachidonic acid (20:4n-6) of the initial yolk had been incorporated into embryo lipid compared with only 15% of the total FA and 17-24% of the various n-3 polyunsaturated FA. Similarly, only 32% of the yolk's initial content of 20:4n-6 was oxidized for energy during development compared with 72% of the total FA and 58-66% of the n-3 polyunsaturated FA. The high partitioning of yolk FA toward oxidization and the intense mobilization of fat store FA during hatching most likely reflect the high energy cost of the long incubation and hatching periods of the king penguin. The preferential partitioning of 20:4n-6 into the structural lipid of the embryo in the face of its low content in the yolk may reflect the important roles of this FA in tissue function.
Momentum and Heat Flux Measurements in the Exhaust of VASIMR Using Helium Propellant
NASA Technical Reports Server (NTRS)
Chavers, D. Gregory
2002-01-01
Electromagnetic thrusters typically use electric and magnetic fields to accelerate and exhaust plasma through interactions with the charged particles in the plasma. The energy required to create the plasma, i.e. ionization energy, is potential energy between the electron and ion. This potential energy is typically lost since it is not recovered as the plasma is exhausted and is known as frozen flow loss. If the frozen flow energy is a small fraction of the total plasma energy, this frozen flow loss may be negligible. However, if the frozen flow energy is a major fraction of the total plasma energy, this loss can severely reduce the energy efficiency of the thruster. Recovery and utilization of this frozen flow energy can improve the energy efficiency of a thruster during low specific impulse operating regimes when the ionization energy is a large fraction of the total plasma energy. This paper quantifies the recovery of the frozen flow energy, i.e. recombination energy, via the process of surface recombination for helium. To accomplish this task the momentum flux and heat flux of the plasma flow were measured and compared to calculated values from electrostatic probe data. This information was used to deduce the contribution of recombination energy to the total heat flux on a flat plate as well as to characterize the plasma conditions. Helium propellant was investigated initially due to its high ionization potential and hence available recombination energy.
Porous elastic system with nonlinear damping and sources terms
NASA Astrophysics Data System (ADS)
Freitas, Mirelson M.; Santos, M. L.; Langa, José A.
2018-02-01
We study the long-time behavior of porous-elastic system, focusing on the interplay between nonlinear damping and source terms. The sources may represent restoring forces, but may also be focusing thus potentially amplifying the total energy which is the primary scenario of interest. By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that such unique solutions depend continuously on the initial data. Under some restrictions on the parameters, we also prove that every weak solution to our system blows up in finite time, provided the initial energy is negative and the sources are more dominant than the damping in the system. Additional results are obtained via careful analysis involving the Nehari Manifold. Specifically, we prove the existence of a unique global weak solution with initial data coming from the "good" part of the potential well. For such a global solution, we prove that the total energy of the system decays exponentially or algebraically, depending on the behavior of the dissipation in the system near the origin. We also prove the existence of a global attractor.
The Human Genome Initiative of the Department of Energy
DOE R&D Accomplishments Database
1988-01-01
The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.
Fayette County Better Buildings Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capella, Arthur
The Fayette County Better Buildings Initiative represented a comprehensive and collaborative approach to promoting and implementing energy efficiency improvements. The initiative was designed to focus on implementing energy efficiency improvements in residential units, while simultaneously supporting general marketing of the benefits of implementing energy efficiency measures. The ultimate goal of Fayette County’s Better Buildings Initiative was to implement a total of 1,067 residential energy efficiency retrofits with a minimum 15% estimated energy efficiency savings per unit. Program partners included: United States Department of Energy, Allegheny Power, and Private Industry Council of Westmoreland-Fayette, Fayette County Redevelopment Authority, and various local partners.more » The program was open to any Fayette County residents who own their home and meet the prequalifying conditions. The level of assistance offered depended upon household income and commitment to undergo a BPI – Certified Audit and implement energy efficiency measures, which aimed to result in at least a 15% reduction in energy usage. The initiative was designed to focus on implementing energy efficiency improvements in residential units, while simultaneously supporting general marketing of the benefits of implementing energy efficiency measures. Additionally, the program had components that involved recruitment and training for employment of persons in the energy sector (green jobs), as well as marketing and implementation of a commercial or community facilities component. The residential component of Fayette County’s Better Buildings Initiative involved a comprehensive approach, providing assistance to low- moderate- and market-rate homeowners. The initiative will also coordinate activities with local utility providers to further incentivize energy efficiency improvements among qualifying homeowners. The commercial component of Fayette County’s Better Building Initiative involved grants and loans to assist up to $15,000 projects per commercial structure with a mixture of a grant and financing at 0% for up to three – (3) years. The maximum award can be a $5,000 grant and a $10,000 loan. For projects less than $15,000, the award will have a ratio of 1/3 grant and 2/3 loan.« less
Solano-Altamirano, J M; Goldman, Saul
2015-12-01
We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.
Minimization of power consumption during charging of superconducting accelerating cavities
NASA Astrophysics Data System (ADS)
Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy
2015-11-01
The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.
Comparison of Vibrational Relaxation Modeling for Strongly Non-Equilibrium Flows
2014-01-01
prediction of radiative emission spectra. I. Introduction Excitation and quenching of vibrational energy modes through collision relaxation is an...restrict the VEDF to the first two excited states. For the combined excitation/ quenching cases (v i = 4), there is a greater probability of a... quenching process than a vibrationally excited collision. This is expected because the initial vibrational energy exceeds 60% of the total collisional energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkins, Brian; Castilone, Lisa
The objective of the project was to provide affordable renewable energy to 22 low income reservation homeowners; provide job training to tribal members and reduce air pollution by equivalent carbon offsets. The project exceeded grant objectives installing 66kW of rooftop solar on 22 low income single family homes and providing hands-on PV rooftop solar installation training to 24 tribal individuals (four more than planned). The project was a phased installment of an on-going partnership between the Tribe and GRID that was initiated in 2013 whereby 62 rooftop solar units were installed prior to this funded effort. The reported work inmore » this report describes the funded effort where US Department of Energy provided partial funding through grant award IE0006949 and marks the first phase of an effort matching California Solar SASH Initiative funding with DOE Office of Indian Energy Funding and brings the total for the program to 84 installed systems (running total of 271 Kw installed) and the end of the project. Tribal workforce development was a key aspect of the project and trained 24tribal members for a total 1168 cumulative on-job training hours. The solar installations and training efforts were fully completed by September of 2016 with 66.6 kW installed - 8 kW more than the original estimate stated in the grant application.« less
NASA Technical Reports Server (NTRS)
Long, E. R., Jr.
1979-01-01
The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.
Solar Energy Technologies Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-03-01
The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar energy technologies cost competitive with conventional energy sources by 2020. Reducing the total installed cost for utility-scale solar electricity by approximately 75% (2010 baseline) to roughly $0.06 per kWh without subsidies will enable rapid, large-scale adoption of solar electricity across the United States. This investment will help re-establish American technological and market leadership in solar energy, reduce environmental impacts of electricity generation, and strengthen U.S. economic competitiveness.
Strain energy release rate analysis of delamination in a tapered laminate subjected to tension load
NASA Technical Reports Server (NTRS)
Salpekar, S. A.; Raju, I. S.; Obrien, T. K.
1990-01-01
A tapered composite laminate subjected to tension load was analyzed using the finite-element method. The glass/epoxy laminate has a (+ or - 45)sub 3 group of plies dropped in three distinct steps, each 20 ply-thicknesses apart, thus forming a taper angle of 5.71 degrees. Steep gradients of interlaminar normal and shear stress on a potential delamination interface suggest the existence of stress singularities at the points of material and geometric discontinuities created by the internal plydrops. The delamination was assumed to initiate at the thin end of the taper on a -45/+45 interface and the delamination growth was simulated in both directions, i.e., along the taper and into the thin region. The strain-energy-release rate for a delamination growing into the thin laminate consisted predominantly of mode I (opening) component. For a delamination growing along the tapered region, the strain-energy-release rate was initially all mode I, but the proportion of mode I decreased with increase in delamination size until eventually total G was all mode II. The total G for both delamination tips increased with increase in delamination size, indicating that a delamination initiating at the end of the taper will grow unstably along the taper and into the thin laminate simultaneously.
NASA Astrophysics Data System (ADS)
Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.
2018-06-01
Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.
NASA Astrophysics Data System (ADS)
Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.
2017-12-01
Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.
Low voltage operation of plasma focus.
Shukla, Rohit; Sharma, S K; Banerjee, P; Das, R; Deb, P; Prabahar, T; Das, B K; Adhikary, B; Shyam, A
2010-08-01
Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 muF capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.
Building Stronger State Energy Partnerships with the U.S. Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Kate
2011-09-30
This final technical report details the results of total work efforts and progress made from October 2007 – September 2011 under the National Association of State Energy Officials (NASEO) cooperative agreement DE-FC26-07NT43264, Building Stronger State Energy Partnerships with the U.S. Department of Energy. Major topical project areas in this final report include work efforts in the following areas: Energy Assurance and Critical Infrastructure, State and Regional Technical Assistance, Regional Initiative, Regional Coordination and Technical Assistance, and International Activities in China. All required deliverables have been provided to the National Energy Technology Laboratory and DOE program officials.
Initial Stage of Aerosol Formation from Oversaturated Vapors
NASA Astrophysics Data System (ADS)
Lushnikov, A. A.; Zagainov, V. A.; Lyubovtseva, Yu. S.
2018-03-01
The formation of aerosol particles from oversaturated vapor was considered assuming that the stable nuclei of the new phase contain two (dimers) or three (trimers) condensing vapor molecules. Exact expressions were derived and analyzed for the partition functions of the dimer and trimer suspended in a carrier gas for the rectangular well and repulsive core intermolecular potentials. The equilibrium properties of these clusters and the nucleation rate of aerosol particles were discussed. The bound states of clusters were introduced using a limitation on their total energy: molecular clusters with a negative total energy were considered to exclude configurations with noninteracting fragments.
Comparison of solar-thermal and fossil total-energy systems for selected industrial applications
NASA Astrophysics Data System (ADS)
Pine, G. D.
1980-06-01
Economic analyses of a conventional system and total energy systems based on phosphoric acid fuel cells, diesel piston engines, and central receiver solar thermal systems were performed for each of four industrial applications; a concrete block plant in Arizona, a fluid milk processing plant in California, a sugar beet processing plant in Colorado, and a meat packing plant in Texas. A series of sensitivity analyses was performed to show the effects of variations in fuel price, system size, cost of capital, and system initial cost. Solar total energy systems (STES) are more capital intensive than the other systems, and significant economies of scale are associated with the STES. If DOE solar system cost goals are met, STES can compete with the other systems for facilities with electrical demands greater than two or three megawatts, but STES are not competitive for smaller facilities. Significant energy resource savings, especially of oil and gas, resulted from STES implementation in the four industries.
Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem
NASA Technical Reports Server (NTRS)
Moore, D. M.
1984-01-01
The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.
NASA Technical Reports Server (NTRS)
Sohn, Byung-Ju; Smith, Eric A.
1993-01-01
The maximum entropy production principle suggested by Paltridge (1975) is applied to separating the satellite-determined required total transports into atmospheric and oceanic components. Instead of using the excessively restrictive equal energy dissipation hypothesis as a deterministic tool for separating transports between the atmosphere and ocean fluids, the satellite-inferred required 2D energy transports are imposed on Paltridge's energy balance model, which is then solved as a variational problem using the equal energy dissipation hypothesis only to provide an initial guess field. It is suggested that Southern Ocean transports are weaker than previously reported. It is argued that a maximum entropy production principle can serve as a governing rule on macroscale global climate, and, in conjunction with conventional satellite measurements of the net radiation balance, provides a means to decompose atmosphere and ocean transports from the total transport field.
Numerical studies on alpha production from high energy proton beam interaction with Boron
NASA Astrophysics Data System (ADS)
Moustaizis, S. D.; Lalousis, P.; Hora, H.; Korn, G.
2017-05-01
Numerical investigations on high energy proton beam interaction with high density Boron plasma allows to simulate conditions concerning the alpha production from recent experimental measurements . The experiments measure the alpha production due to p11B nuclear fusion reactions when a laser-driven high energy proton beam interacts with Boron plasma produced by laser beam interaction with solid Boron. The alpha production and consequently the efficiency of the process depends on the initial proton beam energy, proton beam density, the Boron plasma density and temperature, and their temporal evolution. The main advantage for the p11B nuclear fusion reaction is the production of three alphas with total energy of 8.9 MeV, which could enhance the alpha heating effect and improve the alpha production. This particular effect is termed in the international literature as the alpha avalanche effect. Numerical results using a multi-fluid, global particle and energy balance, code shows the alpha production efficiency as a function of the initial energy of the proton beam, the Boron plasma density, the initial Boron plasma temperature and the temporal evolution of the plasma parameters. The simulations enable us to determine the interaction conditions (proton beam - B plasma) for which the alpha heating effect becomes important.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PNNL
Case study describes how the Army Reserve 9th Mission Support Command (MSC) reduced lighting energy consumption by 62% for a total savings of 125,000 kWh and more than $50,000 per year by replacing over 400 fluorescent troffers with 36 W LED troffers. This project was part of the Army Reserve Net Zero Pilot Program, initiated in 2013, to reduce energy and water consumption, waste generation, and utility costs.
NASA Astrophysics Data System (ADS)
Raff, Lionel M.
1989-06-01
The unimolecular decomposition reactions of 1,2-difluoroethane upon mode-specific excitation to a total internal energy of 7.5 eV are investigated using classical trajectory methods and a previously formulated empirical potential-energy surface. The decomposition channels for 1,2-difluoroethane are, in order of importance, four-center HF elimination, C-C bond rupture, and hydrogen-atom dissociation. This order is found to be independent of the particular vibrational mode excited. Neither fluorine-atom nor F2 elimination reactions are ever observed even though these dissociation channels are energetically open. For four-center HF elimination, the average fraction of the total energy partitioned into internal HF motion varies between 0.115-0.181 depending upon the particular vibrational mode initially excited. The internal energy of the fluoroethylene product lies in the range 0.716-0.776. Comparison of the present results with those previously obtained for a random distribution of the initial 1,2-difluoroethane internal energy [J. Phys. Chem. 92, 5111 (1988)], shows that numerous mode-specific effects are present in these reactions in spite of the fact that intramolecular energy transfer rates for this system are 5.88-25.5 times faster than any of the unimolecular reaction rates. Mode-specific excitation always leads to a total decomposition rate significantly larger than that obtained for a random distribution of the internal energy. Excitation of different 1,2-difluoroethane vibrational modes is found to produce as much as a 51% change in the total decomposition rate. Mode-specific effects are also seen in the product energy partitioning. The rate coefficients for decomposition into the various channels are very sensitive to the particular mode excited. A comparison of the calculated mode-specific effects with the previously determined mode-to-mode energy transfer rate coefficients [J. Chem. Phys. 89, 5680 (1988)] shows that, to some extent, the presence of mode-specific chemistry is correlated with the magnitude of the energy transfer rate. However, the particular pathways for energy flow seem to be more important than the magnitude of the rate coefficients. It is suggested that the propensity for the energy to remain isolated in small subset of modes, such as the CH2F deformation modes or the rocking modes, is primarily responsible for the observation of mode-specific chemistry. The results clearly demonstrate that an intramolecular energy transfer rate that is fast relative to the unimolecular reaction rate is not a sufficient condition to ensure the absence of mode-specific chemical effects.
NASA Astrophysics Data System (ADS)
An, Bin; Wang, Zhenguo; Yang, Leichao; Li, Xipeng; Zhu, Jiajian
2017-08-01
Cavity ignition of a model scramjet combustor fueled by ethylene was achieved through laser induced plasma, with inflow conditions of Ma = 2.92, total temperature T0 = 1650 K and stagnation pressure P0 = 2.6 MPa. The overall equivalent ratio was kept at 0.152 for all the tests. The ignition processes at different ignition energies and various ignition positions were captured by CH∗ and OH∗ chemiluminescence imaging. The results reveal that the initial flame kernel is carried to the cavity leading edge by the recirculation flow, and resides there for ∼100 μs before spreading downstream. The ignition time can be reduced, and the possibility of successful ignition for single laser pulse can be promoted by enhancing ignition energy. The scale and strength of the initial flame kernel is influenced by both the ignition energy and position. In present study, the middle part of the cavity is the best position for ignition, as it keeps a good balance between the strength of initial flame kernel and the impacts of strain rate in recirculation flow.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1987-01-01
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1984-06-05
A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Spratt, R S; McBride, B W; Bayley, H S; Leeson, S
1990-08-01
In vitro rates of O2 consumption were investigated using excised biopsies from the liver, ileum, magnum, and latissimus dorsi muscle of Hubbard (H) broiler-breeder hens fed four levels of ME intake. Diet had no effect on O2 consumption of any tissue. The overall mean initial O2 consumption (microL of O2 per mg of dry weight per h) for latissimus dorsi, liver, ileum, and magnum tissues were 4.38, 13.33, 10.54, and 8.01, respectively. The Na+ and K(+)-adenosine triphosphatase-dependent respiration (ouabain-sensitive respiration) was 16% of the initial rate for latissimus dorsi, liver, and magnum tissues and 22% for ileum tissues. Fasting heat production of H and Arbor Acre (AA) meat-type hens measured over 3 days following an initial 24-h fast was 219 and 216 kilojoules (kJ) per kg per day (1 kJ = .239 kcal). There were no strain differences in the partitioning of O2 consumption into tissue components of fasted H and AA hens. Fasting metabolism accounted for 75% of the maintenance energy requirement in the hens. The liver, gut, and reproductive tract, which together make up 5 to 6% of BW, account for 26 and 30% of the total energy expenditure in fed and fasted hens, respectively.
R. E. Farmer
1967-01-01
Germination energy of cottonwood seed decreased gradually as moisture stress increased from 0.0 to 10.0 atm; 15.0 atm inhibited germination except at 32 and 38 C. Temperature extremes of 15 and 38 C drastically reduced germination energy, and the reductive effect of 38 C was particularly marked after storage. Only 15-atm moisture stress or 15 C greatly reduced total...
Tao, Yang; Zhang, Zhihang; Sun, Da-Wen
2014-09-01
The enhancement of release of oak-related compounds from oak chips during wine aging with oak chips may interest the winemaking industry. In this study, the 25-kHz ultrasound waves were used to intensify the mass transfer of phenolics from oak chips into a model wine. The influences of acoustic energy density (6.3-25.8 W/L) and temperature (15-25 °C) on the release kinetics of total phenolics were investigated systematically. The results exhibited that the total phenolic yield released was not affected by acoustic energy density significantly whereas it increased with the increase of temperature during sonication. Furthermore, to describe the mechanism of mass transfer of phenolics in model wine under ultrasonic field, the release kinetics of total phenolics was simulated by both a second-order kinetic model and a diffusion model. The modeling results revealed that the equilibrium concentration of total phenolics in model wine, the initial release rate and effective diffusivity of total phenolics generally increased with acoustic energy density and temperature. In addition, temperature had a negative effect on the second-order release rate constant whereas acoustic energy density had an opposite effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Study on Protection Mechanism of 30CrMnMo-UHMWPE Composite Armor
Zhou, Yu; Li, Guoju; Fan, Qunbo; Wang, Yangwei; Zheng, Haiyang; Tan, Lin; Xu, Xuan
2017-01-01
The penetration of a 30CrMnMo ultra-high molecular weight polyethylene armor by a high-speed fragment was investigated via experiments and simulations. Analysis of the projectile revealed that the nose (of the projectile) is in the non-equilibrium state at the initial stage of penetration, and the low-speed regions undergo plastic deformation. Subsequently, the nose-tail velocities of the projectile were virtually identical and fluctuated together. In addition, the effective combination of the steel plate and polyethylene (PE) laminate resulted in energy absorption by the PE just before the projectile nose impacts the laminate. This early absorption plays a positive role in the ballistic performance of the composite armor. Further analysis of the internal energy and mass loss revealed that the PE laminate absorbs energy via the continuous and stable failure of PE fibers during the initial stages of penetration, and absorbs energy via deformation until complete penetration occurs. The energy absorbed by the laminate accounts for 68% of the total energy absorption, indicating that the laminate plays a major role in energy absorption during the penetration process. PMID:28772764
NASA Astrophysics Data System (ADS)
Potter, William J.
2017-02-01
We calculate the severe radiative energy losses which occur at the base of black hole jets using a relativistic fluid jet model, including in situ acceleration of non-thermal leptons by magnetic reconnection. Our results demonstrate that including a self-consistent treatment of radiative energy losses is necessary to perform accurate magnetohydrodynamic simulations of powerful jets and that jet spectra calculated via post-processing are liable to vastly overestimate the amount of non-thermal emission. If no more than 95 per cent of the initial total jet power is radiated away by the plasma travels as it travels along the length of the jet, we can place a lower bound on the magnetization of the jet plasma at the base of the jet. For typical powerful jets, we find that the plasma at the jet base is required to be highly magnetized, with at least 10 000 times more energy contained in magnetic fields than in non-thermal leptons. Using a simple power-law model of magnetic reconnection, motivated by simulations of collisionless reconnection, we determine the allowed range of the large-scale average reconnection rate along the jet, by restricting the total radiative energy losses incurred and the distance at which the jet first comes into equipartition. We calculate analytic expressions for the cumulative radiative energy losses due to synchrotron and inverse-Compton emission along jets, and derive analytic formulae for the constraint on the initial magnetization.
Collisional Penrose process near the horizon of extreme Kerr black holes.
Bejger, Michał; Piran, Tsvi; Abramowicz, Marek; Håkanson, Frida
2012-09-21
Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy. This led recently to the suggestion [M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles, the energy excess must come from the rotational energy of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy diverges, the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one should not expect collisions around a black hole to act as spectacular cosmic accelerators.
NASA Astrophysics Data System (ADS)
Pan, F.; Frieder, C.; Applebaum, S.; Manahan, D. T.
2016-02-01
The Pacific oyster, Crassostrea gigas, is a major commercial species in global aquaculture. Ocean acidification is having a negative effect on larval production of this species, so the mechanisms of this impact are of considerable interest. Formation of new shell in C. gigas during the first 2-days post-fertilization results in a rapid six-fold increase in total mass. This period of early development has high sensitivity to changes in carbonate chemistry, in particular aragonite saturation state (Ω). An elevated energy cost for calcification at low Ω is often invoked as a mechanism. In this study, we characterized the developmental progression of first shell formation, total metabolic expenditure, and underlying biochemical processes of energy allocation during early development of C. gigas, under control (Ω >> 1) and undersaturated conditions (Ω < 1). While undersaturated conditions delayed the onset of calcification and resulted in decreased shell mass, there was no change in total metabolic energy demand. Furthermore, partitioning of total metabolic energy showed no major re-allocation of ATP to protein synthesis or ion pump activity (Na+, K+-ATPase) between the two treatments. We conclude that early development to the shelled-veliger larval stage does not require more energy at undersaturation. This finding helps constrain potential mechanisms of larval sensitivity to ocean acidification and narrows the focus for possible mitigation strategies for oyster aquaculture production.
McCormack, Jordan; Stover, Susan M.; Gibeling, Jeffery C.; Fyhrie, David P.
2012-01-01
We recently developed a method to measure cortical bone fracture initiation toughness using a double-notched beam in four-point bending. This method was used to test the hypothesis that mineralization around the two notch roots is correlated with fracture toughness and crack extension (physical damage). Total energy absorbed to failure negatively correlated with average mineralization of the beam (r2=0.62), but not with notch root mineralization. Fracture initiation toughness was positively correlated to mineralization at the broken notch root (r2=0.34). Crack length extension at the unbroken notch was strongly negatively correlated with the average mineralization of the notch roots (r2=0.81) whereas crack length extension at the broken notch did not correlate with any of the mineralization measurements. Mineralization at the notch roots and the average mineralization contributed independently to the mechanical and damage properties. The data are consistent with an hypothesis that a) high notch root mineralization results in less stable crack length extension but high force to initiate unstable crack propagation while b) higher average mineralization leads to low post-yield (and total) energy absorption to failure. PMID:22394589
D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence.
Xing, Su-Fang; Sun, Xue-Fei; Taylor, Alicia A; Walker, Sharon L; Wang, Yi-Fu; Wang, Shu-Guang
2015-04-01
Bacterial biofilms are structured communities of cells enclosed in a self-produced hydrated polymeric matrix that can adhere to inert or living surfaces. D-Amino acids were previously identified as self-produced compounds that mediate biofilm disassembly by causing the release of the protein component of the polymeric matrix. However, whether exogenous D-amino acids could inhibit initial bacterial adhesion is still unknown. Here, the effect of the exogenous amino acid D-tyrosine on initial bacterial adhesion was determined by combined use of chemical analysis, force spectroscopic measurement, and theoretical predictions. The surface thermodynamic theory demonstrated that the total interaction energy increased with more D-tyrosine, and the contribution of Lewis acid-base interactions relative to the change in the total interaction energy was much greater than the overall nonspecific interactions. Finally, atomic force microscopy analysis implied that the hydrogen bond numbers and adhesion forces decreased with the increase in D-tyrosine concentrations. D-Tyrosine contributed to the repulsive nature of the cell and ultimately led to the inhibition of bacterial adhesion. This study provides a new way to regulate biofilm formation by manipulating the contents of D-amino acids in natural or engineered systems. © 2014 Wiley Periodicals, Inc.
Geothermal development in the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizagaque, R.F.; Tolentino, B.S.
1982-06-01
The development of geothermal resources and energy in the Philippines is discussed. Philippine National Oil Company-Energy Development Corporation initiated the first semi-commercial generation of geothermal power in July 1977 with the installation of a 3MWe plant. By 1980 the country had 440 MWe on line at Mak-Ban and Tiwi. This placed the Philippines second after the US among countries using geothermal energy for power generation. Before the end of 1981, PNOC-EDC added 6 additional MWe of geothermal power generating capacity to increase the total to 446 MWe. As part of the five-year National Energy Development Programme covering the period 1981-1985,more » additional power plants will be installed in various project areas to increase the share of geothermal power generation from the present 9.8% to 18.6% of the nationwide power-generation total, or the equivalent of 16.6 million barrels of oil per year. (MJF)« less
In Brief: Carbon storage initiatives at energy department
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-06-01
The U.S. Department of Energy (DOE) recently announced several initiatives related to carbon capture. On 12 June, DOE secretary Steven Chu announced an agreement with the FutureGen Alliance that advances construction of the country's first commercial-scale, fully integrated carbon capture and sequestration project in Mattoon, Ill. After estimating costs and doing other assessments, DOE and the alliance will decide in 2010 whether to move forward or discontinue the project. “Developing this technology is critically important for reducing greenhouse gas emissions in the U.S. and around the world,” said Chu. The total anticipated financial contribution for the project is $1.1 billion from DOE and $400-600 million from the alliance.
Hockett, Paul; Staniforth, Michael; Reid, Katharine L
2010-10-28
In this article we present photoelectron spectra and angular distributions in which ion rotational states are resolved. This data enables the comparison of direct and threshold photoionization techniques. We also present angle-resolved photoelectron signals at different total energies, providing a method to scan the structure of the continuum in the near-threshold region. Finally, we have studied the influence of vibrational excitation on the photoionization dynamics.
Kongphitee, Kanokwan; Sommart, Kritapon; Phonbumrung, Thamrongsak; Gunha, Thidarat; Suzuki, Tomoyuki
2018-03-13
This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight of 98.3 ± 12.8 kg were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300 and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p < 0.05) with an increasing proportion of cassava pulp in the diet, whereas the three main types of fibrolytic bacteria and energy excretion in the urine (p < 0.05) decreased. The metabolizable energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was 399 kJ/kg BW0.75, with an efficiency of metabolizable energy utilization for growth of 0.86. Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.
NASA Astrophysics Data System (ADS)
Cai, X. D.; O'Brien, Edward E.; Ladeinde, Foluso
1996-11-01
Direct numerical simulation of decaying, isotropic, compressible turbulence in three dimensions is used to examine the behavior of fluctuations in density, temperature, and pressure when the initial conditions include temperature fluctuations larger than pressure fluctuations. The numerical procedure is described elsewhere (Ladeinde, F. et al.,) Phys. Fluids 7(11), pp. 2848 (1995), the initial turbulence Mach number range is subsonic, 0.3 to 0.7, and, following Ghosh and Matthaeus(Ghosh, S. and Matthaeus, W. H. Phys. Fluids A, pp. 148 (1991)), the initial compressible turbulence is characterized as a: mostly solenoidal, b: random, or c: longitudinal. These cases represent, respectively, ratios of initial kinetic energy in the compressible modes to total initial kinetic energy, say \\chi_0, which are either a: very small, b: about 0.6, or c: near unity. Thermodynamic scalings at the lowest values of initial Mach number and \\chi0 follow the predictions of Zank and Matthaeus (Zank, G. P. and Matthaeus, W. H. Phys. Fluids A(3), pp. 69 (1991)), but not otherwise. The relationship between \\chi, Mach number, and compressible pressure predicted by Sarkar et al.(Sarkar, S. et al.,) J. Fluid Mech. 227, pp. 473 (1991) applies, on average, to all cases computed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botschwina, P.; Meyer, W.; Hertel, I.V.
Potential energy surfaces have been calculated for the four lowest electronic states of Na (3 /sup 2/S, 3 /sup 2/P)+H/sub 2/(/sup 1/..sigma../sup +//sub g/) by means of the RHF--SCF and PNO--CEPA methods. For the so-called quenching process of Na (3 /sup 2/P) by H/sub 2/ at low initial translational energies (E--VRT energy transfer) the energetically most favorable path occurs in C/sub 2v/ symmetry, since: at intermediate Na--H/sub 2/ separation: the A /sup 2/B/sub 2/ potential energy surface is attractive. From the CEPA calculations, the crossing point of minimal energy between the X /sup 2/A/sub 1/ and A /sup 2/B/sub 2/more » surfaces is obtained at R/sub c/ = 3.57 a.u. and r/sub c/ = 2.17 a.u. with an energy difference to the asymptotic limit (R = infinity, r = r/sub e/) of -0.06 eV. It is thus classically accessible without any initial translational energy, but at low initial translational energies (approx.0.1 eV) quenching will be efficient only for arrangements of collision partners close to C/sub 2v/ symmetry. There is little indication of an avoiding crossing with an ionic intermediate correlating asymptotically with Na/sup +/ and H/sub 2//sup -/ as was assumed in previous discussions of the quenching process. The dependence of the total quenching cross sections on the initial translational energy is discussed by means of the ''absorbing sphere'' model, taking the initial zero-point vibrational energy of the hydrogen molecule into account. New experimental data of the product channel distribution in H/sub 2/ for center-of-mass forward scattering are presented. The final vibrational states v' = 3, 2, 1, and 0 of H/sub 2/ are populated to about 26%, 61%, 13%, and 0%, respectively. The observed distributions in H/sub 2/ (and D/sub 2/) may be rationalized by simple dynamic considerations on the basis of the calculated surfaces.« less
Energy demand and environmental implications in urban transport — Case of Delhi
NASA Astrophysics Data System (ADS)
Bose, Ranjan Kumar
A simple model of passenger transport in the city of Delhi has been developed using a computer-based software called—Long Range Energy Alternatives Planning (LEAP) and the associated Environmental Database (EDB) model. The hierarchical structure of LEAP represents the traffic patterns in terms of passenger travel demand, mode (rail/road), type of vehicle and occupancy (persons per vehicle). Transport database in Delhi together with fuel consumption values for the vehicle types, formed the basis of the transport demand and energy consumption calculations. Emission factors corresponding to the actual vehicle types and driving conditions in Delhi is introduced into the EDB and linked to the energy consumption values for estimating total emission of CO, HC, NO x, SO 2 Pb and TSP. The LEAP model is used to estimate total energy demand and the vehicular emissions for the base year-1990/91 and extrapolate for the future—1994/95, 2000/01, 2004/05 and 2009/10, respectively. The model is run under five alternative scenarios to study the impact of different urban transport policy initiatives that would reduce total energy requirement in the transport sector of Delhi and also reduce emission. The prime objective is to arrive at an optimal transport policy which limits the future growth of fuel consumption as well as air pollution.
NASA Astrophysics Data System (ADS)
Montanari, C. C.; Miraglia, J. E.
2018-01-01
In this contribution we present ab initio results for ionization total cross sections, probabilities at zero impact parameter, and impact parameter moments of order +1 and -1 of Ne, Ar, Kr, and Xe by proton impact in an extended energy range from 100 keV up to 10 MeV. The calculations were performed by using the continuum distorted wave eikonal initial state approximation (CDW-EIS) for energies up to 1 MeV, and using the first Born approximation for larger energies. The convergence of the CDW-EIS to the first Born above 1 MeV is clear in the present results. Our inner-shell ionization cross sections are compared with the available experimental data and with the ECPSSR results. We also include in this contribution the values of the ionization probabilities at the origin, and the impact parameter dependence. These values have been employed in multiple ionization calculations showing very good description of the experimental data. Tables of the ionization probabilities are presented, disaggregated for the different initial bound states, considering all the shells for Ne and Ar, the M-N shells of Kr and the N-O shells of Xe.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1987-02-10
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.
Grimes, Carley A; Szymlek-Gay, Ewa A; Campbell, Karen J; Nicklas, Theresa A
2015-08-14
Understanding the dietary intakes of infants and toddlers is important because early life nutrition influences future health outcomes. The aim of this study was to determine the dietary sources of total energy and 16 nutrients in a nationally representative sample of U.S. infants and toddlers aged 0-24 months. Data from the 2005-2012 National Health and Nutrition Examination Survey were analyzed. Dietary intake was assessed in 2740 subjects using one 24-h dietary recall. The population proportion was used to determine the contribution of foods and beverages to nutrient intakes. Overall infant formulas and baby foods were the leading sources of total energy and nutrients in infants aged 0-11.9 months. In toddlers, the diversity of food groups contributing to nutrient intakes was much greater. Important sources of total energy included milk, 100% juice and grain based mixed dishes. A number of foods of low nutritional quality also contributed to energy intakes including sweet bakery products, sugar-sweetened beverages and savory snacks. Overall non-flavored milks and ready-to-eat cereals were the most important contributors to micronutrient intakes. In conclusion this information can be used to guide parents regarding appropriate food selection as well as inform targeted dietary strategies within public health initiatives to improve the diets of infants and toddlers.
A theoretical study for mechanical contact between carbon nanotubes
NASA Astrophysics Data System (ADS)
Takagi, Yoshiteru; Uda, Tsuyoshi; Ohno, Takahisa
2005-03-01
We have theoretically investigated motions of single-walled carbon nanotubes (SWNTs) which are mounted on a flat substrate layer of SWNTs by tight-binding molecular dynamics simulations. One of the most interesting motions is the conversion of force and torque, where the force and torque acting initially on the mounted tube finally results in the lateral motion and rolling of the supporting tubes in the substrate. This motion is well understood in terms of the total energy surface of the SWNT/SWNT system. It is suggested that an undulation of the total energy surface plays a role as an atomic-scale gear tooth in the field of nanomechanics, in spite of the atomically smooth surface of SWNT.
Energy and cost analysis of residential refrigerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskins, R.A.; Hirst, E.
1977-01-01
A detailed computer model is developed to calculate energy flows and electricity use for residential refrigerators. Model equations are derived from applications of the first law of thermodynamics, analysis of manufacturers' literature, and related studies. The model is used to evaluate the energy (and associated initial cost) impacts of alternative designs to reduce refrigerator energy use. Model results show that 56 percent of the total heat gain in a typical 0.45 m/sup 3/ (16 ft/sup 3/) top-freezer refrigerator is due to conduction through cabinet walls and doors. The remaining 44 percent is from door openings, heaters, fans, food, gasket areamore » infiltration, and miscellaneous heat sources. Operation of the compressor to remove this heat and maintain the refrigerated spaces at constant temperatures accounts for 70 percent of the unit's electricity use. The remainder is for operation of heaters and fans. Several energy-saving design changes are examined using the energy model. These changes are: increased insulation thickness, improved insulation conductivity, removal of fan from cooled area, use of anti-sweat heater switch, improved compressor efficiency, increased condenser and evaporator surface areas, and elimination of the frost-free feature. Application of all these changes would reduce refrigerator electricity use 71 percent and increase initial cost 5 percent. Implementing all these changes except for elimination of the frost-free feature would reduce electricity use 52 percent and increase initial cost 19 percent. These results show that there are large opportunities for reducing refrigerator electricity use with only slight initial cost increases.« less
NASA Astrophysics Data System (ADS)
Kwon, Sungchul; Kim, Jin Min
2015-01-01
For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.
General, Unified, Multiscale Modeling to Predict the Sensitivity of Energetic Materials
2011-10-05
Time dependence of molecular carbon cluster size in solid methane shocked with a piston velocity up =11 km /s. The initial temperature and density were...Galilean in- variant in configuration space, but the kinetic energy of the system depends on the scalar product of the total momentum with U. To... dependent superheating of the x-component shock direction of kinetic energy . This 224513-4 Dawes et al. J. Chem. Phys. 131, 224513 2009 Author
Plasma ignition for laser propulsion
NASA Technical Reports Server (NTRS)
Askew, R. F.
1982-01-01
For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.
Initial Design and Construction of a Mobil Regenerative Fuel Cell System
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Maloney, Thomas; Hoberecht, Mark (Technical Monitor)
2003-01-01
The design and initial construction of a mobile regenerative power system is described. The main components of the power system consists of a photovoltaic array, regenerative fuel cell and electrolyzer. The system is mounted on a modified landscape trailer and is completely self contained. An operational analysis is also presented that shows predicted performance for the system at various times of the year. The operational analysis consists of performing an energy balance on the system based on array output and total desired operational time.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-08-02
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-01-01
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, J.W.K.
1987-10-14
Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Peter M.
Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. They should be scientifically exciting and sound. They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. They should promise to yield at least preliminarymore » results within the given funding period, which would warrant further research development. They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.« less
Factors Influencing Renewable Energy Production & Supply - A Global Analysis
NASA Astrophysics Data System (ADS)
Ali, Anika; Saqlawi, Juman Al
2016-04-01
Renewable energy is one of the key technologies through which the energy needs of the future can be met in a sustainable and carbon-neutral manner. Increasing the share of renewable energy in the total energy mix of each country is therefore a critical need. While different countries have approached this in different ways, there are some common aspects which influence the pace and effectiveness of renewable energy incorporation. This presentation looks at data and information from 34 selected countries, analyses the patterns, compares the different parameters and identifies the common factors which positively influence renewable energy incorporation. The most successful countries are analysed for their renewable energy performance against their GDP, policy/regulatory initiatives in the field of renewables, landmass, climatic conditions and population to identify the most influencing factors to bring about positive change in renewable energy share.
Tenma, Taro; Yokoshiki, Hisashi; Mitsuyama, Hirofumi; Watanabe, Masaya; Mizukami, Kazuya; Kamada, Rui; Takahashi, Masayuki; Sasaki, Ryo; Maeno, Motoki; Okamoto, Kaori; Chiba, Yuki; Anzai, Toshihisa
2018-05-15
Implantable Cardioverter-Defibrillator (ICD) shocks have been associated with mortality. However, no study has examined the relation between total shock energy and mortality. The aim of this study is to assess the association of total shock energy with mortality, and to determine the patients who are at risk of this association. Data from 316 consecutive patients who underwent initial ICD implantation in our hospital between 2000 and 2011 were retrospectively studied. We collected shock energy for 3 years from the ICD implantation, and determined the relation of shock energy on mortality after adjusting confounding factors. Eighty-seven ICD recipients experienced shock(s) within 3 years from ICD implantation and 43 patients had died during the follow-up. The amount of shock energy was significantly associated with all-cause death [adjusted hazard ratio (HR) 1.26 (per 100 joule increase), p < 0.01] and tended to be associated with cardiac death (adjusted HR 1.30, p = 0.08). The survival rate of patients with high shock energy accumulation (≥182 joule) was lower (p < 0.05), as compared to low shock energy accumulation (<182 joule), likewise to no shock. Besides, the relation between high shock energy accumulation and all-cause death was remarkable in the patients with low left ventricular ejection fraction (LVEF ≤40%) or atrial fibrillation (AF). Increase of shock energy was related to mortality in ICD recipients. This relation was evident in patients with low LVEF or AF. Copyright © 2018 Elsevier B.V. All rights reserved.
Measuring the Cosmic Particle Radiation from electrons to actinides - CALET
NASA Astrophysics Data System (ADS)
Mitchell, John; Calet Collaboration; Hnx/Tigeriss Collaboration
2017-01-01
CALET (Calorimetric Electron Telescope) was installed on the Exposed Facility of the Japanese Experiment Module (Kibo) on for 24 August 2015. CALET measures the high-energy spectra of electrons, nuclei, and gamma-rays. CALET will extend direct measurements of the total electron spectrum into the trans-TeV energy range for the first time. In this paper, we well present the science and current status of CALET and initial observations from its first 1.5 years in orbit.
Low energy electron transport in furfural
NASA Astrophysics Data System (ADS)
Lozano, Ana I.; Krupa, Kateryna; Ferreira da Silva, Filipe; Limão-Vieira, Paulo; Blanco, Francisco; Muñoz, Antonio; Jones, Darryl B.; Brunger, Michael J.; García, Gustavo
2017-09-01
We report on an initial investigation into the transport of electrons through a gas cell containing 1 mTorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulation, our preferred energy loss distribution function is presented and discussed.
NASA Technical Reports Server (NTRS)
Young, Richard E.
1986-01-01
The previous study of Young and Villere concerning growth of planetary scale waves forced by wave-wave interactions of amplifying intermediate scale baroclinic eddies is extended to investigate effects of different eddy initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of eddy initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed zonally independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of eddy initial conditions used. Nonlinear forcing of planetary modes via wave-wave coupling becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by wave-wave transfer from intermediate scale eddies, rather than from the zonally averaged state. The zonal wavenumber 2 planetary mode was prominent in all solutions, even in those for which eddy initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary wave components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in eddy initial conditions, even though quantitative details varied from case to case.
Trade Study for Neutron Transport at Low Earth Orbit: Adding Fidelity to DIORAMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClanahan, Tucker Caden; Wakeford, Daniel Tyler
The Distributed Infrastructure Offering Real-Time Access to Modeling and Analysis (DIORAMA) software provides performance modeling capabilities of the United States Nuclear Detonation Detection System (USNDS) with a focus on the characterization of Space-Based Nuclear Detonation Detection (SNDD) instrument performance [1]. A case study was done to add the neutron propagation capabilities of DIORAMA to low earth orbit (LEO), and compare the back-calculated incident energy from the time-of- ight (TOF) spectrum with the scored incident energy spectrum. As the scoring altitude lowers, the time increase due to scattering takes up much more of the fraction of total TOF; whereas at geosynchronousmore » earth orbit (GEO), the time increase due to scattering is a negligible fraction of the total TOF [2]. The scattering smears out the TOF enough to make the back-calculation of the initial energy spectrum from the TOF spectrum very convoluted.« less
Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.
Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir
2017-04-14
We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.
The total flow concept for geothermal energy conversion
NASA Technical Reports Server (NTRS)
Austin, A. L.
1974-01-01
A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.
NASA Astrophysics Data System (ADS)
da Silva, Cesar Luiz; Phenix Collaboration
2017-11-01
This study is part of the RHIC program to probe properties of the Quark-Gluon Plasma medium properties using heavy quark energy loss. Part of the control of these measurements is to understand initial production of heavy quarks and how initial conditions in nucleus collisions can alter their yields. This manuscript reports the effort made by the PHENIX collaboration to measure total B-mesons yields, by looking at the fraction of muons from non-prompt J/ψ decays at displaced vertices in p+p and Cu+Au collisions. The total cross-sections of b-quarks in 200 GeV and 510 GeV p+p collisions follow the increasing trend from fixed target experiments to high energy results from the Tevatron and the LHC. Integrated pT and centrality B-meson yields in Cu+Au integrated over transverse momentum and centrality are consistent with no nuclear modification or some enhancement, in contrast to prompt J/ψ which shows a strong suppression.
ECASTAR: Energy conservation. An assessment of systems, technologies and requirements
NASA Technical Reports Server (NTRS)
1975-01-01
A methodology was presented for a systems approach to energy conservation actions and their potentials and impacts in the United States. Constraints affecting the approach were ranked, and the most important ones are the present economic and technical conditions. The following unresolved issues were identified: consumptive lifestyles vs. conservation ethic, environmental standards vs. energy conservation, capital availability, decentralization and vertical integration vs. centralization, fuel rich regions vs. fuel poor regions, supply vs. end use conservation, life cycle costing vs. initial cost, mandatory savings vs. voluntary savings, labor intensive vs. capital intensive, price control vs. free market. The following recommendations were made: provide action/impact assessment, establish regional energy centers, improve technology articulation with government, design total energy systems, utilize existing systems approach expertise.
The equilibrium of the reaction catalysed by citrate oxaloacetate-lyase
Tate, S. S.; Datta, S. P.
1965-01-01
1. A method of preparation and purification of citrate oxaloacetate-lyase (EC 4.1.3.6) from Aerobacter aerogenes is described. 2. The equilibrium of this reaction has been determined at pH 8·4 and 25°. It has been shown that K, i.e. [citrate3−]/[oxaloacetateketo2−][acetate −], is 3·08±0·72, but that Kapp., i.e. [total citrate]/[total oxaloacetate][total acetate], is markedly affected by the initial concentrations of the reactants and magnesium. 3. The free-energy change during the cleavage of citrate has been calculated and compared with data from other sources. 4. The free energy of hydrolysis of acetyl-CoA has been evaluated from the present data. 5. A detailed knowledge of the interactions of the reactants with metal ions has been shown to be important in the calculation of the equilibrium constant and related thermodynamic functions. PMID:14348207
On the present shape of the Oort cloud and the flux of ;new; comets
NASA Astrophysics Data System (ADS)
Fouchard, M.; Rickman, H.; Froeschlé, Ch.; Valsecchi, G. B.
2017-08-01
Long term evolution of an initial set of 107 Oort cloud comets is performed for the age of the solar system taking into account the action of passing stars using 10 different sequences of stellar encounters, Galactic tides and the gravity of the giant planets. The initial conditions refer to a disk-shaped Oort cloud precursor, concentrated toward the ecliptic with perihelia in the region of Uranus and Neptune. Our results show that the shape of the Oort cloud quickly reach a kind of steady state beyond a semi-major axis greater than about 2000 AU (this threshold depending on the evolution time-span), with a Boltzmann distribution of the orbital energy. The stars act in an opposite way to what was found in previous papers, that is they emptied an initial Tidal Active Zone that is overfilled with respect to the isotropic case. Consequently, the inclusion of stellar perturbations strongly affect the shape of the Oort spike. On the contrary, the Oort spike shape appears to be poorly dependent on the stellar sequences used, whereas the total flux of observable comets and the proportion of retrograde comets for the inner part of the spike are significantly dependent of it. Then it has been highlighted that the total flux, the shape of the Oort spike and the shape of the final Oort cloud are almost independent of the initial distribution of orbital energy considered.
A Time-Dependent Quantum Dynamics Study of the H2 + CH3 yields H + CH4 Reaction
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Kwak, Dochan (Technical Monitor)
2002-01-01
We present a time-dependent wave-packet propagation calculation for the H2 + CH3 yields H + CH4 reaction in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probability for different initial rotational-vibrational states are presented in this study. The cumulative reaction probability (CRP) is obtained by summing over initial-state-selected reaction probability. The energy-shift approximation to account for the contribution of degrees of freedom missing in the 6D calculation is employed to obtain an approximate full-dimensional CRP. Thermal rate constant is compared with different experiment results.
Kovacs, E M R; Westerterp-Plantenga, M S; Saris, W H M; Melanson, K J; Goossens, I; Geurten, P; Brouns, F
2002-08-01
To investigate whether addition of modified guar gum (GG) to a low-energy semisolid meal might be effective on appetite by modifying the response of blood glucose and other blood parameters. Three intervention periods of 2 weeks each, separated by washout periods of 4 weeks. Randomized and cross-over design. Fifteen overweight male subjects (mean+/-s.d.; age, 44+/-9 y; body mass index, 28.6+/-1.8 kg/m(2)). Subjects consumed a low-energy diet divided over three times a day, consisting of a semisolid meal with (SSM+) or without (SSM) addition of 2.5 g GG, or a solid meal (SM) with the same energy content (947 kJ) and macronutrient composition, plus a dinner of the subject's own choice. At the end of each intervention, time and number of meal initiations, dynamics of blood glucose and other blood parameters, and appetite ratings such as hunger and satiety were determined in a time-blinded situation. The changes in blood glucose from meal initiation to blood glucose peak and from peak to nadir were smaller with SSM+ and SM compared to SSM. Satiety before the third meal was higher with SSM+ and SM compared to SSM (P<0.01). Meal pattern, general appetite and total energy intake were similar for all treatments. We conclude that, similar to SM, SSM+ resulted in a more moderate change in blood glucose compared to SSM and positively affected satiety before the third meal, while general appetite, total energy intake and meal pattern did not differ.
Study of the total reaction cross section via QMD
NASA Astrophysics Data System (ADS)
Yang, Lin-Meng; Guo, Wen-Jun; Zhang, Fan; Ni, Sheng
2013-10-01
This paper presents a new empirical formula to calculate the average nucleon-nucleon (N-N) collision number for the total reaction cross sections (σR). Based on the initial average N-N collision number calculated by quantum molecular dynamics (QMD), quantum correction and Coulomb correction are taken into account within it. The average N-N collision number is calculated by this empirical formula. The total reaction cross sections are obtained within the framework of the Glauber theory. σR of 23Al+12C, 24Al+12C, 25 Al+12C, 26Al+12C and 27Al+12C are calculated in the range of low energy. We also calculate the σR of 27Al+12C with different incident energies. The calculated σR are compared with the experimental data and the results of Glauber theory including the σR of both spherical nuclear and deformed nuclear. It is seen that the calculated σR are larger than σR of spherical nuclear and smaller than σR of deformed nuclear, whereas the results agree well with the experimental data in low-energy range.
Initial angular momentum and flow in high energy nuclear collisions
NASA Astrophysics Data System (ADS)
Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth
2018-03-01
We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.
Lee, Jinkyu; Song, Yongnam; Shin, Choongsoo S
2018-05-01
During landing, the ankle angle at initial contact (IC) exhibits relatively wide individual variation compared to the knee and hip angles. However, little is known about the effect of different IC ankle angles on energy dissipation. The purpose of this study was to investigate the relationship between individual ankle angles at IC and energy dissipation in the lower extremity joints. Twenty-seven adults performed single-leg landings from a 0.3-m height. Kinetics and kinematics of the lower extremity joints were measured. The relationship between ankle angles at IC and negative work, range of motion, the time to peak ground reaction force, and peak loading rate were analyzed. The ankle angle at IC was positively correlated with ankle negative work (r = 0.80, R 2 = 0.64, p < 0.001) and the contribution of the ankle to total (ankle, knee and hip joint) negative work (r = 0.84, R 2 = 0.70, p < 0.001), but the ankle angle was negatively correlated with hip negative work (r = -0.46, R 2 = 0.21, p = 0.01) and the contribution of the hip to total negative work (r = -0.61, R 2 = 0.37, p < 0.001). The knee negative work and the contribution of the knee to total negative work were not correlated with the ankle angle at IC. The ankle angle at IC was positively correlated with total negative work (r = 0.50, R 2 = 0.25, p < 0.01) and negatively correlated with the peak loading rate (r = -0.76, R 2 = 0.57, p < 0.001). These results indicated that landing mechanics changed as the ankle angle at IC increased, such that the ankle energy dissipation increased and redistributed the energy dissipation in the ankle and hip joints. Further, these results suggest that increased ankle energy dissipation with a higher IC plantar flexion angle may be a potential landing technique for reducing the risk of injury to the anterior cruciate ligament and hip musculature. Copyright © 2018 Elsevier B.V. All rights reserved.
Kneifel, Joshua; O'Rear, Eric; Webb, David; O'Fallon, Cheyney
2018-02-01
To conduct a more complete analysis of low-energy and net-zero energy buildings that considers both the operating and embodied energy/emissions, members of the building community look to life-cycle assessment (LCA) methods. This paper examines differences in the relative impacts of cost-optimal energy efficiency measure combinations depicting residential buildings up to and beyond net-zero energy consumption on operating and embodied flows using data from the Building Industry Reporting and Design for Sustainability (BIRDS) Low-Energy Residential Database. Results indicate that net-zero performance leads to a large increase in embodied flows (over 40%) that offsets some of the reductions in operational flows, but overall life-cycle flows are still reduced by over 60% relative to the state energy code. Overall, building designs beyond net-zero performance can partially offset embodied flows with negative operational flows by replacing traditional electricity generation with solar production, but would require an additional 8.34 kW (18.54 kW in total) of due south facing solar PV to reach net-zero total life-cycle flows. Such a system would meet over 239% of operational consumption of the most energy efficient design considered in this study and over 116% of a state code-compliant building design in its initial year of operation.
Goerke, M; Mosenthin, R; Jezierny, D; Sauer, N; Piepho, H-P; Messerschmidt, U; Eklund, M
2014-12-01
A total of 36 piglets with an initial body weight (BW) of 5.6 ± 0.7 kg, fitted with simple T-cannulas at the distal ileum, were used to evaluate the effect of three graded feeding levels (50, 75 or 100 g/kg BW(0.75) day) on apparent ileal digestibility (AID) and total tract digestibility (ATTD) of dry matter (DM), nitrogen (N) and energy, and on ATTD of organic matter (OM), ether extracts (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF) and digestible (DE), metabolisable (ME) and net energy (NE) content in soybean meal (SBM)-casein-cornstarch-based diets. The AID of DM, N and energy and ATTD of NDF, ADF and EE in the diets were not affected (p > 0.05) by the feed intake (FI) level. There was a small decrease in ATTD of DM, N (CP), OM, ash and energy, and in DE, ME and NE content in the diets (p < 0.05) with increasing FI level. The net disappearance in the large intestine (in % of ileal recovery) decreased for DM, N and energy (p < 0.05) with increasing FI level. The design of the study allowed for estimating ileal endogenous loss of N and total tract endogenous loss of ash, N and EE, for estimating corresponding true ileal and total tract digestibility values, and for estimating urinary endogenous N loss. High variability in estimates of ileal endogenous N loss and total tract endogenous losses of N, EE and ash reflects great variation in individual endogenous losses between animals. Estimation of true total tract digestibility of N, EE and ash by regression analysis was affected by their decrease in ATTD with increasing FI level, as estimates for true digestibility were lower compared to their apparent values. The present results suggest that FI level can affect both apparent and true total tract nutrient digestibility in piglets. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
NASA Technical Reports Server (NTRS)
Kamins, R. M.
1974-01-01
Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.
The pyrolysis of toluene and ethyl benzene
NASA Technical Reports Server (NTRS)
Sokolovskaya, V. G.; Samgin, V. F.; Kalinenko, R. A.; Nametkin, N. S.
1987-01-01
The pyrolysis of toluene at 850 to 950 C gave mainly H2, CH4, and benzene; PhEt at 650 to 750 C gave mainly H2, CH4, styrene, benzene, and toluene. The rate constants for PhEt pyrolysis were 1000 times higher than those for toluene pyrolysis; the chain initiation rate constants differed by the same factor. The activation energy differences were 46 kJ/mole for the total reaction and 54 kJ/mole for chain initiation. The chain length was evaluated for the PhEt case (10 + or - 2).
Energy and traffic light labelling have no impact on parent and child fast food selection.
Dodds, Pennie; Wolfenden, Luke; Chapman, Kathy; Wellard, Lyndal; Hughes, Clare; Wiggers, John
2013-10-25
Labelling of food from fast food restaurants at point-of-purchase has been suggested as one strategy to reduce population energy consumption and contribute to reductions in obesity prevalence. The aim of this study was to examine the effects of energy and single traffic light labelling systems on the energy content of child and adult intended food purchases. The study employed a randomised controlled trial design. English speaking parents of children aged between three and 12 years were recruited from an existing research cohort. Participants were mailed one of three hypothetical fast food menus. Menus differed in their labelling technique- either energy labels, single traffic light labels, or a no-label control. Participants then completed a telephone survey which assessed intended food purchases for both adult and child. The primary trial outcome was total energy of intended food purchase. A total of 329 participants completed the follow-up telephone interview. Eighty-two percent of the energy labelling group and 96% of the single traffic light labelling group reported noticing labelling information on their menu. There were no significant differences in total energy of intended purchases of parents, or intended purchases made by parents for children, between the menu labelling groups, or between menu labelling groups by socio-demographic subgroups. This study provided no evidence to suggest that energy labelling or single traffic light labelling alone were effective in reducing the energy of fast food items selected from hypothetical fast food menus for purchase. Additional complementary public health initiatives promoting the consumption of healthier foods identified by labelling, and which target other key drivers of menu item selection in this setting may be required. Copyright © 2013. Published by Elsevier Ltd.
Dodds, Pennie; Wolfenden, Luke; Chapman, Kathy; Wellard, Lyndal; Hughes, Clare; Wiggers, John
2014-02-01
Labelling of food from fast food restaurants at point-of-purchase has been suggested as one strategy to reduce population energy consumption and contribute to reductions in obesity prevalence. The aim of this study was to examine the effects of energy and single traffic light labelling systems on the energy content of child and adult intended food purchases. The study employed a randomised controlled trial design. English speaking parents of children aged between three and 12 years were recruited from an existing research cohort. Participants were mailed one of three hypothetical fast food menus. Menus differed in their labelling technique – either energy labels, single traffic light labels, or a no-label control. Participants then completed a telephone survey which assessed intended food purchases for both adult and child. The primary trial outcome was total energy of intended food purchase. A total of 329 participants completed the follow-up telephone interview. Eighty-two percent of the energy labelling group and 96% of the single traffic light labelling group reported noticing labelling information on their menu. There were no significant differences in total energy of intended purchases of parents, or intended purchases made by parents for children, between the menu labelling groups, or between menu labelling groups by socio-demographic subgroups. This study provided no evidence to suggest that energy labelling or single traffic light labelling alone were effective in reducing the energy of fast food items selected from hypothetical fast food menus for purchase. Additional complementary public health initiatives promoting the consumption of healthier foods identified by labelling, and which target other key drivers of menu item selection in this setting may be required.
Relationship between wave energy and free energy from pickup ions in the Comet Halley environment
NASA Technical Reports Server (NTRS)
Huddleston, D. E.; Johnstone, A. D.
1992-01-01
The free energy available from the implanted heavy ion population at Comet Halley is calculated by assuming that the initial unstable velocity space ring distribution of the ions evolves toward a bispherical shell. Ultimately this free energy adds to the turbulence in the solar wind. Upstream and downstream free energies are obtained separately for the conditions observed along the Giotto spacecraft trajectory. The results indicate that the waves are mostly upstream propagating in the solar wind frame. The total free energy density always exceeds the measured wave energy density because, as expected in the nonlinear process of ion scattering, the available energy is not all immediately released. An estimate of the amount which has been released can be obtained from the measured oxygen ion distributions and again it exceeds that observed. The theoretical analysis is extended to calculate the k spectrum of the cometary-ion-generated turbulence.
Developing Region-Specific Water Energy Intensity Factors for the U.S. Water System
NASA Astrophysics Data System (ADS)
Newmark, R. L.; Kandt, A.; Macknick, J.; Daw, J.; Hunsberger, R.; Tomberlin, G.
2014-12-01
Energy use by water and wastewater treatment plants equates to approximately 4% of total energy use in the United States. For many municipal water and wastewater treatment plants, energy costs related to pumping, treating, and transporting water represent a large fraction of total costs. The energy intensity of any given utility is heavily variant dependent on location and regional conditions, but energy requirements are generally expected to increase in many regions due to limits on water resources and regulatory requirements for water quality. Quantifying the energy use associated with our nation's water system - the energy needed to convey, extract, treat and distribute water in a particular location - is an important step in understanding the impact and interconnections of the water system on the energy system, in identifying opportunities for savings, and in improving existing modeling and analytic methods for both energy and water systems. Local topography and other regional conditions can greatly affect how much energy a particular water facility utilizes, which in turn affects its relationship with the broader electricity sector. This research evaluates what previous and current efforts have been undertaken to quantify water energy intensity factors (w-EIFs) on a regional scale, provides first steps for cataloguing resulting datasets and findings, and initiates a methodology for developing regional and localized w-EIFs. Improved regional w-EIFs can facilitate national reductions in energy intensity metrics by highlighting areas where energy savings opportunities could provide the greatest benefit.
Low Dose Ferrous Gluconate Supplement Fails to Alter the Iron Status of Female Officers-In-Training
2005-07-01
guidelines are that total dietary fat intake should contribute no more than 28% of dietary energy with no more than 10% being from saturated fatty...13 3.4 Does alcohol, dietary iron intake , initial iron status or inflammation influence the effect of the supplement...13 3.4.2 Dietary iron intake
Multi-Scale Fracture Mechanics of 3-D Reinforced Composites
2010-02-26
cohesive energy over the interface between plies n and n+1, separated by the horizontal surface z= zn is w/ g(KB)ds (16) In this case the normal vector...where INP is the total number of integration points and V„ is the volume of the n-th ply. Note that the random distribution of initial strength ( 31
NASA Astrophysics Data System (ADS)
Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.
2017-05-01
As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.
Energetic cost of ichthyophonus infection in Juvenile Pacific Herring (Clupea pallasii)
Vollenweider, Johanna J.; Gregg, J.L.; Heintz, R.A.; Hershberger, P.K.
2011-01-01
The energetic costs of fasting and Ichthyophonus infection were measured in juvenile Pacific herring (Clupea pallasii) in a lab setting at three temperatures. Infected herring incurred significant energetic costs, the magnitude of which depended on fish condition at the time of infection (fat versus lean). Herring that were fed continually and were in relatively good condition at the time of infection (fat) never stored lipid despite ad libitum feeding. In feeding herring, the energetic cost of infection was a 30 reduction in total energy content relative to controls 52 days post infection. Following food deprivation (lean condition), infection caused an initial delay in the compensatory response of herring. Thirty-one days after re-feeding, the energetic cost of infection in previously-fasted fish was a 32 reduction in total energy content relative to controls. Body composition of infected herring subsequently recovered to some degree, though infected herring never attained the same energy content as their continuously fed counterparts. Fifty-two days after re-feeding, the energetic cost of infection in previously-fasted fish was a 6 reduction in total energy content relative to controls. The greatest impacts of infection occurred in colder temperatures, suggesting Ichthyophonus-induced reductions in body condition may have greater consequences in the northern extent of herring's range, where juveniles use most of their energy reserves to survive their first winter. Copyright ?? 2011 Johanna J. Vollenweider et al.
New physics with ultra-high-energy neutrinos
Marfatia, D.; McKay, D. W.; Weiler, T. J.
2015-07-03
Now that PeV neutrinos have been discovered by IceCube, we optimistically entertain the possibility that neutrinos with energy above 100PeV exist. Here, we evaluate the dependence of event rates of such neutrinos on the neutrino-nucleon cross section at observatories that detect particles, atmospheric fluorescence, or Cherenkov radiation, initiated by neutrino interactions. We consider how (i)a simple scaling of the total standard model neutrino-nucleon cross section, (ii) a new elastic neutral current interaction, and (iii) anew completely inelastic interaction, individually impact event rates.
Parametric study of minimum converter loss in an energy-storage dc-to-dc converter
NASA Technical Reports Server (NTRS)
Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.
1982-01-01
Through a combination of analytical and numerical minimization procedures, a converter design that results in the minimum total converter loss (including core loss, winding loss, capacitor and energy-storage-reactor loss, and various losses in the semiconductor switches) is obtained. Because the initial phase involves analytical minimization, the computation time required by the subsequent phase of numerical minimization is considerably reduced in this combination approach. The effects of various loss parameters on the optimum values of the design variables are also examined.
NASA Astrophysics Data System (ADS)
Ryo, Ikehata
Uniform energy and L2 decay of solutions for linear wave equations with localized dissipation will be given. In order to derive the L2-decay property of the solution, a useful device whose idea comes from Ikehata-Matsuyama (Sci. Math. Japon. 55 (2002) 33) is used. In fact, we shall show that the L2-norm and the total energy of solutions, respectively, decay like O(1/ t) and O(1/ t2) as t→+∞ for a kind of the weighted initial data.
The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity
NASA Astrophysics Data System (ADS)
Briard, Antoine; Gomez, Thomas
2018-02-01
Decaying homogeneous and isotropic magnetohydrodynamics (MHD) turbulence is investigated numerically at large Reynolds numbers thanks to the eddy-damped quasi-normal Markovian (EDQNM) approximation. Without any background mean magnetic field, the total energy spectrum scales as -3/2$ in the inertial range as a consequence of the modelling. Moreover, the total energy is shown, both analytically and numerically, to decay at the same rate as kinetic energy in hydrodynamic isotropic turbulence: this differs from a previous prediction, and thus physical arguments are proposed to reconcile both results. Afterwards, the MHD turbulence is made imbalanced by an initial non-zero cross-helicity. A spectral modelling is developed for the velocity-magnetic correlation in a general homogeneous framework, which reveals that cross-helicity can contain subtle anisotropic effects. In the inertial range, as the Reynolds number increases, the slope of the cross-helical spectrum becomes closer to -5/3$ than -2$ . Furthermore, the Elsässer spectra deviate from -3/2$ with cross-helicity at large Reynolds numbers. Regarding the pressure spectrum P$ , its kinetic and magnetic parts are found to scale with -2$ in the inertial range, whereas the part due to cross-helicity rather scales in -7/3$ . Finally, the two rd laws for the total energy and cross-helicity are assessed numerically at large Reynolds numbers.
Analysis of delamination in cross-ply laminates initiating from impact induced matrix cracking
NASA Technical Reports Server (NTRS)
Salpekar, S. A.
1993-01-01
Two-dimensional finite element analyses of (02/90(8)/02) glass/epoxy and graphite/epoxy composite laminates were performed to investigate some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center, was analyzed. Inclined matrix cracks, such as those produced by a low-velocity impact, were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tensile and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces, indicating that matrix cracking may give rise to delamination. The ratio of Mode I to total strain energy release rate, G(I)/G(total), at the beginning of delamination, calculated at the two (top and bottom) matrix crack tips was 60 and 28 percent, respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 percent in the graphite/epoxy laminate. Thus, a significant Mode I component of strain energy release rate may be present at the delamination initiation due to an impact load. The value of strain energy release rate at either crack tip increased due to an increase in the delamination length at the other crack tip and may give rise to an unstable delamination growth under constant load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvill, Anna; Bushman, Kate; Ellsworth, Amy
2014-06-17
The EnergyFit Nevada (EFN) Better Buildings Neighborhood Program (BBNP, and referred to in this document as the EFN program) currently encourages Nevada residents to make whole-house energy-efficient improvements by providing rebates, financing, and access to a network of qualified home improvement contractors. The BBNP funding, consisting of 34 Energy Efficiency Conservation Block Grants (EECBG) and seven State Energy Program (SEP) grants, was awarded for a three-year period to the State of Nevada in 2010 and used for initial program design and implementation. By the end of first quarter in 2014, the program had achieved upgrades in 553 homes, with anmore » average energy reduction of 32% per home. Other achievements included: Completed 893 residential energy audits and installed upgrades in 0.05% of all Nevada single-family homes1 Achieved an overall conversation rate of 38.1%2 7,089,089 kWh of modeled energy savings3 Total annual homeowner energy savings of approximately $525,7523 Efficiency upgrades completed on 1,100,484 square feet of homes3 $139,992 granted in loans to homeowners for energy-efficiency upgrades 29,285 hours of labor and $3,864,272 worth of work conducted by Nevada auditors and contractors4 40 contractors trained in Nevada 37 contractors with Building Performance Institute (BPI) certification in Nevada 19 contractors actively participating in the EFN program in Nevada 1 Calculated using 2012 U.S. Census data reporting 1,182,870 homes in Nevada. 2 Conversion rate through March 31, 2014, for all Nevada Retrofit Initiative (NRI)-funded projects, calculated using the EFN tracking database. 3 OptiMiser energy modeling, based on current utility rates. 4 This is the sum of $3,596,561 in retrofit invoice value and $247,711 in audit invoice value.« less
Riva, C; Schievano, A; D'Imporzano, G; Adani, F
2014-08-01
The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy efficiency, renewable energy and sustainable development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ervin, C.A.
1994-12-31
The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importancemore » of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.« less
Pan, L; Zhao, P F; Yang, Z Y; Long, S F; Wang, H L; Tian, Q Y; Xu, Y T; Xu, X; Zhang, Z H; Piao, X S
2016-12-01
Two experiments were conducted to evaluate effects of coated compound proteases (CC protease) on apparent total tract digestibility (ATTD) of nitrogen (N) and energy, and apparent ileal digestibility (AID) of amino acids (AA) and nutrients in diets for pigs. In Exp. 1, 12 crossbred barrows (initial body weight: 20.14±1.71 kg) were housed in individual metabolism crates and allotted into 2 treatments with 6 piglets per treatment according to weight in a randomized complete block design. The 2 diets were corn-soybean meal basal diets with (0.2 g/kg) or without CC protease supplementation. The CC protease supplementation increased (p<0.05) the digestible and metabolizable N and energy values and the digestibility and retention rate of N in the diet. The ATTD of energy and nutrients had been improved (p<0.05) in the diet supplemented with CC protease. In Exp. 2, 12 crossbred barrows (initial body weight: 20.79±1.94 kg), fitted with T-cannulas at the distal ileum, were blocked by body weight into 2 groups with 6 pigs each. The diets were the same as those in Exp. 1. The CC protease increased (p<0.05) the AID of crude protein and some essential AA including arginine, isoleucine and leucine. The AID and ATTD of energy and nutrients had been improved (p<0.05) by supplemental CC protease, but the hindgut digestibility of nutrients was unaffected. Overall, the CC protease improved the ATTD of N and energy and AID of some indispensible AA and nutrients in the corn-soybean meal diet for pigs. Therefore, the CC protease supplement could improve the utilization of protein in the corn-soybean meal diet and thus contribute to lower N excretion to the environment.
Energy and momentum analysis of the deployment dynamics of nets in space
NASA Astrophysics Data System (ADS)
Botta, Eleonora M.; Sharf, Inna; Misra, Arun K.
2017-11-01
In this paper, the deployment dynamics of nets in space is investigated through a combination of analysis and numerical simulations. The considered net is deployed by ejecting several corner masses and thanks to momentum and energy transfer from those to the innermost threads of the net. In this study, the net is modeled with a lumped-parameter approach, and assumed to be symmetrical, subject to symmetrical initial conditions, and initially slack. The work-energy and momentum conservation principles are employed to carry out centroidal analysis of the net, by conceptually partitioning the net into a system of corner masses and the net proper and applying the aforementioned principles to the corresponding centers of mass. The analysis provides bounds on the values that the velocity of the center of mass of the corner masses and the velocity of the center of mass of the net proper can individually attain, as well as relationships between these and different energy contributions. The analytical results allow to identify key parameters characterizing the deployment dynamics of nets in space, which include the ratio between the mass of the corner masses and the total mass, the initial linear momentum, and the direction of the initial velocity vectors. Numerical tools are employed to validate and interpret further the analytical observations. Comparison of deployment results with and without initial velocity of the net proper suggests that more complete and lasting deployment can be achieved if the corner masses alone are ejected. A sensitivity study is performed for the key parameters identified from the energy/momentum analysis, and the outcome establishes that more lasting deployment and safer capture (i.e., characterized by higher traveled distance) can be achieved by employing reasonably lightweight corner masses, moderate shooting angles, and low shooting velocities. A comparison with current literature on tether-nets for space debris capture confirms overall agreement on the importance and effect of the relevant inertial and ejection parameters on the deployment dynamics.
The role of attentional bias in the effect of food advertising on actual food intake among children.
Folkvord, Frans; Anschütz, Doeschka J; Wiers, Reinout W; Buijzen, Moniek
2015-01-01
This study examined the potential moderating role of attentional bias (i.e., gaze duration, number of fixations, latency of initial fixation) in the effect of advergames promoting energy-dense snacks on children's snack intake. A randomized between-subject design was conducted with 92 children who played an advergame that promoted either energy-dense snacks or nonfood products. Eye movements and reaction times to food and nonfood cues were recorded to assess attentional bias during playtime using eye-tracking methods. Children could eat freely after playing the game. The results showed that playing an advergame containing food cues increased total intake. Furthermore, children with a higher gaze duration for the food cues ate more of the advertised snacks. In addition, children with a faster latency of initial fixation to the food cues ate more in total and ate more of the advertised snacks. The number of fixations on the food cues did not increase actual snack intake. Food advertisements are designed to grab attention, and this study shows that the extent to which a child's attention is directed to a food cue increases the effect of the advertisement. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Jianbin; Wu, Xiaoyun; Bao, Pengjia; Long, Ruijun; Guo, Xian; Ding, Xuezhi; Yan, Ping
2017-01-01
The energy available from the diet, which affects fat deposition in vivo, is a major factor in the expression of genes regulating fat deposition in the longissimus dorsi muscle. Providing high-energy diets to yaks might increase intramuscular fat deposition and fatty acid concentrations under a traditional grazing system in cold seasons. A total of fifteen adult castrated male yaks with an initial body weight 274.3 ± 3.14 kg were analyzed for intramuscular adipose deposition and fatty acid composition. The animals were divided into three groups and fed low-energy (LE: 5.5 MJ/kg), medium-energy (ME: 6.2 MJ/kg) and high-energy (HE: 6.9 MJ/kg) diets, respectively. All animals were fed ad libitum twice daily at 08:00–09:00 am and 17:00–18:00 pm and with free access to water for 74 days, including a 14-d period to adapt to the diets and the environment. Intramuscular fat (IMF) content, fatty acid profile and mRNA levels of genes involved in fatty acid synthesis were determined. The energy levels of the diets significantly (P<0.05) affected the content of IMF, total SFA, total MUFA and total PUFA. C16:0, C18:0 and C18:1n9c account for a large proportion of total fatty acids. Relative expression of acetyl-CoA carboxylase (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ) and fatty acid-binding protein 4 (FABP4) was greater in HE than in LE yaks (P<0.05). Moreover, ME yaks had higher (P<0.05) mRNA expression levels of PPARγ, ACACA, FASN, SCD and FABP4 than did the LE yaks. The results demonstrate that the higher energy level of the diets increased IMF deposition and fatty acid content as well as increased intramuscular lipogenic gene expression during the experimental period. PMID:29121115
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, O.V., E-mail: bov@tpu.ru; Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050; Kazinski, P.O., E-mail: kpo@phys.tsu.ru
The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energiesmore » and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.« less
Electron-impact vibrational relaxation in high-temperature nitrogen
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1992-01-01
Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.
Theoretical development and first-principles analysis of strongly correlated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chen
A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method, to address the challenges. The initial implementation of the CMR method is designed for molecules which have theoretical advantages, including small size of system, manifest mechanism and strongly correlation effect such as bond breaking process. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated anmore » alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy (MAE) of ferromagnetic materials. In addition, another theoretical tool, dynamical mean- field theory (DMFT) on top of the DFT , has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, Cindy; Harding, Ari; Robinson, Alastair
The University of Hawai’i at Mānoa (UHM) partnered with the US Department of Energy (DOE) and the Hawai`i Clean Energy Initiative to develop and implement solutions to retrofit exiting buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program1. Kuykendall Hall, located on the UHM campus in Honolulu, was the focus of a CBP analysis and design collaboration among the University of Hawai’i, their consultants, and Lawrence Berkeley National Laboratory (LBNL). Kuykendall Hall consists of two 1960s-era wings – a four-story wing containing classrooms, and a seven-story tower containing offices – withmore » a total floor area of approximately 76,000 square feet (ft²).« less
Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan
2015-03-20
The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr
In warm inflation scenarios, radiation always exists, so that the radiation energy density is also assumed to be finite when inflation starts. To find out the origin of the non-vanishing initial radiation energy density, we revisit thermodynamic analysis for a warm inflation model and then derive an effective Stefan-Boltzmann law which is commensurate with the temperature-dependent effective potential by taking into account the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law shows that the zero energy density for radiation at the Grand Unification epoch increases until the inflation starts and it becomes eventually finite at the initialmore » stage of warm inflation. By using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation.« less
State-to-State integral cross section for the H+H2O-->H2+OH abstraction reaction.
Zhang, Dong H; Xie, Daiqian; Yang, Minghui; Lee, Soo-Y
2002-12-31
The initial state selected time-dependent wave-packet method was extended to calculate the state-to-state integral cross section for the title reaction with H2O in the ground rovibrational state on the potential energy surface of Yang, Zhang, Collins, and Lee. One OH bond length was fixed in the study, which is justifiable for the abstraction reaction, but the remaining 5 degrees of freedom were treated exactly. It was found that the H2 molecule is produced vibrationally cold for collision energy up to 1.6 eV. The OH rotation takes away about 4% of total available energy in the products, while the fraction of energy going to H2 rotation increases with collision energy to about 20% at 1.6 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, A. D.; Patel, D. M.; Bertram, K. M.
2013-02-01
Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, A. D.; Patel, D. M.; Bertram, K. M.
2013-03-01
Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
NASA Technical Reports Server (NTRS)
Kratz, David P.; Priestley, Kory J.; Green, Richard N.
1999-01-01
Observing Earth s radiant energy budget from space is critical to improving our understanding of Earth s climate system. The Earth Radiation Budget Experiment (ERBE) was the first initiative to provide simultaneous observations of Earth s radiant energy with identical instruments flying aboard separate satellites. The design of the ERBE instrument was based upon three complementary broadband radiometers which measured the shortwave (< 5 mm), longwave (> 5 mm), and total regions of the spectrum. Since any two of the ERBE radiometers could be used to simulate the third, a three channel intercomparison, based on redundancy, was available to uncover any changes in the relative sensitivities of the individual radiometers. Such a three channel intercomparison thus provided confidence in the application of the ERBE measurements over the lifetime of the instrument while mitigating the concern over instrument degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffman, S.
A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites. The Brunswick Naval Air Station is a naval air facility and Environmental Protection Agency (EPA) Super Fund site that is being cleaned up, and closed down. The objective of this report is not only to look at the economics of individual renewable energy technologies, but also to look at the systemic benefits that can be gained when cost-effective renewable energy technologies are integrated with other systems and businesses in a community; thus multiplying themore » total monetary, employment, and quality-of-life benefits they can provide to a community.« less
Preservation of physical properties with Ensemble-type Kalman Filter Algorithms
NASA Astrophysics Data System (ADS)
Janjic, T.
2017-12-01
We show the behavior of the localized Ensemble Kalman filter (EnKF) with respect to preservation of positivity, conservation of mass, energy and enstrophy in toy models that conserve these properties. In order to preserve physical properties in the analysis as well as to deal with the non-Gaussianity in an EnKF framework, Janjic et al. 2014 proposed the use of physically based constraints in the analysis step to constrain the solution. In particular, constraints were used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In the study, mass and positivity were both preserved by formulating the filter update as a set of quadratic programming problems that incorporate nonnegativity constraints. Simple numerical experiments indicated that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that were more physically plausible both for individual ensemble members and for the ensemble mean. Moreover, in experiments designed to mimic the most important characteristics of convective motion, it is shown that the mass conservation- and positivity-constrained rain significantly suppresses noise seen in localized EnKF results. This is highly desirable in order to avoid spurious storms from appearing in the forecast starting from this initial condition (Lange and Craig 2014). In addition, the root mean square error is reduced for all fields and total mass of the rain is correctly simulated. Similarly, the enstrophy, divergence, as well as energy spectra can as well be strongly affected by localization radius, thinning interval, and inflation and depend on the variable that is observed (Zeng and Janjic, 2016). We constructed the ensemble data assimilation algorithm that conserves mass, total energy and enstrophy (Zeng et al., 2017). With 2D shallow water model experiments, it is found that the conservation of enstrophy within the data assimilation effectively avoids the spurious energy cascade of rotational part and thereby successfully suppresses the noise generated by the data assimilation algorithm. The 14-day deterministic and ensemble free forecast, starting from the initial condition enforced by both total energy and enstrophy constraints, produces the best prediction.
NASA Astrophysics Data System (ADS)
Lauren, Ari; Kinnunen, Jyrki-Pekko; Sikanen, Lauri
2016-04-01
Bioenergy contributes 26 % of the total energy use in Finland, and 60 % of this is provided by solid forest fuel consisting of small stems and logging residues such as tops, branches, roots and stumps. Typically the logging residues are stored as piles on site before transporting to regional combined heat and power plants for combustion. Profitability of forest fuel use depends on smart control of the feedstock. Fuel moisture, dry matter loss, and the rate of interest during the storing are the key variables affecting the economic value of the fuel. The value increases with drying, but decreases with wetting, dry matter loss and positive rate of interest. We compiled a simple simulation model computing the moisture change, dry matter loss, transportation costs and present value of feedstock piles. The model was used to predict the time of the maximum value of the stock, and to compose feedstock allocation strategies under the question: how should we choose the piles and the combustion time so that total energy yield and the economic value of the energy production is maximized? The question was assessed concerning the demand of the energy plant. The model parameterization was based on field scale studies. The initial moisture, and the rates of daily moisture change and dry matter loss in the feedstock piles depended on the day of the year according to empirical field measurements. Time step of the computation was one day. Effects of pile use timing on the total energy yield and profitability was studied using combinatorial optimization. Results show that the storing increases the pile maximum value if the natural drying onsets soon after the harvesting; otherwise dry matter loss and the capital cost of the storing overcome the benefits gained by drying. Optimized timing of the pile use can improve slightly the profitability, based on the increased total energy yield and because the energy unit based transportation costs decrease when water content in the biomass is decreased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth
End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of themore » LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new construction, commercial/industrial custom rebate programs). In this report, the focus is on gross energy savings and the costs borne by the program administrator—including administration, payments to implementation contractors, marketing, incentives to program participants (end users) and both midstream and upstream trade allies, and evaluation costs. We collected data on net savings and costs incurred by program participants. However, there were insufficient data on participant cost contributions, and uncertainty and variability in the ways in which net savings were reported and defined across states (and program administrators).« less
Poteshin, S S; Zarakovsky, A I
2017-03-15
Original orthogonal acceleration (OA) electrostatic sector time of flight (TOF) mass analyzer is proposed those allows the second order focusing of time of flight by initial ions position. Resolving power aberration limit exceeding 80,000 FW (full width mass peak) was shown to be obtainable for mass analyzer with the total length of flight L=133.2cm, the average ion energy 3700V and the ion energy spread of 2.5% on the entrance of sector field. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA spinoffs to energy and the environment
NASA Technical Reports Server (NTRS)
Gilbert, Ray L.; Lehrman, Stephen A.
1989-01-01
Thousands of aerospace innovations have found their way into everyday use, and future National Aeronautics and Space Administration (NASA) missions promise to provide many more spinoff opportunities. Each spinoff has contributed some measure of benefit to the national economy, productivity, or lifestyle. In total, these spinoffs represent a substantial dividend on the national investment in aerospace research. Along with examples of the many terrestrial applications of NASA technology to energy and the environment, this paper presents the mechanisms by which NASA promotes technology transfer. Also discussed are new NASA initiatives in superconductivity research, global warming, and aeropropulsion.
Transition sum rules in the shell model
NASA Astrophysics Data System (ADS)
Lu, Yi; Johnson, Calvin W.
2018-03-01
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.
U.S. Federal Investments in Energy R&D: 1961-2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.
2008-10-10
This paper documents nearly a half century of U.S. federal government support for energy research and development (R&D). Data on energy R&D expenditures disaggregated by major program area are presented here for the first time for the period 1961-2008. This paper also documents U.S. federal government spending on key large scale energy R&D programs that were initiated in response to the oil crisis of the 1970s. Since 1961, the U.S. government has invested nearly $172 billion (in inflation adjusted 2005 US dollars) for the development of advanced energy technologies and for the necessary underlying basic science. Over this period, nearlymore » 24% of the total federal investment in energy R&D occurred during the short seven-year span of 1974-1980. From 1977-1981, energy R&D investments briefly rose above 10% of all federal R&D; however, since the mid-1990s energy R&D has accounted for only about 1% of all federal R&D investments.« less
Dynamical description of the fission process using the TD-BCS theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scamps, Guillaume, E-mail: scamps@nucl.phys.tohoku.ac.jp; Simenel, Cédric; Lacroix, Denis
2015-10-15
The description of fission remains a challenge for nuclear microscopic theories. The time-dependent Hartree-Fock approach with BCS pairing is applied to study the last stage of the fission process. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.
NASA Technical Reports Server (NTRS)
Schwenke, David W.
1993-01-01
We report the results of a series of calculations of state-to-state integral cross sections for collisions between O and nonvibrating H2O in the gas phase on a model nonreactive potential energy surface. The dynamical methods used include converged quantum mechanical scattering calculations, the j(z) conserving centrifugal sudden (j(z)-CCS) approximation, and quasi-classical trajectory (QCT) calculations. We consider three total energies 0.001, 0.002, and 0.005 E(h) and the nine initial states with rotational angular momentum less than or equal to 2 (h/2 pi). The j(z)-CCS approximation gives good results, while the QCT method can be quite unreliable for transitions to specific rotational sublevels. However, the QCT cross sections summed over final sublevels and averaged over initial sublevels are in better agreement with the quantum results.
Pérez de Nanclares, M; Marcussen, C; Tauson, A-H; Hansen, J Ø; Kjos, N P; Mydland, L T; Bach Knudsen, K E; Øverland, M
2018-05-28
The heavy reliance on imported soybean meal (SBM) as a protein source makes it necessary for the European pig industry to search for alternatives and to develop pigs that perform efficiently when fed such ingredients. Digestion and metabolism are major physiological processes contributing to variation in feed efficiency. Therefore, an experiment was conducted to assess the effects of replacing SBM with increasing levels of rapeseed meal (RSM) in diets for young pigs on apparent total tract digestibility (ATTD) of energy and nutrients, nitrogen (N) balance, energy metabolism and carbohydrate, protein and fat oxidation. Four diets were fed to 32 pigs (22.7±4.1 kg initial BW) for three weeks. The diets consisted of a control cereal grain-SBM basal diet and three test diets where SBM and wheat were partially replaced with 10%, 20%, and 30% of expeller RSM. Increasing level of RSM in the diets linearly reduced ATTD of organic matter, CP, total carbohydrates, dietary fiber and energy. Utilization of digested nitrogen (DN) for N retention and total N excretion were not affected by RSM inclusion, however, RSM inclusion induced a shift in N excretion from urine to feces. Despite a linear increase in liver to metabolic BW ratio, heat production and utilization of metabolizable energy (ME) for retention were not affected by increasing RSM inclusion. In conclusion, replacing SBM with up to 30% of expeller RSM in nutritionally balanced diets for young pigs reduced the ATTD of most nutrients and energy, but did not affect N and energy retention in the body or efficiency of utilization of DN or ME for retention.
Chi, Lei; Yao, Changhong; Cao, Xupeng; Xue, Song
2016-01-01
Lipids and carbohydrates are main energy storage compounds (ESC) of microalgae under stressed conditions and they are potential feedstock for biofuel production. Yet, the sustainable and commercially successful production of ESC in microalgae needs to consider nitrogen utilization efficiency. Here the impact of different initial cell densities (ICDs) on ESC accumulation in Isochrysis zhangjiangensis under two nitrogen supply modes (an initially equal concentration of nitrogen per-cell in the medium (N1) and an equal total concentration of nitrogen in the culture system (N2)) were investigated. The results demonstrated that the highest ESC yield (1.36gL(-1)) at N1, which included a maximal nitrogen supply in the cultivation system, and the highest ESC content (66.5%) and ESC productivity per mass of nitrogen (3.28gg(-1) (N) day(-1)) at N2, were all obtained under a high ICD of 8.0×10(6)cellsmL(-1). Therefore I. zhangjiangensis qualifies for ESC-enriched biomass production with economized nitrogen utilization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Halász, Gábor J; Csehi, András; Vibók, Ágnes; Cederbaum, Lorenz S
2014-12-26
Previous works have shown that dressing of diatomic molecules by standing or by running laser waves gives rise to the appearance of so-called light-induced conical intersections (LICIs). Because of the strong nonadiabatic couplings, the existence of such LICIs may significantly change the dynamical properties of a molecular system. In our former paper (J. Phys. Chem. A 2013, 117, 8528), the photodissociation dynamics of the D(2)(+) molecule were studied in the LICI framework starting the initial vibrational nuclear wave packet from the superposition of all the vibrational states initially produced by ionizing D(2). The present work complements our previous investigation by letting the initial nuclear wave packets start from different individual vibrational levels of D(2)(+), in particular, above the energy of the LICI. The kinetic energy release spectra, the total dissociation probabilities, and the angular distributions of the photofragments are calculated and discussed. An interesting phenomenon has been found in the spectra of the photofragments. Applying the light-induced adiabatic picture supported by LICI, explanations are given for the unexpected structure of the spectra.
Dry fermentation of agricultural residues
NASA Astrophysics Data System (ADS)
Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.
1981-09-01
A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).
pH-dependent ammonia removal pathways in microbial fuel cell system.
Kim, Taeyoung; An, Junyeong; Lee, Hyeryeong; Jang, Jae Kyung; Chang, In Seop
2016-09-01
In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial pH conditions (pH 7.0, 8.0, and 8.6) were investigated. At a neutral pH condition (pH 7.0), MFC used an electrical energy of 27.4% and removed 23.3% of total ammonia by electrochemical pathway for 192h. At the identical pH condition, 36.1% of the total ammonia was also removed by the biological path suspected to be biological ammonia oxidation process (e.g., Anammox). With the initial pH increased, the electrochemical removal efficiency decreased to less than 5.0%, while the biological removal efficiency highly increased to 61.8%. In this study, a neutral pH should be maintained in the anode to utilize MFCs for ammonia recovery via electrochemical pathways from wastewater stream. Copyright © 2016 Elsevier Ltd. All rights reserved.
Elephant grass, sugarcane, and rice bran in diets for confined sheep.
Cutrim, Darley Oliveira; Alves, Kaliandra Souza; Oliveira, Luis Rennan Sampaio; da Conceição dos Santos, Rozilda; da Mata, Vanessa Jaqueline Veloso; do Carmo, Danilo Moreira; Gomes, Daiany Iris; Mezzomo, Rafael; de Carvalho, Francisco Fernando Ramos
2012-12-01
We aimed to evaluate the effects of diets, based on elephant grass or sugarcane as roughage and corn meal or rice bran as energy concentrate, on performance and body composition in terms of diet intake and digestibility. A total of 30 Santa Ines crossbreds (SIC), castrated male sheep with 19.8 ± 2.0 kg initial body weight (BW) were used. Six animals were slaughtered at the onset of the experiment to estimate the initial body composition for the other animals. The remaining 24 animals were distributed in a completely randomized 2 × 2 factorial design, with four treatments (two roughages and two concentrates) and six replicates. The sheep were slaughtered when they reached 30.0 kg BW. Elephant grass diets provided higher intake and digestibility than sugarcane diets for the following contents: dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fibre, minerals, total carbohydrates (TC), and total digestible nutrients (TDN). Among the concentrates, corn meal diets were associated with higher intakes than rice bran diets for the following contents: DM, OM, CP, TC, and TDN. Animals from all of the treatments exhibited low average daily weight gain and low protein and high fat and energy body levels. Sugarcane and rice bran can be used as ingredients in diets for sheep with low weight gain potential. Regardless of roughage or concentrate types used in diets for confined SIC sheep, performance and body composition remained unaltered.
Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C
2015-05-01
Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.
The initiation and growth of delaminations induced by matrix microcracks in laminated composites
NASA Technical Reports Server (NTRS)
Nairn, J. A.; Hu, S.
1992-01-01
A recent variational mechanics analysis of microcracking damage in cross-ply laminates of the form /(S)/90n/s, where (S) is any orthotropic sublaminate much stiffer than /90n/, has been extended to account for the presence of delaminations emanating from the tips of microcracks in the /90 2n/T sublaminate. The new two-dimensional stress analysis is used to calculate the total strain energy, effective modulus, and longitudinal thermal expansion coefficient for a laminate having microcracks and delaminations. These results are used to calculate the energy release rate for the initiation and growth of a delamination induced by a matrix microcrack. At low crack densities, /(S)/90n/s laminates are expected to fail by microcracking and to show little or no delamination. At some critical crack density, which is a function of laminate structure and material properties, the energy release rate for delamination exceeds that for microcracking and delamination is predicted to dominate over microcracking. A quasi-three-dimensional model is used to predict the propagation of arbitrarily shaped delamination fronts. All predictions agree with experimental observations.
Surface-induced dissociation of methanol cations: A non-ergodic process
Shukla, Anil K.
2017-09-01
Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less
Surface-induced dissociation of methanol cations: A non-ergodic process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil K.
Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less
Neuhouser, Marian L; Di, Chongzhi; Tinker, Lesley F; Thomson, Cynthia; Sternfeld, Barbara; Mossavar-Rahmani, Yasmin; Stefanick, Marcia L; Sims, Stacy; Curb, J David; Lamonte, Michael; Seguin, Rebecca; Johnson, Karen C; Prentice, Ross L
2013-03-15
We used a biomarker of activity-related energy expenditure (AREE) to assess measurement properties of self-reported physical activity and to determine the usefulness of AREE regression calibration equations in the Women's Health Initiative. Biomarker AREE, calculated as the total energy expenditure from doubly labeled water minus the resting energy expenditure from indirect calorimetry, was assessed in 450 Women's Health Initiative participants (2007-2009). Self-reported AREE was obtained from the Arizona Activity Frequency Questionnaire (AAFQ), the 7-Day Physical Activity Recall (PAR), and the Women's Health Initiative Personal Habits Questionnaire (PHQ). Eighty-eight participants repeated the protocol 6 months later. Reporting error, measured as log(self-report AREE) minus log(biomarker AREE), was regressed on participant characteristics for each instrument. Body mass index was associated with underreporting on the AAFQ and PHQ but overreporting on PAR. Blacks and Hispanics underreported physical activity levels on the AAFQ and PAR, respectively. Underreporting decreased with age for the PAR and PHQ. Regressing logbiomarker AREE on logself-reported AREE revealed that self-report alone explained minimal biomarker variance (R(2) = 7.6, 4.8, and 3.4 for AAFQ, PAR, and PHQ, respectively). R(2) increased to 25.2, 21.5, and 21.8, respectively, when participant characteristics were included. Six-month repeatability data adjusted for temporal biomarker variation, improving R(2) to 79.4, 67.8, and 68.7 for AAFQ, PAR, and PHQ, respectively. Calibration equations "recover" substantial variation in average AREE and valuably enhance AREE self-assessment.
Effectiveness of the use of LLLT on disorders of the maxillofacial region
NASA Astrophysics Data System (ADS)
Soares, Luiz G. P.; Carvalho, Carolina M.; Marques, Aparecida M. C.; Cangussú, Maria Cristina T.; Pinheiro, Antônio L. B.
2012-03-01
Dentistry has traditionally depended on science and technology for improvement of diagnostic tools and treatment options. The impact of using light sources in clinical Dentistry has been significantly higher than in clinical Medicine and Surgery. Light sources have been used as a therapeutic agent for many centuries. The major use of light for therapeutic applications in health care sciences was noticeably initiated after the development of lasers in 1960. The aim of this study was to evaluate the effectiveness of LLLT on treating disorders of the maxillofacial region. For this, the records of patients treated at the Laser Center of the School of Dentistry of the Federal University of Bahia were revised. We analyzed 867 treatment cycles in 572 patients. The mean age of the patients was 53.5 years old, most were females. Majority of them complained of some pain. G50.0 and K07.6 were the most frequent diagnostics. The mean energy density per session was 18.36 +/- 14.6 J/cm2 and mean treatment one 176.4 +/- 132.4 J/cm2. IR laser was the most frequently used wavelength. Most patients were asymptomatic or improved at discharge. Improved or asymptomatic patients had a mean age of 50.9 years old. For these, the mean number of sessions was 13, the total mean session energy density was 16.6 J/cm2 and mean total energy density treatment was 169.5 J/cm2. For symptomatic patients, the mean age was 56.4 years old. The mean number of sessions was 10. The mean energy density per session on these patients was 20.6 J/cm2 and mean total treatment energy density was 210.9 J/cm2. 55.34% of the patients were asymptomatic or improved at discharge. For these, the mean number of sessions was 13, the total mean session energy density was 16.6 J/cm2 and mean total energy density treatment was 169.5 J/cm2. For symptomatic patients, the mean age was 56.4 years old. The mean number of sessions was 10. The mean energy density per session on these patients was 20.6 J/cm2 and mean total treatment energy density was 210.9 J/cm2. The results of this study are indicative that the use of LLLT for treating different disorders of the maxillofacial region is effective and well accepted by the patients.
Reference dosimetry study for 3 MEV electron beam accelerator in malaysia
NASA Astrophysics Data System (ADS)
Ali, Noriah Mod; Sunaga, Hiromi; Tanaka, Ryuichi
1995-09-01
An effective quality assurance programme is initiated for the use of the electron beam with energies up to 3 MeV. The key element of the programme is the establishment of a relationship between the standardised beam to the routine technique which is employed to verify the beam parameter. A total absorbing calorimeter was adopted as a suitable reference system and when used in combination with the electron current densitymeter (ECD) will enable to determine the mean energy for electron with energies between 1 to 3 MeV. An appropriate method of transfering the standard parameter is studied and the work that is expected to optimise the accuracy attainable with routine check-up of the irradiation parameter are presented.
Conserved Quantities in General Relativity: From the Quasi-Local Level to Spatial Infinity
NASA Astrophysics Data System (ADS)
Chen, Po-Ning; Wang, Mu-Tao; Yau, Shing-Tung
2015-08-01
We define quasi-local conserved quantities in general relativity by using the optimal isometric embedding in Wang and Yau (Commun Math Phys 288(3):919-942, 2009) to transplant Killing fields in the Minkowski spacetime back to the 2-surface of interest in a physical spacetime. To each optimal isometric embedding, a dual element of the Lie algebra of the Lorentz group is assigned. Quasi-local angular momentum and quasi-local center of mass correspond to pairing this element with rotation Killing fields and boost Killing fields, respectively. They obey classical transformation laws under the action of the Poincaré group. We further justify these definitions by considering their limits as the total angular momentum and the total center of mass of an isolated system. These expressions were derived from the Hamilton-Jacobi analysis of the gravitational action and thus satisfy conservation laws. As a result, we obtained an invariant total angular momentum theorem in the Kerr spacetime. For a vacuum asymptotically flat initial data set of order 1, it is shown that the limits are always finite without any extra assumptions. We also study these total conserved quantities on a family of asymptotically flat initial data sets evolving by the vacuum Einstein evolution equation. It is shown that the total angular momentum is conserved under the evolution. For the total center of mass, the classical dynamical formula relating the center of mass, energy, and linear momentum is recovered, in the nonlinear context of initial data sets evolving by the vacuum Einstein evolution equation. The definition of quasi-local angular momentum provides an answer to the second problem in classical general relativity on Penrose's list (Proc R Soc Lond Ser A 381(1780):53-63, 1982).
Solar Energy Systems for Lunar Oxygen Generation
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.
2010-01-01
An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.
Status of national CO{sub 2}-mitigation projects and initiatives in the Philippine energy sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tupas, C.T.
1996-12-31
The Philippines has a huge energy requirement for the next 30 years in order to achieve its economic growth target. Based on an expected annual GDP growth rate of 6.9 percent, the Philippines total energy requirement is estimated to increase at an average of 6.6 percent annually from 1996 to 2025. Gross energy demand shall increase from 219.0 million barrels of fuel oil equivalent (MMBFOE) in 1996 to 552.4 MMBFOE in 2010 and 1,392.6 MMBFOE by 2025. These energy demand levels shall be driven primarily by the substantial increase in fuel requirements for power generation whose share of total energymore » requirement is 28.3 percent in 1996, 48.0 percent in 2010 and 55.0 percent in 2025. With the expected increase in energy demand, there will necessarily be adverse impacts on the environment. Energy projects and their supporting systems - from fuel extraction and storage to distribution - can and will be major contributors not only to local but also to regional and global environmental pollution and degradation. International experiences and trends in greenhouse gas (GHG) emissions inventory have shown that the energy sector has always been the dominant source of carbon dioxide (CO{sub 2}) - the principal contributor to global climate change. The energy sector`s CO{sub 2} emissions come primarily from fossil fuels combustion. Since energy use is the dominant source of CO{sub 2} emissions, efforts should therefore be concentrated on designing a mitigation strategy in this sector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthikeyan, N., E-mail: karthin10@gmail.com; Sivakumar, K.; Pachamuthu, M. P.
We focus on the application of powder diffraction data to get abinitio crystal structure determination of thiophene derived 1,4 DHP prepared by cyclocondensation method using solid catalyst. Crystal structure of the compound has been solved by direct-space approach on Monte Carlo search in parallel tempering mode using FOX program. Initial atomic coordinates were derived using Gaussian 09W quantum chemistry software in semi-empirical approach and Rietveld refinement was carried out using GSAS program. The crystal structure of the compound is stabilized by one N-H…O and three C-H…O hydrogen bonds. PIXEL lattice energy calculation was carried out to understand the physical naturemore » of intermolecular interactions in the crystal packing, on which the total lattice energy is contributed into Columbic, polarization, dispersion, and repulsion energies.« less
Partitioned-Interval Quantum Optical Communications Receiver
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor A.
2013-01-01
The proposed quantum receiver in this innovation partitions each binary signal interval into two unequal segments: a short "pre-measurement" segment in the beginning of the symbol interval used to make an initial guess with better probability than 50/50 guessing, and a much longer segment used to make the high-sensitivity signal detection via field-cancellation and photon-counting detection. It was found that by assigning as little as 10% of the total signal energy to the pre-measurement segment, the initial 50/50 guess can be improved to about 70/30, using the best available measurements such as classical coherent or "optimized Kennedy" detection.
NASA Astrophysics Data System (ADS)
Stone, J. R.; Danielewicz, P.; Iwata, Y.
2017-07-01
Background: The distribution of protons and neutrons in the matter created in heavy-ion collisions is one of the main points of interest for the collision physics, especially at supranormal densities. These distributions are the basis for predictions of the density dependence of the symmetry energy and the density range that can be achieved in a given colliding system. We report results of the first systematic simulation of proton and neutron density distributions in central heavy-ion collisions within the beam energy range of Ebeam≤800 MeV /nucl . The symmetric 40Ca+40Ca , 48Ca+48Ca , 100Sn+100Sn , and 120Sn+120Sn and asymmetric 40Ca+48Ca and 100Sn+120Sn systems were chosen for the simulations. Purpose: We simulate development of proton and neutron densities and asymmetries as a function of initial state, beam energy, and system size in the selected collisions in order to guide further experiments pursuing the density dependence of the symmetry energy. Methods: The Boltzmann-Uhlenbeck-Uehling (pBUU) transport model with four empirical models for the density dependence of the symmetry energy was employed. Results of simulations using pure Vlasov dynamics were added for completeness. In addition, the time-dependent Hartree-Fock (TDHF) model, with the SV-bas Skyrme interaction, was used to model the heavy-ion collisions at Ebeam≤40 MeV /nucl . Maximum proton and neutron densities ρpmax and ρnmax, reached in the course of a collision, were determined from the time evolution of ρp and ρn. Results: The highest total densities predicted at Ebeam=800 MeV /nucl . were of the order of ˜2.5 ρ0 (ρ0=0.16 fm-3 ) for both Sn and Ca systems. They were found to be only weakly dependent on the initial conditions, beam energy, system size, and a model of the symmetry energy. The proton-neutron asymmetry δ =(ρnmax-ρpmax) /(ρnmax+ρpmax) at maximum density does depend, though, on these parameters. The highest value of δ found in all systems and at all investigated beam energies was ˜0.17 . Conclusions: We find that the initial state, beam energy, system size, and a symmetry energy model affect very little the maximum proton and neutron densities, but have a subtle impact on the proton-neutron asymmetry. Most importantly, the variations in the proton-neutron asymmetry at maximum densities are related at most at 50% level to the details in the symmetry energy at supranormal density. The reminder is due to the details in the symmetry energy at subnormal densities and proton and neutron distributions in the initial state. This result brings to the forefront the need for a proper initialization of the nuclei in the simulation, but also brings up the question of microscopy, such as shell effects, that affect initial proton and neutron densities, but cannot be consistently incorporated into semiclassical transport models.
Analysis of particulate contamination on tape lift samples from the VETA optical surfaces
NASA Technical Reports Server (NTRS)
Germani, Mark S.
1992-01-01
Particulate contamination analysis was carried out on samples taken from the Verification Engineering Test Article (VETA) x-ray detection system. A total of eighteen tape lift samples were taken from the VETA optical surfaces. Initially, the samples were tested using a scanning electron microscope. Additionally, particle composition was determined by energy dispersive x-ray spectrometry. Results are presented in terms of particle loading per sample.
The United Nations development programme initiative for sustainable energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurry, S.
1997-12-01
Energy is central to current concerns about sustainable human development, affecting economic and social development; economic growth, the local, national, regional, and global environment; the global climate; a host of social concerns, including poverty, population, and health, the balance of payments, and the prospects for peace. Energy is not an end in itself, but rather the means to achieve the goals of sustainable human development. The energy systems of most developing countries are in serious crisis involving insufficient levels of energy services, environmental degradation, inequity, poor technical and financial performance, and capital scarcity. Approximately 2.5 billion people in the developingmore » countries have little access to commercial energy supplies. Yet the global demand for energy continues to grow: total primary energy is projected to grow from 378 exajoules (EJ) per year in 1990 to 571 EJ in 2020, and 832 EJ in 2050. If this increase occurs using conventional approaches and energy sources, already serious local (e.g., indoor and urban air pollution), regional (eg., acidification and land degradation), and global (e.g., climate change) environmental problems will be critically aggravated. There is likely to be inadequate capital available for the needed investments in conventional energy sources. Current approaches to energy are thus not sustainable and will, in fact, make energy a barrier to socio-economic development. What is needed now is a new approach in which energy becomes an instrument for sustainable development. The two major components of a sustainable energy strategy are (1) more efficient energy use, especially at the point of end-use, and (2) increased use of renewable sources of energy. The UNDP Initiative for Sustainable Energy (UNISE) is designed to harness opportunities in these areas to build upon UNDP`s existing energy activities to help move the world toward a more sustainable energy strategy by helping program countries.« less
Effect of hemoglobin and immunization status on energy metabolism of weanling pigs.
Gentry, J L; Swinkels, J W; Lindemann, M D; Schrama, J W
1997-04-01
We investigated the effect of (Hb) and immunization status on energy metabolism of newly weaned pigs. An additional focus of the study was to determine the development of circadian rhythms as evidenced by heat production patterns. Twenty-four 4-wk-old crossbred weanling barrows were placed into groups of three based on weight and litter origin, and the groups were allotted to one of four treatments. Treatments were arranged as a 2 x 2 factorial. The factors included 1) Hb status (low vs high) and 2) immunization status (antigen vs placebo). Hemoglobin status was obtained by injecting 3-d-old barrows with 100 (low) or 200 mg (high) of Fe. At 4 wk, initial blood Hb concentrations were 6.0 mM for the low group and 7.8 mM for the high group. Energy metabolism was measured using two weekly total energy and nitrogen balance collections. Energy intake and retention were higher (P < .05) in pigs with a high Hb level. Energy metabolism was not affected (P > .10) by immunization status, and heat production was not affected (P > .10) by either Hb or immunization status. Total heat production (HTOT) increased (P < .001) daily and reflected a daily increase (P < .001) in activity (HACT) and activity-free (HCOR) heat production. An increase (P < .001) in HTOT and HACT was detected for the light period compared with the dark period over the total experimental period but a decrease (P < .001) in HCOR was detected; however, HACT for the dark period was approximately half of that measured during the light period. In conclusion, Hb status affected energy metabolism; pigs having a high Hb status had a higher energy retention. Immunization status had minimal effects on energy metabolism and heat production. Additionally, the diurnal circadian rhythm seen in older pigs had not been established by 2 wk after weaning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shehabi, Arman; Ganeshalingam, Mohan; DeMates, Lauren
Laboratories are estimated to be 3-5 times more energy intensive than typical office buildings and offer significant opportunities for energy use reductions. Although energy intensity varies widely, laboratories are generally energy intensive due to ventilation requirements, the research instruments used, and other health and safety concerns. Because the requirements of laboratory facilities differ so dramatically from those of other buildings, a clear need exists for an initiative exclusively targeting these facilities. The building stock of laboratories in the United States span different economic sectors, include governmental and academic institution, and are often defined differently by different groups. Information on laboratorymore » buildings is often limited to a small subsection of the total building stock making aggregate estimates of the total U.S. laboratories and their energy use challenging. Previous estimates of U.S. laboratory space vary widely owing to differences in how laboratories are defined and categorized. A 2006 report on fume hoods provided an estimate of 150,000 laboratories populating the U.S. based in part on interviews of industry experts, however, a 2009 analysis of the 2003 Commercial Buildings Energy Consumption Survey (CBECS) generated an estimate of only 9,000 laboratory buildings. This report draws on multiple data sources that have been evaluated to construct an understanding of U.S. laboratories across different sizes and markets segments. This 2016 analysis is an update to draft reports released in October and December 2016.« less
Optimal design of a magnetorheological damper used in smart prosthetic knees
NASA Astrophysics Data System (ADS)
Gao, Fei; Liu, Yan-Nan; Liao, Wei-Hsin
2017-03-01
In this paper, a magnetorheological (MR) damper is optimally designed for use in smart prosthetic knees. The objective of optimization is to minimize the total energy consumption during one gait cycle and weight of the MR damper. Firstly, a smart prosthetic knee employing a DC motor, MR damper and springs is developed based on the kinetics characteristics of human knee during walking. Then the function of the MR damper is analyzed. In the initial stance phase and swing phase, the MR damper is powered off (off-state). While during the late stance phase, the MR damper is powered on to work as a clutch (on-state). Based on the MR damper model as well as the prosthetic knee model, the instantaneous energy consumption of the MR damper is derived in the two working states. Then by integrating in one gait cycle, the total energy consumption is obtained. Particle swarm optimization algorithm is used to optimize the geometric dimensions of MR damper. Finally, a prototype of the optimized MR damper is fabricated and tested with comparison to simulation.
Energy efficiency evaluation of hospital building office
NASA Astrophysics Data System (ADS)
Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.
2017-01-01
One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.
Lei, X J; Yan, L; Kim, Y M; Kim, I H
2018-02-01
Two experiments were conducted to investigate effects of different space allocations and different dietary metabolizable energy (ME) levels on growth performance and nutrient digestibility in growing and finishing pigs. In experiment 1, a total of 84 growing pigs [(Yorkshire × Landrace) × Duroc] with an initial body weight (BW) of 27.10 ± 1.60 kg were used in a 5-week trial. Pigs were blocked based on initial BW into a 2 × 2 factorial design with the following factors: (i) 0.60 or 0.80 m 2 /pig space allocations; and (ii) 3,400 or 3,550 kcal/kg ME of diets. In experiment 2, a total of 84 finishing pigs with an initial BW of 67.43 ± 1.97 kg were used in a 10-week trial. Pigs were allotted based on initial BW into a 2 × 2 factorial design with the following factors: (i) 0.81 or 1.08 m 2 /pig space allocations; and (ii) 3,300 or 3,450 kcal/kg ME of diet. In experiment 1, high ME diet improved gain-to-feed ratio (G:F) in pigs with low space allocation but not in pigs in high space allocation (p < .05). Additionally, high ME diet increased apparent total tract digestibility (ATTD) of nitrogen in low space allocation but decreased ATTD of nitrogen in high space allocation (p < .05). In experiment 2, high ME diet improved average daily gain (ADG) and G:F in early-finishing pigs with low space allocation but not in pigs with high space allocation (p < .05). In conclusion, the provision of high ME diets was not enough to overcome the reduction in growth performance due to low space allocation but can improve feed efficiency in growing pigs and daily gain and feed efficiency early-finishing pigs. © 2017 Blackwell Verlag GmbH.
Treatment of vitreous floaters with neodymium YAG laser.
Tsai, W F; Chen, Y C; Su, C Y
1993-01-01
Fifteen cases of vitreous floaters with serious psychological reactions have been collected. By using a direct ophthalmoscope, causal vitreous opacities were detected. The opacities were photodisrupted with neodymium YAG laser, using energy levels of 5 to 7.1 mJ and total energy 71 to 742.0 mJ. Symptoms completely disappeared immediately after treatment in all 15 cases. There were no intraoperative or postoperative complications noted during a follow up period of at least 1 year. To our knowledge, the use of neodymium YAG laser to treat vitreous floaters has not been previously described. Our initial experience indicates that the treatment is simple, safe, and effective. Images PMID:8025044
Triplex molecular layers with nonlinear nanomechanical response
NASA Astrophysics Data System (ADS)
Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.
2002-06-01
The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.
Hingle, Melanie D; Wertheim, Betsy C; Neuhouser, Marian L; Tinker, Lesley F; Howard, Barbara V; Johnson, Karen; Liu, Simin; Phillips, Lawrence S; Qi, Lihong; Sarto, Gloria; Turner, Tami; Waring, Molly E; Thomson, Cynthia A
2017-05-01
Dietary energy density, or energy available in relation to gram intake, can inform disease risk. The objective of this study was to investigate the association between baseline dietary energy density and risk of incident type 2 diabetes in postmenopausal women. Dietary energy density, weight status, and type 2 diabetes incidence were prospectively characterized in a large cohort of postmenopausal women participating in one or more clinical trials or an observational study. The study involved 161,808 postmenopausal women recruited to the Women's Health Initiative observational study or clinical trials at 40 centers across the United States between 1993 and 1998. The primary outcome was incident type 2 diabetes. The association between dietary energy density quintiles and incident diabetes was tested using Cox proportional hazards regression. A total of 143,204 participants without self-reported diabetes at enrollment completed baseline dietary assessment and were followed for 12.7±4.6 years. Risk of diabetes developing was 24% greater for women in the highest dietary energy density quintile compared with the lowest after adjusting for confounders (95% CI 1.17 to 1.32). Body mass index (calculated as kg/m 2 ) and waist circumference mediated the relationship between dietary energy density and diabetes. In waist circumference-stratified analysis, women in dietary energy density quintiles 2 to 5 with waist circumferences >88 cm were at 9% to 12% greater risk of diabetes developing compared with women with waist circumference ≤88 cm. In this prospective study, a higher baseline dietary energy density was associated with higher incidence of type 2 diabetes among postmenopausal women, both overall, and in women with elevated waist circumference. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
Kinetic mechanism for reversible structural transition in MoTe2 induced by excess charge carriers
NASA Astrophysics Data System (ADS)
Rubel, O.
2018-06-01
Kinetic of a reversible structural transition between insulating (2H) and metallic (1T ') phases in a monolayer MoTe2 due to an electrostatic doping is studied using first-principle calculations. The driving force for the structural transition is the energy gained by transferring excess electrons from the bottom of the conduction band to lower energy gapless states in the metallic phase as have been noticed in earlier studies. The corresponding structural transformation involves dissociation of Mo-Te bonds (one per formula unit), which results in a kinetic energy barrier of 0.83 eV. The transformation involves a consecutive movement of atoms similar to a domain wall motion. The presence of excess charge carriers modifies not only the total energy of the initial and final states, but also lowers an energy of the transition state. An experimentally observed hysteresis in the switching process can be attributed to changes in the kinetic energy barrier due to its dependence on the excess carrier density.
Soares-Santos, M.; Kessler, R.; Berger, E.; ...
2016-05-27
We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 degmore » $^2$ area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4-5, 7, and 24 days after the trigger. The median $$5\\sigma$$ point-source limiting magnitudes of our search images are i=22.5 and z=21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg$$^{2}$$, corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i= 21.5,21.1,20.1 for object colors (i-z)=1,0,-1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.« less
Microwave drying remediation of petroleum-contaminated drill cuttings.
Júnior, Irineu Petri; Martins, André Leibsohn; Ataíde, Carlos H; Duarte, Cláudio R
2017-07-01
The oil reservoir drilling phase generates contaminated cuttings with oil formation itself. These cuttings must be subjected to a decontamination process before being disposed of in the environment. Several technologies are cited in literature for the remediation of soil contaminated with oil or diesel, but none have been reported to remedy drill cuttings contaminated with oil from reservoir. The reservoir drill cuttings are a problem because its discharge is not allowed. The drying technology using microwave has shown promise in the decontamination of cuttings with non-aqueous base drilling fluid, conciliating good robustness and high removal efficiency. Considering the aspects mentioned previously, the application of heating and drying technology using microwave in the remediation of oil contaminated cuttings from well drill was studied. The influence of temperature, specific energy and initial content of water in the drying operation of the reservoir cuttings and of the drilling cuttings artificially contaminated with oil were analyzed. The results showed an influence of temperature in the drying of the cuttings, being necessary to reach the boiling temperature of heavier hydrocarbons to reach an efficient removal in the operation. The specific energy has a strong influence, reaching a total decontamination using 2.67 kWh/kg. The initial water content was effective in removing oil, reducing the residual level of oil with the increase of initial content of water. It also modifies the temperature profiles of the kinetic-warming of the contaminated cuttings. Both the technology and the equipment used proved effective for obtaining total decontamination of oil from the cuttings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Origin of the satellites Lα3, Lα4 and Lα5 in the elements from 40Zr to 50Sn
NASA Astrophysics Data System (ADS)
Kendurkar, Renuka; Shrivastava, B. D.
2014-09-01
The origin of the Lα satellites Lα3, Lα4 and Lα5 have been explained in the elements from 40Zr to 50Sn, on the basis of multiple ionization theory. The energies and intensities of the various transitions corresponding to the L3Mx - MxM4,5 (where x = 1-5) transition array, which may give rise to these satellites, have been calculated theoretically. The energies of the transitions have been calculated using the available Hartree-Fock-Slater data for the energies of K-LM and L-MM Auger transitions. The intensities of the various transitions have been estimated by considering cross sections for L1-L3Mx Coster-Kronig transitions as well as for M-shell shake-off process occurring simultaneous to a L3 hole creation. The total cross sections for initial two-hole states L3Mx have then been distributed statistically amongst the various allowed transitions from these initial states to the final states MxM4,5. By assuming each transition as a Gaussian line, theoretical satellite spectrum has been computed as the sum of these Gaussian curves. The energies of the satellites, as obtained from the theoretical spectrum, have been found to be comparable with the measured energies of the satellites Lα3, Lα4 and Lα5. Consequently, these satellites have been assigned the transitions.
NASA Astrophysics Data System (ADS)
Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.
2016-07-01
Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The approach developed for analysis of the effects is a suitable tool to get insight into the complete fusion-fission dynamics, in particular, to investigate the mechanism of the complete fusion and fission time scale.
NASA Astrophysics Data System (ADS)
Aranha, R. F.; Soares, I. Damião; Tonini, E. V.
2012-01-01
We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net gravitational wave flux is nonzero for equal-mass colliding black holes in non-head-on collisions. The momentum extraction and the patterns of the momentum fluxes, as a function of the incidence angle, are examined. The relation between the incidence angle and the scattering angle closely approximates a relation for the inelastic collision of classical particles in Newtonian dynamics.
Transition sum rules in the shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yi; Johnson, Calvin W.
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less
Transition sum rules in the shell model
Lu, Yi; Johnson, Calvin W.
2018-03-29
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
1983-01-01
Test results are given for a 5 kW stack and initial results for an integrated, grid connected system operating from methanol fuel. Site selection criteria are presented for future demonstration of a 50 or 100 kW OS/IES. Preliminary results are also given with approximate internal rates of return to the building owner. Progress in development and construction of a 50 kW modular methanol/steam reformer is reported.
Feasibility of Mind-Body Intervention to Promote Wellness in Injured Soldiers
2012-11-06
feeling tired or low energy (78.3%), nausea (69.57%) and headaches (69.57%). The most frequent symptoms endorsed as “bothered a lot” included trouble...sleeping (n=10); feeling tired (n=10), pain in arms, legs or joints (n=11), and headaches (n=11). Satisfaction. Seven participants completed the...totally new experience”. Their initial reactions included feeling skeptical (002,008, 022), finding it challenging (009, 016, 017), feeling uncertain
Transitioning the California Energy Commission Eligible Equipment List to a National Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truitt, Sarah; Nobler, Erin; Krasko, Vitaliy
The Energy Commission called on the National Renewable Energy Laboratory's (NREL)'s Solar Technical Assistance Team to explore various pathways for supporting continued evolution of the list. NREL staff utilized the Database of State Incentives for Renewables and Efficiency (DSIRE), California Solar Initiative (CSI) data, and information from in-depth interviews to better understand the impact of a lack of an updated list and suggest potential solutions. A total of 18 people from state energy offices, rebate program administrators, utilities, national testing laboratories, private companies, nonprofit organizations, and the federal government were interviewed between July and September 2013. CSI data were analyzedmore » to illustrate the monetary benefits of the algorithm behind calculating performance of PV modules included on the list. The primary objectives of this study are to: 1) Determine the impact of not maintaining the list, and 2) Explore alternatives to the State of California's maintenance of the list.« less
Adiabatic Mass Loss Model in Binary Stars
NASA Astrophysics Data System (ADS)
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.
The thermal stability of the nanograin structure in a weak solute segregation system.
Tang, Fawei; Song, Xiaoyan; Wang, Haibin; Liu, Xuemei; Nie, Zuoren
2017-02-08
A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... economically dynamic regional innovation cluster focused on energy efficient buildings technologies and systems... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... February 8, 2010, titled the Energy Efficient Building Systems Regional Innovation Cluster Initiative. A...
Gains Made By Walmart's Healthier Food Initiative Mirror Preexisting Trends.
Taillie, Lindsey Smith; Ng, Shu Wen; Popkin, Barry M
2015-11-01
Healthier food initiatives conducted by national food retailers may offer opportunities to improve the nutritional profile of food purchases. Using a longitudinal data set of packaged food purchases made by US households, we examined the effect of a healthier food initiative officially launched by Walmart in 2011. From 2000 to 2013, household-level purchases of packaged foods at Walmart showed major declines in energy, sodium, and total sugar density, as well as in quantities of sugary beverages, grain-based desserts, snacks, and candy. These trends in packaged food purchases were more pronounced than similar concurrent trends seen at other major food retailers. However, the declines seen at Walmart after the initiative's official implementation did not exceed what would have been expected had pre-implementation trends continued, and therefore they cannot be attributed to the initiative. These results suggest that food retailer-based initiatives that purportedly create a healthier food environment may not suffice to improve the nutritional profile of food purchases. More systemic shifts in consumers' characteristics and preferences may be needed. Project HOPE—The People-to-People Health Foundation, Inc.
Giusti, Vittorio; Theytaz, Fanny; Di Vetta, Véronique; Clarisse, Muriel; Suter, Michel; Tappy, Luc
2016-01-01
The effect of a Roux-en-Y gastric bypass (RYGB) on body weight has been amply documented, but few studies have simultaneously assessed the evolution of energy and macronutrient intakes, energy expenditure, and changes in body composition over time after an RYGB. We evaluated energy and macronutrient intakes, body composition, and the basal metabolic rate (BMR) in obese female patients during the initial 3 y after an RYGB. Sixteen women with a mean ± SEM body mass index (in kg/m(2)) of 44.1 ± 1.6 were included in this prospective observational study. The women were studied on 6 different occasions as follows: before and 1, 3, 6, 12 (n = 16), and 36 (n = 8) mo after surgery. On each occasion, food intake was evaluated from 4- or 7-d dietary records, body composition was assessed with the use of bio-impedancemetry, and energy expenditure was measured with the use of indirect calorimetry. Body weight evolution showed the typical pattern reported after an RYGB. Total energy intake was 2072 ± 108 kcal/d at baseline and decreased to 681 ± 58 kcal/d at 1 mo after surgery (P < 0.05 compared with at baseline). Total energy intake progressively increased to reach 1240 ± 87 kcal/d at 12 mo after surgery (P < 0.05 compared with at 1 mo after surgery) and 1448 ± 57 kcal/d at 36 mo after surgery (P < 0.05 compared with at 12 mo after surgery). Protein intake was 87 ± 4 g/d at baseline and ± 2 g/d 1 mo after surgery (P < 0.05 compared with at baseline) and increased progressively thereafter to reach 57 ± 3 g/d at 36 mo after surgery (P < 0.05 compared with at 1 mo after surgery). Carbohydrate and fat intakes over time showed similar patterns. Protein intake from meat and cheese were significantly reduced early at 1 mo after surgery but increased thereafter (P < 0.05). The BMR decreased from 1.12 ± 0.04 kcal/min at baseline to 0.93 ± 0.03, 0.86 ± 0.03, and 0.85 ± 0.04 kcal/min at 3, 12, and 36 mo after surgery, respectively (all P < 0.05 compared with at baseline). Total energy, carbohydrate, fat, and protein intakes decreased markedly during the initial 1-3 mo after an RYGB, whereas the BMR moderately decreased. The reduction in protein intake was particularly severe at 1 mo after surgery, and protein intake increased gradually after 3-6 mo after surgery. This trial was registered at clinicaltrials.gov as NCT01891591. © 2016 American Society for Nutrition.
An impacting linear three body system
NASA Astrophysics Data System (ADS)
Nordmark, Arne; Essén, Hanno
2018-01-01
We study a system of three identical bodies that can move freely on a horizontal track. Initially one body moves and two are at rest. The moving body impacts with one of the resting bodies which then impacts with the third and so on. The impacts are assumed to be characterised by a coefficient of restitution. We investigate the total number of impacts, the final velocities of the bodies, and the final energy of the system in terms of the initial velocity and the coefficient of restitution. The problem, which originates from mechanics textbooks, can be analysed as a discrete dynamical system with three degrees of freedom. The full solution is more subtle that one might expect.
Organosolv delignification of Eucalyptus globulus: Kinetic study of autocatalyzed ethanol pulping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliet, M.; Rodriguez, F.; Santos, A.
2000-01-01
The autocatalyzed delignification of Eucalyptus globulus in 50% ethanol (w/w) was modeled as the irreversible and consecutive dissolution of initial, bulk, and residual lignin. Their respective contributions to total lignin was estimated as 9, 75, and 16%. Isothermal pulping experiments were carried out to evaluate an empirical kinetic model among eight proposals corresponding to different reaction schemes. The calculated activation energy was found to be 96.5, 98.5, and 40.8 kJ/mol for initial, bulk, and residual delignification, respectively. The influence of hydrogen ion concentration was expressed by a power-law function model. The kinetic model developed here was validated using data frommore » nonisothermal pulping runs.« less
Anatomy of a late spring snowfall on sea ice
NASA Astrophysics Data System (ADS)
Perovich, Donald; Polashenski, Christopher; Arntsen, Alexandra; Stwertka, Carolyn
2017-03-01
Spring melt initiation is a critical process for Arctic sea ice. Melting conditions decrease surface albedo at a time of high insolation, triggering powerful albedo feedback. Weather events during melt initiation, such as new snowfalls, can stop or reverse the albedo decline, however. Here we present field observations of such a snow event and demonstrate its enduring impact through summer. Snow fell 3-6 June 2014 in the Chukchi Sea, halting melt onset. The snow not only raised albedo but also provided a significant negative latent heat flux, averaging -51 W m-2 from 3 to 6 June. The snowfall delayed sustained melt by 11 days, creating cascading impacts on surface energy balance that totaled some 135 MJ/m2 by mid-August. The findings highlight the sensitivity of sea ice conditions on seasonal time scales to melt initiation processes.
Rigorous Statistical Bounds in Uncertainty Quantification for One-Layer Turbulent Geophysical Flows
NASA Astrophysics Data System (ADS)
Qi, Di; Majda, Andrew J.
2018-04-01
Statistical bounds controlling the total fluctuations in mean and variance about a basic steady-state solution are developed for the truncated barotropic flow over topography. Statistical ensemble prediction is an important topic in weather and climate research. Here, the evolution of an ensemble of trajectories is considered using statistical instability analysis and is compared and contrasted with the classical deterministic instability for the growth of perturbations in one pointwise trajectory. The maximum growth of the total statistics in fluctuations is derived relying on the statistical conservation principle of the pseudo-energy. The saturation bound of the statistical mean fluctuation and variance in the unstable regimes with non-positive-definite pseudo-energy is achieved by linking with a class of stable reference states and minimizing the stable statistical energy. Two cases with dependence on initial statistical uncertainty and on external forcing and dissipation are compared and unified under a consistent statistical stability framework. The flow structures and statistical stability bounds are illustrated and verified by numerical simulations among a wide range of dynamical regimes, where subtle transient statistical instability exists in general with positive short-time exponential growth in the covariance even when the pseudo-energy is positive-definite. Among the various scenarios in this paper, there exist strong forward and backward energy exchanges between different scales which are estimated by the rigorous statistical bounds.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... Energy Efficient Building Systems Regional Innovation Cluster Initiative. A single proposal submitted by... systems design. The DOE funded Energy Efficient Building Systems Design Hub (the ``Hub'') will serve as a...
Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Ren, Nanqi
2015-11-15
Anaerobic sludge (AS) and microalgae were co-cultured to enhance the energy conversion and nutrients removal from starch wastewater. Mixed ratio, starch concentration and initial pH played critical roles on the hydrogen and lipid production of the co-culture system. The maximum hydrogen production of 1508.3 mL L(-1) and total lipid concentration of 0.36 g L(-1) were obtained under the optimized mixed ratio (algae:AS) of 30:1, starch concentration of 6 g L(-1) and initial pH of 8. The main soluble metabolites in dark fermentation were acetate and butyrate, most of which can be consumed in co-cultivation. When sweet potato starch wastewater was used as the substrate, the highest COD, TN and TP removal and energy conversion efficiencies reached 80.5%, 88.7%, 80.1% and 34.2%, which were 176%, 178%, 200% and 119% higher than that of the control group (dark fermentation), respectively. This research provided a novel approach and achieved efficient simultaneous energy recovery and nutrients removal from starch wastewater by the co-culture system. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Survey on Renewable Energy Development in Malaysia: Current Status, Problems and Prospects
NASA Astrophysics Data System (ADS)
Alam, Syed Shah; Nor, Nor Fariza Mohd; Ahmad, Maisarah; Hashim, Nik Hazrul Nik
2016-05-01
Energy demand in Malaysia is increasing over seven per cent a year, while forty per cent of the energy is supplied from conventional fossil fuel. However, a number of social barriers have mired the social acceptance of renewable energy among the users. This study investigates the current status of renewable energy, problems and future outlook of renewable energy in Malaysia. A total of 200 respondents were surveyed from Klang Valley in Malaysia. Majority of the respondents use energy to generate electricity. Although some respondents reported using solar energy, there is lack of retail availability for solar energy. The findings show that limited information on renewable energy technologies, lack of awareness, and limited private sector engagement emerged as major barriers to sustainable renewable energy development. In addition, the respondents suggest for increasing policy support from the government to make information more accessible to mass users, provide economic incentives to investors and users, and promote small-community based renewable energy projects. The study suggests that the government begin small scale projects to build awareness on renewable energy, while academically, higher learning institutions include renewable energy syllabus in their academic curriculum. The study concluded that to have sustainable renewable energy development, government's initiative, private sector engagement and users awareness must be given priority.
NASA Technical Reports Server (NTRS)
George, Kerry; Hada, Megumi; Cucinotta, F. A.
2011-01-01
Chromosomal aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to neon ions at energies of 64, 89, 142, or 267. The corresponding LET values for these energies of neon ranged from 38-103 keV/micrometers and doses delivered were in the 10 to 80 cGy range. Chromosome exchanges were assessed in metaphase and G2 phase cells at first division after exposure using fluorescence in situ hybridization (FISH) with whole chromosome probes and dose response curves were generated for different types of chromosomal exchanges. The yields of total chromosome exchanges were similar for the 64, 89, and 142 MeV exposures, whereas the 267 MeV/u neon with LET of 38 keV/micrometers produced about half as many exchanges per unit dose. The induction of complex type chromosome exchanges (exchanges involving three or more breaks and two or more chromosomes) showed a clear LET dependence for all energies. The ratio of simple to complex type exchanges increased with LET from 18 to 51%. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The RBE(sub max) values for total chromosome exchanges for the 64 MeV/u was around 30.
Energy efficiency in new museum build: THEpUBLIC
NASA Astrophysics Data System (ADS)
Battle, G.; Yuen, C. H. N.; Zanchetta, M.; D'Cruz, P.
2006-12-01
The project MUSEUMS, awarded the Thermie Grant from the European Commission, has applied and tested new and innovative technologies for optimizing energy efficiency and sustainability in nine retrofitted and new museum buildings in Europe. The project will significantly contribute to the acceptance of innovative and renewable technologies in public buildings by demonstrating that retrofitted and new museum buildings can fully meet architectural, functional, comfort, control and safety requirements as well as achieve total energy savings of over 35% and reduce CO2 emissions by over 50%. THEpUBLIC will be a stunning and modern flagship building containing six storeys, with a total area of 11,000Âm2 of galleries for exhibitions, digital art and hands-on displays. In addition, there will be workspaces, creative spaces, retail opportunities, restaurant facilities, public areas, conference rooms and other multi-function spaces. Initiated by Jubilee Arts, the THEpUBLIC, designed by Alsop Architects, will introduce and engage its 400,000 expected visitors in the principles of energy and the environment through a display of art, education, technology and entertainment in the centre of West Bromwich, Sandwell. It will serve as a catalyst for urban regeneration within Sandwell.Battle McCarthy's key environmental design solutions for THEpUBLIC include natural daylighting, mixed-mode ventilation system with operable windows, low energy and maintenance cost systems, potential for integrating renewable energy collection systems, borehole water systems for cooling and water supply, an intelligent facade system with external shading and natural ventilation and night cooling systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullal, H.; Mitchell, R.; Keyes, B.
In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubatormore » Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.« less
Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullal, H.; Mitchell, R.; Keyes, B.
In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubatormore » Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.« less
Gatsios, Evangelos; Hahladakis, John N; Gidarakos, Evangelos
2015-05-01
In the present work, the efficiency evaluation of electrocoagulation (EC) in removing toxic metals from a real industrial wastewater, collected from Aspropyrgos, Athens, Greece was investigated. Manganese (Mn), copper (Cu) and zinc (Zn) at respective concentrations of 5 mg/L, 5 mg/L and 10 mg/L were present in the wastewater (pH=6), originated from the wastes produced by EBO-PYRKAL munitions industry and Hellenic Petroleum Elefsis Refineries. The effect of operational parameters such as electrode combination and distance, applied current, initial pH and initial metal concentration, was studied. The results indicated that Cu and Zn were totally removed in all experiments, while Mn exhibited equally high removal percentages (approximately 90%). Decreasing the initial pH and increasing the distance between electrodes, resulted in a negative effect on the efficiency and energy consumption of the process. On the other hand, increasing the applied current, favored metal removal but resulted in a power consumption increase. Different initial concentrations did not affect metal removal efficiency. The optimal results, regarding both cost and EC efficiency, were obtained with a combination of iron electrodes, at 2 cm distance, at initial current of 0.1 A and pH=6. After 90 min of treatment, maximum removal percentages obtained were 89% for Mn, 100% for Cu and 100% for Zn, at an energy consumption of 2.55 kWh/m(3). Copyright © 2015 Elsevier Ltd. All rights reserved.
Tao, Yang; Zhang, Zhihang; Sun, Da-Wen
2014-07-01
The effects of acoustic energy density (6.8-47.4 W/L) and temperature (20-50 °C) on the extraction yields of total phenolics and tartaric esters during ultrasound-assisted extraction from grape marc were investigated in this study. The ultrasound treatment was performed in a 25-kHz ultrasound bath system and the 50% aqueous ethanol was used as the solvent. The initial extraction rate and final extraction yield increased with the increase of acoustic energy density and temperature. The two site kinetic model was used to simulate the kinetics of extraction process and the diffusion model based on the Fick's second law was employed to determine the effective diffusion coefficient of phenolics in grape marc. Both models gave satisfactory quality of data fit. The diffusion process was divided into one fast stage and one slow stage and the diffusion coefficients in both stages were calculated. Within the current experimental range, the diffusion coefficients of total phenolics and tartaric esters for both diffusion stages increased with acoustic energy density. Meanwhile, the rise of temperature also resulted in the increase of diffusion coefficients of phenolics except the diffusion coefficient of total phenolics in the fast stage, the value of which being the highest at 40 °C. Moreover, an empirical equation was suggested to correlate the effective diffusion coefficient of phenolics in grape marc with acoustic energy density and temperature. In addition, the performance comparison of ultrasound-assisted extraction and convention methods demonstrates that ultrasound is an effective and promising technology to extract bioactive substances from grape marc. Copyright © 2014 Elsevier B.V. All rights reserved.
Tanaka, Eizaburo; Yatsuya, Hiroshi; Uemura, Mayu; Murata, Chiyoe; Otsuka, Rei; Toyoshima, Hideaki; Tamakoshi, Koji; Sasaki, Satoshi; Kawaguchi, Leo; Aoyama, Atsuko
2013-01-01
Diet is a modifiable factor that may affect sleep, but the associations of macronutrient intakes with insomnia are inconsistent. We investigated the associations of protein, fat, and carbohydrate intakes with insomnia symptoms. In this cross-sectional analysis of 4435 non-shift workers, macronutrient intakes were assessed by the brief-type self-administered diet history questionnaire, which requires the recall of usual intakes of 58 foods during the preceding month. Presence of insomnia symptoms, including difficulty initiating sleep (DIS), difficulty maintaining sleep (DMS), and poor quality of sleep (PQS) were self-reported. Logistic regression analysis was used to estimate odds ratios (ORs) and 95% CIs adjusted for demographic, psychological, and behavioral factors, as well as medical histories. Low protein intake (<16% vs ≥16% of total energy) was associated with DIS (OR 1.24, 95% CI 0.99-1.56) and PQS (OR 1.24, 95% CI 1.04-1.48), while high protein intake (≥19% vs <19% of total energy) was associated with DMS (OR 1.40, 95% CI 1.12-1.76). Low carbohydrate intake (<50% vs ≥50% of total energy) was associated with DMS (OR 1.19, 95% CI 0.97-1.45). Protein and carbohydrate intakes in the daily diet were associated with insomnia symptoms. The causality of these associations remains to be explained.
Light Water Reactor Sustainability Program Integrated Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce
2014-04-01
Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution tomore » the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anzai, Chihaya; Hasselhuhn, Alexander; Höschele, Maik
We compute the contribution to the total cross section for the inclusive production of a Standard Model Higgs boson induced by two quarks with different flavour in the initial state. Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. Here, we describe the reduction to master integrals, the construction of a canonical basis, and the solution of the corresponding differential equations. Our analytic result contains both Harmonic Polylogarithms and iterated integrals with additional letters in the alphabet.
2005-10-01
section of the coiled arm. Right: measured realized total gain for a square spiral in free space with inductive treatment. . . . . . . . 154 8.5 Initial...appreciable velocities can often be easily separated from clutter returns, slow moving targets of more moderate cross sections can be very difficult to detect...electromagnetic radiation and measuring the energy scattered back. The data obtained as a result of this process is a finite-extent, noisy set of
History of surgery for atrial fibrillation.
Edgerton, Zachary J; Edgerton, James R
2009-12-01
There is a rich history of surgery for atrial fibrillation. Initial procedures were aimed at controlling the ventricular response rate. Later procedures were directed at converting atrial fibrillation to normal sinus rhythm. These culminated in the Cox Maze III procedure. While highly effective, the complexity and morbidity of the cut and sew Maze III limited its adoption. Enabling technology has developed alternate energy sources designed to produce a transmural atrial scar without cutting and sewing. Termed the Maze IV, this lessened the morbidity of the procedure and widened the applicability. Further advances in minimal access techniques are now being developed to allow totally thorascopic placement of all the left atrial lesions on the full, beating heart, using alternate energy sources.
NASA Technical Reports Server (NTRS)
Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.
1992-01-01
State-to-state reaction probabilities are found to be highly final-state specific at state-selected threshold energies for the reactions O + H2 yield OH + H and H + H2 yield H2 + H. The study includes initial rotational states with quantum numbers 0-15, and the specificity is especially dramatic for the more highly rotationally excited reactants. The analysis is based on accurate quantum mechanical reactive scattering calculations. Final-state specificity is shown in general to increase with the rotational quantum number of the reactant diatom, and the trends are confirmed for both zero and nonzero values of the total angular momentum.
Energy Games - A Grade 5 Competition, The Data Analysis and Lessons Learned
NASA Astrophysics Data System (ADS)
Kao, W. H.
2016-12-01
ISF Academy, a K-G12 school in Hong Kong with over 1500 students and currently spanning 3 buildings, is retrofitting the school with an energy tracking system in three phases. The first phase that happened during February to June 2016, has included retrofitting nine Grade 5 classrooms. In this program, the daily energy usage data from these classrooms were shown. The Grade 5 students received feedback on their energy use in real time, as they competed over four months in their homeroom classes to lower their electrical use, and subsequently their carbon footprint. This competition has successfully given the 180 Grade 5 students initiative to decrease their energy use, leading to a significant decrease in energy usage throughout this competition, compared to the baseline recorded in late 2015. The winning classroom's total energy usage was around 30% lower than the average total energy usage, showing that by using energy efficiently, energy usage in a school can be decreased by a lot. The energy tracking system installed and maintained by from Global Design Corporation utilizes uniquely identified current detectors attached to circuit breakers, to monitor electrical use of individual circuits. The detectors monitor the energy used for classroom lighting, fans and plugs, as well as the air conditioners. Further analysis can also be calculated with current data that is collected in the Phase 1 experiment, such as calculating the carbon emissions reduction throughout the school year, providing possible class learning activities and also aiding in future energy use and carbon footprint predictions. This data collected will help refine phase 2 and 3 of the installation, expanding the system to more buildings and also giving insight to the rollout of the system to the whole school when the systems are fully in place. In Phase 2, the energy tracking system would be expanded to all classrooms in the old buildings, while in Phase 3, the system would be expanded the all classrooms throughout the whole campus.
Beste, A; Harrison, R J; Yanai, T
2006-08-21
Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.
NASA Astrophysics Data System (ADS)
Nikbakht, A. M.; Aste, N.; Sarnavi, H. J.; Leonforte, F.
2017-08-01
The global trends indicate a growing commitment to renewable energy development because of declining fossil fuels and environmental threats. Moreover, the global demographic growth coupled with rising demands for food has escalated the rate of energy consumption in food section. This study aims to investigate the techno-economic impacts of a grid-connected rooftop PV plan applied for a educational dairy farm in Urmia university, with total estimated annual electrical energy consumption of 18,283 kWh, located at the north west part of Iran. Based on the current feed-in tariff and tremendously low electricity price in agriculture section in Iran, the plants with size ranged from 14.4 to 19.7 kWp (initial investment ranged from 26,000 to 36,000 USD) would be satisfied economically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austin Brown, Brittany Repac, Jeff Gonder
Self-driving or “autonomous” vehicles (AVs) have leapt from science fiction into the forefront of transportation technology news. The technology is likely still years away from widespread commercial adoption, but the recent progress makes it worth considering the potential national impacts of widespread implementation. This poster makes an initial assessment of the energy impacts of AV adoptionon a per-vehicle basis and on total personal vehicle fuel use. While AVs offer numerous potential advantages in energy use, there are significant factors that could decrease or even eliminate the energy benefits under some circumstances. This analysis attempts to describe, quantify, and combine manymore » of the possible effects. The nature and magnitude of these effects remain highly uncertain. This set of effects is very unlikely to be exhaustive, but this analysis approach can serve as a base for future estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy's 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less
Energy and angular distribution of electrons ejected from water by the impact of fast O8+ ion beams
NASA Astrophysics Data System (ADS)
Bhattacharjee, Shamik; Bagdia, Chandan; Chowdhury, Madhusree Roy; Monti, Juan M.; Rivarola, Roberto D.; Tribedi, Lokesh C.
2018-01-01
Double differential cross sections (DDCS) of electrons emitted from vapor water molecules (in vapor phase) by 2.0 MeV/u and 3.75 MeV/u bare oxygen ion impact have been measured by continuum electron spectroscopy technique. The ejected electrons were detected by an electrostatic hemispherical deflection analyzer over an energy range of 1-600 eV and emission angles from 20∘ to 160∘. The DDCS data has been compared with the continuum-distorted-wave-eikonal-initial state (CDW-EIS) approximation and a reasonable agreement was found with both version of the models i.e. post and prior version. By numerical integration of the DDCS data, the single differential cross section (SDCS) and total ionization cross section (TCS) were obtained. The obtained TCS results were compared with other available TCS results for water target within the same energy range. The total ionization cross sections values are seen to saturate as the projectile charge state ( q p ) increases, which is in contrast to the first-Born predicted q p 2 dependence. This is also in contrast to the prediction of the CDW-EIS models.
NASA Astrophysics Data System (ADS)
Consonni, V.; Knelangen, M.; Geelhaar, L.; Trampert, A.; Riechert, H.
2010-02-01
The formation mechanisms of epitaxial GaN nanowires grown within a self-induced approach by molecular-beam epitaxy have been investigated at the onset of the nucleation process by combining in situ reflection high-energy electron-diffraction measurements and ex situ high-resolution transmission electron microscopy imaging. It is shown that the self-induced growth of GaN nanowires on the AlN buffer layer is initially governed by the nucleation of dislocation-free coherent islands. These coherent islands develop through a series of shape transitions from spherical caps through truncated to full pyramids in order to elastically relieve the lattice-mismatch-induced strain. A strong correlation between the subsequent process of plastic relaxation and the final shape transition from full pyramids toward the very first nanowires is found. The experimental critical radius at which the misfit dislocation nucleates is in very good agreement with the theoretical critical radius for the formation of the misfit dislocation in full pyramids, showing that the plastic relaxation process does take place within full pyramids: this critical size corresponds to the initial radius of the very first nanowires. We associate the plastic relaxation of the lattice-mismatch-induced strain occurring within full pyramids with a drastic change in their total free energy: this gives rise to a driving force for the shape transition toward the very first nanowires, which is mainly due to the anisotropy of surface energy.
Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy
state has partnered with the U.S. Department of Energy through the Hawaii Clean Energy Initiative to adoption," Larson said. HCC supports the Hawaii Clean Energy Initiative, a partnership between DOE and Hawaii Clean Energy Initiative Honolulu Clean Cities National Clean Fleets Partnership Hybrid and Plug-In
Efficient state initialization by a quantum spectral filtering algorithm
NASA Astrophysics Data System (ADS)
Fillion-Gourdeau, François; MacLean, Steve; Laflamme, Raymond
2017-04-01
An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.
Energy balance during underwater implosion of ductile metallic cylinders.
Chamberlin, Ryan E; Guzas, Emily L; Ambrico, Joseph M
2014-11-01
Energy-based metrics are developed and applied to a numerical test case of implosion of an underwater pressure vessel. The energy metrics provide estimates of the initial energy in the system (potential energy), the energy released into the fluid as a pressure pulse, the energy absorbed by the imploding structure, and the energy absorbed by air trapped within the imploding structure. The primary test case considered is the implosion of an aluminum cylinder [diameter: 2.54 cm (1 in.), length: 27.46 cm (10.81 in.)] that collapses flat in a mode-2 shape with minimal fracture. The test case indicates that the structure absorbs the majority (92%) of the initial energy in the system. Consequently, the energy emitted as a pressure pulse into the fluid is a small fraction, approximately 5%, of the initial energy. The energy absorbed by the structure and the energy emitted into the fluid are calculated for additional simulations of underwater pressure vessel implosions. For all cases investigated, there is minimal fracture in the collapse, the structure absorbs more than 80% of the initial energy of the system, and the released pressure pulse carries away less than 6% of the initial energy.
Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene
2009-10-01
In core-collapse supernovae, the ν{sub e} and ν-bar {sub e} species may experience collective flavor swaps to non-electron species ν{sub x}, within energy intervals limited by relatively sharp boundaries (''splits''). These phenomena appear to depend sensitively upon the initial energy spectra and luminosities. We investigate the effect of generic variations of the fractional luminosities (l{sub e}, l{sub ē}, l{sub x}) with respect to the usual ''energy equipartition'' case (1/6, 1/6, 1/6), within an early-time supernova scenario with fixed thermal spectra and total luminosity. We represent the constraint l{sub e}+l{sub ē}+4l{sub x} = 1 in a ternary diagram, which is exploredmore » via numerical experiments (in single-angle approximation) over an evenly-spaced grid of points. In inverted hierarchy, single splits arise in most cases, but an abrupt transition to double splits is observed for a few points surrounding the equipartition one. In normal hierarchy, collective effects turn out to be unobservable at all grid points but one, where single splits occur. Admissible deviations from equipartition may thus induce dramatic changes in the shape of supernova (anti)neutrino spectra. The observed patterns are interpreted in terms of initial flavor polarization vectors (defining boundaries for the single/double split transitions), lepton number conservation, and minimization of potential energy.« less
10 CFR 824.13 - Initial decision.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Initial decision. 824.13 Section 824.13 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.13 Initial decision. (a) The Hearing Officer shall issue an initial decision as soon as...
Energy and rotation-dependent stereodynamics of reaction
NASA Astrophysics Data System (ADS)
Yong-Qing, Li; Yun-Fan, Yang; Yang, Yu; Yong-Jia, Zhang; Feng-Cai, Ma
2016-02-01
Quasi-classical trajectory calculations are performed to study the stereodynamics of the reaction based on the first excited state NH2(12A‧) potential energy surface reported by Li et al. [Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k‧ distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k‧ distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j‧ of the product H2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141and 11274149), the Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2015040), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (Grant No. 2014-1685), and the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil and the China Postdoctoral Science Foundation (Grant No. 2014M550158).
Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S
2016-07-01
The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (p<0.05). However, ankle negative work was not significantly different between the two groups during the period between initial contact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Neonatal Nutrition Predicts Energy Balance in Young Adults Born Preterm at Very Low Birth Weight
Matinolli, Hanna-Maria; Hovi, Petteri; Levälahti, Esko; Kaseva, Nina; Silveira, Patricia P.; Hemiö, Katri; Järvenpää, Anna-Liisa; Eriksson, Johan G.; Andersson, Sture; Lindström, Jaana; Männistö, Satu; Kajantie, Eero
2017-01-01
Epidemiological studies and animal models suggest that early postnatal nutrition and growth can influence adult health. However, few human studies have objective recordings of early nutrient intake. We studied whether nutrient intake and growth during the first 9 weeks after preterm birth with very low birth weight (VLBW, <1500 g) predict total energy intake, resting energy expenditure (REE), physical activity and food preferences in young adulthood. We collected daily nutritional intakes and weights during the initial hospital stay from hospital records for 127 unimpaired VLBW participants. At an average age 22.5 years, they completed a three-day food record and a physical activity questionnaire and underwent measurements of body composition (dual X-ray absorptiometry; n = 115 with adequate data) and REE (n = 92 with adequate data). We used linear regression and path analysis to investigate associations between neonatal nutrient intake and adult outcomes. Higher energy, protein and fat intakes during the first three weeks of life predicted lower relative (=per unit lean body mass) energy intake and relative REE in adulthood, independent of other pre- and neonatal factors. In path analysis, total effects of early nutrition and growth on relative energy intake were mostly explained by direct effects of early life nutrition. A path mediated by early growth reached statistical significance only for protein intake. There were no associations of neonatal intakes with physical activity or food preferences in adulthood. As a conclusion, higher intake of energy and nutrients during first three weeks of life of VLBW infants predicts energy balance after 20 years. This association is partly mediated through postnatal growth. PMID:29186804
Refining a learning progression of energy
NASA Astrophysics Data System (ADS)
Yao, Jian-Xin; Guo, Yu-Ying; Neumann, Knut
2017-11-01
This paper presents a revised learning progression for the energy concept and initial findings on diverse progressions among subgroups of sample students. The revised learning progression describes how students progress towards an understanding of the energy concept along two progress variables identified from previous studies - key ideas about energy and levels of conceptual development. To assess students understanding with respect to the revised learning progression, we created a specific instrument, the Energy Concept Progression Assessment (ECPA) based on previous work on assessing students' understanding of energy. After iteratively refining the instrument in two pilot studies, the ECPA was administered to a total of 4550 students (Grades 8-12) from schools in two districts in a major city in Mainland China. Rasch analysis was used to examine the validity of the revised learning progression and explore factors explaining different progressions. Our results confirm the validity of the four conceptual development levels. In addition, we found that although following a similar progression pattern, students' progression rate was significantly influenced by environmental factors such as school type. In the discussion of our findings, we address the non-linear and complex nature of students' progression in understanding energy. We conclude with illuminating our research's implication for curriculum design and energy teaching.
Teaching Children to Value Solar Energy
ERIC Educational Resources Information Center
Hugerat, Muhamad; Saker, Salem; Odeh, Saeed; Agbaria, Adnan
2011-01-01
In this educational initiative, we suggest to build a real model of solar village inside the school, which uses only solar energy. These educational initiatives emphasize the importance of energy for a technological society and the advantage of alternative energy sources. In this scientific educational initiative, the pupils in three elementary…
10 CFR 780.20 - Initiation of proceeding.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Initiation of proceeding. 780.20 Section 780.20 Energy DEPARTMENT OF ENERGY PATENT COMPENSATION BOARD REGULATIONS Declaring Patents Affected With the Public Interest Under Section 153a of the Atomic Energy Act of 1954 § 780.20 Initiation of proceeding. When any...
10 CFR 780.20 - Initiation of proceeding.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Initiation of proceeding. 780.20 Section 780.20 Energy DEPARTMENT OF ENERGY PATENT COMPENSATION BOARD REGULATIONS Declaring Patents Affected With the Public Interest Under Section 153a of the Atomic Energy Act of 1954 § 780.20 Initiation of proceeding. When any...
10 CFR 780.20 - Initiation of proceeding.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Initiation of proceeding. 780.20 Section 780.20 Energy DEPARTMENT OF ENERGY PATENT COMPENSATION BOARD REGULATIONS Declaring Patents Affected With the Public Interest Under Section 153a of the Atomic Energy Act of 1954 § 780.20 Initiation of proceeding. When any...
10 CFR 780.20 - Initiation of proceeding.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Initiation of proceeding. 780.20 Section 780.20 Energy DEPARTMENT OF ENERGY PATENT COMPENSATION BOARD REGULATIONS Declaring Patents Affected With the Public Interest Under Section 153a of the Atomic Energy Act of 1954 § 780.20 Initiation of proceeding. When any...
10 CFR 780.20 - Initiation of proceeding.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Initiation of proceeding. 780.20 Section 780.20 Energy DEPARTMENT OF ENERGY PATENT COMPENSATION BOARD REGULATIONS Declaring Patents Affected With the Public Interest Under Section 153a of the Atomic Energy Act of 1954 § 780.20 Initiation of proceeding. When any...
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.
Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy
2016-02-08
Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Amber Plug-In for Protein Shop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliva, Ricardo
2004-05-10
The Amber Plug-in for ProteinShop has two main components: an AmberEngine library to compute the protein energy models, and a module to solve the energy minimization problem using an optimization algorithm in the OPTI-+ library. Together, these components allow the visualization of the protein folding process in ProteinShop. AmberEngine is a object-oriented library to compute molecular energies based on the Amber model. The main class is called ProteinEnergy. Its main interface methods are (1) "init" to initialize internal variables needed to compute the energy. (2) "eval" to evaluate the total energy given a vector of coordinates. Additional methods allow themore » user to evaluate the individual components of the energy model (bond, angle, dihedral, non-bonded-1-4, and non-bonded energies) and to obtain the energy of each individual atom. The Amber Engine library source code includes examples and test routines that illustrate the use of the library in stand alone programs. The energy minimization module uses the AmberEngine library and the nonlinear optimization library OPT++. OPT++ is open source software available under the GNU Lesser General Public License. The minimization module currently makes use of the LBFGS optimization algorithm in OPT++ to perform the energy minimization. Future releases may give the user a choice of other algorithms available in OPT++.« less
The Effect of Post-Burst Energy on Exploding Bridgewire Output
NASA Astrophysics Data System (ADS)
Lee, Elizabeth; Bowden, Mike
2015-06-01
For an EBW detonator, as the fireset energy is increased from threshold to all-fire level the post-burst energy delivered to the detonator increases, and the function times decrease. To gain an understanding of the processes through which the post-burst electrical energy influences the function times the effect of the post-burst energy on the explosion of bridgewires was studied. A fireset was developed which enabled the post-burst energy to be varied independent of the burst energy by terminating the current flow at pre-selected times. The effect of this on the bridgewires was characterised at a range of firing voltages and a range of termination times. The response of the bridgewire was characterised using Photonic Doppler Velocimetry. The velocimetry trace detected two families of velocities. The first family had initial velocities in the range 1-2 km.s-1 and the second family had velocities in the range 0-0.5 km.s-1. The relative position of the two families depended on the post burst energy. The results show that a reduction in the post-burst energy and therefore the total delivered energy, but for a constant energy delivered to burst, corresponds to a decrease in the acceleration and peak velocity of the bridgewire / plasma at burst.
Laser absorption waves in metallic capillaries
NASA Astrophysics Data System (ADS)
Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.
1987-07-01
The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.
Exact N 3LO results for qq ' → H + X
Anzai, Chihaya; Hasselhuhn, Alexander; Höschele, Maik; ...
2015-07-27
We compute the contribution to the total cross section for the inclusive production of a Standard Model Higgs boson induced by two quarks with different flavour in the initial state. Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. Here, we describe the reduction to master integrals, the construction of a canonical basis, and the solution of the corresponding differential equations. Our analytic result contains both Harmonic Polylogarithms and iterated integrals with additional letters in the alphabet.
Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars
NASA Technical Reports Server (NTRS)
Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce
2014-01-01
Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability.
NASA Astrophysics Data System (ADS)
Ogurtani, Tarik Omer; Celik, Aytac; Oren, Ersin Emre
2010-09-01
A systematic study based on the self-consistent dynamical simulations is presented for the spontaneous evolution of an isolated thin solid droplet (bump) on a rigid substrate, which is driven by the surface drift diffusion induced by the capillary and mismatch stresses. In this study, we mainly focused on the development kinetics of the "Stranski-Krastanow" island type morphology, initiated by the nucleation route rather than the surface roughening scheme. The physicomathematical model, which bases on the irreversible thermodynamics treatment of surfaces and interfaces with singularities [T. O. Ogurtani, J. Chem. Phys. 124, 144706 (2006)], furnishes us to have autocontrol on the otherwise free-motion of the triple junction contour line between the substrate and the droplet without presuming any equilibrium dihedral contract (wetting) angles at the edges. During the development of the bell-shaped Stranski-Krastanow island through the mass accumulation at the central region of the droplet via surface drift diffusion with and/or without growth, the formation of an extremely thin wetting layer is observed. This wetting layer has a thickness of a fraction of a nanometer and covers not only the initial computation domain but also its further extension beyond the original boundaries. We also observed the formation of the multiple islands separated by shallow wetting layers above a certain threshold level of the mismatch strain and/or the size (i.e., volume) of the droplets. This threshold level depends on the initial physicochemical data and the aspect ratio (i.e., shape) of the original droplets. During the course of the simulations, we continuously tracked both the morphology (i.e., the peak height, the extension of the wetting layer beyond the domain boundaries, and the triple junction contact angle) and energetic (the global Helmholtz free energy changes associated with the total strain and surface energy variations) in the system. We observed that the morphology related quantities are reaching certain saturation limits or plateaus, when the growth mode is turned-off. On the other hand, the global Helmholtz free energy showed a steady decrease in time even though the total surface free energy of the droplet reaches a stationary value as expected a priori. Based on these observations and according to the accepted irreversible thermodynamic terminology as coined by celebrated Prigogine, we state that the Stranski-Krastanow type island morphologies are genuine stationary nonequilibrium states.
Increased Leg Bone Mineral Density and Content During the Initial Years of College Sport.
Scerpella, John J; Buehring, Bjoern; Hetzel, Scott J; Heiderscheit, Bryan C
2018-04-01
Scerpella, JJ, Buehring, B, Hetzel, SJ, and Heiderscheit, BC. Increased leg bone mineral density and content during the initial years of college sport. J Strength Cond Res 32(4): 1123-1130, 2018-Bone mineral density (BMD) and bone mineral content (BMC) data are useful parameters for evaluating how training practices promote bone health. We used dual-energy X-ray absorptiometry (DXA) to longitudinally assess sport-specific growth in leg and total body BMD/BMC over the initial 2 years of collegiate training. Eighty-five Division 1 collegiate basketball, hockey, and soccer athletes (50 males and 35 females; age 19.0 [0.8] years) underwent annual DXA scans. Leg and total body BMD/BMC were compared within and across two 1-year intervals (periods 1 and 2) using repeated-measures analysis of variance, adjusting for age, sex, race, and sport. Leg BMD, leg BMC, and total body BMC all increased over period 1 (0.05 g·cm [p = 0.001], 0.07 kg [p = 0.002], and 0.19 kg [p < 0.001] respectively). Changes in period 2 compared with period 1 were smaller for leg BMD (p = 0.001), leg BMC (p < 0.001), leg fat mass (p = 0.028), and total BMC (p = 0.005). Leg lean mass increased more during period 2 than period 1 (p = 0.018). Sports participation was the only significant predictor of change in leg BMD. Significant increases in both leg BMD and BMC were demonstrated over both 2-year periods, with greater gains during period 1. These gains highlight the importance of attentive training procedures, capitalizing on attendant physical benefits of increased BMD/BMC. Additional research in young adults, evaluating bone mass acquisition, will optimize performance and decrease risk of bone stress injury among collegiate athletes.
Clean Energy Technology Incubator Initiative Launched in Texas
, fuel cells, energy conservation, clean energy-related information technology, end-use consumer products Technology Incubator Initiative Launched in Texas For more information contact: Kerry Masson, 303 information looks like it's a good fit for the clean energy initiative, ATI will help the candidate refine its
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
... of Energy, Water, and Solid Waste Sustainability Initiatives at Fort Bliss, TX AGENCY: Department of... associated with the implementation of the Energy, Water, and Solid Waste Initiatives at Fort Bliss. These initiatives will work to enhance the energy and water security of Fort Bliss, Texas, which is operationally...
Initial experience with visualizing hand and foot tendons by dual-energy computed tomography.
Deng, Kai; Sun, Cong; Liu, Cheng; Ma, Rui
2009-01-01
To assess the feasibility of visualizing hand and foot tendons by dual-energy computed tomography (CT). Twenty patients who suffered from hand or feet pains were scanned on dual-source CT (Definition, Forchheim, Germany) with dual-energy mode at tube voltages of 140 and 80 kV and a corresponding ratio of 1:4 between tube currents. The reconstructed images were postprocessed by volume rendering techniques (VRT) and multiplanar reconstruction (MPR). All of the suspected lesions were confirmed by surgery or follow-up studies. Twelve patients (total of 24 hands and feet, respectively) were found to be normal and the other eight patients (total of nine hands and feet, respectively) were found abnormal. Dual-energy techniques are very useful in visualizing tendons of the hands and feet, such as flexor pollicis longus tendon, flexor digitorum superficialis/profundus tendon, Achilles tendon, extensor hallucis longus tendon, and extensor digitorum longus tendon, etc. It can depict the whole shape of the tendons and their fixation points clearly. Peroneus longus tendon in the sole of the foot was not displayed very well. The distal ends of metacarpophalangeal joints with extensor digitoium tendon and extensor pollicis longus tendon were poorly shown. The lesions of tendons such as the circuitry, thickening, and adherence were also shown clearly. Dual-energy CT offers a new method to visualize tendons of the hand and foot. It could clearly display both anatomical structures and pathologic changes of hand and foot tendons.
Hinrichsen, D
1995-01-01
This article concerns the Organization of the Petroleum Exporting Countries (OPEC) crisis and its impact on energy efficiency measures in the US. In 1985, when the OPEC collapsed, the US government had avoided the need to construct 350 gigawatts of new electric capacity. The most successful efficiency improvements, especially in household appliances and equipment, lighting and tightened energy efficiency standards in new buildings, resulted from the OPEC event. The real innovation of that time was the change in profit rules for utilities. This revolution and the way some US utilities view energy have not caught on elsewhere. Despite the initiative toward improving energy efficiency in homes, offices and industries, the change has been slow. Partly to blame are the big development banks, which pointed out that short-term conservation and efficiency measures could save at least 15% of the total energy demand without the need for major investment. The benefits of energy conservation was shown during the oil shock when per capita energy consumption fell by 5% in the member states of the Organization of Economic Cooperation and Development, while the per capita gross domestic product grew by a third. There has been a decrease in energy expenditure worldwide, and the scope for further energy savings is enormous, but governments need to recognize and seize the opportunity.
High baryon and energy densities achievable in heavy-ion collisions at √{sN N}=39 GeV
NASA Astrophysics Data System (ADS)
Ivanov, Yu. B.; Soldatov, A. A.
2018-02-01
Baryon and energy densities, which are reached in central Au+Au collisions at collision energy of √{sN N}= 39 GeV, are estimated within the model of three-fluid dynamics. It is shown that the initial thermalized mean proper baryon and energy densities in a sizable central region approximately are nB/n0≈ 10 and ɛ ≈ 40 GeV/fm3, respectively. The study indicates that the deconfinement transition at the stage of interpenetration of colliding nuclei makes the system quite opaque. The final fragmentation regions in these collisions are formed not only by primordial fragmentation fireballs, i.e., the baryon-rich matter passed through the interaction region (containing approximately 30% of the total baryon charge), but also by the baryon-rich regions of the central fireball pushed out to peripheral rapidities by the subsequent almost one-dimensional expansion of the central fireball along the beam direction.
Dual-pulse laser ignition of ethylene-air mixtures in a supersonic combustor.
Yang, Leichao; An, Bin; Liang, Jianhan; Li, Xipeng; Wang, Zhenguo
2018-04-02
To reduce the energy of an individual laser pulse, dual-pulse laser ignitions (LIs) at various pulse intervals were investigated in a Mach 2.92 scramjet engine fueled with ethylene. For comparison, experiments on a single-pulse LI were also performed. Schlieren visualization and high-speed photography were employed to observe the ignition processes simultaneously. The results indicate that the energy of an individual laser pulse can be reduced by half via a dual-pulse LI method as compared with a single-pulse LI with the same total energy. The reduction of the individual laser pulse energy degrades the requirements on the laser source and the beam delivery system, which facilitates the practical application of LI in hypersonic vehicles. A pulse interval shorter than 40 μs is suggested for dual-pulse LI in the present study. Because of the intense heat loss and radical dissipation in high-speed flows, the pulse interval for dual-pulse LI should be short enough to narrow the spatial distribution of the initial flame kernel.
Solar-energy an American India (SAI) partnership: The Ramakrishna Mission PV Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullal, H.S.; Stone, J.L.
1997-12-01
This paper describes a cooperative program which was established in 1993 by the Minister of the Indian Ministry of Non-Conventional Energy Sources (MNES) and the Secretary of the U.S. Department of Energy (USDOE). Eventually it fielded one project, funded 50-50 for a total of 500k dollars. The project selected was a sustainable rural economic development initiative with Ramakrishna Mission in West Bengal, India, as the nongovernment organization (NGO). The objectives of the program were to establish the economic viability of photovoltaic power in the Sundarbans region of West Bengal. To have the project self-sustaining with minimal subsidies to the beneficiaries.more » To establish the infrastructure for financing, training, installation and maintenance with the NGO taking the lead. To work with the NGO to expand utilization of photovoltaics in the region. To perform a before and after social, economic, and environmental impact study with the Tata Energy Research Institute.« less
Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications.
Hong, Huachang; Peng, Wei; Zhang, Meijia; Chen, Jianrong; He, Yiming; Wang, Fangyuan; Weng, Xuexiang; Yu, Haiying; Lin, Hongjun
2013-10-01
The thermodynamic interactions between membrane and sludge flocs in a submerged membrane bioreactor (MBR) were investigated. It was found that Lewis acid-base (AB) interaction predominated in the total interactions. The interaction energy composition of membrane-sludge flocs combination was quite similar to that of membrane-bovine serum albumin (BSA) combination, indicating the critical role of proteins in adhesion process. Detailed analysis revealed the existence of a repulsive energy barrier in membrane-foulants interaction. Calculation results demonstrated that small flocs possessed higher attractive interaction energy per unit mass, and therefore adhered to membrane surface more easily as compared to large flocs. Meanwhile, initial sludge adhesion would facilitate the following adhesion due to the reduced repulsive energy barrier. Membrane with high electron donor surface tension component was a favor option for membrane fouling abatement. These findings offered new insights into membrane fouling, and also provided significant implications for fouling control in MBRs. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bernstein, R. B.; Levine, R. D.
1972-01-01
Optimal means of characterizing the distribution of product energy states resulting from reactive collisions of molecules with restricted distributions of initial states are considered, along with those for characterizing the particular reactant state distribution which yields a given set of product states at a specified total energy. It is suggested to represent the energy-dependence of global-type results in the form of square-faced bar plots, and of data for specific-type experiments as triangular-faced prismatic plots. The essential parameters defining the internal state distribution are isolated, and the information content of such a distribution is put on a quantitative basis. The relationship between the information content, the surprisal, and the entropy of the continuous distribution is established. The concept of an entropy deficiency, which characterizes the specificity of product state formation, is suggested as a useful measure of the deviance from statistical behavior. The degradation of information by experimental averaging is considered, leading to bounds on the entropy deficiency.
NASA Astrophysics Data System (ADS)
Liu, Ruo-Yu; Taylor, Andrew; Wang, Xiang-Yu; Aharonian, Felix
2017-01-01
By interacting with the cosmic background photons during their propagation through intergalactic space, ultrahigh energy cosmic rays (UHECRs) produce energetic electron/positron pairs and photons which will initiate electromagnetic cascades, contributing to the isotropic gamma-ray background (IGRB). The generated gamma-ray flux level highly depends on the redshift evolution of the UHECR sources. Recently, the Fermi-LAT collaboration reported that 86-14+16 of the total extragalactic gamma-ray flux comes from extragalactic point sources including those unresolved ones. This leaves a limited room for the diffusive gamma ray generated via UHECR propagation, and subsequently constrains their source distribution in the Universe. Normalizing the total cosmic ray energy budget with the observed UHECR flux in the energy band of (1-4)×1018 eV, we calculate the diffuse gamma-ray flux generated through UHECR propagation. We find that in order to not overshoot the new IGRB limit, these sub-ankle UHECRs should be produced mainly by nearby sources, with a possible non-negligible contribution from our Galaxy. The distance for the majority of UHECR sources can be further constrained if a given fraction of the observed IGRB at 820 GeV originates from UHECR. We note that our result should be conservative since there may be various other contributions to the IGRB that is not included here.
CHANDRA Observations OF The Shock Heated Gas Around 3c 288 And 3c 449
NASA Astrophysics Data System (ADS)
Lal, Dharam V.; Kraft, R. P.; Evans, D. A.; Hardcastle, M. J.; Nulsen, P. E. J.; Croston, J. H.; Forman, W. R.; Jones, C.; Lee, J. C.
2010-03-01
The inflation of radio bubbles in the hot gas atmospheres of clusters of galaxies plays an important role in the overall energy budget of the ICM. Regular gentle (i.e. subsonic) nuclear outbursts may be able to provide sufficient energy to the gas in the cool cores of clusters to offset radiative losses and regulate large cooling flows; and one method to supplement the total energy input into the gas is for the lobes to initially drive strong shocks into the gas. We present results from Chandra/ACIS-S observations of the hot gas atmospheres of two powerful, nearby radio galaxies in poor clusters: 3C 288 and 3C 449. We measure the total energy of the current outburst to be a few times 10^{59} ergs for 3C 288 (T = 2.8 keV, L_X = 1.4 × 10^{44} ergs) and ˜10^{58} ergs for 3C 449 (T = 1.5 keV, L_X = 2.0 × 10^{42} ergs). We find multiple surface brightness discontinuities in the gas, which are probably shocks and are indicative of supersonic heating by the inflation of the radio lobe. We do not find X-ray cavity in 3C 288, whereas cavities are associated with both the radio lobes in 3C 449.
Nonlinear combining and compression in multicore fibers
Chekhovskoy, I. S.; Rubenchik, A. M.; Shtyrina, O. V.; ...
2016-10-25
In this paper, we demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. Finally, a pulse compression factor of about 720 can bemore » obtained with a 19-core ring MCF.« less
NREL and Partners Support Hawaii Clean Energy Initiative - Text Version |
NREL NREL and Partners Support Hawaii Clean Energy Initiative - Text Version NREL and Partners Support Hawaii Clean Energy Initiative - Text Version Below is the text version for the video NREL and
Theoretical Studies on Structures and Relative Stability for Polynitrohexaazaadamantanes
NASA Astrophysics Data System (ADS)
Xu, Xiao-juan; Xiao, He-ming; Wang, Gui-xiang; Ju, Xue-hai
2006-10-01
The density function theory at the B3LYP/6-31G* level was employed to study the structures, including the total energies (EZPE), the geometries, the oxygen balances (OB100), the dipole moments, of polynitro-hexaazaadamantanes (PNHAAs) and the potential candidates of high energy density compounds (HEDCs). The structural parameters of PNHAAs, such as the the maximum N—NO2 bond length (LBmax), the least N—N Mulliken population (BN—N), the least negative charge on the nitro group (QNO2) and OB100, were studied to predict their relative stability or sensitivity (the easiness for initiating a detonation, high sensitivity means low stability). It was found that the same conclusion was drawn from the four parameters. With the number of nitro groups increasing, the stabilities of these compounds decrease. OB100 failed in identifying the isomers, but the EZPE energy and the dipole moment were considered to give more reliable results for the isomers.
Bulut, Niyazi; Kłos, Jacek; Alexander, Millard H
2012-03-14
We present converged exact quantum wave packet calculations of reaction probabilities, integral cross sections, and thermal rate coefficients for the title reaction. Calculations have been carried out on the ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged wave packet reaction probabilities at selected values of the total angular momentum up to a partial wave of J = 140 with the HCl reagent initially selected in the v = 0, j = 0-16 rovibrational states have been obtained for the collision energy range from threshold up to 0.8 eV. The present calculations confirm an important enhancement of reactivity with rotational excitation of the HCl molecule. First, accurate integral cross sections and rate constants have been calculated and compared with the available experimental data.
Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun
2015-01-01
We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk. PMID:26877640
Lee, Gun Joon; Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun; Lee, Dong-Un
2015-01-01
We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk.
2014-01-01
Background Examination of historical trends and projections in estimated energy expenditure in Russia is important given the country’s economic downturns and growth. Methods Nationally representative data from the Russia Longitudinal Monitoring Survey (RLMS) from 1995–2011 was used to determine the metabolic equivalents of task (MET)-hours per week from occupational, domestic, travel, and active leisure physical activity (PA) domains, as well as sedentary leisure time (hours per week) among adults 18–60 years. Additionally, we projected what these values would be like in 2020 and 2030 if observed trends continue. Results Among male adults, the largest contributor to total PA was occupational PA followed by travel PA. In contrast, domestic PA followed by occupational PA contributed most to total PA among female adults. Total PA was 282.9 MET-hours per week in 1995 and declined to 231.7 in 2011. Total PA is projected to decrease to 216.5 MET-hours per week in 2020 and to 193.0 MET-hours per week in 2030. The greatest relative declines are occurring in travel PA. Female adults are also exhibiting significant declines in domestic PA. Changes in occupational and active leisure PA are less distinct. Conclusions Policies and initiatives are needed to counteract the long-term decline of overall physical activity linked with a modernizing lifestyle and economy among Russian adults. PMID:24475868
Dearth-Wesley, Tracy; Popkin, Barry M; Ng, Shu Wen
2014-01-30
Examination of historical trends and projections in estimated energy expenditure in Russia is important given the country's economic downturns and growth. Nationally representative data from the Russia Longitudinal Monitoring Survey (RLMS) from 1995-2011 was used to determine the metabolic equivalents of task (MET)-hours per week from occupational, domestic, travel, and active leisure physical activity (PA) domains, as well as sedentary leisure time (hours per week) among adults 18-60 years. Additionally, we projected what these values would be like in 2020 and 2030 if observed trends continue. Among male adults, the largest contributor to total PA was occupational PA followed by travel PA. In contrast, domestic PA followed by occupational PA contributed most to total PA among female adults. Total PA was 282.9 MET-hours per week in 1995 and declined to 231.7 in 2011. Total PA is projected to decrease to 216.5 MET-hours per week in 2020 and to 193.0 MET-hours per week in 2030. The greatest relative declines are occurring in travel PA. Female adults are also exhibiting significant declines in domestic PA. Changes in occupational and active leisure PA are less distinct. Policies and initiatives are needed to counteract the long-term decline of overall physical activity linked with a modernizing lifestyle and economy among Russian adults.
The LDEF ultra heavy cosmic ray experiment
NASA Technical Reports Server (NTRS)
Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.
1992-01-01
The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.
Metadynamics Enhanced Markov Modeling of Protein Dynamics.
Biswas, Mithun; Lickert, Benjamin; Stock, Gerhard
2018-05-31
Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib 9 is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.
Nguyen, D Duc; Ngo, H Hao; Guo, W; Nguyen, T Thanh; Chang, Soon W; Jang, A; Yoon, Yong S
2016-09-01
This paper evaluated a novel pilot scale electrocoagulation (EC) system for improving total phosphorus (TP) removal from municipal wastewater. This EC system was operated in continuous and batch operating mode under differing conditions (e.g. flow rate, initial concentration, electrolysis time, conductivity, voltage) to evaluate correlative phosphorus and electrical energy consumption. The results demonstrated that the EC system could effectively remove phosphorus to meet current stringent discharge standards of less than 0.2mg/L within 2 to 5min. This target was achieved in all ranges of initial TP concentrations studied. It was also found that an increase in conductivity of solution, voltages, or electrolysis time, correlated with improved TP removal efficiency and reduced specific energy consumption. Based on these results, some key economic considerations, such as operating costs, cost-effectiveness, product manufacturing feasibility, facility design and retrofitting, and program implementation are also discussed. This EC process can conclusively be highly efficient in a relatively simple, easily managed, and cost-effective for wastewater treatment system. Copyright © 2016 Elsevier B.V. All rights reserved.
Speed of CMEs and the Magnetic Non-Potentiality of Their Source ARs
NASA Technical Reports Server (NTRS)
Tiwari, Sanjiv K.; Falconer, David A.; Moore, Ronald L.; Venkatakrishnan, P.
2014-01-01
Most fast coronal mass ejections (CMEs) originate from solar active regions (ARs). Non-potentiality of ARs is expected to determine the speed and size of CMEs in the outer corona. Several other unexplored parameters might be important as well. To find out the correlation between the initial speed of CMEs and the non-potentiality of source ARs, we associated over a hundred of CMEs with source ARs via their co-produced flares. The speed of the CMEs are collected from the SOHO LASCO CME catalog. We have used vector magnetograms obtained mainly with HMI/SDO, also with Hinode (SOT/SP) when available within an hour of a CME occurrence, to evaluate various magnetic non-potentiality parameters, e.g. magnetic free-energy proxies, computed magnetic free energy, twist, shear angle, signed shear angle etc. We have also included several other parameters e.g. total unsigned flux, net current, magnetic area of ARs, area of sunspots, to investigate their correlation, if any, with the initial speeds of CMEs. Our preliminary results show that the ARs with larger non-potentiality and area mostly produce fast CMEs but they can also produce slower ones. The ARs with lesser non-potentiality and area generally produce only slower CMEs, however, there are a few exceptions. The total unsigned flux correlate with the non-potentiality parameters and area of ARs but some ARs with large unsigned flux are also found to be least non-potential. A more detailed analysis is underway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Charles
University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S.more » Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who had a home energy upgrade invested on average $4,500, resulting in a 13% reduction in annual energy use and utility bill savings of $325. Rebates and incentives covered 40%-50% of retrofit cost, resulting in an average simple payback of about 7 years. STEP has created a handbook in which are assembled all the key elements that went into the design and delivery of STEP. The target audiences for the handbook include interested citizens, elected officials and municipal staff who want to establish and run their own efficiency program within a small community or neighborhood, using elements, materials and lessons from STEP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1987-03-01
This study was prepared as part of the Engineering Energy Analysis Program (EEAP). The EEAP is a Department of Defense (DOD) program which was initiated in the late 1970`s in response to a Presidential Order. The program`s primary goal is to reduce energy consumption within the DOD thereby curbing dependence on foreign non-renewable energy sources, notably oil. The Energy Engineering Analysis Program (EEAP) is administrated by the U.S. Army Corps of Engineers through the Huntsville Division located in Huntsville, Alabama. The EEAP program effort in Korea has consisted of two major studies. The first study occured in 1981 and consistedmore » of basewide energy studies. The scope for these studies included looking at entire camps. The second effort under the EEAP program in Korea is this study. The scope of work for this study includes a total of 63 buildings located at 19 different camps throughout Korea from Taegu to the DMZ (see Figure 1). This study is properly known as an Energy Savings Opportunity Survey (ESOS). Since an ESOS is limited to examining individual buildings, energy savings projects are limited to the scale and complexity of the buildings within the study.« less
NASA Astrophysics Data System (ADS)
Naboka, V. Yu.; Akkelin, S. V.; Karpenko, Iu. A.; Sinyukov, Yu. M.
2015-01-01
A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a prethermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the prethermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.
Southwest Regional Clean Energy Incubation Initiative (SRCEII)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webber, Michael
The Austin Technology Incubator’s (ATI’s) Clean Energy Incubator at the University of Texas at Austin (ATI-CEI) utilized the National Incubator Initiative for Clean Energy (NIICE) funding to establish the Southwest Regional Clean Energy Incubation Initiative, composed of clean energy incubators from The University of Texas at Austin (UT-Austin), The University of Texas at El Paso (UTEP), The University of Texas at San Antonio (UTSA), and Texas A&M University (TAMU).
Violent Relaxation, Dynamical Instabilities and the Formation of Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Aguilar, L. A.
1990-11-01
RESUMEN: El problema de la formaci6n de galaxias elfpticas por medjo de colapso gravitacional sin disipaci6n de energfa es estudiado usando un gran numero de simulaciones numericas. Se muestra que este tipo de colapsos, partiendo de condiciones iniciales frfas donde la energfa cinetica inicial representa s6lo un 5%, 0 , de a potencial inicial, produce sistemas relajados de forma triaxial muy similares a las galaxias elfpticas reales en sus formas y perfiles de densidad en proyecci6i . La forina triaxial resulta de la acci6n de una inestabilidad dinamica que aparece en sistemas 'inicos dominados por movimientos radiales, mientras que el perfil de densidad final Cs debido al llamado relajamiento violento que tiende a producir una distribuci6n en espacio fase unica. Estos dos fen6menos tienden a borrar los detalles particulares sobre las condiciones iniciales y dan lugar a una evoluci6n convergente hacia sistemas realistas, esto innecesario el uso de condiciones iniciales especiales (excepto por Ia condici6i de que estas deben ser frfas). Las condiciones iniciales frfas producen los movimientos radiales y fluctuaciones de la energfa potencial requeridos por ambos fen6menos. ABSTRACT: The problem of formation of elliptical galaxies via dissipationless collapse is studied using a large set of numerical simulations. It is shown that dissipationless collapses from cold initial conditions, where the total initial kinetic energy is less than 5% ofthe initial potential energy, lead to relaxed triaxial systems ery similar to real elliptical galaxies ii projected shape and density profiles. The triaxial shape is due to the of a dynamical instability that appears on systems dominated by radial orbits, while final density profile is due to violent relaxation that tends to produce a unique distribution iii space. These two phenomena erase memory of the initial prodtice a convergent evolution toward realistic systems, thus making unnecessary use o[special initial conditions (other than the condition ofbeing cold). Cold initial the radial orbits and large potential energy fluctuations necessary for both and are thus sufficient. KQ words: GALAXIES-DYNAMICS - GALAXIES-ELLIPTICAL - GALAXIES-FORMATION
Current energy usage and sustainable energy in Kazakhstan: A review
NASA Astrophysics Data System (ADS)
Karatayev, Marat; Islam, Tofazzal; Salnikov, Vitaliy
2014-05-01
Kazakhstan has abundant natural resources. The country has enough coal to supply its energy needs for the next 150 years, and has the world's largest deposits of uranium, substantial quantities of natural gas and petroleum deposits. However, despite such energy riches, due to the size of the territory, its geography, and the country's economic structure, distribution of electricity in Kazakhstan is not uniform. As a result, Kazakhstani rural and remote areas suffer from serious electricity deficits. According to the latest estimates from the Ministry of Industry and New Technologies, about 25-30% of the Kazakhstani population lives in rural communities, where access to affordable energy (for heating, cooling, cooking, refrigeration, lighting, household as well as IT use) is limited. Furthermore, with the main electricity production infrastructure concentrated in the main urban areas, a high amount of electricity is therefore lost during transmission. Moreover, the consumption of poor quality coal as the main source of power generation creates a significant amount of environmental pollution. To illustrate this development, fuel combustion from coal has produced around 75% of carbon dioxide emissions in Kazakhstan. Thus, in order to address the country's electricity and environmental challenges, the Kazakhstani government is taking initiatives to promote renewable energy resources. However, so far, the outcome of these initiatives remains negligible. The current contribution of renewable energy to the total energy consumption is less than 1% (with 90% provided by hydropower) despite the significant potential for renewable energy in the country. As yet, no comprehensive study has been published on the energy scenario and on the potential for renewable energy resources in Kazakhstan. This comprehensive review aims to present an overview of the country's energy resources, supply and demand as the current energy scenario, while discussing the potential for renewable energy resources such as wind, solar, small hydro and biomass as alternative energy supplies in this country. Our analysis shows that wind and solar energy can become major contributors towards renewable energy in Kazakhstan. The biomass of agricultural residues, municipal solid waste and wood residues could be used for energy purposes too. Therefore, Kazakhstan should optimize energy consumption and take active and effective measures to increase the contribution of renewables in energy supply to make the country's energy mix environmentally sustainable.
Csizmadi, Ilona; Lo Siou, Geraldine; Friedenreich, Christine M; Owen, Neville; Robson, Paula J
2011-10-10
Knowledge of adult activity patterns across domains of physical activity is essential for the planning of population-based strategies that will increase overall energy expenditure and reduce the risk of obesity and related chronic diseases. We describe domain-specific hours of activity and energy expended among participants in a prospective cohort in Alberta, Canada. The Past Year Total Physical Activity Questionnaire was completed by 15,591 Tomorrow Project® participants, between 2001 and 2005 detailing physical activity type, duration, frequency and intensity. Domain-specific hours of activity and activity-related energy expenditure, expressed as a percent of total energy expenditure (TEE) (Mean (SD); Median (IQR)) are reported across inactive (<1.4), low active (1.4 to 1.59), active (1.6 to 1.89) and very active (≥ 1.9) Physical Activity Level (PAL = TEE:REE) categories. In very active women and amongst all men except those classified as inactive, activity-related energy expenditure comprised primarily occupational activity. Amongst inactive men and women in active, low active and inactive groups, activity-related energy expenditure from household activity was comparable to, or exceeded that for occupational activity. Leisure-time activity-related energy expenditure decreased with decreasing PAL categories; however, even amongst the most active men and women it accounted for less than 10 percent of TEE. When stratified by employment status, leisure-time activity-related energy expenditure was greatest for retired men [mean (SD): 10.8 (8.5) percent of TEE], compared with those who were fully employed, employed part-time or not employed. Transportation-related activity was negligible across all categories of PAL and employment status. For the inactive portion of this population, active non-leisure activities, specifically in the transportation and occupational domains, need to be considered for inclusion in daily routines as a means of increasing population-wide activity levels. Environmental and policy changes to promote active transport and workplace initiatives could increase overall daily energy expenditure through reducing prolonged sitting time.
[Effects of early enteral nutrition in the treatment of patients with severe burns].
Wu, Y W; Liu, J; Jin, J; Liu, L J; Wu, Y F
2018-01-20
Objective: To investigate the effects of early enteral nutrition (EEN) in the treatment of patients with severe burns. Methods: Medical records of 52 patients with severe burns hospitalized in the three affiliations of authors from August to September in 2014 were retrospectively analyzed and divided into EEN group ( n =28) and non-early enteral nutrition (NEEN) group ( n =24) according to the initiation time of enteral nutrition. On the basis of routine treatment, enteral nutrition was given to patients in group EEN within post injury day (POD) 3, while enteral nutrition was given to patients in group NEEN after POD 3. The following items were compared between patients of the two groups, such as the ratio of enteral nutrition intake to total energy intake, the ratio of parenteral nutrition intake to total energy intake, the ratio of total energy intake to energy target on POD 1, 2, 3, 4, 5, 6, 7, 14, 21, and 28, the levels of prealbumin, serum creatinine, blood urea nitrogen, total bilirubin, direct bilirubin, and Acute Physiology and Chronic Health Evaluation Ⅱ (APACHE Ⅱ) score on POD 1, 3, 7, 14, and 28, the first operation time, the number of operations, and the frequencies of abdominal distension, diarrhea, vomiting, aspiration, catheter blockage, and low blood sugar within POD 28. Data were processed with χ (2)test, t test, Wilcoxon rank sum test, and Bonferroni correction. Results: (1) The ratio of parenteral nutrition intake to total energy intake of patients in group EEN on POD 1 was obviously lower than that in group NEEN ( Z =2.078, P <0.05). The ratio of enteral nutrition intake to total energy intake and the ratio of total energy intake to energy target of patients in group EEN on POD 2 and 3 were obviously higher than those in group NEEN ( Z =5.766, 6.404, t =4.907, 6.378, P <0.01). The ratio of total energy intake to energy target of patients in group EEN was obviously lower than that in group NEEN on POD 4, 5, 6, and 7 ( t =4.635, 2.547, 3.751, 5.373, P <0.05 or P <0.01). On POD 2, 4, 5, 14, 21, and 28, the ratio of enteral nutrition intake to total energy intake of patients in group EEN was obviously higher than the ratio of parenteral nutrition intake to total energy intake within the same group ( Z =5.326, 2.046, 2.129, 4.118, 3.174, 3.963, P <0.05 or P <0.01). In group NEEN, the ratio of enteral nutrition to total energy intake of patients on POD 1, 2, and 3 was obviously lower than the ratio of parenteral nutrition intake to total energy intake within the same group ( Z =2.591, 2.591, 3.293, P <0.05 or P <0.01), while the ratio of enteral nutrition to total energy intake of patients on POD 14, 21, 28 was obviously higher than the ratio of parenteral nutrition intake to total energy intake within the same group ( Z =2.529, 3.173, 3.133, P <0.05 or P <0.01). (2) The prealbumin levels of patients in the two groups were close on POD 1, 3, 7, and 14 ( t =1.983, 0.093, 0.832, 1.475, P >0.05). On POD 28, the prealbumin level of patients in group EEN was obviously higher than that in group NEEN ( t =3.163, P <0.05). The levels of serum creatinine, blood urea nitrogen, total bilirubin, and direct bilirubin of patients in the two groups at all time points post injury were close ( Z =1.340, 0.547, 0.245, 0.387, 0.009, 1.170, 0.340, 1.491, 0.274, 1.953, 0.527, 0.789, 0.474, 1.156, 0.482, 0.268, 0.190, 0.116, 1.194, 0.431, P >0.05). (3) The APACHE Ⅱ scores of patients in group EEN were (22.5±3.1) and (15.6±3.8) points respectively on POD 1 and 3, which were close to (23.6±3.0) and (17.6±4.2) points of patients in group NEEN ( t =1.352, 1.733, P >0.05). The APACHE Ⅱ scores of patients in group EEN on POD 7, 14, and 28 were (13.6±3.6), (13.8±4.1), and (15.5±4.1) points, respectively, which were obviously lower than (18.5±3.9), (19.5±4.2) and (20.8±3.8) points of patients in group NEEN ( t =4.677, 4.843, 4.792, P <0.05). (4) Within POD 28, the time of the first operation, the number of operations, and the frequencies of abdominal distension, diarrhea, vomiting, aspiration, catheter blockage and hypoglycemia were similar between patients of the two groups ( t =0.684, 0.782, Z =0.161, 1.751, 0.525, 0.764, 0.190, 0.199, P >0.05). Conclusions: EEN in the treatment of patients with severe burns potentially increases the energy intake at early stage and improves APACHE Ⅱ score and prealbumin level on POD 28, without increasing frequencies of adverse reactions.
Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit
2017-08-21
The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H 3 + system (1 1 A ' , 2 1 A ' , and 3 1 A ' ) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D + + H 2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H 3 + . We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H 2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.
Optimal performance of heat engines with a finite source or sink and inequalities between means.
Johal, Ramandeep S
2016-07-01
Given a system with a finite heat capacity and a heat reservoir, and two values of initial temperatures, T_{+} and T_{-}(
10 CFR 501.164 - Decision to initiate enforcement proceedings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Decision to initiate enforcement proceedings. 501.164 Section 501.164 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Enforcement § 501.164 Decision to initiate enforcement proceedings. After investigation of a...
First Detected Arrival of a Quantum Walker on an Infinite Line
NASA Astrophysics Data System (ADS)
Thiel, Felix; Barkai, Eli; Kessler, David A.
2018-01-01
The first detection of a quantum particle on a graph is shown to depend sensitively on the distance ξ between the detector and initial location of the particle, and on the sampling time τ . Here, we use the recently introduced quantum renewal equation to investigate the statistics of first detection on an infinite line, using a tight-binding lattice Hamiltonian with nearest-neighbor hops. Universal features of the first detection probability are uncovered and simple limiting cases are analyzed. These include the large ξ limit, the small τ limit, and the power law decay with the attempt number of the detection probability over which quantum oscillations are superimposed. For large ξ the first detection probability assumes a scaling form and when the sampling time is equal to the inverse of the energy band width nonanalytical behaviors arise, accompanied by a transition in the statistics. The maximum total detection probability is found to occur for τ close to this transition point. When the initial location of the particle is far from the detection node we find that the total detection probability attains a finite value that is distance independent.
NASA Astrophysics Data System (ADS)
Morel, X.; Berthomier, M.; Berthelier, J.-J.
2017-03-01
We describe the concept and properties of a new electrostatic optic which aims to provide a 2π sr instantaneous field of view to characterize space plasmas. It consists of a set of concentric toroidal electrodes that form a number of independent energy-selective channels. Charged particles are deflected toward a common imaging planar detector. The full 3-D distribution function of charged particles is obtained through a single energy sweep. Angle and energy resolution of the optics depends on the number of toroidal electrodes, on their radii of curvature, on their spacing, and on the angular aperture of the channels. We present the performances, as derived from numerical simulations, of an initial implementation of this concept that would fit the need of many space plasma physics applications. The proposed instrument has 192 entrance windows corresponding to eight polar channels each with 24 azimuthal sectors. The initial version of this 3-D plasma analyzer may cover energies from a few eV up to 30 keV, typically with a channel-dependent energy resolution varying from 10% to 7%. The angular acceptance varies with the direction of the incident particle from 3° to 12°. With a total geometric factor of two sensor heads reaching 0.23 cm2 sr eV/eV, this "donut" shape analyzer has enough sensitivity to allow very fast measurements of plasma distribution functions in most terrestrial and planetary environments on three-axis stabilized as well as on spinning satellites.
Changes in Energy Metabolism after Continuous Positive Airway Pressure for Obstructive Sleep Apnea.
Tachikawa, Ryo; Ikeda, Kaori; Minami, Takuma; Matsumoto, Takeshi; Hamada, Satoshi; Murase, Kimihiko; Tanizawa, Kiminobu; Inouchi, Morito; Oga, Toru; Akamizu, Takashi; Mishima, Michiaki; Chin, Kazuo
2016-09-15
Disrupted energy homeostasis in obstructive sleep apnea (OSA) may lead to weight gain. Paradoxically, treating OSA with continuous positive airway pressure (CPAP) may also promote weight gain, although the underlying mechanism remains unclear. To explore the underlying mechanism by which patients with OSA gain weight after CPAP. A comprehensive assessment of energy metabolism was performed in 63 newly diagnosed OSA study participants (51 men; 60.8 ± 10.1 yr; apnea-hypopnea index >20 h(-1)) at baseline, CPAP initiation, and at a 3-month follow-up. Measurements included polysomnography, body weight, body composition, basal metabolic rate (BMR), hormones (norepinephrine, cortisol, leptin, ghrelin, insulin-like growth factor-1), dietary intake, eating behavior, and physical activity. BMR significantly decreased after CPAP (1,584 kcal/d at baseline, 1,561 kcal/d at CPAP initiation, and 1,508 kcal/d at follow-up; P < 0.001), whereas physical activity and total caloric intake did not significantly change. In multivariate regression, baseline apnea-hypopnea index, Δurine norepinephrine, and CPAP adherence were significant predictors of ΔBMR. The weight gainers had higher leptin levels, lower ghrelin levels, and higher eating behavior scores than the non-weight gainers, indicating a positive energy balance and disordered eating behavior among the weight gainers. Among the parameters related to energy metabolism, increased caloric intake was a particularly significant predictor of weight gain. Although a reduction in BMR after CPAP predisposes to a positive energy balance, dietary intake and eating behavior had greater impacts on weight change. These findings highlight the importance of lifestyle modifications combined with CPAP. Clinical trial registered with http://www.umin.ac.jp/english/ (UMIN000012639).
Lu, Yu-Xuan; Zhang, Qi; Xu, Wei-Hua
2014-01-01
A strategy known as diapause (developmental arrest) has evolved in insects to increase their survival rate under harsh environmental conditions. Diapause causes a dramatic reduction in the metabolic rate and drastically extends lifespan. However, little is known about the mechanisms underlying the metabolic changes involved. Using gas chromatography-mass spectrometry, we compared the changes in the metabolite levels in the brain and hemolymph of nondiapause- and diapause-destined cotton bollworm, Helicoverpa armigera, during the initiation, maintenance, and termination of pupal diapause. A total of 55 metabolites in the hemolymph and 52 metabolites in the brain were detected. Of these metabolites, 21 and 12 metabolite levels were altered in the diapause pupal hemolymph and brain, respectively. During diapause initiation and maintenance, the number of metabolites with increased levels in the hemolymph of the diapausing pupae is far greater than the number in the nondiapause pupae. These increased metabolites function as an energy source, metabolic intermediates, and cryoprotectants. The number of metabolites with decreased levels in the brain of diapausing pupae is far greater than the number in the nondiapause pupae. Low metabolite levels are likely to directly or indirectly repress the brain metabolic activity. During diapause termination, most of the metabolite levels in the hemolymph of the diapausing pupae rapidly decrease because they function as energy and metabolic sources that promote pupa-adult development. In conclusion, the metabolites with altered levels in the hemolymph and brain serve as energy and metabolic resources and help to maintain a low brain metabolic activity during diapause. PMID:24926789
Toward Two-Color Sub-Doppler Saturation Recovery Kinetics in CN (x, v = 0, J)
NASA Astrophysics Data System (ADS)
Xu, Hong; Forthomme, Damien; Sears, Trevor; Hall, Gregory; Dagdigian, Paul
2015-06-01
Collision-induced rotational energy transfer among rotational levels of ground state CN (X 2σ+, v = 0) radicals has been probed by saturation recovery experiments, using high-resolution, polarized transient FM spectroscopy to probe the recovery of population and the decay of alignment following ns pulsed laser depletion of selected CN rotational levels. Despite the lack of Doppler selection in the pulsed depletion and the thermal distribution of collision velocities, the recovery kinetics are found to depend on the probed Doppler shift of the depleted signal. The observed Doppler-shift-dependent recovery rates are a measure of the velocity dependence of the inelastic cross sections, combined with the moderating effects of velocity-changing elastic collisions. New experiments are underway, in which the pulsed saturation is performed with sub-Doppler velocity selection. The time evolution of the spectral hole bleached in the initially thermal CN absorption spectrum can characterize speed-dependent inelastic collisions along with competing elastic velocity-changing collisions, all as a function of the initially bleached velocity group and rotational state. The initial time evolution of the depletion recovery spectrum can be compared to a stochastic model, using differential cross sections for elastic scattering as well as speed-dependent total inelastic cross sections, derived from ab initio scattering calculations. Progress to date will be reported. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 and DE-SC0012704 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopacki, S.; Akbari, H.
2000-03-01
In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City.more » This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by rate-payers from the combined direct and indirect effects of HIR strategies. Additionally, peak power avoidance is estimated at 133 MW and the reduction in annual carbon emissions at 41 kt. In Sacramento, the potential annual energy savings is estimated at $26M, with an avoidance of 486 MW in peak power and a reduction in annual carbon of 92 kt. In Salt Lake City, the potential annual energy savings is estimated at $4M, with an avoidance of 85 MW in peak power and a reduction in annual carbon of 20 kt.« less
Jebb, Susan A; Astbury, Nerys M; Tearne, Sarah; Nickless, Alecia; Aveyard, Paul
2017-08-04
The global prevalence of obesity has risen significantly in recent decades. There is a pressing need to identify effective interventions to treat established obesity that can be delivered at scale. The aim of the Doctor Referral of Overweight People to a Low-Energy Treatment (DROPLET) study is to determine the clinical effectiveness, feasibility and acceptability of referral to a low-energy total diet replacement programme compared with usual weight management interventions in primary care. The DROPLET trial is a randomised controlled trial comparing a low-energy total diet replacement programme with usual weight management interventions delivered in primary care. Eligible patients will be recruited through primary care registers and randomised to receive a behavioural support programme delivered by their practice nurse or a referral to a commercial provider offering an initial 810 kcal/d low-energy total diet replacement programme for 8 weeks, followed by gradual food reintroduction, along with weekly behavioural support for 24 weeks. The primary outcome is weight change at 12 months. The secondary outcomes are weight change at 3 and 6 months, the proportion of participants achieving 5% and 10% weight loss at 12 months, and change in fat mass, haemoglobin A1c, low-density lipoprotein cholesterol and systolic and diastolic blood pressure at 12 months. Data will be analysed on the basis of intention to treat. Qualitative interviews on a subsample of patients and healthcare providers will assess their experiences of the weight loss programmes and identify factors affecting acceptability and adherence. This study has been reviewed and approved by the National Health ServiceHealth Research Authority (HRA)Research Ethics Committee (Ref: SC/15/0337). The trial findings will be disseminated to academic and health professionals through presentations at meetings and peer-reviewed journals and to the public through the media. If the intervention is effective, the results will be communicated to policymakers and commissioners of weight management services. ISRCTN75092026. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Scaling Analysis of Alloy Solidification and Fluid Flow in a Rectangular Cavity
NASA Astrophysics Data System (ADS)
Plotkowski, A.; Fezi, K.; Krane, M. J. M.
A scaling analysis was performed to predict trends in alloy solidification in a side-cooled rectangular cavity. The governing equations for energy and momentum were scaled in order to determine the dependence of various aspects of solidification on the process parameters for a uniform initial temperature and an isothermal boundary condition. This work improved on previous analyses by adding considerations for the cooling bulk fluid flow. The analysis predicted the time required to extinguish the superheat, the maximum local solidification time, and the total solidification time. The results were compared to a numerical simulation for a Al-4.5 wt.% Cu alloy with various initial and boundary conditions. Good agreement was found between the simulation results and the trends predicted by the scaling analysis.
Enhancing the absorption and energy transfer process via quantum entanglement
NASA Astrophysics Data System (ADS)
Zong, Xiao-Lan; Song, Wei; Zhou, Jian; Yang, Ming; Yu, Long-Bao; Cao, Zhuo-Liang
2018-07-01
The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.
Particle acceleration in relativistic magnetic flux-merging events
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver
2017-12-01
Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional `ABC' structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For plasma magnetization 2$ the spectrum power-law index is 2$ ; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, 2$ , the spectra are hard, , yet the maximal energy \\text{max}$ can still exceed the average magnetic energy per particle, , by orders of magnitude (if is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.
10 CFR 824.13 - Initial decision.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Initial decision. 824.13 Section 824.13 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... other matters as justice may require. (b) The Hearing Officer shall serve all parties with the initial...
10 CFR 824.13 - Initial decision.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Initial decision. 824.13 Section 824.13 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... other matters as justice may require. (b) The Hearing Officer shall serve all parties with the initial...
10 CFR 824.13 - Initial decision.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Initial decision. 824.13 Section 824.13 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... other matters as justice may require. (b) The Hearing Officer shall serve all parties with the initial...
Chatrchyan, Serguei
2014-02-20
Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions atmore » $$\\sqrt{s_{NN}}$$ = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0-0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 inverse microbarns. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from $$v_2$$ to $$v_6$$, are extracted as a function of particle transverse momentum. At higher transverse momentum, the $$v_2$$ harmonic becomes significantly smaller than the higher-order $$v_n$$ (n greater than or equal to 3). The pt-averaged $$v_2$$ and $$v_3$$ are found to be equal within 2%, while higher-order $$v_n$$ decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. As a result, a comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.« less
10 CFR 75.32 - Initial inventory report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Initial inventory report. 75.32 Section 75.32 Energy... AGREEMENT Reports § 75.32 Initial inventory report. (a) The initial inventory reporting date shall be the... inventory report is required. (b) The initial inventory report, to be submitted to the Commission as...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... Mexico Green Initiatives, LLC's application for market-based rate authority, with an accompanying rate... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3431-000] New Mexico Green Initiatives, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...
Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge.
Huiliñir, Cesar; Villegas, Manuel
2015-10-01
The simultaneous effect of initial moisture content (initial Mc) and air-flow rate (AFR) on biodrying performance was evaluated. For the study, a 3(2) factorial design, whose factors were AFR (1, 2 and 3 L/min kg(TS)) and initial Mc (59, 68 and 78% w.b.), was used. Using energy and water mass balance the main routes of water removal, energy use and efficiencies were determined. The results show that initial Mc has a stronger effect on the biodrying than the AFR, affecting the air outlet temperature and improving the water removal, with higher maximum temperatures obtained around 68% and the lowest maximum matrix temperature obtained at initial Mc = 78%.Through the water mass balance it was found that the main mechanism for water removal was the aeration, with higher water removal at intermediate initial Mc (68%) and high AFR (3 L/min kg(TS)). The energy balance indicated that bioreaction is the main energy source for water evaporation, with higher energy produced at intermediate initial Mc (68%). Finally, it was found that low values of initial Mc (59%) improve biodrying efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy, The Environment And Astronomy: Education And Action
NASA Astrophysics Data System (ADS)
Rodgers, Bernadette; Doppmann, G.; Kalas, P.; Lacy, J.; Beck, T.; Marshall, P. J.
2010-01-01
The specter of global climate change is arguably the most pressing scientific, social and ethical issue of our time. Although the relatively small field of astronomy represents only a fraction of the total human carbon emissions, astronomers have a great potential, and therefore perhaps a great responsibility, to educate themselves and the public on this issue. In addition, the average per capita carbon emissions of professional astronomers are not small, and our profession can do much to reduce its energy consumption and maximize the cost-benefit ratio of our work. At the January AAS meeting, we are organizing a half-day splinter meeting titled "Energy, the Environment and Astronomy: Education and Action". The focus will be on energy conservation and education as it relates to professional astronomy. Education focuses on informing ourselves, our students and the general public with which we interact, about the real issues, the necessary actions, and the likely consequences of various energy consumption and carbon emission scenarios. Action focuses on effective energy conservation and renewable energy initiatives within professional astronomy. Air travel, solar energy at ground-based observatories, and Gemini's "Green Initiative” are among the topics that will be discussed. The splinter meeting will be open to all and will include expert speakers from outside astronomy, contributed talks by astronomers, and a discussion session.
NASA Astrophysics Data System (ADS)
Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi
2018-03-01
To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.
Trends in Lightning Electrical Energy Derived from the Lightning Imaging Sensor
NASA Astrophysics Data System (ADS)
Bitzer, P. M.; Koshak, W. J.
2016-12-01
We present results detailing an emerging application of space-based measurement of lightning: the electrical energy. This is a little-used attribute of lightning data which can have applications for severe weather, lightning physics, and wildfires. In particular, we use data from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) to find the temporal and spatial variations in the detected spectral energy density. This is used to estimate the total lightning electrical energy, following established methodologies. Results showing the trend in time of the electrical energy, as well as the distribution around the globe, will be highlighted. While flashes have been typically used in most studies, the basic scientifically-relevant measured unit by LIS is the optical group data product. This generally corresponds to a return stroke or IC pulse. We explore how the electrical energy varies per LIS group, providing an extension and comparison with previous investigations. The result is an initial climatology of this new and important application of space-based optical measurements of lightning, which can provide a baseline for future applications using the Geostationary Lightning Mapper (GLM), the European Lightning Imager (LI), and the International Space Station Lightning Imaging Sensor (ISS/LIS) instruments.
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
Merouze, P; Gaudemer, Y
1975-01-01
1. The influence of catecholamines (adrenaline and noradrenaline) on energy metabolism of the rat myocardium has been studied by incubating slices of this tissue with these hormones and by following the levels of the different phosphorylated fractions and adenylic nucleotides. 2. Similar effects are obtained with both hormones, adrenaline being more effective. 3. Catecholamines decrease significantly the total amount of phosphate while Pi content increases during the first 10 minutes of incubation; labile and residual phosphate contents increase at the beginning of incubation and decrease to the initial values afterwards. 4. ATP and ADP levels decrease significantly with both hormones; however, the effect of noradrenalin on the ATP level needs a longer time of incubation. The ATP/ADP ratios decrease after 5 minutes incubation and the total adenylic nucleotide content is severely decreased (35 per cent with adrenalin, after 20 minutes incubation). 5. Similar results have been obtained with other tissues; these results can explain the decrease of aerobic metabolism we observed under the same conditions.
NASA Astrophysics Data System (ADS)
Sprott, J. C.
2003-04-01
In 1984 the University of Wisconsin began an outreach program called The Wonders of Physics. The program initially consisted of a series of public lectures intended to generate interest in physics through a series of fast-paced demonstrations suitable for a diverse audience. The demonstrations are organized around the areas of classical physics, including motion, heat, sound, electricity, magnetism, and light. The presentations include music, costumes, skits, and surprise appearances of special guests. The presentation has been given about 160 times on the Madison campus, nearly always to capacity crowds totaling over 50,000. Each year the program is videotaped and distributed to individuals, schools, and cable TV stations. In 1990, a Lecture Kit was produced and is widely distributed. A traveling version of the show was developed in 1988 and has been given about 800 times to a total audience of approximately 100,000, mostly school children in nineteen states and provinces. The program is funded by the Office of Fusion Energy Sciences of the Department of Energy and by donations from those for whom the presentations are made as well as a few corporations and benefactors.
NASA Technical Reports Server (NTRS)
Ahrens, S. T.
1984-01-01
The voltages of two Eveready No. 528 batteries, one the test battery, the other the control battery, were simultaneously recorded as they were discharged across 30 omega loads using a dual chart recorder. The test battery was initially put in a freezer at -15 + or - 3 C. After its voltage had fallen to .6 V, it was brought back out into the room at 22 + or - 3 C. A second run was made with 60 omega loads. Assuming a 3.0 V cut-off, the total energy output of the test battery at -15 C was 26 WHr 30 omega and 35 WHr 60 omega, and the corresponding numbers for the control battery at 22 C were 91 WHr and 100 WHr. When the test battery was subsequently allowed to warm up, the voltage rose above 4 V and the total energy output rose to 80 WHr 30 omega and 82 WHR 60 omega.
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray; ...
2018-04-09
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
Quantum Dynamics Study of the Isotopic Effect on Capture Reactions: HD, D2 + CH3
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Kwak, Dochan (Technical Monitor)
2002-01-01
Time-dependent wave-packet-propagation calculations are reported for the isotopic reactions, HD + CH3 and D2 + CH3, in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probabilities for different initial rotational-vibrational states are presented in this study. This study shows that excitations of the HD(D2) enhances the reactivities; whereas the excitations of the CH3 umbrella mode have the opposite effects. This is consistent with the reaction of H2 + CH3. The comparison of these three isotopic reactions also shows the isotopic effects in the initial-state-selected reaction probabilities. The cumulative reaction probabilities (CRP) are obtained by summing over initial-state-selected reaction probabilities. The energy-shift approximation to account for the contribution of degrees of freedom missing in the six dimensionality calculation is employed to obtain approximate full-dimensional CRPs. The rate constant comparison shows H2 + CH3 reaction has the biggest reactivity, then HD + CH3, and D2 + CH3 has the smallest.
LeCheminant, James D; Christenson, Ed; Bailey, Bruce W; Tucker, Larry A
2013-12-14
Few experimental data are available to support the notion that reducing night-time eating changes total daily energy intake (EI) or body weight in healthy adults. The present study primarily examined the short-term effect of night eating restriction (NER) on daily EI in healthy young men. It secondarily examined body weight and moods associated with NER. Using a cross-over design, twenty-nine men (20·9 (sd 2·5) years; 24·4 (sd 2·5) kg/m²) initiated a 2-week NER intervention (elimination of EI from 19.00 to 06.00 hours) and a 2-week control condition, counterbalanced and separated by a 1-week washout period. EI and macronutrient intake were assessed using computerised, multiple-pass 24 h food recalls, body weight via a digital scale and mood using the Profile of Mood States survey. Of the twenty-nine participants, twenty-seven (93 %) completed all aspects of the study. During the NER condition, the participants consumed less total energy per d than during the control condition (10 125 v. 11 146 kJ/d; F= 6·41; P= 0·018). During the NER condition, no energy was reported consumed between 19.00 and 06.00 hours; however, during the control condition, the energy intake of participants was 2920 (sd 1347) kJ/d between 19.00 and 06.00 hours. There was a significant difference in weight change between the NER (-0·4 (sd 1·1) kg) and control (+0·6 (sd 0·9) kg) conditions (F= 22·68; P< 0·001). Differences in total mood score or mood subscales between the NER and control conditions were not apparent (P>0·05). These findings provide support for NER decreasing short-term EI in healthy young men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ardani, K.; Seif, D.; Margolis, R.
2013-08-01
The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).
NASA Astrophysics Data System (ADS)
Rivière, G.; Hua, B. L.
2004-10-01
A new perturbation initialization method is used to quantify error growth due to inaccuracies of the forecast model initial conditions in a quasigeostrophic box ocean model describing a wind-driven double gyre circulation. This method is based on recent analytical results on Lagrangian alignment dynamics of the perturbation velocity vector in quasigeostrophic flows. More specifically, it consists in initializing a unique perturbation from the sole knowledge of the control flow properties at the initial time of the forecast and whose velocity vector orientation satisfies a Lagrangian equilibrium criterion. This Alignment-based Initialization method is hereafter denoted as the AI method.In terms of spatial distribution of the errors, we have compared favorably the AI error forecast with the mean error obtained with a Monte-Carlo ensemble prediction. It is shown that the AI forecast is on average as efficient as the error forecast initialized with the leading singular vector for the palenstrophy norm, and significantly more efficient than that for total energy and enstrophy norms. Furthermore, a more precise examination shows that the AI forecast is systematically relevant for all control flows whereas the palenstrophy singular vector forecast leads sometimes to very good scores and sometimes to very bad ones.A principal component analysis at the final time of the forecast shows that the AI mode spatial structure is comparable to that of the first eigenvector of the error covariance matrix for a "bred mode" ensemble. Furthermore, the kinetic energy of the AI mode grows at the same constant rate as that of the "bred modes" from the initial time to the final time of the forecast and is therefore characterized by a sustained phase of error growth. In this sense, the AI mode based on Lagrangian dynamics of the perturbation velocity orientation provides a rationale of the "bred mode" behavior.
Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun
2017-01-01
Background: Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Methods: Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images <60 keV in Group A. The total radiation dose, total iodine load, contrast injection speed, and maximum injection pressure were compared between the two groups. The 40 keV and 60 keV spectral CT images of Group A were compared with the images of Group B to evaluate overall image quality. Results: The total radiation dose, total iodine load, injection speed, and maximum injection pressure for Group A were decreased by 19%, 15%, 34.4%, and 18.3%, respectively. The optimal energy level in spectral CT for displaying the abdominal vessels was 40 keV. At this level, the CT values in the abdominal aorta and its three branches, the portal vein and its two branches, and the inferior vena cava were all greater than 340 hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and −1.716 for liver, −0.153 and −1.546 for pancreas, and 2.427 and 0.866 for renal cortex, all P > 0.05). Signal-to-noise ratio of the abdominal organs was significantly lower in Group A than in Group B (t = −8.11 for liver, −7.83 for pancreas, and −5.38 for renal cortex, all P < 0.05). However, the subjective scores for the 40 keV (FBP) and 60 keV (40% ASiR) spectral CT images determined by two radiologists were all >3, indicating clinically acceptable image quality. Conclusions: Single-phase, dual-energy spectral CT used for children with solid abdominal tumors can reduce contrast dose and radiation dose and can also maintain clinically acceptable image quality. PMID:28345547
Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun
2017-04-05
Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images <60 keV in Group A. The total radiation dose, total iodine load, contrast injection speed, and maximum injection pressure were compared between the two groups. The 40 keV and 60 keV spectral CT images of Group A were compared with the images of Group B to evaluate overall image quality. The total radiation dose, total iodine load, injection speed, and maximum injection pressure for Group A were decreased by 19%, 15%, 34.4%, and 18.3%, respectively. The optimal energy level in spectral CT for displaying the abdominal vessels was 40 keV. At this level, the CT values in the abdominal aorta and its three branches, the portal vein and its two branches, and the inferior vena cava were all greater than 340 hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and -1.716 for liver, -0.153 and -1.546 for pancreas, and 2.427 and 0.866 for renal cortex, all P> 0.05). Signal-to-noise ratio of the abdominal organs was significantly lower in Group A than in Group B (t = -8.11 for liver, -7.83 for pancreas, and -5.38 for renal cortex, all P< 0.05). However, the subjective scores for the 40 keV (FBP) and 60 keV (40% ASiR) spectral CT images determined by two radiologists were all> 3, indicating clinically acceptable image quality. Single-phase, dual-energy spectral CT used for children with solid abdominal tumors can reduce contrast dose and radiation dose and can also maintain clinically acceptable image quality.
Hu, Junhui; Jong, Januar; Zhao, Chunsheng
2010-01-01
To increase the vibration energy-harvesting capability of the piezoelectric generator based on a cantilever beam, we have proposed a piezoelectric generator that not only uses the strain change of piezoelectric components bonded on a cantilever beam, but also employs the weights at the tip of the cantilever beam to hit piezoelectric components located on the 2 sides of weights. A prototype of the piezoelectric generator has been fabricated and its characteristics have been measured and analyzed. The experimental results show that the piezoelectric components operating in the hit mode can substantially enhance the energy harvesting of the piezoelectric generator on a cantilever beam. Two methods are used and compared in the management of rectified output voltages from different groups of piezoelectric components. In one of them, the DC voltages from rectifiers are connected in series, and then the total DC voltage is applied to a capacitor. In another connection, the DC voltage from each group is applied to different capacitors. It is found that 22.3% of the harvested energy is wasted due to the series connection. The total output electric energy of our piezoelectric generator at nonresonance could be up to 43 nJ for one vibration excitation applied by spring, with initial vibration amplitude (0-p) of 18 mm and frequency of 18.5 Hz, when the rectified voltages from different groups of piezoelectric components are connected to their individual capacitors. In addition, the motion and impact of the weights at the tip of the cantilever beam are theoretically analyzed, which well explains the experimental phenomena and suggests the measures to improve the generator.
The beverage intake questionnaire: determining initial validity and reliability.
Hedrick, Valisa E; Comber, Dana L; Estabrooks, Paul A; Savla, Jyoti; Davy, Brenda M
2010-08-01
Consuming energy-containing beverages may lead to weight gain, yet research investigating this issue is limited. An easily administered beverage intake assessment tool could facilitate research on this topic. The purpose of this cross-sectional investigation was to determine the validity and reliability of a self-administered beverage intake questionnaire (BEVQ) that estimates mean daily intake of beverages consumed across 19 beverage categories. Participants (N=105; aged 39+/-2 years) underwent assessments of height, weight, body mass index, and dietary intake using 4-day food intake records from June 2008 to June 2009. The BEVQ was completed at two additional visits (BEVQ1, BEVQ2). Urine samples were collected to objectively determine total fluid intake and encourage accurate self-reporting. Validity was assessed by comparing BEVQ1 with food intake record results; reliability was assessed by comparing BEVQ1 and BEVQ2. Analyses included descriptive statistics, bivariate correlations, paired samples t tests, and independent samples t tests. Self-reported water and total beverage intake (in grams) were not different between the BEVQ1 and food intake records (mean difference 129+/-77 g [P=0.096] and 61+/-106 g [P=0.567], respectively). Total beverage and sugar-sweetened beverage energy intake were significantly different, although mean differences were small (63 and 44 kcal, respectively). Daily consumption (in grams) of water (r=0.53), total beverages (r=0.46), and sugar-sweetened beverages (r=0.49) determined by the BEVQ1 were correlated with reported intake determined by the food intake record, as was energy from total beverages (r=0.61) and sugar-sweetened beverages (r=0.59) (all P values <0.001). Reliability was demonstrated, with correlations (P<0.001) detected between BEVQ1 and BEVQ2 results. The BEVQ is a valid, reliable, and rapid self-administered dietary assessment tool. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2311-000] Beebe Renewable Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Beebe Renewable Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1348-000] Gainesville Renewable Energy Center, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Gainesville Renewable Energy Center, LLC's application for market- based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-24
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-28-000] Chesapeake Renewable Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of Chesapeake Renewable Energy LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1734-000] Plainfield Renewable Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Plainfield Renewable Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... Energy Alternatives Wholesale, LLC's application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2413-000] Energy Alternatives Wholesale, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1561-000] Centinela Solar Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Centinela Solar Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2168-000] Planet Energy (Maryland) Corp.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding, of Planet Energy (Maryland) Corp.'s application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER14-96-000] Healthy Planet Partners Energy Company, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes Request... of Healthy Planet Partners Energy Company, LLC's application for market- based rate authority, with...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2167-000] Planet Energy (Pennsylvania) Corp.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding, of Planet Energy (Pennsylvania) Corp.'s application for market-based rate authority, with an...
Projected increase in lightning strikes in the United States due to global warming
NASA Astrophysics Data System (ADS)
Romps, David M.; Seeley, Jacob T.; Vollaro, David; Molinari, John
2014-11-01
Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century.
First demonstration of green and amber LED-pumped Nd:YAG laser
NASA Astrophysics Data System (ADS)
Tarkashvand, M.; Farahbod, A. H.; Hashemizadeh, S. A.
2018-05-01
For the first time, to the best of our knowledge, a green (520 nm) and amber (592 nm) light emitting diode-pumped Nd:YAG laser is reported. The laser oscillator is a stable semi-planar resonator with a total length of 140 mm. The green (amber) light emitting diode-pumped laser produced a 107 (52) µJ laser energy, at 2.6 (0.7) J electrical pump energy. The oscillator operated at a low repetition rate (about 0.1 Hz) in free-running mode, where the laser spikes were initiated about 210–280 µs after the leading edge of the pump pulse. Moreover, the transverse mode profiles of the resonator, pump absorption efficiency, and optical gain have been studied in some detail.
Objective quantification of perturbations produced with a piecewise PV inversion technique
NASA Astrophysics Data System (ADS)
Fita, L.; Romero, R.; Ramis, C.
2007-11-01
PV inversion techniques have been widely used in numerical studies of severe weather cases. These techniques can be applied as a way to study the sensitivity of the responsible meteorological system to changes in the initial conditions of the simulations. Dynamical effects of a collection of atmospheric features involved in the evolution of the system can be isolated. However, aspects, such as the definition of the atmospheric features or the amount of change in the initial conditions, are largely case-dependent and/or subjectively defined. An objective way to calculate the modification of the initial fields is proposed to alleviate this problem. The perturbations are quantified as the mean absolute variations of the total energy between the original and modified fields, and an unique energy variation value is fixed for all the perturbations derived from different PV anomalies. Thus, PV features of different dimensions and characteristics introduce the same net modification of the initial conditions from an energetic point of view. The devised quantification method is applied to study the high impact weather case of 9-11 November 2001 in the Western Mediterranean basin, when a deep and strong cyclone was formed. On the Balearic Islands 4 people died, and sustained winds of 30 ms-1 and precipitation higher than 200 mm/24 h were recorded. Moreover, 700 people died in Algiers during the first phase of the event. The sensitivities to perturbations in the initial conditions of a deep upper level trough, the anticyclonic system related to the North Atlantic high and the surface thermal anomaly related to the baroclinicity of the environment are determined. Results reveal a high influence of the upper level trough and the surface thermal anomaly and a minor role of the North Atlantic high during the genesis of the cyclone.
Community Energy: A Social Architecture for an Alternative Energy Future
ERIC Educational Resources Information Center
Hoffman, Steven M.; High-Pippert, Angela
2005-01-01
Community energy based on a mix of distributed technologies offers a serious alternative to the current energy system. The nature of community energy and the role that such initiatives might play in the general fabric of civic life is not, however, well understood. Community energy initiatives might involve only those citizens who prefer to be…
77 FR 20817 - Puget Sound Energy, Inc.; Notice of Initiation of Proceeding and Refund Effective Date
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-46-000] Puget Sound Energy, Inc.; Notice of Initiation of Proceeding and Refund Effective Date On March 30, 2012, the... the proposed rate reduction by Puget Sound Energy, Inc. Puget Sound Energy, Inc., 138 FERC ] 61,236...
Nonlinear effects in the laser-assisted scattering of a positron by a muon
NASA Astrophysics Data System (ADS)
Du, Wen-Yuan; Wang, Bing-Hong; Li, Shu-Min
2018-02-01
The scattering of a positron by a muon in the presence of a linearly polarized laser field is investigated in the first Born approximation. The theoretical results reveal: (1) At large scattering angle, an amount of multiphoton processes take place in the course of scattering. The photon emission processes predominate the photon absorption ones. (2) Some nonlinear phenomena about oscillations, dark angular windows, and asymmetry can be observed in angular distributions. We analyze the cause giving rise to dark windows and geometric asymmetry initially noted in the potential scattering. (3) We also analyze the total differential cross-section, the result shows that the larger the incident energy is, the smaller the total differential cross-section is. The reasons of these new results are analyzed.
NASA Technical Reports Server (NTRS)
Simsic, P. L.
1974-01-01
Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.
Huang, Q.; Su, Y. B.; Li, D. F.; Liu, L.; Huang, C. F.; Zhu, Z. P.; Lai, C. H.
2015-01-01
The objective of this study was to determine the effects of graded inclusions of wheat bran (0%, 9.65%, 48.25% wheat bran) and two growth stages (from 32.5 to 47.2 kg and 59.4 to 78.7 kg, respectively) on the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD) and hindgut fermentation of nutrients and energy in growing pigs. Six light pigs (initial body weight [BW] 32.5±2.1 kg) and six heavy pigs (initial BW 59.4±3.2 kg) were surgically prepared with a T-cannula in the distal ileum. A difference method was used to calculate the nutrient and energy digestibility of wheat bran by means of comparison with a basal diet consisting of corn-soybean meal (0% wheat bran). Two additional diets were formulated by replacing 9.65% and 48.25% wheat bran by the basal diet, respectively. Each group of pigs was allotted to a 6×3 Youden square design, and pigs were fed to three experimental diets during three 11-d periods. Hindgut fermentation values were calculated as the differences between ATTD and AID values. For the wheat bran diets, the AID and ATTD of dry matter (DM), ash, organic matter (OM), carbohydrates (CHO), gross energy (GE), and digestible energy (DE) decreased with increasing inclusion levels of wheat bran (p<0.05). While only AID of CHO and ATTD of DM, ash, OM, CHO, GE, and DE content differed (p<0.05) when considering the BW effect. For the wheat bran ingredient, there was a wider variation effect (p<0.01) on the nutrient and energy digestibility of wheat bran in 9.65% inclusion level due to the coefficient of variation (CV) of the nutrient and energy digestibility being higher at 9.65% compared to 48.25% inclusion level of wheat bran. Digestible energy content of wheat bran at 48.25% inclusion level (4.8 and 6.7 MJ/kg of DM, respectively) fermented by hindgut was significantly higher (p<0.05) than that in 9.65% wheat bran inclusion level (2.56 and 2.12 MJ/kg of DM, respectively), which was also affected (p<0.05) by two growth stages. This increase in hindgut fermentation caused the difference in ileal DE (p<0.05) to disappear at total tract level. All in all, increasing wheat bran levels in diets negatively influences the digestibility of some nutrients in pigs, while it positively affects the DE fermentation in the hindgut. PMID:25925062
Trampisch, U S; Platen, P; Moschny, A; Wilm, S; Thiem, U; Hinrichs, T
2012-04-01
The German questionnaire PRISCUS-PAQ was developed to measure actual physical activity of older adults in a telephone interview. PRISCUS-PAQ consists of ten main questions to assess the time spend in domestic activities (e.g., housework, gardening), sporting activities (e.g., riding a bicycle), and inactivity (e.g., sedentary activity, sleeping during the day) during the prior week. By assessing the number of days for each activity and the mean duration of performing this activity, a total score can be calculated. The total score corresponds to the energy consumption for 1 week. The aim of this study is to estimate the correlation of the PRISCUS-PAQ total score and accelerometry as an objective measurement method for the assessment of physical activity. A total of 114 participants (58% women) with a mean age of 76 years participated in the study. PRISCUS-PAQ was initially analyzed descriptively. To assess the validity of PRISCUS-PAQ, the correlation (correlation coefficient of Spearman) was calculated between the total score of the questionnaire PRISCUS-PAQ and the 95% trimmed sum of an accelerometer with a measurement period of 1 week. The correlation coefficient for the association of the PRISCUS-PAQ total score and the 95% trimmed sum of the acceleration values was r = 0.28 (95% confidence interval 0.10–0.44). Activities of daily life like cleaning and other domestic activities highly contributed to the weekly energy consumption of the participants. The association between the PRISCUS-PAQ questionnaire and accelerometry measured physical activity is comparable to other validated and established international questionnaires. The PRISCUS-PAQ is the first German questionnaire that allows the measurement of physical activity of older adults in a telephone interview.
Light Water Reactor Sustainability Program: Integrated Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy’s 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less
van Vugt, Raoul; Kool, Digna R; Deunk, Jaap; Edwards, Michael J R
2012-03-01
Currently, total body computed tomography (TBCT) is rapidly implemented in the evaluation of trauma patients. With this review, we aim to evaluate the clinical implications-mortality, change in treatment, and time management-of the routine use of TBCT in adult blunt high-energy trauma patients compared with a conservative approach with the use of conventional radiography, ultrasound, and selective computed tomography. A literature search for original studies on TBCT in blunt high-energy trauma patients was performed. Two independent observers included studies concerning mortality, change of treatment, and/or time management as outcome measures. For each article, relevant data were extracted and analyzed. In addition, the quality according to the Oxford levels of evidence was assessed. From 183 articles initially identified, the observers included nine original studies in consensus. One of three studies described a significant difference in mortality; four described a change of treatment in 2% to 27% of patients because of the use of TBCT. Five studies found a gain in time with the use of immediate routine TBCT. Eight studies scored a level of evidence of 2b and one of 3b. Current literature has predominantly suboptimal design to prove terminally that the routine use of TBCT results in improved survival of blunt high-energy trauma patients. TBCT can give a change of treatment and improves time intervals in the emergency department as compared with its selective use.
Intermittent energy restriction in type 2 diabetes: A short discussion of medication management.
Carter, Sharayah; Clifton, Peter M; Keogh, Jennifer B
2016-12-15
To discuss type 2 diabetes mellitus (T2DM) medication changes required during the popular 5:2 intermittent energy restriction (IER) diet. A search was conducted in MEDLINE, EMBASE, AMED, CINAHL and Cochrane library for original research articles investigating the use of very low calorie diets (VLCD) in people with T2DM. The search terms used included "VLCD" or "very low energy diet" or "very low energy restriction" or "IER" or "intermittent fasting" or "calorie restriction" or "diabetes mellitus type 2" and "type 2 diabetes". Reference lists of selected articles were also screened for relevant publications. Only research articles written in English, which also included an explanation of medication changes were included. A recent pilot trial using the 5:2 IER method, conducted by our research group, will also be summarized. A total of 8 studies were found that investigated the use of VLCD in T2DM and discussed medication management. Overall these studies indicate that the use of a VLCD for people with T2DM usually require the cessation of medication to prevent hypoglycemia. Therefore, the 5:2 IER method will also require medication changes, but as seen in our pilot trial, may not require total cessation of medication, rather a cessation on the 2 IER days only. Guidelines outlined here can be used in the initial stages of a 2-d IER diet, but extensive blood glucose monitoring is still required to make the necessary individual reductions to medications in response to weight loss.
[Caloric intake in parenteral nutrition of very low weight infants].
Maggio, L; Gallini, F; De Carolis, M P; Frezza, S; Greco, F
1994-10-01
To evaluate the efficacy of a measure able to compare energy intake from parenteral and enteral nutrition we documented growth patterns in a group of VLBW infants treated with parenteral nutrition (PN). To analyze comparative energy intake from the two sources we expressed a percentage of both parenteral and enteral calories: the former (RCP%) related to an optimal value of 85 non protein calories and the latter (RCE%) to an optimal value of 150 total calories. Total energy intake was planned on the RCT% (RCP% + RCE%). We studied 75 VLBW infants with a mean BW of 1040 g and a mean GA of 29.5 weeks. The mean duration of PN was 25.8 +/- 10.4 days. The initial weight loss (10.2 +/- 5.3%), the time to regain BW (5.5 +/- 4 days) and the day of lowest weight (5.2 +/- 1.6 day of life) were in the normal range; the subsequent growth rate resulted 25.9 +/- 9.2 g/kg/die and did not change for different GA or BW. Growth pattern about head circumference and length were above the third percentile. The mean age of RCT% = 100% was 11.4 +/- 4.8 days of PN; this value was higher for the more premature infants. Severe metabolic abnormalities were not detected. Our observations show the efficacy of the RCT% as index of energy from both enteral and parenteral source during PN: the growth pattern seems to be quite satisfactory without any severe metabolic complication.
Cinetica de oxidacion de polimeros conductores: poli-3,4- etilendioxitiofeno
NASA Astrophysics Data System (ADS)
Caballero Romero, Maria
Films of poly-3,4-ethylenedioxythiophene (PEDOT) perchlorate used as electrodes in liquid electrolytes incorporate anions and solvent during oxidation for charge and osmotic balance: the film swells. During reduction the film shrinks, closes its structure trapping counterions getting then rising conformational packed states by expulsion of counterions and solvent. Here by potential step from the same reduced initial state to the same oxidized final state the rate coefficient, the activation energy and reaction orders related to the counterion concentration in solution and to the concentration of active centers in the polymer film, were attained following the usual methodology used for chemical and electrochemical kinetics. Now the full methodology was repeated using different reduced-shrunk or reduced-conformational compacted initial states every time. Those initial states were attained by reduction of the oxidized film at rising cathodic potentials for the same reduction time each. Rising reduced and conformational compacted states give slower subsequent oxidation rates by potential step to the same anodic potential every time. The activation energy, the reaction coefficient and reaction orders change for rising conformational compacted initial states. Decreasing rate constants and increasing activation energies are obtained for the PEDOT oxidation from increasing conformational compacted initial states. The experimental activation energy presents two linear ranges as a function of the initial reduced-compacted state. Using as initial states for the oxidation open structures attained by reduction at low cathodic potentials, activation energies attained were constant: namely the chemical activation energy. Using as initial states for the oxidation deeper reduced, closed and packed conformational structures, the activation energy includes two components: the constant chemical energy plus the conformational energy required to relax the conformational structure generating free volume which allows the entrance of the balancing counterions required for the reaction. The conformational energy increases linearly as a function of the reduction-compaction potential. The kinetic magnitudes include conformational and structural information. The Chemical Kinetics becomes Structural (or conformational) Chemical Kinetics.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-468-000] Google Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section... of Google Energy LLC's application for market-based rate authority, with an accompanying rate tariff...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1586-000] TGP Energy Management, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of TGP Energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1578-000] Magnolia Energy LP; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Magnolia Energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-26
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2268-000] FC Landfill Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding, of FC Landfill Energy, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1875-000] AltaGas Renewable Energy Colorado LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request... of AltaGas Renewable Energy Colorado LLC application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-775-000] CPV Cimarron Renewable Energy Company, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request... of CPV Cimarron Renewable Energy Company, LLC's application for market- based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2436-000] Oracle Energy Services, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of Oracle Energy Services, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1470-000] Plymouth Rock Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... of Plymouth Rock Energy, LLC.'s application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1673-000] Synergics Roth Rock North Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...-referenced proceeding of Synergics Roth Rock North Wind Energy, LLC's application for market- based rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1637-000] Synergics Roth Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...-referenced proceeding of Synergics Roth Rock Wind Energy, LLC's application for market-based rate authority...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2064-000] Duke Energy Hanging Rock II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding, of Duke Energy Hanging Rock II, LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-956-000] Vantage Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... of Vantage Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... proceeding, of Border Energy Electric Services, Inc.'s application for market-based rate authority, with an... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2088-000] Border Energy Electric Services, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2444-000] North Sky River Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... North Sky River Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER13-281-000] Star Energy Partners LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Star Energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2765-000] Elk Wind Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding of Elk Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2313-000] Laurel Hill Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request For... Laurel Hill Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER14-25-000] Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Breeze Wind Energy LLC's application for market-based rate authority, with an accompanying rate schedule...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-03
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-645-000] California Ridge Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... California Ridge Wind Energy LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2200-000] Mehoopany Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Wind Energy LLC's application for market-based rate authority, with an accompanying rate tariff, noting...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... proceeding of Discount Energy Group, LLC's application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2803-000] Discount Energy Group, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1107-000] FM Energy Scheduling, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of FM Energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-4041-000] Verde Energy USA Trading, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Verde Energy USA Trading, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2071-000] Verde Energy USA New York, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Verde Energy USA New York, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2658-000] HOP Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section... of HOP Energy, LLC's application for market-based rate authority, with an accompanying rate tariff...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1430-000] Arlington Valley Solar Energy II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request..., of Arlington Valley Solar Energy II, LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-03
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3635-000] Hatch Solar Energy Center 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Hatch Solar Energy Center 1, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-792-000] TC Energy Trading, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding of TC Energy Trading, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2943-000] Smart One Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding of Smart One Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-779-000] SmartEnergy Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of SmartEnergy...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-727-000] AEP Retail Energy Partners, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding of AEP Retail Energy Partner, LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1692-000] Galaxy Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Galaxy Energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-826-000] RPA Energy, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of RPA Energy, Inc...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2069-000] Duke Energy Lee II, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding, of Duke Energy Lee II, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2166-000] Planet Energy (USA) Corp.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding, of Planet Energy (USA) Corp.'s application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2179-000] Planet Energy (New York) Corp.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding, of Planet Energy (New York) Corp.'s application for market-based rate authority, with an...
Bi, Zhijie; Li, Xiaomin; Chen, Yongbo; He, Xiaoli; Xu, Xiaoke; Gao, Xiangdong
2017-09-06
A high-performance electrochromic-energy storage device (EESD) is developed, which successfully realizes the multifunctional combination of electrochromism and energy storage by constructing tungsten trioxide monohydrate (WO 3 ·H 2 O) nanosheets and Prussian white (PW) film as asymmetric electrodes. The EESD presents excellent electrochromic properties of broad optical modulation (61.7%), ultrafast response speed (1.84/1.95 s), and great coloration efficiency (139.4 cm 2 C -1 ). In particular, remarkable cyclic stability (sustaining 82.5% of its initial optical modulation after 2500 cycles as an electrochromic device, almost fully maintaining its capacitance after 1000 cycles as an energy storage device) is achieved. The EESD is also able to visually detect the energy storage level via reversible and fast color changes. Moreover, the EESD can be combined with commercial solar cells to constitute an intelligent operating system in the architectures, which would realize the adjustment of indoor sunlight and the improvement of physical comfort totally by the rational utilization of solar energy without additional electricity. Besides, a scaled-up EESD (10 × 11 cm 2 ) is further fabricated as a prototype. Such promising EESD shows huge potential in practically serving as electrochromic smart windows and energy storage devices.
Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft
NASA Astrophysics Data System (ADS)
Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi
2017-12-01
In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.
10 CFR 75.32 - Initial inventory report.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Initial inventory report. 75.32 Section 75.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Reports § 75.32 Initial inventory report. (a) The initial inventory reporting date shall be the...
Nanoscale Phase Stability Reversal During the Nucleation and Growth of Titanium Oxide Minerals
NASA Astrophysics Data System (ADS)
Hummmer, D. R.; Heaney, P. J.; Kubicki, J. D.; Kent, P. R.; Post, J. E.
2008-12-01
Fine-grained titanium oxide minerals are important in soils, where they affect a variety of geochemical processes. They are also industrially important as catalysts, pigments, food additives, and dielectrics. Recent research has indicated an apparent reversal of thermodynamic stability between TiO2 phases at the nanoscale thought to be caused by an increased contribution of surface energy to the total free energy. Time-resolved X-ray diffraction (XRD) experiments in which titanium oxides crystallize from aqueous TiCl4 solutions confirm that anatase, a metastable phase, is always the first phase to nucleate under our range of initial conditions. Rutile peaks are observed only minutes after the first appearance of anatase, after which anatase abundance slowly decreases while rutile continues to form. Whole pattern refinement of diffraction data reveals that lattice constants of both phases increase throughout the crystallization process. In addition, transmission electron microscope (TEM) observations and kinetic modeling indicate that anatase does not undergo a solid-state transformation to the rutile structure as once thought. Instead, anatase appears to re-dissolve and then feed the growth of already nucleated rutile nanocrystals. Density functional theory (DFT) calculations were employed to model 1, 2, and 3 nm particles of both mineral phases. The total surface energies calculated from these models did yield lower values for anatase than for rutile by 8-13 kJ/mol depending on particle size, indicating that surface free energy is sufficient to account for stability reversal. However, these whole-particle surface energies were much higher than the sum of energies of each particle's constituent crystallographic surfaces. We attribute the excess energy to defects associated with the edges and corners of nanoparticles, which are not present on a 2-D periodic surface. This previously unreported edge and corner energy may play a dominant role in the stability reversal of nanocrystalline titanium oxides, as well as other mineral systems susceptible to reversals in phase stability at the nanoscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, J.E.
1992-09-01
The Pacific Northwest Laboratory identified energy savings potential of automatic equipment-room lighting controls, which was demonstrated by the field experiment described in this report. Occupancy sensor applications have gained popularity in recent years due to improved technology that enhances reliability and reduces cost. Automatic lighting control using occupancy sensors has been accepted as an energy-conservation measure because it reduces wasted lighting. This study focused on lighting control for equipment rooms, which have inherent conditions ideal for automatic lighting control, i.e., an area which is seldom occupied, multiple users of the area who would not know if others are in themore » room when they leave, and high lighting energy intensity in the area. Two rooms were selected for this study: a small equipment room in the basement of the 337 Building, and a large equipment area in the upper level of the 329 Building. The rooms were selected to demonstrate the various degrees of complexity which may be encountered in equipment rooms throughout the Hanford Site. The 337 Building equipment-room test case demonstrated a 97% reduction in lighting energy consumption, with an annual energy savings of $184. Including lamp-replacement savings, a total savings of $306 per year is offset by an initial installation cost of $1,100. The installation demonstrates a positive net present value of $2,858 when the lamp-replacement costs are included in a life-cycle analysis. This also corresponds to a 4.0-year payback period. The 329 Building equipment-room installation resulted in a 92% reduction in lighting energy consumption. This corresponds to annual energy savings of $1,372, and a total annual savings of $2,104 per year including lamp-replacement savings. The life-cycle cost analysis shows a net present value of $15,855, with a 5.8-year payback period.« less
Sirimamilla, P Abhiram; Rimnac, Clare M; Furmanski, Jevan
2018-01-01
Highly crosslinked UHMWPE is now the material of choice for hard-on-soft bearing couples in total joint replacements. However, the fracture resistance of the polymer remains a design concern for increased longevity of the components in vivo. Fracture research utilizing the traditional linear elastic fracture mechanics (LEFM) or elastic plastic fracture mechanics (EPFM) approach has not yielded a definite failure criterion for UHMWPE. Therefore, an advanced viscous fracture model has been applied to various notched compact tension specimen geometries to estimate the fracture resistance of the polymer. Two generic crosslinked UHMWPE formulations (remelted 65kGy and remelted 100kGy) were analyzed in this study using notched test specimens with three different notch radii under static loading conditions. The results suggest that the viscous fracture model can be applied to crosslinked UHMWPE and a single value of critical energy governs crack initiation and propagation in the material. To our knowledge, this is one of the first studies to implement a mechanistic approach to study crack initiation and propagation in UHMWPE for a range of clinically relevant stress-concentration geometries. It is believed that a combination of structural analysis of components and material parameter quantification is a path to effective failure prediction in UHMWPE total joint replacement components, though additional testing is needed to verify the rigor of this approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Suprotim; Raje, Sanyukta; Kumar, Satish
This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – Septembermore » 2015) and Phase 2 (October 2015 – September 2016).« less
Experimental study on the drying of natural latex medical gloves
NASA Astrophysics Data System (ADS)
Chankrachang, Mano; Yongyingsakthavorn, Pisit; Tohsan, Atitaya; Nontakaew, Udomkiat
2018-01-01
The purpose of this research was to study latex film drying at 70 °C using a laboratory drying oven. Two different total solid content (TSC) latex compounds, which 45% TSC and 35% TSC were used. The undried latex films were prepared according to the common procedures used in latex gloves manufacturers, that is, by dry coagulant dipping process. The experimental results such as initial moisture content, the amount of moisture and drying time of latex films in each latex compound formula were determined. After that, the results were projected to calculate on the production capacity expand by 1 million piece/day of natural latex medical gloves. Finally, the rate of moisture entering the latex drying oven and the energy consumption of the drying oven were estimated. The results indicated that when the 35% TSC of latex compound was used. The initial moisture content of latex film was higher than 45% TSC of latex compound about 7%. The drying time of 35% TSC was longer than 45% TSC for 2.5 min and consume more energy about 10%. As a result, the 45% TSC latex compound was the better way to saving energy and managing humidity in the production line. Therefore, it was found to very useful to an approximate design length and size of actual of latex drying oven and the rate of moisture entering the oven as well.
NASA Technical Reports Server (NTRS)
Soares-Santos, M.; Kessler, R.; Burger, E.; Annis, J.; Brout, D.; Buckley-Geer, E.; Chen, H.; Cowperthwaite, P. S.; Diehl, H.T.; Doctor, Z.;
2016-01-01
We report the results of a deep search for an optical counterpart to the gravitational wave (GW) event GW150914, the first trigger from the Advanced LIGO GW detectors. We used the Dark Energy Camera (DECam) to image a 102 deg(exp 2) area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in the i and z bands at 4-5, 7, and 24 days after the trigger. The median 5(sigma) point-source limiting magnitudes of our search images are i = 22.5 and z = 21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg(exp 2), corresponding to a 12% total probability in the initial map and 3% in the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i = 21.5, 21.1, 20.1 for object colors (i-z)= 1, 0, -1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steven
2011-05-25
Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to "unleash America's science and research community" to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies ofmore » the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopacki, S.; Akbari, H.
2002-02-28
In 1997, the U.S. Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'' to quantify the potential benefits of Heat-Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling-energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective of investigating the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, LA; Sacramento, CA; and Salt Lake City,more » UT. Later two other cities, Chicago, IL and Houston, TX were added to the UHIPP. In an earlier report we summarized our efforts to calculate the annual energy savings, peak power avoidance, and annual CO2 reduction obtainable from the introduction of HIR strategies in the initial three cities. This report summarizes the results of our study for Chicago and Houston. In this analysis, we focused on three building types that offer the highest potential savings: single-family residence, office and retail store. Each building type was characterized in detail by vintage and system type (i.e., old and new building constructions, and gas and electric heat). We used the prototypical building characteristics developed earlier for each building type and simulated the impact of HIR strategies on building cooling- and heating-energy use and peak power demand using the DOE-2.1E model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on the building [direct effect], (3) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (4) combined strategies 1, 2, and 3 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show that in Chicago, potential annual energy savings of $30M could be realized by ratepayers from the combined direct and indirect effects of HIR strategies. Additionally, peak power avoidance is estimated at 400 MW and the reduction in annual carbon emissions at 58 ktC. In Houston, the potential annual energy savings are estimated at $82M, with an avoidance of 730 MW in peak power and a reduction in annual carbon emissions of 170 ktC.« less
Quraishi, Sabah M.; Shafer, Martin M.; Passarelli, Michael N.; Freney, Emily P.; Chlebowski, Rowan T.; Luo, Juhua; Meliker, Jaymie R.; Mu, Lina; Neuhouser, Marian L.; Newcomb, Polly A.
2014-01-01
Background: In vitro and animal data suggest that cadmium, a heavy metal that contaminates some foods and tobacco plants, is an estrogenic endocrine disruptor. Elevated estrogen exposure is associated with breast, endometrial, and ovarian cancer risk. Objectives: We examined the association between dietary cadmium intake and risk of these cancers in the large, well-characterized Women’s Health Initiative (WHI). Methods: A total of 155,069 postmenopausal women, 50–79 years of age, who were enrolled in the WHI clinical trials or observational study, participated in this study. We estimated dietary cadmium consumption by combining baseline food frequency questionnaire responses with U.S. Food and Drug Administration data on food cadmium content. Participants reported incident invasive breast, endometrial, or ovarian cancer, and WHI centrally adjudicated all cases through August 2009. We applied Cox regression to estimate adjusted hazard ratios (HRs) and 95% CIs for each cancer, comparing quintiles of energy-adjusted dietary cadmium intake. Results: Over an average of 10.5 years, 6,658 invasive breast cancers, 1,198 endometrial cancers, and 735 ovarian cancers were reported. We observed no statistically significant associations between dietary cadmium and risk of any of these cancers after adjustment for potential confounders including total dietary energy intake. Results did not differ in any subgroup of women examined. Conclusions: We found little evidence that dietary cadmium is a risk factor for breast, endometrial, or ovarian cancers in postmenopausal women. Misclassification in dietary cadmium assessment may have attenuated observed associations. Citation: Adams SV, Quraishi SM, Shafer MM, Passarelli MN, Freney EP, Chlebowski RT, Luo J, Meliker JR, Mu L, Neuhouser ML, Newcomb PA. 2014. Dietary cadmium exposure and risk of breast, endometrial, and ovarian cancer in the Women’s Health Initiative. Environ Health Perspect 122:594–600; http://dx.doi.org/10.1289/ehp.1307054 PMID:24633137
1980-01-01
High-energy phosphate utilization (delta approximately P) associated with force development, force maintenance, and relaxation has been determined during single isometric tetani in the rabbit taenia coli. ATP resynthesis from glycolysis and respiration was stopped without deleterious effects on the muscle. At 18 degrees C and a muscle length of 95% l0, the resting rate of energy utilization is 1.8 +/- 0.2 nmol/g . s-1, or 0.85 +/- 0.2 mmol approximately P/mol of total creatine (Ct) . s-1, where Ct = 2.7 mumol/g wet wt. During the initial 25 s of stimulation when force is developed, the average rate of delta approximately P was -8.2 +/- 0.8 mmol/mol Ct . s-1, some four times greater than during the subsequent 35 s of force maintenance, when the rate was -2.0 +/- 0.6 mmol approximately P/mol Ct . s-1. The energy cost of force redevelopment (0 to 95% P0) after a quick release from the peak of a tetanus is very low compared with the initial force development. Therefore, the high rate of energy utilization during force development is not due only to internal work done against the series elasticity nor to any high rate of cross-bridge cycling inherently associated with force development. The high economy of force maintenance compared with other muscle types is undoubtedly due to a slower cross-bridge cycle time. The energy utilization during 45 s of relaxation was not statistically significant, and integral of Pdt/delta approximately P was higher during relaxation than during force maintenance in the stimulated muscle. PMID:6969290
Entropy, energy, and entanglement of localized states in bent triatomic molecules
NASA Astrophysics Data System (ADS)
Yuan, Qiang; Hou, Xi-Wen
2017-05-01
The dynamics of quantum entropy, energy, and entanglement is studied for various initial states in an important spectroscopic Hamiltonian of bent triatomic molecules H2O, D2O, and H2S. The total quantum correlation is quantified in terms of the mutual information and the entanglement by the concurrence borrowed from the theory of quantum information. The Pauli entropy and the intramolecular energy usually used in the theory of molecules are calculated to establish a possible relationship between both theories. Sections of two quantities among these four quantities are introduced to visualize such relationship. Analytic and numerical simulations demonstrate that if an initial state is taken to be the stretch- or the bend-vibrationally localized state, the mutual information, the Pauli entropy, and the concurrence are dominant-positively correlated while they are dominantly anti-correlated with the interacting energy among three anharmonic vibrational modes. In particular, such correlation is more distinct for the localized state with high excitations in the bending mode. The nice quasi-periodicity of those quantities in D2O molecule reveals that this molecule prepared in the localized state in the stretching or the bending mode can be more appreciated for molecular quantum computation. However, the dynamical correlations of those quantities behave irregularly for the dislocalized states. Moreover, the hierarchy of the mutual information and the Pauli entropy is explicitly proved. Quantum entropy and energy in every vibrational mode are investigated. Thereby, the relation between bipartite and tripartite entanglements is discussed as well. Those are useful for the understanding of quantum correlations in high-dimensional states in polyatomic molecules from quantum information and intramolecular dynamics.
Effect of calorie restriction on energy expenditure in overweight and obese adult women.
Jiménez Jaime, Teresa; Leiva Balich, Laura; Barrera Acevedo, Gladys; de la Maza Cave, María Pía; Hirsch Birn, Sandra; Henríquez Parada, Sandra; Rodríguez Silva, Juan; Bunout Barnett, Daniel
2015-06-01
Energy expenditure (EE) may decrease in subjects on hypocaloric diets, in amounts that exceed body mass loss, favoring weight regain. To verify if a short-term caloric restriction lowers Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) more than predicted by changes in body composition, and if this reduction of EE is related with compliance to the diet. Twenty-two women aged 23-44 years with a body mass index (BMI) of 25-32 kg/m2, underwent a three-month calorie restriction treatment (20 kcal/kg initial weight) and were encouraged to increase their physical activity. At the beginning and end of the intervention, body composition (DEXA), REE, Physical Activity Energy Expenditure (PAEE) and TEE were assessed, through a combination of indirect calorimetry and actigraphy. Participants, who lost more or equal than 5% of their initial weight were considered compliant with the diet. In the compliant group, REE decreased, when expressed in absolute numbers or when adjusted by fat free mass (FFM) [-164 ± 168 kcal/day (10,6%) and -4,3 ± 4,6 kcal/kg FFM (10,5%)]. This decline was significantly greater than that observed in the non-compliant group [-6,2 ± 1.42 Kcal/day (0.16%) and -0,5 ± 3,4/Kg FFM (0.96%)]. FFM did not change in any of the two groups. At baseline, there was a significant correlation between FFM and REE (r = 0, 56 p < 0,05), which was lost at the end of the intervention. Compliant women showed a significant reduction in both absolute and adjusted REE, which together with the loss of correlation between REE and FFM at the end of the intervention suggests a metabolic adaptation. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Statistical properties of kinetic and total energy densities in reverberant spaces.
Jacobsen, Finn; Molares, Alfonso Rodríguez
2010-04-01
Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high modal overlap, and this analysis has never been published. Moreover, until fairly recently, measurement of the total sound energy density required an elaborate experimental arrangement based on finite-difference approximations using at least four amplitude and phase matched pressure microphones. With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically, experimentally, and numerically.
Pendse, Amruta; Jasani, Bonny; Nanavati, Ruchi; Kabra, Nandkishor
2017-08-15
To compare transcutaneous bilirubin with total serum bilirubin in preterm neonates after initiation of phototherapy. Jaundice was assessed in 30 preterm neonates with transcutaneous bilirubin and total serum bilirubin before initiation of phototherapy and at 12 hr after initiation of phototherapy. A photo-occlusive patch was applied over the sternum. Transcutaneous bilirubin has a good correlation with total serum bilirubin after initiation of phototherapy. (r=0.918, P<0.001). Transcutaneous bilirubin at 28-32 weeks of gestation (r = 0.97) was better correlated with total serum bilirubin than those at 32-37 weeks (r =0.88). The correlation was better for neonates <72 hours old (r = 0.96) than those >72 hours of age (r = 0.82). Transcutaneous bilirubin correlates significantly with total serum bilirubin at the patched sternal site after initiation of phototherapy in preterm neonates.
Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice
Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A
2015-01-01
Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia – before severe fat loss – in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34–42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition. PMID:25457061
10 CFR 110.130 - Initiation of rulemaking.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Initiation of rulemaking. 110.130 Section 110.130 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Rulemaking § 110.130 Initiation of rulemaking. The Commission may initiate action to amend the regulations in this...
10 CFR 2.801 - Initiation of rulemaking.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Initiation of rulemaking. 2.801 Section 2.801 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF ORDERS Rulemaking § 2.801 Initiation of rulemaking. Rulemaking may be initiated by the Commission at its own...
10 CFR 55.33 - Disposition of an initial application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Disposition of an initial application. 55.33 Section 55.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) OPERATORS' LICENSES Applications § 55.33 Disposition of an initial application. (a) Requirements for the approval of an initial application. The Commission...
NASA Astrophysics Data System (ADS)
Li, Xiayue; Curtis, Farren S.; Rose, Timothy; Schober, Christoph; Vazquez-Mayagoitia, Alvaro; Reuter, Karsten; Oberhofer, Harald; Marom, Noa
2018-06-01
We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.
NASA Astrophysics Data System (ADS)
Gatera, Angélique; Belgya, Tamás; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Lebois, Matthieu; Maróti, Boglárka; Oberstedt, Stephan; Oberstedt, Andreas; Postelt, Frederik; Qi, Liqiang; Szentmiklósi, Laszló; Vidali, Marzio; Zeiser, Fabio
2017-09-01
Benchmark reactor calculations have revealed an underestimation of γ-heat following fission of up to 28%. To improve the modelling of new nuclear reactors, the OECD/NEA initiated a nuclear data High Priority Request List (HPRL) entry for the major isotopes (235U, 239Pu). In response to that HPRL entry, we executed a dedicated measurement program on prompt fission γ-rays employing state-of-the-art lanthanum bromide (LaBr3) detectors with superior timing and good energy resolution. Our new results from 252Cf(sf), 235U(nth,f) and 241Pu(nth,f) provide prompt fission γ-ray spectra characteristics : average number of photons per fission, average total energy per fission and mean photon energy; all within 2% of uncertainty. We present preliminary results on 239Pu(nth,f), recently measured at the Budapest Neutron Centre and supported by the CHANDA Trans-national Access Activity, as well as discussing our different published results in comparison to the historical data and what it says about the discrepancy observed in the benchmark calculations.
Analytical study of the critical behavior of the nonlinear pendulum
NASA Astrophysics Data System (ADS)
Lima, F. M. S.
2010-11-01
The dynamics of a simple pendulum consisting of a small bob and a massless rigid rod has three possible regimes depending on its total energy E: Oscillatory (when E is not enough for the pendulum to reach the top position), "perpetual ascent" when E is exactly the energy needed to reach the top, and nonoscillatory for greater energies. In the latter regime, the pendulum rotates periodically without velocity inversions. In contrast to the oscillatory regime, for which an exact analytic solution is known, the other two regimes are usually studied by solving the equation of motion numerically. By applying conservation of energy, I derive exact analytical solutions to both the perpetual ascent and nonoscillatory regimes and an exact expression for the pendulum period in the nonoscillatory regime. Based on Cromer's approximation for the large-angle pendulum period, I find a simple approximate expression for the decrease of the period with the initial velocity in the nonoscillatory regime, valid near the critical velocity. This expression is used to study the critical slowing down, which is observed near the transition between the oscillatory and nonoscillatory regimes.
NASA Astrophysics Data System (ADS)
Tao, Mengmeng; Feng, Guobin; Yu, Ting; Ye, Xisheng; Wang, Zhenbao; Shen, Yanlong; Zhao, Jun
2018-03-01
Impacts of Tm ion concentration and Ho ion concentration on the saturable behaviors of Tm-Ho codoped fiber saturable absorbers and the output characteristics of the passively Q-switched laser systems are investigated and analyzed both at the initial lasing state and the stable passive Q-switching state. Simulations show that, varying concentrations of Tm and Ho ions have different impacts on the temporal evolution processes but similar effects on the macroscopic characteristics of the laser system. The root for the impacts of dopant concentrations is the population of the 3H6 energy level and the cavity loss it induces. For Tm ions, the rise of the Tm concentration improves the population of the 3H6 energy level directly, while, for Ho ions, higher Ho concentration leads to larger recovery rate of the 3H6 energy level, thus increasing the population of the 3H6 energy level indirectly. As for limited total dopant concentration, the Tm:Ho concentration ratio can be optimized for different applications.
Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo
2016-09-01
Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (p<0.05) increased cumulative methane yield (by 63%) over that of untreated biomass (217L/kgVS). LHW pretreatment obtained negative net electrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Renewable Energy for Rural Economic Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Cathy L.; Stafford, Edwin R.
When Renewable Energy for Rural Economic Development (RERED) began in 2005, Utah had no commercial wind power projects in operation. Today, the state hosts two commercial wind power plants, the Spanish Fork Wind Project and the Milford Wind Corridor Project, totaling 324 megawatts (MW) of wind capacity. Another project in San Juan County is expected to break ground very soon, and two others, also in San Juan County, are in the approval process. RERED has played a direct role in advancing wind power (and other renewable energy and clean technology innovations) in Utah through its education outreach and research/publication initiatives.more » RERED has also witnessed and studied some of the persistent barriers facing wind power development in communities across Utah and the West, and its research expanded to examine the diffusion of other energy efficiency and clean technology innovations. RERED leaves a legacy of publications, government reports, and documentary films and educational videos (archived at www.cleantech.usu.edu) to provide important insights for entrepreneurs, policymakers, students, and citizens about the road ahead for transitioning society onto a cleaner, more sustainable future.« less
Varying-energy CT imaging method based on EM-TV
NASA Astrophysics Data System (ADS)
Chen, Ping; Han, Yan
2016-11-01
For complicated structural components with wide x-ray attenuation ranges, conventional fixed-energy computed tomography (CT) imaging cannot obtain all the structural information. This limitation results in a shortage of CT information because the effective thickness of the components along the direction of x-ray penetration exceeds the limit of the dynamic range of the x-ray imaging system. To address this problem, a varying-energy x-ray CT imaging method is proposed. In this new method, the tube voltage is adjusted several times with the fixed lesser interval. Next, the fusion of grey consistency and logarithm demodulation are applied to obtain full and lower noise projection with a high dynamic range (HDR). In addition, for the noise suppression problem of the analytical method, EM-TV (expectation maximization-total Jvariation) iteration reconstruction is used. In the process of iteration, the reconstruction result obtained at one x-ray energy is used as the initial condition of the next iteration. An accompanying experiment demonstrates that this EM-TV reconstruction can also extend the dynamic range of x-ray imaging systems and provide a higher reconstruction quality relative to the fusion reconstruction method.
Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding.
Goldman, Nir; Aradi, Bálint; Lindsey, Rebecca K; Fried, Laurence E
2018-05-08
We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. We find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H 2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.
Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides
Rinaldo, Steven G.; Gallagher, Kevin G.; Long, Brandon R.; ...
2015-03-04
Lithium- and manganese-rich (LMR) transition metal oxide cathodes are of interest for lithium-ion battery applications due to their increased energy density and decreased cost. However, the advantages in energy density and cost are offset, in part, due to the phenomena of voltage fade. Specifically, the voltage profiles (voltage as a function of capacity) of LMR cathodes transform from a high energy configuration to a lower energy configuration as they are repeatedly charged (Li removed) and discharged (Li inserted). Here, we propose a physical model of voltage fade that accounts for the emergence of a low voltage Li phase due tomore » the introduction of transition metal ion defects within a parent Li phase. The phenomenological model was re-cast in a general form and experimental LMR charge profiles were de-convoluted to extract the evolutionary behavior of various components of LMR capacitance profiles. Evolution of the voltage fade component was found to follow a universal growth curve with a maximal voltage fade capacity of ≈ 20% of the initial total capacity.« less
Method using a density field for locating related items for data mining
Wylie, Brian N.
2002-01-01
A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method makes use of numeric values as a measure of similarity between each pairing of items. The items are given initial coordinates in the space. An energy is then determined for each item from the item's distance and similarity to other items, and from the density of items assigned coordinates near the item. The distance and similarity component can act to draw items with high similarities close together, while the density component can act to force all items apart. If a terminal condition is not yet reached, then new coordinates can be determined for one or more items, and the energy determination repeated. The iteration can terminate, for example, when the total energy reaches a threshold, when each item's energy is below a threshold, after a certain amount of time or iterations.
The effect of giant impactors on the magnetic field energy of an early Martian dynamo.
NASA Astrophysics Data System (ADS)
Drummond, McGregor; Thieulot, Cedric; Monteux, Julien
2016-04-01
Through the cratering record embedded on its surface, Mars is one of the key planets required for investigating the formation and impact frequency in the early history of our Solar System. This record also holds clues to the events that may have caused the observed hemispheric dichotomy and cessation of the magnetic field that was present within the first 500 Myr of the planets' formation. We investigate the influence of giant impacts on the early Martian dynamo using the numerical dynamo modelling code PARODY-JA [1]. We hypothesize that the input heat from a giant impact will decrease the total heat flux at the CMB through mantle heating which leads to a decrease in the Rayleigh number of the core. As boundary conditions for the heat flux anomaly size, we use numerical results of a 750 km diameter impactor from the Monteux and Arkani-Hamed, 2014 [2] study which investigated impact heating and core merging of giant impacts in early Mars. We also determine the decrease in Rayleigh number from the change in total heat flux at the CMB using these results, where the decrease after impact is due to shock heating at the CMB. We calculate the time-averaged total magnetic field energy for an initial homogeneous heat flux model using a range of Rayleigh numbers (5 x 103 - 1 x 10^5). The Rayleigh number is then decreased for three new models - homogeneous, north pole impact and equatorial impact - and the time-averaged energy again determined. We find that the energy decreases more in our impact models, compared with the homogeneous, along with a variation in energy between the north pole and equatorial impact models. We conclude that giant impacts in Mars' early history would have decreased the total magnetic energy of the field and the decrease in energy is also dependent on the location of the impact. The magnetic field could have been disrupted beyond recovery from a planetesimal-sized collision; such as the suggested Borealis basin forming impact, or through the cumulative effect of multiple large impactors; such as Utopia, Hellas and Isidis basin forming impacts. [1] Aubert, J., Aurnou, J. & Wicht, J., 2008. The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int., 172, 945--956. [2] Monteux, J., Arkani-Hamed, J., 2014. Consequences of giant impacts in early Mars: core merging and Martian dynamo evolution. J. Geophys. Res. (Planets) 119, 480--505.
State Policy Initiatives for Financing Energy Efficiency in Public Buildings.
ERIC Educational Resources Information Center
Business Officer, 1984
1984-01-01
Alternative financing methods (other than state financing) for developing cost-effective energy efficiency projects are discussed. It is suggested that by properly financing energy efficiency investments, state campuses can generate immediate positive cash savings. The following eight initiatives for maximizing energy savings potential are…
The homestake surface-underground scintillators: Initial results
NASA Technical Reports Server (NTRS)
Cherry, M. L.; Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Lande, K.; Lee, C. K.
1986-01-01
The first 70 tons of the 140-ton Large Area Scintillation Detector (LASD) have been operating since Jan. 1985 at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine, Lead, S.D. A total of 4 x 10(4) high-energy muons (E sub mu is approx. 2.7 TeV at the surface) have been detected. The remainder of the detector is scheduled to be in operation by the Fall of 1985. In addition, a surface air shower array is under construction. The first 27 surface counters, spaced out over an area of 270' x 500', began running in June, 1985. The LASD performance, the potential of the combined shower array and underground muon experiment for detecting point sources, and the initial results of a search for periodic emission from Cygnus X-3 are discussed.
PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glassgold, A. E.; Najita, J. R.
2015-09-10
Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimesmore » as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.« less
Solid and liquid Equation of state for initially porous aluminum where specific heat is constant
NASA Astrophysics Data System (ADS)
Forbes, Jerry W.; Lemar, E. R.; Brown, Mary
2011-06-01
A porous solid's initial state is off the thermodynamic surface of the non-porous solid to start with but when pressure is high enough to cause total pore collapse or crush up, then the final states are on the condensed matter thermodynamic surfaces. The Hugoniot for the fully compacted solid is above the Principle Hugoniot with pressure, temperature and internal energy increased at a given v. There are a number of ways to define this hotter Hugoniot, which can be referenced to other thermodynamic paths on this thermodynamic surface. The choice here was to use the Vinet isotherm to define a consistent thermodynamic surface for the solid and melt phase of 6061 aluminum where specific heat is constant for the P-v-T space of interest. Analytical equations are developed for PH and TH.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2039-000] E-T Global Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request For Blanket... proceeding of E-T Global Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER12-295-000] NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... NaturEner Rim Rock Wind Energy, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1400-000] Flat Ridge 2 Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Wind Energy LLC's application for market-based rate authority, with an accompanying rate tariff, noting...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-735-000] S.J. Energy Partners, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of S.J. Energy Partners, Inc.'s application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER10-385-000] Castle Energy Services, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization December 30, 2009. This is a supplemental notice in the above-referenced proceeding of Castle Energy Services LLC's...
Energy Reporting Practices among Top Energy Intensive Industries in Malaysia
NASA Astrophysics Data System (ADS)
Tasrip, N. E.; Mat Husin, N.; Alrazi, B.
2016-03-01
This study content analyses the energy content in the corporate report of top 30 Malaysian energy-intensive companies. Motivated by the gap among prior corporate social responsibility and environmental reporting studies in respect of energy, this study provides evidence of Malaysian companies’ initiative to reduce energy consumption. While the evidence suggests that not all 30 companies have reported energy-related information, the findings provide an overview on the response of energy intensive companies in relation to Malaysian government initiatives on energy.
Exploiting variability for energy optimization of parallel programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrijsen, Wim; Iancu, Costin; de Jong, Wibe
2016-04-18
Here in this paper we present optimizations that use DVFS mechanisms to reduce the total energy usage in scientific applications. Our main insight is that noise is intrinsic to large scale parallel executions and it appears whenever shared resources are contended. The presence of noise allows us to identify and manipulate any program regions amenable to DVFS. When compared to previous energy optimizations that make per core decisions using predictions of the running time, our scheme uses a qualitative approach to recognize the signature of executions amenable to DVFS. By recognizing the "shape of variability" we can optimize codes withmore » highly dynamic behavior, which pose challenges to all existing DVFS techniques. We validate our approach using offline and online analyses for one-sided and two-sided communication paradigms. We have applied our methods to NWChem, and we show best case improvements in energy use of 12% at no loss in performance when using online optimizations running on 720 Haswell cores with one-sided communication. With NWChem on MPI two-sided and offline analysis, capturing the initialization, we find energy savings of up to 20%, with less than 1% performance cost.« less
Energy Absorbing Seat System for an Agricultural Aircraft
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)
2002-01-01
A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.
A grey NGM(1,1, k) self-memory coupling prediction model for energy consumption prediction.
Guo, Xiaojun; Liu, Sifeng; Wu, Lifeng; Tang, Lingling
2014-01-01
Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1, k) self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1, k) model. The traditional grey model's weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1, k) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span.
NASA Astrophysics Data System (ADS)
Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.
2017-10-01
In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.
The origin of the energy-momentum conservation law
NASA Astrophysics Data System (ADS)
Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.
2017-09-01
The interplay between the action-reaction principle and the energy-momentum conservation law is revealed by the examples of the Maxwell-Lorentz and Yang-Mills-Wong theories, and general relativity. These two statements are shown to be equivalent in the sense that both hold or fail together. Their mutual agreement is demonstrated most clearly in the self-interaction problem by taking account of the rearrangement of degrees of freedom appearing in the action of the Maxwell-Lorentz and Yang-Mills-Wong theories. The failure of energy-momentum conservation in general relativity is attributed to the fact that this theory allows solutions having nontrivial topologies. The total energy and momentum of a system with nontrivial topological content prove to be ambiguous, coordinatization-dependent quantities. For example, the energy of a Schwarzschild black hole may take any positive value greater than, or equal to, the mass of the body whose collapse is responsible for forming this black hole. We draw the analogy to the paradoxial Banach-Tarski theorem; the measure becomes a poorly defined concept if initial three-dimensional bounded sets are rearranged in topologically nontrivial ways through the action of free non-Abelian isometry groups.
Hawaii Energy and Environmental Technologies (HEET) Initiative Phase 4
2006-08-01
UNIVERSITY OF HAWAII1 AT MANOA School of Ocean and Earth Science and Technology Hawal’i Natural Energy Institute January 10, 2007 Dr. Michele L...Report: HEET Initiative: Grant N00014-04-1-0682 Enclosed you will find a copy of the Final Technical Report for the subject grant, titled Hawaii Energy and...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Hawaii Energy and Environmental Technologies (HEET) Initiative Phase 4 5b. GRANT NUMBER N00014-04-1-0682 5c
The Low Energy Neutrino Spectrometry (LENS) Experiment and LENS prototype, μLENS, initial results
NASA Astrophysics Data System (ADS)
Yokley, Zachary
2012-03-01
LENS is a low energy solar neutrino detector that will measure the solar neutrino spectrum above 115 keV, >95% of the solar neutrino flux, in real time. The fundamental neutrino reaction in LENS is charged-current based capture on 115-In detected in a liquid scintillator medium. The reaction yields the prompt emission of an electron and the delayed emission of 2 gamma rays that serve as a time & space coincidence tag. Sufficient spatial resolution is used to exploit this signature and suppress background, particularly due to 115-In beta decay. A novel design of optical segmentation (Scintillation Lattice or SL) channels the signal light along the three primary axes. The channeling is achieved via total internal reflection by suitable low index gaps in the segmentation. The spatial resolution of a nuclear event is obtained digitally, much more precisely than possible by common time of flight methods. Advanced Geant4 analysis methods have been developed to suppress adequately the severe background due to 115-In beta decay, achieving at the same time high detection efficiency. LENS physics and detection methods along with initial results characterizing light transport in the as built μLENS prototype will be presented.
Reheating-volume measure in the string theory landscape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winitzki, Sergei
2008-12-15
I recently proposed the ''reheating-volume'' (RV) prescription as a possible solution to the measure problem in ''multiverse'' cosmology. The goal of this work is to extend the RV measure to scenarios involving bubble nucleation, such as the string theory landscape. In the spirit of the RV prescription, I propose to calculate the distribution of observable quantities in a landscape that is conditioned in probability to nucleate a finite total number of bubbles to the future of an initial bubble. A general formula for the relative number of bubbles of different types can be derived. I show that the RV measuremore » is well defined and independent of the choice of the initial bubble type, as long as that type supports further bubble nucleation. Applying the RV measure to a generic landscape, I find that the abundance of Boltzmann brains is always negligibly small compared with the abundance of ordinary observers in the bubbles of the same type. As an illustration, I present explicit results for a toy landscape containing four vacuum states, and for landscapes with a single high-energy vacuum and a large number of low-energy vacua.« less
Analysis of delamination in cross ply laminates initiating from impact induced matrix cracking
NASA Technical Reports Server (NTRS)
Salpekar, S. A.
1991-01-01
Several two dimensional finite element analyses of (0 sub 2/90 sub 8/0 sub 2) glass/epoxy and graphite-epoxy composite laminates were performed to study some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center was analyzed. Inclined matrix cracks such as those produced by low velocity impact were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tension and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces. The large interlaminar stresses at the ends of the matrix cracks indicate that matrix cracking may give rise to delamination. The ratio of mode I to total strain energy release rate at the beginning of delamination calculated at the two matrix crack tips was 60 and 28 pct., respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 pct. in the graphite-epoxy laminate. Thus, a significant mode I component of strain energy release rate may be present at the delamination initiation due to an impact load.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-2436-000] Platinum Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Platinum...
10 CFR 905.30 - Purpose and applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Purpose and applicability. 905.30 Section 905.30 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative § 905.30 Purpose and applicability. (a) The Power Marketing Initiative (PMI) provides a framework for marketing Western's long-term...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-896-000] Mariposa Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Mariposa...
EPA RE-Powering Mapper Feasibility Studies
The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. As part of the RE-Powering America's Land Initiative, the EPA and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) evaluated the feasibility of developing renewable energy production on Superfund, brownfields, and former landfill or mining sites. These reports pair EPA's expertise on contaminated sites with the renewable energy expertise of NREL.
AGN ACTIVITY AND IGM HEATING IN THE FOSSIL CLUSTER RX J1416.4+2315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miraghaei, H.; Khosroshahi, H. G.; Abbassi, S.
2015-12-15
We study active galactic nucleus (AGN) activity in the fossil galaxy cluster RX J1416.4+2315. Radio observations were carried out using the Giant Metrewave Radio Telescope at two frequencies, 1420 and 610 MHz. A weak radio lobe that extends from the central nucleus is detected in the 610 MHz map. Assuming the radio lobe originated from the central AGN, we show that the energy injection into the intergalactic medium is only sufficient to heat up the central 50 kpc within the cluster core, while the cooling radius is larger (∼130 kpc). In the hardness ratio map, three low energy cavities havemore » been identified. No radio emission is detected for these regions. We evaluated the power required to inflate the cavities and showed that the total energy budget is sufficient to offset the radiative cooling. We showed that the initial conditions would change the results remarkably. Furthermore, the efficiency of the Bondi accretion in powering the AGN has been estimated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, R.; Adachi, I.; Aihara, H.
The inclusive cross sections for dihadrons of charged pions and kaons (e +e - → hhX) in electronpositron annihilation are reported. They are obtained as a function of the total fractional energy and invariant mass for any di-hadron combination in the same hemisphere as defined by the thrust event-shape variable and its axis. Since same-hemisphere dihadrons can be assumed to originate predominantly from the same initial parton, di-hadron fragmentation functions are probed. These di-hadron fragmentationfunctions are needed as an unpolarized baseline in order to quantitatively understand related spindependent measurements in other processes and to apply them to the extraction ofmore » quark transversity distribution functions in the nucleon. The di-hadron cross sections are obtained from a 655 fb -1 data sample collected at or near the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e +e - collider.« less
Melville, G; Melville, P
2013-02-01
Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.
Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae
2002-08-01
In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.
Structural loads preliminary results
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.
1986-01-01
From a total of 351 instrumentation channels, 341 channels (97%) were in operation during the initial impact of the airplane. Both NASA seats, the energy absorbing seat and the standard seat, maintained their integrity during the impact. The floor accelerations at the seat locations were lower than the accelerations required for the energy absorbers to stroke; consequently, the energy absorbing seat did not stroke. The two seats remained firm in place during the crash and no seat attachment failures were observed. Due to the low accelerations experienced during the crash, both seats performed as standard seats. In the airplane structure, the accelerations were higher at both the point of impact in the left wing and at the forward end of the fuselage. The accelerations on the floor were higher toward the front than toward the rear and the floor accelerations on the left side were higher than on the right side at the front of the fuselage, but toward the rear they evened out.
Dynamic Rupture and Energy Partition in Models of Earthquake Faults
NASA Astrophysics Data System (ADS)
Shi, Z.; Needleman, A.; Ben-Zion, Y.
2006-12-01
We study properties of dynamic rupture and the partition of energy between radiation and dissipative mechanisms using 2D finite element calculations. The goal is to improve the understanding of these processes on faults at different evolutionary stages associated with different levels of geometrical complexity and possible presence of contrasting elastic properties across the fault. The initial calculations employ homogeneous media and a planar internal interface governed by a general rate- and state-dependent friction law that accounts for the gradual response of shear stress to abrupt changes of normal stress. Ruptures are initiated by gradually increasing the shear traction in a limited nucleation zone near the origin. By changing the rate dependency of the friction law and the size of the nucleation zone, we obtain four rupture modes: (i) supershear crack-like rupture; (ii) subshear crack-like rupture; (iii) subshear single pulse; and (iv) supershear train of pulses. Increasing the initial shear stress produces a transition from a subshear crack to a supershear crack, while increasing the rate dependency of the friction produces self-healing and the transition from a crack-like to a pulse mode of rupture. Properties of the nucleation process can strongly affect the rupture mode. In the cases examined, the total release of strain energy (over the same propagation distance) decreases following the order: supershear crack, subshear crack, train of pulses and single pulse. The ratio of the radiated kinetic energy to the energy dissipated in friction is about 5% for the supershear crack case and about 2% for the other three cases. Future work will involve similar calculations accounting for the generation of plastic strain in the bulk, the material contrast across the fault, and the addition of cohesive surfaces in the bulk to allow for the generation of new surfaces. The study may provide fundamental information on rupture processes in geologically-relevant circumstances and improve the understanding of physical limits on extreme ground motion. The results may be used to check assumptions made in observational works and may help to guide new observational research.
Key Barriers to the Implementation of Solar Energy in Nigeria: A Critical Analysis
NASA Astrophysics Data System (ADS)
Abdullahi, D.; Suresh, S.; Renukappa, S.; Oloke, D.
2017-08-01
Nigeria, potentially, has abundant sunshine throughout the year, making it full thirst for solar energy generation. Even though, the country’s solar energy projects have not realised a fair result over the years, due to many barriers associated with initiatives implementation. Therefore, the entire power sector remains incapacitated to generate, transmit and distribute a clean, affordable and sustainable energy to assist economic growth. The research integrated five African counterpart’s solar energy initiatives, barriers, policies and strategies adopted as a lesson learned to Nigeria. Inadequate solar initiative’s research, lack of technological know-how, short-term policies, lack of awareness and political instability are the major barriers that made the implementation of solar initiatives almost impossible in Nigeria. The shock of the barriers therefore, constitutes a major negative contribution to the crippling of the power sector in the state. Future research will concentrate on initiatives for mitigating solar and other renewable energy barriers.
Optically-energized, emp-resistant, fast-acting, explosion initiating device
Benson, David A.; Kuswa, Glenn W.
1987-01-01
Optical energy, provided from a remote user-operated source, is utilized to initially electrically charge a capacitor in a circuit that also contains an explosion initiating transducer in contact with a small explosive train contained in an attachable housing. Additional optical energy is subsequently supplied in a preferred embodiment to an optically responsive phototransistor acting in conjunction with a silicon controlled rectifer to release the stored electrical energy through the explosion initiating transducer to set off the explosive train. All energy transfers between the user and the explosive apparatus, either for charging it up or for setting it off, are conveyed optically and may be accomplished in a single optical fiber with coding to distinguish between specific optical energy transfers and between these and any extraneous signals.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0780] Bridging the Idea Development Evaluation Assessment and Long-Term Initiative and Total Product Life Cycle... Idea Development Evaluation Assessment and Long-Term Initiative and Total Product Life Cycle Approaches...
Small Island States Green Energy Initiative. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khattak, Nasir
1999-10-15
This report covers the activities carried out during a one year period from 7/15/99 to 7/15/00 as part of the Small Islands Green Energy Initiative. The three activities were: 1) Energy Ministerial conference in the Caribbean; 2) Training session on renewable energy for utility engineers; and 3) Case studies compilation on renewable energy in the Caribbean.
Plasma expansion dynamics physics: An understanding on ion energy reduction process
NASA Astrophysics Data System (ADS)
Ruzic, David; Srivastava, Shailendra; Thompson, Keith; Spencer, Joshua; Sporre, John
2007-11-01
This paper studies the expanding plasma dynamics of ions produced from a 5J Z-pinch xenon light source used for EUV lithography. Ion energy reduction is essential for the successful implementation of this technology. To aid this investigation, ion energy from a z-pinch DPP plasma source is measured using an ion energy analyzer and effect of introducing a small percentage of low Z material on the ion energy and flux is investigated. Presence of low mass such as H2 or N2, shows a considerable reduction in total flux and in average energy. For example, Xe^+ ion flux at 5 keV are recorded as 425 ± 42 ions/cm^2.eV.pulse at 157 cm and reduced to 125 ± 12 ions/cm^2.eV.pulse when using the low mass into the system at same energy. It is also noticed that such a combination leads to decrease in sputtering without changing the EUV output. Study of the possible mechanism supporting the experimental results is numerically calculated. This computational work indicates that the observed high energies of ions are probably resulting from coulomb explosion initiated by pinch instability. It is postulated that the electrons leave first setting up an electrostatic potential which accelerates the ions. The addition of small mass actually screens the potential and decorates the ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1998-05-01
In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear chargemore » density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union« less
A low-cost method for estimating energy expenditure during soccer refereeing.
Ardigò, Luca Paolo; Padulo, Johnny; Zuliani, Andrea; Capelli, Carlo
2015-01-01
This study aimed to apply a validated bioenergetics model of sprint running to recordings obtained from commercial basic high-sensitivity global positioning system receivers to estimate energy expenditure and physical activity variables during soccer refereeing. We studied five Italian fifth division referees during 20 official matches while carrying the receivers. By applying the model to the recorded speed and acceleration data, we calculated energy consumption during activity, mass-normalised total energy consumption, total distance, metabolically equivalent distance and their ratio over the entire match and the two halves. Main results were as follows: (match) energy consumption = 4729 ± 608 kJ, mass normalised total energy consumption = 74 ± 8 kJ · kg(-1), total distance = 13,112 ± 1225 m, metabolically equivalent distance = 13,788 ± 1151 m and metabolically equivalent/total distance = 1.05 ± 0.05. By using a very low-cost device, it is possible to estimate the energy expenditure of soccer refereeing. The provided predicting mass-normalised total energy consumption versus total distance equation can supply information about soccer refereeing energy demand.
Projected Increase in Lightning Strikes in the United States Due to Global Warming
NASA Astrophysics Data System (ADS)
Romps, D. M.; Seeley, J.; Vollaro, D.; Molinari, J.
2014-12-01
Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. The lightning flash rate is proposed here to be proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation is found to explain the majority of variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS) on timescales ranging from diurnal to seasonal. The observations reveal that storms convert the CAPE of water mass to discharged lightning energy with an efficiency of about 1%. This proxy can be applied to global climate models, which provide predictions for the increase in lightning due to global warming. Results from 11 GCMs will be shown.
NASA Astrophysics Data System (ADS)
Arias, E.; Florez, E.; Pérez-Torres, J. F.
2017-06-01
A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported.
Nonlinear stability of solar type 3 radio bursts. 1: Theory
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1978-01-01
A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.
Climate change. Projected increase in lightning strikes in the United States due to global warming.
Romps, David M; Seeley, Jacob T; Vollaro, David; Molinari, John
2014-11-14
Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century. Copyright © 2014, American Association for the Advancement of Science.
Arias, E; Florez, E; Pérez-Torres, J F
2017-06-28
A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu 7 , Cu 9 , and Cu 11 as benchmark systems, and Cu 38 and Ni 9 as novel systems. New equilibrium structures for Cu 9 , Cu 11 , Cu 38 , and Ni 9 are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, David M.; Belzer, David B.; Livingston, Olga V.
Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumptionmore » saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.« less
Clean Energy Manufacturing Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-04-01
The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.
The Clean Energy Manufacturing Initiative: Dissolving Silos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielson, David; Orr, Lynn; Sarkar, Reuben
2016-06-15
DOE’s work is closely tied to manufacturing because manufacturing is an important part of technology innovation and commercialization. Find out how DOE – through the Clean Energy Manufacturing Initiative – is helping America lead the clean energy revolution.
Pulsed Power Discharges in Water
NASA Astrophysics Data System (ADS)
Kratel, Axel Wolf Hendrik
An Electrohydraulic Discharge Process (EHD) for the treatment of hazardous chemical wastes in water has been developed. Liquid waste in a 4 L EHD reactor is directly exposed to high-energy pulsed electrical discharges between two submerged electrodes. The high-temperature (> 14,000 K) plasma channel created by an EHD discharge emits ultraviolet radiation, and produces an intense shock wave as it expands against the surrounding water. A simulation of the EHD process is presented along with experimental results. The simulation assumes a uniform plasma channel with a plasma that obeys the ideal gas law and the Spitzer conductivity law. The results agree with previously published data. The simulation is used to predict the total energy efficiency, energy partitioning, maximum plasma channel temperature and pressure for the Caltech Pulsed Power Facility (CPPF). The simulation shows that capacitance, initial voltage and gap length can be used to control the efficiency of the discharge. The oxidative degradation of 4-chlorophenol (4 -CP), 3,4-dichloroaniline (3,4-DCA), and 2,4,6 trinitrotoluene (TNT) in an EHD reactor was explored. The initial rates of degradation for the three substrates are described by a first-order rate equation, where k_{ it 0/} is the zero-order rate constant that accounts for direct photolysis; and k_ {it 1/} is the first-order term that accounts for oxidation in the plasma channel region. For 4-CP in the 4.0 L reactor, the values of these two rate constants are k_{it 0/} = 0.73 +/- 0.08 mu M, and k_{ it 1/} =(9.4 +/- 1.4) times 10^{-4}. For a 200 mu M 4-CP solution this corresponds to an overall intrinsic zero-order rate constant of 0.022 M s^{it -1/} , and a G-value of 4.45 times 10^{-3}. Ozone increases the rate and extent of degradation of the substrates in the EHD reactor. Combined EHD/ozone treatment of a 160 mu M TNT solution resulted in the complete degradation of TNT, and a 34% reduction of the total organic carbon (TOC). The intrinsic initial rate constant of TNT degradation was 0.024 M s^{it -1/} . The results of these experiments demonstrate the potential application of the EHD process for the treatment of hazardous wastes.
Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min
2017-09-01
Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.
2011-01-01
Background Knowledge of adult activity patterns across domains of physical activity is essential for the planning of population-based strategies that will increase overall energy expenditure and reduce the risk of obesity and related chronic diseases. We describe domain-specific hours of activity and energy expended among participants in a prospective cohort in Alberta, Canada. Methods The Past Year Total Physical Activity Questionnaire was completed by 15,591 Tomorrow Project® participants, between 2001 and 2005 detailing physical activity type, duration, frequency and intensity. Domain-specific hours of activity and activity-related energy expenditure, expressed as a percent of total energy expenditure (TEE) (Mean (SD); Median (IQR)) are reported across inactive (<1.4), low active (1.4 to 1.59), active (1.6 to 1.89) and very active (≥ 1.9) Physical Activity Level (PAL = TEE:REE) categories. Results In very active women and amongst all men except those classified as inactive, activity-related energy expenditure comprised primarily occupational activity. Amongst inactive men and women in active, low active and inactive groups, activity-related energy expenditure from household activity was comparable to, or exceeded that for occupational activity. Leisure-time activity-related energy expenditure decreased with decreasing PAL categories; however, even amongst the most active men and women it accounted for less than 10 percent of TEE. When stratified by employment status, leisure-time activity-related energy expenditure was greatest for retired men [mean (SD): 10.8 (8.5) percent of TEE], compared with those who were fully employed, employed part-time or not employed. Transportation-related activity was negligible across all categories of PAL and employment status. Conclusion For the inactive portion of this population, active non-leisure activities, specifically in the transportation and occupational domains, need to be considered for inclusion in daily routines as a means of increasing population-wide activity levels. Environmental and policy changes to promote active transport and workplace initiatives could increase overall daily energy expenditure through reducing prolonged sitting time. PMID:21985559
Shorter Exposures to Harder X-Rays Trigger Early Apoptotic Events in Xenopus laevis Embryos
Dong, JiaJia; Mury, Sean P.; Drahos, Karen E.; Moscovitch, Marko
2010-01-01
Background A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. Methodology/Principal Findings We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. Conclusions/Significance Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and utilized for therapeutic purposes. PMID:20126466
Aerodynamic Drag and Drag Reduction: Energy and Energy Savings (Invited)
NASA Technical Reports Server (NTRS)
Wood, Richard M.
2003-01-01
An assessment of the role of fluid dynamic resistance and/or aerodynamic drag and the relationship to energy use in the United States is presented. Existing data indicates that up to 25% of the total energy consumed in the United States is used to overcome aerodynamic drag, 27% of the total energy used in the United States is consumed by transportation systems, and 60% of the transportation energy or 16% of the total energy consumed in the United States is used to overcome aerodynamic drag in transportation systems. Drag reduction goals of 50% are proposed and discussed which if realized would produce a 7.85% total energy savings. This energy savings correlates to a yearly cost savings in the $30Billion dollar range.
Study of Z scaling of runaway electron plateau final loss energy deposition into wall of DIII-D
Hollmann, Eric M.; Commaux, Nicolas; Eidietis, Nicholas; ...
2017-06-12
Here, controlled runaway electron (RE) plateau-wall strikes with different initial impurity levels are used to study the effect of background plasma ion charge Z (resistivity) on RE-wall loss dynamics. It is found that Joule heating (magnetic to kinetic energy conversion) during the final loss does not go up monotonically with increasing Z, but peaks at intermediate Z ~ 6. Joule heating and overall time scales of the RE final loss are found to be reasonably well-described by a basic 0D coupled-circuit model, with only the loss time as a free parameter. This loss time is found to be fairly wellmore » correlated with the avalanche time, possibly suggesting that the RE final loss rate is limited by the avalanche rate. First attempts at measuring total energy deposition to the vessel walls by REs during the final loss are made. At higher plasma impurity levels Z > 5, energy deposition to the wall appears be consistent with modeling, at least within the large uncertainties of the measurement. At low impurity levels Z < 5, however, local energy deposition appears around 5-20× less than expected, suggesting that the RE energy dissipation at low Z is not fully understood.« less
Study of Z scaling of runaway electron plateau final loss energy deposition into wall of DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, Eric M.; Commaux, Nicolas; Eidietis, Nicholas
Here, controlled runaway electron (RE) plateau-wall strikes with different initial impurity levels are used to study the effect of background plasma ion charge Z (resistivity) on RE-wall loss dynamics. It is found that Joule heating (magnetic to kinetic energy conversion) during the final loss does not go up monotonically with increasing Z, but peaks at intermediate Z ~ 6. Joule heating and overall time scales of the RE final loss are found to be reasonably well-described by a basic 0D coupled-circuit model, with only the loss time as a free parameter. This loss time is found to be fairly wellmore » correlated with the avalanche time, possibly suggesting that the RE final loss rate is limited by the avalanche rate. First attempts at measuring total energy deposition to the vessel walls by REs during the final loss are made. At higher plasma impurity levels Z > 5, energy deposition to the wall appears be consistent with modeling, at least within the large uncertainties of the measurement. At low impurity levels Z < 5, however, local energy deposition appears around 5-20× less than expected, suggesting that the RE energy dissipation at low Z is not fully understood.« less
Sustainable Mobility | Transportation Research | NREL
both safety and energy efficiency. Sustainable Mobility Initiative Takes Systems-Based Approach to of its Sustainable Mobility Initiative, approaching sustainable transportation as an intelligent Transportation Sector Initiative and DOE's Transportation Energy Futures project identify emerging and disruptive
10 CFR 782.5 - Contents of communication initiating claim.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Contents of communication initiating claim. 782.5 Section 782.5 Energy DEPARTMENT OF ENERGY CLAIMS FOR PATENT AND COPYRIGHT INFRINGEMENT Requirements and... Department of Energy under any of the applicable statutes cited in § 782.3, must be actually communicated to...
10 CFR 782.5 - Contents of communication initiating claim.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Contents of communication initiating claim. 782.5 Section 782.5 Energy DEPARTMENT OF ENERGY CLAIMS FOR PATENT AND COPYRIGHT INFRINGEMENT Requirements and... Department of Energy under any of the applicable statutes cited in § 782.3, must be actually communicated to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3467-000] Blue Chip Energy LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Blue Chip...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1739-000] Bethel Wind Energy LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Bethel Wind...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1740-000] Rippey Wind Energy LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Rippey Wind...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER13-1053-000] Switch Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Switch...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1064-000] 511 Plaza Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization April 22, 2010. This is a supplemental notice in the above-referenced proceeding...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1090-000] Commercial Energy of Montana, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization May 10, 2010. This is a supplemental notice in the above-referenced...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER12-2528-000] High Mesa Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of High Mesa...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-2223-000] Town Square Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Town Square...
Energy expenditure and caloric and protein intake in infants following the Norwood procedure.
Li, Jia; Zhang, Gencheng; Herridge, Joann; Holtby, Helen; Humpl, Tilman; Redington, Andrew N; Van Arsdell, Glen S
2008-01-01
Cardiopulmonary bypass in infants results in a hypermetabolic response. Energy requirements of these patients have not been well studied. We assessed energy expenditure and caloric and protein intake during the first 3 days following the Norwood procedure. Clinical investigation. Children's hospital. Seventeen infants (15 boys, age 4-92 days, median 7 days). VO2 and VCO2 were continuously measured using respiratory mass spectrometry in 17 infants for the first 72 hrs following the Norwood procedure. The respiratory quotient was determined as VCO2/VO2. Energy expenditure was calculated using the modified Weir equation. Measurements were collected at 2- to 4-hr intervals. The mean values in the first 8 hrs, hours 8-32, hours 32-56, and the last 16 hrs were used as representative values for postoperative days 0, 1, 2, and 3. Total caloric and protein intakes were recorded for each day. Energy expenditure, VO2, and VCO2 were initially high; declined rapidly during the first 8 hrs; and were maintained relatively stable in the following hours (p < .0001). Respiratory quotient showed a significant linear increase over the 72 hrs (p = .002). Energy expenditure on days 0, 1, 2, and 3 was 43 +/- 11, 39 +/- 8, 39 +/- 8, and 41 +/- 6 kcal/kg/day, respectively. Total caloric intake was 3 +/- 1, 14 +/- 5, 31 +/- 16, and 51 +/- 16 kcal/kg/day. Protein intake was 0, 0.2 +/- 0.2, 0.6 +/- 0.5, and 0.9 +/- 0.5 g/kg/day on days 0, 1, 2, and 3, respectively. Infants exhibit a hypermetabolic response immediately following the Norwood procedure. Caloric and protein intake was inadequate to meet energy expenditure during the first 2 days after surgery. Further studies are warranted to examine the effects of caloric and protein supplementation on postoperative outcomes in infants after cardiopulmonary bypass.
NASA Astrophysics Data System (ADS)
Cai, Kai; Durisen, Richard H.; Michael, Scott; Boley, Aaron C.; Mejía, Annie C.; Pickett, Megan K.; D'Alessio, Paola
2006-05-01
We have found that the total cumulative radiative energy losses shown in Figure 2 of the above-mentioned Letter were computed for only half the disk. This caused the final global cooling times tcool in the eighth column of the original Table 1 to be too large by a factor of 2. Proper values of tcool are given in the revised Table 1 below. To be more consistent with what the Letter states, we now use instantaneous values for both the total internal energy and the final total net cooling rates to compute final tcool's, instead of averaging the loss rates over an interval of time at the end of the calculations before dividing, as was done in the Letter. We also take this opportunity to make a few other inconsequential corrections to the fourth column of the table. In addition to the changes to Table 1, the approximate initial tcool relation in the fourth paragraph of § 3.2 becomes tcool~Z/Zsolar to within tens of percent. Despite the corrections, our conclusions in the Letter remain unchanged. Most importantly, the final tcool's vary with metallicity and are still too long for disk fragmentation to occur with our equation of state over the range of Z examined. We regret any inconvenience our errors may have caused.
Intramolecular and Lattice Dynamics in V6-nIVVnV O7(OCH3)12 Crystal
NASA Astrophysics Data System (ADS)
Yablokov, Yu. V.; Augustyniak-Jabłokow, M. A.; Borshch, S.; Daniel, C.; Hartl, H.
2006-08-01
Multi-nuclear mixed-valence clusters V4IVV2VO7(OCH3)12 were studied by X-band EPR in the temperature range 4.2-300 K. An isotropic exchange interactions between four VIV ions with individual spin Si=1/2 determine the energy levels structure of the compound with the total spin states S=0, 1, and 2, which are doubled and split due to the extra electron transfer. The spin-Hamiltonian approach was used for the analysis of the temperature dependences of the EPR spectra parameters and the cluster dynamics. Two types of the electron transfer are assumed: the single jump transfer leading to the splitting of the total spin states by intervals comparable in magnitude with the exchange parameter J≈100-150cm-1 and the double jump one resulting in dynamics. The dependence of the transition ratesνtr on the energy of the total spin states was observed. In particular, in the range 300-220 K the νtr ≈0.7×1010 cm-1 and below 180 K the νtr≈1×1010 cm-1 was estimated. The g-factors of the spin states were shown to depend on the values of the intermediate spins. A phase transition in the T-range 210-180 K leading to the change in the initial VIV ions localization was discovered.
Space station needs, attributes, and architectural options study
NASA Technical Reports Server (NTRS)
1983-01-01
The top level, time-phased total space program support system architecture is described including progress from the use of ground-based space shuttle, teleoperator system, extended duration orbiter, and multimission spacecraft, to an initial 4-man crew station at 29 deg inclination in 1991, to a growth station with an 8-man crew with capabilities for OTV high energy orbit payload placement and servicing, assembly, and construction of mission payloads in 1994. System Z, proposed for Earth observation missions in high inclination orbit, can be accommodated in 1993 using a space station derivative platform. Mission definition, system architecture, and benefits are discussed.
The any particle molecular orbital grid-based Hartree-Fock (APMO-GBHF) approach
NASA Astrophysics Data System (ADS)
Posada, Edwin; Moncada, Félix; Reyes, Andrés
2018-02-01
The any particle molecular orbital grid-based Hartree-Fock approach (APMO-GBHF) is proposed as an initial step to perform multi-component post-Hartree-Fock, explicitly correlated, and density functional theory methods without basis set errors. The method has been applied to a number of electronic and multi-species molecular systems. Results of these calculations show that the APMO-GBHF total energies are comparable with those obtained at the APMO-HF complete basis set limit. In addition, results reveal a considerable improvement in the description of the nuclear cusps of electronic and non-electronic densities.
NASA Technical Reports Server (NTRS)
Bruce, Kevin R.
1989-01-01
An integrated autopilot/autothrottle was designed for flight test on the NASA TSRV B-737 aircraft. The system was designed using a total energy concept and is attended to achieve the following: (1) fuel efficiency by minimizing throttle activity; (2) low development and implementation costs by designing the control modes around a fixed inner loop design; and (3) maximum safety by preventing stall and engine overboost. The control law was designed initially using linear analysis; the system was developed using nonlinear simulations. All primary design requirements were satisfied.
Planetary geology, stellar evolution and galactic cosmology
NASA Technical Reports Server (NTRS)
1972-01-01
Field studies of selected basalt flows in the Snake River Plain, Idaho, were made for comparative lunar and Mars geological investigations. Studies of basalt lava tubes were also initiated in Washington, Oregon, Hawaii, and northern California. The main effort in the stellar evolution research is toward the development of a computer code to calculate hydrodynamic flow coupled with radiative energy transport. Estimates of the rotation effects on a collapsing cloud indicate that the total angular momentum is the critical parameter. The study of Paschen and Balmer alpha lines of positronium atoms in the center of a galaxy is mentioned.
Parity-Dependent Rotational Energy Transfer in CN(A2Π, ν = 4, jF1ε) + N2, O2, and CO2 Collisions
2015-01-01
We report state-resolved total removal cross sections and state-to-state rotational energy transfer (RET) cross sections for collisions of CN(A2Π, ν = 4, jF1ε) with N2, O2, and CO2. CN(X2Σ+) was produced by 266 nm photolysis of ICN in a thermal bath (296 K) of the collider gas. A circularly polarized pulse from a dye laser prepared CN(A2Π, ν = 4) in a range of F1e rotational states, j = 2.5, 3.5, 6.5, 11.5, 13.5, and 18.5. These prepared states were monitored using the circularly polarized output of an external cavity diode laser by frequency-modulated (FM) spectroscopy on the CN(A–X)(4,2) band. The FM Doppler profiles were analyzed as a function of pump–probe delay to determine the time dependence of the population of the initially prepared states. Kinetic analysis of the resulting time dependences was used to determine total removal cross sections from the initially prepared levels. In addition, a range of j′ F1e and j′ F2f product states resulting from rotational energy transfer out of the j = 6.5 F1e initial state were probed, from which state-to-state RET cross sections were measured. The total removal cross sections lie in the order CO2 > N2 > O2, with evidence for substantial cross sections for electronic and/or reactive quenching of CN(A, ν = 4) to unobserved products with CO2 and O2. This is supported by the magnitude of the state-to-state RET cross sections, where a deficit of transferred population is apparent for CO2 and O2. A strong propensity for conservation of rotational parity in RET is observed for all three colliders. Spin–orbit-changing cross sections are approximately half of those of the respective conserving cross sections. These results are in marked disagreement with previous experimental observations with N2 as a collider but are in good agreement with quantum scattering calculations from the same study (Khachatrian et al. J. Phys. Chem. A2009, 113, 392219215110). Our results with CO2 as a collider are similarly in strong disagreement with a related experimental study (Khachatrian et al. J. Phys. Chem. A2009, 113, 1339019405498). We therefore propose that the previous experiments substantially underestimated the spin–orbit-changing cross sections for collisions with both N2 and CO2, suggesting that even approximate quantum scattering calculations may be more successful for such molecule–molecule systems than was previously concluded. PMID:24552624
The LDEF ultra heavy cosmic ray experiment
NASA Technical Reports Server (NTRS)
Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.
1991-01-01
The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.
10 CFR 708.30 - What process does the Hearing Officer follow to issue an initial agency decision?
Code of Federal Regulations, 2010 CFR
2010-01-01
... initial agency decision? 708.30 Section 708.30 Energy DEPARTMENT OF ENERGY DOE CONTRACTOR EMPLOYEE PROTECTION PROGRAM Investigation, Hearing and Decision Process § 708.30 What process does the Hearing Officer follow to issue an initial agency decision? (a) The Hearing Officer will issue an initial agency decision...
10 CFR 603.520 - Reasonableness of total project funding.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Reasonableness of total project funding. 603.520 Section 603.520 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business Evaluation Total Funding § 603.520 Reasonableness of total project funding. In...
Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays
NASA Astrophysics Data System (ADS)
Plimley, Brian Christopher
Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron track Compton imaging an effective means of reducing image background for photons of energy as low as 500 keV, or even less. The angular sensitivity of the reconstruction algorithm was also evaluated experimentally, by measuring electron tracks in the CCD in coincidence with the scattered photon in a germanium double-sided strip detector. By this method, electron tracks could be measured with the true initial direction known to within 3° FWHM, and the angular response of the algorithm compared to the known direction. The challenge of this experiment lay in the low geometric efficiency for photons scattering into the germanium, the poor time resolution in the current CCD implementation, and the resulting signal-to-background ratio of about 10--4 for photons scattered from the CCD into the germanium detector. Nonetheless, 87 events were measured in the FWHM of the total energy deposited and the angular resolution measure, with electron tracks between 160 keV and 360 keV in energy. The electron tracks from true coincident event sequences showed a FWHM in the pixel plane of 23°, and excellent agreement with the distribution calculated with models, with likelihood p-values of 0.44 and 0.73. Thus, the models used for the more thorough evaluation of angular sensitivities are shown to be consistent with the measured tracks from true coincident event sequences.
Options to improve energy efficiency for educational building
NASA Astrophysics Data System (ADS)
Jahan, Mafruha
The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to identify the most cost effective combinations of energy efficiency strategies. The model analyzes and compares the payback periods of all proposed Energy Performance Measures (EPMs) to determine which has the greatest potential value.
Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology
NASA Technical Reports Server (NTRS)
Adams, P. J.; Canuto, V.
1975-01-01
The exact solution of the Lifshitz equations governing the cosmological evolution of an initial fluctuation is presented. Lifshitz results valid for squares of the sound velocity equal to zero and 1/3 are extended in closed form to any equation of state where the pressure equals the total energy density times the square of the sound velocity. The solutions embody all the results found previously for special cases of the square of the sound velocity. It is found that the growth of any initial fluctuation is only an exponential function of time with an exponent of not more than 4/3 and is insufficient to produce galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by modifying the equation of state by including gravitational interactions is also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck length or equivalently, at a time of about 10 to the -43rd power sec. At those early times, the masses allowed by causality requirements are too small to be of interest in galaxy formation.
Mendenhall, C L; Moritz, T E; Roselle, G A; Morgan, T R; Nemchausky, B A; Tamburro, C H; Schiff, E R; McClain, C J; Marsano, L S; Allen, J I
1995-01-01
Active nutrition therapy and the anabolic steroid oxandrolone (OX), in selected patients with severe alcoholic hepatitis, significantly improved liver status and survival. We report here on the changes in their nutritional parameters. Protein energy malnutrition (PEM) was evaluated and expressed as percent of low normal in 271 patients initially, at 1 month and at 3 months. Active therapy consisted of OX plus a high caloric food supplement vs a matching placebo and a low calorie supplement. PEM was present in every patient; mean PEM score 60% of low normal. Most of the parameters improved significantly from baseline on standard care; the largest improvement seen in visceral proteins, the smallest in fat stores (skinfold thickness). Total PEM score significantly correlated with 6 month mortality (p = .0012). Using logistic regression analysis, creatinine height index, hand grip strength and total peripheral blood lymphocytes were the best risk factors for survival. When CD lymphocyte subsets replaced total lymphocyte counts in the equation, CD8 levels became a significant risk factor (p = .004). Active treatment produced significant risk factor (p = .004). Active treatment produced significant improvements in those parameters related to total body and muscle mass (ie, mid arm muscle area, p = .02; creatinine height index, p = .03; percent ideal body weight, p = .04). Deterioration in nutritional parameters is a significant risk factor for survival in severe patients with alcoholic hepatitis. This deterioration is reversible with standard hospital care. Active therapy further improves creatinine height index, mid arm muscle area and total lymphocyte counts. Hence, these later parameters appear to be the best indicators for follow-up assessments.
Investigation of a high power electromagnetic pulse source.
Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo
2012-09-01
A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.
Proton, Deuteron and Helion Spectra from Central Au+Au collisions at the AG
NASA Astrophysics Data System (ADS)
Baumgart, Stephen
2002-10-01
The AGS E895 experiment ran Au+Au collisions at bombarding energies of 2, 4, 6 and 8 AGeV. For central collisions, particle spectra have been measured for pions, kaons, protons, deuterons, and helions. From these spectra, the dN/dy distributions have been determined across a rapidity range from approximately -1.5 to 1.5 at maximum beam energy. Integration of the rapidity densities gives the total yields of each particle species. The final charge of the system can be calculated from the total yields to show that all of the initial charge is accounted for. The conclusions from the analyses of the condensate particle spectra will be presented. Fits to the spectra determine the freeze-out temperatures, radial flow velocities, and chemical potentials. The rapidity density distributions are used to estimate the longitudinal flow. The proton phase space density can be estimated by combining the proton spectra with the gaussian freeze-out radii intrepreted from a coalescence model employing the yields of protons, deuterons, tritons, and helions. Comparisons of the above results will be made to the experimental evidence from SIS, the AGS, the SPS, and RHIC.
Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales
NASA Astrophysics Data System (ADS)
Kurowski, M.; Smolarkiewicz, P. K.; Grabowski, W.
2015-12-01
Moist anelastic and compressible numerical solutions to the planetary baroclinic instability and climate benchmarks are compared. The solutions are obtained applying a consistent numerical framework for dis- crete integrations of the various nonhydrostatic flow equations. Moist extension of the baroclinic instability benchmark is formulated as an analog of the dry case. Flow patterns, surface vertical vorticity and pressure, total kinetic energy, power spectra, and total amount of condensed water are analyzed. The climate bench- mark extends the baroclinic instability study by addressing long-term statistics of an idealized planetary equilibrium and associated meridional transports. Short-term deterministic anelastic and compressible so- lutions differ significantly. In particular, anelastic baroclinic eddies propagate faster and develop slower owing to, respectively, modified dispersion relation and abbreviated baroclinic vorticity production. These eddies also carry less kinetic energy, and the onset of their rapid growth occurs later than for the compressible solutions. The observed differences between the two solutions are sensitive to initial conditions as they di- minish for large-amplitude excitations of the instability. In particular, on the climatic time scales, the anelastic and compressible solutions evince similar zonally averaged flow patterns with the matching meridional transports of entropy, momentum, and moisture.
Chen, Weimin; Xu, Yicheng; Shi, Shukai; Cao, Yizhong; Chen, Minzhi; Zhou, Xiaoyan
2018-02-02
The presence of non-poplar extracts, cutin, and wax layer in the wheat straw outer surface (WOS) greatly limit its application in bio-composite preparation. In this study, a dielectric-barrier-discharge plasma using water vapor as feeding gas was used to fast modify the WOS. The morphology, free radical concentrations, surface chemical components, and contact angles of WOS before and after plasma modification were investigated. Wheat straw was further prepared into wheat straw-based composites (WSC) and its bonding strength was evaluated by a paper tension meter. The results showed that water vapor plasma leads to the appearance of surface roughness, the generation of massive free radicals, and the introduction of oxygen-containing groups. In addition, both initial and equilibrium contact angle and the surface total free energy were significantly increased after plasma modification. These results synergistically facilitate the spread and permeation of adhesive onto the WOS and thus improve the bonding strength of all prepared WSCs. A good linear relationship between bonding strength and surface roughness parameters, contact angles, and total free energy were observed. In general, this study provided a time-saving and cost-effective modification method to realize WSC manufacture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Anthony L; Martin, Michaela A; Gemmer, Bob
In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club onmore » October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more assessments in large U.S. industrial plants. The 2007 assessments are addressing not only steam and process heating, but also pumping, compressed air, and fan systems. The full report reviews the tools and resources developed by the DOE ITP program before 2006, which are the foundation and catalyst for the Save Energy Now assessment efforts. The report describes the process by which industrial plants applied to obtain assessments in 2006 and the overall process and philosophy of conducting assessments. A comprehensive review of the results from the 2006 assessments is presented, along with a summary of key accomplishments and findings.« less
Pueyo Bellafont, Noèlia; Bagus, Paul S; Illas, Francesc
2015-06-07
A systematic study of the N(1s) core level binding energies (BE's) in a broad series of molecules is presented employing Hartree-Fock (HF) and the B3LYP, PBE0, and LC-BPBE density functional theory (DFT) based methods with a near HF basis set. The results show that all these methods give reasonably accurate BE's with B3LYP being slightly better than HF but with both PBE0 and LCBPBE being poorer than HF. A rigorous and general decomposition of core level binding energy values into initial and final state contributions to the BE's is proposed that can be used within either HF or DFT methods. The results show that Koopmans' theorem does not hold for the Kohn-Sham eigenvalues. Consequently, Kohn-Sham orbital energies of core orbitals do not provide estimates of the initial state contribution to core level BE's; hence, they cannot be used to decompose initial and final state contributions to BE's. However, when the initial state contribution to DFT BE's is properly defined, the decompositions of initial and final state contributions given by DFT, with several different functionals, are very similar to those obtained with HF. Furthermore, it is shown that the differences of Kohn-Sham orbital energies taken with respect to a common reference do follow the trend of the properly calculated initial state contributions. These conclusions are especially important for condensed phase systems where our results validate the use of band structure calculations to determine initial state contributions to BE shifts.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1030-000] West Oaks Energy NY/NE, LP; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization April 8, 2010. This is a supplemental notice in the above-referenced proceeding...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... plant (Alternative 4); construction and operation of a geothermal energy facility (Alternative 5); and... Implementation of Energy, Water, and Solid Waste Sustainability Initiatives at Fort Bliss, Texas and New Mexico... proposes to implement Net Zero energy, water and waste initiatives by 2020 at Fort Bliss to meet mandates...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1987-000] O.L.S. Energy-Agnews, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of O.L.S...
Diode laser prostatectomy (VLAP): initial canine evaluation
NASA Astrophysics Data System (ADS)
Kopchok, George E.; Verbin, Chris; Ayres, Bruce; Peng, Shi-Kaung; White, Rodney A.
1995-05-01
This study evaluated the acute and chronic effects of diode laser (960 nm) prostatectomy using a Prolase II fiber in a canine model (n equals 5). The laser fiber consists of a 1000 um quartz fiber which reflects a cone of laser energy, at 45 degree(s) to the axis of the fiber, into the prostatic urethra (Visual Laser Ablation of Prostate). Perineal access was used to guide a 15.5 Fr cystoscope to the level of the prostate. Under visual guidance and continual saline irrigation, 60 watts of laser power was delivered for 60 seconds at 3, 9, and 12 o'clock and 30 seconds at the 6 o'clock (posterior) positions for a total energy fluence of 12,600 J. One prostate received an additional 60 second exposure at 3 and 9 o'clock for a total fluence of 19,800 J. The prostates were evaluated at one day (n equals 1) and 8 weeks (n equals 4). The histopathology of laser effects at one day show areas of necrosis with loss of glandular structures and stromal edema. Surrounding this area was a zone of degenerative glandular structures extending up to 17.5 mm (cross sectional diameter). The histopathology of the 8 week laser treated animals demonstrated dilated prostatic urethras with maximum cross- sectional diameter of 23.4 mm (mean equals 18.5 +/- 3.9 mm). This study demonstrates the effectiveness of diode laser energy for prostatic tissue coagulation and eventual sloughing. The results also demonstrate the safety of diode laser energy, with similar tissue response as seen with Nd:YAG laser, for laser prostatectomy.
Fruits and vegetables displace, but do not decrease, total energy in school lunches.
Bontrager Yoder, Andrea B; Schoeller, Dale A
2014-08-01
The high overweight and obesity prevalence among US children is a well-established public health concern. Diet is known to play a causal role in obesity. Increasing fruit and vegetable (FV) consumption to recommended levels is proposed to help reduce obesity, because their bulk and low energy density are believed to reduce energy-dense food consumption (volume displacement hypothesis). This study tests this hypothesis at the lunch meal among upper-elementary students participating in a Farm to School (F2S) program. Digital photographs of students' school lunch trays were visually analyzed to identify the food items and amounts that were present and consumed before and after the meal. Using the USDA Nutrient Database, total and FV-only energy were calculated for each tray. Analysis of total- and non-FV energy intake was performed according to (1) levels of FV energy intake, (2) FV energy density, and (3) previous years of Farm to School programming. Higher intake of FV energy displaced non-FV energy, but total energy did not decrease across FV energy intake groups. High-FV-energy-density trays showed lower non-FV energy intake than low-FV-energy-density trays (470±179 vs. 534±219 kcal; p<0.0001). Trays from schools with more previous years of F2S programming decreased total and non-FV energy intake from school lunches (p for trend<0.0001, both). Increased FV consumption reduces non-FV energy intake, but does not reduce total energy intake. Therefore, this study does not support the volume displacement hypothesis and suggests calorie displacement instead.
Ramakrishna Mission initiative impact study: final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaurey, A.
2000-07-06
This report has been prepared by the Tata Energy Research Institute (TERI) for the National Renewable Energy Laboratory. It presents the results of the evaluation and impact assessment of solar photovoltaic lighting systems in the region of Sunderbans, West Bengal, that were deployed by a reputable non-governmental organization (Ramakrishna Mission) under the auspices of the INDO-US collaborative project. The objectives of the study were to evaluate the solar photovoltaic systems for their impact on the individual households as well as on the community, to assess the effectiveness of the implementation and financial mechanisms, and to draw a long-term strategy formore » NREL's activities in Sunderbans based on case studies of similar interventions. Under the project, provision was made to supply 300 domestic lighting systems (DLS) based on 53-Wp module capacity to individual households and a few other systems such as for lighting, medical refrigeration, and pumping water to community centers. For this study, 152 households were surveyed, of which 29 had also been a part of earlier pre- and post-installation surveys, 47 had been a part of the earlier post-installation survey, and 76 were households that were surveyed for the first time. A set of 46, out of the total 152 households, was selected for evaluating the systems for their technical performance with respect to module output, condition of the battery, and daily energy consumption. Of the total 300 modules, 2 had been stolen, 9 out of the total 300 batteries needed to be replaced, and 10 out of the 300 charge controllers were non-functional. The statistics for the surveyed households indicate 32 luminaire-related faults (blackening or flickering of compact fluorescent lights) and 11 other faults related to fuses, switches, etc.« less
Chwała, Wiesław; Klimek, Andrzej; Mirek, Wacław
2014-01-01
The aim of the study was to assess energy cost and total external work (total energy) depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers. The study involved 12 competitive race walkers aged 24.9 4.10 years with 6 to 20 years of experience, who achieved a national or international sports level. Their aerobic endurance was determined by means of a direct method involving an incremental exercise test on the treadmill. The participants performed three tests walking each time with one of the three speeds according to the same protocol: an 8-minute walk with at steady speed was followed by a recovery phase until the oxygen debt was repaid. To measure exercise energy cost, an indirect method based on the volume of oxygen uptake was employed. The gait of the participants was recorded using the 3D Vicon opto-electronic motion capture system. Values of changes in potential energy and total kinetic energy in a gate cycle were determined based on vertical displacements of the centre of mass. Changes in mechanical energy amounted to the value of total external work of muscles needed to accelerate and lift the centre of mass during a normalised gait cycle. The values of average energy cost and of total external work standardised to body mass and distance covered calculated for technical speed, threshold and racing speeds turned out to be statistically significant (p 0.001). The total energy cost ranged from 51.2 kJ.m-1 during walking at technical speed to 78.3 kJ.m-1 during walking at a racing speed. Regardless of the type of speed, the total external work of muscles accounted for around 25% of total energy cost in race walking. Total external work mainly increased because of changes in the resultant kinetic energy of the centre of mass movement. PMID:25713673
Stab Sensitivity of Energetic Nanolaminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gash, A; Barbee, T; Cervantes, O
2006-05-22
This work details the stab ignition, small-scale safety, and energy release characteristics of bimetallic Al/Ni(V) and Al/Monel energetic nanolaminate freestanding thin films. The influence of the engineered nanostructural features of the energetic multilayers is correlated with both stab initiation and small-scale energetic materials testing results. Structural parameters of the energetic thin films found to be important include the bi-layer period, total thickness of the film, and presence or absence of aluminum coating layers. In general the most sensitive nanolaminates were those that were relatively thick, possessed fine bi-layer periods, and were not coated. Energetic nanolaminates were tested for their stabmore » sensitivity as freestanding continuous parts and as coarse powders. The stab sensitivity of mock M55 detonators loaded with energetic nanolaminate was found to depend strongly upon both the particle size of the material and the configuration of nanolaminate material, in the detonator cup. In these instances stab ignition was observed with input energies as low as 5 mJ for a coarse powder with an average particle dimension of 400 {micro}m. Selected experiments indicate that the reacting nanolaminate can be used to ignite other energetic materials such as sol-gel nanostructured thermite, and conventional thermite that was either coated onto the multilayer substrate or pressed on it. These results demonstrate that energetic nanolaminates can be tuned to have precise and controlled ignition thresholds and can initiate other energetic materials and therefore are viable candidates as lead-free impact initiated igniters or detonators.« less
Perspectives in Energy Research: How Can We Change the Game? (2011 Summit)
Isaacs, Eric
2018-02-12
Eric Issacs, Director of DOE's Argonne National Laboratory, discussed the role of the EFRC Program and National Laboratories in developing game-changing energy technologies in the EFRC Summit session titled "Leading Perspectives in Energy Research." The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
Chu, Steven
2017-12-21
Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to "unleash America's science and research community" to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
Kovacs, Eva M R; Westerterp-Plantenga, Margriet S; Saris, Wim H M; Melanson, Kathleen J; Goossens, Ine; Geurten, Peter; Brouns, Fred
2002-01-01
The aim of the present study was to investigate associations between spontaneous meal initiations and blood glucose dynamics in overweight male subjects in negative energy balance. In a randomized crossover design, fifteen overweight male subjects (BMI 28.6 (SD 1.8 kg/m2) participated in three treatments, each of which consisted of 2 weeks consuming a low-energy diet followed by a test of voluntary food ingestion in the absence of time-related cues. The low-energy diet consisted of three daily meals (947 kJ) which were either semi-solid with or without 2.5 g guar gum, or solid, and a dinner of subject's own choice. During the time-blinded test, on the first, second, and third meal initiation subjects ingested a low-energy meal corresponding to that used during the preceding weeks. Changes in blood glucose were monitored on-line. Associations between spontaneous meal initiations and blood glucose dynamics were determined using the chi2 test. No difference was found between treatments in the occurrence of postabsorptive and postprandial declines in blood glucose or in associations between meal initiations and blood glucose dynamics. Postprandial dynamic blood glucose declines were associated with meal initiation (chi2 26 8, P<0.00 1), but postabsorptive and postprandial transient declines were not. In overweight subjects, the usual association between transient declines and spontaneous meal initiation was completely absent in negative energy balance.
Output testing of small-arms primers
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Doris, Thomas A.; Schimmel, Morry L.
1991-01-01
The performance of two standard primers for initiating small-caliber ammunition are compared to that of a primer for initiating aircraft escape-system components. Three testing methods are employed including: (1) firing the primer to measure total energy delivered; (2) monitoring output in terms of gaseous product-mass flow rate and pressure as a function of time; and (3) firing the primer onto ignition material to study gas pressure produced during ignition and burning as a function of time. The results of the test demonstrate differences in the ignitability factors of the standard primers and time peak pressures of less than 100 microseconds. One unexpected result is that two percussion primers (the FA-41 and the M42C1) developed for different applications have the same ignitability. The ignitability test method is shown to yield the most useful data and can be used to specify percussion primers and optimize their performance.
Acceleration and collimation of relativistic plasmas ejected by fast rotators
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.
2001-06-01
A stationary self-consistent outflow of a magnetised relativistic plasma from a rotating object with an initially monopole-like magnetic field is investigated in the ideal MHD approximation under the condition sigma U02 > 1, where sigma is the ratio of the Poynting flux over the mass energy flux at the equator and the surface of the star, with U0=gamma 0v0/c and gamma0 the initial four-velocity and Lorentz factor of the plasma. The mechanism of the magnetocentrifugal acceleration and self-collimation of the relativistic plasma is investigated. A jet-like relativistic flow along the axis of rotation is found in the steady-state solution under the condition sigma U02 > 1 with properties predicted analytically. The amount of the collimated matter in the jet is rather small in comparison to the total mass flux in the wind. An explanation for the weak self-collimation of relativistic winds is given.
A Plasma Diagnostic Set for the Study of a Variable Specific Impulse Magnetoplasma Rocket
NASA Astrophysics Data System (ADS)
Squire, J. P.; Chang-Diaz, F. R.; Bengtson Bussell, R., Jr.; Jacobson, V. T.; Wootton, A. J.; Bering, E. A.; Jack, T.; Rabeau, A.
1997-11-01
The Advanced Space Propulsion Laboratory (ASPL) is developing a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) using an RF heated magnetic mirror operated asymmetrically. We will describe the initial set of plasma diagnostics and data acquisition system being developed and installed on the VASIMR experiment. A U.T. Austin team is installing two fast reciprocating probes: a quadruple Langmuir and a Mach probe. These measure electron density and temperature profiles, electrostatic plasma fluctuations, and plasma flow profiles. The University of Houston is developing an array of 20 highly directional Retarding Potential Analyzers (RPA) for measuring ion energy distribution function profiles in the rocket plume, giving a measurement of total thrust. We have also developed a CAMAC based data acquisition system using LabView running on a Power Macintosh communicating through a 2 MB/s serial highway. We will present data from initial plasma operations and discuss future diagnostic development.
NASA Astrophysics Data System (ADS)
Carley, Sanya
In response to mounting concerns about climate change and an over-dependence on fossil fuels, U.S. state governments have assumed leadership roles in energy policy. State leaders across the country have constructed policies that target electricity sector operations, and aim to increase the percentage of renewable electricity generation, increase the use of distributed generation, and decrease carbon footprints. The policy literature, however, lacks compelling empirical evidence that state initiatives toward these ends are effective. This research seeks to contribute empirical insights that can help fill this void in the literature, and advance policy knowledge about the efficacy of these instruments. This three-essay dissertation focuses on the assessment of state energy policy instruments aimed at the diversification, decentralization, and decarbonization of the U.S. electricity sector. The first essay considers the effects of state efforts to diversify electricity portfolios via increases in renewable energy. This essay asks: are state-level renewable portfolio standards (RPS) effective at increasing renewable energy deployment, as well as the share of renewable energy out of the total generation mix? Empirical results demonstrate that RPS policies so far are effectively encouraging total renewable energy deployment, but not the percentage of renewable energy generation. The second essay considers state policy efforts to decentralize the U.S. electricity sector via instruments that remove barriers to distributed generation (DG) deployment. The primary question this essay addresses is whether the removal of legal barriers acts as a primary motivating factor for DG deployment. Empirical results reveal that net metering policies are positively associated with DG deployment; interconnection standards significantly increase the likelihood that end-users will adopt DG capacity; and utility DG adoption is related to standard market forces. The third essay asks: what are the potential effects of state energy policy portfolios on carbon emissions within the U.S. electricity sector? The results from an electricity modeling scenario analysis reveal that state policy portfolios have modest to minimal carbon mitigation effects in the long run if surrounding states do not adopt similar portfolios as well. The effectiveness of state-level policy portfolios can increase significantly if surrounding states adopt similar portfolios, or with the introduction of a national carbon price.
Werling, Malin; Fändriks, Lars; Olbers, Torsten; Bueter, Marco; Sjöström, Lars; Lönroth, Hans; Wallenius, Ville; Stenlöf, Kaj; le Roux, Carel W
2015-01-01
The mechanisms determining long-term weight maintenance after Roux-en-Y gastric bypass (RYGB) remain unclear. Cross sectional studies have suggested that enhanced energy expenditure (EE) may play a significant role and the aim of this study was to reveal the impact of RYGB on each major component constituting total EE. Six obese female subjects, without other co-morbidities, were assessed before and at 10 days, 3 and 20 months after RYGB. Indirect calorimetry in a metabolic chamber was used to assess 24 h EE at each study visit. Other measurements included body composition by DEXA, gut hormone profiles and physical activity (PA) using high sensitivity accelerometers. Median Body Mass Index decreased from 41.1 (range 39.1-44.8) at baseline to 28 kg/m2 (range 22.3-30.3) after 20 months (p<0.05). Lean tissue decreased from 55.9 (range 47.5-59.3) to 49.5 (range 41.1-54.9) kg and adipose tissue from 61 (range 56-64.6) to 27 (range 12-34.3) kg (both p<0.05). PA over 24 h did not change after surgery whereas 24 h EE and basal metabolic rate (BMR) decreased. EE after a standard meal increased after surgery when adjusted for total tissue (p<0.05). After an initial drop, RQ (respiratory quotient) had increased at 20 months, both as measured during 24 h and after food intake (p<0.05). RYGB surgery up-regulates RQ and EE after food intake resulting in an increased contribution to total EE over 24 h when corrected for total tissue.
The Clean Energy Manufacturing Initiative: Dissolving Silos
Danielson, David; Orr, Lynn; Sarkar, Reuben; Zayas, Jose; Johnson, Mark
2018-01-16
DOEâs work is closely tied to manufacturing because manufacturing is an important part of technology innovation and commercialization. Find out how DOE â through the Clean Energy Manufacturing Initiative â is helping America lead the clean energy revolution.
Menezes, Elizabete Wenzel de; Grande, Fernanda; Giuntini, Eliana Bistriche; Lopes, Tássia do Vale Cardoso; Dan, Milana Cara Tanasov; Prado, Samira Bernardino Ramos do; Franco, Bernadette Dora Gombossy de Melo; Charrondière, U Ruth; Lajolo, Franco Maria
2016-02-15
Dietary fiber (DF) contributes to the energy value of foods and including it in the calculation of total food energy has been recommended for food composition databases. The present study aimed to investigate the impact of including energy provided by the DF fermentation in the calculation of food energy. Total energy values of 1753 foods from the Brazilian Food Composition Database were calculated with or without the inclusion of DF energy. The energy values were compared, through the use of percentage difference (D%), in individual foods and in daily menus. Appreciable energy D% (⩾10) was observed in 321 foods, mainly in the group of vegetables, legumes and fruits. However, in the Brazilian typical menus containing foods from all groups, only D%<3 was observed. In mixed diets, the DF energy may cause slight variations in total energy; on the other hand, there is appreciable energy D% for certain foods, when individually considered. Copyright © 2015 Elsevier Ltd. All rights reserved.
10 CFR 26.55 - Initial authorization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Initial authorization. 26.55 Section 26.55 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Granting and Maintaining Authorization § 26.55 Initial authorization. (a) Before granting authorization to an individual who has never held authorization under this...
10 CFR 26.55 - Initial authorization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Initial authorization. 26.55 Section 26.55 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Granting and Maintaining Authorization § 26.55 Initial authorization. (a) Before granting authorization to an individual who has never held authorization under this...
10 CFR 26.55 - Initial authorization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Initial authorization. 26.55 Section 26.55 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Granting and Maintaining Authorization § 26.55 Initial authorization. (a) Before granting authorization to an individual who has never held authorization under this...