40 CFR 86.156-98 - Calculations; refueling test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... standard shall be computed by dividing the total refueling mass emissions by the total gallons of fuel... of the net hydrocarbon mass change and methanol mass change (if applicable) in the enclosure is used to determine refueling mass emissions. The mass is calculated from initial and final hydrocarbon and...
40 CFR 86.156-98 - Calculations; refueling test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... standard shall be computed by dividing the total refueling mass emissions by the total gallons of fuel... of the net hydrocarbon mass change and methanol mass change (if applicable) in the enclosure is used to determine refueling mass emissions. The mass is calculated from initial and final hydrocarbon and...
40 CFR 86.156-98 - Calculations; refueling test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... standard shall be computed by dividing the total refueling mass emissions by the total gallons of fuel... of the net hydrocarbon mass change and methanol mass change (if applicable) in the enclosure is used to determine refueling mass emissions. The mass is calculated from initial and final hydrocarbon and...
40 CFR 86.156-98 - Calculations; refueling test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of the net hydrocarbon mass change and methanol mass change (if applicable) in the enclosure is used... methanol (if applicable) concentrations in ppm carbon, initial and final enclosure ambient temperatures... standard shall be computed by dividing the total refueling mass emissions by the total gallons of fuel...
Code of Federal Regulations, 2010 CFR
2010-07-01
... vent; Ei, Eo = Mass rate of total organic compounds (TOC) (minus methane and ethane) or total HAP, from... reduction for all affected process vents, percent Ei = Mass rate of TOC (minus methane and ethane) or total... uncontrolled vents, as calculated in this section, kilograms TOC per hour or kilograms HAP per hour; Eo = Mass...
40 CFR 63.4961 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... controlled coating operation during the compliance period, kg. AI = Total mass of organic HAP in the coatings... the controlled coating operation in Equation 1D of this section. ER23MY03.028 Where: AI = Total mass...
40 CFR 63.4961 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... controlled coating operation during the compliance period, kg. AI = Total mass of organic HAP in the coatings... the controlled coating operation in Equation 1D of this section. ER23MY03.028 Where: AI = Total mass...
40 CFR 63.4961 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the compliance period, kg. AI = Total mass of organic HAP in the coatings used in the controlled... coating operation in Equation 1D of this section. ER23MY03.028 Where: AI = Total mass of organic HAP in...
40 CFR 63.4161 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliance period, kg. AI = total mass of organic HAP in the coatings used in the controlled coating... this section: ER23JY02.007 Where: AI = mass of organic HAP in the coatings used in the controlled... recovery system using a liquid-liquid material balance during the compliance period, kg. AI = total mass of...
40 CFR 63.4161 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... compliance period, kg. AI = total mass of organic HAP in the coatings used in the controlled coating... this section: ER23JY02.007 Where: AI = mass of organic HAP in the coatings used in the controlled... recovery system using a liquid-liquid material balance during the compliance period, kg. AI = total mass of...
40 CFR 63.4161 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance period, kg. AI = total mass of organic HAP in the coatings used in the controlled coating... this section: ER23JY02.007 Where: AI = mass of organic HAP in the coatings used in the controlled... recovery system using a liquid-liquid material balance during the compliance period, kg. AI = total mass of...
[Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].
Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia
2014-04-01
The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.
40 CFR 63.4751 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2013 CFR
2013-07-01
... mass of organic HAP emissions during the month, grams. A = Total mass of organic HAP in the coatings used during the month, grams, as calculated in Equation 1A of this section. B = Total mass of organic HAP in the thinners used during the month, grams, as calculated in Equation 1B of this section. C...
40 CFR 63.4751 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2011 CFR
2011-07-01
... during the month, grams. A = Total mass of organic HAP in the coatings used during the month, grams, as... month, grams, as calculated in Equation 1B of this section. C = Total mass of organic HAP in the cleaning materials used during the month, grams, as calculated in Equation 1C of this section. Rw = Total...
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.
1982-01-01
A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.
Conserved Quantities in General Relativity: From the Quasi-Local Level to Spatial Infinity
NASA Astrophysics Data System (ADS)
Chen, Po-Ning; Wang, Mu-Tao; Yau, Shing-Tung
2015-08-01
We define quasi-local conserved quantities in general relativity by using the optimal isometric embedding in Wang and Yau (Commun Math Phys 288(3):919-942, 2009) to transplant Killing fields in the Minkowski spacetime back to the 2-surface of interest in a physical spacetime. To each optimal isometric embedding, a dual element of the Lie algebra of the Lorentz group is assigned. Quasi-local angular momentum and quasi-local center of mass correspond to pairing this element with rotation Killing fields and boost Killing fields, respectively. They obey classical transformation laws under the action of the Poincaré group. We further justify these definitions by considering their limits as the total angular momentum and the total center of mass of an isolated system. These expressions were derived from the Hamilton-Jacobi analysis of the gravitational action and thus satisfy conservation laws. As a result, we obtained an invariant total angular momentum theorem in the Kerr spacetime. For a vacuum asymptotically flat initial data set of order 1, it is shown that the limits are always finite without any extra assumptions. We also study these total conserved quantities on a family of asymptotically flat initial data sets evolving by the vacuum Einstein evolution equation. It is shown that the total angular momentum is conserved under the evolution. For the total center of mass, the classical dynamical formula relating the center of mass, energy, and linear momentum is recovered, in the nonlinear context of initial data sets evolving by the vacuum Einstein evolution equation. The definition of quasi-local angular momentum provides an answer to the second problem in classical general relativity on Penrose's list (Proc R Soc Lond Ser A 381(1780):53-63, 1982).
Alterations of Body Mass Gain of Neonates (P7&P14) During Certrifugation AT 2G
NASA Technical Reports Server (NTRS)
Baer, L. A.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)
1996-01-01
Previous research has shown animal body mass to be significantly affected by centrifugation. At the onset of centrifugation, animals have a selective loss of fat, causing an initial body mass loss. Body mass gain will resume at the same rate as uncentrifuged animals, but this subsequent gain will be lower. For this study, two different ages of Sprague Hawley neonate families were observed during centrifugation. Eight litters (dam with eight neonates) of postnatal day (PN) seven and four litters (dam with ten neonates) of PN 14 were separated into two separate groups each, centrifuge (+2G(sub z)) and environmental controls (EC) and placed into either the centrifuge or an animal holding unit in the centrifuge rotunda for a total of 16 days. P7: Total litter start mass of +2G(sub z) litter = 138.90 g/end = 311.0 g EC litter = 150.85 g/end = 516.9 g. P14: Total litter start mass of +2G(sub z) litter = 287.70 g/end = 762.5g; EC litter = 245 g/end = 942.9 g. An initial body mass loss was observed in both groups of +2G(sub z) animals for two days after the onset of centrifugation, but then an increase began to occur. Literature suggests adult animals at +2G(sub z), will have an initial loss, but will resume similar growth rates over time as compared to control animals. The P7 +2G(sub z) animals began to gain body mass, but showed a significantly slower growth rate than their EC animals for the duration of the test (pace). The P14 +2G(sub z) animals began to show similar growth rates to their EC after day nine. At day 16, both groups of +2Gz animals were significantly smaller than the EC animals (pace). At +2Gz, animals experience an initial body mass loss. Older animals are able to resume similar growth rates as their controls, but younger animals showed growth rates to be significantly reduced.
NASA Astrophysics Data System (ADS)
Mainhagu, J.; Brusseau, M. L.
2016-09-01
The mass of contaminant present at a site, particularly in the source zones, is one of the key parameters for assessing the risk posed by contaminated sites, and for setting and evaluating remediation goals and objectives. This quantity is rarely known and is challenging to estimate accurately. This work investigated the efficacy of fitting mass-depletion functions to temporal contaminant mass discharge (CMD) data as a means of estimating initial mass. Two common mass-depletion functions, exponential and power functions, were applied to historic soil vapor extraction (SVE) CMD data collected from 11 contaminated sites for which the SVE operations are considered to be at or close to essentially complete mass removal. The functions were applied to the entire available data set for each site, as well as to the early-time data (the initial 1/3 of the data available). Additionally, a complete differential-time analysis was conducted. The latter two analyses were conducted to investigate the impact of limited data on method performance, given that the primary mode of application would be to use the method during the early stages of a remediation effort. The estimated initial masses were compared to the total masses removed for the SVE operations. The mass estimates obtained from application to the full data sets were reasonably similar to the measured masses removed for both functions (13 and 15% mean error). The use of the early-time data resulted in a minimally higher variation for the exponential function (17%) but a much higher error (51%) for the power function. These results suggest that the method can produce reasonable estimates of initial mass useful for planning and assessing remediation efforts.
Dispersion and Lifetime of the SO2 Cloud from the August 2008 Kasatochi Eruption
NASA Technical Reports Server (NTRS)
Krotkov, N. A.; Schoeberl, M. R.; Morris, G. A.; Carn, S.; Yang, K.
2010-01-01
Hemispherical dispersion of the SO2 cloud from the August 2008 Kasatochi eruption is analyzed using satellite data from the Ozone Monitoring Instrument (OMI) and the Goddard Trajectory Model (GTM). The operational OMI retrievals underestimate the total SO2 mass by 20-30% on 8-11 August, as compared with more accurate offline Extended Iterative Spectral Fit (EISF) retrievals, but the error decreases with time due to plume dispersion and a drop in peak SO2 column densities. The GTM runs were initialized with and compared to the operational OMI SO2 data during early plume dispersion to constrain SO2 plume heights and eruption times. The most probable SO2 heights during initial dispersion are estimated to be 10-12 km, in agreement with direct height retrievals using EISF algorithm and IR measurements. Using these height constraints a forward GTM run was initialized on 11 August to compare with the month-long Kasatochi SO2 cloud dispersion patterns. Predicted volcanic cloud locations generally agree with OMI observations, although some discrepancies were observed. Operational OMI SO2 burdens were refined using GTM-predicted mass-weighted probability density height distributions. The total refined SO2 mass was integrated over the Northern Hemisphere to place empirical constraints on the SO2 chemical decay rate. The resulting lower limit of the Kasatochi SO2 e-folding time is approx.8-9 days. Extrapolation of the exponential decay back in time yields an initial erupted SO2 mass of approx.2.2 Tg on 8 August, twice as much as the measured mass on that day.
NASA Astrophysics Data System (ADS)
Kaplan, Alexis C.; Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P.; Flaska, Marek; Pozzi, Sara A.
2014-11-01
As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently developed concepts that relate total plutonium mass with SFA multiplication and passive neutron count rate. In this work, the multiplication of the SFA is determined from the die-away time in the early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is achieved.
Predictors of Energy Compensation during Exercise Interventions: A Systematic Review
Riou, Marie-Ève; Jomphe-Tremblay, Simon; Lamothe, Gilles; Stacey, Dawn; Szczotka, Agnieszka; Doucet, Éric
2015-01-01
Weight loss from exercise-induced energy deficits is usually less than expected. The objective of this systematic review was to investigate predictors of energy compensation, which is defined as body energy changes (fat mass and fat-free mass) over the total amount of exercise energy expenditure. A search was conducted in multiple databases without date limits. Of 4745 studies found, 61 were included in this systematic review with a total of 928 subjects. The overall mean energy compensation was 18% ± 93%. The analyses indicated that 48% of the variance of energy compensation is explained by the interaction between initial fat mass, age and duration of exercise interventions. Sex, frequency, intensity and dose of exercise energy expenditure were not significant predictors of energy compensation. The fitted model suggested that for a shorter study duration, lower energy compensation was observed in younger individuals with higher initial fat mass (FM). In contrast, higher energy compensation was noted for younger individuals with lower initial FM. From 25 weeks onward, energy compensation was no longer different for these predictors. For studies of longer duration (about 80 weeks), the energy compensation approached 84%. Lower energy compensation occurs with short-term exercise, and a much higher level of energy compensation accompanies long-term exercise interventions. PMID:25988763
Dynamical Formation Signatures of Black Hole Binaries in the First Detected Mergers by LIGO
NASA Astrophysics Data System (ADS)
O'Leary, Ryan M.; Meiron, Yohai; Kocsis, Bence
2016-06-01
The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M tot roughly as \\propto {M}{{tot}}β , with β ≳ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO’s greater sensitivity to massive black hole binaries with M tot ≲ 80 {M}⊙ . We find that for power-law BH mass functions dN/dM ∝ M -α with α ≤ 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about ˜5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries.
VizieR Online Data Catalog: SDSS bulge, disk and total stellar mass estimates (Mendel+, 2014)
NASA Astrophysics Data System (ADS)
Mendel, J. T.; Simard, L.; Palmer, M.; Ellison, S. L.; Patton, D. R.
2014-01-01
We present a catalog of bulge, disk, and total stellar mass estimates for ~660000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al. (2011, Cat. J/ApJS/196/11), which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both their statistical likelihood and an analysis of their one-dimensional surface-brightness profiles, and include these metrics in the catalogs. Estimates of the total, bulge and disk stellar masses for both normal and dust-free models and their uncertainties are made publicly available here. (4 data files).
Lehman, R Michael; Rosentrater, Kurt A
2007-09-01
Distillers grains are coproduced with ethanol and carbon dioxide during the production of fuel ethanol from the dry milling and fermentation of corn grain, yet there is little basic microbiological information on these materials. We undertook a replicated field study of the microbiology of distillers wet grains (DWG) over a 9 day period following their production at an industrial fuel ethanol plant. Freshly produced DWG had a pH of about 4.4, a moisture content of about 53.5% (wet mass basis), and 4 x 10(5) total yeast cells/g dry mass, of which about 0.1% were viable. Total bacterial cells were initially below detection limits (ca. 10(6) cells/g dry mass) and then were estimated to be approximately 5 x 10(7) cells/g dry mass during the first 4 days following production. Culturable aerobic heterotrophic organisms (fungi plus bacteria) ranged between 10(4) and 10(5) CFU/g dry mass during the initial 4 day period, and lactic acid bacteria increased from 36 to 10(3) CFU/g dry mass over this same period. At 9 days, total viable bacteria and yeasts and (or) molds topped 10(8) CFU/g dry mass and lactic acid bacteria approached 10(6) CFU/g dry mass. Community phospholipid fatty acid analysis indicated a stable microbial community over the first 4 days of storage. Thirteen morphologically distinct isolates were recovered, of which 10 were yeasts and molds from 6 different genera, 2 were strains of the lactic-acid-producing Pediococcus pentosaceus and only one was an aerobic heterotrophic bacteria, Micrococcus luteus. The microbiology of DWG is fundamental to the assessment of spoilage, deleterious effects (e.g., toxins), or beneficial effects (e.g., probiotics) in its use as feed or in alternative applications.
Rehydration Capacities and Rates for Various Porcine Tissues after Dehydration
Meyer, Jacob P.; McAvoy, Kieran E.; Jiang, Jack
2013-01-01
The biphasic effects of liquid on tissue biomechanics are well known in cartilage and vocal folds, yet not extensively in other tissue types. Past studies have shown that tissue dehydration significantly impacts biomechanical properties and that rehydration can restore these properties in certain tissue types. However, these studies failed to consider how temporal exposure to dehydrating or rehydrating agents may alter tissue rehydration capacity, as overexposure to dehydration may permanently prevent rehydration to the initial liquid volume. Select porcine tissues were dehydrated until they reached between 100% and 40% of their initial mass. Each sample was allowed to rehydrate for 5 hours in a 0.9% saline solution, and the percent change between the initial and rehydrated mass values was calculated. Spearman correlation tests indicated a greater loss in mass despite rehydration when tissues were previously exposed to greater levels of dehydration. Additionally, Pearson correlation tests indicated the total liquid mass of samples after complete rehydration decreased when previously exposed to higher levels of dehydration. Rehydration rates were found by dehydrating tissues to 40% of their initial mass followed by rehydration in a 0.9% saline solution for 60 minutes, with mass measurements occurring in 15 minute intervals. All tissues rehydrated nonlinearly, most increasing significantly in mass up to 30 minutes after initial soaking. This study suggests the ability for tissues to rehydrate is dependent on the level of initial dehydration exposure. In vitro rehydration experiments therefore require controlled dosage and temporal exposure to dehydrating and rehydrating agents to avoid incomplete rehydration, and caution should be taken when combining different tissue types in models of hydration. PMID:24023753
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.
Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
White Dwarfs in Star Clusters: The Initial-Final Mass Relation for Stars from 0.85 to 8 M$_\\odot$
NASA Astrophysics Data System (ADS)
Cummings, Jeffrey; Kalirai, Jason; Tremblay, P.-E.; Ramírez-Ruiz, Enrico
2018-01-01
The spectroscopic study of white dwarfs provides both their mass, cooling age, and intrinsic photometric properties. For white dwarfs in the field of well-studied star clusters, this intrinsic photometry can be used to determine if they are members of that star cluster. Comparison of a member white dwarf's cooling age to its total cluster's age provides the evolutionary timescale of its progenitor star, and hence the mass. This is the initial-final mass relation (IFMR) for stars, which gives critical information on how a progenitor star evolves and loses mass throughout its lifetime, and how this changes with progenitor mass. Our work, for the first time, presents a uniform analysis of 85 white dwarf cluster members spanning from progenitor masses of 0.85 to 8 M$_\\odot$. Comparison of our work to theoretical IFMRs shows remarkable consistency in their shape but differences remain. We will discuss possible explanations for these differences, including the effects of stellar rotation.
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
A persistent mass: A case of aggressive Angiomyxoma of the vulva.
Brzezinska, B N; Clements, A E; Rath, K S; Reid, G C
2018-05-01
We present a case of aggressive angiomyxoma of the vulva. The patient presented with a persistent, enlarging vulvar mass, initially misdiagnosed as a Bartholin gland cyst. The patient underwent wide local excision, which resulted in total resection of the mass. Final pathology was consistent with aggressive angiomyxoma, a rare soft tissue tumor with a predilection for the female pelvis. Though rare, it is important to consider in the differential diagnosis of a pelvic mass, given the locally aggressive nature of this tumor and propensity for recurrence.
Energy and momentum analysis of the deployment dynamics of nets in space
NASA Astrophysics Data System (ADS)
Botta, Eleonora M.; Sharf, Inna; Misra, Arun K.
2017-11-01
In this paper, the deployment dynamics of nets in space is investigated through a combination of analysis and numerical simulations. The considered net is deployed by ejecting several corner masses and thanks to momentum and energy transfer from those to the innermost threads of the net. In this study, the net is modeled with a lumped-parameter approach, and assumed to be symmetrical, subject to symmetrical initial conditions, and initially slack. The work-energy and momentum conservation principles are employed to carry out centroidal analysis of the net, by conceptually partitioning the net into a system of corner masses and the net proper and applying the aforementioned principles to the corresponding centers of mass. The analysis provides bounds on the values that the velocity of the center of mass of the corner masses and the velocity of the center of mass of the net proper can individually attain, as well as relationships between these and different energy contributions. The analytical results allow to identify key parameters characterizing the deployment dynamics of nets in space, which include the ratio between the mass of the corner masses and the total mass, the initial linear momentum, and the direction of the initial velocity vectors. Numerical tools are employed to validate and interpret further the analytical observations. Comparison of deployment results with and without initial velocity of the net proper suggests that more complete and lasting deployment can be achieved if the corner masses alone are ejected. A sensitivity study is performed for the key parameters identified from the energy/momentum analysis, and the outcome establishes that more lasting deployment and safer capture (i.e., characterized by higher traveled distance) can be achieved by employing reasonably lightweight corner masses, moderate shooting angles, and low shooting velocities. A comparison with current literature on tether-nets for space debris capture confirms overall agreement on the importance and effect of the relevant inertial and ejection parameters on the deployment dynamics.
Increased Leg Bone Mineral Density and Content During the Initial Years of College Sport.
Scerpella, John J; Buehring, Bjoern; Hetzel, Scott J; Heiderscheit, Bryan C
2018-04-01
Scerpella, JJ, Buehring, B, Hetzel, SJ, and Heiderscheit, BC. Increased leg bone mineral density and content during the initial years of college sport. J Strength Cond Res 32(4): 1123-1130, 2018-Bone mineral density (BMD) and bone mineral content (BMC) data are useful parameters for evaluating how training practices promote bone health. We used dual-energy X-ray absorptiometry (DXA) to longitudinally assess sport-specific growth in leg and total body BMD/BMC over the initial 2 years of collegiate training. Eighty-five Division 1 collegiate basketball, hockey, and soccer athletes (50 males and 35 females; age 19.0 [0.8] years) underwent annual DXA scans. Leg and total body BMD/BMC were compared within and across two 1-year intervals (periods 1 and 2) using repeated-measures analysis of variance, adjusting for age, sex, race, and sport. Leg BMD, leg BMC, and total body BMC all increased over period 1 (0.05 g·cm [p = 0.001], 0.07 kg [p = 0.002], and 0.19 kg [p < 0.001] respectively). Changes in period 2 compared with period 1 were smaller for leg BMD (p = 0.001), leg BMC (p < 0.001), leg fat mass (p = 0.028), and total BMC (p = 0.005). Leg lean mass increased more during period 2 than period 1 (p = 0.018). Sports participation was the only significant predictor of change in leg BMD. Significant increases in both leg BMD and BMC were demonstrated over both 2-year periods, with greater gains during period 1. These gains highlight the importance of attentive training procedures, capitalizing on attendant physical benefits of increased BMD/BMC. Additional research in young adults, evaluating bone mass acquisition, will optimize performance and decrease risk of bone stress injury among collegiate athletes.
The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars
NASA Astrophysics Data System (ADS)
Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel
2014-02-01
We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ⊙. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ⊙. Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ⊙. At larger masses, the core-mass growth decreases steadily to ~10% at M initial = 3.4 M ⊙, after which there is a small hint of a upturn out to M initial = 3.8 M ⊙. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ~ 3 Myr and E = 1.2 × 1010 L ⊙ yr for M initial ~ 2 M ⊙ (t ~ 2 Myr for luminosities brighter than the red giant branch tip at log (L/L ⊙) > 3.4), decreasing to t = 0.4 Myr and E = 6.1 × 109 L ⊙ yr for stars with M initial ~ 3.5 M ⊙. The implications of these results are discussed, especially with respect to general studies aimed at characterizing the integrated light output of TP-AGB stars in population synthesis models.
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-08-01
The X-ray regime, where the most massive visible component of galaxy clusters, the intracluster medium, is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyse a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, Ωm, or the amplitude of initial density fluctuations, σ8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analysed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here, we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) that gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass-dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the (0.1-2.4) keV luminosity versus mass scaling relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).
Mixing Enhancement by Tabs in Round Supersonic Jets
NASA Technical Reports Server (NTRS)
Seiner, John M.; Grosch, C. E.
1998-01-01
The objective of this study was to analyze jet plume mass flow entrainment rates associated with the introduction of counter-rotating streamwise vorticity by prism shaped devices (tabs) located at the lip of the nozzle. We have examined the resulting mixing process through coordinated experimental tests and numerical simulations of the supersonic flow from a model axisymmetric nozzle. In the numerical simulations, the total induced vorticity was held constant while varying the distribution of counter-rotating vorticity around the nozzle lip training edge. In the experiment, the number of tabs applied was varied while holding the total projected area constant. Evaluations were also conducted on initial vortex strength. The results of this work show that the initial growth rate of the jet shear layer is increasingly enhanced as more tabs are added, but that the lowest tab count results in the largest entrained mass flow. The numerical simulations confirm these results.
Effects of Planetesimal Accretion on the Structural Evolution of Sub-Neptunes
NASA Astrophysics Data System (ADS)
Chatterjee, Sourav; Chen, Howard
2018-01-01
A remarkable discovery of NASA's Kepler mission is the wide diversity in the average densities of planets even when they are of similar mass. After gas disk dissipation, fully formed planets could accrete nearby planetesimals from a remnant planetesimal disk. We present calculations using the open-source stellar evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) modified to include the deposition of planetesimals into the H/He envelopes of sub-Neptunes. We show that planetesimal accretion can alter the mass-radius isochrones for these planets. The additional energy deposited via planetesimal accretion puffs up the envelopes leading to enhanced gas loss during the phase of rapid accretion. As a result, the same initial planet can evolve to contain very different final envelope-mass fractions. This manifest as differences in the average planet densities long after accretion stops. Differences in the accretion history, total accreted mass, and the inherent stochasticity of the accretion process can bring wide diversity in final average densities even when the initial planets are very similar. These effects are particularly important for planets initially less massive than ~10 MEarth and with envelope mass fraction less than ~10%, thought to be the most common type of planets discovered by Kepler.
A two-step initial mass function:. Consequences of clustered star formation for binary properties
NASA Astrophysics Data System (ADS)
Durisen, R. H.; Sterzik, M. F.; Pickett, B. K.
2001-06-01
If stars originate in transient bound clusters of moderate size, these clusters will decay due to dynamic interactions in which a hard binary forms and ejects most or all the other stars. When the cluster members are chosen at random from a reasonable initial mass function (IMF), the resulting binary characteristics do not match current observations. We find a significant improvement in the trends of binary properties from this scenario when an additional constraint is taken into account, namely that there is a distribution of total cluster masses set by the masses of the cloud cores from which the clusters form. Two distinct steps then determine final stellar masses - the choice of a cluster mass and the formation of the individual stars. We refer to this as a ``two-step'' IMF. Simple statistical arguments are used in this paper to show that a two-step IMF, combined with typical results from dynamic few-body system decay, tends to give better agreement between computed binary characteristics and observations than a one-step mass selection process.
NASA Astrophysics Data System (ADS)
Nikonova, L. G.; Golovatskaya, E. A.; Terechshenko, N. N.
2018-03-01
The research presents quantitative estimates of the decomposition rate of plant residues at the initial stages of the decay of two plant species (Eriophorum vaginatum and Sphagnum fuscum) in a peat deposit of the oligotrophic bog in the southern taiga subzone of Western Siberia. We also studied a change in the content of total carbon and nitrogen in plant residues and the activity of microflora in the initial stages of decomposition. At the initial stage of the transformation process of peat-forming plants the losses of mass of Sph. fuscum is 2.5 times lower then E. vaginatum. The most active mass losses, as well as a decrease in the total carbon content, is observed after four months of the experiment. The most active carbon removal is characteristic for E. vaginatum. During the decomposition of plant residues, the nitrogen content decreases, and the most intense nitrogen losses were characteristic for Sph. fuscum. The microorganisms assimilating organic and mineral nitrogen are more active in August, the oligotrophic and cellulolytic microorganisms – in July.
Lunar and terrestrial planet formation in the Grand Tack scenario
Jacobson, S. A.; Morbidelli, A.
2014-01-01
We present conclusions from a large number of N-body simulations of the giant impact phase of terrestrial planet formation. We focus on new results obtained from the recently proposed Grand Tack model, which couples the gas-driven migration of giant planets to the accretion of the terrestrial planets. The giant impact phase follows the oligarchic growth phase, which builds a bi-modal mass distribution within the disc of embryos and planetesimals. By varying the ratio of the total mass in the embryo population to the total mass in the planetesimal population and the mass of the individual embryos, we explore how different disc conditions control the final planets. The total mass ratio of embryos to planetesimals controls the timing of the last giant (Moon-forming) impact and its violence. The initial embryo mass sets the size of the lunar impactor and the growth rate of Mars. After comparing our simulated outcomes with the actual orbits of the terrestrial planets (angular momentum deficit, mass concentration) and taking into account independent geochemical constraints on the mass accreted by the Earth after the Moon-forming event and on the time scale for the growth of Mars, we conclude that the protoplanetary disc at the beginning of the giant impact phase must have had most of its mass in Mars-sized embryos and only a small fraction of the total disc mass in the planetesimal population. From this, we infer that the Moon-forming event occurred between approximately 60 and approximately 130 Myr after the formation of the first solids and was caused most likely by an object with a mass similar to that of Mars. PMID:25114304
Lunar and terrestrial planet formation in the Grand Tack scenario.
Jacobson, S A; Morbidelli, A
2014-09-13
We present conclusions from a large number of N-body simulations of the giant impact phase of terrestrial planet formation. We focus on new results obtained from the recently proposed Grand Tack model, which couples the gas-driven migration of giant planets to the accretion of the terrestrial planets. The giant impact phase follows the oligarchic growth phase, which builds a bi-modal mass distribution within the disc of embryos and planetesimals. By varying the ratio of the total mass in the embryo population to the total mass in the planetesimal population and the mass of the individual embryos, we explore how different disc conditions control the final planets. The total mass ratio of embryos to planetesimals controls the timing of the last giant (Moon-forming) impact and its violence. The initial embryo mass sets the size of the lunar impactor and the growth rate of Mars. After comparing our simulated outcomes with the actual orbits of the terrestrial planets (angular momentum deficit, mass concentration) and taking into account independent geochemical constraints on the mass accreted by the Earth after the Moon-forming event and on the time scale for the growth of Mars, we conclude that the protoplanetary disc at the beginning of the giant impact phase must have had most of its mass in Mars-sized embryos and only a small fraction of the total disc mass in the planetesimal population. From this, we infer that the Moon-forming event occurred between approximately 60 and approximately 130 Myr after the formation of the first solids and was caused most likely by an object with a mass similar to that of Mars. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Poteshin, S S; Zarakovsky, A I
2017-03-15
Original orthogonal acceleration (OA) electrostatic sector time of flight (TOF) mass analyzer is proposed those allows the second order focusing of time of flight by initial ions position. Resolving power aberration limit exceeding 80,000 FW (full width mass peak) was shown to be obtainable for mass analyzer with the total length of flight L=133.2cm, the average ion energy 3700V and the ion energy spread of 2.5% on the entrance of sector field. Copyright © 2016 Elsevier B.V. All rights reserved.
Mass shedding and partition of the a/m ratio between core and envelope in gravitational collapse
NASA Astrophysics Data System (ADS)
de Felice, F.; Yu, Y.
1986-06-01
The authors show that, even taking into account redistribution of angular momentum, the ratio (a/m) (a/m = cJ/GM2, where J and M are the total angular momentum and gravitational mass) of a collapsing and rotating body varies slowly with the mass, when mass shedding takes place. Thus formation of an extended structure outside a collapsing body, like rings, discs or diffuse matter, is not in general a guarantee that the ratio (a/m) of the inner object is decreased appreciably from its initial value.
Influence of previous body mass index and sex on regional fat changes in a weight loss intervention.
Benito, Pedro J; Cupeiro, Rocio; Peinado, Ana B; Rojo, Miguel A; Maffulli, Nicola
2017-11-01
Men and women may lose weight in a different fashion. This study compares the changes in different anatomical regions after a well-controlled weight loss program by sex and initial BMI. A total of 180 subjects (48 overweight women, 36 overweight men, and 48 obese women and 48 obese men) were recruited to participate in a 22-week weight loss programme (diet + exercise). Regarding percentage body weight change from baseline, there was no triple interaction (BMI, sex and anatomical region), but there was interaction between BMI and anatomical region (F2,840 = 34.5; p < 0.001), and between sex and anatomical region (F2,840 = 98.8; p < 0.001). Usually, the arms and legs are the regions that lose more weight in obese participants, but men lose the highest percentage of mass from the trunk. There were differences between men and women for the areas of left trunk mass (750g), right trunk mass (700g), total mass of the trunk (1400g), android mass (350g), and finally in the total mass in overweight participants (1300g), with higher values for men than for women. The region that loses more weight and fat is the trunk, followed by the legs, and then the arms, when the loss is observed in function of the total weight or fat lost. Both BMI and sex exert a definite influence fat loss, especially in some anatomical regions.
Collisions in Compact Star Clusters.
NASA Astrophysics Data System (ADS)
Portegies Zwart, S. F.
The high stellar densities in young compact star clusters, such as the star cluster R136 in the 30 Doradus region, may lead to a large number of stellar collisions. Such collisions were recently found to be much more frequent than previous estimates. The number of collisions scales with the number of stars for clusters with the same initial relaxation time. These collisions take place in a few million years. The collision products may finally collapse into massive black holes. The fraction of the total mass in the star cluster which ends up in a single massive object scales with the total mass of the cluster and its relaxation time. This mass fraction is rather constant, within a factor two or so. Wild extrapolation from the relatively small masses of the studied systems to the cores of galactic nuclei may indicate that the massive black holes in these systems have formed in a similar way.
NASA Astrophysics Data System (ADS)
Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Wang, X.; Brammer, G. B.; Broussard, A.; Amorin, R.; Castellano, M.; Fontana, A.; Merlin, E.; Schrabback, T.; Trenti, M.; Vulcani, B.
2016-11-01
We present a model using both strong and weak gravitational lensing of the galaxy cluster MACS J0416.1-2403, constrained using spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) and Hubble Frontier Fields (HFF) imaging data. We search for emission lines in known multiply imaged sources in the GLASS spectra, obtaining secure spectroscopic redshifts of 30 multiple images belonging to 15 distinct source galaxies. The GLASS spectra provide the first spectroscopic measurements for five of the source galaxies. The weak lensing signal is acquired from 884 galaxies in the F606W HFF image. By combining the weak lensing constraints with 15 multiple image systems with spectroscopic redshifts and nine multiple image systems with photometric redshifts, we reconstruct the gravitational potential of the cluster on an adaptive grid. The resulting map of total mass density is compared with a map of stellar mass density obtained from the deep Spitzer Frontier Fields imaging data to study the relative distribution of stellar and total mass in the cluster. We find that the projected stellar mass to total mass ratio, f ⋆, varies considerably with the stellar surface mass density. The mean projected stellar mass to total mass ratio is < {f}\\star > =0.009+/- 0.003 (stat.), but with a systematic error as large as 0.004-0.005, dominated by the choice of the initial mass function. We find agreement with several recent measurements of f ⋆ in massive cluster environments. The lensing maps of convergence, shear, and magnification are made available to the broader community in the standard HFF format.
Massive, wide binaries as tracers of massive star formation
NASA Astrophysics Data System (ADS)
Griffiths, Daniel W.; Goodwin, Simon P.; Caballero-Nieves, Saida M.
2018-05-01
Massive stars can be found in wide (hundreds to thousands au) binaries with other massive stars. We use N-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are present initially, and probably only one will survive if more than one is present initially. Therefore, any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74), which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass initial mass function (IMF) for its total mass suggests that however massive stars form, they `randomly sample' the IMF (as the massive stars did not `know' about each other).
NASA Astrophysics Data System (ADS)
Page, Don N.
2018-01-01
In an asymptotically flat spacetime of dimension d >3 and with the Newtonian gravitational constant G , a spherical black hole of initial horizon radius rh and mass M ˜rhd -3/G has a total decay time to Hawking emission of td˜rhd -1/G ˜G2 /(d -3 )M(d -1 )/(d -3 ) which grows without bound as the radius rh and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale ℓ and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of ℓd-1/G .
NASA Astrophysics Data System (ADS)
Irwin, M.; Broda, K.; Olfert, J. S.; Schill, G. P.; McMeeking, G. R.; Schnitzler, E.; Jäger, W.
2016-12-01
Refractory black carbon (rBC) has important atmospheric impacts due to its ability to absorb light, and its interactions with light are partly governed by the acquisition of coatings or other mixing processes. Here, a novel inversion method is presented which derives the mass fraction of coated rBC using a coupled centrifugal particle mass analyzer (CPMA) and single particle soot photometer (SP2). The CPMA selects particles of a known mass-to-charge ratio, and the SP2 detects the mass of rBC in each individual particle. The results of the inversion are the simultaneous number distributions of both rBC mass and total particle mass. Practically, the distribution can be integrated to find properties of the total aerosol population, for example, i) mass fraction of coating and ii) mass of coating on a particle of known total mass. This was demonstrated via smog chamber experiments. Initially, particles in the chamber were pure rBC, produced from a methane burner and passed through a diffusion dryer and thermal denuder. An organic (non-rBC) coating was then grown onto the aerosol over several hours via photooxidation with p-xylene. The CPMA-SP2 coupled system sampled the aerosol over the reaction period as the coating grew. The CPMA was sequentially stepped over a mass range from 0.3 to 28 fg and the SP2 measured the mass of rBC in each individual CPMA-classified particle. The number and mass distributions were constructed using the inversion. As expected, the mass and number distributions of rBC and total mass were equivalent for uncoated particles. As the non-rBC coating thickness increased over time, a shift in the number distribution towards higher total mass was observed. At the end of the experiment, fresh rBC (i.e. uncoated, bare particles) was injected into the chamber, creating an external mixture of coated and uncoated particles. This external mixture was clearly resolved in the number distribution of rBC and total particle mass. It is expected that the CPMA-SP2 methodology and inversion technique would be useful for field measurements where the rBC mass fraction, and mixing state of rBC-containing particles, could be accurately measured continuously. This methodology is not limited to evaluating coating mass—unlike SP2 only methods, it gives an unambiguous measure of any non-rBC material mixed with the particle.
Analyzing the Effects of Stellar Evolution on White Dwarf Ages
NASA Astrophysics Data System (ADS)
Moss, Adam; Von Hippel, Ted, Dr.
2018-01-01
White dwarfs are among the oldest objects in our Galaxy, thus if we can determine their ages, we can derive the star formation history of our Galaxy. As part of a larger project that will use Gaia parallaxes to derive the ages of tens of thousands of white dwarfs, we explore the impact on the total white dwarf age of various modern models of main sequence and red giant branch stellar evolution, as well as uncertainties in progenitor metallicity. In addition, we study the effect on white dwarf ages caused by uncertainties in the Initial Final Mass Relation, which is the mapping between zero age main sequence and white dwarf masses. We find that for old and high mass white dwarfs, uncertainties in these factors have little effect on the total white dwarf age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anzai, Chihaya; Hasselhuhn, Alexander; Höschele, Maik
We compute the contribution to the total cross section for the inclusive production of a Standard Model Higgs boson induced by two quarks with different flavour in the initial state. Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. Here, we describe the reduction to master integrals, the construction of a canonical basis, and the solution of the corresponding differential equations. Our analytic result contains both Harmonic Polylogarithms and iterated integrals with additional letters in the alphabet.
Surface composition changes in massive star evolution with mass loss
NASA Technical Reports Server (NTRS)
Noels, A.; Gabriel, M.; Vreux, J.-M.; Conti, P. S.
1980-01-01
A series of evolutionary models of 40-100 solar mass objects undergoing mass loss are constructed with the explicit inclusion of the surface composition of H, He, C, N, O elements. Mass loss rates similar to those observed in Of stars, 4 to 7 x 10 to the -6th solar masses/yr, result in an appearance at the surface of equilibrium CNO products, i.e. enhanced nitrogen and diminished carbon, while that star is still burning hydrogen in the core. This result obtains because the initial convection core is a relatively large fraction of the total mass and rather modest loss exposes levels of anomalous composition. It is suggested that these objects might reasonably be identified as those luminous late type WN stars still containing surface hydrogen.
Otto, Mirko; Elrefai, Mohamad; Krammer, Johannes; Weiß, Christel; Kienle, Peter; Hasenberg, Till
2016-03-01
Bariatric surgery is a safe and established treatment option of morbid obesity. Mere percentage of excess weight loss (%EWL) should not be the only goal of treatment. One hundred seventy-three obese patients were included in the study. They underwent either Roux-en-Y gastric bypass (RYGB; n = 127, mean body mass index (BMI) 45.7 ± 5.7 kg/m(2)) or sleeve gastrectomy (SG; n = 46, mean BMI 55.9 ± 7.8 kg/m(2)) for weight reduction. Body weight and body composition were assessed periodically by bioelectrical impedance analysis. After 1 year of observation, %EWL was 62.9 ± 18.0 % in RYGB and 52.3 ± 15.0 % in SG (p = 0.0024). Body fat was reduced in both procedures with a slight preference for SG, and lean body mass was better preserved in the RYGB group. Due to significant differences in the initial BMI between the two groups, an analysis of covariance was performed, which demonstrated no significant differences in the %EWL as well as in the other parameters of body composition 1 year after surgery. Using percentage of total weight loss to evaluate the outcomes between the two procedures, no significant difference was found (31.7 ± 8.4 % in RYGB and 30.5 ± 7.6 % in SG patients, p > 0.4). Excess weight loss is highly influenced by the initial BMI. Total weight loss seems to be a better measurement tool abolishing initial weight differences. SG and RYGB do not differ in terms of body composition and weight loss 1 year after surgery.
NASA Astrophysics Data System (ADS)
Matsumoto, Shigeaki; Toyooka, Satoru; Hoshino, Mitsuo
2002-09-01
In order to measure the total mass per unit area of dew droplets deposited on a metal plate in the dew-point hygrometer, the shape of a dew droplet deposited on a copper plate was measured accurately by using an interference microscope that employed a phase-shift technique. The microscope was constructed by adding a piezoelectric transducer to an usual interference microscope. A simple method that uses a conventional speaker horn and an optical fiber cable was introduced to depress speckle noise. The shape of a dew droplet deposited on the copper plate surface with 0.1 μm in average roughness was measured with an accuracy of +/-3nm. The mass of a dew droplet could be calculated numerically from the volume of its shape and was of the order of 10-9 g. The total mass of dew droplets deposited per unit area and the deposition velocity were obtained under a gentle wind. The total mass was the order of 10-5 g/cm2 at the beginning of deposition and the deposition velocity was ranged from 2x10-6 to 6x10-5 g/cm2.min.
Trajectory Optimization of a Bimodal Nuclear Powered Spacecraft to Mars
1990-05-29
velocity M = initial mass of spacecraft o m= ion fuel expulsion rate (constant) 0 = thrust direction angle = gravitational constant of Sun AVto t...total velocity change possible for the impulsive engines AV1 = velocity change for Earth escape AV2 = velocity change for Mars capture AVto t = AV + AV
Exact N 3LO results for qq ' → H + X
Anzai, Chihaya; Hasselhuhn, Alexander; Höschele, Maik; ...
2015-07-27
We compute the contribution to the total cross section for the inclusive production of a Standard Model Higgs boson induced by two quarks with different flavour in the initial state. Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. Here, we describe the reduction to master integrals, the construction of a canonical basis, and the solution of the corresponding differential equations. Our analytic result contains both Harmonic Polylogarithms and iterated integrals with additional letters in the alphabet.
Otsuka, Masaaki; Ueta, Toshiya; van Hoof, Peter A M; Sahai, Raghvendra; Aleman, Isabel; Zijlstra, Albert A; Chu, You-Hua; Villaver, Eva; Leal-Ferreira, Marcelo L; Kastner, Joel; Szczerba, Ryszard; Exter, Katrina M
2017-08-01
We perform a comprehensive analysis of the planetary nebula (PN) NGC 6781 to investigate the physical conditions of each of its ionized, atomic, and molecular gas and dust components and the object's evolution, based on panchromatic observational data ranging from UV to radio. Empirical nebular elemental abundances, compared with theoretical predictions via nucleosynthesis models of asymptotic giant branch (AGB) stars, indicate that the progenitor is a solar-metallicity, 2.25-3.0 M ⊙ initial-mass star. We derive the best-fit distance of 0.46 kpc by fitting the stellar luminosity (as a function of the distance and effective temperature of the central star) with the adopted post-AGB evolutionary tracks. Our excitation energy diagram analysis indicates high-excitation temperatures in the photodissociation region (PDR) beyond the ionized part of the nebula, suggesting extra heating by shock interactions between the slow AGB wind and the fast PN wind. Through iterative fitting using the Cloudy code with empirically derived constraints, we find the best-fit dusty photoionization model of the object that would inclusively reproduce all of the adopted panchromatic observational data. The estimated total gas mass (0.41 M ⊙ ) corresponds to the mass ejected during the last AGB thermal pulse event predicted for a 2.5 M ⊙ initial-mass star. A significant fraction of the total mass (about 70%) is found to exist in the PDR, demonstrating the critical importance of the PDR in PNe that are generally recognized as the hallmark of ionized/H + regions.
Atlan, Philippe; Bayar, Mohamed Amine; Lanoy, Emilie; Besse, Benjamin; Planchard, David; Ramon, Jordy; Raynard, Bruno; Antoun, Sami
2017-11-01
Advanced non-small cell lung cancer (NSCLC) is associated with weight loss which may reflect skeletal muscle mass (SMM) and/or total adipose tissue (TAT) depletion. This study aimed to describe changes in body composition (BC) parameters and to identify the factors unrelated to the tumor which modulate them. SMM, TAT, and the proportion of SMM to SMM + TAT were assessed with computed tomography. Estimates of each BC parameter at follow-up initiation and across time were derived from a mixed linear model of repeated measurements with a random intercept and a random slope. The same models were used to assess the independent effect of gender, age, body mass index (BMI), and initial values on changes in each BC parameter. Sixty-four patients with stage III or IV NSCLC were reviewed. The mean ± SD decreases in body weight and SMM were respectively 59 ± 3 g/week (P < 0.03) and 7 mm 2 /m 2 /week (P = 0.0003). During follow-up, no changes were identified in TAT nor in muscle density or in the proportion of SMM to SMM + TAT, estimated at 37 ± 2% at baseline. SMM loss was influenced by initial BMI (P < 0.0001) and SMM values (P = 0.0002): the higher the initial BMI or SMM values, the greater the loss observed. Weight loss was greater when the initial weight was heavier (P < 0.0001). Our results demonstrate that SMM wasting in NSCLC is lower when initial SMM and BMI values are low. These exploratory findings after our attempt to better understand the intrinsic factors associated with muscle mass depletion need to be confirmed in larger studies.
Kato, Hideaki; Ohata, Aya; Samukawa, Sei; Ueda, Atsuhisa; Ishigatsubo, Yoshiaki
2016-04-01
To investigate the association between single nucleotide polymorphisms (SNPs) in the adiponectin-encoding gene ADIPOQ and changes in serum lipid levels in HIV-1-infected patients after antiretroviral therapy (ART). ART-naïve HIV-1-infected patients were recruited to this prospective analysis. SNP +45 and SNP +276 genotype was determined by direct sequencing. Multivariate linear regression analysis was performed to analyse the effects of genotype, and predisposing conditions on serum total cholesterol and triglyceride in the 4 months before and after ART initiation. The study enrolled 78 patients with HIV-1-infection (73 male, five female; age range 22-67 years). HIV-1 viral load ≥5 log10 copies/ml, baseline total cholesterol ≥160 mg/dl, and CD4(+) lymphocyte count <200/µl were associated with increased serum total cholesterol levels after ART initiation. Protease inhibitor treatment and body mass index ≥25 kg/m(2) were associated with increased triglyceride levels after ART initiation. There were no significant associations between SNP +45 or SNP +276 genotype and serum total cholesterol or triglyceride levels. SNP +45 and SNP +276 genotype is not associated with changes in serum total cholesterol or triglyceride levels after ART initiation. © The Author(s) 2016.
Nindl, Bradley C; Scofield, Dennis E; Strohbach, Cassandra A; Centi, Amanda J; Evans, Rachel K; Yanovich, Ran; Moran, Daniel S
2012-07-01
Insulin-like growth factor 1 (IGF-I) is a robust metabolic and anabolic biomarker that has been demonstrated to be reflective of military training-induced body composition changes and influenced by initial aerobic fitness level. Greater mechanistic insight into the IGF-I response to physical training can potentially be gleaned by also examining other regulatory factors that influence IGF-I biological activity (i.e., insulin-like growth factor-binding proteins [IGFBPs] and inflammatory cytokine responses). The purpose of this study was to assess the influence of sex and initial fitness level on the IGF-I and inflammatory cytokine response to gender-integrated Israeli Defense Forces (IDF) basic combat training (BCT). Recruits (29 men, 19.1 ± 1.3 years; 93 women, 18.8 ± 0.6 years) were recruited from a 4-month gender-integrated BCT of the IDF. Blood was drawn and assayed for total IGF-I, free IGF-I, IGFBPs 1-6, tumor necrosis factor alpha (TNF-α), interleukin 6, and interleukin 1 beta. Body composition was determined via a 4-site skinfold (biceps, triceps, suprailiac, and subscapular) equation. Physical performance was assessed via a maximum volume of oxygen consumption (V[Combining Dot Above]O₂max) test using a treadmill protocol. All measures were obtained pre- and posttraining. A 2-way (sex × time) analysis of variance was used to test for statistical differences (p ≤ 0.05). Additionally, subjects were further partitioned (men and women separately) by tertiles of initial V[Combining Dot Above]O₂max to assess the influence of initial fitness level on the IGF-I system and inflammatory cytokine responses to physical training. Pearson product moment correlational analysis was also used to examine relationships between percent changes in blood measures and physical performance and body composition changes. All data are presented as mean ± SE. Time effects were observed only for total IGF-I, IGFBP-2, TNF-α, V[Combining Dot Above]O₂max, fat-free mass, and fat mass. The only significant (p ≤ 0.05) correlations observed for percent changes were in men between total IGF-I and V[Combining Dot Above]O₂max (r = 0.49) and body mass (r = -0.42) During gender-integrated Israeli Army BCT, men and women generally respond in a similar fashion with regard to blood measures (IGF-I system and inflammatory cytokines) and V[Combining Dot Above]O₂max. Initial fitness level only influenced the IGF-I response to training in women. Although the training-induced changes in total IGF-I (increase), IGFBP-2 (decrease), and TNF-α (decrease) are all indicative of an enhanced circulating anabolic milieu, only total IGF-I for the men was correlated with body composition and fitness improvements.
NASA Astrophysics Data System (ADS)
McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.
2014-09-01
We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.
ERIC Educational Resources Information Center
Leitner, Alfred
1982-01-01
If two rockets are identical except that one engine burns in one-tenth the time of the other (total impulse and initial fuel mass of the two engines being the same), which rocket will rise higher? Why? The answer to this question (part 1 response in v20 n6, p410, Sep 1982) is provided. (Author/JN)
The initial changes of fat deposits during the decomposition of human and pig remains.
Notter, Stephanie J; Stuart, Barbara H; Rowe, Rebecca; Langlois, Neil
2009-01-01
The early stages of adipocere formation in both pig and human adipose tissue in aqueous environments have been investigated. The aims were to determine the short-term changes occurring to fat deposits during decomposition and to ascertain the suitability of pigs as models for human decomposition. Subcutaneous adipose tissue from both species after immersion in distilled water for up to six months was compared using Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry and inductively coupled plasma-mass spectrometry. Changes associated with decomposition were observed, but no adipocere was formed during the initial month of decomposition for either tissue type. Early-stage adipocere formation in pig samples during later months was detected. The variable time courses for adipose tissue decomposition were attributed to differences in the distribution of total fatty acids between species. Variations in the amount of sodium, potassium, calcium, and magnesium were also detected between species. The study shows that differences in total fatty acid composition between species need to be considered when interpreting results from experimental decomposition studies using pigs as human body analogs.
Preservation of physical properties with Ensemble-type Kalman Filter Algorithms
NASA Astrophysics Data System (ADS)
Janjic, T.
2017-12-01
We show the behavior of the localized Ensemble Kalman filter (EnKF) with respect to preservation of positivity, conservation of mass, energy and enstrophy in toy models that conserve these properties. In order to preserve physical properties in the analysis as well as to deal with the non-Gaussianity in an EnKF framework, Janjic et al. 2014 proposed the use of physically based constraints in the analysis step to constrain the solution. In particular, constraints were used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In the study, mass and positivity were both preserved by formulating the filter update as a set of quadratic programming problems that incorporate nonnegativity constraints. Simple numerical experiments indicated that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that were more physically plausible both for individual ensemble members and for the ensemble mean. Moreover, in experiments designed to mimic the most important characteristics of convective motion, it is shown that the mass conservation- and positivity-constrained rain significantly suppresses noise seen in localized EnKF results. This is highly desirable in order to avoid spurious storms from appearing in the forecast starting from this initial condition (Lange and Craig 2014). In addition, the root mean square error is reduced for all fields and total mass of the rain is correctly simulated. Similarly, the enstrophy, divergence, as well as energy spectra can as well be strongly affected by localization radius, thinning interval, and inflation and depend on the variable that is observed (Zeng and Janjic, 2016). We constructed the ensemble data assimilation algorithm that conserves mass, total energy and enstrophy (Zeng et al., 2017). With 2D shallow water model experiments, it is found that the conservation of enstrophy within the data assimilation effectively avoids the spurious energy cascade of rotational part and thereby successfully suppresses the noise generated by the data assimilation algorithm. The 14-day deterministic and ensemble free forecast, starting from the initial condition enforced by both total energy and enstrophy constraints, produces the best prediction.
Adiabatic Mass Loss Model in Binary Stars
NASA Astrophysics Data System (ADS)
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.
Extrinsic versus intrinsic hand muscle dominance in finger flexion.
Al-Sukaini, A; Singh, H P; Dias, J J
2016-05-01
This study aims to identify the patterns of dominance of extrinsic or intrinsic muscles in finger flexion during initiation of finger curl and mid-finger flexion. We recorded 82 hands of healthy individuals (18-74 years) while flexing their fingers and tracked the finger joint angles of the little finger using video motion tracking. A total of 57 hands (69.5%) were classified as extrinsic dominant, where the finger flexion was initiated and maintained at proximal interphalangeal and distal interphalangeal joints. A total of 25 (30.5%) were classified as intrinsic dominant, where the finger flexion was initiated and maintained at the metacarpophalangeal joint. The distribution of age, sex, dominance, handedness and body mass index was similar in the two groups. This knowledge may allow clinicians to develop more efficient rehabilitation regimes, since intrinsic dominant individuals would not initiate extrinsic muscle contraction till later in finger flexion, and might therefore be allowed limited early active motion. For extrinsic dominant individuals, by contrast, initial contraction of extrinsic muscles would place increased stress on the tendon repair site if early motion were permitted. © The Author(s) 2016.
Horner, Neilann K; Patterson, Ruth E; Neuhouser, Marian L; Lampe, Johanna W; Beresford, Shirley A; Prentice, Ross L
2002-10-01
Errors in self-reported dietary intake threaten inferences from studies relying on instruments such as food-frequency questionnaires (FFQs), food records, and food recalls. The objective was to quantify the magnitude, direction, and predictors of errors associated with energy intakes estimated from the Women's Health Initiative FFQ. Postmenopausal women (n = 102) provided data on sociodemographic and psychosocial characteristics that relate to errors in self-reported energy intake. Energy intake was objectively estimated as total energy expenditure, physical activity expenditure, and the thermic effect of food (10% addition to other components of total energy expenditure). Participants underreported energy intake on the FFQ by 20.8%; this error trended upward with younger age (P = 0.07) and social desirability (P = 0.09) but was not associated with body mass index (P = 0.95). The correlation coefficient between reported energy intake and total energy expenditure was 0.24; correlations were higher among women with less education, higher body mass index, and greater fat-free mass, social desirability, and dissatisfaction with perceived body size (all P < 0.10). Energy intake is generally underreported, and both the magnitude of the error and the association of the self-reporting with objectively estimated intake appear to vary by participant characteristics. Studies relying on self-reported intake should include objective measures of energy expenditure in a subset of participants to identify person-specific bias within the study population for the dietary self-reporting tool; these data should be used to calibrate the self-reported data as an integral aspect of diet and disease association studies.
Simpkins, D.G.; Hubert, W.A.; Martinez Del Rio, C.; Rule, D.C.
2004-01-01
The hypothesis that body size and swimming velocity affect proximate body composition, wet mass and size-selective mortality of fasted fish was evaluated using small (107 mm mean total length, LT) and medium (168 mm mean LT) juvenile rainbow trout Oncorhynchus mykiss that were sedentary or swimming (c. 1 or 2 body lengths-1) and fasted for 147 days. The initial amount of energy reserves in the bodies of fish varied with L T. Initially having less lipid mass and relatively higher mass-specific metabolic rates caused small rainbow trout that were sedentary to die of starvation sooner and more frequently than medium-length fish that were sedentary. Swimming at 2 body length s-1 slightly increased the rate of lipid catabolism relative to 1 body length s-1, but did not increase the occurrence of mortality among medium fish. Death from starvation occurred when fish had <3.2% lipid remaining in their bodies. Juvenile rainbow trout endured long periods without food, but their ability to resist death from starvation was limited by their length and initial lipid reserves. ?? 2004 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Yip, Shui Cheung
We study the longitudinal motion of a nonlinearly viscoelastic bar with one end fixed and the other end attached to a heavy tip mass. This problem is a precise continuum mechanical analog of the basic discrete mechanical problem of the motion of a mass point on a (massless) spring. This motion is governed by an initial-boundary-value problem for a class of third-order quasilinear parabolic-hyperbolic partial differential equations subject to a nonstandard boundary condition, which is the equation of motion of the tip mass. The ratio of the mass of the bar to that of the tip mass is taken to be a small parameter varepsilon. We prove that this problem has a unique regular solution that admits a valid asymptotic expansion, including an initial-layer expansion, in powers of varepsilon for varepsilon near 0. The fundamental constitutive hypothesis that the tension be a uniformly monotone function of the strain rate plays a critical role in a delicate proof that each term of the initial layer expansion decays exponentially in time. These results depend on new decay estimates for the solution of quasilinear parabolic equations. The constitutive hypothesis that the viscosity become large where the bar nears total compression leads to important uniform bounds for the strain and the strain rate. Higher-order energy estimates support the proof by the Schauder Fixed-Point Theorem of the existence of solutions having a level of regularity appropriate for the asymptotics.
Agglomeration of dust in convective clouds initialized by nuclear bursts
NASA Astrophysics Data System (ADS)
Bacon, D. P.; Sarma, R. A.
Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.
NASA Astrophysics Data System (ADS)
Aranha, R. F.; Soares, I. Damião; Tonini, E. V.
2012-01-01
We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net gravitational wave flux is nonzero for equal-mass colliding black holes in non-head-on collisions. The momentum extraction and the patterns of the momentum fluxes, as a function of the incidence angle, are examined. The relation between the incidence angle and the scattering angle closely approximates a relation for the inelastic collision of classical particles in Newtonian dynamics.
Young, Joshua E; Pan, Zhongli; Teh, Hui Ean; Menon, Veena; Modereger, Brent; Pesek, Joseph J; Matyska, Maria T; Dao, Lan; Takeoka, Gary
2017-04-01
The peels of different pomegranate cultivars (Molla Nepes, Parfianka, Purple Heart, Wonderful and Vkunsyi) were compared in terms of phenolic composition and total phenolics. Analyses were performed on two silica hydride based stationary phases: phenyl and undecanoic acid columns. Quantitation was accomplished by developing a liquid chromatography with mass spectrometry approach for separating different phenolic analytes, initially in the form of reference standards and then with pomegranate extracts. The high-performance liquid chromatography columns used in the separations had the ability to retain a wide polarity range of phenolic analytes, as well as offering beneficial secondary selectivity mechanisms for resolving the isobaric compounds, catechin and epicatechin. The Vkunsyi peel extract had the highest concentration of phenolics (as determined by liquid chromatography with mass spectrometry) and was the only cultivar to contain the important compound punicalagin. The liquid chromatography with mass spectrometry data were compared to the standard total phenolics content as determined by using the Folin-Ciocalteu assay. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meyer, D M; Brei, C; Stecher, L; Much, D; Brunner, S; Hauner, H
2017-08-01
Research indicates that breast milk contains bioactive components that influence metabolism in infancy and may play a role in the prevention of obesity in early childhood. In our initial study, 147 breastfeeding mother/child pairs were followed from birth to 2 years of age to examine the relationship between breast milk leptin and total adiponectin (collected at 6 weeks and 4 months postpartum) and infant body composition. Higher breast milk total adiponectin was related to greater fat mass and weight gain in children at 1 and 2 years of age, whereas leptin showed no association. In this follow-up, we examined the relationship between both adipokines and children's body weight, body mass index percentiles, sum of four skin-folds, percentage of body fat, fat mass and lean body mass at 3, 4 and 5 years of age. Breast milk adipokines were largely unrelated to child anthropometric measures. Our results do not provide significant evidence that breast milk adipokines can predict adiposity in preschool children. © 2016 World Obesity Federation.
NASA Astrophysics Data System (ADS)
Bogdanov, O. V.; Rozhkova, E. I.; Pivovarov, Yu. L.; Kuzminchuk-Feuerstein, N.
2018-02-01
The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the Super-FRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector.
Laddu, Deepika R; Cawthon, Peggy M; Parimi, Neeta; Hoffman, Andrew R; Orwoll, Eric; Miljkovic, Iva; Stefanick, Marcia L
2017-06-05
Excess adiposity gains and significant lean mass loss may be risk factors for chronic disease in old age. Long-term patterns of change in physical activity (PA) and their influence on body composition decline during aging has not been characterized. We evaluated the interrelationships of PA and body composition at the outset and over longitudinal follow-up to changes in older men. Self-reported PA by the Physical Activity Scale for the Elderly (PASE), clinic body weight, and whole-body lean mass (LM) and fat mass, by dual-energy x-ray absorptiometry (DXA), were assessed in 5964 community-dwelling men aged ≥65 years at baseline (2000-2002) and at two subsequent clinic visits up until March 2009 (an average 4.6 and 6.9 years later). Group-based trajectory modeling (GBTM) identified patterns of change in PA and body composition variables. Relationships of PA and body composition changes were then assessed. GBTM identified three discrete trajectory patterns, all with declining PA, associated primarily with initial PA levelshigh-activity (7.2% of men), moderate-activity (50.0%), and low-activity (42.8%). In separate models, GBTM identified eight discrete total weight change groups, five fat mass change groups, and six LM change groups. Joint trajectory modeling by PA and body composition group illustrated significant declines in total weight and LM, whereas fat mass levels were relatively unchanged among high-activity and low-activity-declining groups, and significantly increased in the moderate-activity-declining group. Although patterns of change in PA and body composition were identified, groups were primarily differentiated by initial PA or body composition rather than by distinct trajectories of change in these variables.
Zeng, Lixi; Li, Huijuan; Wang, Thanh; Gao, Yan; Xiao, Ke; Du, Yuguo; Wang, Yawei; Jiang, Guibin
2013-01-15
Sewage treatment plants (STP) are an important source of short chain chlorinated paraffins (SCCPs) to the ambient environment through discharge of effluent and application of sludge. In this work, a field study was conducted to determine the behavior and possible removal of SCCPs during the sewage treatment process in an advanced municipal STP in Beijing, China. SCCPs were detected in all sewage water and sludge samples, and 97% of the initial mass loading in raw sewage was found to be associated with suspended matter. The total concentrations in raw influent, tertiary effluent, and dewatered sludge were 184 ± 19 ng/L, 27 ± 6 ng/L, and 15.6 ± 1.4 μg/g dry weight (d.w.), respectively. The dissolved concentrations of total SCCPs (∑SCCPs) significantly decreased during mechanical, biological, and chemical treatments. SCCP homologue profiles in aqueous phase were distinctly different from those in solid phase. Along the treatment process, the relative abundance of shorter chain and lower chlorinated congeners gradually increased in sewage water, but no obvious variations of homologue profiles were found in sludge. Mass flow analysis indicated, the removal efficiency in aqueous phase for ∑SCCPs was 82.2%, and the congener-specific removal efficiencies were positively related to their solid-water partition coefficients (K(d)). Mass balance results indicated that 0.8% and 72.6% of the initial SCCP mass loading were ultimately found in the effluents and dewatered sludge, respectively, while the remaining 26.6% was lost mainly due to biodegradation/biotransformation. It was suggested that the activated sludge system including basic anaerobic-anoxic-aerobic processes played an effective role in removing SCCPs from the wastewater, while the sorption to sludge by hydrophobic interactions was an important fate of SCCPs during the sewage treatment.
Impact of kinetic mass transfer on free convection in a porous medium
NASA Astrophysics Data System (ADS)
Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.
2016-05-01
We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.
A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...
A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...
Magnetic massive stars as progenitors of `heavy' stellar-mass black holes
NASA Astrophysics Data System (ADS)
Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.
2017-04-01
The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.
NASA Astrophysics Data System (ADS)
Sang, Min; Wang, Ming; Liu, Jianhui; Zhang, Chengwu; Li, Aifen
2012-06-01
The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20°C with the temperature being set at 20, 24, and 28°C. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100 μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.
Characterization of fresh and aged organic aerosol emissions from meat charbroiling
NASA Astrophysics Data System (ADS)
Kaltsonoudis, Christos; Kostenidou, Evangelia; Louvaris, Evangelos; Psichoudaki, Magda; Tsiligiannis, Epameinondas; Florou, Kalliopi; Liangou, Aikaterini; Pandis, Spyros N.
2017-06-01
Cooking emissions can be a significant source of fine particulate matter in urban areas. In this study the aerosol- and gas-phase emissions from meat charbroiling were characterized. Greek souvlakia with pork were cooked using a commercial charbroiler and a fraction of the emissions were introduced into a smog chamber where after a characterization phase they were exposed to UV illumination and oxidants. The particulate and gas phases were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a proton-transfer-reaction mass spectrometer (PTR-MS) correspondingly. More than 99 % of the aerosol emitted was composed of organic compounds, while black carbon (BC) contributed 0.3 % and the inorganic species less than 0.5 % of the total aerosol mass. The initial O : C ratio was approximately 0.09 and increased up to 0.30 after a few hours of chemical aging (exposures of 1010 molecules cm-3 s for OH and 100 ppb h for ozone). The initial and aged AMS spectra differed considerably (θ = 27°). Ambient measurements were also conducted during Fat Thursday in Patras, Greece, when traditionally meat is charbroiled everywhere in the city. Positive matrix factorization (PMF) revealed that cooking organic aerosol (COA) reached up to 85 % of the total OA from 10:00 to 12:00 LST that day. The ambient COA factor in two major Greek cities had a mass spectrum during spring and summer similar to the aged meat charbroiling emissions. In contrast, the ambient COA factor during winter resembled strongly the fresh laboratory meat charbroiling emissions.
Thermal behavior of Charmonium in the vector channel from QCD sum rules
NASA Astrophysics Data System (ADS)
Dominguez, C. A.; Loewe, M.; Rojas, J. C.; Zhang, Y.
2010-11-01
The thermal evolution of the hadronic parameters of charmonium in the vector channel, i.e. the J/Ψ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold are analyzed in the framework of thermal Hilbert moment QCD sum rules. The continuum threshold s0 has the same behavior as in all other hadronic channels, i.e. it decreases with increasing temperature until the PQCD threshold s0 = 4mQ2 is reached at T≃1.22Tc (mQ is the charm quark mass). The other hadronic parameters behave in a very different way from those of light-light and heavy-light quark systems. The J/Ψ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to T≃1.04Tc beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant beginning to increase monotonically around T≃Tc. This behavior of the total width and of the leptonic decay constant is a strong indication that the J/Ψ resonance might survive beyond the critical temperature for deconfinement, in agreement with some recent lattice QCD results.
Quantum Model of a Charged Black Hole
NASA Astrophysics Data System (ADS)
Gladush, V. D.
A canonical approach for constructing of the classical and quantum description spherically-symmetric con guration gravitational and electromagnetic elds is considered. According to the sign of the square of the Kodama vector, space-time is divided into R-and T-regions. By virtue of the generalized Birkho theorem, one can choose coordinate systems such that the desired metric functions in the T-region depend on the time, and in the R-domain on the space coordinate. Then, the initial action for the con guration breaks up into terms describing the elds in the T- and R-regions with the time and space evolutionary variable, respectively. For these regions, Lagrangians of the con guration are constructed, which contain dynamic and non-dynamic degrees of freedom, leading to constrains. We concentrate our attention on dynamic T-regions. There are two additional conserved physical quantities: the charge and the total mass of the system. The Poisson bracket of the total mass with the Hamiltonian function vanishes in the weak sense. A classical solution of the eld equations in the con guration space (minisuperspace) is constructed without xing non-dynamic variable. In the framework of the canonical approach to the quantum mechanics of the system under consideration, physical states are found by solving the Hamiltonian constraint in the operator form (the DeWitt equation) for the system wave function Ψ. It also requires that Ψ is an eigenfunction of the operators of charge and total mass. For the symmetric of the mass operator the corresponding ordering of operators is carried out. Since the total mass operator commutes with the Hamiltonian in the weak sense, its eigenfunctions must be constructed in conjunction with the solution of the DeWitt equation. The consistency condition leads to the ansatz, with the help of which the solution of the DeWitt equation for the state Ψem with a defined total mass and charge is constructed, taking into account the regularity condition on the horizon. The mass and charge spectra of the con guration in this approach turn out to be continuous. It is interesting that formal quantization in the R-region with a space evolutionary coordinate leads to a similar result.
Effective-one-body model for black-hole binaries with generic mass ratios and spins
NASA Astrophysics Data System (ADS)
Taracchini, Andrea; Buonanno, Alessandra; Pan, Yi; Hinderer, Tanja; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Mroué, Abdul H.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilágyi, Béla; Taylor, Nicholas W.; Zenginoglu, Anil
2014-03-01
Gravitational waves emitted by black-hole binary systems have the highest signal-to-noise ratio in LIGO and Virgo detectors when black-hole spins are aligned with the orbital angular momentum and extremal. For such systems, we extend the effective-one-body inspiral-merger-ringdown waveforms to generic mass ratios and spins calibrating them to 38 numerical-relativity nonprecessing waveforms produced by the SXS Collaboration. The numerical-relativity simulations span mass ratios from 1 to 8, spin magnitudes up to 98% of extremality, and last for 40 to 60 gravitational-wave cycles. When the total mass of the binary is between 20 and 200M⊙, the effective-one-body nonprecessing (dominant mode) waveforms have overlap above 99% (using the advanced-LIGO design noise spectral density) with all of the 38 nonprecessing numerical waveforms, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling. We also show that—without further calibration— the precessing effective-one-body (dominant mode) waveforms have overlap above 97% with two very long, strongly precessing numerical-relativity waveforms, when maximizing only on the initial phase and time.
NASA Astrophysics Data System (ADS)
Yan, Zhiqiang; Jerabkova, Tereza; Kroupa, Pavel
2017-11-01
Here we present a full description of the integrated galaxy-wide initial mass function (IGIMF) theory in terms of the optimal sampling and compare it with available observations. Optimal sampling is the method we use to discretize the IMF deterministically into stellar masses. Evidence indicates that nature may be closer to deterministic sampling as observations suggest a smaller scatter of various relevant observables than random sampling would give, which may result from a high level of self-regulation during the star formation process. We document the variation of IGIMFs under various assumptions. The results of the IGIMF theory are consistent with the empirical relation between the total mass of a star cluster and the mass of its most massive star, and the empirical relation between the star formation rate (SFR) of a galaxy and the mass of its most massive cluster. Particularly, we note a natural agreement with the empirical relation between the IMF power-law index and the SFR of a galaxy. The IGIMF also results in a relation between the SFR of a galaxy and the mass of its most massive star such that, if there were no binaries, galaxies with SFR < 10-4M⊙/yr should host no Type II supernova events. In addition, a specific list of initial stellar masses can be useful in numerical simulations of stellar systems. For the first time, we show optimally sampled galaxy-wide IMFs (OSGIMF) that mimic the IGIMF with an additional serrated feature. Finally, a Python module, GalIMF, is provided allowing the calculation of the IGIMF and OSGIMF dependent on the galaxy-wide SFR and metallicity. A copy of the python code model is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A126
Ren, Wei-ling; Guo, Jian-fen; Wu, Bo-bo; Wan, Jing-juan; Ji, Shu-rong; Liu, Xiao-fei
2015-04-01
A field experiment was conducted to understand the decomposition rates and chemical composition changes of leaf litter in logging residues of a 35-year-old secondary Castanopsis carlesii plantation over a period of one year. Mass loss rate of leaf litter showed an exponential decrease with time from May 2012 to April 2013, with a total 80% loss of initial dry mass. Net potassium (K) release was observed during this period, with only 5% of initial K remained. Nitrogen ( N) featured a pattern of accumulation at the early stage and release later, while phosphorus (P) exhibited a sequence of release, accumulation, and release. The remaining of N and P were 19% and 16% of their initial mass, respectively. The release rate was highest for K and the lowest for N. Decomposition of lignin indicated a trend of release-accumulation-release from May 2012 to October 2012, with no further significant change from November 2012 to the end of the experiment. The concentration of cellulose nearly unchanged during the experiment. The N/P rate increased with decomposition, ranging from 18.6 to 21.1. The lignin/N rate fluctuated greatly at the early stage and then almost stabilized thereafter.
Petit, Philippe; Trosseille, Xavier; Dufaure, Nicolas; Dubois, Denis; Potier, Pascal; Vallancien, Guy
2014-11-01
In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler). The mass of the equipped sled was 74.5 kg. The test matrix was designed to perform 4 tests in 4 configurations combining two upper body masses (either 0 or 3 kg) and two knee angles (0 or 20 degrees) at 40 kph (11 m/s) plus 2 tests at 9 m/s. Autopsies were performed on the lower limbs and an injury assessment was established. The findings of this study were first that the increase of the upper body mass resulted in more severe injuries, second that an initial flexion of the knee, corresponding to its natural position during the gait cycle, decreased the severity of the injuries, and third that based on the injury outcome, a test conducted with no upper body mass and the knee fully extended was as severe as a test conducted with a 3 kg upper body mass and an initial knee flexion of 20°.
NASA Astrophysics Data System (ADS)
Wang, Y.; Umanzor, M.; Alves Meira Neto, A.; Sengupta, A.; Amistadi, M. K.; Root, R.; Troch, P.; Chorover, J.
2017-12-01
Elemental translocation, resulting in enrichment or depletion relative to parent rock, is a consequence of mineral dissolution and precipitation reactions of soil genesis. Accurate measurement of translocation in natural systems is complicated by factors such as parent material heterogeneity and dust deposition. In the present work, a fully controlled and monitored 10° sloping soil lysimeter with known homogeneous initial conditions, was utilized to investigate initial stages of soil genesis from 1 m3 of crushed basalt. Throughout the two-year experiment, periodic irrigation coupled with sensor measurements enabled monitoring of changes in internal moisture states. A total 15-meter water influx resulted in distinct efflux patterns, wetting and drying cycles, as well as high volume water storage. Biological changes, such as algal and grass emergence, were visible on the soil surface, and microbial colonization throughout the profile was measured in a companion study, suggesting that biogeochemical hotspots may have formed. Forensic excavation and sampling of 324 voxels captured the final state heterogeneity of the lysimeter with respect to length and depth. Total elemental concentrations and a five-step sequential extraction (SE) scheme quantified elemental redistributions into operationally-defined pools including exchangeable, poorly-crystalline (hydr)oxides, and crystalline (hydr)oxides. Data were correlated to water flux and storage that was determined from sensor and tracer data over the two years of rock-water interaction; then used to map 2D cross-sections and identify geochemical hotspots. Total and SE Fe concentrations were used to establish a governing mass balance equation, and sub mass balance equations with unique partitioning coefficients of Fe were developed for each SE pool, respectively. The results help to explain elemental (e.g., Fe) lability and redistribution due to physical and geochemical weathering during the initial stages of soil genesis.
Observations of disk-shaped bodies in free flight at terminal velocity
NASA Technical Reports Server (NTRS)
Vorreiter, J. W.; Tate, D. L.
1973-01-01
Ten disk-shaped models of a proposed nuclear heat source module were released from an aircraft and observed by radar. The initial launch attitude, spin rate, and mass of the models were varied. Significant differences were observed in the mode of flight and terminal velocity among models of different mass and launch attitudes. The data were analyzed to yield lift and drag coefficients as a function of Reynolds number. The total sea-level velocity of the models was found to be well correlated as a function of mass per unit frontal area. The demonstrated terminal velocity of the modular disk heat source, about 27 m/sec for this specific design, is only 33% of that of existing heat source designs.
Bioremediation in fractured rock: 2. Mobilization of chloroethene compounds from the rock matrix
Shapiro, Allen M.; Tiedeman, Claire; Imbrigiotta, Thomas; Goode, Daniel J.; Hsieh, Paul A.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Curtis, Gary P.
2018-01-01
A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.
Effect of core cooling on the radius of sub-Neptune planets
NASA Astrophysics Data System (ADS)
Vazan, A.; Ormel, C. W.; Dominik, C.
2018-02-01
Sub-Neptune planets are very common in our Galaxy and show a large diversity in their mass-radius relation. In sub-Neptunes most of the planet mass is in the rocky part (hereafter, core), which is surrounded by a modest hydrogen-helium envelope. As a result, the total initial heat content of such a planet is dominated by that of the core. Nonetheless, most studies contend that the core cooling only has a minor effect on the radius evolution of the gaseous envelope because the cooling of the core is in sync with the envelope; that is most of the initial heat is released early on timescales of 10-100 Myr. In this Letter we examined the importance of the core cooling rate for the thermal evolution of the envelope. Thus, we relaxed the early core cooling assumption and present a model in which the core is characterized by two parameters: the initial temperature and the cooling time. We find that core cooling can significantly enhance the radius of the planet when it operates on a timescale similar to the observed age, i.e. Gyr. Consequently, the interpretation of the mass-radius observations of sub-Neptunes depends on the assumed core thermal properties and the uncertainty therein. The degeneracy of composition and core thermal properties can be reduced by obtaining better estimates of the planet ages (in addition to their radii and masses) as envisioned by future observations.
Acceleration and collimation of relativistic plasmas ejected by fast rotators
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.
2001-06-01
A stationary self-consistent outflow of a magnetised relativistic plasma from a rotating object with an initially monopole-like magnetic field is investigated in the ideal MHD approximation under the condition sigma U02 > 1, where sigma is the ratio of the Poynting flux over the mass energy flux at the equator and the surface of the star, with U0=gamma 0v0/c and gamma0 the initial four-velocity and Lorentz factor of the plasma. The mechanism of the magnetocentrifugal acceleration and self-collimation of the relativistic plasma is investigated. A jet-like relativistic flow along the axis of rotation is found in the steady-state solution under the condition sigma U02 > 1 with properties predicted analytically. The amount of the collimated matter in the jet is rather small in comparison to the total mass flux in the wind. An explanation for the weak self-collimation of relativistic winds is given.
Emissions of chromium (VI) from arc welding.
Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris
2007-02-01
The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.
NASA Astrophysics Data System (ADS)
Foster, Richard W.
1989-07-01
The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.
Investigation of Perforated Convergent-divergent Diffusers with Initial Boundary Layer
NASA Technical Reports Server (NTRS)
Weinstein, Maynard I
1950-01-01
An experimental investigation was made at Mach number 1.90 of the performance of a series of perforated convergent-divergent supersonic diffusers operating with initial boundary layer, which was induced and controlled by lengths of cylindrical inlets affixed to the diffusers. Supercritical mass-flow and peak total-pressure recoveries were decreased slightly by use of the longest inlets (4 inlet diameters in length). Combinations of cylindrical inlets, perforated diffusers, and subsonic diffuser were evaluated as simulated wind tunnels having second throats. Comparisons with noncontracted configurations of similar scale indicated conservatively computed power reductions of 25 percent.
Dynamical description of the fission process using the TD-BCS theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scamps, Guillaume, E-mail: scamps@nucl.phys.tohoku.ac.jp; Simenel, Cédric; Lacroix, Denis
2015-10-15
The description of fission remains a challenge for nuclear microscopic theories. The time-dependent Hartree-Fock approach with BCS pairing is applied to study the last stage of the fission process. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.
NASA Astrophysics Data System (ADS)
Spiniello, C.; Koopmans, L. V. E.; Trager, S. C.; Czoske, O.; Treu, T.
2011-11-01
We present the first results from the X-Shooter Lens Survey: an analysis of the massive early-type galaxy SDSS J1148+1930 at redshift z= 0.444. We combine its extended kinematic profile - derived from spectra obtained with X-Shooter on the European Southern Observatory Very Large Telescope - with strong gravitational lensing and multicolour information derived from Sloan Digital Sky Survey (SDSS) images. Our main results are as follows. (i) The luminosity-weighted stellar velocity dispersion is <σ*>(≲Reff) = 352 ± 10 ± 16 km s-1, extracted from a rectangular aperture of 1.8 × 1.6 arcsec2 centred on the galaxy, more accurate and considerably lower than a previously published value of ˜450 km s-1. (ii) A single-component (stellar plus dark) mass model of the lens galaxy yields a logarithmic total-density slope of γ'= 1.72+0.05- 0.06 (68 per cent confidence level, CL; ?) within a projected radius of ˜2.16 arcsec. (iii) The projected stellar mass fraction, derived solely from the lensing and dynamical data, is f*(
Barene, S; Krustrup, P; Jackman, S R; Brekke, O L; Holtermann, A
2014-12-01
This randomized controlled study investigated the effectiveness of soccer and Zumba on fitness and health indicators in female participants recruited from a workplace. One hundred seven hospital employees were cluster-randomized to either a soccer group (SG), Zumba group (ZG), or control group (CG). Intervention effects for the two training groups were compared with CG. The training was conducted outside working hours as 2-3 1-h sessions per week for 12 weeks. Peak oxygen uptake (VO2peak ), fat percentage, fat mass, bone mineral content, and plasma osteocalcin were measured before and after the intervention period. Based on intention-to-treat-analyses, SG significantly improved the VO2peak relative to body mass (5%; P = 0.02) and decreased heart rate during 100-W cycle exercise (-7 bpm; P = 0.01), total body fat percentage (-1.1%; P = 0.002), and total body fat mass (-1.0 kg; P = 0.001) compared with CG. ZG significantly improved the VO2peak relative to body mass (5%; P = 0.03) and decreased total fat mass (-0.6 kg; P < 0.05) compared with CG. Plasma osteocalcin increased in SG (21%; P < 0.001) and ZG (10%; P = 0.01) compared with CG. The present study indicates that workplace initiated short-term soccer training as well as Zumba outside working hours may result in fitness and modest health benefits among female hospital employees. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, Cole; Guillochon, James; De Colle, Fabio
2013-07-01
Several models for Type Ia-like supernova events rely on the production of a self-sustained detonation powered by nuclear reactions. In the absence of hydrogen, the fuel that powers these detonations typically consists of either pure helium (He) or a mixture of carbon and oxygen (C/O). Studies that systematically determine the conditions required to initiate detonations in C/O material exist, but until now no analogous investigation of He matter has been conducted. We perform one-dimensional reactive hydrodynamical simulations at a variety of initial density and temperature combinations and find critical length scales for the initiation of He detonations that range betweenmore » 1 and 10{sup 10} cm. A simple estimate of the length scales over which the total consumption of fuel will occur for steady-state detonations is provided by the Chapman-Jouguet (CJ) formalism. Our initiation lengths are consistently smaller than the corresponding CJ length scales by a factor of {approx}100, providing opportunities for thermonuclear explosions in a wider range of low-mass white dwarfs (WDs) than previously thought possible. We find that virialized WDs with as little mass as 0.24 M{sub Sun} can be detonated, and that even less massive WDs can be detonated if a sizable fraction of their mass is raised to a higher adiabat. That the initiation length is exceeded by the CJ length implies that certain systems may not reach nuclear statistical equilibrium within the time it takes a detonation to traverse the object. In support of this hypothesis, we demonstrate that incomplete burning will occur in the majority of He WD detonations and that {sup 40}Ca, {sup 44}Ti, or {sup 48}Cr, rather than {sup 56}Ni, is the predominant burning product for many of these events. We anticipate that a measure of the quantity of the intermediate-mass elements and {sup 56}Ni produced in a helium-rich thermonuclear explosion can potentially be used to constrain the nature of the progenitor system.« less
Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks
NASA Astrophysics Data System (ADS)
Koda, Jin
2014-01-01
The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (~1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot study led to support for the universal IMF at least in M83’s XUV disk (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing total ~ 10 XUV disks (6 disks in S14A) in NA656(Halpha), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Halpha) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). This project will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (102-3 Msun) - the regime of ongoing debate. This proposal will complete this on-going project with S-Cam.
Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.
Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir
2017-04-14
We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.
Black hole mass function from gravitational wave measurements
NASA Astrophysics Data System (ADS)
Kovetz, Ely D.; Cholis, Ilias; Breysse, Patrick C.; Kamionkowski, Marc
2017-05-01
We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parametrizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to <10 % accuracy within a few years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass which allows for BH formation and to confirm or refute the currently observed mass gap between neutron stars and BHs. In order to glean information on the progenitors of the merging BH binaries, we then advocate the study of the two-dimensional mass distribution to constrain parameters that describe the two-body system, such as the mass ratio between the two BHs, in addition to the merger rate and mass function parameters. We argue that several years of data collection can efficiently probe models of binary formation, and show, as an example, that the hypothesis that some gravitational-wave events may involve primordial black holes can be tested. Finally, we point out that in order to maximize the constraining power of the data, it may be worthwhile to lower the signal-to-noise threshold imposed on each candidate event and amass a larger statistical ensemble of BH mergers.
Liu, Xingyan; Jia, Bo; Sun, Xiangyu; Ai, Jingya; Wang, Lihua; Wang, Cheng; Zhao, Fang; Zhan, Jicheng; Huang, Weidong
2015-04-01
As the core microorganism of wine making, Saccharomyces cerevisiae encounter low pH stress at the beginning of fermentation. Effect of initial pH (4.50, 3.00, 2.75, 2.50) on growth and fermentation performance of 3 S. cerevisiae strains Freddo, BH8, Nº.7303, different tolerance at low pH, chosen from 12 strains, was studied. The values of yeast growth (OD600 , colony forming units, cell dry weight), fermentation efficiency (accumulated mass loss, change of total sugar concentration), and fermentation products (ethanol, glycerol, acetic acid, and l-succinic acid) at different pH stress were measured. The results showed that the initial pH of must was a vital factor influencing yeast growth and alcoholic fermentation. Among the 3 strains, strain Freddo and BH8 were more tolerant than Nº.7303, so they were affected slighter than the latter. Among the 4 pH values, all the 3 strains showed adaptation even at pH 2.50; pH 2.75 and 2.50 had more vital effect on yeast growth and fermentation products in contrast with pH 4.50 and 3.00. In general, low initial pH showed the properties of prolonging yeast lag phase, affecting accumulated mass loss, changing the consumption rate of total sugar, increasing final content of acetic acid and glycerol, and decreasing final content of ethanol and l- succinic acid, except some special cases. Based on this study, the effect of low pH on wine products would be better understood and the tolerance mechanism of low pH of S. cerevisiae could be better explored in future. © 2015 Institute of Food Technologists®
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Betlem, Hans; Betlem, Jan; Barifaijo, Erasmus; Schluter, Thomas; Hampton, Craig; Laubenstien, Matthias; Kunz, Joachim; Heusser, Gerd
1994-01-01
On 1992 August 14 at 12:40 UTC, an ordinary chondrite of type L5/6 entered the atmosphere over Mbale, Uganda, broke up, and caused a strewn field of size 3 x 7 km. Shortly after the fall, an expedition gathered eye witness accounts and located the position of 48 impacts of masses between 0.19 and 27.4 kg. Short-lived radionuclide data were measured for two specimens, one of which was only 12 days after the fall. Subsequent recoveries of fragements has resulted in a total of 863 mass estimates by 1993 October. The surfaces of all fragments contain fusion crust. The meteorite shower caused some minor inconveniences. Most remarkably, a young boy was hit on the head by a small specimen. The data interpreted as to indicate that the meteorite had an initial mass between 400-1000 kg (most likely approximately 1000 kg) and approached Mbale from AZ = 185 +/- 15, H = 55 +/- 15, and V(sub infinity) = 13.5 +/- 1.5/s. Orbital elements are given. Fragmentation of the initial mass started probably above 25 km altitude, but the final catastrophic breakup occurred at an altitude of 10-14 km. An estimated 190 +/- 40 kg reached the Earth's surface minutes after the final breakup of which 150 kg of material has been recovered.
NASA Technical Reports Server (NTRS)
Chovit, A. R.; Lieberman, P.; Freeman, D. E.; Beggs, W. C.; Millavec, W. A.
1980-01-01
Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass.
Water transfer and loss in hit-and-run collisions
NASA Astrophysics Data System (ADS)
Burger, C.; Maindl, T. I.; Schäfer, C.
2017-09-01
This work focuses on transfer and loss of volatiles, like water, in hit-and-run collisions, where especially the smaller one of the colliding pair is often stripped of considerable amounts of its initial volatile content, but still survives the encounter more or less intact. We find water losses up to 75 percent in a single collision, depending on various parameters, especially velocity, impact angle and mass ratio, but also on the total colliding mass. The physical state, especially vaporization of volatiles, is found to be particularly important in collisions of approximately Mars-sized bodies, with high impact energies, but still potentially easy volatile escape.
Thermal Noise in the Initial LIGO Interferometers
NASA Astrophysics Data System (ADS)
Gillespie, Aaron D.
1995-01-01
Gravitational wave detectors capable of detecting broadband gravitational wave bursts with a strain amplitude sensitivity near 10^{-21} at frequencies around 100 Hz are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO groups. One challenge facing these groups is how to detect the motion of the center of an inertial mass to a precision of 10^{-18} m when the mass consists of atoms each of which individually moves much more than that due to thermal energy. The uncertainty in the interferometer's measurement due to these thermal motions is called thermal noise. This thesis describes the thermal noise of the initial LIGO detectors. The thermal noise was analyzed by modelling the normal modes of the test mass suspension system as harmonic oscillators with dissipation and applying the fluctuation dissipation theorem. The dissipation of all modes which contribute significant thermal noise to the interferometer was measured and from these measurements the total thermal noise was estimated. The frequency dependence of the dissipation of the pendulum mode was characterized from measurements of the violin modes. A steel music wire suspension system was found to meet the goals of the initial LIGO detectors. A mathematical technique was developed which relates the energy in each vibrational mode to the motion of the mirror surface measured by the interferometer. Modes with acoustic wavelengths greater than the laser beam spot size can contribute significant thermal noise to the interferometer measurements. The dissipation of the test masses of LIGO's 40 -m interferometer at Caltech was investigated, and a technique for suspending and controlling the test masses which lowered the dissipation and met the thermal noise goals of the initial LIGO detector was developed. New test masses were installed in the 40-m interferometer resulting in improved noise performance. The implications of thermal noise to detecting gravitational waves from inspiralling compact binaries was investigated. An optimal pendulum length for detecting these signals was found. It was shown that the narrow band thermally excited violin resonances could be efficiently filtered from the broadband gravitational wave signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bein, B. M.; Temmer, M.; Veronig, A. M.
Using combined STEREO-A and STEREO-B EUVI, COR1, and COR2 data, we derive deprojected coronal mass ejection (CME) kinematics and CME ''true'' mass evolutions for a sample of 25 events that occurred during 2007 December to 2011 April. We develop a fitting function to describe the CME mass evolution with height. The function considers both the effect of the coronagraph occulter, at the beginning of the CME evolution, and an actual mass increase. The latter becomes important at about 10-15 R{sub Sun} and is assumed to mostly contribute up to 20 R{sub Sun }. The mass increase ranges from 2% tomore » 6% per R{sub Sun} and is positively correlated to the total CME mass. Due to the combination of COR1 and COR2 mass measurements, we are able to estimate the ''true'' mass value for very low coronal heights (<3 R{sub Sun }). Based on the deprojected CME kinematics and initial ejected masses, we derive the kinetic energies and propelling forces acting on the CME in the low corona (<3 R{sub Sun }). The derived CME kinetic energies range between 1.0-66 Multiplication-Sign 10{sup 23} J, and the forces range between 2.2-510 Multiplication-Sign 10{sup 14} N.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grillo, C.; Christensen, L.; Gobat, R.
2014-05-01
We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to modelmore » the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s{sup –1}. Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10{sup 9} M {sub ☉} (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this kind for improving our knowledge about the internal structure of galaxies. These studies, made possible thanks to the CLASH survey, will allow us to go beyond the current limits posed by the available lens samples in the field.« less
Kristensen, K; Jensen, L N; Glasius, M; Bilde, M
2017-10-18
This study presents a newly constructed temperature controlled cold-room smog chamber at Aarhus University, Denmark. The chamber is herein utilized to study the effect of sub-zero temperature on the formation and chemical composition of secondary organic aerosol (SOA) from ozone initiated oxidation of α-pinene. The chemical composition of α-pinene SOA formed from dark ozonolysis of α-pinene at 293 K and 258 K was investigated using High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS) and Ultra-High Performance Liquid Chromatography/Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry (UHPLC/ESI-qToF-MS). For comparison, an OH-initiated oxidation experiment was performed at 293 K. In ozonolysis experiments it was found that oxygen-to-carbon (O : C) ratios were higher in the particles formed at 293 K compared to 258 K. A total of 16 different organic acids and 30 dimers esters were quantified in the collected particles composing up to 34% of the total α-pinene SOA mass with increased mass fraction of carboxylic acids in particles from α-pinene ozonolysis at 258 K compared to 293 K. In contrast, dimer esters showed suppressed formation at the sub-zero reaction temperature, thus contributing 3% to SOA mass at 258 K while contributing 9% at 293 K. SOA formed in the OH-initiated oxidation of α-pinene at 293 K resulted in low concentrations of dimer esters supporting Criegee intermediates as a possible pathway to dimer ester formation. Vapour pressure estimates of the identified carboxylic acids and dimer esters are presented and show how otherwise semi-volatile carboxylic acids at sufficiently low temperatures may classify as low or even extremely low volatile organic compounds (ELVOC), thus may add to an enhanced particle formation observed at the sub-zero temperature through gas-to-particle conversion. The change in chemical composition of the SOA particles with temperature is ascribed to a combination of effects: the decreased vapour pressures and hence increased condensation of carboxylic acids from the gas phase to the particle phase along with suppressed formation of the high molecular weight dimer esters and different gas and particle phase chemistry results in particles of different chemical composition as a consequence of low reaction temperatures.
Tao, Yang; Zhang, Zhihang; Sun, Da-Wen
2014-09-01
The enhancement of release of oak-related compounds from oak chips during wine aging with oak chips may interest the winemaking industry. In this study, the 25-kHz ultrasound waves were used to intensify the mass transfer of phenolics from oak chips into a model wine. The influences of acoustic energy density (6.3-25.8 W/L) and temperature (15-25 °C) on the release kinetics of total phenolics were investigated systematically. The results exhibited that the total phenolic yield released was not affected by acoustic energy density significantly whereas it increased with the increase of temperature during sonication. Furthermore, to describe the mechanism of mass transfer of phenolics in model wine under ultrasonic field, the release kinetics of total phenolics was simulated by both a second-order kinetic model and a diffusion model. The modeling results revealed that the equilibrium concentration of total phenolics in model wine, the initial release rate and effective diffusivity of total phenolics generally increased with acoustic energy density and temperature. In addition, temperature had a negative effect on the second-order release rate constant whereas acoustic energy density had an opposite effect. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lei, Zhenxin; Zhao, Gang; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen
2016-12-01
Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). A total of 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented a range of initial orbital periods that is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and ω Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N-enhanced model atmospheres are considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would play important roles, especially for helium abundance. Specifically, with helium abundance increasing in binary models, the space range of initial orbital periods needed to produce BHk stars becomes obviously wider, regardless of other input parameters adopted. Our results were discussed with recent observations and other theoretical models.
A supermassive black hole in an ultra-compact dwarf galaxy.
Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L
2014-09-18
Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.
Galaxy cluster luminosities and colours, and their dependence on cluster mass and merger state
NASA Astrophysics Data System (ADS)
Mulroy, Sarah L.; McGee, Sean L.; Gillman, Steven; Smith, Graham P.; Haines, Chris P.; Démoclès, Jessica; Okabe, Nobuhiro; Egami, Eiichi
2017-12-01
We study a sample of 19 galaxy clusters in the redshift range 0.15 < z < 0.30 with highly complete spectroscopic membership catalogues (to K < K*(z) + 1.5) from the Arizona Cluster Redshift Survey, individual weak-lensing masses and near-infrared data from the Local Cluster Substructure Survey, and optical photometry from the Sloan Digital Sky Survey. We fit the scaling relations between total cluster luminosity in each of six bandpasses (grizJK) and cluster mass, finding cluster luminosity to be a promising mass proxy with low intrinsic scatter σln L|M of only ∼10-20 per cent for all relations. At fixed overdensity radius, the intercept increases with wavelength, consistent with an old stellar population. The scatter and slope are consistent across all wavelengths, suggesting that cluster colour is not a function of mass. Comparing colour with indicators of the level of disturbance in the cluster, we find a narrower variety in the cluster colours of 'disturbed' clusters than of 'undisturbed' clusters. This trend is more pronounced with indicators sensitive to the initial stages of a cluster merger, e.g. the Dressler Schectman statistic. We interpret this as possible evidence that the total cluster star formation rate is 'standardized' in mergers, perhaps through a process such as a system-wide shock in the intracluster medium.
Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix.
Shapiro, Allen M; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Hsieh, Paul A; Lacombe, Pierre J; DeFlaun, Mary F; Drew, Scott R; Curtis, Gary P
2018-03-01
A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards. © 2017, National Ground Water Association.
Johnson, Mitch C.; Thomas, Andrew L.; Greenlief, C. Michael
2015-01-01
The effects of frozen storage on the anthocyanin and polyphenol content of elderberry fruit juice are investigated. Juice from three genotypes of American elderberry (Adams II, Bob Gordon, and Wyldewood) was screened for total phenolic (TP) and total monomeric anthocyanin (TMA) content with spectrophotometric methods. The individual anthocyanin content (IAC) of the juice was tested by coupling solid phase extraction with ultra-performance liquid chromatography/tandem mass spectrometry. Juice samples were tested initially upon harvest, then again after 3, 6, and 9 months of frozen storage. Juice from the three different genotypes had significantly different TP, TMA, and IAC profiles initially (p<0.05). The TP,, TMA, and IAC content of the juice from different genotypes were significantly affected (p<0.05) by the frozen storage time, suggesting that both genotype and length of frozen storage time can affect the anthocyanin content of elderberry fruit juice. PMID:26028422
NASA Astrophysics Data System (ADS)
Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.
2013-12-01
The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of α-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of α-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimer esters. A total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12% of the total α-pinene SOA mass. OH-initiated oxidation of α-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimer esters was observed only in SOA produced from the ozonolysis of α-pinene in the absence of NOx, with increased concentrations by a~factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimer esters correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimer esters. SOA mass yield did not influence the chemical composition of SOA formed from α-pinene ozonolysis with respect to carboxylic acids and dimer esters. The results support the formation of the high-molecular weight dimer esters through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimer esters formed in the gas-phase may explain increased particle number concentration as a~result of homogenous nucleation. Since three of these dimer esters (i.e., pinyl-diaterpenyl ester (MW 358), pinyl-diaterebyl ester (MW 344) and pinonyl-pinyl ester (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimer esters observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility esters result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.
NASA Astrophysics Data System (ADS)
Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.
2014-04-01
The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high-NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of α-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of α-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimers. A total of eight carboxylic acids and four dimers were identified, constituting between 8 and 12% of the total α-pinene SOA mass. OH-initiated oxidation of α-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimers was observed only in SOA produced from the ozonolysis of α-pinene in the absence of NOx, with increased concentrations by a factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimers correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimers. SOA mass yield did not influence the chemical composition of SOA formed from α-pinene ozonolysis with respect to carboxylic acids and dimers. The results support the formation of the high-molecular weight dimers through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimers formed in the gas phase may explain increased particle number concentration as a result of homogenous nucleation. Since three of these dimers (i.e. pinyl-diaterpenyl dimer (MW 358), pinyl-diaterebyl dimer (MW 344) and pinonyl-pinyl dimer (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimers observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility dimers result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.
A single population of red globular clusters around the massive compact galaxy NGC 1277
NASA Astrophysics Data System (ADS)
Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia
2018-03-01
Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.
A single population of red globular clusters around the massive compact galaxy NGC 1277.
Beasley, Michael A; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia
2018-03-22
Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277-a nearby, un-evolved example of a high-redshift 'red nugget' galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.
The consequences of gustatory deafferentation on body mass and feeding patterns in the rat
Colbert, Connie L.; Garcea, Mircea; Smith, James C.; Spector, Alan C.
2012-01-01
The contribution of orosensory signals, especially taste, on body mass, and feeding and drinking patterns in the rat was examined. Gustatory deafferentation was produced by bilateral transection of the chorda tympani, glossopharyngeal, and greater superficial petrosal nerves. Total calories consumed from sweetened-milk diet and oil-chow mash by the nerve-transected rats significantly decreased relative to sham-operated controls, mostly attributable to decreases in bout number, but not size. Nevertheless, caloric intake steadily increased over the postsurgical observation period, but body mass remained below both presurgical baseline and control levels and did not significantly increase over this time. After the sweetened-milk diet/oil-chow mash phase, rats received a series of sucrose preference tests. Interestingly, the nerve-transected rats preferred sucrose, and intake did not differ from controls, likely due to the stimulus sharing some nontaste chemosensory properties with the sweetened-milk diet. The neurotomized rats initiated a greater number of sucrose-licking bouts that were smaller in size and slower in licking rate, compared with control rats, and, unlike in control rats, the latter two bout parameters did not vary across concentration. Thus, in the absence of gustatory neural input, body mass is more stable compared with the progressive trajectory of weight gain seen in intact rats, and caloric intake initially decreases but recovers. The consequences of gustatory neurotomy on processes that determine meal initiation (bout number) and meal termination (bout size) are not fixed and appear to be influenced by presurgical experience with food stimuli coupled with its nongustatory chemosensory properties. PMID:22785426
Dense Cores in Galaxies Out to z = 2.5 in SDSS, UltraVISTA, and the Five 3D-HST/CANDELS Fields
NASA Astrophysics Data System (ADS)
van Dokkum, Pieter G.; Bezanson, Rachel; van der Wel, Arjen; Nelson, Erica June; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Förster Schreiber, Natascha M.; Fumagalli, Mattia; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Marchesini, Danilo; Muzzin, Adam; Oesch, Pascal; Wuyts, Stijn
2014-08-01
The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M ⊙ inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z = 2.5 to ~15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ⊙ make up ~0.1% of the stellar mass density of the universe today but 10%-20% at z ~ 2, depending on their initial mass function. The formation of these cores required the conversion of ~1011 M ⊙ of gas into stars within ~1 kpc, while preventing significant star formation at larger radii.
Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice
Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A
2015-01-01
Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia – before severe fat loss – in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34–42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition. PMID:25457061
Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.
Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil
2017-04-01
In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.
Against Laplacian Reduction of Newtonian Mass to Spatiotemporal Quantities
NASA Astrophysics Data System (ADS)
Martens, Niels C. M.
2018-05-01
Laplace wondered about the minimal choice of initial variables and parameters corresponding to a well-posed initial value problem. Discussions of Laplace's problem in the literature have focused on choosing between spatiotemporal variables relative to absolute space (i.e. substantivalism) or merely relative to other material bodies (i.e. relationalism) and between absolute masses (i.e. absolutism) or merely mass ratios (i.e. comparativism). This paper extends these discussions of Laplace's problem, in the context of Newtonian Gravity, by asking whether mass needs to be included in the initial state at all, or whether a purely spatiotemporal initial state suffices. It is argued that mass indeed needs to be included; removing mass from the initial state drastically reduces the predictive and explanatory power of Newtonian Gravity.
Against Laplacian Reduction of Newtonian Mass to Spatiotemporal Quantities
NASA Astrophysics Data System (ADS)
Martens, Niels C. M.
2018-03-01
Laplace wondered about the minimal choice of initial variables and parameters corresponding to a well-posed initial value problem. Discussions of Laplace's problem in the literature have focused on choosing between spatiotemporal variables relative to absolute space (i.e. substantivalism) or merely relative to other material bodies (i.e. relationalism) and between absolute masses (i.e. absolutism) or merely mass ratios (i.e. comparativism). This paper extends these discussions of Laplace's problem, in the context of Newtonian Gravity, by asking whether mass needs to be included in the initial state at all, or whether a purely spatiotemporal initial state suffices. It is argued that mass indeed needs to be included; removing mass from the initial state drastically reduces the predictive and explanatory power of Newtonian Gravity.
Bai, Min; Du, Lianfang; Gu, Jiying; Li, Fan; Jia, Xiao
2012-02-01
The purpose of this study was to investigate the clinical usage of Virtual Touch tissue quantification (VTQ; Siemens Medical Solutions, Mountain View, CA) implementing sonographic acoustic radiation force impulse technology for differentiation between benign and malignant solid breast masses. A total of 143 solid breast masses were examined with VTQ, and their shear wave velocities (SWVs) were measured. From all of the masses, 30 were examined by two independent operators to evaluate the reproducibility of the results of VTQ measurement. All masses were later surgically resected, and the histologic results were correlated with the SWV results. A receiver operating characteristic curve was calculated to assess the diagnostic performance of VTQ. A total of 102 benign lesions and 41 carcinomas were diagnosed on the basis of histologic examination. The VTQ measurements performed by the two independent operators yielded a correlation coefficient of 0.885. Applying a cutoff point of 3.065 m/s, a significant difference (P < .001) was found between the SWVs of the benign (mean ± SD, 2.25 ± 0.59 m/s) and malignant (5.96 ± 2.96 m/s) masses. The sensitivity, specificity, and area under the receiver operating characteristic curve for the differentiation were 75.6%, 95.1%, and 85.6%, respectively. When the repeated non-numeric result X.XX of the SWV measurements was designated as an indicator of malignancy, the sensitivity, specificity, and accuracy were 63.4%, 100%, and 89.5%. Virtual Touch tissue quantification can yield reproducible and quantitative diagnostic information on solid breast masses and serve as an effective diagnostic tool for differentiation between benign and malignant solid masses.
Black hole formation from the gravitational collapse of a nonspherical network of structures
NASA Astrophysics Data System (ADS)
Delgado Gaspar, Ismael; Hidalgo, Juan Carlos; Sussman, Roberto A.; Quiros, Israel
2018-05-01
We examine the gravitational collapse and black hole formation of multiple nonspherical configurations constructed from Szekeres dust models with positive spatial curvature that smoothly match to a Schwarzschild exterior. These configurations are made of an almost spherical central core region surrounded by a network of "pancake-like" overdensities and voids with spatial positions prescribed through standard initial conditions. We show that a full collapse into a focusing singularity, without shell crossings appearing before the formation of an apparent horizon, is not possible unless the full configuration becomes exactly or almost spherical. Seeking for black hole formation, we demand that shell crossings are covered by the apparent horizon. This requires very special fine-tuned initial conditions that impose very strong and unrealistic constraints on the total black hole mass and full collapse time. As a consequence, nonspherical nonrotating dust sources cannot furnish even minimally realistic toy models of black hole formation at astrophysical scales: demanding realistic collapse time scales yields huge unrealistic black hole masses, while simulations of typical astrophysical black hole masses collapse in unrealistically small times. We note, however, that the resulting time-mass constraint is compatible with early Universe models of primordial black hole formation, suitable in early dust-like environments. Finally, we argue that the shell crossings appearing when nonspherical dust structures collapse are an indicator that such structures do not form galactic mass black holes but virialize into stable stationary objects.
Dust-enshrouded asymptotic giant branch stars in the solar neighborhood
NASA Technical Reports Server (NTRS)
Jura, M.; Kleinmann, S. G.
1989-01-01
Using available infrared catalogs, an inventory is taken of the AGB star losing large amounts of mass within about 1 kpc of the sun. A surface density of these stars is estimated of about 25/sq kpc projected onto the plane of the Galaxy. Of these stars, about one-half are oxygen-rich while the other half are carbon-rich. The total mass-loss rate from AGB stars into the interstellar medium is probably between 3 and 6 x 10 to the -4th solar mass/sq kpc/yr. Within the uncertainties, this is in reasonable agreement with an estimated net loss rate of about 8 x 10 to the -4th solar mass/sq kpc/yr for main-sequence stars with initial masses between 1 and 5 solar masses as they evolve to white dwarfs. However, it is possible that there are important sources of mass loss which have not yet been identified. In the solar neighborhood, about one-half of all about 1.2 solar mass main-sequence stars spend greater than 30,000 yr in a carbon-star phase where they lose 1-2 x 10 to the -5th solar mass/yr and then become white dwarfs with about 0.7 solar mass.
ERIC Educational Resources Information Center
Barlag, Rebecca; Nyasulu, Frazier
2010-01-01
A wash bottle water displacement scheme is used to determine the kinetics of the iodide-catalyzed H[subscript 2]O[subscript 2] decomposition reaction. The reagents (total volume 5.00 mL) are added to a test tube that is placed in a wash bottle containing water. The mass of the water displaced in [approximately]60 s is measured. The reaction is…
Scaling of metabolic rate on body mass in small mammals at 2.0 g
NASA Technical Reports Server (NTRS)
Pace, N.; Smith, A. H.
1983-01-01
It is postulated that augmentation of gravitational loading should produce a shift in the classic Kleiber mammalian allometric relationship between metabolic rate and total body mass by an increase in both these parameters. Oxygen consumption rate and body mass measurements of 10 male rabbits 8 months of age were obtained initially for 1.0 g, and then over a 9-week period of chronic centrifugation at 2.0 g. Analysis of covariance showed that the positioning constant at 2.0 g is increased by 17 percent from that at 1.0 g at the P less than 0.001 level, and the exponent is increased by 8 percent at the P = 0.008 level. It is concluded that abatement of gravitational loading in spaceflight will result in a lowering of both allometric parameters.
Search for and Study of Nearly Periodic Orbits in the Plane Problem of Three Equal-Mass Bodies
NASA Astrophysics Data System (ADS)
Martynova, A. I.; Orlov, V. V.
2005-09-01
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.
NASA Astrophysics Data System (ADS)
Klaer, Vincent B.; Moore, Guy D.
2017-11-01
We evaluate the efficiency of axion production from spatially random initial conditions in the axion field, so a network of axionic strings is present. For the first time, we perform numerical simulations which fully account for the large short-distance contributions to the axionic string tension, and the resulting dense network of high-tension axionic strings. We find nevertheless that the total axion production is somewhat less efficient than in the angle-averaged misalignment case. Combining our results with a recent determination of the hot QCD topological susceptibility [1], we find that if the axion makes up all of the dark matter, then the axion mass is ma = 26.2 ± 3.4 μeV.
NASA Astrophysics Data System (ADS)
Spitoni, E.; Vincenzo, F.; Matteucci, F.
2017-03-01
Context. Analytical models of chemical evolution, including inflow and outflow of gas, are important tools for studying how the metal content in galaxies evolves as a function of time. Aims: We present new analytical solutions for the evolution of the gas mass, total mass, and metallicity of a galactic system when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation. Methods: We derived how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation timescales, infall masses, and mass loading factors. Results: We find that the local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies; on the other hand, the star-forming galaxies with higher masses generally show older ages and longer typical formation timescales compared than star-forming galaxies with lower masses. The local star-forming galaxies experience stronger galactic winds than the passive galaxy population. Exploring the effect of assuming different initial mass functions in our model, we show that to reproduce the observed mass-metallicity relation, stronger winds are requested if the initial mass function is top-heavy. Finally, our analytical models predict the assumed sample of local galaxies to lie on a tight surface in the 3D space defined by stellar metallicity, star formation rate, and stellar mass, in agreement with the well-known fundamental relation from adopting gas-phase metallicity. Conclusions: By using a new analytical model of chemical evolution, we characterize an ensemble of SDSS galaxies in terms of their infall timescales, infall masses, and mass loading factors. Local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies. Moreover, the local star-forming galaxies show stronger galactic winds than the passive galaxy population. Finally, we find that the fundamental relation between metallicity, mass, and star formation rate for these local galaxies is still valid when adopting the average galaxy stellar metallicity.
Kick processes in the merger of two colliding black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aranha, R. F.; Soares, I. Damiao; Tonini, E. V.
2010-11-15
We examine numerically the process of momentum extraction by gravitational waves in the merger of two colliding black holes, in the realm of Robinson-Trautman spacetimes. The initial data have already a common horizon so that the evolution covers the post-merger phase up to the final configuration of the remnant black hole. The analysis of the momentum flux carried out by gravitational waves indicates that two distinct regimes are present in the post-merger phase: (i) an initial accelerated regime, followed by (ii) a deceleration regime in which the deceleration increases rapidly towards a maximum and then decreases to zero, when themore » gravitational wave emission ceases. The analysis is based on the Bondi-Sachs conservation law for the total momentum of the system. We obtain the total kick velocity V{sub k} imparted on the merged black hole during the accelerated regime (i) and the total antikick velocity V{sub ak} during the decelerated regime (ii), by evaluating the impulse of the gravitational wave flux during both regimes. The distributions of both V{sub k} and V{sub ak} as a function of the symmetric mass ratio {eta} satisfy a simple {eta}-scaling law motivated by post-Newtonian analytical estimates. In the {eta}-scaling formula the Newtonian factor is dominant in the decelerated regime, that generates V{sub ak}, contrary to the behavior in the initial accelerated regime. For an initial infalling velocity v/c{approx_equal}0.462 of each individual black hole we obtain a maximum kick V{sub k{approx_equal}}6.4 km/s at {eta}{approx_equal}0.209, and a maximum antikick V{sub ak{approx_equal}}109 km/s at {eta}{approx_equal}0.205. The net antikick velocity (V{sub ak}-V{sub k}) also satisfies a similar {eta}-scaling law with a maximum approximately 102 km/s also at {eta}{approx_equal}0.205, qualitatively consistent with results from numerical relativity simulations, and post-Newtonian evaluations of binary black hole inspirals. For larger values of the initial data parameter v/c substantial larger values of the net antikick velocity are obtained. Based on the several velocity variables obtained, we discuss a possible definition of the center-of-mass motion of the merged system.« less
Low-mass stars in globular clusters. III. The mass function of 47 Tucanae.
NASA Astrophysics Data System (ADS)
de Marchi, G.; Paresce, F.
1995-12-01
We have used the WFPC2 on board HST to investigate the stellar population in a field located 4'6 E of the center of the globular cluster 47 Tuc (NGC 104), close to the half-mass radius, through wide band imaging at 606 and 812nm. A total of ~3000 stars are accurately classified by two-color photometry to form a color-magnitude diagram extending down to a limiting magnitude m_814_=~m_I_=~24. A rich cluster main sequence is detected spanning the range from m_814_=~18 through m_814_=~23, where it spreads considerably due to the increasing photometric uncertainty and galaxy contamination. A secondary sequence of objects is also detected, parallel to the main sequence, as expected for a population of binary stars. The measured binary fraction in the range 19
Dynamical mass and multiplicity constraints on co-orbital bodies around stars
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Marsh, Thomas R.; Gänsicke, Boris T.
2016-09-01
Objects transiting near or within the disruption radius of both main-sequence (e.g. KOI 1843) and white dwarf (WD 1145+017) stars are now known. Upon fragmentation or disintegration, these planets or asteroids may produce co-orbital configurations of nearly equal mass objects. However, as evidenced by the co-orbital objects detected by transit photometry in the WD 1145+017 system, these bodies are largely unconstrained in size, mass, and total number (multiplicity). Motivated by potential future similar discoveries, we perform N-body simulations to demonstrate if and how debris masses and multiplicity may be bounded due to second-to-minute deviations and the resulting accumulated phase shifts in the osculating orbital period amongst multiple co-orbital equal point masses. We establish robust lower and upper mass bounds as a function of orbital period deviation, but find the constraints on multiplicity to be weak. We also quantify the fuzzy instability boundary, and show that mutual collisions occur in less than 5, 10, and 20 per cent of our simulations for masses of 1021, 1022, and 1023 kg. Our results may provide useful initial rough constraints on other stellar systems with multiple co-orbital bodies.
NASA Astrophysics Data System (ADS)
Shigeaki, Matsumoto
2003-12-01
The shape of a dew droplet deposited on the mirror surface of a copper plate was measured accurately using an interference microscope that employed a phase-shift technique. The microscope was constructed by adding a piezoelectric transducer to an interference microscope. A simple method that uses a conventional speaker horn and an optical fibre cable was used to depress any speckle noise. The shape of a dew droplet deposited at dew point on the plate surface with average roughness of 0.1 µm was measured with an accuracy of ± 3 nm. The mass of a tiny dew droplet could be determined from the volume of its shape and was of the order of 10-9 g. The total mass of a dew droplet deposited per unit area and the deposition velocity under a gentle wind were also obtained in a similar way. The total mass was of the order of 10-5 g cm-2 at the beginning of deposition and the deposition velocity ranged from 1 × 10-5 to 6 × 10-5 g cm-2 min-1 at room temperature.
NASA Astrophysics Data System (ADS)
Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.
2017-05-01
Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.
Critical gravitational collapse with angular momentum. II. Soft equations of state
NASA Astrophysics Data System (ADS)
Gundlach, Carsten; Baumgarte, Thomas W.
2018-03-01
We study critical phenomena in the collapse of rotating ultrarelativistic perfect fluids, in which the pressure P is related to the total energy density ρ by P =κ ρ , where κ is a constant. We generalize earlier results for radiation fluids with κ =1 /3 to other values of κ , focusing on κ <1 /9 . For 1 /9 <κ ≲0.49 , the critical solution has only one unstable, growing mode, which is spherically symmetric. For supercritical data it controls the black-hole mass, while for subcritical data it controls the maximum density. For κ <1 /9 , an additional axial l =1 mode becomes unstable. This controls either the black-hole angular momentum, or the maximum angular velocity. In theory, the additional unstable l =1 mode changes the nature of the black-hole threshold completely: at sufficiently large initial rotation rates Ω and sufficient fine-tuning of the initial data to the black-hole threshold we expect to observe nontrivial universal scaling functions (familiar from critical phase transitions in thermodynamics) governing the black-hole mass and angular momentum, and, with further fine-tuning, eventually a finite black-hole mass almost everywhere on the threshold. In practice, however, the second unstable mode grows so slowly that we do not observe this breakdown of scaling at the level of fine-tuning we can achieve, nor systematic deviations from the leading-order power-law scalings of the black-hole mass. We do see systematic effects in the black-hole angular momentum, but it is not clear yet if these are due to the predicted nontrivial scaling functions, or to nonlinear effects at sufficiently large initial angular momentum (which we do not account for in our theoretical model).
A quasi-static approach to structure formation in black hole universes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durk, Jessie; Clifton, Timothy, E-mail: j.durk@qmul.ac.uk, E-mail: t.clifton@qmul.ac.uk
Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ∼ 0 or 1 we have very tightly clustered masses, whilst for λ ∼ 0.5 all masses are separated by cosmological distancemore » scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.« less
Ludlow, Aaron D; Benítez-Llambay, Alejandro; Schaller, Matthieu; Theuns, Tom; Frenk, Carlos S; Bower, Richard; Schaye, Joop; Crain, Robert A; Navarro, Julio F; Fattahi, Azadeh; Oman, Kyle A
2017-04-21
We analyze the total and baryonic acceleration profiles of a set of well-resolved galaxies identified in the eagle suite of hydrodynamic simulations. Our runs start from the same initial conditions but adopt different prescriptions for unresolved stellar and active galactic nuclei feedback, resulting in diverse populations of galaxies by the present day. Some of them reproduce observed galaxy scaling relations, while others do not. However, regardless of the feedback implementation, all of our galaxies follow closely a simple relationship between the total and baryonic acceleration profiles, consistent with recent observations of rotationally supported galaxies. The relation has small scatter: Different feedback implementations-which produce different galaxy populations-mainly shift galaxies along the relation rather than perpendicular to it. Furthermore, galaxies exhibit a characteristic acceleration g_{†}, above which baryons dominate the mass budget, as observed. These observations, consistent with simple modified Newtonian dynamics, can be accommodated within the standard cold dark matter paradigm.
NASA Technical Reports Server (NTRS)
Falconer, D. A.; Moore, R. L.; Gary, G. A.
2006-01-01
We report further results from our ongoing assessment of magnetogram-based measures of active-region nonpotentiality and size as predictors of coronal mass ejections (CMEs). We have devised improved generalized measures of active-region nonpotentiality that apply to active regions of any degree of magnetic complexity, rather than being limited to bipolar active regions as our initial measures were. From a set of approx.50 active-regions, we have found that measures of total nonpotentiality have a 75-80% success rate n predicting whether an active region will produce a CME in 2 days after the magnetogram. This makes measures of total nonpotentiality a better predictor than either active-region size, or active region twist (size-normalized nonpotentiality), which have a approx.65% success rates. We have also found that we can measure from the line-of-sight magnetograms an active region's total nonpotentiality and the size, which allows use to use MDI to evaluate these quantities for 4-5 consecutive days for each active region, and to investigate if there is some combination of size and total nonpotentiality that have a stronger predictive power than does total nonpotentiality. This work was funded by NASA through its LWS TR&T Program and its Solar and Heliospheric Physics SR&T Program, and by NSF through its Solar Terrestrial Research and SHINE programs.
Pair correlations in an expanding universe for a multicomponent system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandrup, H.E.
Fall and Saslaw have derived an equation for the growth of pair correlations in an expanding universe of identical self-gravitating point masses which is correlation-free at some initial time. Their equation is rigorously true for the earliest stages of growth, assuming only that the system is spatially homogeneous and isotropic, and that it is characterized in the ''comoving frame'' by a Maxwellian distribution of velocities. This paper generalizes their analysis to the case of a multicomponent system of particles with different masses, each species of which is characterized by a Maxwellian distribution at the same temperature. Here there are twomore » types of pair correlations to consider, namely among members of the same species and among members of different species. The general behavior may be understood most readily by considering the covariance functions, which assume very simple forms. Thus one finds that the ''strength'' of the covariance scales, for sufficiently small radial separations, as the product of the masses, whereas the ''range'' of the covariance varies inversely as the square root of the reduced mass of the two constituents. This implies that, for two very different masses, the ''range'' will be set by the lighter constituent. Knowledge of the covariances also permits the calculation of such objects as the correlational energy densities of the various interactions. Consider, for example, a two-component system. Here one finds that even a very small contamination of heavy masses, which would have a negligible effect upon the total mass or kinetic energy densities, can increase the total correlational energy density, and hence decrease the time scale for the evolution of interesting structure, by orders of magnitude.« less
NASA Astrophysics Data System (ADS)
Campbell, Ian S.; Ton, Alain T.; Mulligan, Christopher C.
2011-07-01
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.
Campbell, Ian S; Ton, Alain T; Mulligan, Christopher C
2011-07-01
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.
Early efficacy of the ketogenic diet is not affected by initial body mass index percentile.
Shull, Shastin; Diaz-Medina, Gloria; Wong-Kisiel, Lily; Nickels, Katherine; Eckert, Susan; Wirrell, Elaine
2014-05-01
Predictors of the ketogenic diet's success in treating pediatric intractable epilepsy are not well understood. The aim of this study was to determine whether initial body mass index and weight percentile impact early efficacy of the traditional ketogenic diet in children initiating therapy for intractable epilepsy. This retrospective study included all children initiating the ketogenic diet at Mayo Clinic, Rochester from January 2001 to December 2010 who had body mass index (children ≥2 years of age) or weight percentile (those <2 years of age) documented at diet initiation and seizure frequency recorded at diet initiation and one month. Responders were defined as achieving a >50% seizure reduction from baseline. Our cohort consisted of 48 patients (20 male) with a median age of 3.1 years. There was no significant correlation between initial body mass index or weight percentile and seizure frequency reduction at one month (P = 0.72, r = 0.26 and P = 0.91, r = 0.03). There was no significant association between body mass index or weight percentile quartile and responder rates (P = 0.21 and P = 0.57). Children considered overweight or obese at diet initiation (body mass index or weight percentile ≥85) did not have lower responder rates than those with body mass index or weight percentiles <85 (6/14 vs 19/34, respectively, P = 0.41). Greater initial body mass index and weight-for-age percentiles do not adversely affect the efficacy of the ketogenic diet. Copyright © 2014 Elsevier Inc. All rights reserved.
Glycoalkaloid content in pet food by UPLC-tandem mass spectrometry.
Sheridan, Robert S; Kemnah, Jennifer L
2010-11-01
The glycoalkaloid content of pet food containing potatoes is investigated using a liquid-liquid solvent extraction followed by analysis by ultra-high pressure liquid chromatography tandem mass spectrometry (UPLC-MS-MS). Pet food samples are homogenized and extracted with a solution of 50:50 (v/v) acetonitrile-deionized water containing 5% acetic acid. Following vortexing and centrifugation, 3 mL of the supernatant is filtered and diluted in deionized water. The extract is injected onto a reverse phase C18 UPLC column with an initial mobile phase composed of 0.15% acetic acid in water (A) and 0.15% acetic acid in methanol (B) in a ratio of 70:30, respectively. The mobile phase reaches a final concentration of 15% A and 85% B over 10 min, at which point it is returned to the initial conditions. α-Solanine is measured by monitoring transitions m/z = 868.50 → 398.40 and 868.50 → 722.50, while α-chaconine is measure by monitoring transitions m/z = 852.60 → 97.80 and 852.60 → 706.50. Each analyte is measured and combined to determine total glycoalkaloid content (TGA). The results of the analysis of 52 pet food samples indicate both glycoalkaloids are present in all samples and two pet foods were found to contain > 100 μg/g total glycoalkaloid.
Machado, Alessandro da Costa; Barbosa, Thales Coelho; Kluser Sales, Allan Robson; de Souza, Marcio Nogueira; da Nóbrega, Antonio Claudio Lucas; Silva, Bruno Moreira
2017-02-01
Reduced aerobic power is independently associated with metabolic syndrome (MetS) incidence and prevalence in adults. This study investigated whether muscle deoxygenation (proxy of microvascular O 2 extraction) during incremental exercise is altered in MetS and associated with reduced oxygen consumption ( V˙O 2peak ). Twelve men with initial MetS (no overt diseases and medication-naive; mean ± SD, age 38 ± 7 years) and 12 healthy controls (HCs) (34 ± 7 years) completed an incremental cycling test to exhaustion, in which pulmonary ventilation and gas exchange (metabolic analyzer), as well as vastus lateralis deoxygenation (near infrared spectroscopy), were measured. Subjects with MetS, in contrast to HCs, showed lower V˙O 2peak normalized to total lean mass, similar V˙O 2 response to exercise, and earlier break point (BP) in muscle deoxygenation. Consequently, deoxygenation slope from BP to peak exercise was greater. Furthermore, absolute V˙O 2peak was positively associated with BP in correlations adjusted for total lean mass. MetS, without overt diseases, altered kinetics of muscle deoxygenation during incremental exercise, particularly at high-intensity exercise. Therefore, the balance between utilization and delivery of O 2 within skeletal muscle is impaired early in MetS natural history, which may contribute to the reduction in aerobic power. © 2017 The Obesity Society.
EVOLUTIONARY MODELS OF SUPER-EARTHS AND MINI-NEPTUNES INCORPORATING COOLING AND MASS LOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Alex R.; Burrows, Adam, E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu
We construct models of the structural evolution of super-Earth- and mini-Neptune-type exoplanets with H{sub 2}–He envelopes, incorporating radiative cooling and XUV-driven mass loss. We conduct a parameter study of these models, focusing on initial mass, radius, and envelope mass fractions, as well as orbital distance, metallicity, and the specific prescription for mass loss. From these calculations, we investigate how the observed masses and radii of exoplanets today relate to the distribution of their initial conditions. Orbital distance and the initial envelope mass fraction are the most important factors determining planetary evolution, particularly radius evolution. Initial mass also becomes important belowmore » a “turnoff mass,” which varies with orbital distance, with mass–radius curves being approximately flat for higher masses. Initial radius is the least important parameter we study, with very little difference between the hot start and cold start limits after an age of 100 Myr. Model sets with no mass loss fail to produce results consistent with observations, but a plausible range of mass-loss scenarios is allowed. In addition, we present scenarios for the formation of the Kepler-11 planets. Our best fit to observations of Kepler-11b and Kepler-11c involves formation beyond the snow line, after which they moved inward, circularized, and underwent a reduced degree of mass loss.« less
Gong, Yufeng; Werth, Charles J; He, Yaxue; Su, Yiming; Zhang, Yalei; Zhou, Xuefei
2018-05-10
Hexavalent chromium (Cr(VI)) reduction by Geobacter sulfurreducens PCA was evaluated in batch experiments, and the form and amounts of intracellular and extra-cellular Cr(VI) reduction products were determined over time. The first-order Cr(VI) reduction rate per unit mass of cells was consistent for different initial cell concentrations, and approximately equal to (2.065 ± 0.389) x 10 -9 mL CFU -1 h -1 . A portion of the reduced Cr(VI) products precipitated on Geobacter cell walls as Cr(III) and was bound via carboxylate functional groups, a portion accumulated inside Geobacter cells, and another portion existed as soluble Cr(III) or organo-Cr(III) released to solution. A mass balance analysis of total chromium in aqueous media, on cell walls, and inside cells was determined as a function of time, and with different initial cell concentrations. Mass balances were between 92% and 98%, and indicated Cr(VI) reduction products accumulate more on cell walls and inside cells with time and with increasing initial cell concentration, as opposed to particulates in aqueous solution. Reduced Cr(VI) products both in solution and on cell surfaces appear to form organo-Cr(III) complexes, and our results suggest that such complexes are more stable to reoxidation than aqueous Cr(III) or Cr(OH) 3 . Chromium inside cells is also likely more stable to reoxidation, both because it can form organic complexes, and it is separated by the cell membrane from solution conditions. Hence, Cr(VI) reduction products in groundwater during bioremediation may become more stable against re-oxidation, and may pose a lower risk to human health, over time and with greater initial biomass densities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Radial Mixing and Ru-Mo Isotope Systematics Under Different Accretion Scenarios
NASA Astrophysics Data System (ADS)
Fischer, R. A.; Nimmo, F.; O'Brien, D. P.
2017-12-01
The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogenous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥7-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is 3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.
Compact configurations within small evolving groups of galaxies
NASA Astrophysics Data System (ADS)
Mamon, G. A.
Small virialized groups of galaxies are evolved with a gravitational N-body code, where the galaxies and a diffuse background are treated as single particles, but with mass and luminosity profiles attached, which enbles the estimation of parameters such as internal energies, half-mass radii, and the softened potential energies of interaction. The numerical treatment includes mergers, collisional stripping, tidal limitation by the mean-field of the background (evaluated using a combination of instantaneous and impulsive formulations), galaxy heating from collisons, and background heating from dynamical friction. The groups start out either as dense as appear the groups in Hickson's (1982) catalog, or as loose as appear those in Turner and Gott's (1976a) catalog, and they are simulated many times (usually 20) with different initial positions and velocities. Dense groups of galaxies with massive dark haloes coalesce into a single galaxy and lose their compact group appearance in approximately 3 group half-mass crossing times, while dense groups of galaxies without massive haloes survive the merger instability for 15 half-mass crossing times (in a more massive background to keep the same total group mass).
Fibers in the NGC 1333 proto-cluster
NASA Astrophysics Data System (ADS)
Hacar, A.; Tafalla, M.; Alves, J.
2017-10-01
Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC 1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the position-position-velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC 1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments. Based on observations carried out under project number 169-11 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.Molecular line observations (spectral cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A123
Desimone, Leslie A.; Howes, Brian L.
1998-01-01
Nitrogen transport and transformations were followed over the initial 3 years of development of a plume of wastewater-contaminated groundwater in Cape Cod, Massachusetts. Ammonification and nitrification in the unsaturated zone and ammonium sorption in the saturated zone were predominant, while loss of fixed nitrogen through denitrification was minor. The major effect of transport was the oxidation of discharged organic and inorganic forms to nitrate, which was the dominant nitrogen form in transit to receiving systems. Ammonification and nitrification in the unsaturated zone transformed 16–19% and 50–70%, respectively, of the total nitrogen mass discharged to the land surface during the study but did not attenuate the nitrogen loading. Nitrification in the unsaturated zone also contributed to pH decrease of 2 standard units and to an N2O increase (46–660 µg N/L in the plume). Other processes in the unsaturated zone had little net effect: Ammonium sorption removed <1% of the total discharged nitrogen mass; filtering of particulate organic nitrogen was less than 3%; ammonium and nitrate assimilation was less than 6%; and ammonia volatilization was less than 0.25%. In the saturated zone a central zone of anoxic groundwater (DO ≤ 0.05 mg/L) was first detected 17 months after effluent discharge to the aquifer began, which expanded at about the groundwater-flow velocity. Although nitrate was dominant at the water table, the low, carbon-limited rates of denitrification in the anoxic zone (3.0–9.6 (ng N/cm3)/d) reduced only about 2% of the recharged nitrogen mass to N2. In contrast, ammonium sorption in the saturated zone removed about 16% of the recharged nitrogen mass from the groundwater. Ammonium sorption was primarily limited to anoxic zone, where nitrification was prevented, and was best described by a Langmuir isotherm in which effluent ionic concentrations were simulated. The initial nitrogen load discharged from the groundwater system may depend largely on the growth and stability of the sorbed ammonium pool, which in turn depends on effluent-loading practices, subsurface microbial processes, and saturation of available exchange sites.
Exploring properties of high-density matter through remnants of neutron-star mergers
NASA Astrophysics Data System (ADS)
Bauswein, Andreas; Stergioulas, Nikolaos; Janka, Hans-Thomas
2016-03-01
Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational consequences of a scenario of two families of compact stars including hadronic and quark matter stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total mass will be a strong indication for two families of compact stars.
Neutrino probe comparisons of supernovae as a function of redshift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryer, Christopher Lee
2009-01-01
We compare aspects of supernova explosions produced in the current epoch against those produced in the first round of star formation. Although the total final mass of stars can change dramatically between these two epochs due to different mass-loss rates from winds, their cores remam very similar. The core structure is more sensitive to the stellar evolution code than it is to the amount of metals. As such, current stellar models produce supernovae from first stars that look very similar to that of stars produced in the current epoch. The neutrino signal, a powerful probe of the inner core, ismore » identical to the few percent level for both star formation epochs. A change in the neutrino signal in the supernova population between these two star formation epochs will only arise if the initial mass function is altered.« less
Fast and Luminous Transients from the Explosions of Long-lived Massive White Dwarf Merger Remnants
NASA Astrophysics Data System (ADS)
Brooks, Jared; Schwab, Josiah; Bildsten, Lars; Quataert, Eliot; Paxton, Bill; Blinnikov, Sergei; Sorokina, Elena
2017-12-01
We study the evolution and final outcome of long-lived (≈ {10}5 years) remnants from the merger of an He white dwarf (WD) with a more massive C/O or O/Ne WD. Using Modules for Experiments in Stellar Astrophysics ({\\mathtt{MESA}}), we show that these remnants have a red giant configuration supported by steady helium burning, adding mass to the WD core until it reaches {M}{core}≈ 1.12{--}1.20 {M}⊙ . At that point, the base of the surface convection zone extends into the burning layer, mixing the helium-burning products (primarily carbon and magnesium) throughout the convective envelope. Further evolution depletes the convective envelope of helium and dramatically slows the mass increase of the underlying WD core. The WD core mass growth re-initiates after helium depletion, as then an uncoupled carbon-burning shell is ignited and proceeds to burn the fuel from the remaining metal-rich extended envelope. For large enough initial total merger masses, O/Ne WD cores would experience electron-capture triggered collapse to neutron stars (NSs) after growing to near Chandrasekhar mass ({M}{Ch}). Massive C/O WD cores could suffer the same fate after a carbon-burning flame converts them to ONe. The NS formation would release ≈ {10}50 erg into the remaining extended low mass envelope. Using the STELLA radiative transfer code, we predict the resulting optical light curves from these exploded envelopes. Reaching absolute magnitudes of {M}V≈ -17, these transients are bright for about one week and have many features of the class of luminous, rapidly evolving transients studied by Drout and collaborators.
CO outflows from high-mass Class 0 protostars in Cygnus-X
NASA Astrophysics Data System (ADS)
Duarte-Cabral, A.; Bontemps, S.; Motte, F.; Hennemann, M.; Schneider, N.; André, Ph.
2013-10-01
Context. The earliest phases of the formation of high-mass stars are not well known. It is unclear whether high-mass cores in monolithic collapse exist or not, and what the accretion process and origin of the material feeding the precursors of high-mass stars are. As outflows are natural consequences of the accretion process, they represent one of the few (indirect) tracers of accretion. Aims: We aim to search for individual outflows from high-mass cores in Cygnus X and to study the characteristics of the detected ejections. We compare these to what has been found for the low-mass protostars, to understand how ejection and accretion change and behave with final stellar mass. Methods: We used CO (2-1) PdBI observations towards six massive dense clumps, containing a total of 9 high-mass cores. We estimated the bolometric luminosities and masses of the 9 high-mass cores and measured the energetics of outflows. We compared our sample to low-mass objects studied in the literature and developed simple evolutionary models to reproduce the observables. Results: We find that 8 out of 9 high-mass cores are driving clear individual outflows. They are therefore true equivalents of Class 0 protostars in the high-mass regime. The remaining core, CygX-N53 MM2, has only a tentative outflow detection. It could be one of the first examples of a true individual high-mass prestellar core. We also find that the momentum flux of high-mass objects has a linear relation to the reservoir of mass in the envelope, as a scale up of the relations previously found for low-mass protostars. This suggests a fundamental proportionality between accretion rates and envelope masses. The linear dependency implies that the timescale for accretion is similar for high- and low-mass stars. Conclusions: The existence of strong outflows driven by high-mass cores in Cygnus X clearly indicates that high-mass Class 0 protostars exist. The collapsing envelopes of these Class 0 objects have similar sizes and a similar fragmentation scale to the low-mass equivalents, and have enough mass to directly form high-mass stars from a monolithic collapse. If the pre-collapse evolution is quasi-static, the fragmentation scale is expected to limit the size of the initial mass reservoirs for all masses leading to higher densities at birth and therefore shorter free-fall times for higher mass stars. However, we find the collapse timescales to be similar for both low- and high-mass objects. This implies that in a quasi-static view, we would require significant turbulent/magnetic support to slow down the collapse of the more massive envelopes. But with this support still to be discovered, and based on independent indications of large dynamics in pre-collapse gas for high-mass star formation, we propose that such an identical collapse timescale implies that the initial densities, which should set the duration of the collapse, should be similar for all masses. Since the fragmentation scale is identical for all masses, a lower initial density requires that the mass that incorporates massive stars has to have been accreted from larger scales than those of low-mass stars and in a dynamical way. Appendices are available in electronic form at http://www.aanda.org
An SOA model for toluene oxidation in the presence of inorganic aerosols.
Cao, Gang; Jang, Myoseon
2010-01-15
A predictive model for secondary organic aerosol (SOA) formation including both partitioning and heterogeneous reactions is explored for the SOA produced from the oxidation of toluene in the presence of inorganic seed aerosols. The predictive SOA model comprises the explicit gas-phase chemistry of toluene, gas-particle partitioning, and heterogeneous chemistry. The resulting products from the explicit gas phase chemistry are lumped into several classes of chemical species based on their vapor pressure and reactivity for heterogeneous reactions. Both the gas-particle partitioning coefficient and the heterogeneous reaction rate constant of each lumped gas-phase product are theoretically determined using group contribution and molecular structure-reactivity. In the SOA model, the predictive SOA mass is decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). OM(P) is estimated from the SOA partitioning model developed by Schell et al. (J. Geophys. Res. 2001, 106, 28275-28293 ) that has been used in a regional air quality model (CMAQ 4.7). OM(H) is predicted from the heterogeneous SOA model developed by Jang et al. (Environ. Sci. Technol. 2006, 40, 3013-3022 ). The SOA model is evaluated using a number of the experimental SOA data that are generated in a 2 m(3) indoor Teflon film chamber under various experimental conditions (e.g., humidity, inorganic seed compositions, NO(x) concentrations). The SOA model reasonably predicts not only the gas-phase chemistry, such as the ozone formation, the conversion of NO to NO(2), and the toluene decay, but also the SOA production. The model predicted that the OM(H) fraction of the total toluene SOA mass increases as NO(x) concentrations decrease: 0.73-0.83 at low NO(x) levels and 0.17-0.47 at middle and high NO(x) levels for SOA experiments with high initial toluene concentrations. Our study also finds a significant increase in the OM(H) mass fraction in the SOA generated with low initial toluene concentrations, compared to those with high initial toluene concentrations. On average, more than a 1-fold increase in OM(H) fraction is observed when the comparison is made between SOA experiments with 40 ppb toluene to those with 630 ppb toluene. Such an observation implies that heterogeneous reactions of the second-generation products of toluene oxidation can contribute considerably to the total SOA mass under atmospheric relevant conditions.
NASA Astrophysics Data System (ADS)
Dutton, Aaron A.; Treu, Tommaso
2014-03-01
Recent studies have shown that massive elliptical galaxies have total mass density profiles within an effective radius that can be approximated as ρ_tot∝ r^{-γ^', with mean slope <γ'> = 2.08 ± 0.03 and scatter σ _{γ ^' } }=0.16± 0.02. The small scatter of the slope (known as the bulge-halo conspiracy) is not generic in Λ cold dark matter (ΛCDM) based models and therefore contains information about the galaxy formation process. We compute the distribution of γ' for ΛCDM-based models that reproduce the observed correlations between stellar mass, velocity dispersion, and effective radius of early-type galaxies in the Sloan Digital Sky Survey. The models have a range of stellar initial mass functions (IMFs) and dark halo responses to galaxy formation. The observed distribution of γ' is well reproduced by a model with cosmologically motivated but uncontracted dark matter haloes, and a Salpeter-type IMF. Other models are on average ruled out by the data, even though they may happen in individual cases. Models with adiabatic halo contraction (and lighter IMFs) predict too small values of γ'. Models with halo expansion, or mass-follows-light predict too high values of γ'. Our study shows that the non-homologous structure of massive early-type galaxies can be precisely reproduced by ΛCDM models if the IMF is not universal and if mechanisms, such as feedback from active galactic nuclei, or dynamical friction, effectively on average counterbalance the contraction of the halo expected as a result of baryonic cooling.
ATriple Iron triathlon leads to a decrease in total body mass but not to dehydration.
Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Oliver, Senn
2010-09-01
A loss in total body mass during an ultraendurance performance is usually attributed to dehydration. We identified the changes in total body mass, fat mass, skeletal muscle mass, and selected markers of hydration status in 31 male nonprofessional ultratriathletes participating in a Triple Iron triathlon involving 11.4 km swimming, 540 km cycling and 126.6 km running. Measurements were taken prior to starting the race and after arrival at the finish line. Total body mass decreased by 1.66 kg (SD = 1.92; -5.3 kg to +1.2 kg; p < .001), skeletal muscle mass by 1.00 kg (SD = 0.90; -2.54 kg to +2.07 kg; p < .001), and fat mass by 0.58 kg (SD = 0.78; -1.74 kg to +0.87 kg; p < .001). The decrease in total body mass was associated with the decrease in skeletal muscle mass (r = .44; p < .05) and fat mass (r = .51; p < .05). Total body water and urinary specific gravity did not significantly change. Plasma urea increased significantly (p < .001); the decrease in skeletal muscle mass and the increase in plasma urea were associated (r = .39; p < .05). We conclude that completing a Triple Iron triathlon leads to decreased total body mass due to reduced fat mass and skeletal muscle mass but not to dehydration. The association of decrease in skeletal muscle mass and increased plasma urea suggests a loss in skeletal muscle mass.
State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact
NASA Astrophysics Data System (ADS)
Renne, Paul R.; Sprain, Courtney J.; Richards, Mark A.; Self, Stephen; Vanderkluysen, Loÿc; Pande, Kanchan
2015-10-01
Bolide impact and flood volcanism compete as leading candidates for the cause of terminal-Cretaceous mass extinctions. High-precision 40Ar/39Ar data indicate that these two mechanisms may be genetically related, and neither can be considered in isolation. The existing Deccan Traps magmatic system underwent a state shift approximately coincident with the Chicxulub impact and the terminal-Cretaceous mass extinctions, after which ~70% of the Traps' total volume was extruded in more massive and more episodic eruptions. Initiation of this new regime occurred within ~50,000 years of the impact, which is consistent with transient effects of impact-induced seismic energy. Postextinction recovery of marine ecosystems was probably suppressed until after the accelerated volcanism waned.
How much hydrogen is there in a white dwarf?
NASA Technical Reports Server (NTRS)
Macdonald, James; Vennes, Stephane
1991-01-01
Stratified hydrogen/helium envelope models in diffusive equilibrium are calculated for a 0.6-solar-mass white dwarf for effective temperatures between 10,000 and 80,000 K in order to investigate the observational constraints placed on the total hydrogen mass. Convective mixing is included ab initio in the calculations, and synthetic spectra are used for comparing these models with observational materials. It is shown that evolutionary changes in the surface composition of white dwarfs cannot be explained by a model in which a small amount of hydrogen floats to the surface from initially being mixed in the outer parts of a helium envelope. It is pointed out that the shape of the hydrogen lines can be used for constraining theories of convective overshoot.
The Initial Physical Conditions of Kepler-36 b and c
NASA Astrophysics Data System (ADS)
Owen, James E.; Morton, Timothy. D.
2016-03-01
The Kepler-36 planetary system consists of two exoplanets at similar separations (0.115 and 0.128 au), which have dramatically different densities. The inner planet has a density consistent with an Earth-like composition, while the outer planet is extremely low density, such that it must contain a voluminous H/He envelope. Such a density difference would pose a problem for any formation mechanism if their current densities were representative of their composition at formation. However, both planets are at close enough separations to have undergone significant evaporation in the past. We constrain the core mass, core composition, initial envelope mass, and initial cooling time of each planet using evaporation models conditioned on their present-day masses and radii, as inferred from Kepler photometry and transit timing analysis. The inner planet is consistent with being an evaporatively stripped core, while the outer planet has retained some of its initial envelope due to its higher core mass. Therefore, both planets could have had a similar formation pathway, with the inner planet having an initial envelope-mass fraction of ≲10% and core mass of ˜4.4 M⊕, while the outer had an initial envelope-mass fraction of the order of 15%-30% and core mass ˜7.3 M⊕. Finally, our results indicate that the outer planet had a long (≳30 Myr) initial cooling time, much longer than would naively be predicted from simple timescale arguments. The long initial cooling time could be evidence for a dramatic early cooling episode such as the recently proposed “boil-off” process.
An ex situ evaluation of TBA- and MTBE-baited bio-traps.
North, Katharine P; Mackay, Douglas M; Annable, Michael D; Sublette, Kerry L; Davis, Greg; Holland, Reef B; Petersen, Daniel; Scow, Kate M
2012-08-01
Aquifer microbial communities can be investigated using Bio-traps(®) ("bio-traps"), passive samplers containing Bio-Sep(®) beads ("bio-beads") that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are "baited" with organic contaminants enriched in (13)C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically "sample" about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4-5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE-baited bio-traps could be baited at lower initial total mass loading with no detriment to trapping ability. The bio-traps were able to collect detectable amounts of microbial DNA and thus allow some insight into the sparse microbial community present in the aquifer during remediation of the low concentration plume. Copyright © 2012 Elsevier Ltd. All rights reserved.
An ex situ evaluation of TBA- and MTBE-baited bio-traps
North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.
2013-01-01
Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE-baited bio-traps could be baited at lower initial total mass loading with no detriment to trapping ability. The bio-traps were able to collect detectable amounts of microbial DNA and thus allow some insight into the sparse microbial community present in the aquifer during remediation of the low concentration plume. PMID:22621895
Effects of cultivar and grazing initiation date on fall-grown oat for replacement dairy heifers.
Coblentz, W K; Brink, G E; Esser, N M; Cavadini, J S
2015-09-01
Fall-grown oat has shown promise for extending the grazing season in Wisconsin, but the optimum date for initiating grazing has not been evaluated. Our objectives for this project were (1) to assess the pasture productivity and nutritive value of 2 oat cultivars [Ogle and ForagePlus (OG and FP, respectively)] with late-September (EG) or mid-October (LG) grazing initiation dates; and (2) to evaluate growth performance by heifers grazing these oat forages compared with heifers reared in confinement (CON). A total of 160 gravid Holstein heifers (80 heifers/yr) were assigned to 10 research groups (8 heifers/group). Mean initial body weight was 509±40.5 kg in 2013 and 517±30.2 kg in 2014. Heifer groups were assigned to specific pastures arranged as a 2×2 factorial of oat cultivars and grazing initiation dates. Grazing heifer groups were allowed to strip-graze oat pastures for 6 h daily before returning to the barn, where they were offered a forage-based basal total mixed ration. Main effects of oat cultivar and sampling date interacted for forage characteristics in 2013, but not in 2014. During 2013, oat forage mass increased until early November before declining in response to freezing weather conditions, thereby exhibiting linear and quadratic effects of sampling date, regardless of oat cultivar. Similar trends over time were observed in 2014. For 2013, the maximum forage mass was 5,329 and 5,046 kg/ha for FP and OG, respectively, whereas the mean maximum forage mass for 2014 was 4,806 kg/ha. ForagePlus did not reach the boot stage of growth during either year of the trial; OG matured more rapidly, reaching the late-heading stage during 2013, but exhibited only minor maturity differences from FP in 2014. For 2013, average daily gain for CON did not differ from grazing heifer groups (overall mean=0.63 kg/d); however, average daily gain from FP was greater than OG (0.68 vs. 0.57 kg/d), and greater from EG compared with LG (0.82 vs. 0.43 kg/d). For 2013, advantages in average daily gain for heifers grazing FP pastures were likely related to the greater energy density of FP oat throughout the fall that reached a maximum of 68.8% total digestible nutrients on November 27 compared with only 63.7% for OG on October 10. During 2014, average daily gain from CON exceeded all grazing heifer groups (0.81 vs. 0.57 kg/d), and average daily gain from EG again exceeded LG (0.70 vs. 0.44 kg/d). These results suggest that delaying grazing until mid-October will consistently suppress heifer growth performance, particularly if rapidly maturing cultivars are used. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lean body mass and risk of incident atrial fibrillation in post-menopausal women
Azarbal, Farnaz; Stefanick, Marcia L.; Assimes, Themistocles L.; Manson, JoAnn E.; Bea, Jennifer W.; Li, Wenjun; Hlatky, Mark A.; Larson, Joseph C.; LeBlanc, Erin S.; Albert, Christine M.; Nassir, Rami; Martin, Lisa W.; Perez, Marco V.
2016-01-01
Aims High body mass index (BMI) is a risk factor for atrial fibrillation (AF). The aim of this study was to determine whether lean body mass (LBM) predicts AF. Methods and results The Women's Health Initiative is a study of post-menopausal women aged 50–79 enrolled at 40 US centres from 1994 to 1998. A subset of 11 393 participants at three centres underwent dual-energy X-ray absorptiometry. Baseline demographics and clinical histories were recorded. Incident AF was identified using hospitalization records and diagnostic codes from Medicare claims. A multivariable Cox hazard regression model adjusted for demographic and clinical risk factors was used to evaluate associations between components of body composition and AF risk. After exclusion for prevalent AF or incomplete data, 8832 participants with an average age of 63.3 years remained for analysis. Over the 11.6 years of average follow-up time, 1035 women developed incident AF. After covariate adjustment, all measures of LBM were independently associated with higher rates of AF: total LBM [hazard ratio (HR) 1.24 per 5 kg increase, 95% confidence intervals (CI) 1.14–1.34], central LBM (HR 1.51 per 5 kg increase, 95% CI 1.31–1.74), and peripheral LBM (HR 1.39 per 5 kg increase, 95% CI 1.19–1.63). The association between total LBM and AF remained significant after adjustment for total fat mass (HR 1.22 per 5 kg increase, 95% CI 1.13–1.31). Conclusion Greater LBM is a strong independent risk factor for AF. After adjusting for obesity-related risk factors, the risk of AF conferred by higher BMI is primarily driven by the association between LBM and AF. PMID:26371115
Collisional and dynamical processes in moon and planet formation
NASA Technical Reports Server (NTRS)
1979-01-01
The collisional and dynamical processes in moon and planet formation are discussed. A hydrodynamic code of collision calculations, the orbital element changes due to gravitational scattering, a validation of the mass shifting algorithm, a theory of rotations, and the origin of asteroids are studied. A numerical model of planet growth is discussed and a methodology to evaluate the rate at which megaregolith increases its depth as a function of total accumulate number of impacts on an initially smooth, coherent surface is described.
Ramprasath, Vanu Ramkumar; Jones, Peter J H
2016-01-01
The objective was to determine safety and efficacy of health supplements "Beyond Tangy Tangerine," a multivitamin/mineral complex and combination of multivitamin/mineral complex, "Osteofx," a bone healthy supplement and "Ultimate Essential Fatty Acids" in Sprague Dawley rats consuming high-fat diets. Initially a pilot study was conducted which confirmed palatability and acceptability of supplements. In a second study, rats (n = 15/group) were randomized to Control; Multivitamin/mineral complex (2 g/kg BW) or Combination (2 g Multivitamin/mineral complex, 1.5 g Bone healthy supplement and 0.34 g Essential fatty acids/kg BW). No differences were observed in BW change, feed intake, organ weights or bone mineral composition with supplementations compared to control. Multivitamin/mineral complex supplementation decreased abdominal white adipose tissue weights (WAT) (p = .005), total (p = .033) and fat mass (p = .040), plasma IL-6 (p = .016) and ALKP (p = .038) and elevated plasma calcium (p < .001), phosphorus (p = .038), total protein (p = .002), albumin (p = .014) and globulin (p = .018), compared to control. Similarly, combination supplementation reduced WAT (p < .001), total (p = .023) and fat mass (p = .045), plasma triglycerides (p = .018), IL-6 (p = .002) and ALKP (p < .001) with increases in plasma calcium (p = .031), phosphorus (p < .001) compared to control. Results indicate that consuming either supplement can be considered safe and improves overall health by reducing inflammation, abdominal fat mass and plasma triglycerides, as well as promote bone health.
Masuo, Kazuko; Katsuya, Tomohiro; Kawaguchi, Hideki; Fu, Yuxiao; Rakugi, Hiromi; Ogihara, Toshio; Tuck, Michael L
2005-11-01
A successful weight loss program is essential treatment for obesity-related diseases, but it is well known that the majority of individuals do not succeed in weight loss maintenance. The present study evaluates hormonal mechanisms and the relationship of beta2-adrenoceptor polymorphisms involved in individuals who regain weight after initially successful weight loss. Overweight Japanese men (n = 154) were enrolled in a 24-month weight loss program. Body mass index (BMI), total body fat mass, plasma norepinephrine (NE) and leptin levels, and beta2-adrenoceptor polymorphisms (Arg16Gly, Gln27Glu) were measured every 6 months for the 24-month period. Maintenance of weight loss was defined as significant weight loss (>or=10% reduction) from entry weight at 6 months and maintenance of the weight loss for an additional 18 months. Rebound weight gain was defined as significant weight loss at 6 months but subsequent regain of body weight during the next 18 months. The results showed that 37 subjects maintained weight loss during 24 months, whereas 36 subjects had rebound weight gain. The BMI at entry and calorie intake and physical activity at each period were similar between the two groups. Subjects who maintained weight loss had at entry a significantly lower fat mass and plasma NE levels compared to those with rebound weight gain. Body fat mass, NE, and leptin levels at entry predicted the degree of change in body weight during the 24-month study period. Subjects with rebound weight gain had a significantly higher frequency of the Gly16 allele for the beta2-adrenoceptor polymorphism compared to subjects who had a 24-month maintenance of weight loss. Subjects carrying the Gly16 allele also had significantly higher plasma NE, leptin, and body fat mass levels and a greater waist-to-hip ratio both at entry and throughout the study. A high initial degree of body fat mass and high plasma NE levels as determined by the Gly16 allele for the beta2-adrenoceptor polymorphisms predict those individuals who will have rebound weight gain after their initial successful weight loss.
ON THE BIRTH MASSES OF THE ANCIENT GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Charlie; Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA
All globular clusters (GCs) studied to date show evidence for internal (star-to-star) variation in their light-element abundances (including Li, C, N, O, F, Na, Mg, Al, and probably He). These variations have been interpreted as evidence for multiple star formation episodes within GCs, with secondary episodes fueled, at least in part, by the ejecta of asymptotic giant branch (AGB) stars from a first generation of stars. A major puzzle emerging from this otherwise plausible scenario is that the fraction of stars associated with the second episode of star formation is observed to be much larger than expected for a standardmore » initial mass function. The present work investigates this tension by modeling the observed anti-correlation between [Na/Fe] and [O/Fe] for 20 Galactic GCs. If the abundance pattern of the retained AGB ejecta does not depend on GC mass at fixed [Fe/H], then a strong correlation is found between the fraction of current GC stellar mass composed of pure AGB ejecta, f{sub p} , and GC mass. This fraction varies from 0.20 at low masses (10{sup 4.5} M{sub Sun }) to 0.45 at high masses (10{sup 6.5} M{sub Sun }). The fraction of mass associated with pure AGB ejecta is directly related to the total mass of the cluster at birth; the ratio between the initial and present mass in stars can therefore be derived. Assuming a star formation efficiency of 50%, the observed Na-O anti-correlations imply that GCs were at least 10-20 times more massive at birth, a conclusion that is in qualitative agreement with previous work. These factors are lower limits because any mass-loss mechanism that removes first- and second-generation stars equally will leave f{sub p} unchanged. The mass dependence of f{sub p} probably arises because lower mass GCs are unable to retain all of the AGB ejecta from the first stellar generation. Recent observations of elemental abundances in intermediate-age Large Magellanic Cloud clusters are re-interpreted and shown to be consistent with this basic scenario. The small scatter in f{sub p} at fixed GC mass argues strongly that the process responsible for the large mass loss is internal to GCs. A satisfactory explanation of these trends is currently lacking.« less
Influence of Cattle Trails on Runoff Quantity and Quality.
Miller, Jim J; Curtis, Tony; Chanasyk, David S; Willms, Walter D
2017-03-01
Cattle trails in grazed pastures close to rivers may adversely affect surface water quality of the adjacent river by directing runoff to it. The objective of this 3-yr study (2013-2015) in southern Alberta, Canada, was to determine if cattle trails significantly increased the risk of runoff and contaminants (sediment, nutrients) compared with the adjacent grazed pasture (control). A portable rainfall simulator was used to generate artificial rainfall (140 mm h) and runoff. The runoff properties measured were time to runoff and initial abstraction (infiltration), total runoff depth and average runoff rates, as well as concentrations and mass loads of sediment, N, and P fractions. Cattle trails significantly ( ≤ 0.10) decreased time to runoff and initial abstraction (26-32%) in the 2 yr measured and increased total runoff depth, runoff coefficients, and average runoff rates (21-51%) in 2 of 3 yr. Concentrations of sediment, N, and P fractions in runoff were not significantly greater for cattle trails than for control areas. However, mass loads of total suspended solids (57-85% increase), NH-N (31-90%), and dissolved reactive P (DRP) (30-92%) were significantly greater because of increased runoff volumes. Overall, runoff quantity and loads of sediment, NH-N, and DRP were greater for cattle trails compared with the adjacent grazed pasture, and hydrologic connection with cattle-access sites on the riverbank suggests that this could adversely affect water quality in the adjacent river. Extrapolation of the study results should be tempered by the specific conditions represented by this rainfall simulation study. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechter, Paul L.; Pooley, David; Blackburne, Jeffrey A.
2014-10-01
We measure the stellar mass surface densities of early-type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs, and red dwarfs too faint to produce photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we combine single-epoch X-ray snapshots of 10 quadruple systems, and compare the measured relative magnifications for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental plane constructed using a Salpeter initial mass function with a low-mass cutoff of 0.1 M {sub ☉} and treat the zeropointmore » of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by small number statistics, of 0.77« less
Lu, Chenghui; Wang, Xufu; Liu, Bin; Liu, Xinfeng; Wang, Guoming; Zhang, Qin
2017-08-01
The aim of the present study was to investigate the application value of 99m Tc-methoxyisobutylisonitrile (MIBI) imaging to differentiate between benign and malignant thymic masses. A total of 32 patients with space-occupying mediastinal masses were enrolled and early and delayed-phase images were collected following injection with the imaging agent. The tumor to background ratio (T/N) values at the different phases were also recorded. The sensitivity of the qualitative analysis to distinguish between benign and malignant thymic masses was 95.24%, with specificity as 90.91%. The T/N values in the early and delayed phases were not significantly different in the group with benign thymic masses, but demonstrated statistical significant differences in the groups with low- and intermediate-grade malignant thymic masses. The T/N values at the above early and delayed phase were significantly different between the benign and low-grade malignancy groups, as well as between low- and moderate-grade malignancy groups. Those between the benign and moderate-grade malignancy groups demonstrated no significant difference. 99m Tc-MIBI imaging was able to differentiate between benign and malignant thymic masses, and the simultaneous semi-quantitative analysis of the T/N values of the tumors may be able to initially determine the degree of malignancy of thymoma.
NASA Astrophysics Data System (ADS)
Parmentier, Geneviève; Baumgardt, Holger
2012-12-01
We highlight the impact of cluster-mass-dependent evolutionary rates upon the evolution of the cluster mass function during violent relaxation, that is, while clusters dynamically respond to the expulsion of their residual star-forming gas. Mass-dependent evolutionary rates arise when the mean volume density of cluster-forming regions is mass-dependent. In that case, even if the initial conditions are such that the cluster mass function at the end of violent relaxation has the same shape as the embedded-cluster mass function (i.e. infant weight-loss is mass-independent), the shape of the cluster mass function does change transiently during violent relaxation. In contrast, for cluster-forming regions of constant mean volume density, the cluster mass function shape is preserved all through violent relaxation since all clusters then evolve at the same mass-independent rate. On the scale of individual clusters, we model the evolution of the ratio of the dynamical mass to luminous mass of a cluster after gas expulsion. Specifically, we map the radial dependence of the time-scale for a star cluster to return to equilibrium. We stress that fields of view a few pc in size only, typical of compact clusters with rapid evolutionary rates, are likely to reveal cluster regions which have returned to equilibrium even if the cluster experienced a major gas expulsion episode a few Myr earlier. We provide models with the aperture and time expressed in units of the initial half-mass radius and initial crossing-time, respectively, so that our results can be applied to clusters with initial densities, sizes, and apertures different from ours.
PALFA Discovery of a Highly Relativistic Double Neutron Star Binary
NASA Astrophysics Data System (ADS)
Stovall, K.; Freire, P. C. C.; Chatterjee, S.; Demorest, P. B.; Lorimer, D. R.; McLaughlin, M. A.; Pol, N.; van Leeuwen, J.; Wharton, R. S.; Allen, B.; Boyce, M.; Brazier, A.; Caballero, K.; Camilo, F.; Camuccio, R.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Ferdman, R. D.; Hessels, J. W. T.; Jenet, F. A.; Kaspi, V. M.; Knispel, B.; Lazarus, P.; Lynch, R.; Parent, E.; Patel, C.; Pleunis, Z.; Ransom, S. M.; Scholz, P.; Seymour, A.; Siemens, X.; Stairs, I. H.; Swiggum, J.; Zhu, W. W.
2018-02-01
We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946+2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946+2052 is a 17 ms pulsar in a 1.88 hr, eccentric (e = 0.06) orbit with a ≳1.2 M ⊙ companion. We have used the Jansky Very Large Array to localize PSR J1946+2052 to a precision of 0.″09 using a new phase binning mode. We have searched multiwavelength catalogs for coincident sources but did not find any counterparts. The improved position enabled a measurement of the spin period derivative of the pulsar (\\dot{P}=9+/- 2× {10}-19); the small inferred magnetic field strength at the surface (B S = 4 × 109 G) indicates that this pulsar has been recycled. This and the orbital eccentricity lead to the conclusion that PSR J1946+2052 is in a DNS system. Among all known radio pulsars in DNS systems, PSR J1946+2052 has the shortest orbital period and the shortest estimated merger timescale, 46 Myr; at that time it will display the largest spin effects on gravitational-wave waveforms of any such system discovered to date. We have measured the advance of periastron passage for this system, \\dot{ω }=25.6+/- 0.3 \\deg {yr}}-1, implying a total system mass of only 2.50 ± 0.04 M ⊙, so it is among the lowest-mass DNS systems. This total mass measurement combined with the minimum companion mass constrains the pulsar mass to ≲1.3 M ⊙.
Zakaria, Rosita; Allen, Katrina J; Koplin, Jennifer J; Roche, Peter; Greaves, Ronda F
2016-12-01
Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; "blood spot" and "mass spectrometry"; while excluding "newborn"; and "neonate". In addition, databases were restricted to English language and human specific. There was no time period limit applied. As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required.
Association between Human Body Composition and Periodontal Disease.
Salekzamani, Yagoub; Shirmohammadi, Adileh; Rahbar, Mohammad; Shakouri, Seyed-Kazem; Nayebi, Farough
2011-01-01
Obesity in humans might increase the risk of periodontitis. The aim of the present study was to examine the relationship between body composition of males and their periodontal status. AS total of 150 males (aged 30-60) were selected: 31 were periodontally healthy, 45 had gingivitis, 39 had initial periodontitis, and 35 suffered from established periodontitis. BMI (body mass index), WC (waist circumference), and body composition parameters (consisting of body water, body fat, and skeletal muscle and bone mass) were measured. After adjusting for age, history of diabetes, smoking, physical activity status, and socioeconomic status, statistically significant correlations were found between periodontitis and BMI, WC, and body composition. There was only a statistically significant difference between the periodontal health and established periodontitis; that is, periodontal disease in mild forms (gingivitis) and initial periodontitis do not influence these variables (BMI, WC, and body composition parameters) and only the severe form of the disease influences the variables. These data suggest that there is a considerable association between severe forms of periodontal disease in males and their body composition, but this preliminary finding needs to be confirmed in more extensive studies.
Chemistry in dynamically evolving clouds
NASA Technical Reports Server (NTRS)
Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.; Villere, K. R.; Black, D. C.
1985-01-01
A unified model of chemical and dynamical evolution of isolated, initially diffuse and quiescent interstellar clouds is presented. The model uses a semiempirically derived dependence of the observed cloud temperatures on the visual extinction and density. Even low-mass, low-density, diffuse clouds can collapse in this model, because the inward pressure gradient force assists gravitational contraction. In contrast, previous isothermal collapse models required the low-mass diffuse clouds to be unrealistically cold before gravitational contraction could start. Theoretically predicted dependences of the column densities of various atoms and molecules, such as C and CO, on visual extinction in diffuse clouds are in accord with observations. Similarly, the predicted dependences of the fractional abundances of various chemical species (e.g., CO, H2CO, HCN, HCO(+)) on the total hydrogen density in the core of the dense clouds also agree with observations reported to date in the literature. Compared with previous models of interstellar chemistry, the present model has the potential to explain the wide spectrum of chemical and physical properties of both diffuse and dense clouds with a common formalism employing only a few simple initial conditions.
Association Between Gun Law Reforms and Intentional Firearm Deaths in Australia, 1979-2013.
Chapman, Simon; Alpers, Philip; Jones, Michael
2016-07-19
Rapid-fire weapons are often used by perpetrators in mass shooting incidents. In 1996 Australia introduced major gun law reforms that included a ban on semiautomatic rifles and pump-action shotguns and rifles and also initiated a program for buyback of firearms. To determine whether enactment of the 1996 gun laws and buyback program were followed by changes in the incidence of mass firearm homicides and total firearm deaths. Observational study using Australian government statistics on deaths caused by firearms (1979-2013) and news reports of mass shootings in Australia (1979-May 2016). Changes in intentional firearm death rates were analyzed with negative binomial regression, and data on firearm-related mass killings were compared. Implementation of major national gun law reforms. Changes in mass fatal shooting incidents (defined as ≥5 victims, not including the perpetrator) and in trends of rates of total firearm deaths, firearm homicides and suicides, and total homicides and suicides per 100,000 population. From 1979-1996 (before gun law reforms), 13 fatal mass shootings occurred in Australia, whereas from 1997 through May 2016 (after gun law reforms), no fatal mass shootings occurred. There was also significant change in the preexisting downward trends for rates of total firearm deaths prior to vs after gun law reform. From 1979-1996, the mean rate of total firearm deaths was 3.6 (95% CI, 3.3-3.9) per 100,000 population (average decline of 3% per year; annual trend, 0.970; 95% CI, 0.963-0.976), whereas from 1997-2013 (after gun law reforms), the mean rate of total firearm deaths was 1.2 (95% CI, 1.0-1.4) per 100,000 population (average decline of 4.9% per year; annual trend, 0.951; 95% CI, 0.940-0.962), with a ratio of trends in annual death rates of 0.981 (95% CI, 0.968-0.993). There was a statistically significant acceleration in the preexisting downward trend for firearm suicide (ratio of trends, 0.981; 95% CI, 0.970-0.993), but this was not statistically significant for firearm homicide (ratio of trends, 0.975; 95% CI, 0.949-1.001). From 1979-1996, the mean annual rate of total nonfirearm suicide and homicide deaths was 10.6 (95% CI, 10.0-11.2) per 100,000 population (average increase of 2.1% per year; annual trend, 1.021; 95% CI, 1.016-1.026), whereas from 1997-2013, the mean annual rate was 11.8 (95% CI, 11.3-12.3) per 100,000 (average decline of 1.4% per year; annual trend, 0.986; 95% CI, 0.980-0.993), with a ratio of trends of 0.966 (95% CI, 0.958-0.973). There was no evidence of substitution of other lethal methods for suicides or homicides. Following enactment of gun law reforms in Australia in 1996, there were no mass firearm killings through May 2016. There was a more rapid decline in firearm deaths between 1997 and 2013 compared with before 1997 but also a decline in total nonfirearm suicide and homicide deaths of a greater magnitude. Because of this, it is not possible to determine whether the change in firearm deaths can be attributed to the gun law reforms.
A numerical study of Penrose-like inequalities in a family of axially symmetric initial data
NASA Astrophysics Data System (ADS)
Jaramillo, J. L.; Vasset, N.; Ansorg, M.
Our current picture of black hole gravitational collapse relies on two assumptions: i) the resulting singularity is hidden behind an event horizon weak cosmic censorship conjecture and ii) spacetime eventually settles down to a stationarity state. In this setting, it follows that the minimal area containing an apparent horizon is bound by the square of the total ADM mass (Penrose inequality conjecture). Following Dain et al. (2002), we construct numerically a family of axisymmetric initial data with one or several marginally trapped surfaces. Penrose and related geometric inequalities are discused for these data. As a by-product, it is shown how Penrose inequality can be used as a diagnosis for an apparent horizon finder numerical routine.
Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars
NASA Technical Reports Server (NTRS)
Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce
2014-01-01
Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability.
Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62
NASA Astrophysics Data System (ADS)
Wong, Kenneth C.; Tran, Kim-Vy H.; Suyu, Sherry H.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Brodwin, Mark; Gonzalez, Anthony H.; Halkola, Aleksi; Kacprzak, Glenn G.; Koekemoer, Anton M.; Papovich, Casey J.; Rudnick, Gregory H.
2014-07-01
We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182-05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z S = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ _E=0.38+0.02-0.01 arcsec (3.2-0.1+0.2 kpc) and the total enclosed mass is M _tot (< θ _E)=1.8+0.2-0.1× 1011 M⊙ . We estimate that the cluster environment contributes ~10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θE is f_DMChab = 0.3-0.3+0.1, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f_DMSalp = -0.3-0.5+0.2). The total magnification of the source is μ _tot=2.1-0.3+0.4. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12590.
40 CFR 60.1795 - May I conduct stack testing less often?
Code of Federal Regulations, 2010 CFR
2010-07-01
... dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter... meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry...
40 CFR 60.1795 - May I conduct stack testing less often?
Code of Federal Regulations, 2012 CFR
2012-07-01
... dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter... meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry...
40 CFR 60.1795 - May I conduct stack testing less often?
Code of Federal Regulations, 2014 CFR
2014-07-01
... dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter... meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry...
Phrenic Nerve Palsy as Initial Presentation of Large Retrosternal Goitre.
Hakeem, Arsheed Hussain; Hakeem, Imtiyaz Hussain; Wani, Fozia Jeelani
2016-12-01
Unilateral phrenic nerve palsy as initial presentation of the retrosternal goitre is extremely rare event. This is a case report of a 57-year-old woman with history of cough and breathlessness of 3 months duration, unaware of the thyroid mass. She had large cervico-mediastinal goiter and chest radiograph revealed raised left sided hemidiaphragm. Chest CT scan did not reveal any lung parenchymal or mediastinal pathology. The patient underwent a total thyroidectomy through a cervical approach. The final pathology was in favor of multinodular goitre. Even after 1 year of follow up, phrenic nerve palsy did not improve indicating permanent damage. Phrenic nerve palsy as initial presentation of the retrosternal goitre is unusual event. This case is reported not only because of the rare nature of presentation, but also to make clinicians aware of the entity so that early intervention may prevent attendant morbidity.
Meyer, A M; Neville, T L; Reed, J J; Taylor, J B; Reynolds, L P; Redmer, D A; Hammer, C J; Vonnahme, K A; Caton, J S
2013-06-01
To investigate effects of nutritional plane and Se supply during gestation on neonatal offspring visceral organ mass and intestinal growth and vascularity, 84 nulliparous Rambouillet ewes (age = 240 ± 17 d, BW = 52.1 ± 6.2 kg) were allocated to a 2 × 3 factorial design. Ewes were fed 1 of 2 Se diets [adequate Se (ASe, 11.5 µg/kg BW) or high Se (HSe, 77.0 µg/kg BW)], initiated at breeding, and 1 of 3 nutritional planes [60% (restricted; RES), 100% (control; CON), or 140% (high; HIH) of NRC requirements], initiated at d 40 of gestation. Ewes were fed individually and remained on treatments through parturition. All lambs were removed from their dams at birth and fed milk replacer. At 20.6 ± 0.9 d of age, lambs were necropsied, visceral organs dissected, and jejunal samples collected. Lambs born to ewes fed CON and HIH had greater (P < 0.05) BW, gastrointestinal tract, stomach complex, and liver masses at necropsy than RES. Large intestinal and pancreatic masses, as well as stomach complex, large intestinal, and liver proportional masses, demonstrated (P ≤ 0.08) a nutritional plane × Se supply interaction. Proportional pancreatic mass was greater (P = 0.03) for lambs born to RES ewes than HIH. Although small intestinal mass was not affected (P ≥ 0.18) by gestational treatments, lambs born to HIH-fed ewes had greater (P ≤ 0.09) jejunal DNA concentration than RES and CON, and greater (P = 0.01) total DNA than RES. Nutritional plane and Se supply interacted to affect (P ≤ 0.003) jejunal percent proliferation and total proliferating small intestinal cells, although jejunal crypt depth and villus length were not affected by gestational treatment (P ≥ 0.17). Jejunal glucagon-like peptide-2 mRNA expression was greater (P ≤ 0.07) in lambs born to ewes fed RES compared with CON and HIH. Jejunal capillary size was affected (P = 0.09) by the interaction of nutritional plane × Se supply. Lambs from CON ewes had greater (P ≤ 0.04) jejunal capillary surface density than RES. Nutritional plane and Se supply interacted to affect (P = 0.07) jejunal soluble guanylate cyclase mRNA expression in a manner opposite of capillary size. In conclusion, neonatal lamb visceral organ mass was affected by gestational nutrition, even when lambs had ad libitum intake and similar management postnatally. Despite similar small intestinal mass at 20 d of age, jejunal growth, vascularity, and gene expression were altered by maternal nutrition during gestation.
The Nature and Evolutionary History of GRO J1744-28
NASA Technical Reports Server (NTRS)
Rappaport, S.
1997-01-01
GRO J1744-28 is the first known X-ray source to display bursts, periodic pulsations, and quasi-periodic oscillations. This source may thus provide crucial clues that will lead to an understanding of the differences in the nature of the X-ray variability from various accreting neutron stars. The orbital period is 11.8 days, and the measured mass function of 1.31 x 10(exp -4) solar mass is one of the smallest among all known binaries. If we assume that the donor star is a low-mass giant transferring matter through the inner Lagrange point, then we can show that its mass is lower than approximately 0.7 solar mass and probably closer to 0.25 solar mass. Higher mass, but unevolved, donor stars are shown to be implausible. We also demonstrate that the current He core mass of the donor star lies in the range of 0.20-0.25 solar mass. Thus, this system is most likely in the final stages of losing its hydrogen-rich envelope, with only a small amount of mass remaining in the envelope. If this picture is correct, then GRO J1744-28 may well represent the closest observational link that we have between the low-mass X-ray binaries and recycled binary pulsars in wide orbits. We have carried out a series of binary evolution calculations and explored, both systematically and via a novel Monte Carlo approach, the range of initial system parameters and input physics that can lead to the binary parameters of the present-day GRO J1744-28 system. The input parameters include both the initial total mass and the core mass of the donor star, the neutron-star mass, the strength of the magnetic braking, the mass-capture fraction, and the specifics of the core mass/radius relation for giants. Through these evolution calculations, we compute probability distributions for the current binary system parameters (i.e., the total mass, core mass, radius, luminosity, and K-band magnitude of the donor star, the neutron star mass, the orbital inclination angle, and the semimajor axis of the binary). Our calculations yield the following values for the GRO J1744-28 system parameters (with 95% confidence limits in parentheses): donor star mass: 0.24 solar mass (0.2-0.7 solar mass); He core mass of the donor star: 0.22 solar mass (0.20-0.25 solar mass); neutron-star mass: 1.7 solar mass (1.39-1.96 solar mass); orbital inclination angle: 18deg (7deg-22deg); semi- major axis: 64 lt-s (60-67 lt-s); radius of the donor star: 6.2 solar radius(6-9 solar radius); luminosity of donor star: 23 solar luminosity (15-49 solar luminosity), and long-term mass transfer rate at the current epoch: 5 x 10(exp -10)solar mass/yr (2 x 10(exp -10) to 5 x 10(exp -9)solar mass/yr). We deduce that the magnetic field of the underlying neutron star lies in the range of approximately 1.8 x 10(exp 11)G to approximately 7 x 10(exp 11)G, with a most probable value of 2.7 x 10(exp 11)G. This is evidently sufficiently strong to funnel the accretion flow onto the magnetic polar caps and suppress the thermonuclear flashes that would otherwise give rise to the type 1 X-ray bursts observed in most X-ray bursters. We present a simple paradigm for magnetic accreting neutron stars where X-ray pulsars, GRO J1744-28, the Rapid Burster, and the type 1 X-ray bursters may form a continuum of possible behaviors among accreting neutron stars, with the strength of the neutron-star magnetic field serving as a crucial parameter that determines the mode of X-ray variability from a given object.
NASA Astrophysics Data System (ADS)
Pan, F.; Frieder, C.; Applebaum, S.; Manahan, D. T.
2016-02-01
The Pacific oyster, Crassostrea gigas, is a major commercial species in global aquaculture. Ocean acidification is having a negative effect on larval production of this species, so the mechanisms of this impact are of considerable interest. Formation of new shell in C. gigas during the first 2-days post-fertilization results in a rapid six-fold increase in total mass. This period of early development has high sensitivity to changes in carbonate chemistry, in particular aragonite saturation state (Ω). An elevated energy cost for calcification at low Ω is often invoked as a mechanism. In this study, we characterized the developmental progression of first shell formation, total metabolic expenditure, and underlying biochemical processes of energy allocation during early development of C. gigas, under control (Ω >> 1) and undersaturated conditions (Ω < 1). While undersaturated conditions delayed the onset of calcification and resulted in decreased shell mass, there was no change in total metabolic energy demand. Furthermore, partitioning of total metabolic energy showed no major re-allocation of ATP to protein synthesis or ion pump activity (Na+, K+-ATPase) between the two treatments. We conclude that early development to the shelled-veliger larval stage does not require more energy at undersaturation. This finding helps constrain potential mechanisms of larval sensitivity to ocean acidification and narrows the focus for possible mitigation strategies for oyster aquaculture production.
Determining the Stellar Initial Mass by Means of the 17O/18O Ratio on the AGB
NASA Astrophysics Data System (ADS)
De Nutte, Rutger; Decin, Leen; Olofsson, Hans; de Koter, Alex; Karakas, Amanda; Lombaert, Robin; Milam, Stefanie; Ramstedt, Sofia; Stancliffe, Richard; Homan, Ward; Van de Sande, Marie
2016-07-01
This poster presentsnewly obtainedcircumstellar 12C17O and 12C18O line observations, from which theline intensity are then related directly tothe 17O/18O surface abundance ratiofor a sample of nine AGB stars covering the three spectral types ().These ratios are evaluated in relation to a fundamental stellar evolution parameters: the stellar initial mass. The17O/18O ratio is shown to function as an effective method of determining the initial stellar mass. Through comparison with predictions bystellar evolution models, accurate initial mass estimates are calculated for all nine sources.
Moseley, Kendall F; Dobrosielski, Devon A; Stewart, Kerry J; De Beur, Suzanne M Jan; Sellmeyer, Deborah E
2011-05-01
Despite high bone mineral density (BMD), persons with type 2 diabetes are at greater risk of fracture. The relationship between body composition and BMD in noninsulin-requiring diabetes is unclear. The aim was to examine how fat and lean mass independently affect the skeleton in this population. Subjects for this cross-sectional analysis were men (n = 78) and women (n = 56) aged 40-65 years (56 ± 6 years) with uncomplicated, noninsulin-requiring type 2 diabetes. Total body fat and lean mass, total body, hip and lumbar spine BMD were measured with dual energy X-ray absorptiometry. Magnetic resonance imaging measured total abdominal, visceral and subcutaneous (SQ) fat. Subjects had normal all-site BMD and were obese to overweight (body mass index 29-41 kg/m(2)) with controlled diabetes (HbA1c women 6·6 ± 1·2%, men 6·7 ± 1·6%). Lean mass was positively associated with total body, hip, femoral neck and hip BMD in both sexes. Fat mass, abdominal total and SQ fat were associated with total body and hip BMD in women. In multivariate analyses adjusted for sex, lean mass significantly predicted total, hip and femoral neck BMD in men and women. In unadjusted models, lean mass continued to predict BMD at these sites in men; fat mass also predicted total body, femoral and hip BMD in women. In men and women with uncomplicated, noninsulin-requiring diabetes, lean mass significantly predicted BMD at the total body, hip and femoral neck. Further research is needed to determine whether acquisition or maintenance of lean mass in T2DM can prevent hip fracture in this at-risk population. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Somogyi, Gábor; Smith, Robert E.
2010-01-01
We generalize the renormalized perturbation theory (RPT) formalism of Crocce and Scoccimarro [M. Crocce and R. Scoccimarro, Phys. Rev. DPRVDAQ1550-7998 73, 063519 (2006)10.1103/PhysRevD.73.063519] to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid—the so-called dark matter only modeling. In this approximation, one uses a weighed sum of late-time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 ΛCDM model. This time evolving bias is significant (>1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the nonlinear regime. We show that the nonlinear CDM power spectrum in the two-component fluid differs from that obtained from an effective mean-mass one-component fluid by ˜3% on scales of order k˜0.05hMpc-1 at z=10, and by ˜0.5% at z=0. However, for the case of the nonlinear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by ˜15% on scales k˜0.05hMpc-1 at z=10, and by ˜3%-5% at z=0. Importantly, besides the suppression of the spectrum, the baryonic acoustic oscillation (BAO) features are amplified for baryon and slightly damped for CDM spectra. If we compare the total matter power spectra in the two- and one-component fluid approaches, then we find excellent agreement, with deviations being <0.5% throughout the evolution. Consequences: high precision modeling of the large-scale distribution of baryons in the Universe cannot be achieved through an effective mean-mass one-component fluid approximation; detection significance of BAO will be amplified in probes that study baryonic matter, relative to probes that study the CDM or total mass only. The CDM distribution can be modeled accurately at late times and the total matter at all times. This is good news for probes that are sensitive to the total mass, such as gravitational weak lensing as existing modeling techniques are good enough. Lastly, we identify an analytic approximation that greatly simplifies the evaluation of the full PT expressions, and it is better than <1% over the full range of scales and times considered.
Shi, Pengyi; Keskinocak, Pinar; Swann, Julie L; Lee, Bruce Y
2010-12-21
During the 2009 H1N1 influenza pandemic, concerns arose about the potential negative effects of mass public gatherings and travel on the course of the pandemic. Better understanding the potential effects of temporal changes in social mixing patterns could help public officials determine if and when to cancel large public gatherings or enforce regional travel restrictions, advisories, or surveillance during an epidemic. We develop a computer simulation model using detailed data from the state of Georgia to explore how various changes in social mixing and contact patterns, representing mass gatherings and holiday traveling, may affect the course of an influenza pandemic. Various scenarios with different combinations of the length of the mass gatherings or traveling period (range: 0.5 to 5 days), the proportion of the population attending the mass gathering events or on travel (range: 1% to 50%), and the initial reproduction numbers R0 (1.3, 1.5, 1.8) are explored. Mass gatherings that occur within 10 days before the epidemic peak can result in as high as a 10% relative increase in the peak prevalence and the total attack rate, and may have even worse impacts on local communities and travelers' families. Holiday traveling can lead to a second epidemic peak under certain scenarios. Conversely, mass traveling or gatherings may have little effect when occurring much earlier or later than the epidemic peak, e.g., more than 40 days earlier or 20 days later than the peak when the initial R0 = 1.5. Our results suggest that monitoring, postponing, or cancelling large public gatherings may be warranted close to the epidemic peak but not earlier or later during the epidemic. Influenza activity should also be closely monitored for a potential second peak if holiday traveling occurs when prevalence is high.
NASA Astrophysics Data System (ADS)
Gennaro, Mario; Tchernyshyov, Kirill; Brown, Thomas M.; Geha, Marla; Avila, Roberto J.; Guhathakurta, Puragra; Kalirai, Jason S.; Kirby, Evan N.; Renzini, Alvio; Simon, Joshua D.; Tumlinson, Jason; Vargas, Luis C.
2018-03-01
Using deep observations obtained with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST), we demonstrate that the sub-solar stellar initial mass function (IMF) of six ultra-faint dwarf Milky Way satellites (UFDs) is more bottom light than the IMF of the Milky Way disk. Our data have a lower-mass limit of ∼0.45 M ⊙, while the upper limit is ∼0.8 M ⊙, set by the turnoff mass of these old, metal-poor systems. If formulated as a single power law, we obtain a shallower IMF slope than the Salpeter value of ‑2.3, ranging from ‑1.01 for Leo IV to ‑1.87 for Boötes I. The significance of these deviations depends on the galaxy and is typically 95% or more. When modeled as a log-normal, the IMF fit results in a higher peak mass than in the Milky Way disk, but a Milky Way disk value for the characteristic system mass (∼0.22 M ⊙) is excluded at only 68% significance, and only for some UFDs in the sample. We find that the IMF slope correlates well with the galaxy mean metallicity, and to a lesser degree, with the velocity dispersion and the total mass. The strength of the observed correlations is limited by shot noise in the number of observed stars, but future space-based missions like the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope ( WFIRST) will enhance both the number of dwarf Milky Way satellites that can be studied in such detail and the observation depth for individual galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12549.
Small-Scale Dissipation in Binary-Species Transitional Mixing Layers
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2011-01-01
Motivated by large eddy simulation (LES) modeling of supercritical turbulent flows, transitional states of databases obtained from direct numerical simulations (DNS) of binary-species supercritical temporal mixing layers were examined to understand the subgrid-scale dissipation, and its variation with filter size. Examination of the DSN-scale domain- averaged dissipation confirms previous findings that, out of the three modes of viscous, temperature and species-mass dissipation, the species-mass dissipation is the main contributor to the total dissipation. The results revealed that the percentage of species-mass by total dissipation is nearly invariant across species systems and initial conditions. This dominance of the species-mass dissipation is due to high-density-gradient magnitude (HDGM) regions populating the flow under the supercritical conditions of the simulations; such regions have also been observed in fully turbulent supercritical flows. The domain average being the result of both the local values and the extent of the HDGM regions, the expectations were that the response to filtering would vary with these flow characteristics. All filtering here is performed in the dissipation range of the Kolmogorov spectrum, at filter sizes from 4 to 16 times the DNS grid spacing. The small-scale (subgrid scale, SGS) dissipation was found by subtracting the filtered-field dissipation from the DNS-field dissipation. In contrast to the DNS dissipation, the SGS dissipation is not necessarily positive; negative values indicate backscatter. Backscatter was shown to be spatially widespread in all modes of dissipation and in the total dissipation (25 to 60 percent of the domain). The maximum magnitude of the negative subgrid- scale dissipation was as much as 17 percent of the maximum positive subgrid- scale dissipation, indicating that, not only is backscatter spatially widespread in these flows, but it is considerable in magnitude and cannot be ignored for the purposes of LES modeling. The Smagorinsky model, for example, is unsuited for modeling SGS fluxes in the LES because it cannot render backscatter. With increased filter size, there is only a modest decrease in the spatial extent of backscatter. The implication is that even at large LES grid spacing, the issue of backscatter and related SGS-flux modeling decisions are unavoidable. As a fraction of the total dissipation, the small-scale dissipation is between 10 and 30 percent of the total dissipation for a filter size that is four times the DNS grid spacing, with all OH cases bunched at 10 percent, and the HN cases spanning 24 30 percent. A scale similarity was found in that the domain-average proportion of each small-scale dissipation mode, with respect to the total small-scale dissipation, is very similar to equivalent results at the DNS scale. With increasing filter size, the proportion of the small-scale dissipation in the dissipation increases substantially, although not quite proportionally. When the filter size increases by four-fold, 52 percent for all OH runs, and 70 percent for HN runs, of the dissipation is contained in the subgrid-scale portion with virtually no dependence on the initial conditions of the DNS. The indications from the dissipation analysis are that modeling efforts in LES of thermodynamically supercritical flows should be focused primarily on mass-flux effects, with temperature and viscous effects being secondary. The analysis also reveals a physical justification for scale-similarity type models, although the suitability of these will need to be confirmed in a posteriori studies.
Yu, Jin-bo; Ke, Yao-hua; He, Jin-wei; Zhang, Hao; Hu, Wei-wei; Hu, Yun-qiu; Li, Miao; Liu, Yu-juan; Gu, Jie-mei; Fu, Wen-zhen; Gao, Gao; Yue, Hua; Xiao, Wen-jin; Zhang, Zhen-lin
2010-11-01
To investigate the effect of low-density lipoprotein receptor-related protein 5 (LRP5) gene polymorphisms on bone and obesity phenotypes in young Chinese men. A total of 1244 subjects from 411 Chinese nuclear families were genotyped by using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique at the Q89R, N740N, and A1330V sites in the LRP5 gene. Bone mineral density (BMD) in the lumbar spine and the hip, total fat mass and total lean mass were measured using dual-energy X-ray absorptiometry. The association between LRP5 gene polymorphisms and peak BMD, body mass index (BMI), total fat mass, total lean mass and percentage of fat mass was assessed using a quantitative transmission disequilibrium test (QTDT). No significant within-family associations were found between genotypes or haplotypes of the LRP5 gene and peak BMD, BMI, total fat mass, total lean mass and percentage of fat mass. The 1000 permutations that were subsequently simulated were in agreement with these within-family association results. Our results suggest that common polymorphic variations of the LRP5 gene do not influence peak bone mass acquisition and obesity phenotypes in young Chinese men.
Removal of dimethyl phthalate from water by ozone microbubbles.
Jabesa, Abdisa; Ghosh, Pallab
2017-08-01
This work investigates the removal of dimethyl phthalate (DMP) from water using ozone microbubbles in a pilot plant of 20 dm 3 capacity. Experiments were performed under various reaction conditions to examine the effects of the initial concentration of DMP, pH of the medium, ozone generation rate, and the role of H 2 O 2 on the removal of DMP. The DMP present in water was effectively removed by the ozone microbubbles. The removal was effective in neutral and alkaline media. Increase in the initial concentration of the target pollutant negatively affected its removal efficiency. The removal efficiency dramatically increased from 1% to 99% when the ozone generation rate was increased from 0.28 to 1.94 mg s -1 at pH 7. The total organic carbon measurements revealed that a complete mineralization of DMP was achieved within 1.8 ks at the high ozone feed rate. The use of t-butyl alcohol as the hydroxyl radical scavenger confirmed that the reaction between the target organic compound and ·OH radical dominated over its direct reaction with ozone. The reaction between DMP and ozone followed an overall second-order kinetics. The volumetric mass transfer coefficient of ozone in the reacting system and the enhancement factor increased with increasing initial concentration of DMP. Very low values of Hatta number were obtained at all initial concentrations of DMP and pH, which show that the mass transfer resistance was small.
The initial masses of the red supergiant progenitors to Type II supernovae
NASA Astrophysics Data System (ADS)
Davies, Ben; Beasor, Emma R.
2018-02-01
There are a growing number of nearby supernovae (SNe) for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitor's brightness a few years before explosion, and ultimately estimate its initial mass. Previous work has shown that II-P and II-L SNe have red supergiant (RSG) progenitors, and that the range of initial masses for these progenitors seems to be limited to ≲ 17 M⊙. This is in contrast with the cut-off of 25-30 M⊙ predicted by evolutionary models, a result that is termed the `red supergiant problem'. Here we investigate one particular source of systematic error present in converting pre-explosion photometry into an initial mass, which of the bolometric correction (BC) used to convert a single-band flux into a bolometric luminosity. We show, using star clusters, that RSGs evolve to later spectral types as they approach SN, which in turn causes the BC to become larger. Failure to account for this results in a systematic underestimate of a star's luminosity, and hence its initial mass. Using our empirically motivated BCs we reappraise the II-P and II-L SNe that have their progenitors detected in pre-explosion imaging. Fitting an initial mass function to these updated masses results in an increased upper mass cut-off of Mhi = 19.0^{+2.5}_{-1.3} M⊙, with a 95 per cent upper confidence limit of <27 M⊙. Accounting for finite sample size effects and systematic uncertainties in the mass-luminosity relationship raises the cut-off to Mhi = 25 M⊙ (<33 M⊙, 95 per cent confidence). We therefore conclude that there is currently no strong evidence for `missing' high-mass progenitors to core-collapse SNe.
Logistics Reduction and Repurposing Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Broyan, James L., Jr.
2012-01-01
All human space missions, regardless of destination, require significant logistical mass and volume that is strongly proportional to mission duration. Anything that can be done to reduce initial mass and volume of supplies or reuse items that have been launched will be very valuable. Often, the logistical items require disposal and represent a trash burden. Logistics contributions to total mission architecture mass can be minimized by considering potential reuse using systems engineering analysis. In NASA's Advanced Exploration Systems "Logistics Reduction and Repurposing Project," various tasks will reduce the intrinsic mass of logistical packaging, enable reuse and repurposing of logistical packaging and carriers for other habitation, life support, crew health, and propulsion functions, and reduce or eliminate the nuisance aspects of trash at the same time. Repurposing reduces the trash burden and eliminates the need for hardware whose function can be provided by use of spent logistical items. However, these reuse functions need to be identified and built into future logical systems to enable them to effectively have a secondary function. These technologies and innovations will help future logistics systems to support multiple exploration missions much more efficiently.
Zhang, Xinling; Mao, Yongjiang; Zheng, Rongqin; Zheng, Zhijuan; Huang, Zeping; Huang, Dongmei; Zhang, Jing; Dai, Qing; Zhou, Xiaodong; Wen, Yanling
2014-01-01
The aim of this study is to evaluate the efficacy of qualitative analysis of contrast-enhanced ultrasound (CEUS) in discrimination of adnexal masses which were undetermined by conventional ultrasound (US). A total of 120 patients underwent transabdominal CEUS. The initial enhancement time and intensity compared with the uterine myometrium, contrast agent distribution patterns and dynamic changes of enhancement were assessed. The sensitivity (Sen), specificity (Spe), positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC) and Youden’s index were calculated for contrast variables. The gold standard was the histological diagnosis. There were 48 malignant tumors and 72 benign tumors. The enhancement features of malignant masses were different from benign ones. Earlier or simultaneous enhancement with inhomogeneous enhancement yielded the highest capability in differential diagnosis, and Sen, Spe, PPV, NPV, ACC, Youden’s index was 89.6%, 97.2%, 93.2%, 95.6%, 93.3%, and 0.88, respectively. The qualitative evaluation of CEUS is useful in the differential diagnosis of adnexal masses where conventional US is indeterminate. PMID:24736589
Zhang, Xinling; Mao, Yongjiang; Zheng, Rongqin; Zheng, Zhijuan; Huang, Zeping; Huang, Dongmei; Zhang, Jing; Dai, Qing; Zhou, Xiaodong; Wen, Yanling
2014-01-01
The aim of this study is to evaluate the efficacy of qualitative analysis of contrast-enhanced ultrasound (CEUS) in discrimination of adnexal masses which were undetermined by conventional ultrasound (US). A total of 120 patients underwent transabdominal CEUS. The initial enhancement time and intensity compared with the uterine myometrium, contrast agent distribution patterns and dynamic changes of enhancement were assessed. The sensitivity (Sen), specificity (Spe), positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC) and Youden's index were calculated for contrast variables. The gold standard was the histological diagnosis. There were 48 malignant tumors and 72 benign tumors. The enhancement features of malignant masses were different from benign ones. Earlier or simultaneous enhancement with inhomogeneous enhancement yielded the highest capability in differential diagnosis, and Sen, Spe, PPV, NPV, ACC, Youden's index was 89.6%, 97.2%, 93.2%, 95.6%, 93.3%, and 0.88, respectively. The qualitative evaluation of CEUS is useful in the differential diagnosis of adnexal masses where conventional US is indeterminate.
NASA Astrophysics Data System (ADS)
Braun, Jean-Jacques; Descloitres, Marc; Riotte, Jean; Fleury, Simon; Barbiéro, Laurent; Boeglin, Jean-Loup; Violette, Aurélie; Lacarce, Eva; Ruiz, Laurent; Sekhar, M.; Mohan Kumar, M. S.; Subramanian, S.; Dupré, Bernard
2009-02-01
The aim of this study is to propose a method to assess the long-term chemical weathering mass balance for a regolith developed on a heterogeneous silicate substratum at the small experimental watershed scale by adopting a combined approach of geophysics, geochemistry and mineralogy. We initiated in 2003 a study of the steep climatic gradient and associated geomorphologic features of the edge of the rifted continental passive margin of the Karnataka Plateau, Peninsular India. In the transition sub-humid zone of this climatic gradient we have studied the pristine forested small watershed of Mule Hole (4.3 km 2) mainly developed on gneissic substratum. Mineralogical, geochemical and geophysical investigations were carried out (i) in characteristic red soil profiles and (ii) in boreholes up to 60 m deep in order to take into account the effect of the weathering mantle roots. In addition, 12 Electrical Resistivity Tomography profiles (ERT), with an investigation depth of 30 m, were generated at the watershed scale to spatially characterize the information gathered in boreholes and soil profiles. The location of the ERT profiles is based on a previous electromagnetic survey, with an investigation depth of about 6 m. The soil cover thickness was inferred from the electromagnetic survey combined with a geological/pedological survey. Taking into account the parent rock heterogeneity, the degree of weathering of each of the regolith samples has been defined using both the mineralogical composition and the geochemical indices (Loss on Ignition, Weathering Index of Parker, Chemical Index of Alteration). Comparing these indices with electrical resistivity logs, it has been found that a value of 400 Ohm m delineates clearly the parent rocks and the weathered materials. Then the 12 inverted ERT profiles were constrained with this value after verifying the uncertainty due to the inversion procedure. Synthetic models based on the field data were used for this purpose. The estimated average regolith thickness at the watershed scale is 17.2 m, including 15.2 m of saprolite and 2 m of soil cover. Finally, using these estimations of the thicknesses, the long-term mass balance is calculated for the average gneiss-derived saprolite and red soil. In the saprolite, the open-system mass-transport function τ indicates that all the major elements except Ca are depleted. The chlorite and biotite crystals, the chief sources for Mg (95%), Fe (84%), Mn (86%) and K (57%, biotite only), are the first to undergo weathering and the oligoclase crystals are relatively intact within the saprolite with a loss of only 18%. The Ca accumulation can be attributed to the precipitation of CaCO 3 from the percolating solution due to the current and/or the paleoclimatic conditions. Overall, the most important losses occur for Si, Mg and Na with -286 × 10 6 mol/ha (62% of the total mass loss), -67 × 10 6 mol/ha (15% of the total mass loss) and -39 × 10 6 mol/ha (9% of the total mass loss), respectively. Al, Fe and K account for 7%, 4% and 3% of the total mass loss, respectively. In the red soil profiles, the open-system mass-transport functions point out that all major elements except Mn are depleted. Most of the oligoclase crystals have broken down with a loss of 90%. The most important losses occur for Si, Na and Mg with -55 × 10 6 mol/ha (47% of the total mass loss), -22 × 10 6 mol/ha (19% of the total mass loss) and -16 × 10 6 mol/ha (14% of the total mass loss), respectively. Ca, Al, K and Fe account for 8%, 6%, 4% and 2% of the total mass loss, respectively. Overall these findings confirm the immaturity of the saprolite at the watershed scale. The soil profiles are more evolved than saprolite but still contain primary minerals that can further undergo weathering and hence consume atmospheric CO 2.
Phytoremediation removal rates of benzene, toluene, and chlorobenzene.
Limmer, Matt A; Wilson, Jordan; Westenberg, David; Lee, Amy; Siegman, Mark; Burken, Joel G
2018-06-07
Phytoremediation is a sustainable remedial approach, although performance efficacy is rarely reported. In this study, we assessed a phytoremediation plot treating benzene, toluene, and chlorobenzene. A comparison of the calculated phytoremediation removal rate with estimates of onsite contaminant mass was used to forecast cleanup periods. The investigation demonstrated that substantial microbial degradation was occurring in the subsurface. Estimates of transpiration indicated that the trees planted were removing approximately 240,000 L of water per year. This large quantity of water removal implies substantial removal of contaminant due to large amounts of contaminants in the groundwater; however, these contaminants extensively sorb to the soil, resulting in large quantities of contaminant mass in the subsurface. The total estimate of subsurface contaminant mass was also complicated by the presence of non-aqueous phase liquids (NAPL), additional contaminant masses that were difficult to quantify. These uncertainties of initial contaminant mass at the site result in large uncertainty in the cleanup period, although mean estimates are on the order of decades. Collectively, the model indicates contaminant removal rates on the order of 10 -2 -10 0 kg/tree/year. The benefit of the phytoremediation system is relatively sustainable cleanup over the long periods necessary due to the presence of NAPL.
State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact.
Renne, Paul R; Sprain, Courtney J; Richards, Mark A; Self, Stephen; Vanderkluysen, Loÿc; Pande, Kanchan
2015-10-02
Bolide impact and flood volcanism compete as leading candidates for the cause of terminal-Cretaceous mass extinctions. High-precision (40)Ar/(39)Ar data indicate that these two mechanisms may be genetically related, and neither can be considered in isolation. The existing Deccan Traps magmatic system underwent a state shift approximately coincident with the Chicxulub impact and the terminal-Cretaceous mass extinctions, after which ~70% of the Traps' total volume was extruded in more massive and more episodic eruptions. Initiation of this new regime occurred within ~50,000 years of the impact, which is consistent with transient effects of impact-induced seismic energy. Postextinction recovery of marine ecosystems was probably suppressed until after the accelerated volcanism waned. Copyright © 2015, American Association for the Advancement of Science.
Life Support System Technologies for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.
2007-01-01
The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.
Knee joint loading in knee osteoarthritis: influence of abdominal and thigh fat.
Messier, Stephen P; Beavers, Daniel P; Loeser, Richard F; Carr, J Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J; Hunter, David J; Devita, Paul
2014-09-01
Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee joint loads in older overweight and obese adults with knee osteoarthritis (OA). Fat depots were quantified using computed tomography, and total lean and fat mass were determined with dual energy x-ray absorptiometry in 176 adults (age, 66.3 yr; body mass index, 33.5 kg·m) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Higher total body mass was significantly associated (P ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (P < 0.0001), patellofemoral forces (P < 0.006), and knee extensor moments (P = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (P = 0.0001), shear (P < 0.001), and patellofemoral forces (P = 0.01) and knee extension moment (P = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (P = 0.002). A regression model that included total thigh and total abdominal fat found that both were significantly associated with knee compressive and shear forces (P ≤ 0.04). Thigh fat was associated with knee abduction (P = 0.03) and knee extension moment (P = 0.02). Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA.
Exceptionally rare cause of a total stomach resection
Snarska, Jadwiga; Jacyna, Krzysztof; Janiszewski, Jacek; Shafie, Danuta; Iwanowicz, Katarzyna; Żurada, Anna
2012-01-01
The first-ever case of a 54-year-old woman who overdosed on non-steroidal anti-inflammatory drugs in an attempt at suicide. Before that incident, she had not been treated for coexisting diseases such as rheumatoid arthritis or depression. At the time of admission to the General Surgery Department, the patient reported pains in the epigastric region with accompanying nausea and vomiting with mucous content as well as the inability to ingest food orally. Despite parenteral and enteral feeding, the patient exhibited a drop in body mass. The histopathologic examination of a sample taken from the stomach during gastroscopy showed some non-specific necrotic and inflammatory masses with granulation. Intraoperatively, a very small, infiltrated stomach with an initial section of duodenum was identified. A total stomach resection together with the reconstruction of digestive tract continuity was performed using the Roux-Y method. Histopathologic examination of the stomach revealed a deep, chronic and exacerbated inflammatory condition with an extensive ulceration over the entire length of the stomach, reaching up to the pylorus. Additionally, numerous lymphatic glands with inflammatory reaction changes were observed. PMID:22654458
Exceptionally rare cause of a total stomach resection.
Snarska, Jadwiga; Jacyna, Krzysztof; Janiszewski, Jacek; Shafie, Danuta; Iwanowicz, Katarzyna; Żurada, Anna
2012-05-28
The first-ever case of a 54-year-old woman who overdosed on non-steroidal anti-inflammatory drugs in an attempt at suicide. Before that incident, she had not been treated for coexisting diseases such as rheumatoid arthritis or depression. At the time of admission to the General Surgery Department, the patient reported pains in the epigastric region with accompanying nausea and vomiting with mucous content as well as the inability to ingest food orally. Despite parenteral and enteral feeding, the patient exhibited a drop in body mass. The histopathologic examination of a sample taken from the stomach during gastroscopy showed some non-specific necrotic and inflammatory masses with granulation. Intraoperatively, a very small, infiltrated stomach with an initial section of duodenum was identified. A total stomach resection together with the reconstruction of digestive tract continuity was performed using the Roux-Y method. Histopathologic examination of the stomach revealed a deep, chronic and exacerbated inflammatory condition with an extensive ulceration over the entire length of the stomach, reaching up to the pylorus. Additionally, numerous lymphatic glands with inflammatory reaction changes were observed.
Collisional Penrose process near the horizon of extreme Kerr black holes.
Bejger, Michał; Piran, Tsvi; Abramowicz, Marek; Håkanson, Frida
2012-09-21
Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy. This led recently to the suggestion [M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles, the energy excess must come from the rotational energy of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy diverges, the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one should not expect collisions around a black hole to act as spectacular cosmic accelerators.
NASA Astrophysics Data System (ADS)
McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter; Sugiura, Naoji
2013-12-01
‘Quenched’ angrite meteorites are among the best time markers of igneous activity in early formed planetesimals of the Solar System. They can be precisely dated by the Mn-Cr extinct nuclide decay system because they contain olivine with high Mn/Cr. Nevertheless, there is disagreement between various determinations of the initial 53Mn/55Mn for this meteorite, hindering their use for cross-calibration between chronometric systems and between Secondary Ion Mass Spectrometry (SIMS) and bulk measurement techniques. Here we re-evaluate the Mn-Cr systematics of olivine from the quenched angrite D’Orbigny using Sensitive High-mass Resolution Ion Micro Probe Reverse Geometry (SHRIMP-RG) to search for heterogeneity in isotope systematics and check for inter-laboratory bias. We investigated possible bias arising due to different data reduction methods and have paid careful attention to the relative sensitivities of Mn and Cr by utilising a three-component mixing model to correct for matrix effects associated with Mg, Fe and Ca zoning in angrite olivine. We have determined an initial 53Mn/55Mn of 3.60 (±0.39) × 10-6 and 3.44 (±0.29) × 10-6 (2σ errors) for D’Orbigny olivine by the Mean of Ratios and Ratio of Total Counts data reduction methods. These values are in agreement with those found by some previous bulk and mineral-scale determinations, and with the generally accepted initial 53Mn/55Mn of this meteorite, but not with previous SIMS work on this material. The source of this discrepancy remains unclear. We can exclude heterogeneity in D’Orbigny as a source of discrepancy because we used the same sample and the meteorite appears to have consistent initial 53Mn/55Mn over both micro- and macro-scales. The discrepancy between this and the previous SIMS study probably reflects an unrecognised systematic analytical bias, possibly associated with relative sensitivities of Mn and Cr or with mass spectrometric backgrounds (isobaric interferences or scattered ions) which may become significant at very low Cr count rates.
A Triple Iron Triathlon Leads to a Decrease in Total Body Mass but Not to Dehydration
ERIC Educational Resources Information Center
Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Oliver, Senn
2010-01-01
A loss in total body mass during an ultraendurance performance is usually attributed to dehydration. We identified the changes in total body mass, fat mass, skeletal muscle mass, and selected markers of hydration status in 31 male nonprofessional ultratriathletes participating in a Triple Iron triathlon involving 11.4 km swimming, 540 km cycling…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E., E-mail: koepferl@usm.lmu.de
We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densitiesmore » can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.« less
Karountzos, Vasileios; Lambrinoudaki, Irene; Tsitsika, Artemis; Deligeoroglou, Efthimios
2017-10-01
To determine the threshold of total body and trunk fat mass required for menstrual recovery and to assess the impact of body composition in psychopathology of adolescents with Anorexia Nervosa (AN). Prospective study of 60 adolescents presented with secondary amenorrhea and diagnosed with AN. Anthropometrics, body composition by dual-energy X-ray absorptiometry, hormonal studies and responses to mental health screens (EAT-26), were obtained at the beginning and at complete weight restoration, in all adolescents, independently of menstrual recovery (Group A) or not (Group B). At weight restoration, Group A total body fat mass, trunk fat mass, and trunk/extremities fat ratio were significantly higher (p < .001) than Group B. Menstruation was expected in 20% of total body fat mass and 20% of trunk fat mass (% of total trunk tissue). At time of menstrual recovery, total body fat mass (%) and trunk fat mass (%) were significantly negatively correlated with EAT-26 (r = -0.363, p = .032) and (r = -0.416, p = .013), respectively, while an increase of 0.40% of trunk fat mass (%) lowers EAT-26 by one unit. Trunk fat mass distribution can positively influence psychopathology of adolescents with AN.
Numerical simulation of the compressible Orszag-Tang vortex. Interim report, June 1988-February 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, R.B.; Picone, J.M.
Results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. Initial conditions consist of a nonrandom, periodic field in which the magnetic and velocity fields contain X-points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure-field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average flow Mach number of the flow. In the numerical simulations, this initial Mach number is varied from 0.2 to 0.6. These values correspond to average plasma beta valuesmore » ranging from 30.0 to 3.3, respectively. Compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as mass density and nonsolenoidal flow field. These effects include (1) retardation of growth of correlation between the magnetic field and the velocity field, (2) emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible-flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less
NASA Astrophysics Data System (ADS)
Rattanavaraha, Weruka; Canagaratna, Manjula R.; Budisulistiorini, Sri Hapsari; Croteau, Philip L.; Baumann, Karsten; Canonaco, Francesco; Prevot, Andre S. H.; Edgerton, Eric S.; Zhang, Zhenfa; Jayne, John T.; Worsnop, Douglas R.; Gold, Avram; Shaw, Stephanie L.; Surratt, Jason D.
2017-10-01
The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was redeployed at the Jefferson Street (JST) site in downtown Atlanta, Georgia (GA) for 1 year (March 20, 2014-February 08, 2015) to chemically characterize non-refractory submicron particulate matter (NR-PM1) in near real-time and to assess whether organic aerosol (OA) types and amounts change from year-to-year. Submicron organic aerosol (OA) mass spectra were analyzed by season using multilinear engine (ME-2) to apportion OA subtypes to potential sources and chemical processes. A suite of real-time collocated measurements from the Southeastern Aerosol Research and Characterization (SEARCH) network was compared with ME-2 factor solutions to aid in the interpretation of OA subtypes during each season. OA tracers measured from high-volume filter samples using gas chromatography interfaced with electron ionization-mass spectrometry (GC/EI-MS) also aided in identifying OA sources. The initial application of ME-2 to the yearlong ACSM dataset revealed that OA source apportionment by season was required to better resolve sporadic OA types. Spring and fall OA mass spectral datasets were separated into finer periods to capture potential OA sources resulting from non-homogeneous emissions during transitioning periods. NR-PM1 was highest in summer (16.7 ± 8.4 μg m-3) and lowest in winter (8.0 ± 5.7 μg m-3), consistent with prior studies. OA dominated NR-PM1 mass (56-74% on average) in all seasons. Hydrocarbon-like OA (HOA) from primary emissions was observed in all seasons, averaging 5-22% of total OA mass. Strong correlations of HOA with carbon monoxide (CO) (R = 0.71-0.88) and oxides of nitrogen (NOx) (R = 0.55-0.79) indicated that vehicular traffic was the likely source. Biomass burning OA (BBOA) was observed in all seasons, with lower contributions (2%) in summer and higher in colder seasons (averaging 8-20% of total OA mass). BBOA correlated strongly with levoglucosan (R = 0.78-0.95) during colder seasons, which supports that BBOA is likely derived from fresh biomass/residential burning. However, weaker correlation with levoglucosan (R = 0.38) in summer suggested a more aged aerosol. During warmer seasons, OA from the reactive uptake of isoprene epoxydiols (IEPOX) onto acidic sulfate aerosol was resolved by ME-2 (denoted as IEPOX-OA), averaging 25-29% of the total OA mass. Temporal variation of IEPOX-OA was nearly coincident with that of 91Fac OA (a factor dominated by a distinct ion at m/z 91). The largest contribution of IEPOX-OA to total OA (29%) was found in summer, whereas the largest contribution of 91Fac to total OA (24%) occurred in early fall. Moderate negative correlation between IEPOX-OA and aerosol acidity was observed during late spring (-0.67) and summer (-0.42), consistent with laboratory studies showing that IEPOX-OA is enhanced in the presence of acidic aerosols. Finally, the largest OA mass in all seasons (46-70% of total OA) was derived from oxygenated OA denoted as low-volatility oxygenated OA (LV-OOA) and semi-volatile oxygenated OA (SV-OOA).
Vuillerot, Carole; Braillon, Pierre; Fontaine-Carbonnel, Stephanie; Rippert, Pascal; André, Elisabeth; Iwaz, Jean; Poirot, Isabelle; Bérard, Carole
2014-06-01
Steroids are nowadays routinely used as a long-term treatment in Duchenne muscular dystrophy (DMD). Their effects on body composition were assessed using dual X-ray absorptiometry. The study followed over 2 years 29 genetically confirmed DMD patients: 21 in the steroid-treated group and 8 in the steroid-naïve group. After 2 years of steroid treatment, the lean tissue mass values increased significantly (p<0.0001), the percentage of body fat mass remained practically constant (p=0.94) in comparison with the initial visit. In the steroid-naïve patients, there were no significant increases in the lean tissue mass but deterioration in body composition confirmed by a significant increase in the percentage of body fat mass. Besides, significant negative correlations were found between the percentage of body fat mass and the MFM total score (R=-0.79, n=76, p<0.0001). A 2-year steroid treatment improves significantly body composition of boys with DMD through a significant increase in lean tissue mass. We suggest that a thorough check of body composition should be carried out before steroid treatment discontinuation in case of overweight gain. Copyright © 2014 Elsevier B.V. All rights reserved.
Outcome and cost of a statewide diabetes screening and awareness initiative in New York.
Hosler, Akiko S; Berberian, Elizabeth L; Spence, Maureen M; Hoffman, David P
2005-01-01
From 1997 through 1999, a total of 365 diabetes screening and awareness events targeting high-risk populations were held throughout New York State. These events were planned and implemented by community-based coalitions that received funding from the state's Diabetes Control Program. The American Diabetes Association's diabetes risk questionnaire was administered, and those individuals identified as high risk received a capillary blood glucose test. Screened individuals with glucose readings above the cut-off value (140 mg/dl or 110 mg/dl if fasting) were referred to a physician for diagnostic testing. A total of 32,954 individuals took the questionnaire, 27,237 received the blood test, and 1,564 were referred to a physician. Among those who were successfully tracked (n = 1,113), 354 were newly diagnosed with diabetes mellitus. Seventy-two percent of participants screened were aged 45 years and older, and 67% had a body mass index of 25 or higher. Only 15% were members of ethnic minorities, and uninsured individuals were also underrepresented at 10%. The entire initiative, including planning, promotion, and administration, required 5,428 person-hours of staff time and a total cost of approximately 262,000 dollars. Fifty-seven percent of the total cost was derived from in-kind support of the coalitions. The cost of detecting each new case was 741 dollars.
Migration of icy planetesimals to forming terrestrial planets
NASA Astrophysics Data System (ADS)
Ipatov, Sergei I.; Marov, Mikhail
2016-07-01
Our studies of migration of planetesimals from the feeding zone of Jupiter and Saturn to forming terrestrial planets were based on computer simulations of the orbital evolution of 10^4 planetesimals under the gravitational influence of planets. In series JN, all planets were considered in present orbits with present masses, and in series JS, Uranus and Neptune were excluded. Initial eccentricities and inclinations of planetesimals were 0.3 and 0.15 rad, respectively. Their initial semi-major axes were between 4.5 and 12 AU. Masses of planets moving in the orbits of the terrestrial planets were equal to present masses of the planets in series JS and JN, and were smaller by a factor of 10 in series JS_{01} and JN_{01}. The obtained results show that the ratio of the fraction of the planetesimals collided with an embryo of the Earth's embryo was about 2\\cdot10^{-6} and 4\\cdot10^{-7} for the mass of the embryo equal to the Earth mass and to 10% of the Earth mass, respectively. We concluded that during the growth of the mass of the Earth's embryo up to a half of the present mass of the Earth, the amount of water delivered to the embryo could be about 30% of all water delivered to the Earth from the feeding zone of Jupiter and Saturn. The total mass of water delivered to the Earth from the feeding zones of the giant planets and beyond these zones could be comparable with the mass of the Earth's oceans. A half of this water could come from the feeding zone of Jupiter and Saturn, and another half from more distant regions. Most of the water that was delivered from the distant regions to the Earth's embryo came when its mass was not small (e.g., was mainly greater than a half of the Earth mass). In series JS, the ratio of the mass of water delivered to a planet to the mass of the planet for the Earth was smaller by a factor of 2, 1.25, and 1.3 than for Mars, Venus and Mercury, respectively. For series JN, the above values of the factor were equal to 3.4, 0.7 i 0.8. For the growth of the Earth's embryo of mass m by accretion of planetesimals that came from the feeding zone of Jupiter and Saturn, the increase of its mass was proportional to m^{0.74}.
Rathi, Vikas K; Czajka, Anna T; Thompson, Diane V; Doyle, Mark; Tewatia, Tarun; Yamrozik, June; Williams, Ronald B; Biederman, Robert W W
2018-05-01
In diagnosing cardiac and paracardiac masses, cardiac MRI (CMR) has gained acceptance as the gold standard. CMR has been observed to be superior to echocardiography in characterizing soft-tissue structures and, specifically, in classifying cardiac masses. The aim of our study was to evaluate the association between mortality and cardiac or paracardiac masses initially identified by echocardiography (ECHO) and confirmed by CMR. Between January 2002 and August 2007, a total of 158 patients underwent both ECHO and CMR for the evaluation of cardiac masses that were equivocal or undefined by ECHO. The primary study endpoints were 5-year all-cause mortality and 5-year cardiac mortality. Causes of death as of April 1, 2015 were obtained from medical records or the National Death Index. Patients were analyzed according to mass type determined by CMR using the Kruskal-Wallis test, Kaplan-Meier curves, and the log-rank test. Over a mean duration of follow-up of 10.4 ± 2.9 years (range: 0.01-12 years) post-CMR, the overall all-cause mortality rate was 25.9% (41/158). Median age at death was 76 years and there were 21 females (51.2%). Mortality rates in the different classifications of cardiac masses by CMR were as follows: 20% (1/5) in patients with a Nondiagnostic CMR; 20% (1/5) in Other Diagnoses; 17.9% (7/39) in No Masses (includes Normal Anatomical Variants); 16.7% (3/18) in Benign Masses; 23.8% (15/63) in Fat; 50% (5/10) in Thrombus; and 61.5% (8/13) in Malignant Mass. The mean survival time in patients with No Mass (n = 39) was not significantly longer than patients with any type of cardiac mass (n = 114) (P = .16). No significant difference was found in age at death between patients when grouped by CMR classification (P = .40). However, among CMR-confirmed masses, there were some significant differences by mass classification type (P = .006). During the follow-up period, 26% (41/158) of patients died and 22% (9/41) of the deaths were cardiovascular related; there was no significant difference in mean survival times with respect to cause of mortality (P = .23). In patients with cardiac masses, dually confirmed by ECHO and CMR, significant differences in survival time were observed based upon CMR classified type of mass while CMR was instrumental in obviating invasive biopsy. © 2018 Wiley Periodicals, Inc.
Total morphine stability in urine specimens stored under various conditions.
Chang, B L; Huang, M K; Tsai, Y Y
2000-09-01
The stability of total morphine in urine stored under various conditions was studied using control and experimental specimens. Samples in the control group were prepared using drug-free urine spiked with morphine at three concentration levels (300, 1000, and 2500 ng/mL), each with the pH adjusted to 5.5, 6.5, and 7.5. Samples in the experimental group came from 20 alleged heroin addicts (provided by Taipei Municipal Psychiatric Hospital). Samples in both groups were divided into two categories--one with and one without the precipitate (formed at 0 degrees C) removed. Samples in each of these two categories were further divided into two sub-groups--one with and one without sodium azide (0.05%) added. Total morphine contents in these samples were first determined by gas chromatography-mass spectrometry prior to storage and at 6, 12, 18, and 24 months following storage at -20, 4, 25, and 35 degrees C. Effects of sample treatment (azide addition and precipitate removal), pH, and storage temperature and length were evaluated by examining the percentage of total morphine remaining at the four time intervals following the initial determination. Major findings were as follows: (1) total morphine decomposition was minimal when stored for 12 months at -20 degrees C, which is a common current practice; (2) samples with lower initial sample pH had slower total morphine decomposition rates; and (3) azide addition appeared to have no detectable effect, whereas precipitate removal appeared to marginally reduce the decomposition rate, especially for samples with lower pH.
A mixed helium-oxygen shell in some core-collapse supernova progenitors
NASA Astrophysics Data System (ADS)
Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam
2018-04-01
We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40M⊙ and initial rotation velocities of 0-450 kms-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.
A mixed helium-oxygen shell in some core-collapse supernova progenitors
NASA Astrophysics Data System (ADS)
Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam
2018-07-01
We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40 M⊙ and initial rotation velocities of 0-450 km s-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.
Precision cosmology with baryons: non-radiative hydrodynamics of galaxy groups
NASA Astrophysics Data System (ADS)
Rabold, Manuel; Teyssier, Romain
2017-05-01
The effect of baryons on the matter power spectrum is likely to have an observable effect for future galaxy surveys, like Euclid or Large Synoptic Survey Telescope (LSST). As a first step towards a fully predictive theory, we investigate the effect of non-radiative hydrodynamics on the structure of galaxy groups sized haloes, which contribute the most to the weak-lensing power spectrum. We perform high-resolution (more than one million particles per halo and one kilo-parsec resolution) non-radiative hydrodynamical zoom-in simulations of a sample of 16 haloes, comparing the profiles to popular analytical models. We find that the total mass profile is well fitted by a Navarro, Frenk & White model, with parameters slightly modified from the dark matter only simulation. We also find that the Komatsu & Seljak hydrostatic solution provides a good fit to the gas profiles, with however significant deviations, arising from strong turbulent mixing in the core and from non-thermal, turbulent pressure support in the outskirts. The turbulent energy follows a shallow, rising linear profile with radius, and correlates with the halo formation time. Using only three main structural halo parameters as variables (total mass, concentration parameter and central gas density), we can predict, with an accuracy better than 20 per cent, the individual gas density and temperature profiles. For the average total mass profile, which is relevant for power spectrum calculations, we even reach an accuracy of 1 per cent. The robustness of these predictions has been tested against resolution effects, different types of initial conditions and hydrodynamical schemes.
A Classical and a Relativistic Law of Motion for Spherical Supernovae
NASA Astrophysics Data System (ADS)
Zaninetti, Lorenzo
2014-11-01
In this paper we derive some first order differential equations which model the classical and the relativistic thin layer approximations. The circumstellar medium is assumed to follow a density profile of the Plummer type, the Lane-Emden (n = 5) type, or a power law. The first order differential equations are solved analytically, numerically, by a series expansion, or by recursion. The initial conditions are chosen in order to model the temporal evolution of SN 1993J over 10 yr and a smaller chi-squared is obtained for the Plummer case with η = 6. The stellar mass ejected by the SN progenitor prior to the explosion, expressed in solar mass, is identified with the total mass associated with the selected density profile and varies from 0.217 to 0.402 when the central number density is 107 particles per cubic centimeter. The FWHM of the three density profiles, which can be identified with the size of the pre-SN 1993J envelope, varies from 0.0071 pc to 0.0092 pc.
Wang, Meimei; Xia, Yonggao; Wang, Xiaoyan; Xiao, Ying; Liu, Rui; Wu, Qiang; Qiu, Bao; Metwalli, Ezzeldin; Xia, Senlin; Yao, Yuan; Chen, Guoxin; Liu, Yan; Liu, Zhaoping; Meng, Jian-Qiang; Yang, Zhaohui; Sun, Ling-Dong; Yan, Chun-Hua; Müller-Buschbaum, Peter; Pan, Jing; Cheng, Ya-Jun
2016-06-08
A new facile scalable method has been developed to synthesize silicon oxycarbide (SiOC)/carbon nanohybrids using difunctional dental methacrylate monomers as solvent and carbon source and the silane coupling agent as the precursor for SiOC. The content (from 100% to 40% by mass) and structure (ratio of disordered carbon over ordered carbon) of the free carbon matrix have been systematically tuned by varying the mass ratio of methacryloxypropyltrimethoxysilane (MPTMS) over the total mass of the resin monomers from 0.0 to 6.0. Compared to the bare carbon anode, the introduction of MPTMS significantly improves the electrochemical performance as a lithium-ion battery anode. The initial and cycled discharge/charge capacities of the SiOC/C nanohybrid anodes reach maximum with the MPTMS ratio of 0.50, which displays very good rate performance as well. Detailed structures and electrochemical performance as lithium-ion battery anodes have been systematically investigated. The structure-property correlation and corresponding mechanism have been discussed.
Star formation history: Modeling of visual binaries
NASA Astrophysics Data System (ADS)
Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.
2018-05-01
Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.
Iranian Audience Poll on Smoking Scenes in Persian Movies in 2011
Heydari, Gholamreza
2014-01-01
Background: Scenes depicting smoking are among the causes of smoking initiation in youth. The present study was the first in Iran to collect some primary information regarding the presence of smoking scenes in movies and propagation of tobacco use. Methods: This cross-sectional study was conducted by polling audience about smoking scenes in Persian movies on theaters in 2011. Data were collected using a questionnaire. A total of 2000 subjects were selected for questioning. The questioning for all movies was carried out 2 weeks after the movie premiered at 4 different times including twice during the week and twice at weekends. Results: A total of 39 movies were selected for further assessment. In general, 2,129 viewers participated in the study. General opinion of 676 subjects (31.8%) was that these movies can lead to initiation or continuation of smoking in viewers. Women significantly thought that these movies can lead to initiation of smoking (37.4% vs. 29%). This belief was stronger among non-smokers as well (33.7% vs. 26%). Conclusions: Despite the prohibition of cigarette advertisements in the mass media and movies, we still witness scenes depicting smoking by the good or bad characters of the movies so more observation in this field is needed. PMID:24627742
Dynamical Friction in Multi-component Evolving Globular Clusters
NASA Astrophysics Data System (ADS)
Alessandrini, Emiliano; Lanzoni, Barbara; Miocchi, Paolo; Ciotti, Luca; Ferraro, Francesco R.
2014-11-01
We use the Chandrasekhar formalism and direct N-body simulations to study the effect of dynamical friction on a test object only slightly more massive than the field stars, orbiting a spherically symmetric background of particles with a mass spectrum. The main goal is to verify whether the dynamical friction time (t DF) develops a non-monotonic radial dependence that could explain the bimodality of the blue straggler radial distributions observed in globular clusters. In these systems, in fact, relaxation effects lead to a mass and velocity radial segregation of the different mass components, so that mass-spectrum effects on t DF are expected to be dependent on radius. We find that in spite of the presence of different masses, t DF is always a monotonic function of radius, at all evolutionary times and independently of the initial concentration of the simulated cluster. This is because the radial dependence of t DF is largely dominated by the total mass density profile of the background stars (which is monotonically decreasing with radius). Hence, a progressive temporal erosion of the blue straggler star (BSS) population at larger and larger distances from the cluster center remains the simplest and the most likely explanation of the shape of the observed BSS radial distributions, as suggested in previous works. We also confirm the theoretical expectation that approximating a multi-mass globular cluster as made of (averaged) equal-mass stars can lead to significant overestimations of t DF within the half-mass radius.
Body Fat Composition: A Predictive Factor for Sleep Related Breathing Disorder in Obese Children.
Bhatia, Rajeev; Lesser, Daniel J; Oliveira, Flavia G S A; Tran, Winston H; Keens, Thomas G; Khoo, Michael C K; Davidson Ward, Sally L
2015-09-15
The association between body fat composition as measured by dual energy x-ray absorptiometry (DEXA) scanning and pediatric sleep related breathing disorder (SRBD) is not well established. We investigated the relationship between body mass index (BMI) and DEXA parameters and their association with SRBD in obese children. Overnight polysomnography was performed on obese/overweight children (10-17 years) with habitual snoring. Total body fat mass (g), trunk fat mass (g), total body % fat, and trunk % fat were determined by DEXA. Forty-one subjects were studied. Logarithm (Log) total arousal index correlated with BMI (p < 0.01, r = 0.473), total body fat mass (p < 0.05, r = 0.331), and trunk fat mass (p < 0.05, r = 0.319). Log desaturation index correlated with BMI (p < 0.05, r = 0.313), total body fat mass (p < 0.05, r = 0.375), and trunk fat mass (p < 0.05, r = 0.391), whereas obstructive apnea hypopnea index (OAHI) did not. In males 10-12 years, there was a significant correlation between Log total arousal index and obesity parameters, but not for males aged 13-17 years. BMI correlated with DEXA parameters in all subjects: total body fat mass (p < 0.001, r = 0.850); total body % fat (p < 0.01, r = 0.425); trunk fat mass (p < 0.001, r = 0.792) and trunk % fat (p < 0.05, r = 0.318) and in 10-12 year old males. This relationship was not significant in males aged 13-17 years. Total body fat mass and trunk fat mass as well as BMI correlated with total arousal index and desaturation index. BMI correlated with DEXA parameters in 10-12 year old males but not in 13-17 year old males. The value of using DEXA scanning to study the relationship between obesity and SRBD may depend on age and pubertal stage. © 2015 American Academy of Sleep Medicine.
Ramírez, Eva M; Espinosa, Omar; Berrones, Ricardo; Sepúlveda, Elisa M; Guilbert, Lizbeth; Solís, Miguel; Zerrweck, Carlos
2018-05-03
Whether or not the initial body mass index (BMI) influences weight loss and comorbidities improvement after bariatric surgery continues to be a matter of debate. The main reason for this is a lack of studies including obesity class I. Retrospective study with patients submitted to gastric bypass at a single institution. They were classified based on initial BMI (obesity class I, II, and III), and a comparative analysis of their metabolic profile (glucose, HbA1c%, C-peptide, insulin and diabetes medication), lipid profile (triglycerides, total cholesterol, HDL, LDL), and clinical data (systolic/diastolic blood pressure and cardiovascular risk) was performed at 0 and 12 months. Diabetes remission and weight loss were also analyzed. Two-hundred and twenty patients were included (23 in group 1, 113 in group 2, and 84 in group 3). Initial weight, BMI, and number of patients with T2DM were statistically different in group 1; other parameters were homogenous. At 12 months, every group had similar improvement of the metabolic profile, excepting serum insulin. Diabetes remission was 57.9, 61.1, and 60% for group 1, 2, and 3. For weight loss, there were differences between groups when using BMI and percentage of excess weight loss, but not with percentage of total weight loss. The non-metabolic and clinical data improved without differences, except for total cholesterol and LDL. The metabolic, lipid, and clinical profiles associated with obesity present similar improvement 1 year after laparoscopic gastric bypass, despite different baseline BMI. Diabetes remission and percentage of total weight loss were also similar.
Mid-Infrared Study of Samples from Several Stones from the Sutter's Mill Meteorite
NASA Technical Reports Server (NTRS)
Sandford, Scott; Nuevo, Michel; Flynn, George J.; Wirick, Sue
2013-01-01
On April 22, 2012, a fireball was observed over California and Nevada, and the falling fragments of the meteorite were detected by weather radar near small townships in the El Dorado County, California. Some of these stones were collected at Sutter s Mill, in the historic site where the California gold rush was initiated, giving the name to this meteorite. Thus far, 77 pieces of the meteorite have been collected, for a total mass of 943 g, with the biggest stone weighing 205 g [1].
NASA Astrophysics Data System (ADS)
Poret, Matthieu; Corradini, Stefano; Merucci, Luca; Costa, Antonio; Andronico, Daniele; Montopoli, Mario; Vulpiani, Gianfranco; Freret-Lorgeril, Valentin
2018-04-01
Recent explosive volcanic eruptions recorded worldwide (e.g. Hekla in 2000, Eyjafjallajökull in 2010, Cordón-Caulle in 2011) demonstrated the necessity for a better assessment of the eruption source parameters (ESPs; e.g. column height, mass eruption rate, eruption duration, and total grain-size distribution - TGSD) to reduce the uncertainties associated with the far-travelling airborne ash mass. Volcanological studies started to integrate observations to use more realistic numerical inputs, crucial for taking robust volcanic risk mitigation actions. On 23 November 2013, Etna (Italy) erupted, producing a 10 km height plume, from which two volcanic clouds were observed at different altitudes from satellites (SEVIRI, MODIS). One was retrieved as mainly composed of very fine ash (i.e. PM20), and the second one as made of ice/SO2 droplets (i.e. not measurable in terms of ash mass). An atypical north-easterly wind direction transported the tephra from Etna towards the Calabria and Apulia regions (southern Italy), permitting tephra sampling in proximal (i.e. ˜ 5-25 km from the source) and medial areas (i.e. the Calabria region, ˜ 160 km). A primary TGSD was derived from the field measurement analysis, but the paucity of data (especially related to the fine ash fraction) prevented it from being entirely representative of the initial magma fragmentation. To better constrain the TGSD assessment, we also estimated the distribution from the X-band weather radar data. We integrated the field and radar-derived TGSDs by inverting the relative weighting averages to best fit the tephra loading measurements. The resulting TGSD is used as input for the FALL3D tephra dispersal model to reconstruct the whole tephra loading. Furthermore, we empirically modified the integrated TGSD by enriching the PM20 classes until the numerical results were able to reproduce the airborne ash mass retrieved from satellite data. The resulting TGSD is inverted by best-fitting the field, ground-based, and satellite-based measurements. The results indicate a total erupted mass of 1.2 × 109 kg, being similar to the field-derived value of 1.3 × 109 kg, and an initial PM20 fraction between 3.6 and 9.0 wt %, constituting the tail of the TGSD.
Shiba, Naoto; Matsuse, Hiroo; Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi
2015-01-01
Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut's musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system's orbital operation capability and utility, as well as its preventative effect on an astronaut's musculoskeletal atrophy. HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR. These results showed the orbital operation capability and utility, and the preventive effect of HTS for an astronaut's musculoskeletal atrophy. The initial flight data together with the ground data obtained so far will be utilized in the future planning of human space exploration.
Direct Drive Hall Thruster System Development
NASA Technical Reports Server (NTRS)
Hoskins, W. Andrew; Homiak, Daniel; Cassady, R. Joseph; Kerslake, Tom; Peterson, Todd; Ferguson, Dale; Snyder, Dave; Mikellides, Ioannis; Jongeward, Gary; Schneider, Todd
2003-01-01
The sta:us of development of a Direct Drive Ha!! Thruster System is presented. 13 the first part. a s:udy of the impacts to spacecraft systems and mass benefits of a direct-drive architecture is reviewed. The study initially examines four cases of SPT-100 and BPT-4000 Hall thrusters used for north-south station keeping on an EXPRESS-like geosynchronous spacecraft and for primary propulsion for a Deep Space- 1 based science spacecraft. The study is also extended the impact of direct drive on orbit raising for higher power geosynchronous spacecraft and on other deep space missions as a function of power and delta velocity. The major system considerations for accommodating a direct drive Hall thruster are discussed, including array regulation, system grounding, distribution of power to the spacecraft bus, and interactions between current-voltage characteristics for the arrays and thrusters. The mass benefit analysis shows that, for the initial cases, up to 42 kg of dry mass savings is attributable directly to changes in the propulsion hardware. When projected mass impacts of operating the arrays and the electric power system at 300V are included, up to 63 kg is saved for the four initial cases. Adoption of high voltage lithium ion battery technology is projected to further improve these savings. Orbit raising of higher powered geosynchronous spacecraft, is the mission for which direct drive provides the most benefit, allowing higher efficiency electric orbit raising to be accomplished in a limited period of time, as well as nearly eliminating significant power processing heat rejection mass. The total increase in useful payload to orbit ranges up to 278 kg for a 25 kW spacecraft, launched from an Atlas IIA. For deep space missions, direct drive is found to be most applicable to higher power missions with delta velocities up to several km/s , typical of several Discovery-class missions. In the second part, the status of development of direct drive propulsion power electronics is presented. The core of this hardware is the heater-keeper-magnet supply being qualified for the BPT-4000 by Aerojet. A breadboard propulsion power unit is in fabrication and is scheduled for delivery late in 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quintana, Elisa V.; Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov
Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 Mmore » {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.« less
Moschet, Christoph; Piazzoli, Alessandro; Singer, Heinz; Hollender, Juliane
2013-11-05
In this study, the efficiency of a suspect screening strategy using liquid chromatography-high resolution mass spectrometry (LC-HRMS) without the prior purchase of reference standards was systematically optimized and evaluated for assessing the exposure of rarely investigated pesticides and their transformation products (TPs) in 76 surface water samples. Water-soluble and readily ionizable (electrospray ionization) substances, 185 in total, were selected from a list of all insecticides and fungicides registered in Switzerland and their major TPs. Initially, a solid phase extraction-LC-HRMS method was established using 45 known, persistent, and high sales volume pesticides. Seventy percent of these target substances had limit of quantitation (LOQ) < 5 ng L(-1). This compound set was then used to develop and optimize a HRMS suspect screening method using only the exact mass as a priori information. Thresholds for blank subtraction, peak area, peak shape, signal-to-noise, and isotopic pattern were applied to automatically filter the initially picked peaks. The success rate was 70%; false negatives mainly resulted from low intense peaks. The optimized approach was applied to the remaining 140 substances. Nineteen additional substances were detected in environmental samples, two TPs for the first time in the environment. Sixteen substances were confirmed with reference standards purchased subsequently, while three TP standards could be obtained from industry or other laboratories. Overall, this screening approach was fast and very successful and can easily be expanded to other micropollutant classes for which reference standards are not readily accessible such as TPs of household chemicals.
Revisiting the bulge-halo conspiracy - II. Towards explaining its puzzling dependence on redshift
NASA Astrophysics Data System (ADS)
Shankar, Francesco; Sonnenfeld, Alessandro; Grylls, Philip; Zanisi, Lorenzo; Nipoti, Carlo; Chae, Kyu-Hyun; Bernardi, Mariangela; Petrillo, Carlo Enrico; Huertas-Company, Marc; Mamon, Gary A.; Buchan, Stewart
2018-04-01
We carry out a systematic investigation of the total mass density profile of massive (log Mstar/M⊙ ˜ 11.5) early-type galaxies and its dependence on redshift, specifically in the range 0 ≲ z ≲ 1. We start from a large sample of Sloan Digital Sky Survey early-type galaxies with stellar masses and effective radii measured assuming two different profiles, de Vaucouleurs and Sérsic. We assign dark matter haloes to galaxies via abundance matching relations with standard ΛCDM profiles and concentrations. We then compute the total, mass-weighted density slope at the effective radius γ΄, and study its redshift dependence at fixed stellar mass. We find that a necessary condition to induce an increasingly flatter γ΄ at higher redshifts, as suggested by current strong lensing data, is to allow the intrinsic stellar profile of massive galaxies to be Sérsic and the input Sérsic index n to vary with redshift as n(z) ∝ (1 + z)δ, with δ ≲ -1. This conclusion holds irrespective of the input Mstar-Mhalo relation, the assumed stellar initial mass function (IMF), or even the chosen level of adiabatic contraction in the model. Secondary contributors to the observed redshift evolution of γ΄ may come from an increased contribution at higher redshifts of adiabatic contraction and/or bottom-light stellar IMFs. The strong lensing selection effects we have simulated seem not to contribute to this effect. A steadily increasing Sérsic index with cosmic time is supported by independent observations, though it is not yet clear whether cosmological hierarchical models (e.g. mergers) are capable of reproducing such a fast and sharp evolution.
Zakaria, Rosita; Allen, Katrina J.; Koplin, Jennifer J.; Roche, Peter
2016-01-01
Introduction Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. Methods To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; “blood spot” and “mass spectrometry”; while excluding “newborn”; and “neonate”. In addition, databases were restricted to English language and human specific. There was no time period limit applied. Results As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. Conclusions DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required. PMID:28149263
NASA Astrophysics Data System (ADS)
Bellstedt, Sabine; Forbes, Duncan A.; Romanowsky, Aaron J.; Remus, Rhea-Silvia; Stevens, Adam R. H.; Brodie, Jean P.; Poci, Adriano; McDermid, Richard; Alabi, Adebusola; Chevalier, Leonie; Adams, Caitlin; Ferré-Mateu, Anna; Wasserman, Asher; Pandya, Viraj
2018-06-01
We apply the Jeans Anisotropic Multi-Gaussian Expansion dynamical modelling method to SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey data of early-type galaxies in the stellar mass range 1010 < M*/M⊙ < 1011.6 that cover a large radial range of 0.1-4.0 effective radii. We combine SLUGGS and ATLAS3D data sets to model the total-mass profiles of a sample of 21 fast-rotator galaxies, utilizing a hyperparameter method to combine the two independent data sets. The total-mass density profile slope values derived for these galaxies are consistent with those measured in the inner regions of galaxies by other studies. Furthermore, the total-mass density slopes (γtot) appear to be universal over this broad stellar mass range, with an average value of γtot = -2.24 ± 0.05 , i.e. slightly steeper than isothermal. We compare our results to model galaxies from the Magneticum and EAGLE cosmological hydrodynamic simulations, in order to probe the mechanisms that are responsible for varying total-mass density profile slopes. The simulated-galaxy slopes are shallower than the observed values by ˜0.3-0.5, indicating that the physical processes shaping the mass distributions of galaxies in cosmological simulations are still incomplete. For galaxies with M* > 1010.7 M⊙ in the Magneticum simulations, we identify a significant anticorrelation between total-mass density profile slopes and the fraction of stellar mass formed ex situ (i.e. accreted), whereas this anticorrelation is weaker for lower stellar masses, implying that the measured total-mass density slopes for low-mass galaxies are less likely to be determined by merger activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vennes, S.; Kawka, A.; Nemeth, P.
We report on the discovery of the shortest period binary comprising a hot subdwarf star (CD-30 11223, GALEX J1411-3053) and a massive unseen companion. Photometric data from the All Sky Automated Survey show ellipsoidal variations of the hot subdwarf primary and spectroscopic series revealed an orbital period of 70.5 minutes. The large velocity amplitude suggests the presence of a massive white dwarf in the system (M{sub 2}/M{sub Sun} {approx}> 0.77) assuming a canonical mass for the hot subdwarf (0.48 M{sub Sun }), although a white dwarf mass as low as 0.75 M{sub Sun} is allowable by postulating a subdwarf massmore » as low as 0.44 M{sub Sun }. The amplitude of ellipsoidal variations and a high rotation velocity imposed a high-inclination to the system (i {approx}> 68 Degree-Sign ) and, possibly, observable secondary transits (i {approx}> 74 Degree-Sign ). At the lowest permissible inclination and assuming a subdwarf mass of {approx}0.48 M{sub Sun }, the total mass of the system reaches the Chandrasekhar mass limit at 1.35 M{sub Sun} and would exceed it for a subdwarf mass above 0.48 M{sub Sun }. The system should be considered, like its sibling KPD 1930+2752, a candidate progenitor for a Type Ia supernova. The system should become semi-detached and initiate mass transfer within Almost-Equal-To 30 Myr.« less
Mass loss from red giants - A simple evolutionary model for NGC 7027
NASA Technical Reports Server (NTRS)
Jura, M.
1984-01-01
NGC 7027 is a young planetary nebula with the remnants of a red giant circumstellar envelope surrounding the central, ionized region. By comparing the outer molecular envelope with the inner ionized material, it is argued that the mass loss rate has decreased by at least a factor of 3, and more probably by about a factor of 10, during the past 1000 years. From this result, it is argued that the luminosity of the central star has also decreased substantially during the same time, consistent with models for the rapid evolution of stars just after they evolve off the asymptotic giant branch. In this picture, the distance to NGC 7027 is less than 1300 pc. NGC 7027 was the last (and best) example of a star where apparently the momentum in the outflowing mass /M(dot)v/ is considerably greater than the momentum in the radiation field (L/c). With the above description of this object, the evidence is now strong that quite often the mass lost from late-type giants is ultimately driven to infinity by radiation pressure on grains. If M(dot)v is as large as L/c for asymptotic branch stars, then it is expected that the total amount of mass lost during this stage of evolution is of the same magnitude as the initial mass of the star, and therefore this mass loss can profoundly affect the star's ultimate fate.
KNEE-JOINT LOADING IN KNEE OSTEOARTHRITIS: INFLUENCE OF ABDOMINAL AND THIGH FAT
Messier, Stephen P.; Beavers, Daniel P.; Loeser, Richard F.; Carr, J. Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J.; Hunter, David J.; DeVita, Paul
2014-01-01
Purpose Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee-joint loads in older overweight and obese adults with knee osteoarthritis (OA). Methods Fat depots were quantified using computed tomography and total lean and fat mass determined with dual energy x-ray absorptiometry in 176 adults (age = 66.3 yr., BMI = 33.5 kg·m−2) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Results Higher total body mass was significantly associated (p ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (p < 0.0001), patellofemoral forces (p< 0.006), and knee extensor moments (p = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (p = 0.0001), shear (p < 0.001), and patellofemoral forces (p = 0.01) and knee extension moment (p = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (p = 0.002). A regression model that included total thigh and total abdominal fat found both were significantly associated with knee compressive and shear forces (p ≤ 0.04). Thigh fat was associated with the knee abduction (p = 0.03) and knee extension moment (p = 0.02). Conclusions Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA. PMID:25133996
Radial mixing and Ru-Mo isotope systematics under different accretion scenarios
NASA Astrophysics Data System (ADS)
Fischer, Rebecca A.; Nimmo, Francis; O'Brien, David P.
2018-01-01
The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogeneous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥6-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is ∼3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.
Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent WV
2017-01-01
Background Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. Methods In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height3), central-to-total fat ratio (trunk fat/total fat) and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Results Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures (p<0.05). A 1-standard-deviation scores higher total subcutaneous fat at 24 months was associated with an increased risk of childhood overweight (Odds Ratio 1.70 [95% Confidence Interval 1.36, 2.12]). These associations were weaker than those for body mass index and stronger among girls than boys. Conclusions Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared to body mass index. PMID:27225335
Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent W V
2016-09-01
Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal, and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height(3) ), central-to-total fat ratio (trunk fat/total fat), and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures. A 1-standard-deviation scores higher total subcutaneous fat at 24 months was associated with an increased risk of childhood overweight (odds ratio 1.70, 95% confidence interval 1.36, 2.12). These associations were weaker than those for body mass index and stronger among girls than boys. Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared with body mass index. © 2016 John Wiley & Sons Ltd.
Ritenbaugh, Cheryl; Wactawski-Wende, Jean; Snetselaar, Linda G; Chen, Zhao
2009-01-01
Background: Excessive intakes of vitamin A have been shown to have adverse skeletal effects in animals. High vitamin A intake may lead to an increased risk of fracture in humans. Objective: The objective was to evaluate the relation between total vitamin A and retinol intakes and the risk of incident total and hip fracture in postmenopausal women. Design: A total of 75,747 women from the Women's Health Initiative Observational Study participated. The risk of hip and total fractures was determined using Cox proportional hazards models according to different intakes of vitamin A and retinol. Results: In the analysis adjusted for some covariates (age; protein, vitamin D, vitamin K, calcium, caffeine, and alcohol intakes; body mass index; hormone therapy use; smoking; metabolic equivalents hours per week; ethnicity; and region of clinical center), the association between vitamin A intake and the risk of fracture was not statistically significant. Analyses for retinol showed similar trends. When the interaction term was analyzed as categorical, the highest intake of retinol with vitamin D was significant (P = 0.033). Women with lower vitamin D intake (≤11 μg/d) in the highest quintile of intake of both vitamin A (hazard ratio: 1.19; 95% CI: 1.04, 1.37; P for trend: 0.022) and retinol (hazard ratio: 1.15; 95% CI: 1.03, 1.29; P for trend: 0.056) had a modest increased risk of total fracture. Conclusions: No association between vitamin A or retinol intake and the risk of hip or total fractures was observed in postmenopausal women. Only a modest increase in total fracture risk with high vitamin A and retinol intakes was observed in the low vitamin D–intake group. PMID:19056568
Inter-arm blood pressure differences in young, healthy patients.
Grossman, Alon; Prokupetz, Alex; Gordon, Barak; Morag-Koren, Nira; Grossman, Ehud
2013-08-01
The prevalence and magnitude of inter-arm BP difference (IAD) in young healthy patients is not well characterized. Flight academy applicants and designated aviators undergo annual evaluation that includes blood pressure (BP) measurement on both arms. All BP measurements performed from January 1, 2012, to April 30, 2012, were recorded and IAD was calculated. Results were compared between patients in whom BP was initially measured in the right arm (group 1), those in whom BP was initially measured in the left arm (group 2), and those in whom the arm in which BP was initially measured was not recorded (group 3). A total of 877 healthy patients had BP measured during the study period. In the entire group, mean systolic BP was the same in both arms. Absolute IAD was 5.6±5.5 mm Hg for systolic and 4.7±4.5 mm Hg for diastolic BP. IAD >10 mm Hg was recorded in 111 (12.6%) and 77 (8.8%) patients for systolic and diastolic BP, respectively. IAD was the same in the 3 groups and was unrelated to age, body mass index, and heart rate, but was related to systolic BP. IAD is common in young healthy patients, is not dependent on which arm was measured first, and unrelated to age, body mass index, and heart rate. © 2013 Wiley Periodicals, Inc.
Ni Mhuircheartaigh, Neasa; Coffey, Louise; Fleming, Hannah; O' Doherty, Ann; McNally, Sorcha
2017-09-01
To determine if the routine use of spot compression mammography is now obsolete in the assessment of screen detected masses, asymmetries and architectural distortion since the availability of digital breast tomosynthesis. We introduced breast tomosynthesis in the workup of screen detected abnormalities in our screening center in January 2015. During an initial learning period with tomosynthesis standard spot compression views were also performed. Three consultant breast radiologists retrospectively reviewed all screening mammograms recalled for assessment over the first 6-month period. We assessed retrospectively whether there was any additional diagnostic information obtained from spot compression views not already apparent on tomography. All cases were also reviewed for any additional lesions detected by tomosynthesis, not detected on routine 2-view screening mammography. 548 women screened with standard 2-view digital screening mammography were recalled for assessment in the selected period and a total of 565 lesions were assessed. 341 lesions were assessed by both tomosynthesis and routine spot compression mammography. The spot compression view was considered more helpful than tomosynthesis in only one patient. This was because the breast was inadequately positioned for tomosynthesis and the area in question was not adequately imaged. Apart from this technical error there was no asymmetry, distortion or mass where spot compression provided more diagnostic information than tomosynthesis alone. We detected three additional cancers on tomosynthesis, not detected by routine screening mammography. From our initial experience with tomosynthesis we conclude that spot compression mammography is now obsolete in the assessment of screen detected masses, asymmetries and distortions where tomosynthesis is available. © 2017 Wiley Periodicals, Inc.
Electron Capture Supernovae from Close Binary Systems
NASA Astrophysics Data System (ADS)
Poelarends, Arend J. T.; Wurtz, Scott; Tarka, James; Cole Adams, L.; Hills, Spencer T.
2017-12-01
We present the first detailed study of the Electron Capture Supernova Channel (ECSN Channel) for a primary star in a close binary star system. Progenitors of ECSN occupy the lower end of the mass spectrum of supernova progenitors and are thought to form the transition between white dwarf progenitors and core-collapse progenitors. The mass range for ECSN from close binary systems is thought to be wider than the range for single stars, because of the effects of mass transfer on the helium core. Using the MESA stellar evolution code, we explored the parameter space of initial primary masses between 8 and 17 {M}⊙ , using a large grid of models. We find that the initial primary mass and the mass transfer evolution are important factors in the final fate of stars in this mass range. Mass transfer due to Roche lobe overflow during and after carbon burning causes the core to cool down so that it avoids neon ignition, even in helium-free cores with masses up to 1.52 {M}⊙ , which in single stars would ignite neon. If the core is able to contract to high enough densities for electron captures to commence, we find that, for the adopted Ledoux convection criterion, the initial mass range for the primary to evolve into an ECSN is between 13.5 and 17.6 {M}⊙ . The mass ratio, initial period, and mass-loss efficiency only marginally affect the predicted ranges.
A Dual Power Law Distribution for the Stellar Initial Mass Function
NASA Astrophysics Data System (ADS)
Hoffmann, Karl Heinz; Essex, Christopher; Basu, Shantanu; Prehl, Janett
2018-05-01
We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Picone, J. M.
1989-01-01
The results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2-0.6. These values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, R.B.; Picone, J.M.
In this paper the results of fully compressible, Fourier collocation, numerical simulations of the Orszag--Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2--0.6. Thesemore » values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less
NASA Astrophysics Data System (ADS)
Palanisamy, H.; Cazenave, A. A.
2017-12-01
The global mean sea level budget is revisited over two time periods: the entire altimetry era, 1993-2015 and the Argo/GRACE era, 2003-2015 using the version '0' of sea level components estimated by the SLBC-CCI teams. The SLBC-CCI is an European Space Agency's project on sea level budget closure using CCI products. Over the entire altimetry era, the sea level budget was performed as the sum of steric and mass components that include contributions from total land water storage, glaciers, ice sheets (Greenland and Antarctica) and total water vapor content. Over the Argo/GRACE era, it was performed as the sum of steric and GRACE based ocean mass. Preliminary budget analysis performed over the altimetry era (1993-2015) results in a trend value of 2.83 mm/yr. On comparison with the observed altimetry-based global mean sea level trend over the same period (3.03 ± 0.5 mm/yr), we obtain a residual of 0.2 mm/yr. In spite of a residual of 0.2 mm/yr, the sea level budget result obtained over the altimetry era is very promising as this has been performed using the version '0' of the sea level components. Furthermore, uncertainties are not yet included in this study as uncertainty estimation for each sea level component is currently underway. Over the Argo/GRACE era (2003-2015), the trend estimated from the sum of steric and GRACE ocean mass amounts to 2.63 mm/yr while that observed by satellite altimetry is 3.37 mm/yr, thereby leaving a residual of 0.7 mm/yr. Here an ensemble GRACE ocean mass data (mean of various available GRACE ocean mass data) was used for the estimation. Using individual GRACE data results in a residual range of 0.5 mm/yr -1.1 mm/yr. Investigations are under way to determine the cause of the vast difference between the observed sea level and the sea level obtained from steric and GRACE ocean mass. One main suspect is the impact of GRACE data gaps on sea level budget analysis due to lack of GRACE data over several months since 2011. The current action plan of the project is to work on an accurate closure of the sea level budget using both the above performed methodologies. We also intend to provide a standardized uncertainty estimation and to correctly identify the causes leading to sea level budget non-closure if that is the case.
NASA Astrophysics Data System (ADS)
Garcés, A.; Catalán, S.; Ribas, I.
2011-07-01
Context. Stellar ages are extremely difficult to determine and often subject to large uncertainties, especially for field low-mass stars. We plan to carry out a calibration of the decrease in high-energy emissions of low-mass GKM stars with time, and therefore precise age determination is a key ingredient. The overall goal of our research is to study the time evolution of these high-energy emissions as an essential input to studying exoplanetary atmospheres. Aims: We propose to determine stellar ages with a methodology based on wide binaries. We are interested in systems composed of a low-mass star and a white dwarf (WD), where the latter serves as a stellar chronometer for the system. We aim at obtaining reliable ages for a sample of late-type stars older than 1 Gyr. Methods: We selected a sample of wide binaries composed by a DA type WD and a GKM companion. High signal-to-noise, low-resolution spectroscopic observations were obtained for most of the WD members of the sample. Atmospheric parameters were determined by fitting the spectroscopic data to appropiate WD models. The total ages of the systems were derived by using cooling sequences, an initial-final mass relationship and evolutionary tracks, to account for the progenitor life. Results: The spectroscopic observations have allowed us to determine ages for the binary systems using WDs as cosmochronometers. We obtained reliable ages for 27 stars between 1 and 5 Gyr, which is a range where age determination becomes difficult for field objects. Roughly half of these systems have cooling ages that contribute at least 30% the total age. We select those for further study since their age estimate should be less prone to systematic errors coming from the initial-final mass relationship. Conclusions: We have determined robust ages for a sizeable sample of GKM stars that can be subsequently used to study the time evolution of their emissions associated to stellar magnetic activity. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Based on observations made with the WHT (William Herschel Telescope) operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans
Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.
2014-01-01
Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133
Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans.
Clark, Richard V; Walker, Ann C; O'Connor-Semmes, Robin L; Leonard, Michael S; Miller, Ram R; Stimpson, Stephen A; Turner, Scott M; Ravussin, Eric; Cefalu, William T; Hellerstein, Marc K; Evans, William J
2014-06-15
Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19-30 yr, 70-84 yr), 15 postmenopausal women (51-62 yr, 70-84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. Copyright © 2014 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Kalari, Venu M.; Carraro, Giovanni; Evans, Christopher J.; Rubio, Monica
2018-04-01
NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5–1/10 Z⊙ Magellanic Bridge, allowing us to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, and providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics griHα imaging of NGC 796 (at 0.″5, which is ∼0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore whether star formation and stellar evolution vary as a function of metallicity by comparing the properties of NGC 796 to higher-metallicity clusters. We find an age of {20}-5+12 Myr from isochronal fitting of the cluster main sequence in the color–magnitude diagram. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α = 1.99 ± 0.2, hinting at a metallicity and/or environmental dependence of the IMF, which may lead to a top-heavy IMF in the early universe. Study of the Hα emission-line stars reveals that classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990 ± 200 M⊙, and a core radius of 1.4 ± 0.3 pc, which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.
EFFECTS OF TRITIUM GAS EXPOSURE ON EPDM ELASTOMER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E.
2009-12-11
Samples of four formulations of ethylene-propylene diene monomer (EPDM) elastomer were exposed to initially pure tritium gas at one atmosphere and ambient temperature for various times up to about 420 days in closed containers. Two formulations were carbon-black-filled commercial formulations, and two were the equivalent formulations without filler synthesized for this work. Tritium effects on the samples were characterized by measuring the sample volume, mass, flexibility, and dynamic mechanical properties and by noting changes in appearance. The glass transition temperature was determined by analysis of the dynamic mechanical properties. The glass transition temperature increased significantly with tritium exposure, and themore » unfilled formulations ceased to behave as elastomers after the longest tritium exposure. The filled formulations were more resistant to tritium exposure. Tritium exposure made all samples significantly stiffer and therefore much less able to form a reliable seal when employed as O-rings. No consistent change of volume or density was observed; there was a systematic lowering of sample mass with tritium exposure. In addition, the significant radiolytic production of gas, mainly protium (H{sub 2}) and HT, by the samples when exposed to tritium was characterized by measuring total pressure in the container at the end of each exposure and by mass spectroscopy of a gas sample at the end of each exposure. The total pressure in the containers more than doubled after {approx}420 days tritium exposure.« less
X-ray source characterization of aluminum X-pinch plasmas driven by the 0. 5 TW LION accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, N.; Hammer, D.A.; Kalantar, D.H.
1989-12-01
Recent experiments at Cornell have been performed to investigate X-pinch plasmas as intense x-ray sources which might be used to pump resonant photoexcitation lasers. Crossed Al wires have been driven by up to 600 kA current for 40 ns. High density bright spots are observed at the crossing point(s). Various diagnostics were used to characterize the X-pinch plasmas as a function of initial mass loading for several specific wire configurations. The optimum mass loading for different ionization stages of Al, and the total x-ray energy yields, which are on the order of hundreds of Joules, were examined. Estimates of plasmamore » density, {similar to}10{sup 20} cm{sup {minus}3}, and temperature, about 400 eV, were obtained.« less
The Shortest Period sdB Plus White Dwarf Binary CD-30 11223 (GALEX J1411-3053)
NASA Astrophysics Data System (ADS)
Vennes, S.; Kawka, A.; O'Toole, S. J.; Németh, P.; Burton, D.
2012-11-01
We report on the discovery of the shortest period binary comprising a hot subdwarf star (CD-30 11223, GALEX J1411-3053) and a massive unseen companion. Photometric data from the All Sky Automated Survey show ellipsoidal variations of the hot subdwarf primary and spectroscopic series revealed an orbital period of 70.5 minutes. The large velocity amplitude suggests the presence of a massive white dwarf in the system (M 2/M ⊙ >~ 0.77) assuming a canonical mass for the hot subdwarf (0.48 M ⊙), although a white dwarf mass as low as 0.75 M ⊙ is allowable by postulating a subdwarf mass as low as 0.44 M ⊙. The amplitude of ellipsoidal variations and a high rotation velocity imposed a high-inclination to the system (i >~ 68°) and, possibly, observable secondary transits (i >~ 74°). At the lowest permissible inclination and assuming a subdwarf mass of ~0.48 M ⊙, the total mass of the system reaches the Chandrasekhar mass limit at 1.35 M ⊙ and would exceed it for a subdwarf mass above 0.48 M ⊙. The system should be considered, like its sibling KPD 1930+2752, a candidate progenitor for a Type Ia supernova. The system should become semi-detached and initiate mass transfer within ≈30 Myr. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 83.D-0540, 85.D-0866, and 089.D-0864.
Compact Binary Progenitors of Short Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide
2013-01-01
In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.
Flyby Characterization of Lower-Degree Spherical Harmonics Around Small Bodies
NASA Technical Reports Server (NTRS)
Takahashi, Yu; Broschart, Stephen; Lantoine, Gregory
2014-01-01
Interest in studying small bodies has grown significantly in the last two decades, and there are a number of past, present, and future missions. These small body missions challenge navigators with significantly different kinds of problems than the planets and moons do. The small bodies' shape is often irregular and their gravitational field significantly weak, which make the designing of a stable orbit a complex dynamical problem. In the initial phase of spacecraft rendezvous with a small body, the determination of the gravitational parameter and lower-degree spherical harmonics are of crucial importance for safe navigation purposes. This motivates studying how well one can determine the total mass and lower-degree spherical harmonics in a relatively short time in the initial phase of the spacecraft rendezvous via flybys. A quick turnaround for the gravity data is of high value since it will facilitate the subsequent mission design of the main scientific observation campaign. We will present how one can approach the problem to determine a desirable flyby geometry for a general small body. We will work in the non-dimensional formulation since it will generalize our results across different size/mass bodies and the rotation rate for a specific combination of gravitational coefficients.
Anticipatory postural adjustments during lateral step motion in patients with hip osteoarthritis.
Tateuchi, Hiroshige; Ichihashi, Noriaki; Shinya, Masahiro; Oda, Shingo
2011-02-01
Patients with hip osteoarthritis (OA) have difficulty with mediolateral postural control. Since the symptom of hip OA includes joint pain, which mostly occurs upon initial movement, patients with hip OA might have disabling problems with movement initiation. This study aimed to identify the movement strategy during the anticipatory postural adjustments in the lateral step motion in patients with hip OA. We studied 18 female subjects with unilateral hip OA and 10 healthy subjects, and measured temporal, kinetic, and kinematic variables. Patients with hip OA required a longer duration of anticipation phase than the control subjects, the total duration of lateral stepping was not different between the groups. Displacement of the center of mass to the supporting (affected) side during the anticipation phase was not different between the two groups. These findings suggest that, in patients with hip OA, the center of mass slowly moved to the affected side. Furthermore, patients with hip OA showed greater shift of the trunk to the supporting side than did the control subjects. These movement characteristics might contribute to the achievement of both protection of the affected hip joint and quickness in the subsequent lateral step in patients with hip OA.
Vaporization thermodynamics of K2S and K2SO3
NASA Technical Reports Server (NTRS)
Bennet, J. E.
1982-01-01
The vaporization reactions, vapor pressures, and thermodynamics of potassium sulfide and potassium sulfite were studied for purposes of providing fundamental data for the seed cycle in magnetohydrodynamic electric power generation. Rate of effusion studies, supported by tube furnace experiments, X-ray powder diffraction, mass spectrometry and appropriate chemical analyses and tests, revealed that potassium sulfite disproportionates at high temperatures to form potassium sulfide and potassium sulfate. Potassium sulfide was observed to vaporize incongruently, the initial vapors beng predominantly potassium atoms, with minor species being S2 and various K-S molecules. The ratio of K/S2 in the vapor is very large initially and decreases steadily with prolonged heating. Several materials were evaluated for purposes of containing K2S/K2SO3 at temperatures or = 800 C: Pt, Mo, W, quartz, machinable glass, BN, high density graphite, pyrolytic coated graphite, and alumina. Of these, only alumina was observed to be chemically inert to both K2S but reacted with K2SO3. The other materials were not suitable for either substance. Thermodynamic calculations based on measured vapor pressures and approximate free energy functions are described. Results from isothermal total mass loss experiments and from thermogravimetric experiments are also included.
The protostar OMC-2 FIR 4: Results from the CHESS Herschel/HIFI spectral survey
NASA Astrophysics Data System (ADS)
Kama, Mihkel; Lopez-Sepulcre, Ana; Ceccarelli, Cecilia; Dominik, Carsten; Caux, Emmanuel; Fuente, Asuncion
2013-07-01
The intermediate-mass protostar OMC-2 FIR 4 in Orion is the focus of several ongoing studies, including a CHESS key programme Herschel/HIFI spectral survey. In this poster, we review recent CHESS results on this source, including the properties of the central hot core, the presence of a compact outflow, the spatial variation of the chemical composition, and the discovery of a tenuous foreground cloud. The HIFI spectrum of FIR 4 contains 719 lines from 40 species and isotopologs. Cooling by lines detectable with our sensitivity contributes 2% of the total in the 480 to 1900 GHz range. The total line flux is dominated by CO, followed by H2O and CH3OH. Initial comparisons with spectral surveys of other sources will also be presented.
NASA Technical Reports Server (NTRS)
Tauber, Michael E.
1986-01-01
A simple, approximate equation describing the velocity-density relationship (or velocity-altitude) has been derived from the flight of large ballistic coefficient projectiles launched at high speeds. The calculations obtained by using the approximate equation compared well with results for numerical integrations of the exact equations of motion. The flightpath equation was used to parametrically calculate maximum body decelerations and stagnation pressures for initial velocities from 2 to 6 km/s. Expressions were derived for the stagnation-point convective heating rates and total heat loads. The stagnation-point heating was parametrically calculated for a nonablating wall and an ablating carbon surface. Although the heating rates were very high, the pulse decayed quickly. The total nose-region heat shield weight was conservatively estimated to be only about 1 percent of the body mass.
NASA Astrophysics Data System (ADS)
Yang, Hongu; Ishiguro, Masateru
2018-02-01
In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.
NASA Astrophysics Data System (ADS)
Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei
2018-05-01
Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.
Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).
Hasumura, Takahiro; Meguro, Shinichi
2016-07-01
Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish.
STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giodini, S.; Pierini, D.; Finoguenov, A.
2009-09-20
We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 <= z <= 1 are selected from the COSMOS 2 deg{sup 2} survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R {sub 500}. The total sample of 118 groups and clusters with zmore » <= 1 spans a range in M {sub 500} of {approx}10{sup 13}-10{sup 15} M {sub sun}. We find that the stellar mass fraction associated with galaxies at R {sub 500} decreases with increasing total mass as M {sup -0.37+}-{sup 0.04} {sub 500}, independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f {sup stars+gas} {sub 500} = f {sup stars} {sub 500} + f {sup gas} {sub 500}) is found to increase by {approx}25%, when M{sub 500} increases from (M) = 5 x 10{sup 13} M{sub sun} to (M) = 7 x 10{sup 14} M{sub sun}. After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3sigma for groups of (M) = 5 x 10{sup 13} M{sub sun}. The discrepancy decreases toward higher total masses, such that it is 1sigma at (M) = 7 x 10{sup 14} M{sub sun}. We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.« less
Lean body mass and risk of incident atrial fibrillation in post-menopausal women.
Azarbal, Farnaz; Stefanick, Marcia L; Assimes, Themistocles L; Manson, JoAnn E; Bea, Jennifer W; Li, Wenjun; Hlatky, Mark A; Larson, Joseph C; LeBlanc, Erin S; Albert, Christine M; Nassir, Rami; Martin, Lisa W; Perez, Marco V
2016-05-21
High body mass index (BMI) is a risk factor for atrial fibrillation (AF). The aim of this study was to determine whether lean body mass (LBM) predicts AF. The Women's Health Initiative is a study of post-menopausal women aged 50-79 enrolled at 40 US centres from 1994 to 1998. A subset of 11 393 participants at three centres underwent dual-energy X-ray absorptiometry. Baseline demographics and clinical histories were recorded. Incident AF was identified using hospitalization records and diagnostic codes from Medicare claims. A multivariable Cox hazard regression model adjusted for demographic and clinical risk factors was used to evaluate associations between components of body composition and AF risk. After exclusion for prevalent AF or incomplete data, 8832 participants with an average age of 63.3 years remained for analysis. Over the 11.6 years of average follow-up time, 1035 women developed incident AF. After covariate adjustment, all measures of LBM were independently associated with higher rates of AF: total LBM [hazard ratio (HR) 1.24 per 5 kg increase, 95% confidence intervals (CI) 1.14-1.34], central LBM (HR 1.51 per 5 kg increase, 95% CI 1.31-1.74), and peripheral LBM (HR 1.39 per 5 kg increase, 95% CI 1.19-1.63). The association between total LBM and AF remained significant after adjustment for total fat mass (HR 1.22 per 5 kg increase, 95% CI 1.13-1.31). Greater LBM is a strong independent risk factor for AF. After adjusting for obesity-related risk factors, the risk of AF conferred by higher BMI is primarily driven by the association between LBM and AF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Imboden, Mary T.; Swartz, Ann M.; Finch, Holmes W.; Harber, Matthew P.; Kaminsky, Leonard A.
2017-01-01
Body composition assessments commonly focus predominantly on fat mass, however lean mass (LM) measurements also provide useful information regarding clinical and nutritional status. LM measurements help predict health outcomes and diagnose sarcopenia, which has been associated with frailty. Dual energy x-ray absorptiometry (DXA) is an established technique used in clinical and research settings to assess body composition including total and regional LM. Currently, there are no reference values available that were derived from GE-Healthcare DXA systems directly for US adults for LM, LM index (LMI), percent LM (%LM), and appendicular lean mass index (ALMI) and it is known that whole-body and regional LM measures differ by DXA manufacturer. Objective To develop reference values by age and sex for LM measures using GE-Healthcare DXA systems. Methods A de-identified sample was obtained from Ball State University’s Clinical Exercise Physiology Laboratory and University of Wisconsin-Milwaukee’s Physical Activity & Health Research Laboratory. DXA scans of 2,076 women and 1,251 men were completed using a GE Lunar Prodigy or iDXA. Percentiles (%ile) were calculated for all variables of interest (LM, LMI, %LM, and ALMI) and a factorial ANOVA was used to assess differences for each variable between 10-year age groups and sex, as well as the interaction between age and sex. Results Men had higher mean total LM, %LM, LMI, and ALMI than women (p<0.01), across all age groups. All LM variables decreased significantly over the 5 decades in men, however in women only total LM, %LM, and ALMI decreased from the youngest to oldest age groups (p<0.01). Conclusion These reference values provide for a more accurate interpretation of GE-Healthcare DXA-derived LM measurements offering clinicians and researchers with an initial resource to aid in the early detection and assessment of LM deficits. PMID:28426779
Mario, F M; do Amarante, F; Toscani, M K; Spritzer, P M
2012-10-01
This age-matched case-control study assessed total and segmental lean muscle mass in classic or ovulatory polycystic ovary syndrome (PCOS) patients and investigated whether lean mass is associated with hormone and metabolic features. Participants underwent anthropometric and clinical evaluation. Habitual physical activity was assessed with a digital pedometer, and body composition by dual-energy X-ray absorptiometry. Laboratory measurements included total cholesterol, cholesterol fractions, triglycerides, glucose, total serum testosterone, serum insulin, estradiol, luteinizing hormone, and SHBG. Energy intake was calculated using a food frequency questionnaire. Classic PCOS patients had higher body mass index (BMI), waist circumference, testosterone and lipid accumulation product values than ovulatory PCOS and controls. Energy consumption, homeostasis model assessment index, SHBG, free androgen index and triglycerides, total and trunk lean mass were higher only in classic PCOS women vs. controls. Arm, leg, trunk, total or limb lean masses were not correlated with hormone levels in any of the groups. However, in PCOS women lipid accumulation product was positively correlated with total (r=0.56, p=0.001), trunk (r=0.59, p=0.001), arm (r=0.54, p=0.001), leg (r=0.44, p=0.03) and limb (r=0.48, p=0.001) lean masses. BMI was positively correlated with all lean mass segments and independently associated with total lean mass. Lipid accumulation product and BMI were independently associated with trunk lean mass variation. The increase in lean mass in classic PCOS appears to be associated with insulin resistance and central obesity rather than with energy intake, physical activity or androgens. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Cannone, T. C.; Kelly, S. K.; Foster, K.
2013-05-01
One anticipated result of ocean acidification is lower calcification rates of corals. Many studies currently use the buoyant weights of coral nubbins as a means of estimating skeletal weight during non-destructive experiments. The objectives of this study, conducted at the Little Cayman Research Centre, were twofold: (1) to determine whether the purple and yellow color variations of Porites divaricata had similar tissue mass to total mass ratios; and (2) to determine a correction factor for tissue mass based on the total coral mass. T-test comparisons indicated that the tissue to total mass ratios were statistically similar for purple and yellow cohorts, thus allowing them to be grouped together within a given sample population. Linear regression analysis provided a correction factor (r2 = 0.69) to estimate the tissue mass from the total mass, which may eliminate the need to remove tissue during studies and allow subsequent testing on the same nubbins or their return to the natural environment. Additional work is needed in the development of a correction factor for P. divaricata with a higher prediction accuracy.
ERIC Educational Resources Information Center
Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas
2009-01-01
We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…
Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors
Hübl, Johannes; McArdell, Brian W.; Walter, Fabian
2018-01-01
The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz), several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio. PMID:29789449
Quantitative Mass Spectrometry by Isotope Dilution and Multiple Reaction Monitoring (MRM).
Russo, Paul; Hood, Brian L; Bateman, Nicholas W; Conrads, Thomas P
2017-01-01
Selected reaction monitoring (SRM) is used in molecular profiling to detect and quantify specific known proteins in complex mixtures. Using isotope dilution (Barnidge et al., Anal Chem 75(3):445-451, 2003) methodologies, peptides can be quantified without the need for an antibody-based method. Selected reaction monitoring assays employ electrospray ionization mass spectrometry (ESI-MS) followed by two stages of mass selection: a first stage where the mass of the peptide ion is selected and, after fragmentation by collision-induced dissociation (CID), a second stage (tandem MS) where either a single (e.g., SRM) or multiple (multiple reaction monitoring, MRM) specific peptide fragment ions are transmitted for detection. The MRM experiment is accomplished by specifying the parent masses of the selected endogenous and isotope-labeled peptides for MS/MS fragmentation and then monitoring fragment ions of interest, using their intensities/abundances and relative ratios to quantify the parent protein of interest. In this example protocol, we will utilize isotope dilution MRM-MS to quantify in absolute terms the total levels of the protein of interest, ataxia telangiectasia mutated (ATM) serine/threonine protein kinase. Ataxia telangiectasia mutated (ATM) phosphorylates several key proteins that initiate activation of the DNA damage checkpoint leading to cell cycle arrest.
Mass properties survey of solar array technologies
NASA Technical Reports Server (NTRS)
Kraus, Robert
1991-01-01
An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.
NASA Astrophysics Data System (ADS)
Ibrahim, Dheyaa Ahmed; Al-Assam, Hisham; Du, Hongbo; Jassim, Sabah
2017-05-01
Ovarian masses are categorised into different types of malignant and benign. In order to optimize patient treatment, it is necessary to carry out pre-operational characterisation of the suspect ovarian mass to determine its category. Ultrasound imaging has been widely used in differentiating malignant from benign cases due to its safe and non-intrusive nature, and can be used for determining the number of cysts in the ovary. Presently, the gynaecologist is tasked with manually counting the number of cysts shown on the ultrasound image. This paper proposes, a new approach that automatically segments the ovarian masses and cysts from a static B-mode image. Initially, the method uses a trainable segmentation procedure and a trained neural network classifier to accurately identify the position of the masses and cysts. After that, the borders of the masses can be appraised using watershed transform. The effectiveness of the proposed method has been tested by comparing the number of cysts identified by the method against the manual examination by a gynaecologist. A total of 65 ultrasound images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual counting method for accurately determining the number of cysts in a US ovarian image.
Mass functional for initial data in 4 +1 -dimensional spacetime
NASA Astrophysics Data System (ADS)
Alaee, Aghil; Kunduri, Hari K.
2014-12-01
We consider a broad class of asymptotically flat, maximal initial data sets satisfying the vacuum constraint equations, admitting two commuting rotational symmetries. We construct a mass functional for "t -ϕi"-symmetric data which evaluates to the Arnowitt-Deser-Misner mass. We then show that R ×U (1 )2 -invariant solutions of the vacuum Einstein equations are critical points of this functional amongst this class of data. We demonstrate the positivity of this functional for a class of rod structures which include the Myers-Perry initial data. The construction is a natural extension of Dain's mass functional to D =5 , although several new features arise.
Analysis of a Radioisotope Thermal Rocket Engine
NASA Technical Reports Server (NTRS)
Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.
2016-01-01
The Triton Hopper is a concept for a global hopper vehicle which uses a radioisotope rocket engine and In-situ propellant acquisition to explore the surface of Neptune's moon, Triton. The current Triton Hopper concept stores heated Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through the use of a thermal block during engine operation, as opposed to storing gas at a high temperature. Lithium, Lithium Fluoride and Beryllium were considered as possible materials for the thermal block. A heat energy analysis indicated that a lithium thermal mass would provide the highest heat energy for a temperature change from 900 Celsius to -100 Celsius. A heat transfer analysis was performed for Nitrogen at -100 Celsius flowing through 1000 passages inside a 1kg lithium thermal block at a temperature of 900 Celsius. The system was analyzed as turbulent flow through a tube with constant surface temperature. The analysis indicated that the propellant reached a maximum temperature of 877 Celsius before entering the nozzle. At this exit temperature, the average specific impulse [I(sub sp)] of the engine was determined to be 157s. Previous studies for the stored heated gas concept suggest that the engine would have an average I(sub sp) of approximately 52s. Thus, the use of a thermal block concept results in a 200 percent engine performance increase. In addition, a tank sizing study was performed to determine if the concept is feasible in terms of mass requirements. The mass for a spherical carbon fiber COPV storing 35kg of nitrogen at an initial temperature of -100 Celsius and a pressure of 1000psia, was determined to be 7.2kg. The specific impulse analysis indicated that the maximum engine performance is obtained for a mass ratio of 5kg of Nitrogen per every 1kg of lithium thermal mass. Thus for 35kg of Nitrogen the total thermal mass would be 7kg. This brings the total mass of the system to 49.2.kg which is less than the 56kg landing payload capacity of the Triton Hopper. Finally, an insulation analysis using 10mm of MLI insulation indicated that a total of 22 watts of heat are lost to the environment. With the heat loss known, the power required to heat the thermal mass to 900 Celsius in 24 days was determined to be 2.15 watts. The study's results allowed us to conclude that the thermal mass concept is the better option due to the performance increase provided, the low power requirement and its compliance with the landing mass requirement of the Triton Hopper.
NASA Technical Reports Server (NTRS)
Kendall, B. R. F.
1985-01-01
Charged-particle fluxes from breakdown events were studied. Methods to measure mass spectra and total emitted flux of neutral particles were developed. The design and construction of the specialized mass spectrometer was completed. Electrical breakdowns were initiated by a movable blunt contact touching the insulating surface. The contact discharge apparatus was used for final development of two different high-speed recording systems and for measurements of the composition of the materials given off by the discharge. It was shown that intense instantaneous fluxes of neutral particles were released from the sites of electrical breakdown events. A laser micropulse mass analyzer showed that visible discoloration at breakdown sites were correllated with the presence of iron on the polymer side of the film, presumably caused by punch-through to the Inconel backing. Kapton samples irradiated by an oxygen ion beam were tested. The irradiated samples were free of surface hydrocarbon contamination but otherwise behaved in the same way as the Kapton samples tested earlier. Only the two samples exposed to oxygen ion bombardment were relatively clean. This indicates an additional variable that should be considered when testing spacecraft materials in the laboratory.
Logistics Reduction and Repurposing Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Ewert, Michael K.
2011-01-01
All human space missions, regardless of destination, require significant logistical mass and volume that is strongly proportional to mission duration. Anything that can be done to reduce initial mass and volume of supplies or reuse items that have been launched will be very valuable. Often, the logistical items require disposal and represent a trash burden. Utilizing systems engineering to analyze logistics from cradle-to-grave and then to potential reuse, can minimize logistics contributions to total mission architecture mass. In NASA's Advanced Exploration Systems Logistics Reduction and Repurposing Project , various tasks will reduce the intrinsic mass of logistical packaging, enable reuse and repurposing of logistical packaging and carriers for other habitation, life support, crew health, and propulsion functions, and reduce or eliminate the nuisances aspects of trash at the same time. Repurposing reduces the trash burden and eliminates the need for hardware whose function can be provided by use of spent logistic items. However, these reuse functions need to be identified and built into future logical systems to enable them to effectively have a secondary function. These technologies and innovations will help future logistic systems to support multiple exploration missions much more efficiently.
NIRCam Coronagraphic Observations of Disks and Planetary Systems
NASA Astrophysics Data System (ADS)
Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team
2017-06-01
The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.
Martinez, Jessica A.; Wertheim, Betsy C.; Thomson, Cynthia A.; Bea, Jennifer W.; Wallace, Robert; Allison, Matthew; Snetselaa, Linda; Chen, Zhao; Nassir, Rami; Thompson, Patricia A.
2016-01-01
Background Maintenance of lean muscle mass and related strength is associated with lower risk for numerous chronic diseases of aging in women. Objective To evaluate whether the association between dietary protein and lean mass differs by physical activity level, amino acid composition, and body mass index categories. Design Cross-sectional analysis of a prospective cohort. Participants/setting Postmenopausal women from the Women’s Health Initiative with body composition measurements by dual-energy X-ray absorptiometry (n=8,298). Main outcome measures Percent lean mass, percent fat mass and lean body mass index. Statistical analyses performed Linear regression models adjusted for scanner serial number, age, calibrated energy intake, race/ethnicity, neighborhood socioeconomic status, and recreational physical activity were used to determine the relationship between protein intake and body composition measures. Likelihood ratio tests and stratified analysis were used to investigate physical activity and body mass index as potential effect modifiers. Results Biomarker-calibrated protein intake was positively associated with percent lean mass; women in the highest protein quintile had 6.3 percentage points higher lean mass than the lowest quintile (P < 0.001). This difference rose to 8.5 percentage points for physically active women in the highest protein quintile (Pinteraction = 0.023). Percent fat mass and lean body mass index were both inversely related to protein intake (both P < 0.001). Physical activity further reduced percent fat mass (Pinteraction = 0.022) and lean body mass index (Pinteraction = 0.011). Leucine intake was associated with lean mass, as were branched chain amino acids combined (both P < 0.001), but not independent of total protein. All associations were observed for normal-weight, overweight, and obese women. Conclusions Protein consumption up to 2.02 g/kg body weight daily is positively associated with lean mass in postmenopausal women. Importantly, those that also engage in physical activity have the highest lean mass across body mass index categories. PMID:27914915
Martinez, Jessica A; Wertheim, Betsy C; Thomson, Cynthia A; Bea, Jennifer W; Wallace, Robert; Allison, Matthew; Snetselaar, Linda; Chen, Zhao; Nassir, Rami; Thompson, Patricia A
2017-02-01
Maintenance of lean muscle mass and related strength is associated with lower risk for numerous chronic diseases of aging in women. Our aim was to evaluate whether the association between dietary protein and lean mass differs by physical activity level, amino acid composition, and body mass index categories. We performed a cross-sectional analysis of a prospective cohort. Participants were postmenopausal women from the Women's Health Initiative with body composition measurements by dual-energy x-ray absorptiometry (n=8,298). Our study measured percent lean mass, percent fat mass, and lean body mass index. Linear regression models adjusted for scanner serial number, age, calibrated energy intake, race/ethnicity, neighborhood socioeconomic status, and recreational physical activity were used to determine the relationship between protein intake and body composition measures. Likelihood ratio tests and stratified analysis were used to investigate physical activity and body mass index as potential effect modifiers. Biomarker-calibrated protein intake was positively associated with percent lean mass; women in the highest protein quintile had 6.3 percentage points higher lean mass than the lowest quintile (P<0.001). This difference rose to 8.5 percentage points for physically active women in the highest protein quintile (P interaction =0.023). Percent fat mass and lean body mass index were both inversely related to protein intake (both P<0.001). Physical activity further reduced percent fat mass (P interaction =0.022) and lean body mass index (P interaction =0.011). Leucine intake was associated with lean mass, as were branched chain amino acids combined (both P<0.001), but not independent of total protein. All associations were observed for normal-weight, overweight, and obese women. Protein consumption up to 2.02 g/kg body weight daily is positively associated with lean mass in postmenopausal women. Importantly, those that also engage in physical activity have the highest lean mass across body mass index categories. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
40 CFR Table 5 to Subpart Xxxx of... - Requirements for Performance Tests
Code of Federal Regulations, 2011 CFR
2011-07-01
..., establish the total regeneration mass or volumetric flow, and establish the temperature of the carbon bed within 15 minutes of completing any cooling cycles. The total regeneration mass, volumetric flow, and... or less, regardless of the inlet concentration.(2). Collect carbon bed total regeneration mass or...
40 CFR Table 5 to Subpart Xxxx of... - Requirements for Performance Tests
Code of Federal Regulations, 2012 CFR
2012-07-01
..., establish the total regeneration mass or volumetric flow, and establish the temperature of the carbon bed within 15 minutes of completing any cooling cycles. The total regeneration mass, volumetric flow, and... or less, regardless of the inlet concentration.(2). Collect carbon bed total regeneration mass or...
40 CFR Table 5 to Subpart Xxxx of... - Requirements for Performance Tests
Code of Federal Regulations, 2013 CFR
2013-07-01
..., establish the total regeneration mass or volumetric flow, and establish the temperature of the carbon bed within 15 minutes of completing any cooling cycles. The total regeneration mass, volumetric flow, and... or less, regardless of the inlet concentration.(2). Collect carbon bed total regeneration mass or...
40 CFR Table 5 to Subpart Xxxx of... - Requirements for Performance Tests
Code of Federal Regulations, 2010 CFR
2010-07-01
..., establish the total regeneration mass or volumetric flow, and establish the temperature of the carbon bed within 15 minutes of completing any cooling cycles. The total regeneration mass, volumetric flow, and... or less, regardless of the inlet concentration.(2). Collect carbon bed total regeneration mass or...
40 CFR Table 5 to Subpart Xxxx of... - Requirements for Performance Tests
Code of Federal Regulations, 2014 CFR
2014-07-01
..., establish the total regeneration mass or volumetric flow, and establish the temperature of the carbon bed within 15 minutes of completing any cooling cycles. The total regeneration mass, volumetric flow, and... or less, regardless of the inlet concentration.(2). Collect carbon bed total regeneration mass or...
Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness
NASA Technical Reports Server (NTRS)
Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary
2014-01-01
Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive cyclogenesis and hurricane force wind events. Currently, forecasters at WPC/OPC are evaluating the Air Mass RGB imagery in conjunction with the AIRS total column ozone to aid forecasting cyclogenesis and high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. To address this limitation, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air on the Air Mass RGB. This presentation describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the Air Mass RGB product for the unique forecast challenges WPC/OPC face. Additionally examples of CrIS ozone and anomaly products will be shown to further demonstrate the utility and capability of JPSS in forecasting unique events.
Ebrahimabadi, Zahra; Naimi, Sedigheh Sadat; Rahimi, Abbas; Sadeghi, Heydar; Hosseini, Seyed Majid; Baghban, Alireza Akbarzadeh; Arslan, Syed Asadullah
2018-01-01
The main objective of the present study was to analyze how supra spinal motor control mechanisms are altered in different directions during anticipatory postural phase of gait initiation in chronic ankle instability patients. It seems that supra spinal pathways modulate anticipatory postural adjustment phase of gait initiation. Yet, there is a dearth of research on the effect of chronic ankle instability on the anticipatory postural adjustment phase of gait initiation in different directions. A total of 20 chronic ankle instability participants and 20 healthy individuals initiated gait on a force plate in forward, 30° lateral, and 30° medial directions. According to the results of the present study, the peak lateral center of pressure shift decreased in forward direction compared to that in other directions in both groups. Also, it was found that the peak lateral center of pressure shift and the vertical center of mass velocity decreased significantly in chronic ankle instability patients, as compared with those of the healthy individuals. According to the results of the present study, it seems that chronic ankle instability patients modulate the anticipatory postural adjustment phase of gait initiation, compared with healthy control group, in order to maintain postural stability. These changes were observed in different directions, too. Copyright © 2017 Elsevier Ltd. All rights reserved.
Naftz, David L.
2017-01-01
Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.
NASA Astrophysics Data System (ADS)
Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss
2018-01-01
TiO2 is ubiquitously present in a wide range of everyday items, both as an intentionally incorporated additive and naturally occurring constituent. It can be found in a wide range of consumer products, including personal care products, food contact materials, and textiles. Normal use of these products may lead to consumer and/or environmental exposure to TiO2, possibly in form of nanoparticles. The aim of this study is to perform a leaching test and apply state-of-the-art methods to investigate nano-TiO2 and total Ti release from five types of commercially available conventional textiles: table placemats, wet wipes, microfiber cloths, and two types of baby bodysuits, with Ti contents ranging from 2.63 to 1448 μg/g. Released particle analysis was performed using conventional and single particle inductively coupled plasma mass spectrometry (ICP-MS and spICP-MS), in conjunction with transmission electron microscopy (TEM), to measure total and particulate TiO2 release by mass and particle number, as well as size distribution. Less than 1% of the initial Ti content was released over 24 h of leaching, with the highest releases reaching 3.13 μg/g. The fraction of nano-TiO2 released varied among fabric types and represented 0-80% of total TiO2 release. Particle mode sizes were 50-75 nm, and TEM imaging revealed particles in sizes of 80-200 nm. This study highlights the importance of using a multi-method approach to obtain quantitative release data that is able to provide an indication regarding particle number, size distribution, and mass concentration, all of which can help in understanding the fate and exposure of nanoparticles.
Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M
2018-08-01
Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.
Binary Systems and the Initial Mass Function
NASA Astrophysics Data System (ADS)
Malkov, O. Yu.
2017-07-01
In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.
CALCINOSIS CIRCUMSCRIPTA IN A COHORT OF RELATED JUVENILE AFRICAN LIONS (PANTHERA LEO).
Bauer, Kendra L; Sander, Samantha J; Steeil, James C; Walsh, Timothy F; Neiffer, Donald L
2017-09-01
Three juvenile, genetically related African lions (Panthera leo) were evaluated for discrete dome-shaped subcutaneous masses present over the proximal lateral metatarsal-tarsal area. The lesions measured 3-8 cm in diameter, were fluctuant to firm, nonulcerated, and attached to underlying structures. On radiographic evaluation, the lesions were characterized by well-circumscribed punctate mineralizations in the soft tissue surrounded by soft tissue swelling without evidence of adjacent bony involvement. On cut surface, the lesions were made of numerous loculi containing 2-5-mm round-to-ovoid, white-to-gray, firm structures interspersed with fibrous tissue and pockets of serosanguinous fluid. Hematology, serum biochemistry, serum thyroid screening (including total thyroxine, total triiodothyronine, free thyroxine, and free triiodothyronine), and serum vitamin D panels (including parathyroid hormone, ionized calcium, and 25-hydroxyvitamin D) were unremarkable. Histopathologic evaluation of the lesions was consistent with calcinosis circumscripta with fibroplasia, chronic inflammation, and seroma formation. An additional two genetically related lions were considered suspect for calcinosis circumscripta based on presentation, exam findings, and similarity to the confirmed cases. All masses self-regressed and were not associated with additional clinical signs other than initial lameness in two cases.
Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabb, David L.; Wang, Xia; Carr, Steven A.
2016-03-04
The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC-MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilarmore » workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation. From these assessments we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61-93% of the time. When comparing across different instruments and quantitative technologies, differential genes were reproduced by other data sets from 67-99% of the time. Projecting gene differences to biological pathways and networks increased the similarities. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation.« less
NASA Astrophysics Data System (ADS)
Long, Kai; Wang, Xuan; Gu, Xianguang
2017-09-01
The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously. Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the load-carrying capabilities and the thermal insulation properties. The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved.
NASA Astrophysics Data System (ADS)
Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.
2015-10-01
Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 18 % uncertainty to the final particle-organic mass remaining in the chamber (relative to base-assumption simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle-organic mass loss by 33 % compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.
NASA Astrophysics Data System (ADS)
Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.
2015-06-01
Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimates of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one third of the initial particle-phase organic mass (36%) was lost during the experiments, and roughly half of this particle organic mass loss was from direct particle wall loss (56% of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (44% of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 23% uncertainty to the final particle organic mass remaining in the chamber (relative to base-assumptions simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle organic mass loss by 64% compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.
NASA Astrophysics Data System (ADS)
Posacki, Silvia; Cappellari, Michele; Treu, Tommaso; Pellegrini, Silvia; Ciotti, Luca
2015-01-01
We present an investigation about the shape of the initial mass function (IMF) of early-type galaxies (ETGs), based on a joint lensing and dynamical analysis, and on stellar population synthesis models, for a sample of 55 lens ETGs identified by the Sloan Lens Advanced Camera for Surveys (SLACS). We construct axisymmetric dynamical models based on the Jeans equations which allow for orbital anisotropy and include a dark matter halo. The models reproduce in detail the observed Hubble Space Telescope photometry and are constrained by the total projected mass within the Einstein radius and the stellar velocity dispersion (σ) within the Sloan Digital Sky Survey fibres. Comparing the dynamically-derived stellar mass-to-light ratios (M*/L)dyn, obtained for an assumed halo slope ρh ∝ r-1, to the stellar population ones (M*/L)Salp, derived from full-spectrum fitting and assuming a Salpeter IMF, we infer the mass normalization of the IMF. Our results confirm the previous analysis by the SLACS team that the mass normalization of the IMF of high-σ galaxies is consistent on average with a Salpeter slope. Our study allows for a fully consistent study of the trend between IMF and σ for both the SLACS and atlas3D samples, which explore quite different σ ranges. The two samples are highly complementary, the first being essentially σ selected, and the latter volume-limited and nearly mass selected. We find that the two samples merge smoothly into a single trend of the form log α = (0.38 ± 0.04) × log (σe/200 km s-1) + ( - 0.06 ± 0.01), where α = (M*/L)dyn/(M*/L)Salp and σe is the luminosity averaged σ within one effective radius Re. This is consistent with a systematic variation of the IMF normalization from Kroupa to Salpeter in the interval σe ≈ 90-270 km s-1.
Wu, Bin; Jiang, Hongli; He, Quan; Wang, Meng; Xue, Jinhong; Liu, Hua; Shi, Kehui; Wei, Meng; Liang, Shanshan; Zhang, Liwen
2017-01-01
Chronic kidney disease is accompanied by changes in the gut microbiome and by an increase in the number of gut pathogenic bacteria. The aim of this study was to investigate the difference of the faecal metabolic profiles in rats with uremia, and to determine whether the altered metabolites in the rats with uremia can be restored by Lactobacillus. Thirty rats were randomly divided into 3 groups: sham, uremia and uremia + probiotic (UP) groups. The rats in uremia and UP groups were prepared through surgical renal mass 5/6 ablation. The rats in the UP group received Lactobacillus LB (1 ml, 109 CFU/ml) through gavage every day for 4 weeks. The rats were fed with a standard diet. Faecal samples were analysed through ultra performance liquid chromatography/mass spectrometry. Statistical analyses were performed using MetaboAnalyst and MATLAB. A total of 99, 324 and 177 significantly different ion peaks were selected between sham and uremia groups; sham and UP groups; and uremia and UP groups, respectively. In the 3 groups, 35 significantly altered metabolites were identified; of the 35 metabolites, 27 initially increased and then decreased; by contrast, 8 metabolites initially decreased and then increased. The 35 metabolites were subjected to pathway analysis in MetaboAnalyst. Faecal metabolites were significantly altered in rats with uremia; these changes were partially reversed by Lactobacillus. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Pontzen, Andrew; Tremmel, Michael; Roth, Nina; Peiris, Hiranya V.; Saintonge, Amélie; Volonteri, Marta; Quinn, Tom; Governato, Fabio
2017-02-01
We show how the interplay between active galactic nuclei (AGNs) and merger history determines whether a galaxy quenches star formation (SF) at high redshift. We first simulate, in a full cosmological context, a galaxy of total dynamical mass Mvir = 1012 M⊙ at z = 2. Then we systematically alter the accretion history of the galaxy by minimally changing the linear overdensity in the initial conditions. This `genetic modification' approach allows the generation of three sets of Λ CDM initial conditions leading to maximum merger ratios of 1:10, 1:5 and 2:3, respectively. The changes leave the final halo mass, large-scale structure and local environment unchanged, providing a controlled numerical experiment. Interaction between the AGN physics and mergers in the three cases leads, respectively, to a star-forming, temporarily quenched and permanently quenched galaxy. However, the differences do not primarily lie in the black hole accretion rates, but in the kinetic effects of the merger: the galaxy is resilient against AGN feedback unless its gaseous disc is first disrupted. Typical accretion rates are comparable in the three cases, falling below 0.1 M⊙ yr-1, equivalent to around 2 per cent of the Eddington rate or 10-3 times the pre-quenching star formation rate, in agreement with observations. This low level of black hole accretion can be sustained even when there is insufficient dense cold gas for SF. Conversely, supernova feedback is too distributed to generate outflows in high-mass systems, and cannot maintain quenching over periods longer than the halo gas cooling time.
Fipronil washoff to municipal wastewater from dogs treated with spot-on products.
Teerlink, Jennifer; Hernandez, Jorge; Budd, Robert
2017-12-01
Fipronil and fipronil degradates have been reported in treated wastewater effluent at concentrations that exceed USEPA Aquatic Life Benchmarks, posing a potential risk to the surface waters to which they discharge. Fipronil is a common insecticide found in spot-on flea and tick treatment products that have the potential for down-the-drain transport and direct washoff into surface water. Volunteers currently treating their dogs with a fipronil-containing spot-on product were recruited. Dogs were washed either 2, 7, or 28days after product application, and rinsate from 34 discrete bathing events were analyzed by LC-MS/MS for fipronil and fipronil degradates (collectively known as fiproles). Total fipronil application dosage ranged from 67.1-410.0mg per dog following manufacturers' recommendation based on dog body weight. Total mass of fiproles measured in rinsate ranged from 3.6-230.6mg per dog (0.2 ̶ 86.0% of mass applied). Average percentage of fiproles detected in rinsate generally decreased with increasing time from initial application: 21±22, 16±13, and 4±5% respectively for 2, 7, and 28days post application. Fipronil was the dominant fiprole, >63% of total fiproles for all samples and >92% of total fiproles in 2 and 7day samples. Results confirm a direct pathway of pesticides to municipal wastewater through the use of spot-on products on dogs and subsequent bathing by either professional groomers or by pet owners in the home. Comparisons of mass loading calculated using California sales data and recent wastewater monitoring results suggest fipronil-containing spot-on products are a potentially important source of fipronil to wastewater treatment systems in California. This study highlights the potential for other active ingredients (i.e., bifenthrin, permethrin, etofenprox, imidacloprid) contained in spot-on and other pet products (i.e., shampoos, sprays) to enter wastewater catchments through bathing activities, posing a potential risk to the aquatic organisms downstream of wastewater discharge. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Siegel, Daniel M.; Metzger, Brian D.
2017-12-01
The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ -ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r -process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Ye≈0.1 . Over the 380-ms duration of the simulation, we find that a fraction ≈20 % of the initial torus mass is unbound in powerful outflows with asymptotic velocities v ≈0.1 c and electron fractions Ye≈0.1 - 0.25 . Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.
The initial mass function and star formation law in the outer disc of NGC 2915
NASA Astrophysics Data System (ADS)
Bruzzese, S. M.; Meurer, G. R.; Lagos, C. D. P.; Elson, E. C.; Werk, J. K.; Blakeslee, John P.; Ford, H.
2015-02-01
Using Hubble Space Telescope (HST) Advanced Camera for Surveys/Wide Field Camera data we present the photometry and spatial distribution of resolved stellar populations in the outskirts of NGC 2915, a blue compact dwarf with an extended H I disc. These observations reveal an elliptical distribution of red giant branch stars, and a clumpy distribution of main-sequence stars that correlate with the H I gas distribution. We constrain the upper-end initial mass function (IMF) and determine the star formation law (SFL) in this field, using the observed main-sequence stars and an assumed constant star formation rate. Previously published Hα observations of the field, which show one faint H II region, are used to provide further constraints on the IMF. We find that the main-sequence luminosity function analysis alone results in a best-fitting IMF with a power-law slope α = -2.85 and upper-mass limit M_u = 60 M_{⊙}. However, if we assume that all Hα emission is confined to H II regions then the upper-mass limit is restricted to M_u ≲ 20 M_{⊙}. For the luminosity function fit to be correct, we have to discount the Hα observations implying significant diffuse ionized gas or escaping ionizing photons. Combining the HST photometry with H I imaging, we find the SFL has a power-law index N = 1.53 ± 0.21. Applying these results to the entire outer H I disc indicates that it contributes 11-28 per cent of the total recent star formation in NGC 2915, depending on whether the IMF is constant within the disc or varies from the centre to the outer region.
Siegel, Daniel M; Metzger, Brian D
2017-12-08
The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickerell, D.H.; Abkowitz, M.; Tozzi, J.
The 9 papers in the report deal with the following areas: Federal operating assistance for urban mass transit; a decade of experience; transit route characteristics and headway-based reliability control; day-of-week and part-of-month variation in bus ridership; job satisfaction and transit operator recognition programs; results of a survey of muni operators; bus marketing costs: the experience of 18 section 15 reporters from 1981 to 1983; prospects for differential transit pricing in the United States; an initial analysis of total factor productivity for public-transit coordination of transportation resources: the Georgia experience; absenteeism, accidents, and attrition: part-time versus full-time bus drivers.
Microparticle accelerator of unique design. [for micrometeoroid impact and cratering simulation
NASA Technical Reports Server (NTRS)
Vedder, J. F.
1978-01-01
A microparticle accelerator has been devised for micrometeoroid impact and cratering simulation; the device produces high-velocity (0.5-15 km/sec), micrometer-sized projectiles of any cohesive material. In the source, an electrodynamic levitator, single particles are charged by ion bombardment in high vacuum. The vertical accelerator has four drift tubes, each initially at a high negative voltage. After injection of the projectile, each tube is grounded in turn at a time determined by the voltage and charge/mass ratio to give four acceleration stages with a total voltage equivalent to about 1.7 MV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Elise; Gundlach-Graham, Alexander W.; Enke, Chris
2013-05-01
Time-of-flight (TOF) and distance-of-flight (DOF) mass spectrometers require means for focusing ions at the detector(s) because of initial dispersions of position and energy at the time of their acceleration. Time-of-flight mass spectrometers ordinarily employ constant energy acceleration (CEA), which creates a space-focus plane at which the initial spatial dispersion is corrected. In contrast, constant-momentum acceleration (CMA), in conjunction with an ion mirror, provides focus of the initial energy dispersion at the energy focus time for ions of all m/z at their respective positions along the flight path. With CEA, the initial energy dispersion is not simultaneously correctable as its effectmore » on ion velocity is convoluted with that of the spatial dispersion. The initial spatial dispersion with CMA remains unchanged throughout the field-free region of the flight path, so spatial dispersion can be reduced before acceleration. Improved focus is possible when each dispersion can be addressed independently. With minor modification, a TOF mass spectrometer can be operated in CMA mode by treating the TOF detector as though it were a single element in the array of detectors that would be used in a DOF mass spectrometer. Significant improvement in mass resolution is thereby achieved, albeit over a narrow range of m/z values. In this paper, experimental and theoretical results are presented that illustrate the energy-focusing capabilities of both DOF and TOF mass spectrometry.« less
NASA Astrophysics Data System (ADS)
Schlichting, Hilke E.; Sari, Re'em
2011-02-01
Runaway growth is an important stage in planet formation during which large protoplanets form, while most of the initial mass remains in small planetesimals. The amount of mass converted into large protoplanets and their resulting size distribution are not well understood. Here, we use analytic work, that we confirm by coagulation simulations, to describe runaway growth and the corresponding evolution of the velocity dispersion. We find that runaway growth proceeds as follows. Initially, all the mass resides in small planetesimals, with mass surface density σ, and large protoplanets start to form by accreting small planetesimals. This growth continues until growth by merging large protoplanets becomes comparable to growth by planetesimal accretion. This condition sets in when Σ/σ ~ α3/4 ~ 10-3, where Σ is the mass surface density in protoplanets in a given logarithmic mass interval and α is the ratio of the size of a body to its Hill radius. From then on, protoplanetary growth and the evolution of the velocity dispersion become self-similar and Σ remains roughly constant, since an increase in Σ by accretion of small planetesimals is balanced by a decrease due to merging with large protoplanets. We show that this growth leads to a protoplanet size distribution given by N(>R) vprop R -3, where N(>R) is the number of objects with radii greater than R (i.e., a differential power-law index of 4). Since only the largest bodies grow significantly during runaway growth, Σ and thereby the size distribution are preserved. We apply our results to the Kuiper Belt, which is a relic of runaway growth where planet formation never proceeded to completion. Our results successfully match the observed Kuiper Belt size distribution, they illuminate the physical processes that shaped it and explain the total mass that is present in large Kuiper Belt objects (KBOs) today. This work suggests that the current mass in large KBOs is primordial and that it has not been significantly depleted. We also predict a maximum mass ratio for Kuiper Belt binaries that formed by dynamical processes of α-1/4 ~ 10, which explains the observed clustering in binary companion sizes that is seen in the cold classical belt. Finally, our results also apply to growth in debris disks, as long as frequent planetesimal-planetesimal collisions are not important during the growth.
AN EVALUATION OF THE PROTEIN MASS OF PARTICULATE MATTER
A comparison of ambient particulate matter mass concentrations with the total protein mass concentration has not been performed previously for North Carolina and was the goal of this study. The analysis of total protein mass was used as an all inclusive indicator of biologically ...
High methane natural gas/air explosion characteristics in confined vessel.
Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing
2014-08-15
The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.
Dissolved organic carbon biodegradability from leaf litter leachates of riparian tropical trees
NASA Astrophysics Data System (ADS)
Bastianoni, A.; Montoya, J. V.; Mendez, C.; Paolini, J.
2012-04-01
It is generally assumed that leaf litter with varying chemical composition may show different rates of mass loss, dissolved organic carbon (DOC) release, and DOC biodegradability. Leaf litter is composed of different organic compounds, which may differ in their release rates. Some authors consider leaf litter chemical quality (carbon to nitrogen ratio (C:N) and polyphenolics content) as an indicator of leaf litter mass losses and DOC released into stream water through leaching. In this research, we determined if leachate's DOC biodegradability exhibited a positive relationship with leaf litter chemical quality and leaf litter mass loss due to leaching. In order to test these hypotheses, leaf litter from six riparian tree species (Bambusa vulgaris; Castilla elastica; Artocarpus altilis; Cecropia peltata; Hura crepitans and Ficus maxima), present in the lower reaches of a fifth-order stream in northern Venezuela was collected during the dry season of 2010. To evaluate leaf litter mass loss, air-dried leaves were incubated in Milli-Q water at room temperature in the dark. After 1h, 6h, 1d, 2d, 4d, 8d and 15d, microcosms were removed from the assay to determine remaining mass. DOC biodegradability was measured using 24 h leachates that were added into a 1L glass flask containing 250mL of unfiltered stream water, 4g of stream sediment, and nutrient amendments until all incubations had equal initial DOC concentrations. Biodegradability of DOC was measured at 0, 1, 2, 5 and 7 days as the decrease in DOC concentration through time. Chemical characterization of leaf litter involved the determination of total concentrations of C, N, and poliphenolics. Three replicates were used for all analyses. Initial chemical characterization of leaf litter showed that only two species (C. elastica and A. altilis), had similar C:N ratios (~31). The other four species, showed different C and N contents but presented C:N ratios between 21 and 23. Total polyphenolics content varied greatly among species. Based on the degree of DOC biodegradability, after 1d of incubation, all species could be grouped into three distinct categories (high, intermediate and low). Then, biodegradability of DOC declined steadily until reaching near-constant values at day 7 probably reflecting less availability of labile C compounds. Breakdown rates were not significantly correlated with DOC decay rates (r=-0.580, P =0.228, n=6). However when the remaining DOC and the remaining mass for all species was evaluated, a significant negative correlation was observed (r=-0.567, P =0.014, n=18) contradicting our initial hypothesis. Such results might be a consequence of the presence of secondary metabolites alongside labile DOC in some species leachates which could prevent microbial C consumption. Therefore, the quality of C released by leaching, measured as its biodegradability, does not seem to have a relationship with the amount of C lost by leaching. This could influence the C budget of the riparian ecosystem since the proportion of C consumed by stream microbes is affected by the chemical quality of leaf litter leachates.
In-situ Phytoremediation of PAH and PCB Contaminated Marine Sediments with Eelgrass (Zostera marina)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.
In view of the fact that there are presently no cost-effective in-situ treatment technologies for contaminated sediments, a 60 week long phytoremediation feasibility study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% inmore » planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60 week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls. After ruling out contaminant loss to the water column or absorption and transformation within plant cells, it is most likely that the presence of eelgrass stimulated the microbial biodegradation of PAHs and PCBs in the rhizosphere by releasing root exudates, plant enzymes, or even oxygen. Additional research is needed to further elucidate these potential phytoremediation mechanisms.« less
Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation
NASA Astrophysics Data System (ADS)
Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.
2008-05-01
As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.
Dynamics of change in total and regional body composition after gastric bypass in obese patients.
Ciangura, Cecile; Bouillot, Jean-Luc; Lloret-Linares, Celia; Poitou, Christine; Veyrie, Nicolas; Basdevant, Arnaud; Oppert, Jean-Michel
2010-04-01
Little is known on patterns of change over time in body composition, especially lean body mass (LBM), during massive weight loss after Roux-en-Y gastric bypass (RYGB) in obese patients. We performed sequential measurements of total and regional body composition in patients after RYGB, and we compared a subsample of patients after surgery to a nonsurgical control group of similar age and body fatness. We used dual-energy X-ray absorptiometry (DXA) before and at 3, 6, and 12 months after RYGB in 42 obese women (before surgery: age 39.5 +/- 11.6 years; BMI 44.6 +/- 6.1 kg/m(2); mean +/- s.d.) and in 48 control obese women referred for nonsurgical weight management, before weight loss. During 1-year follow-up after RYGB, there was a continuous decrease in body weight (-36.0 +/- 12.5 kg at 1 year), total fat mass (FM) (-26.0 +/- 9.1 kg), as well as in trunk and appendicular FM. In contrast, the decrease in total LBM (-9.8 +/- 4.8 kg at 1 year), as well as in trunk and appendicular LBM, plateaued after 3-6 months. Rates of loss in weight, FM, and LBM were highest during the first 3-month period after RYGB (6.4 +/- 1.8, 4.1 +/- 1.7, and 2.3 +/- 1.2 kg/month, respectively), then decreased continuously for FM but plateaued for LBM. There was no evidence of a decrease in total, trunk, or appendicular LBM in weight-reduced subjects compared to the control group. In conclusion, follow-up of these obese women revealed a differential pattern of change in FM and LBM after RYGB. Despite an important loss in LBM, especially during the 3-6 months of initial period, LBM appears to be spared thereafter.
Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory
NASA Technical Reports Server (NTRS)
Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter; Van Zante, Judith
2017-01-01
This presentation describes the development of a numerical model that couples the thermal interaction between ice particles, water droplets, and the flowing gas of an icing wind tunnel for simulation of NASA Glenn Research Centers Propulsion Systems Laboratory (PSL). The ultimate goal of the model is to better understand the complex interactions between the test parameters and have greater confidence in the conditions at the test section of the PSL tunnel. The model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations for both the cloud particles and flowing gas mass. Model predictions were compared to measurements taken during May 2015 testing at PSL, where test conditions varied gas temperature, pressure, velocity and humidity levels, as well as the cloud total water content, particle initial temperature, and particle size distribution.
Examining body mass index in an urban core population: from health screening to physician visit.
O'Connor, Kaitlin Ann; Sahrmann, Julie Marie; Magie, Richard E; Segars, Larry W
2013-04-01
BACKGROUND. Childhood obesity is commonly encountered in the primary care office and disproportionately affects those from low income or minority backgrounds. To determine how accurately primary care clinicians in an urban setting identified patients with body mass indices (BMIs) at or above the 95th percentile for age and to determine which obesity treatment strategies are used. The study population consisted of school-aged, inner-city children with a BMI at or above the 95th percentile for age whose charts were made available for data collection by retrospective chart review. A total of 158 patient medical charts were reviewed. Of these, 90 (57%) patients failed to be identified by the provider as having an elevated BMI. Obesity treatment was initiated in only 68 (43%) of these patients. Providers are not effectively recognizing childhood obesity and are not consistently implementing effective obesity treatment strategies.
Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory
NASA Technical Reports Server (NTRS)
Bartkus, Tadas P.; Tsao, Jen-Ching; Struk, Peter M.; Van Zante, Judith F.
2017-01-01
This paper describes the development of a numerical model that couples the thermal interaction between ice particles, water droplets, and the flowing gas of an icing wind tunnel for simulation of NASA Glenn Research Centers Propulsion Systems Laboratory (PSL). The ultimate goal of the model is to better understand the complex interactions between the test parameters and have greater confidence in the conditions at the test section of the PSL tunnel. The model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations for both the cloud particles and flowing gas mass. Model predictions were compared to measurements taken during May 2015 testing at PSL, where test conditions varied gas temperature, pressure, velocity and humidity levels, as well as the cloud total water content, particle initial temperature, and particle size distribution.
Computer simulations of planetary accretion dynamics: Sensitivity to initial conditions
NASA Technical Reports Server (NTRS)
Isaacman, R.; Sagan, C.
1976-01-01
The implications and limitations of program ACRETE were tested. The program is a scheme based on Newtonian physics and accretion with unit sticking efficiency, devised to simulate the origin of the planets. The dependence of the results on a variety of radial and vertical density distribution laws, the ratio of gas to dust in the solar nebula, the total nebular mass, and the orbital eccentricity of the accreting grains was explored. Only for a small subset of conceivable cases are planetary systems closely like our own generated. Many models have tendencies towards one of two preferred configurations: multiple star systems, or planetary systems in which Jovian planets either have substantially smaller masses than in our system or are absent altogether. But for a wide range of cases recognizable planetary systems are generated - ranging from multiple star systems with accompanying planets, to systems with Jovian planets at several hundred AU, to single stars surrounded only by asteroids.
On the Magnetic Shield for a Vlasov-Poisson Plasma
NASA Astrophysics Data System (ADS)
Caprino, Silvia; Cavallaro, Guido; Marchioro, Carlo
2017-12-01
We study the screening of a bounded body Γ against the effect of a wind of charged particles, by means of a shield produced by a magnetic field which becomes infinite on the border of Γ . The charged wind is modeled by a Vlasov-Poisson plasma, the bounded body by a torus, and the external magnetic field is taken close to the border of Γ . We study two models: a plasma composed by different species with positive or negative charges, and finite total mass of each species, and another made of many species of the same sign, each having infinite mass. We investigate the time evolution of both systems, showing in particular that the plasma particles cannot reach the body. Finally we discuss possible extensions to more general initial data. We show also that when the magnetic lines are straight lines, (that imposes an unbounded body), the previous results can be improved.
Constructing binary black hole initial data with high mass ratios and spins
NASA Astrophysics Data System (ADS)
Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration
2015-04-01
Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.
On the adiabatic limit of Hadamard states
NASA Astrophysics Data System (ADS)
Drago, Nicolò; Gérard, Christian
2017-08-01
We consider the adiabatic limit of Hadamard states for free quantum Klein-Gordon fields, when the background metric and the field mass are slowly varied from their initial to final values. If the Klein-Gordon field stays massive, we prove that the adiabatic limit of the initial vacuum state is the (final) vacuum state, by extending to the symplectic framework the adiabatic theorem of Avron-Seiler-Yaffe. In cases when only the field mass is varied, using an abstract version of the mode decomposition method we can also consider the case when the initial or final mass vanishes, and the initial state is either a thermal state or a more general Hadamard state.
Zhang, Haofei; Worton, David R; Lewandowski, Michael; Ortega, John; Rubitschun, Caitlin L; Park, Jeong-Hoo; Kristensen, Kasper; Campuzano-Jost, Pedro; Day, Douglas A; Jimenez, Jose L; Jaoui, Mohammed; Offenberg, John H; Kleindienst, Tadeusz E; Gilman, Jessica; Kuster, William C; de Gouw, Joost; Park, Changhyoun; Schade, Gunnar W; Frossard, Amanda A; Russell, Lynn; Kaser, Lisa; Jud, Werner; Hansel, Armin; Cappellin, Luca; Karl, Thomas; Glasius, Marianne; Guenther, Alex; Goldstein, Allen H; Seinfeld, John H; Gold, Avram; Kamens, Richard M; Surratt, Jason D
2012-09-04
2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C(5)H(12)O(6)S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM(2.5)) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM(2.5) collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.
NASA Astrophysics Data System (ADS)
Maksim, Nisa
Features such as the Home Plate plateau on Mars, a suspected remnant of an ancient phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The eruption intensity of a phreatomagmatic volcano is controlled mainly by the quantity of water and magma, the internal geometry of the volcano, and the depth of the interaction zone between magma and water. In order to understand the paleohydrologic conditions at the time of eruption, we must understand all the factors that influenced the phreatomagmatic event. I conducted an integrated geophysical survey, which are magnetic and gravity surveys, and a ground-penetrating radar (GPR) surveys at Kilbourne Hole, a phreatomagmatic crater in southern New Mexico. These investigations serve an analog paleo-hydrogeological study that could be conducted on Mars and the Moon with an implication for planetary exploration. These geophysical surveys are designed to delineate the internal structure of a phreatomagmatic volcano and to define the volumes and masses of volcanic dikes and excavation unit, the depth of feeder dikes, and impacted velocity of the volcanic blocks. For the gravity and magnetic surveys at Kilbourne Hole, I collected data at a total of 171 gravity survey stations and 166 magnetics survey stations. A 2D gravity and magnetic inverse model was developed jointly to map the body of the magma intrusions and the internal structure of Kilbourne Hole. A total of 6 GPR surveys lines were also completed at Kilbourne Hole to image and to define locations of pyroclastic deposits, volcanic sags and blocks, the sizes distribution of volcanic blocks, and the impact velocity of the volcanic blocks. Using the size distribution and impact velocity of volcanic blocks from our GPR data, I derived the initial gas expansion velocity and the time duration of the gas expansion phase of the Kilbourne Hole eruption. These obtained parameters (volumes, masses, and depths of the feeder dikes and the excavation zone, and the initial gas expansion velocity) are used to quantitatively calculate the mass, volume and condition of groundwater involved in the magma-water interaction process that caused Kilbourne Hole eruption. The joint gravity and magnetic 2D inversion reveals two main bodies of basaltic intrusion dike underneath Kilbourne Hole. The depth to the top of the dike is varied between 0.91 and 3.58 km from the ground surface. The models are able to delineate several complex areas of slumping blocks and collapsed crater, the area of the diatreme and the area of the original crater's excavation. The estimated depth of the diatreme is 13.6-15.8 km. The model shows that the tuff ring deposits extend 600 m to 1 km away from the crater rim and vary in thickness (50-150 m). Based on our 2D gravity and magnetic inverse models of Kilbourne Hole, we were able to calculate the mass of the magma and the final product of this research, which is the mass of water that fed the Kilbourne Hole eruption. The total mass of the magma (M m) is 1.38 +/- 0.15 x 1013 kg and the mass of water (Mw) is (1.09 +/- 0.31) x 10 13 kg. The water to rock mass ratio of the Kilbourne Hole eruption was 0.01-0-02. With the GPR surveys results, we estimate that the initial gas expansion velocity (V0) of the Kilbourne Hole eruption was 123 +/- 9 m/s and the time duration of the gas expansion phase was 92 +/- 11 s. The obtained initial gas expansion velocity and the depth of the dikes suggest that the eruption occurred at an initial pressure of 163 +/- 9 bar. I also utilized the lunar gravity field measured by the Gravity Recovery and Interior Laboratory (GRAIL) mission to reconstruct the history of lunar mascon basin formation and magmatic activity. We hypothesize that a combination of uplifted lunar Moho, impact melt sheets, and brecciated crust creates the gravity signature of lunar mascon basins. To test this hypothesis, We performed low-pass and preferential filtering on the free-air anomaly map derived from GRAIL lunar gravity model GL0660A. Using the preferential filtering method, we isolated the gravity anomalies associated with structures at 16 km and 30 km depth where we can avoid high-frequency gravity signal from the highly impacted subsurface topography and mare basalt. We construct four 2D inversion models from the filtered gravity data to visualize the internal structure of lunar mascon basins. We conclude from our 2D inversion models that the parameters that determine the gravity signatures of mascon basins are: (1) the extent of the impact-melt sheet; (2) the depth to the mantle; and (3) the thickness and density of the surrounding crust.
Mass Medication Clinic (MMC) Patient Medical Assistant (PMA) System Training Initiative
2007-06-01
AD_________________ Award Number: W81XWH-06-2-0045 TITLE: Mass Medication Clinic (MMC) Patient ...SUBTITLE 5a. CONTRACT NUMBER Mass Medication Clinic (MMC) Patient Medical Assistant (PMA) System Training Initiative 5b. GRANT NUMBER W81XWH-06-2...sections will describe the events, results, and accomplishments of this study. With validation through this project the Patient Medical Assistant
Efficient electrochemical degradation of multiwall carbon nanotubes.
Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J
2018-07-15
As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.
The Aquila prestellar core population revealed by Herschel
NASA Astrophysics Data System (ADS)
Könyves, V.; André, Ph.; Men'shchikov, A.; Schneider, N.; Arzoumanian, D.; Bontemps, S.; Attard, M.; Motte, F.; Didelon, P.; Maury, A.; Abergel, A.; Ali, B.; Baluteau, J.-P.; Bernard, J.-Ph.; Cambrésy, L.; Cox, P.; di Francesco, J.; di Giorgio, A. M.; Griffin, M. J.; Hargrave, P.; Huang, M.; Kirk, J.; Li, J. Z.; Martin, P.; Minier, V.; Molinari, S.; Olofsson, G.; Pezzuto, S.; Russeil, D.; Roussel, H.; Saraceno, P.; Sauvage, M.; Sibthorpe, B.; Spinoglio, L.; Testi, L.; Ward-Thompson, D.; White, G.; Wilson, C. D.; Woodcraft, A.; Zavagno, A.
2010-07-01
The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg2 area of the field imaged at 70-500 μm with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from ASA.Figures 3-6 are only available in electronic format at http://www.aanda.org
Code of Federal Regulations, 2011 CFR
2011-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
40 CFR 62.15250 - May I conduct stack testing less often?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for Class II units, for 2 consecutive years. In this case, you may choose... per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic...
40 CFR 62.15250 - May I conduct stack testing less often?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for Class II units, for 2 consecutive years. In this case, you may choose... per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic...
40 CFR 62.15250 - May I conduct stack testing less often?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for Class II units, for 2 consecutive years. In this case, you may choose... per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic...
Lean Body Mass and Bone Health in Urban Adolescents From Northern India.
Marwaha, Raman K; Garg, M K; Bhadra, Kuntal; Mahalle, Namita; Mithal, Ambrish; Tandon, Nikhil
2017-03-15
To prepare percentile charts of lean body mass (LBM) among Indian urban children and adolescents; and to evaluate gender differences in LBM, and its relation with pubertal status. Secondary data analysis. School in city of Delhi, India. 1403 apparently healthy children and adolescents (826 boys) with mean (SD) age 13.2 (2.7) years. Lean body mass assessed by dual energy absorptiometry. Total and regional lean mass were greater in older age groups in both sexes. LBM showed rising trends up to the age of 18 years in boys, whereas it plateaued after the age of 15 years in girls. The age-associated increase in LBM was significantly higher in boys (130%) compared to girls (83%) (P<0.001). Total and regional lean mass increased with progression of pubertal staging in both genders. During pubertal development, LBM almost doubled (100% increase) from stage-2 to stage-5 in boys, as opposed to a 73% rise in girls (P<0.001). Total and regional lean mass and Appendicular skeletal muscle mass index (ASMI) was positively correlated with age, body mass index (BMI), serum 25(OH)D, total fat mass, and bone mineral content (BMC). Relation between LBM and BMC remained significant even after adjusting for age, fat mass and various biochemical parameters. Total and regional LBM rise with age and pubertal maturation in both genders, but more so in boys when compared to girls. LBM has direct bearing on BMC even after adjusting for age, fat mass and biochemical parameters.
Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders
Smith, Rosamund C.; Lin, Boris K.
2013-01-01
Purpose of review This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. Recent findings There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume. In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient. Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Summary Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders. PMID:24157714
Water-quality and amphibian population data for Maryland, Washington, D.C., and Virginia, 2001-2004
Rice, K.C.; Jung, R.E.
2004-01-01
Data on the chemical composition of water and on amphibian populations were collected at least annually from vernal pool and stream sites in Maryland, Washington, D.C., and Virginia, from 2001 through 2004. The data were collected as part of long-term monitoring projects of the Northeast Region of the Amphibian Research and Monitoring Initiative (ARMI) of the U.S. Geological Survey. Water samples were analyzed for temperature, specific conductance, pH, dissolved-oxygen concentration, acid-neutralizing capacity, and concentrations of total Kjeldahl nitrogen and total phosphorus; in 2004, samples also were analyzed for nitrite plus nitrate concentrations and total nitrogen concentrations. Field and laboratory analytical results of water samples and quality-assurance information are presented. Amphibian population data include the presence of amphibian species and the maximum number of egg masses of wood frogs and spotted salamanders at vernal pools, and counts of amphibians made during stream transect and stream quadrat surveys.
Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders.
Smith, Rosamund C; Lin, Boris K
2013-12-01
This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume.In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient.Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders.
Buitink, S; Corstanje, A; Falcke, H; Hörandel, J R; Huege, T; Nelles, A; Rachen, J P; Rossetto, L; Schellart, P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brouw, W N; Brüggen, M; Butcher, H R; Carbone, D; Ciardi, B; Conway, J E; de Gasperin, F; de Geus, E; Deller, A; Dettmar, R-J; van Diepen, G; Duscha, S; Eislöffel, J; Engels, D; Enriquez, J E; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Grießmeier, J M; Gunst, A W; van Haarlem, M P; Hassall, T E; Heald, G; Hessels, J W T; Hoeft, M; Horneffer, A; Iacobelli, M; Intema, H; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Loose, G M; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Mulcahy, D D; Munk, H; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pietka, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H J A; Scaife, A M M; Schwarz, D J; Serylak, M; Sluman, J; Smirnov, O; Stappers, B W; Steinmetz, M; Stewart, A; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Toribio, M C; Vermeulen, R; Vocks, C; Vogt, C; van Weeren, R J; Wijers, R A M J; Wijnholds, S J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P; Zensus, J A
2016-03-03
Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.
Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.
Veitch, John; Pürrer, Michael; Mandel, Ilya
2015-10-02
We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.
NGC 1614: A Laboratory for Starburst Evolution
NASA Technical Reports Server (NTRS)
Alonso-Herrero, A.; Engelbracht, C. W.; Rieke, M. J.; Rieke, G. H.; Quillen, A. C.
2000-01-01
The modest extinction and reasonably face-on viewing geometry make the luminous infrared galaxy NGC 1614 an ideal laboratory for study of a powerful starburst. HST/NICMOS observations show: (1) deep CO stellar absorption, tracing a starburst nucleus about 45 pc in diameter; (2) surrounded by an approx. 600 pc diameter ring of supergiant H II regions revealed in Pa-alpha line emission; (3) lying within a molecular ring indicated by its extinction shadow in H - K; and (4) all at the center of a disturbed spiral galaxy. The luminosities of the giant H II regions in the ring axe extremely high, an order of magnitude brighter than 30 Doradus; very luminous H II regions, comparable with 30 Dor, are also found in the spiral arms of the galaxy. Luminous stellar clusters surround the nucleus and lie in the spiral arms, similar to clusters observed in other infrared luminous and ultraluminous galaxies. The star forming activity may have been initiated by a merger between a disk galaxy and a companion satellite, whose nucleus appears in projection about 300 pc to the NE of the nucleus of the primary galaxy. The relation of deep stellar CO bands to surrounding ionized gas ring to molecular gas indicates that the luminous starburst started in the nucleus and is propagating outward into the surrounding molecular ring. This hypothesis is supported by evolutionary starburst modeling that shows that the properties of NGC 1614 can be fitted with two short-lived bursts of star formation separated by 5 Myr (and by inference by a variety of models with a similar duration of star formation). The total dynamical mass of the starburst region of 1.3 x 10(exp 9) solar masses is mostly accounted for by the old pre-starburst stellar population. Although our starburst models use a modified Salpeter initial mass function (turning over near one solar mass), the tight mass budget suggests that the IMF may contain relatively more 10 - 30 solar masses stars and fewer low mass stars than the Salpeter function. The dynamical mass is nearly four times smaller than the mass of molecular gas estimated from the standard ratio of (C-12)O (1 - 0) to H2. A number of arguments place the mass of gas in the starburst region at approx. 25% of the dynamical mass, nominally about 1/15 and with an upper limit of 1/10 of the amount estimated from (C-12)O and the standard ratio.
Yiou, Eric; Artico, Romain; Teyssedre, Claudine A; Labaune, Ombeline; Fourcade, Paul
2016-01-01
Despite the abundant literature on obstacle crossing in humans, the question of how the central nervous system (CNS) controls postural stability during gait initiation with the goal to clear an obstacle remains unclear. Stabilizing features of gait initiation include anticipatory postural adjustments (APAs) and lateral swing foot placement. To answer the above question, 14 participants initiated gait as fast as possible in three conditions of obstacle height, three conditions of obstacle distance and one obstacle-free (control) condition. Each of these conditions was performed with two levels of temporal pressure: reaction-time (high-pressure) and self-initiated (low-pressure) movements. A mechanical model of the body falling laterally under the influence of gravity and submitted to an elastic restoring force is proposed to assess the effect of initial (foot-off) center-of-mass position and velocity (or "initial center-of-mass set") on the stability at foot-contact. Results showed that the anticipatory peak of mediolateral (ML) center-of-pressure shift, the initial ML center-of-mass velocity and the duration of the swing phase, of gait initiation increased with obstacle height, but not with obstacle distance. These results suggest that ML APAs are scaled with swing duration in order to maintain an equivalent stability across experimental conditions. This statement is strengthened by the results obtained with the mechanical model, which showed how stability would be degraded if there was no adaptation of the initial center-of-mass set to swing duration. The anteroposterior (AP) component of APAs varied also according to obstacle height and distance, but in an opposite way to the ML component. Indeed, results showed that the anticipatory peak of backward center-of-pressure shift and the initial forward center-of-mass set decreased with obstacle height, probably in order to limit the risk to trip over the obstacle, while the forward center-of-mass velocity at foot-off increased with obstacle distance, allowing a further step to be taken. These effects of obstacle height and distance were globally similar under low and high-temporal pressure. Collectively, these findings imply that the CNS is able to predict the potential instability elicited by the obstacle clearance and that it scales the spatiotemporal parameters of APAs accordingly.
Yiou, Eric; Artico, Romain; Teyssedre, Claudine A.; Labaune, Ombeline; Fourcade, Paul
2016-01-01
Despite the abundant literature on obstacle crossing in humans, the question of how the central nervous system (CNS) controls postural stability during gait initiation with the goal to clear an obstacle remains unclear. Stabilizing features of gait initiation include anticipatory postural adjustments (APAs) and lateral swing foot placement. To answer the above question, 14 participants initiated gait as fast as possible in three conditions of obstacle height, three conditions of obstacle distance and one obstacle-free (control) condition. Each of these conditions was performed with two levels of temporal pressure: reaction-time (high-pressure) and self-initiated (low-pressure) movements. A mechanical model of the body falling laterally under the influence of gravity and submitted to an elastic restoring force is proposed to assess the effect of initial (foot-off) center-of-mass position and velocity (or “initial center-of-mass set”) on the stability at foot-contact. Results showed that the anticipatory peak of mediolateral (ML) center-of-pressure shift, the initial ML center-of-mass velocity and the duration of the swing phase, of gait initiation increased with obstacle height, but not with obstacle distance. These results suggest that ML APAs are scaled with swing duration in order to maintain an equivalent stability across experimental conditions. This statement is strengthened by the results obtained with the mechanical model, which showed how stability would be degraded if there was no adaptation of the initial center-of-mass set to swing duration. The anteroposterior (AP) component of APAs varied also according to obstacle height and distance, but in an opposite way to the ML component. Indeed, results showed that the anticipatory peak of backward center-of-pressure shift and the initial forward center-of-mass set decreased with obstacle height, probably in order to limit the risk to trip over the obstacle, while the forward center-of-mass velocity at foot-off increased with obstacle distance, allowing a further step to be taken. These effects of obstacle height and distance were globally similar under low and high-temporal pressure. Collectively, these findings imply that the CNS is able to predict the potential instability elicited by the obstacle clearance and that it scales the spatiotemporal parameters of APAs accordingly. PMID:27656138
NASA Astrophysics Data System (ADS)
Bauer, I. E.; Bhatti, J. S.; Hurdle, P. A.
2004-05-01
Field-based decomposition studies that examine several site types tend to use one of two approaches: Either the decay of one (or more) standard litters is examined in all sites, or litters native to each site type are incubated in the environment they came from. The first of these approaches examines effects of environment on decay, whereas the latter determines rates of mass loss characteristic of each site type. Both methods are usually restricted to a limited number of litters, and neither allows for a direct estimate of ecosystem-level parameters (e.g. heterotrophic respiration). In order to examine changes in total organic matter turnover along forest - peatland gradients in central Saskatchewan, we measured mass loss of native peat samples from six different depths (surface to 50 cm) over one year. Samples were obtained by sectioning short peat cores, and cores and samples were returned to their original position after determining the initial weight of each sample. A standard litter (birch popsicle sticks) was included at each depth, and water tables and soil temperature were monitored over the growing season. After one year, average mass loss in surface peat samples was similar to published values from litter bag studies, ranging from 12 to 21 percent in the environments examined. Native peat mass loss showed few systematic differences between sites or along the forest - peatland gradient, with over 60 percent of the total variability explained by depth alone. Mass loss of standard litter samples was highly variable, with high values in areas at the transition between upland and peatland that may have experienced recent disturbance. In combination, these results suggest strong litter-based control over natural rates of organic matter turnover. Estimates of heterotrophic respiration calculated from the mass loss data are higher than values obtained by eddy covariance or static chamber techniques, probably reflecting loss of material during the handling of samples or increased mass loss from manipulated profiles. Nevertheless, the core-based method is a useful tool in examining carbon dynamics of organic soils, since it provides a good relative index of organic matter turnover, and allows for separate examination of environmental and litter-based effects.
Jeddi, Marjan; Dabbaghmanesh, Mohammad Hossein; Ranjbar Omrani, Gholamhossein; Ayatollahi, Sayed Mohammad Taghi; Bagheri, Zahra; Bakhshayeshkaram, Marzieh
2015-07-01
Body weight is made up of lean and fat mass and both are involved in growth and development. Impression of these two components in bone density accrual has been controversial. The aim of this study was to evaluate the relationship between fat and lean mass and bone density in Iranian children and adolescents. A cross-sectional study was performed on 472 subjects (235 girls, 237 boys) aged 9-18 years old in Fars Province. The participants' weight, height, waist circumference, stage of puberty, and level of physical activity were recorded. Bone Mineral Content (BMC), Bone Mineral Density (BMD), total body fat and lean mass were measured using dual-energy X-ray absorptiometry. Results showed that 12.2% of boys and 12.3% of girls were overweight and 5.5% of boys and 4.7% of girls were obese. Obese individuals had greater total body BMD (0.96 ± 0.11) than normal-weight ones (0.86 ± 0.11) (P < 0.001). We found the greatest correlation between total body BMD and total body lean mass (R = 0.78. P < 0.001) and the least correlation with total body fat percentage (R = 0.03, P = 0.44). Total lean mass in more active boys was 38.1 ± 10.9 and in less active boys was 32.3 ± 11.0 (P < 0.001). The results of multiple regression analysis showed that age and total body lean mass were independent factors of BMD in growing children and adolescents. These findings suggest that lean mass was the most important predictor of BMD in both genders. Physical activity appears to positively impact on lean mass and needs to be considered in physical education and health-enhancing programs in Iranian school children.
From star-disc encounters to numerical solutions for a subset of the restricted three-body problem
NASA Astrophysics Data System (ADS)
Breslau, Andreas; Vincke, Kirsten; Pfalzner, Susanne
2017-03-01
Various astrophysical processes exist, where the fly-by of a massive object affects matter that is initially supported against gravity by rotation. Examples are perturbations of galaxies, protoplanetary discs, or planetary systems. We approximate such events as a subset of the restricted three-body problem by considering only perturbations of non-interacting low-mass objects that are initially on circular Keplerian orbits. In this paper, we present a new parametrisation of the initial conditions of this problem. Under certain conditions, the initial positions of the low-mass objects can be specified as being largely independent of the initial position of the perturber. In addition, exploiting the known scalings of the problem reduces the parameter space of initial conditions for one specific perturbation to two dimensions. To this two-dimensional initial condition space, we have related the final properties of the perturbed trajectories of the low-mass objects from our numerical simulations. In this way, maps showing the effect of the perturbation on the low-mass objects were created, which provide a new view on the perturbation process. Comparing the maps for different mass-ratios reveals that the perturbations by low- and high-mass perturbers are dominated by different physical processes. The equal-mass case is a complicated mixture of the other two cases. Since the final properties of trajectories with similar initial conditions are also usually similar, the results of the limited number of integrated trajectories can be generalised to the full presented parameter space by interpolation. Since our results are also unique within the accuracy strived for, they constitute general numerical solutions for this subset of the restricted three-body problem. As such, they can be used to predict the evolution of real physical problems by simple transformations, such as scaling, without further simulations. Possible applications are the perturbation of protoplanetary discs or planetary systems by the fly-by of another star. Here, the maps enable us, for example, to quantify the portion of unbound material for any periastron distance without the need for further simulations.
NASA Astrophysics Data System (ADS)
Wang, Haoliang; Liu, Yubao; Cheng, William Y. Y.; Zhao, Tianliang; Xu, Mei; Liu, Yuewei; Shen, Si; Calhoun, Kristin M.; Fierro, Alexandre O.
2017-11-01
In this study, a lightning data assimilation (LDA) scheme was developed and implemented in the National Center for Atmospheric Research Weather Research and Forecasting-Real-Time Four-Dimensional Data Assimilation system. In this LDA method, graupel mixing ratio (qg) is retrieved from observed total lightning. To retrieve qg on model grid boxes, column-integrated graupel mass is first calculated using an observation-based linear formula between graupel mass and total lightning rate. Then the graupel mass is distributed vertically according to the empirical qg vertical profiles constructed from model simulations. Finally, a horizontal spread method is utilized to consider the existence of graupel in the adjacent regions of the lightning initiation locations. Based on the retrieved qg fields, latent heat is adjusted to account for the latent heat releases associated with the formation of the retrieved graupel and to promote convection at the observed lightning locations, which is conceptually similar to the method developed by Fierro et al. Three severe convection cases were studied to evaluate the LDA scheme for short-term (0-6 h) lightning and precipitation forecasts. The simulation results demonstrated that the LDA was effective in improving the short-term lightning and precipitation forecasts by improving the model simulation of the qg fields, updrafts, cold pool, and front locations. The improvements were most notable in the first 2 h, indicating a highly desired benefit of the LDA in lightning and convective precipitation nowcasting (0-2 h) applications.
A strong-lensing elliptical galaxy in the MaNGA survey
NASA Astrophysics Data System (ADS)
Smith, Russell J.
2017-01-01
I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the Mapping Galaxies at Apache Point Observatory (MaNGA) survey, as part of a systematic search for lensed background line emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galaxy with velocity dispersion σ = 256 km s-1, at a redshift of zl = 0.122. After modelling and subtracting the target galaxy light, the integral-field data cube reveals [O II], [O III] and Hβ emission lines corresponding to a source at zs = 0.791, forming an identifiable ring around the galaxy centre. If the ring is formed by a single lensed source, then the Einstein radius is REin ≈ 2.3 arcsec, projecting to ˜5 kpc at the distance of the lens. The total projected lensing mass is MEin = (3.6 ± 0.6) × 1011 M⊙, and the total J-band mass-to-light ratio is 3.0 ± 0.7 solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky Way-like initial mass function (IMF), for which M/L ≈ 1.5 is expected, but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.
Application rate affects the degradation rate and hence emissions of chloropicrin in soil.
Ashworth, Daniel J; Yates, Scott R; Stanghellini, Mike; van Wesenbeeck, Ian J
2018-05-01
Increasingly stringent regulations to control soil-air emissions of soil fumigants has led to much research effort aimed at reducing emission potential. Using laboratory soil columns, we aimed to investigate the relationship between chloropicrin (CP) application rate and its emissions from soil across a wide range of CP applications (equivalent to 56-392kgha -1 ). In contrast to the known behavior of other fumigants, total emission percentages were strongly and positively related to application rate (i.e., initial mass), ranging from 4 to 34% across the application rate range. When combined, data from a previous study and the present study showed good overall comparability in terms of CP application rate vs. emission percentage, yielding a second-order polynomial relationship with an R 2 value of 0.93 (n=12). The study revealed that mass losses of CP were strongly disproportional to application rate, also showing a polynomial relationship. Based on degradation studies, we consider that a shorter half-life (faster degradation) at lower application rates limited the amount of CP available for emission. The non-linear relationship between CP application rate and CP emissions (both as % of that applied and as total mass) suggests that low application rates likely lead to disproportionally low emission losses compared with higher application rates; such a relationship could be taken into account when assessing/mitigating risk, e.g., in the setting of buffer zone distances. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reines, Amy E.; Volonteri, Marta, E-mail: reines@umich.edu
Scaling relations between central black hole (BH) mass and host galaxy properties are of fundamental importance to studies of BH and galaxy evolution throughout cosmic time. Here we investigate the relationship between BH mass and host galaxy total stellar mass using a sample of 262 broad-line active galactic nuclei (AGNs) in the nearby universe (z < 0.055), as well as 79 galaxies with dynamical BH masses. The vast majority of our AGN sample is constructed using Sloan Digital Sky Survey spectroscopy and searching for Seyfert-like narrow-line ratios and broad Hα emission. BH masses are estimated using standard virial techniques. Wemore » also include a small number of dwarf galaxies with total stellar masses M{sub stellar} ≲ 10{sup 9.5} M{sub ⊙} and a subsample of the reverberation-mapped AGNs. Total stellar masses of all 341 galaxies are calculated in the most consistent manner feasible using color-dependent mass-to-light ratios. We find a clear correlation between BH mass and total stellar mass for the AGN host galaxies, with M{sub BH} ∝ M{sub stellar}, similar to that of early-type galaxies with dynamically detected BHs. However, the relation defined by the AGNs has a normalization that is lower by more than an order of magnitude, with a BH-to-total stellar mass fraction of M{sub BH}/M{sub stellar} ∼ 0.025% across the stellar mass range 10{sup 8} ≤ M{sub stellar}/M{sub ⊙} ≤ 10{sup 12}. This result has significant implications for studies at high redshift and cosmological simulations in which stellar bulges cannot be resolved.« less
Impact of aerosol size representation on modeling aerosol-cloud interactions
Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...
2002-11-07
In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less
Fondell, Thomas F.; Flint, Paul L.; Schmutz, Joel A.; Schamber, Jason L.; Nicolai, Christopher A.
2013-01-01
Birds employ varying strategies to accommodate the energetic demands of moult, one important example being changes in body mass. To understand better their physiological and ecological significance, we tested three hypotheses concerning body mass dynamics during moult. We studied Black Brant in 2006 and 2007 moulting at three sites in Alaska which varied in food availability, breeding status and whether geese undertook a moult migration. First we predicted that if mass loss during moult were simply the result of inadequate food resources then mass loss would be highest where food was least available. Secondly, we predicted that if mass loss during moult were adaptive, allowing birds to reduce activity during moult, then birds would gain mass prior to moult where feeding conditions allowed and mass loss would be positively related to mass at moult initiation. Thirdly, we predicted that if mass loss during moult were adaptive, allowing birds to regain flight sooner, then across sites and groups, mass at the end of the flightless period would converge on a theoretical optimum, i.e. the mass that permits the earliest possible return to flight. Mass loss was greatest where food was most available and thus our results did not support the prediction that mass loss resulted from inadequate food availability. Mass at moult initiation was positively related to both food availability and mass loss. In addition, among sites and years, variation in mass was high at moult initiation but greatly reduced at the end of the flightless period, appearing to converge. Thus, our results supported multiple predictions that mass loss during moult was adaptive and that the optimal moulting strategy was to gain mass prior to the flightless period, then through behavioural modifications use these body reserves to reduce activity and in so doing also reduce wing loading. Geese that undertook a moult migration initiated moult at the highest mass, indicating that they were more than able to compensate for the energetic cost of the migration. Because Brant frequently change moult sites between years in relation to breeding success, the site-specific variation in body mass dynamics we observed suggests individual plasticity in moult body mass dynamics.
Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi
2015-01-01
Background Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut’s musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system’s orbital operation capability and utility, as well as its preventative effect on an astronaut’s musculoskeletal atrophy. Methods HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). Results The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR. Conclusions These results showed the orbital operation capability and utility, and the preventive effect of HTS for an astronaut’s musculoskeletal atrophy. The initial flight data together with the ground data obtained so far will be utilized in the future planning of human space exploration. PMID:26296204
Rapid profiling of laser-induced photochemistry in single microdroplets using mass spectrometry.
Tracey, Phillip J; Vaughn, Bartholomew S; Roberts, Brendon J; Poad, Berwyck L J; Trevitt, Adam J
2014-03-18
Rapid assessment of laser-induced photochemistry in single microdroplets is afforded by on-demand microdroplet generation coupled to a commercial ion-trap mass spectrometer. Single microdroplets (diameter ∼50 μm, 65 pL) fall on a steel needle held at +2 kV where they subsequently form a spray that is directed toward the inlet of an ion-trap mass spectrometer. It is demonstrated that single microdroplet mass spectra are recordable, one at a time, for methanol droplets containing 100 μM 4-iodoaniline. Extending on this, to probe laser-initiated photochemistry in single picoliter volumes, a UV laser pulse is timed to intercept the droplet before hitting the needle. Comparison of laser-on and laser-off mass spectra reveals the laser-initiated photochemical products. We demonstrate the technique by following UV laser initiated chemistry in methanol droplets containing 4-iodoaniline and 3-(iodomethyl)-N,N,N-trimethylbenzenamine and reveal numerous products within a few hundred single droplet experiments over several minutes. This technique allows for rapid detection of laser-initiated photochemistry in single picoliter volumes.
Regional fat placement in physically fit males and changes with weight loss.
Nindl, B C; Friedl, K E; Marchitelli, L J; Shippee, R L; Thomas, C D; Patton, J F
1996-07-01
The abdomen is the principal site of fat deposition in men, and because abdominal fat is readily mobilized during exercise, the relative proportion of fat in the abdominal site may negatively correlate with the amount of regular physical activity, and even with physical fitness. This study presents data for regional fatness in 165 fit young men (U.S. Army Ranger candidates; initial body fat = 14.7 +/- 4.7%) assessed by dual-energy x-ray absorptiometry (DEXA), and for relative changes occurring following a 13% weight loss produced by a 1000 kcal.d-1 energy deficit over 8 wk. Fat-free mass was constant across quintiles of percent body fat; only fat mass was different (16.2 +/- 2.2 kg and 6.0 +/- 1.4 kg at upper and lower quintiles, respectively). Truncal fat accounted for about 41% of total body fat in all quintiles; only the proportion of fat distributed to the arms was significantly higher in the fattest quintiles of men. Among a group of less intensely trained soldiers with the same average fatness as the highest quintile of Ranger students (20%), relative fat distribution to the trunk approached 50% of the total fat. Following weight loss, Ranger students lost half of the fat in all regions assessed (legs, arms, and trunk). The only significant association between regional losses and initial fatness was a greater proportion of fat lost from the arms in the fattest Rangers. These data suggest a "fit fat" distribution in active young men in which fat remains in the arms and legs until extreme weight loss occurs and the metabolically more active abdominal fat approaches depletion.
Identification of muscadine wine sulfur volatiles: pectinase versus skin-contact maceration.
Gürbüz, Ozan; Rouseff, June; Talcott, Stephen T; Rouseff, Russell
2013-01-23
Muscadine grapes ( Vitis rotundifolia ) are widely grown in the southern United States, as the more common Vitis vinifera cannot be cultivated due to Pierce's disease. There is interest to determine if certain cultivars can be used for good-quality wine production. This study compared the effect of pectolytic enzyme pretreatment with conventional skin-contact fermentation on Muscadine (Noble, Vitis rotundifolia ) wine major volatiles, aroma active volatiles, and volatile sulfur compounds (VSCs). Volatile composition, aroma activity, and VSCs in the initial juice and wine samples after 3 years were determined by gas chromatography in combination with mass spectrometry (GC-MS), olfactory detection (GC-O), and pulsed flame photometric detection (GC-PFPD). Forty-three nonethanol MS volatiles were common to all samples. Total ion chromatogram (TIC) MS peak area increased 91% in the skin-contact wines from the initial juice but only 24% in the enzyme-treated wine. Thirty-one VSCs were detected. Twenty-four sulfur volatiles were identified by matching their retention characteristics on polar and nonpolar columns with those of standards or MS spectrum matches. Six of these (sulfur dioxide, 1-propanethiol, 3-mercapto-2-pentanone, 3-mercapto-2-butanone, 2,8-epithio-cis-p-menthane, and 1-p-menthene-8-thiol) were reported for the first time in muscadine wine. Five additional VSCs were tentatively identified by matching standardized retention values with literature values, and two remain unidentified. Total sulfur peak areas increased 400% in the skin-contact wine and 560% in the enzyme-treated wine compared to the initial juice. There were 42 aroma-active volatiles in the initial juice, 48 in the skin-contact wine, and 66 in the enzyme-treated wine. Eleven aroma-active volatiles in the skin-contact wine and 16 aroma volatiles in the enzyme-treated wine appear to be due to sulfur volatiles. Pectolytic enzyme-treated wines contained less total volatiles but more sulfur and aroma-active volatiles than the traditional skin-contact wine.
Al-Bayyari, Nahla; Hamadneh, Jehan; Hailat, Rae'd; Hamadneh, Shereen
2017-12-01
Conflicting associations between total homocysteine (tHcy), body mass index (BMI) lean body mass, and fat mass in the general population have been reported. We investigated the hypothesis that elevated tHcy levels are associated with increased BMI, waist-to-hip ratio (WHR), and body fat mass percent. In Jordan, obesity and overweight are prevalent among reproductive women and hyperhomocysteinemia, along with obesity and overweight, are independent risk factors for cardiovascular diseases. The participants used in this cross-sectional study were 325 overweight Jordanian women aged between 18 and 49 years old. The main outcome measures were tHcy, BMI, WHR, fat mass, fat-free mass, and total body water. Serum tHcy was analyzed using a liquid chromatography tandem mass spectrophotometry (LC-MS/MS) complete kit. The body compositions were measured using a bioelectrical impedance analyzer. Study participants were stratified according to their tHcy level into two groups, ≤10 μmol/L and >10 μmol/L, and the difference between mean values of body compositions was evaluated. The tHcy was significantly and negatively correlated with age, fat-free mass, and total body water, and significantly and positively correlated with BMI, hip circumference, WHR, fat mass, and dry lean weight. The chi-square and the independent sample t-tests showed statistically significant (P ≤ .05) differences between tHcy and BMI, WHR, fat and fat-free mass, and total body water percentages. In conclusion, BMI, WHR and body fat mass were found to be associated with elevated tHcy levels among overweight reproductive women, and they might be used as independent predictors of the tHcy level. Copyright © 2017 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
40 CFR 63.829 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... mass of all HAP containing materials used and the mass fraction of HAP present in each HAP containing... the criteria of § 63.821(b)(1), the owner or operator shall maintain records of the total mass of each... maintain records of the total mass and organic HAP content of each material applied on product and...
40 CFR 63.829 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mass of all HAP containing materials used and the mass fraction of HAP present in each HAP containing... the criteria of § 63.821(b)(1), the owner or operator shall maintain records of the total mass of each... maintain records of the total mass and organic HAP content of each material applied on product and...
40 CFR 63.829 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... mass of all HAP containing materials used and the mass fraction of HAP present in each HAP containing... the criteria of § 63.821(b)(1), the owner or operator shall maintain records of the total mass of each... maintain records of the total mass and organic HAP content of each material applied on product and...
40 CFR 63.829 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... mass of all HAP containing materials used and the mass fraction of HAP present in each HAP containing... the criteria of § 63.821(b)(1), the owner or operator shall maintain records of the total mass of each... maintain records of the total mass and organic HAP content of each material applied on product and...
Razavi, Seyed Hasan Emami; Ghajarzadeh, Mahsa; Abdollahi, Alireza; Taran, Ludmila; Shoar, Saeed; Omranipour, Ramesh
2015-06-01
Breast cancer is the most common cancer in women. Prostrate-specific antigen (PSA) is a marker of prostate gland malignancy which has been considered in cases with breast cancer in recent years. The goal of this study was to determine total and free PSA levels in cases with malignant and benign breast lesions. Ninety women with histological proved malignant breast masses and 90 with benign breast masses were enrolled. Total and free PSA levels along with histological grade and conditions of vascular and perinural invasion, status of hormonal tumor receptors, immune-histo-chemistry markers recorded for all cases. Total and free PSA levels were assessed after treatment in cases with malignant masses. Total and free PSA levels were significantly higher in cases with malignant masses. The best cut off point for total PSA to differentiate benign and malignant masses was 0.31 and the best cut off point for free PSA to differentiate benign and malignant masses was 0.19. After treatment, mean free PSA level was significantly lower than free PSA before treatment (0.23 vs 0.3, p<0.001). Serum PSA level could be applied for differentiating benign and malignant breast masses.
Output testing of small-arms primers
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Doris, Thomas A.; Schimmel, Morry L.
1991-01-01
The performance of two standard primers for initiating small-caliber ammunition are compared to that of a primer for initiating aircraft escape-system components. Three testing methods are employed including: (1) firing the primer to measure total energy delivered; (2) monitoring output in terms of gaseous product-mass flow rate and pressure as a function of time; and (3) firing the primer onto ignition material to study gas pressure produced during ignition and burning as a function of time. The results of the test demonstrate differences in the ignitability factors of the standard primers and time peak pressures of less than 100 microseconds. One unexpected result is that two percussion primers (the FA-41 and the M42C1) developed for different applications have the same ignitability. The ignitability test method is shown to yield the most useful data and can be used to specify percussion primers and optimize their performance.
Disks around merging binary black holes: From GW150914 to supermassive black holes
NASA Astrophysics Data System (ADS)
Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.
2018-02-01
We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.
SHI, RONG-LIANG; QU, NING; GAO, LI-LI; LU, ZHONG-WU; SUN, GUO-HUA; JI, QING-HAI
2016-01-01
The primary occurrence of synovial sarcoma (SS) in the thyroid is quite rare. As other SS arise from the head and neck structure, it tends to present poor biological behaviors and is generally treated as a high-grade sarcoma. The present study reports the case of a 31-year-old male who presented a neck mass, involving the thyroid, as shown by ultrasonography. The tumor was resected by total thyroidectomy and diagnosed as SS by histopathology. However, the initial surgery was considered as incomplete (R2) and no adjuvant protocol was followed. At the follow-up, neck recurrences within local lymph nodes were found repeatedly. The tumor grade increased for the metastatic lesions, indicating poorer differentiations with repeated relapses. The accurate evaluations of the primary tumor facilitated it to tailor the initial treatments, otherwise, the prognosis may be deteriorated by inappropriate management. PMID:27330751
Bozkoyunlu, Gaye; Takaç, Serpil
2014-01-01
Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model.
NASA Technical Reports Server (NTRS)
Hovel, H. J.; Vernon, S. M.
1982-01-01
The power to weight ratio of GaAs cells can be reduced by fabricating devices using thin GaAs films on low density substrate materials (silicon, glass, plastics). A graphoepitaxy technique was developed which uses fine geometric patterns in the substrate to affect growth. Initial substrates were processed by etching 25 microns deep grooves into 100 oriented wafers; fine-grained polycrystalline GaAs layers 25-50 microns thick were then deposited on these and recrystallization was performed, heating the substrates to above the GaAs melting point in ASH3 atmosphere, resulting in large grain regrowth oriented along the groove dimensions. Experiments with smaller groove depths and spacings were initially encouraging; single large GaAs grains would totally cover one and often two groove fields of 14 groove each spanning several hundred microns. Dielectric coatings on the grooved substrates were also used to modify the growth.
Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology
NASA Technical Reports Server (NTRS)
Adams, P. J.; Canuto, V.
1975-01-01
The exact solution of the Lifshitz equations governing the cosmological evolution of an initial fluctuation is presented. Lifshitz results valid for squares of the sound velocity equal to zero and 1/3 are extended in closed form to any equation of state where the pressure equals the total energy density times the square of the sound velocity. The solutions embody all the results found previously for special cases of the square of the sound velocity. It is found that the growth of any initial fluctuation is only an exponential function of time with an exponent of not more than 4/3 and is insufficient to produce galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by modifying the equation of state by including gravitational interactions is also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck length or equivalently, at a time of about 10 to the -43rd power sec. At those early times, the masses allowed by causality requirements are too small to be of interest in galaxy formation.
NASA Technical Reports Server (NTRS)
Waters, Eric D.
2013-01-01
Recent high level interest in the capability of small launch vehicles has placed significant demand on determining the trade space these vehicles occupy. This has led to the development of a zero level analysis tool that can quickly determine the minimum expected vehicle gross liftoff weight (GLOW) in terms of vehicle stage specific impulse (Isp) and propellant mass fraction (pmf) for any given payload value. Utilizing an extensive background in Earth to orbit trajectory experience a total necessary delta v the vehicle must achieve can be estimated including relevant loss terms. This foresight into expected losses allows for more specific assumptions relating to the initial estimates of thrust to weight values for each stage. This tool was further validated against a trajectory model, in this case the Program to Optimize Simulated Trajectories (POST), to determine if the initial sizing delta v was adequate to meet payload expectations. Presented here is a description of how the tool is setup and the approach the analyst must take when using the tool. Also, expected outputs which are dependent on the type of small launch vehicle being sized will be displayed. The method of validation will be discussed as well as where the sizing tool fits into the vehicle design process.
Bocchino, Marialuisa; Valente, Tullio; Somma, Francesco; de Rosa, Ilaria; Bifulco, Marco; Rea, Gaetano
2014-03-01
Estimation of skeletal muscle metastases (SMMs) at the time of diagnosis and/or initial staging of lung cancer. Retrospective evaluation of clinical charts and imaging data suggestive of SMMs of patients with histology-proved lung cancer over a 5-year period. SMMs were identified in 46 out of 1,754 patients. Single and multiple (62.9% of cases) SMMs were detected by total body multi-detector computed tomography (MDCT). They were associated with poorly differentiated (43%) and advanced adenocarcinomas (52%) without clinically relevant symptoms and/or signs. Psoas and buttock muscles were most frequently involved (33.3%). MDCT findings consisted of well-defined homogeneously hyperdense oval masses (31%), lesions with ring-like enhancement and central hypoattenuation (68%), or large abscess-like necrotic lesions (24%). Sonography revealed well-defined hypoechoic masses (41.6%), ill-defined hypoechoic lesions (33.3%), or anechoic areas with a necrotic centre (25%). Positron emission tomography revealed that all SMMs were metabolically active. SMMs are uncommon but not negligible in lung cancer, with an estimated prevalence of 2.62% in our series. Although histology remains the recommended method, use of high-performance imaging techniques and increased clinical suspicion may improve their early detection. Efforts addressing their effect on the natural history of lung cancer are needed.
Three-Compartment Body Composition in Academy and Senior Rugby League Players.
Till, Kevin; Jones, Ben; O'Hara, John; Barlow, Matthew; Brightmore, Amy; Lees, Matthew; Hind, Karen
2016-03-01
To compare the body size and 3-compartment body composition between academy and senior professional rugby league players using dual-energy X-ray absorptiometry (DXA). Academy (age 18.1 ± 1.1 y, n = 34) and senior (age 26.2 ± 4.6 y, n = 63) rugby league players received 1 total-body DXA scan. Height, body mass, and body-fat percentage alongside total and regional fat mass, lean mass, and bone mineral content (BMC) were compared. Independent t tests with Cohen d effect sizes and multivariate analysis of covariance (MANCOVA), controlling for height and body mass, with partial eta-squared (η2) effect sizes, were used to compare total and regional body composition. Senior players were taller (183.2 ± 5.8 vs 179.2 ± 5.7 cm, P = .001, d = 0.70) and heavier (96.5 ± 9.3 vs 86.5 ± 9.0 kg, P < .001, d = 1.09) with lower body-fat percentage (16.3 ± 3.7 vs 18.0 ± 3.7%, P = .032, d = 0.46) than academy players. MANCOVA identified significant overall main effects for total and regional body composition between academy and senior players. Senior players had lower total fat mass (P < .001, η2 = 0.15), greater total lean mass (P < .001, η2 = 0.14), and greater total BMC (P = .001, η2 = 0.12) than academy players. For regional sites, academy players had significantly greater fat mass at the legs (P < .001, η2 = 0.29) than senior players. The lower age, height, body mass, and BMC of academy players suggest that these players are still developing musculoskeletal characteristics. Gradual increases in lean mass and BMC while controlling fat mass is an important consideration for practitioners working with academy rugby league players, especially in the lower body.
NASA Astrophysics Data System (ADS)
Webb, Jeremy J.; Vesperini, Enrico
2017-01-01
We make use of N-body simulations to determine the relationship between two observable parameters that are used to quantify mass segregation and energy equipartition in star clusters. Mass segregation can be quantified by measuring how the slope of a cluster's stellar mass function α changes with clustercentric distance r, and then calculating δ _α = d α (r)/d ln(r/r_m), where rm is the cluster's half-mass radius. The degree of energy equipartition in a cluster is quantified by η, which is a measure of how stellar velocity dispersion σ depends on stellar mass m via σ(m) ∝ m-η. Through a suite of N-body star cluster simulations with a range of initial sizes, binary fractions, orbits, black hole retention fractions, and initial mass functions, we present the co-evolution of δα and η. We find that measurements of the global η are strongly affected by the radial dependence of σ and mean stellar mass and the relationship between η and δα depends mainly on the cluster's initial conditions and the tidal field. Within rm, where these effects are minimized, we find that η and δα initially share a linear relationship. However, once the degree of mass segregation increases such that the radial dependence of σ and mean stellar mass become a factor within rm, or the cluster undergoes core collapse, the relationship breaks down. We propose a method for determining η within rm from an observational measurement of δα. In cases where η and δα can be measured independently, this new method offers a way of measuring the cluster's dynamical state.
Invited article: Time accurate mass flow measurements of solid-fueled systems.
Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D
2008-10-01
A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.
Invited Article: Time accurate mass flow measurements of solid-fueled systems
NASA Astrophysics Data System (ADS)
Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.
2008-10-01
A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.
NASA Astrophysics Data System (ADS)
Penoyre, Zephyr; Haiman, Zoltán
2018-01-01
In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.
Rotation curves of galaxies and the stellar mass-to-light ratio
NASA Astrophysics Data System (ADS)
Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel
2018-03-01
Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c - Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration and virial mass. Although accounting for a NFW dark halo profile can explain rotation curve observations, the implied c - Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L -color correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L - ratios of 51 galaxies (30% of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark halos of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disk galaxies.
Rotation curves of galaxies and the stellar mass-to-light ratio
NASA Astrophysics Data System (ADS)
Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel
2018-07-01
Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c-Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration, and virial mass. Although accounting for a NFW dark halo profile can explain RC observations, the implied c-Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L-colour correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L ratios of 51 galaxies (30 per cent of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark haloes of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disc galaxies.
Elhakeem, Ahmed; Hannam, Kimberly; Deere, Kevin C; Hartley, April; Clark, Emma M; Moss, Charlotte; Edwards, Mark H; Dennison, Elaine; Gaysin, Tim; Kuh, Diana; Wong, Andrew; Cooper, Cyrus; Cooper, Rachel; Tobias, Jon H
2018-01-01
Abstract Background High impact physical activity (PA) is thought to improve skeletal health, but its relation to other health outcomes are unclear. We investigated associations between PA impact magnitude and body mass index (BMI) in older adults. Methods Data were taken from the Cohort for Skeletal Health in Bristol and Avon (COSHIBA), Hertfordshire Cohort Study, and MRC National Survey of Health and Development. Vertical acceleration peaks from 7-day hip-worn accelerometer recordings were used to classify PA as low (0.5 < g < 1.0g), medium (1 < g < 1.5g), or higher (≥1.5g) impact. Cohort-specific associations of low, medium, and higher impact PA with BMI were examined using linear regressions and estimates combined using random-effects meta-analysis. Results A total of 1182 participants (mean age = 72.7 years, 68% female) were included. Low, medium, and higher impact PA were inversely related to BMI in initial models. After adjustment for confounders and other impacts, low, but not medium or higher, impacts were inversely related to BMI (−0.31, p < .001: overall combined standard deviation change in BMI per doubling in the number of low impacts). In adjusted analyses of body composition measured by dual-energy X-ray absorptiometry in COSHIBA, low, but not medium or higher, impacts were inversely related to total body fat mass (−0.19, p < .001) and android:gynoid fat mass ratio (−0.16, p = .01), whereas high impact PA was weakly and positively associated with lean mass (0.05, p = .06). Conclusions Greater exposure to PA producing low magnitude vertical impacts was associated with lower BMI and fat mass at older age. Low impact PA may help reduce obesity risk in older adults. PMID:29028919
Thesis Abstract Fermented milk elaborated with Camellia sinensis.
Ribeiro, O A S; Silva, M I A; Boari, C A
2016-05-13
This study aimed to develop and to characterize fermented dairy beverage formulated with Camellia sinensis. The infusion was elaborated with the addiction of dehydrated leaves of C. sinensis in whey (1g/100g) which added in sweetened milk (10% sucrose w/w) coagulated by Streptococcus salivarius subspecies thermophilus and Lactobacillus delbrueckii subspecies bulgaricus in proportions of 10, 20, 30 and 40% (v/w). The control treatment consisted of yogurt added with sucrose (10% w/w). Analysis were performed to quantify dry mass, moisture, ash, protein, fat, sodium, acidity, total quantification of lactic acid bacteria, total antioxidant activity and viscosity at the initial time of production and at 15 and 30 days of storage. Chromatographic determination of volatile compounds and sensory tests of acceptance and consumption intention were conducted at the initial time of production. Dry matter content, moisture, ash and total count of lactic acid bacteria from fermented milk drink formulations were not significantly affected by the amount of infusion of C. sinensis. However, the content of protein, fat and sodium were significantly lower with the increase of the proportion of infusion incorporated into the product. Significant reduction in apparent viscosity occurs with the increase in the amount of infusion added. The total antioxidant activity of the formulations was significantly higher as higher were the amount of added infusion. The addition of infusion contributed to the diversification of volatile aroma and taste makers in the product. The formulation of fermented dairy drink with addition of 30% infusion C. sinensis was better evaluated in sensory tests, with greater acceptance and greater consumer intent of consumption.
Chang, Po-Chih; Huang, Chih-Kun; Rajan, Mahendra; Hsin, Ming-Che
2016-05-01
Marginal ulcer is not infrequent after laparoscopic Roux-en-Y gastric bypass and could result in undesirable complications, such as intractability, bleeding, or perforation. Those patients who failed medical therapy, regarded as refractory marginal ulcers, may be considered as candidates for revisional surgery. Herein, we make a video presentation of a laparoscopic revisional procedure for refractory marginal ulcer. A 29-year-old morbidly obese woman (initial body mass index 37.1 kg/m(2)), a non-smoker, presented with persistent epigastric pain 3 months after initial laparoscopic Roux-en-Y gastric bypass at another institution. After an exhaustive work-up there, only the gastroendoscopy revealed a marginal ulcer and she underwent medical treatment (proton pump inhibitor and sucralfate) for 3 months, but the patient's symptom aggravated and the serial gastroendoscopies still confirmed the marginal ulcer without obvious resolution after a total of 4 months proton pump inhibitor therapy, suggesting failure of medical treatment and intractability. Laparoscopic revisional procedure with totally hand-sewn gastrojejunostomy and vagotomy was performed to relieve her intractable condition. The procedure took 130 min, without any intra-operative complications. Blood loss was 80 mL. The patient had an uneventful postoperative course, and the postoperative hospital stay was 3 days. She was relieved of her symptoms after this revisional surgery, and a subsequent gastroendoscopy 15 months later showed no marginal ulcers. Though long-term follow-up is needed to draw a definite conclusion, totally hand-sewn gastrojejunostomy and vagotomy remains a practicable revisional procedure to relieve refractory marginal ulcers.
The total rate of mass return to the interstellar medium from red giants and planetary nebulae
NASA Technical Reports Server (NTRS)
Knapp, G. R.; Rauch, K. P.; Wilcots, E. M.
1990-01-01
High luminosity post main sequence stars are observed to be losing mass in large amounts into the interstellar medium. The various methods used to estimate individual and total mass loss rates are summarized. Current estimates give MT 0.3 - 0.6 solar mass per year for the whole Galaxy.
Combustion of a Polymer (PMMA) Sphere in Microgravity
NASA Technical Reports Server (NTRS)
Yang, Jiann C.; Hamins, Anthony; Donnelly, Michelle K.
1999-01-01
A series of low gravity, aircraft-based, experiments was conducted to investigate the combustion of supported thermoplastic polymer spheres under varying ambient conditions. The three types of thermoplastic investigated were polymethylmethacrylate (PMMA), polypropylene (PP). and polystyrene (PS). Spheres with diameters ranging from 2 mm to 6.35 mm were tested. The total initial pressure varied from 0.05 MPa to 0. 15 MPa whereas the ambient oxygen concentration varied from 19 % to 30 % (by volume). The ignition system consisted of a pair of retractable energized coils. Two CCD cameras recorded the burning histories of the spheres. The video sequences revealed a number of dynamic events including bubbling and sputtering, as well as soot shell formation and break-up during combustion of the spheres at reduced gravity. The ejection of combusting material from the burning spheres represents a fire hazard that must be considered at reduced gravity. The ejection process was found to be sensitive to polymer type. All average burning rates were measured to increase with initial sphere diameter and oxygen concentration, whereas the initial pressure had little effect. The three thermoplastic types exhibited different burning characteristics. For the same initial conditions, the burning rate of PP was slower than PMMA, whereas the burning rate of PS was comparable to PMMA. The transient diameter of the burning thermoplastic exhibited two distinct periods: an initial period (enduring approximately half of the total burn duration) when the diameter remained approximately constant, and a final period when the square of the diameter linearly decreased with time. A simple homogeneous two-phase model was developed to understand the changing diameter of the burning sphere. Its value is based on a competition between diameter reduction due to mass loss from burning and sputtering, and diameter expansion due to the processes of swelling (density decrease with heating) and bubble growth. The model relies on empirical parameters for input, such as the burning rate and the duration of the initial and final burning periods.
Mass breakdown model of solar-photon sail shuttle: The case for Mars
NASA Astrophysics Data System (ADS)
Vulpetti, Giovanni; Circi, Christian
2016-02-01
The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth-Mars-Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty-fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014-2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty-fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.
The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey
NASA Astrophysics Data System (ADS)
Tortora, C.; Napolitano, N. R.; Roy, N.; Radovich, M.; Getman, F.; Koopmans, L. V. E.; Verdoes Kleijn, G. A.; Kuijken, K. H.
2018-01-01
We study the dark matter (DM) assembly in the central regions of massive early-type galaxies up to z ∼ 0.65. We use a sample of ∼3800 massive (log M⋆/M⊙ > 11.2) galaxies with photometry and structural parameters from 156 deg2 of the Kilo Degree Survey (KiDS), and spectroscopic redshifts and velocity dispersions from Sloan Digital Sky Survey (SDSS). We obtain central total-to-stellar mass ratios, Mdyn/M⋆, and DM fractions, by determining dynamical masses, Mdyn, from Jeans modelling of SDSS aperture velocity dispersions and stellar masses, M⋆, from KiDS galaxy colours. We first show how the central DM fraction correlates with structural parameters, mass and density proxies, and demonstrate that most of the local correlations are still observed up to z ∼ 0.65; at fixed M⋆, local galaxies have larger DM fraction, on average, than their counterparts at larger redshift. We also interpret these trends with a non-universal initial mass function (IMF), finding a strong evolution with redshift, which contrast independent observations and is at odds with the effect of galaxy mergers. For a fixed IMF, the galaxy assembly can be explained, realistically, by mass and size accretion, which can be physically achieved by a series of minor mergers. We reproduce both the Re-M⋆ and Mdyn/M⋆-M⋆ evolution with stellar and dark mass changing at a different rate. This result suggests that the main progenitor galaxy is merging with less massive systems, characterized by a smaller Mdyn/M⋆, consistently with results from halo abundance matching.
Effects of meal frequency on weight loss and body composition: a meta-analysis.
Schoenfeld, Brad Jon; Aragon, Alan Albert; Krieger, James W
2015-02-01
It has been hypothesized that eating small, frequent meals enhances fat loss and helps to achieve better weight maintenance. Several observational studies lend support to this hypothesis, with an inverse relationship noted between the frequency of eating and adiposity. The purpose of this narrative review is to present and discuss a meta-analysis with regression that evaluated experimental research on meal frequency with respect to changes in fat mass and lean mass. A total of 15 studies were identified that investigated meal frequency in accordance with the criteria outlined. Feeding frequency was positively associated with reductions in fat mass and body fat percentage as well as an increase in fat-free mass. However, sensitivity analysis of the data showed that the positive findings were the product of a single study, casting doubt as to whether more frequent meals confer beneficial effects on body composition. In conclusion, although the initial results of this meta-analysis suggest a potential benefit of increased feeding frequencies for enhancing body composition, these findings need to be interpreted with circumspection. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The edge of galaxy formation - II. Evolution of Milky Way satellite analogues after infall
NASA Astrophysics Data System (ADS)
Frings, Jonas; Macciò, Andrea; Buck, Tobias; Penzo, Camilla; Dutton, Aaron; Blank, Marvin; Obreja, Aura
2017-12-01
In the first paper, we presented 27 hydrodynamical cosmological simulations of galaxies with total masses between 5 × 108 and 1010 M⊙. In this second paper, we use a subset of these cosmological simulations as initial conditions (ICs) for more than 40 hydrodynamical simulations of satellite and host galaxy interaction. Our cosmological ICs seem to suggest that galaxies on these mass scales have very little rotational support and are velocity dispersion (σ) dominated. Accretion and environmental effects increase the scatter in the galaxy scaling relations (e.g. size-velocity dispersion) in very good agreement with observations. Star formation is substantially quenched after accretion. Mass removal due to tidal forces has several effects: it creates a very flat stellar velocity dispersion profile, and it reduces the dark matter content at all scales (even in the centre), which in turn lowers the stellar velocity on scales around 0.5 kpc even when the galaxy does not lose stellar mass. Satellites which start with a cored dark matter profile are more prone to either be destroyed or to end up in a very dark matter poor galaxy. Finally, we found that tidal effects always increase the 'cuspyness' of the dark matter profile, even for haloes that infall with a core.
Nunes Junior, Francisco H; Freitas, Valdineia S; Mesquita, Rosilene O; Braga, Brennda B; Barbosa, Rifandreo M; Martins, Kaio; Gondim, Franklin A
2017-10-01
Sanitary landfill leachate is one of the major problems arising from disposal of urban waste. Sanitary landfill leachate may, however, have use in agriculture. This study, therefore, aimed to analyze initial plant growth and gas exchange in sunflower seedlings supplemented with sanitary landfill leachate and subjected to drought stress through variables of root fresh mass (RFM), shoot fresh mass (SFM), total fresh mass (TFM), relative chlorophyll content (CL), stomatal conductance (g s ), transpiration rate (E), net photosynthetic rate (A), ratio of internal to external CO 2 concentration (Ci/Ca),water use efficiency (EUA), instantaneous carboxylation efficiency (A/Ci), and electron transport rate (ETR). The experimental design was a completely randomized 2 (irrigated and non-irrigated) × 4 (sand, sand + 100 kg N ha -1 organic fertilizer, sand + 100 kg N ha -1 sanitary landfill leachate, and sand + 150 kg N ha -1 sanitary landfill leachate) factorial with five replicates. Under drought stress conditions, leachate treatment supplemented with 100 kg N ha -1 exhibited higher plant fresh weights than those of the treatment containing 150 kg N ha -1 . Increases in fresh mass in plant treatments supplemented with 100 and 150 kg N ha -1 sanitary landfill leachate were related to higher photosynthetic rates.
Adenoid cystic carcinoma of the larynx presenting with unusual subglottic mass: Case report.
Kashiwagi, Takashi; Kanaya, Hiroaki; Konno, Wataru; Goto, Kazutaka; Hirabayashi, Hideki; Haruna, Shin-Ichi
2016-10-01
A 33-year-old woman presented with an unusual subglottic bulging mass accompanied by prolonged cough and wheeze. Laryngeal endoscopy revealed a bilateral, symmetrical mass immediately below the vocal cords with marked airway obstruction. Chronic subglottic laryngitis with inflammation or another condition such as amyloidosis was initially suspected. Cervicothoracic computed tomography revealed an obvious reduction of laryngeal caliber caused by an engulfing mass extending from just under the vocal cords to the cricoid ring, which was associated with thyroid, arytenoid, and cricoid cartilage destruction. Histopathological diagnosis of a biopsy specimen collected via a tracheotomy revealed that the lesion was a cT4aN0M0 adenoid cystic carcinoma (ACC) originating from the laryngeal minor salivary glands. The patient was treated by total laryngectomy with elective bilateral neck dissection under general anesthesia. Gross inspection of resected tissue confirmed yellowish-white, solid tumor mainly circumferentially encompassing the lumina of the cricoid ring. The histopathological findings confirmed typical ACC accompanied by a predominant cribriform appearance with no evidence of lymph node metastasis. The patient remains well and free of recurrence or metastasis. We herein describe laryngeal ACC and discuss radiological images and the surgical pathology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Velocities of Bone Mineral Accrual in Black and White American Children
Hui, Siu L; Perkins, Anthony J; Harezlak, Jaroslaw; Peacock, Munro; McClintock, Cindy L; Johnston, C Conrad
2010-01-01
Black adults have higher bone mass than whites in the United States, but it is not clear when black children gain bone mineral faster than white children. We performed a cohort study to compare the growth velocity of total-body bone mineral content (TBMC) between black and white children of the same sex at different ages and stages of sexual maturity. TBMC and total-body area were measured in a cohort of 188 black and white boys and girls aged 5 to 15 years annually for up to 4 years. Rates of change in TBMC and area were found to vary with age and with Tanner stage. For both TBMC and area, growth velocities between black and white children differed significantly across Tanner stages. Age-specific velocities were higher in black children during prepuberty and initial entry into puberty but reversed in subsequent Tanner stages. Despite earlier entry into each Tanner stage, black children spent only an average of only 0.2 year longer in Tanner stages II through IV, and total gain in TBMC from age 5 to 15 was not higher in whites. In conclusion, the higher bone mass in black adults compared with whites cannot be attributed to faster accrual during puberty. It is due to black children's higher rate of bone mineral accrual in prepuberty and plausibly in postpuberty. Most of the racial difference in TBMC velocity can be explained by growth in size. © 2010 American Society for Bone and Mineral Research. PMID:20200959
Large Space Optics: From Hubble to JWST and Beyond
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2008-01-01
If necessity truly is the mother of invention, then advances in lightweight space mirror technology have been driven by launch vehicle mass and volume constraints. In the late 1970 s, at the start of Hubble development, the state of the art in ground based telescopes was 3 to 4 meter monolithic primary mirrors with masses of 6000 to 10,000 kg - clearly too massive for the planned space shuttle 25,000 kg capability to LEO. Necessity led Hubble to a different solution. Launch vehicle mass constraints (and cost) resulted in the development of a 2.4 meter lightweight eggcrate mirror. At 810 kg (180 kg/m2), this mirror was approximately 7.4% of HST s total 11,110 kg mass. And, the total observatory structure at 4.3 m x 13.2 m fit snuggly inside the space shuttle 4.6 m x 18.3 m payload bay. In the early 1990 s, at the start of JWST development, the state of the art in ground based telescopes was 8 meter class monolithic primary mirrors (16,000 to 23,000 kg) and 10 meter segmented mirrors (14,400 kg). Unfortunately, launch vehicles were still constrained to 4.5 meter payloads and 25,000 kg to LEO or 6,600 kg to L2. Furthermore, science now demanded a space telescope with 6 to 8 meter aperture operating at L2. Mirror technology was identified as a critical capability necessary to enable the next generation of large aperture space telescopes. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996 (1). These studies identified two significant architectural constraints: segmentation and areal density. Because the launch vehicle fairing payload dynamic envelop diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. And, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density of 20 kg/m2. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated resulting in matured and demonstrated mirror technology for JWST (2, 3). Today, the JWST 6.5 meter primary mirror has an areal density of 25 kg/m2 for a total mass of 625 kg or 9.6% of the total JWST observatory mass of 6,500 kg. Looking into the future, science requires increasing larger collecting apertures. Ground based telescopes are already moving towards 30+ meter mirrors. The only way to meet this challenge for space telescopes is via even lower areal density mirrors or on-orbit assembly or larger launch vehicles (4). The planned NASA Ares V with its 10 meter fairing and 55,000 kg payload to L2 eliminates this constraint (5).
Bolster, Ferdia; Linnau, Ken; Mitchell, Steve; Roberge, Eric; Nguyen, Quynh; Robinson, Jeffrey; Lehnert, Bruce; Gross, Joel
2017-02-01
The aims of this article are to describe the events of a recent mass casualty incident (MCI) at our level 1 trauma center and to describe the radiology response to the event. We also describe the findings and recommendations of our radiology department after-action review. An MCI activation was triggered after an amphibious military vehicle, repurposed for tourist activities, carrying 37 passengers, collided with a charter bus carrying 45 passengers on a busy highway bridge in Seattle, WA, USA. There were 4 deaths at the scene, and 51 patients were transferred to local hospitals following prehospital scene triage. Nineteen patients were transferred to our level 1 trauma center. Eighteen casualties arrived within 72 min. Sixteen arrived within 1 h of the first patient arrival, and 1 casualty was transferred 3 h later having initially been assessed at another hospital. Eighteen casualties (94.7 %) underwent diagnostic imaging in the emergency department. Of these 18 casualties, 15 had a trauma series (portable chest x-ray and x-ray of pelvis). Whole-body trauma computed tomography scans (WBCT) were performed on 15 casualties (78.9 %), 12 were immediate and performed during the initial active phase of the MCI, and 3 WBCTs were delayed. The initial 12 WBCTs were completed in 101 min. The mean number of radiographic studies performed per patient was 3 (range 1-8), and the total number of injuries detected was 88. The surge in imaging requirements during an MCI can be significant and exceed normal operating capacity. This report of our radiology experience during a recent MCI and subsequent after-action review serves to provide an example of how radiology capacity and workflow functioned during an MCI, in order to provide emergency radiologists and response planners with practical recommendations for implementation in the event of a future MCI.
Eysteinsdottir, Bjorg; Gislason, Thorarinn; Pack, Allan I; Benediktsdottir, Bryndís; Arnardottir, Erna S; Kuna, Samuel T; Björnsdottir, Erla
2017-04-01
The objective of this study was to evaluate the determinants of long-term adherence to positive airway pressure treatment among patients with obstructive sleep apnea, with special emphasis on patients who stop positive airway pressure treatment within 1 year. This is a prospective long-term follow-up of subjects in the Icelandic Sleep Apnea Cohort who were diagnosed with obstructive sleep apnea between 2005 and 2009, and started on positive airway pressure treatment. In October 2014, positive airway pressure adherence was obtained by systematically evaluating available clinical files (n = 796; 644 males, 152 females) with moderate to severe obstructive sleep apnea (apnea-hypopnea index ≥15 events per h). The mean follow-up time was 6.7 ± 1.2 years. In total, 123 subjects (15.5%) returned their positive airway pressure device within the first year, 170 (21.4%) returned it later and 503 (63.2%) were still using positive airway pressure. The quitters within the first year had lower body mass index, milder obstructive sleep apnea, less sleepiness, and more often had symptoms of initial and late insomnia compared with long-term positive airway pressure users at baseline. Both initial and late insomnia were after adjustment still significantly associated with being an early quitter among subjects with body mass index <30 kg m -2 , but not among those with body mass index ≥30 kg m -2 . The prevalence of early quitters decreased significantly during the study period (2005-2009). Almost two-thirds of patients with moderate to severe obstructive sleep apnea are positive airway pressure users after 7 years. Obesity level, obstructive sleep apnea severity and daytime sleepiness are important determinants of long-term adherence. Symptoms of initial and late insomnia are associated with early quitting on positive airway pressure among non-obese subjects. © 2016 European Sleep Research Society.
NASA Astrophysics Data System (ADS)
Sekiguchi, Yuichiro; Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke
2016-06-01
We perform neutrino radiation-hydrodynamics simulations for the merger of asymmetric binary neutron stars in numerical relativity. Neutron stars are modeled by soft and moderately stiff finite-temperature equations of state (EOS). We find that the properties of the dynamical ejecta such as the total mass, neutron richness profile, and specific entropy profile depend on the mass ratio of the binary systems for a given EOS in a unique manner. For a soft EOS (SFHo), the total ejecta mass depends weakly on the mass ratio, but the average of electron number per baryon (Ye ) and specific entropy (s ) of the ejecta decreases significantly with the increase of the degree of mass asymmetry. For a stiff EOS (DD2), with the increase of the mass asymmetry degree, the total ejecta mass significantly increases while the average of Ye and s moderately decreases. We find again that only for the SFHo, the total ejecta mass exceeds 0.01 M⊙ irrespective of the mass ratio chosen in this paper. The ejecta have a variety of electron number per baryon with an average approximately between Ye˜0.2 and ˜0.3 irrespective of the EOS employed, which is well suited for the production of the rapid neutron capture process heavy elements (second and third peaks), although its averaged value decreases with the increase of the degree of mass asymmetry.
Optimizing the Space Transportation System
1982-12-01
the entire gamut of inclinations and altitudes. The Shuttle payload mass and the total Station, OTV and Shuttle propellant mass required in orbit are...military satellites across the entire gamut of inclinations and altitudes. The total Station, OTV, Shuttle propellant and Shuttle payload mass required in
The cell's self-generated “electrome”: The biophysical essence of the immaterial dimension of Life?
De Loof, Arnold
2016-01-01
ABSTRACT In the classical “mind-body” wording, “body” is usually associated with the “mass aspect” of living entities and “mind” with the “immaterial” one. Thoughts, consciousness and soul are classified as immaterial. A most challenging question emerges: Can something that is truly immaterial, thus that in the wording of physics has no mass, exist at all? Many will answer: “No, impossible.” My answer is that it is very well possible, that no esoteric mechanisms need to be invoked, but that this possibility is inherent to 2 well established but undervalued physiological mechanisms. The first one is electrical in nature. In analogy with “genome,” “proteome” etc. “electrome” (a novel term) stands for the totality of all ionic currents of any living entity, from the cellular to the organismal level. Cellular electricity is truly vital. Death of any cell ensues at the very moment that it irreversibly (excluding regeneration) loses its ability to realize its electrical dimension. The second mechanism involves communication activity that is invariably executed by sender-receiver entities that incessantly handle information. Information itself is immaterial (= no mass). Both mechanisms are instrumental to the functioning of all cells, in particular to their still enigmatic cognitive memory system. Ionic/electrical currents associated with the cytoskeleton likely play a key role but have been largely overlooked. This paper aims at initiating a discussion platform from which students with different backgrounds but all interested in the immaterial dimension of life could engage in elaborating an integrating vocabulary and in initiating experimental approaches. PMID:27829975
Chi, Lei; Yao, Changhong; Cao, Xupeng; Xue, Song
2016-01-01
Lipids and carbohydrates are main energy storage compounds (ESC) of microalgae under stressed conditions and they are potential feedstock for biofuel production. Yet, the sustainable and commercially successful production of ESC in microalgae needs to consider nitrogen utilization efficiency. Here the impact of different initial cell densities (ICDs) on ESC accumulation in Isochrysis zhangjiangensis under two nitrogen supply modes (an initially equal concentration of nitrogen per-cell in the medium (N1) and an equal total concentration of nitrogen in the culture system (N2)) were investigated. The results demonstrated that the highest ESC yield (1.36gL(-1)) at N1, which included a maximal nitrogen supply in the cultivation system, and the highest ESC content (66.5%) and ESC productivity per mass of nitrogen (3.28gg(-1) (N) day(-1)) at N2, were all obtained under a high ICD of 8.0×10(6)cellsmL(-1). Therefore I. zhangjiangensis qualifies for ESC-enriched biomass production with economized nitrogen utilization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Initial Results from the Majorana Demonstrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, S. R.; Abgrall, N.; Arnquist, I. J.
Neutrinoless double-beta decay searches seek to determine the nature of neutrinos, the existence of a lepton violating process, and the eective Majorana neutrino mass. The Majorana Collaboration is assembling an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator is composed of 44.8 kg (29.7 kg enriched in 76Ge) of Ge detectors in total, split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals of the Demonstrator are to establish the required background and scalability of a Ge-based, next-generation,more » tonne-scale experiment. Following a commissioning run that began in 2015, the rst detector module started physics data production in early 2016. We will discuss initial results of the Module 1 commissioning and rst physics run, as well as the status and potential physics reach of the full Majorana Demonstrator experiment. The collaboration plans to complete the assembly of the second detector module by mid-2016 to begin full data production with the entire array.« less
Initial Results from the Majorana Demonstrator
NASA Astrophysics Data System (ADS)
Elliott, S. R.; Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Fullmer, A.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Leon, J.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.
2017-09-01
Neutrinoless double-beta decay searches seek to determine the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator is composed of 44.8 kg (29.7 kg enriched in 76Ge) of Ge detectors in total, split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals of the Demonstrator are to establish the required background and scalability of a Ge-based, next-generation, tonne-scale experiment. Following a commissioning run that began in 2015, the first detector module started physics data production in early 2016. We will discuss initial results of the Module 1 commissioning and first physics run, as well as the status and potential physics reach of the full Majorana Demonstrator experiment. The collaboration plans to complete the assembly of the second detector module by mid-2016 to begin full data production with the entire array.
NASA Astrophysics Data System (ADS)
Annunziatella, M.; Bonamigo, M.; Grillo, C.; Mercurio, A.; Rosati, P.; Caminha, G.; Biviano, A.; Girardi, M.; Gobat, R.; Lombardi, M.; Munari, E.
2017-12-01
We present a high-resolution dissection of the two-dimensional total mass distribution in the core of the Hubble Frontier Fields galaxy cluster MACS J0416.1‑2403, at z = 0.396. We exploit HST/WFC3 near-IR (F160W) imaging, VLT/Multi Unit Spectroscopic Explorer spectroscopy, and Chandra data to separate the stellar, hot gas, and dark-matter mass components in the inner 300 kpc of the cluster. We combine the recent results of our refined strong lensing analysis, which includes the contribution of the intracluster gas, with the modeling of the surface brightness and stellar mass distributions of 193 cluster members, of which 144 are spectroscopically confirmed. We find that, moving from 10 to 300 kpc from the cluster center, the stellar to total mass fraction decreases from 12% to 1% and the hot gas to total mass fraction increases from 3% to 9%, resulting in a baryon fraction of approximatively 10% at the outermost radius. We measure that the stellar component represents ∼30%, near the cluster center, and 15%, at larger clustercentric distances, of the total mass in the cluster substructures. We subtract the baryonic mass component from the total mass distribution and conclude that within 30 kpc (∼3 times the effective radius of the brightest cluster galaxy) from the cluster center the surface mass density profile of the total mass and global (cluster plus substructures) dark-matter are steeper and that of the diffuse (cluster) dark-matter is shallower than an NFW profile. Our current analysis does not point to a significant offset between the cluster stellar and dark-matter components. This detailed and robust reconstruction of the inner dark-matter distribution in a larger sample of galaxy clusters will set a new benchmark for different structure formation scenarios.
The necessity of feedback physics in setting the peak of the initial mass function
NASA Astrophysics Data System (ADS)
Guszejnov, Dávid; Krumholz, Mark R.; Hopkins, Philip F.
2016-05-01
A popular theory of star formation is gravito-turbulent fragmentation, in which self-gravitating structures are created by turbulence-driven density fluctuations. Simple theories of isothermal fragmentation successfully reproduce the core mass function (CMF) which has a very similar shape to the initial mass function (IMF) of stars. However, numerical simulations of isothermal turbulent fragmentation thus far have not succeeded in identifying a fragment mass scale that is independent of the simulation resolution. Moreover, the fluid equations for magnetized, self-gravitating, isothermal turbulence are scale-free, and do not predict any characteristic mass. In this paper we show that, although an isothermal self-gravitating flow does produce a CMF with a mass scale imposed by the initial conditions, this scale changes as the parent cloud evolves. In addition, the cores that form undergo further fragmentation and after sufficient time forget about their initial conditions, yielding a scale-free pure power-law distribution dN/dM ∝ M-2 for the stellar IMF. We show that this problem can be alleviated by introducing additional physics that provides a termination scale for the cascade. Our candidate for such physics is a simple model for stellar radiation feedback. Radiative heating, powered by accretion on to forming stars, arrests the fragmentation cascade and imposes a characteristic mass scale that is nearly independent of the time-evolution or initial conditions in the star-forming cloud, and that agrees well with the peak of the observed IMF. In contrast, models that introduce a stiff equation of state for denser clouds but that do not explicitly include the effects of feedback do not yield an invariant IMF.
Assessment of ocean models in Mediterranean Sea against altimetry and gravimetry measurements
NASA Astrophysics Data System (ADS)
Fenoglio-Marc, Luciana; Uebbing, Bernd; Kusche, Jürgen
2017-04-01
This work aims at assessing in a regional study in the Mediterranean Sea the agreement between ocean model outputs and satellite altimetry and satellite gravity observations. Satellite sea level change are from altimeter data made available by the Sea Level Climate Change Initiative (SLCCI) and from satellite gravity data made available by GRACE. We consider two ocean simulations not assimilating satellite altimeter data and one ocean model reanalysis assimilating satellite altimetry. Ocean model simulations can provide some insight on the ocean variability, but they are affected by biases due to errors in model formulation, specification of initial states and forcing, and are not directly constrained by observations. Their trend can be quite different from the altimetric observations due to surface radiation biases, however they are physically consistent. Ocean reanalyses are the combination of ocean models, atmospheric forcing fluxes and ocean observations via data assimilation methods and have the potential to provide more accurate information than observation-only or model-only based ocean estimations. They will be closer to altimetry at long and short timescales, but assimilation may destroy mass consistency. We use two ocean simulations which are part of the Med-CORDEX initiative (https://www.medcordex.eu). The first is the CNRM-RCM4 fully-coupled Regional Climate System Model (RCMS) simulation developed at METEOFRANCE for 1980-2012. The second is the PROTHEUS standalone hindcast simulation developed at ENEA and covers the interval 1960-2012. The third model is the regional model MEDSEA_REANALYSIS_PHIS_006_004 assimilating satellite altimeter data (http://marine.copernicus.eu/) and available over 1987-2014. Comparison at basin and regional scale are made. First the steric, thermo-steric, halosteric and dynamic components output of the models are compared. Then the total sea level given by the models is compared to the altimeter observations. Finally the mass component derived from GRACE is compared to the difference between the total sea level and the steric component. We observe large differences between the ocean models and discuss the model which best agrees with the CCI sea level product at short and at longer timescales. We consider departure in sea level trends, inter-annual variability and seasonal cycle. The work is part of the Sea Level Climate Change Initiative project.
Computer control of a microgravity mammalian cell bioreactor
NASA Technical Reports Server (NTRS)
Hall, William A.
1987-01-01
The initial steps taken in developing a completely menu driven and totally automated computer control system for a bioreactor are discussed. This bioreactor is an electro-mechanical cell growth system cell requiring vigorous control of slowly changing parameters, many of which are so dynamically interactive that computer control is a necessity. The process computer will have two main functions. First, it will provide continuous environmental control utilizing low signal level transducers as inputs and high powered control devices such as solenoids and motors as outputs. Secondly, it will provide continuous environmental monitoring, including mass data storage and periodic data dumps to a supervisory computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Q.; May, A. A.; Kreidenweis, Sonia M.
Here, smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle andmore » vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 18 % uncertainty to the final particle-organic mass remaining in the chamber (relative to base-assumption simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle-organic mass loss by 33 % compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.« less
How do changes in warm-phase microphysics affect deep convective clouds?
NASA Astrophysics Data System (ADS)
Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital
2017-08-01
Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems?
To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio between the masses located above and below the ZTL in the polluted runs. When comparing the net mass flux crossing the ZTL in the clean and polluted runs, the difference was small. However, when comparing the upward and downward fluxes separately, the increase in aerosol concentration was seen to dramatically increase the fluxes in both directions, indicating the aerosol amplification effect of the convection and the affected cloud system properties, such as cloud fraction and rain rate.
Three-dimensional particle-particle simulations: Dependence of relaxation time on plasma parameter
NASA Astrophysics Data System (ADS)
Zhao, Yinjian
2018-05-01
A particle-particle simulation model is applied to investigate the dependence of the relaxation time on the plasma parameter in a three-dimensional unmagnetized plasma. It is found that the relaxation time increases linearly as the plasma parameter increases within the range of the plasma parameter from 2 to 10; when the plasma parameter equals 2, the relaxation time is independent of the total number of particles, but when the plasma parameter equals 10, the relaxation time slightly increases as the total number of particles increases, which indicates the transition of a plasma from collisional to collisionless. In addition, ions with initial Maxwell-Boltzmann (MB) distribution are found to stay in the MB distribution during the whole simulation time, and the mass of ions does not significantly affect the relaxation time of electrons. This work also shows the feasibility of the particle-particle model when using GPU parallel computing techniques.
Space Shuttle 2 advanced space transportation system, volume 2
NASA Technical Reports Server (NTRS)
Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.
1989-01-01
To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected. Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle 2; the configuration used in the initial proposal; and the final configuration. A listing by cell of the formulas used to generate the aforementioned data is included for reference.
Mazutti, Marcio A; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Débora; Di Luccio, Marco; Rodrigues, Maria Isabel; Maugeri, Francisco; Treichel, Helen
2010-04-01
This work investigated the growth of Kluyveromyces marxianus NRRL Y-7571 in solid-state fermentation in a medium composed of sugarcane bagasse, molasses, corn steep liquor and soybean meal within a packed-bed bioreactor. Seven experimental runs were carried out to evaluate the effects of flow rate and inlet air temperature on the following microbial rates: cell mass production, total reducing sugar and oxygen consumption, carbon dioxide and ethanol production, metabolic heat and water generation. A mathematical model based on an artificial neural network was developed to predict the above-mentioned microbial rates as a function of the fermentation time, initial total reducing sugar concentration, inlet and outlet air temperatures. The results showed that the microbial rates were temperature dependent for the range 27-50 degrees C. The proposed model efficiently predicted the microbial rates, indicating that the neural network approach could be used to simulate the microbial growth in SSF.
Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R
2018-07-03
This work aimed to evaluate the phytoremediation capacity of the alfalfa cultivar Crioula in soils contaminated with polycyclic aromatic hydrocarbons (PAHs), primary pollutants with mutagenic and carcinogenic potential. Alfalfa was grown from seed for 40 days on soil amended with anthracene, pyrene, and phenanthrene. Soil and plant tissue was collected for biometric assay, dry mass analysis, and PAH analysis by liquid chromatography. Increased total PAH concentration was associated with decreases in plant biomass, height, and internode length. The Crioula cultivar had a satisfactory phytoremediation effect, reducing total PAH concentration (300 ppm) in the experimental soil by 85% in 20 days, and by more than 95% in 40 days. The PAH showed a tendency to be removed in the temporal order: phenanthrene before pyrene before anthracene, and the removal ratio was influenced by the initial soil concentration of each PAH.
Effects of dietary protein on the composition of weight loss in post-menopausal women.
Gordon, M M; Bopp, M J; Easter, L; Miller, G D; Lyles, M F; Houston, D K; Nicklas, B J; Kritchevsky, S B
2008-10-01
To determine whether a hypocaloric diet higher in protein can prevent the loss of lean mass that is commonly associated with weight loss. An intervention study comparing a hypocaloric diet moderately high in protein to one lower in protein. Study measurements were taken at the Wake Forest University General Clinical Research Center (GCRC) and Geriatric Research Center (GRC). Twenty-four post-menopausal, obese women (mean age = 58 +/- 6.6 yrs; mean BMI = 33.0 +/- 3.6 kg/m2). Two 20-week hypocaloric diets (both reduced by 2800 kcal/wk) were compared: one maintaining dietary protein intake at 30% of total energy intake (1.2-1.5 g/kg/d; HI PROT), and the other maintaining dietary protein intake at 15% of total energy (0.5-0.7 g/kg/d; LO PROT). The GCRC metabolic kitchen provided lunch and dinner meals which the women picked up 3 days per week and ate outside of the clinic. Body composition, including total body mass, total lean mass, total fat mass, and appendicular lean mass, assessed by dual energy x-ray absorptiometry, was measured before and after the diet interventions. The HI PROT group lost 8.4 +/- 4.5 kg and the LO PROT group lost 11.4 +/- 3.8 kg of body weight (p = 0.11). The mean percentage of total mass lost as lean mass was 17.3% +/- 27.8% and 37.5% +/- 14.6%, respectively (p = 0.03). Maintaining adequate protein intake may reduce lean mass losses associated with voluntary weight loss in older women.
The Air Blast Wave from a Nuclear Explosion
NASA Astrophysics Data System (ADS)
Reines, Frederick
The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of the air increases and in the limit of small distances and increasingly strong shocks the net outward displacement of the shocked air is equal to the maximum outward displacement. These statements are applicable for short times of the order of seconds following the explosion since the heated air l behind by the shock wave will rise. The pressures and air mass motions associated with the rise of the atomic cloud are relatively unimportant in the free air pressure ranges from 2-15 psi for bomb yields under 100 kilotons (KT)…
Centrifugal Compressor Surge Controlled
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2003-01-01
It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.
The Effect of Mission Location on Mission Costs and Equivalent System Mass
NASA Technical Reports Server (NTRS)
Fisher, John W.; Levri, Julie A.; Jones, Harry W.
2003-01-01
Equivalent System Mass (ESM) is used by the Advanced Life Support (ALS) community to quantify mission costs of technologies for space applications (Drysdale et al, 1999, Levri et al, 2000). Mass is used as a cost measure because the mass of an object determines propulsion (acceleration) cost (i.e. amount of fuel needed), and costs relating to propulsion dominate mission cost. Mission location drives mission cost because acceleration is typically required to initiate and complete a change in location. Total mission costs may be reduced by minimizing the mass of materials that must be propelled to each distinct location. In order to minimize fuel requirements for missions beyond low-Earth orbit (LEO), the hardware and astronauts may not all go to the same location. For example, on a Lunar or Mars mission, some of the hardware or astronauts may stay in orbit while the rest of the hardware and astronauts descend to the planetary surface. In addition, there may be disposal of waste or used hardware at various mission locations to avoid propulsion of mass that is no longer needed in the mission. This paper demonstrates how using location factors in the calculation of ESM can account for the effects of various acceleration events and can improve the accuracy and value of the ESM metric to mission planners. Even a mission with one location can benefit from location factor analysis if the alternative technologies under consideration consume resources at different rates. For example, a mission that regenerates resources will have a relatively constant mass compared to one that uses consumables and vents/discards mass along the way. This paper shows examples of how location factors can affect ESM calculations and how the inclusion of location factors can change the relative value of technologies being considered for development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Yushi; Nakasato, Naohito; Tanikawa, Ataru
2016-04-10
Mergers of carbon–oxygen (CO) white dwarfs (WDs) are considered to be one of the potential progenitors of type Ia supernovae (SNe Ia). Recent hydrodynamical simulations showed that the less massive (secondary) WD violently accretes onto the more massive (primary) one, carbon detonation occurs, the detonation wave propagates through the primary, and the primary finally explodes as a sub-Chandrasekhar mass SN Ia. Such an explosion mechanism is called the violent merger scenario. Based on the smoothed particle hydrodynamics simulations of merging CO WDs, we derived a critical mass ratio (q{sub cr}) leading to the violent merger scenario that is more stringent than previous results. Wemore » conclude that this difference mainly comes from the differences in the initial condition of whether or not the WDs are synchronously spinning. Using our new results, we estimated the brightness distribution of SNe Ia in the violent merger scenario and compared it with previous studies. We found that our new q{sub cr} does not significantly affect the brightness distribution. We present the direct outcome immediately following CO WD mergers for various primary masses and mass ratios. We also discussed the final fate of the central system of the bipolar planetary nebula Henize 2-428, which was recently suggested to be a double CO WD system whose total mass exceeds the Chandrasekhar-limiting mass, merging within the Hubble time. Even considering the uncertainties in the proposed binary parameters, we concluded that the final fate of this system is almost certainly a sub-Chandrasekhar mass SN Ia in the violent merger scenario.« less
NASA Technical Reports Server (NTRS)
Terman, James L.; Taam, Ronald E.; Hernquist, Lars
1994-01-01
The evolution of the common envelope phase of a binary system consisting of a 4.67 solar mass red giant and a 0.94 solar mass dwarf is studied using smoothed particle hydrodynamics. We demonstrate that the three-dimensional effects associated with the gravitational tidal torques lead to a rapid decay of the orbit on timescales approximately less than 1 yr. The relative orbit of the two cores in the common envelope is initally eccentric and tends to circularize as the orbital separation of the two cores decreases. The angular momentum lost from the orbital motion is distributed throughout the common envelope, and the double core does not evolve to a state of co-rotation for the evolutionary time followed. The energy dissipated from the relative orbit and deposited in the common envelope results in the ejection of approximately 13% of the mass of the envelope. The mass is ejected in all directions, but there is a preference for mass ejection in the orbital plane of the binary system. For example, approximately 80% of the ejected mass lies within 30 deg of the binary orbital plane. Because gravitational forces are long range, most of the energy and angular momentum is imparted to a small fraction of the common envelope resulting in an efficiency of the mass ejection process of approximately 15%. The core of the red giant executes significant displacement with respect to the center of mass of the system and contributes nearly equally to the total energy dissipation rate during the latter phases of the evolution. The degree of departure from synchronism of the initial binary system can be an important property of the system which can affect the outcome of the common envelope phase.
Molecular Cloud Evolution VI. Measuring cloud ages
NASA Astrophysics Data System (ADS)
Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel; Galván-Madrid, Roberto; Forbrich, Jan
2018-06-01
In previous contributions, we have presented an analytical model describing the evolution of molecular clouds (MCs) undergoing hierarchical gravitational contraction. The cloud's evolution is characterized by an initial increase in its mass, density, and star formation rate (SFR) and efficiency (SFE) as it contracts, followed by a decrease of these quantities as newly formed massive stars begin to disrupt the cloud. The main parameter of the model is the maximum mass reached by the cloud during its evolution. Thus, specifying the instantaneous mass and some other variable completely determines the cloud's evolutionary stage. We apply the model to interpret the observed scatter in SFEs of the cloud sample compiled by Lada et al. as an evolutionary effect so that, although clouds such as California and Orion A have similar masses, they are in very different evolutionary stages, causing their very different observed SFRs and SFEs. The model predicts that the California cloud will eventually reach a significantly larger total mass than the Orion A cloud. Next, we apply the model to derive estimated ages of the clouds since the time when approximately 25% of their mass had become molecular. We find ages from ˜1.5 to 27 Myr, with the most inactive clouds being the youngest. Further predictions of the model are that clouds with very low SFEs should have massive atomic envelopes constituting the majority of their gravitational mass, and that low-mass clouds (M ˜ 103-104M⊙) end their lives with a mini-burst of star formation, reaching SFRs ˜300-500 M⊙ Myr-1. By this time, they have contracted to become compact (˜1 pc) massive star-forming clumps, in general embedded within larger GMCs.
Planer-Friedrich, B.; London, J.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Wallschlager, D.
2007-01-01
Mono-, di-, tri-, and tetrathioarsenate, as well as methylated arsenic oxy- and thioanions, were determined besides arsenite and arsenate in geothermal waters of Yellowstone National Park using anion-exchange chromatography inductively coupled plasma mass spectrometry. Retention time match with synthetic standards, measured S:As ratios, and molecular electrospray mass spectra support the identification. Acidification was unsuitable for arsenic species preservation in sulfidic waters, with HCl addition causing loss of total dissolved arsenic, presumably by precipitation of arsenic-sulfides. Flash-freezing is preferred for the preservation of arsenic species for several weeks. After thawing, samples must be analyzed immediately. Thioarsenates occurred over a pH range of 2.1 to 9.3 in the geothermal waters. They clearly predominated under alkaline conditions (up to 83% of total arsenic), but monothioarsenate also was detected in acidic waters (up to 34%). Kinetic studies along a drainage channel showed the importance of thioarsenates for the fate of arsenic discharged from the sulfidic hot spring. The observed arsenic speciation changes suggest three separate reactions: the transformation of trithioarsenate to arsenite (major initial reaction), the stepwise ligand exchange from tri- via di- and monothioarsenate to arsenate (minor reaction), and the oxidation of arsenite to arsenate, which only becomes quantitatively important after thioarsenates have disappeared. ?? 2007 American Chemical Society.
Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna
2014-05-01
This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cai, Yi-Hong; Wang, Yi-Sheng
2018-04-01
This work discusses the correlation between the mass resolving power of matrix-assisted laser desorption/ionization time-of-flight mass analyzers and extraction condition with an uneven sample morphology. Previous theoretical calculations show that the optimum extraction condition for flat samples involves an ideal ion source design and extraction delay. A general expression of spectral feature takes into account ion initial velocity, and extraction delay is derived in the current study. The new expression extends the comprehensive calculation to uneven sample surfaces and above 90% Maxell-Boltzmann initial velocity distribution of ions to account for imperfect ionization condition. Calculation shows that the impact of uneven sample surface or initial spatial spread of ions is negligible when the extraction delay is away from the ideal value. When the extraction delay approaches the optimum value, the flight-time topology shows a characteristic curve shape, and the time-domain mass spectral feature broadens with an increase in initial spatial spread of ions. For protonated 2,5-dihydroxybenzoic acid, the mass resolving power obtained from a sample of 3-μm surface roughness is approximately 3.3 times lower than that of flat samples. For ions of m/z 3000 coexpanded with 2,5-dihydroxybenzoic acid, the mass resolving power in the 3-μm surface roughness case only reduces roughly 7%. Comprehensive calculations also show that the mass resolving power of lighter ions is more sensitive to the accuracy of the extraction delay than heavier ions. Copyright © 2018 John Wiley & Sons, Ltd.
Sasaki, Shogo; Koga, Hideyuki; Krosshaug, Tron; Kaneko, Satoshi; Fukubayashi, Toru
2015-01-01
The strengths of interpersonal dyads formed by the attacker and defender in one-on-one situations are crucial for performance in team ball sports such as soccer. The purpose of this study was to analyze the kinematics of one-on-one defensive movements in soccer competitions, and determine the relationships between lower limb kinematics and the center of mass translation during cutting actions. Six defensive scenes in which a player was responding to an offender’s dribble attack were selected for analysis. To reconstruct the three-dimensional kinematics of the players, we used a photogrammetric model-based image-matching technique. The hip and knee kinematics were calculated from the matched skeleton model. In addition, the center of mass height was expressed as a ratio of each participant’s body height. The relationships between the center of mass height and the kinematics were determined by the Pearson’s product-moment correlation coefficient. The normalized center of mass height at initial contact was correlated with the vertical center of mass displacement (r = 0.832, p = 0.040) and hip flexion angle at initial contact (r = −0.823, p = 0.044). This suggests that the lower center of mass at initial contact is an important factor to reduce the downwards vertical center of mass translation during defensive cutting actions, and that this is executed primarily through hip flexion. It is therefore recommended that players land with an adequately flexed hip at initial contact during one-on-one cutting actions to minimize the vertical center of mass excursion. PMID:26240644
Löfdahl, C G; Postma, D S; Laitinen, L A; Ohlsson, S V; Pauwels, R A; Pride, N B
1998-03-01
The European Respiratory Society's study on chronic obstructive pulmonary disease (EUROSCOP) is a multicentre study performed initially in 12 countries to assess the effect of 3 years' treatment with inhaled corticosteroids on lung function decline in smokers with chronic obstructive pulmonary disease (COPD). It aimed at recruiting 50 subjects in 50 European centres. This study discusses the most successful, countrywise, recruitment strategies, an important issue since many multicentre European studies may follow in the future. The total number of recruited subjects was 2147 in 39 participating centres. In total, at least 25,000 screening spirometries were performed, and about 80,000 hospital records were checked. The most effective way of recruiting subjects was to screen subjects by spirometry after mass media campaigns (eight out of nine countries). Others used workplace screenings and different types of population survey, and only a few centres successfully recruited participants by hospital records. Inclusion criteria were slightly changed upon low initial accrual rate. Initial surveys in one country, where 2405 subjects were screened by spirometry, gave an important indication for the change of the inclusion criteria. Extension of the upper age limit from 60 to 65 yr considerably improved recruitment, as did a change of the upper limit of FEV1 from below 80% predicted normal to below 100% predicted normal, while maintaining the FEV1/VC ratio below 70%. A tremendous effort is needed to recruit individuals with preclinical COPD, but this is certainly feasible with adequate strategies adjusted to each country.
Taylor, H H; Leelapiyanart, N
2001-03-01
Heterozius rotundifrons and Cyclograpsus lavauxi are crabs of similar size, whose intertidal habitats overlap. They differ in the number and size of their eggs. A 2 g ovigerous H. rotundifrons incubates 675 large yolky eggs (mean single-egg mass 269 microg; egg clutch 9.15 % of mass of female crab; increasing to 435 microg and 13.4 % at hatching). The egg clutch of a 2 g C. lavauxi is larger (15.4 % of crab mass increasing to 18.9 % at hatching) and contains more numerous (28 000), smaller (10.9 microg increasing to 20.3 microg) eggs. The longer development time of the larger eggs (194 days versus 56 days at 15 degrees C) results from a delayed increase in metabolic rate (diapause) and not metabolic scaling. On the basis of the total mass of single eggs, the mass-specific metabolic rates of early embryonic stages of H. rotundifrons (0.72 micromol g(-1 )h(-1) for the blastula stage at 15 degrees C) and C. lavauxi (1.13 micromol g(-1 )h(-1)) were similar to those of the adult female crabs (0.70 micromol g(-1 )h(-1) for H. rotundifrons and 0.91 micromol g(-1 )h(-1) for C. lavauxi) and increased 13- and 10-fold, respectively, by the time of hatching. Thus, early embryonic metabolic rates were much lower than expected from their mass, but the metabolic rates of pre-hatching embryos were consistent with the allometry of juveniles and adults. Possible interpretations of this apparently anomalous scaling of embryonic metabolic rates are discussed. Mass-specific rates of oxygen consumption by ovigerous females (including the eggs) of both species were higher than for non-ovigerous crabs, in water and in air, and increased greatly during the development of the eggs. This difference was attributable mainly to the increasing metabolic rates of the attached embryos, but early ovigerous crabs (blastula stage) of both species also demonstrated a small elevation in metabolic rate by the crab itself, i.e. a metabolic cost of egg-bearing. In contrast, the elevation of the rate of oxygen consumption by late ovigerous females of C. lavauxi was less than predicted from the metabolic rate of eggs in a stirred respirometer. This suggests that, towards the end of development in C. lavauxi, the oxygen supply to the eggs in situ may be diffusion-limited by unstirred layers, an effect not observed for the larger eggs and more open egg clutch of H. rotundifrons. The cost of development, in terms of total oxygen consumption of single eggs, from extrusion to hatching, was 3.34 micromol O2 (approximately 1.5 J) for H. rotundifrons and 0.105 micromol O2 (approximately 0.05 J) for C. lavauxi. This 30-fold ratio approximates the ratios of their initial masses and yolk contents but represents only approximately one-third of the initial energy contents of the eggs.
NASA Technical Reports Server (NTRS)
Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary
2015-01-01
Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive cyclogenesis and hurricane force wind events. Currently, forecasters at WPC/OPC are evaluating the Air Mass RGB imagery in conjunction with the AIRS total column ozone to aid forecasting cyclogenesis and high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. To address this limitation, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air on the Air Mass RGB. This presentation describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the Air Mass RGB product for the unique forecast challenges WPC/OPC face. Additionally examples of CrIS ozone and anomaly products will be shown to further demonstrate the utility and capability of JPSS in forecasting unique events.
LEO P: AN UNQUENCHED VERY LOW-MASS GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle
Leo P is a low-luminosity dwarf galaxy discovered through the blind H i Arecibo Legacy Fast ALFA survey. The H i and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with active star formation, an underlying older population, and an extremely low oxygen abundance. We have obtained optical imaging with the Hubble Space Telescope to two magnitudes below the red clump in order to study the evolution of Leo P. We refine the distance measurement to Leo P to be 1.62 ± 0.15 Mpc, based on the luminosity of the horizontal branch stars and 10more » newly identified RR Lyrae candidates. This places the galaxy at the edge of the Local Group, ∼0.4 Mpc from Sextans B, the nearest galaxy in the NGC 3109 association of dwarf galaxies of which Leo P is clearly a member. The star responsible for ionizing the H ii region is most likely an O7V or O8V spectral type, with a stellar mass ≳25 M{sub ⊙}. The presence of this star provides observational evidence that massive stars at the upper end of the initial mass function are capable of being formed at star formation rates as low as ∼10{sup −5} M{sub ⊙} yr{sup −1}. The best-fitting star formation history (SFH) derived from the resolved stellar populations of Leo P using the latest PARSEC models shows a relatively constant star formation rate over the lifetime of the galaxy. The modeled luminosity characteristics of Leo P at early times are consistent with low-luminosity dSph Milky Way satellites, suggesting that Leo P is what a low-mass dSph would look like if it evolved in isolation and retained its gas. Despite the very low mass of Leo P, the imprint of reionization on its SFH is subtle at best, and consistent with being totally negligible. The isolation of Leo P, and the total quenching of star formation of Milky Way satellites of similar mass, implies that the local environment dominates the quenching of the Milky Way satellites.« less
NASA Astrophysics Data System (ADS)
Alton, Padraig D.; Smith, Russell J.; Lucey, John R.
2017-06-01
The heavyweight stellar initial mass function (IMF) observed in the cores of massive early-type galaxies (ETGs) has been linked to formation of their cores in an initial swiftly quenched rapid starburst. However, the outskirts of ETGs are thought to be assembled via the slow accumulation of smaller systems in which the star formation is less extreme; this suggests that the form of the IMF should exhibit a radial trend in ETGs. Here, we report radial stellar population gradients out to the half-light radii of a sample of eight nearby ETGs. Spatially resolved spectroscopy at 0.8-1.35 μm from the Very Large Telescope's K-band Multi-Object Spectrograph instrument was used to measure radial trends in the strengths of a variety of IMF-sensitive absorption features (including some which are previously unexplored). We find weak or no radial variation in some of these which, given a radial IMF trend, ought to vary measurably, e.g. for the Wing-Ford band, we measure a gradient of +0.06 ± 0.04 per decade in radius. Using stellar population models to fit stacked and individual spectra, we infer that the measured radial changes in absorption feature strengths are primarily accounted for by abundance gradients, which are fairly consistent across our sample (e.g. we derive an average [Na/H] gradient of -0.53 ± 0.07). The inferred contribution of dwarf stars to the total light typically corresponds to a bottom-heavy IMF, but we find no evidence for radial IMF variations in the majority of our sample galaxies.
Growth and evolution of satellites in a Jovian massive disc
NASA Astrophysics Data System (ADS)
Moraes, R. A.; Kley, W.; Vieira Neto, E.
2018-03-01
The formation of satellite systems in circum-planetary discs is considered to be similar to the formation of rocky planets in a proto-planetary disc, especially super-Earths. Thus, it is possible to use systems with large satellites to test formation theories that are also applicable to extrasolar planets. Furthermore, a better understanding of the origin of satellites might yield important information about the environment near the growing planet during the last stages of planet formation. In this work, we investigate the formation and migration of the Jovian satellites through N-body simulations. We simulated a massive, static, low-viscosity, circum-planetary disc in agreement with the minimum mass sub-nebula model prescriptions for its total mass. In hydrodynamic simulations, we found no signs of gaps, therefore type II migration is not expected. Hence, we used analytic prescriptions for type I migration, eccentricity and inclination damping, and performed N-body simulations with damping forces added. Detailed parameter studies showed that the number of final satellites is strong influenced by the initial distribution of embryos, the disc temperature, and the initial gas density profile. For steeper initial density profiles, it is possible to form systems with multiple satellites in resonance while a flatter profile favours the formation of satellites close to the region of the Galilean satellites. We show that the formation of massive satellites such as Ganymede and Callisto can be achieved for hotter discs with an aspect ratio of H/r ˜ 0.15 for which the ice line was located around 30RJ.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1440-000] Electricity MASS, LLC; Supplemental Notice that Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Electricity...
Nuclear and Non-Nuclear Airblast Effects.
1984-02-14
algorithms. 2 The above methodologr has been applied to a series of test prorlems initiated by a spherical high- explosive (HE) detonation In air . An...used, together with a real- air equation of state, to follow the development of an explosion initialized with the 1-kton standard as it reflects from the...interior. Stage (1) is not contained in our model; since the weapon mass greatly exceeds the ,mass of air contained within the initial explosion radius
Massive star formation by accretion. I. Disc accretion
NASA Astrophysics Data System (ADS)
Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.
2016-01-01
Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the mass that is accreted onto the star should represent a decreasing fraction of the mass outflows when the mass of the accreting object increases. In other words, the accretion efficiency (mass effectively accreted onto the star with respect to the total in falling matter) decreases when the mass of the star increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahnke, Knud; Cisternas, Mauricio; Inskip, Katherine
2009-12-01
We constrain the ratio of black hole (BH) mass to total stellar mass of type-1 active galactic nuclei (AGNs) in the COSMOS survey at 1 < z < 2. For 10 AGNs at mean redshift z approx 1.4 with both Hubble Space Telescope (HST)/ACS and HST/NICMOS imaging data, we are able to compute the total stellar mass M {sub *,total}, based on rest-frame UV-to-optical host galaxy colors which constrain mass-to-light ratios. All objects have virial M {sub BH} estimates available from the COSMOS Magellan/IMACS and zCOSMOS surveys. We find within errors zero difference between the M {sub BH}-M {sub *,total}more » relation at z approx 1.4 and the M {sub BH}-M {sub *,bulge} relation in the local universe. Our interpretation is (1) if our objects were purely bulge-dominated, the M {sub BH}-M {sub *,bulge} relation has not evolved since z approx 1.4. However, (2) since we have evidence for substantial disk components, the bulges of massive galaxies (M {sub *,total} = 11.1 +- 0.3 or log M {sub BH} approx 8.3 +- 0.2) must have grown over the last 9 Gyr predominantly by redistribution of the disk into the bulge mass. Since all necessary stellar mass exists in galaxies at z = 1.4, no star formation or addition of external stellar material is required, but only a redistribution, e.g., induced by minor and major merging or through disk instabilities. Merging, in addition to redistributing mass in the galaxy, will add both BH and stellar/bulge mass, but does not change the overall final M {sub BH}/M {sub *,bulge} ratio. Since the overall cosmic stellar and BH mass buildup trace each other tightly over time, our scenario of bulge formation in massive galaxies is independent of any strong BH feedback and means that the mechanism coupling BH and bulge mass until the present is very indirect.« less
Gu, Jie-mei; Xiao, Wen-jin; He, Jin-wei; Zhang, Hao; Hu, Wei-wei; Hu, Yun-qiu; Li, Miao; Liu, Yu-juan; Fu, Wen-zhen; Yu, Jin-bo; Gao, Gao; Yue, Hua; Ke, Yao-hua; Zhang, Zhen-lin
2009-12-01
The goal of this study was to determine whether polymorphisms in the vitamin D receptor (VDR) and estrogen receptor alpha (ESR1) genes are associated with variations of peak bone mineral density (BMD) and obesity phenotypes in young Chinese men. A total of 1215 subjects from 400 Chinese nuclear families were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele-specific multiple PCR (ASM-PCR) analysis at the ApaI, FokI, and CDX2 sites in the VDR gene and the PvuII and XbaI sites in the ESR1 gene. BMD at the lumbar spine and hip, total fat mass, and total lean mass were measured using dual energy X-ray absorptiometry. The associations between VDR and ESR1 gene polymorphisms with peak BMD, body mass index (BMI), total fat mass, total lean mass, and percentage fat mass (PFM) were determined using quantitative transmission disequilibrium tests (QTDTs). Using QTDTs, no significant within-family associations were obtained between genotypes or haplotypes of the VDR and ESR1 genes and peak BMD. For the obesity phenotypes, the within-family associations were significant between CDX2 genotypes and BMI (P=0.046), fat mass (P=0.004), and PFM (P=0.020). Further, PvuII was significantly associated with the variation of fat mass and PFM (P=0.002 and P=0.039, respectively). A subsequent 1000 permutations were in agreement with these within-family association results. Our findings showed that VDR and ESR1 polymorphisms were associated with total fat mass in young Chinese men, but we failed to find a significant association between VDR and ESR1 genotypes and peak BMD. These findings suggested that the VDR and ESR1 genes are quantitative trait loci (QTL) underlying fat mass variation in young Chinese men.
Adiabatic invariants in stellar dynamics, 3: Application to globular cluster evolution
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
The previous two companion papers demonstrate that slowly varying perturbations may not result in adiabatic cutoffs and provide a formalism for computing the long-term effects of time-dependent perturbations on stellar systems. Here, the theory is implemented in a Fokker-Planck code and a suite of runs illustrating the effects of shock heating on globular cluster evolution are described. Shock heating alone results in considerable mass loss for clusters with R(sub g) less than or approximately 8 kpc: a concentration c = 1.5 cluster with R(sub g) kpc loses up to 95% of its initial mass in 15 Gyr. Only those with concentration c greater than or approximately 1.3 survive disk shocks inside of this radius. Other effects, such as mass loss by stellar evolution, will decrease this survival bound. Loss of the initial halo together with mass segregation leads to mass spectral indices, x, which may be considerably larger than their initial values.
Evaporation of planetary atmospheres due to XUV illumination by quasars
NASA Astrophysics Data System (ADS)
Forbes, John C.; Loeb, Abraham
2018-06-01
Planetary atmospheres are subject to mass loss through a variety of mechanisms including irradiation by XUV photons from their host star. Here we explore the consequences of XUV irradiation by supermassive black holes as they grow by the accretion of gas in galactic nuclei. Based on the mass distribution of stars in galactic bulges and disks and the luminosity history of individual black holes, we estimate the probability distribution function of XUV fluences as a function of galaxy halo mass, redshift, and stellar component. We find that about 50% of all planets in the universe may lose a mass of hydrogen of ˜2.5 × 1019 g (the total mass of the Martian atmosphere), 10% may lose ˜5.1 × 1021 g (the total mass of Earth's atmosphere), and 0.2% may lose ˜1.4 × 1024 g (the total mass of Earth's oceans). The fractions are appreciably higher in the spheroidal components of galaxies, and depend strongly on galaxy mass, but only weakly on redshift.
Lyra, Arthur; Bonfitto, Alexandre José; Barbosa, Vera Lucia P; Bezerra, Ana Cristina; Longui, Carlos Alberto; Monte, Osmar; Kochi, Cristiane
2015-01-01
To compare the body composition of overweight children and adolescents by bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA) before and after physical activity program. One hundred and eleven patients with mean age (SD) of 12 (1.9) participated in the study. We assessed the weight, height, waist circumference (WC), and body composition by DXA and BIA. Patients underwent a program of diet and physical activity (1 h 30 min/day, 3 times a week for 3 months) and were evaluated before and after this period. Mean initial zBMI were 2.3 (0.5) and waist SDS 5.9 (1.8). Significant differences were observed when we compared the measurements taken by DXA and BIA, respectively: total body fat percentage (40 and 31.5) and fat-free mass (43.1 and 50.6 kg). Regarding the trunk fat by DXA, there was a positive correlation with the WC/height ratio (r = 0.65; p < 0.01). After the intervention period, we observed a reduction in the zBMI, waist SDS, and total body fat and increase of fat-free mass by DXA. BIA only detected reduction in fat. BIA underestimates the percentage of fat and overestimates fat-free mass in relation to DXA. There is positive correlation between trunk fat and the ratio WC/height. In addition, DXA detected changes in body composition induced by a short period of physical training, unlike BIA. © 2014 S. Karger AG, Basel.
Galactic Dark Matter Halos and Globular Cluster Populations. III. Extension to Extreme Environments
NASA Astrophysics Data System (ADS)
Harris, William E.; Blakeslee, John P.; Harris, Gretchen L. H.
2017-02-01
The total mass {M}{GCS} in the globular cluster (GC) system of a galaxy is empirically a near-constant fraction of the total mass {M}h\\equiv {M}{bary}+{M}{dark} of the galaxy across a range of 105 in galaxy mass. This trend is radically unlike the strongly nonlinear behavior of total stellar mass M ⋆ versus M h . We discuss extensions of this trend to two more extreme situations: (a) entire clusters of galaxies and (b) the ultra-diffuse galaxies (UDGs) recently discovered in Coma and elsewhere. Our calibration of the ratio {η }M={M}{GCS}/{M}h from normal galaxies, accounting for new revisions in the adopted mass-to-light ratio for GCs, now gives {η }M=2.9× {10}-5 as the mean absolute mass fraction. We find that the same ratio appears valid for galaxy clusters and UDGs. Estimates of {η }M in the four clusters we examine tend to be slightly higher than for individual galaxies, but more data and better constraints on the mean GC mass in such systems are needed to determine if this difference is significant. We use the constancy of {η }M to estimate total masses for several individual cases; for example, the total mass of the Milky Way is calculated to be {M}h=1.1× {10}12 {M}⊙ . Physical explanations for the uniformity of {η }M are still descriptive, but point to a picture in which massive dense star clusters in their formation stages were relatively immune to the feedback that more strongly influenced lower-density regions where most stars form.
Maillard, Florie; Pereira, Bruno; Boisseau, Nathalie
2018-02-01
High-intensity interval training (HIIT) is promoted as a time-efficient strategy to improve body composition. The aim of this meta-analysis was to assess the efficacy of HIIT in reducing total, abdominal, and visceral fat mass in normal-weight and overweight/obese adults. Electronic databases were searched to identify all related articles on HIIT and fat mass. Stratified analysis was performed using the nature of HIIT (cycling versus running, target intensity), sex and/or body weight, and the methods of measuring body composition. Heterogeneity was also determined RESULTS: A total of 39 studies involving 617 subjects were included (mean age 38.8 years ± 14.4, 52% females). HIIT significantly reduced total (p = 0.003), abdominal (p = 0.007), and visceral (p = 0.018) fat mass, with no differences between the sexes. A comparison showed that running was more effective than cycling in reducing total and visceral fat mass. High-intensity (above 90% peak heart rate) training was more successful in reducing whole body adiposity, while lower intensities had a greater effect on changes in abdominal and visceral fat mass. Our analysis also indicated that only computed tomography scan or magnetic resonance imaging showed significant abdominal and/or visceral fat-mass loss after HIIT interventions. HIIT is a time-efficient strategy to decrease fat-mass deposits, including those of abdominal and visceral fat mass. There was some evidence of the greater effectiveness of HIIT running versus cycling, but owing to the wide variety of protocols used and the lack of full details about cycling training, further comparisons need to be made. Large, multicenter, prospective studies are required to establish the best HIIT protocols for reducing fat mass according to subject characteristics.
Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.
NASA Astrophysics Data System (ADS)
Guzik, Joyce Ann
1988-06-01
L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present. The ratio of stars to stellar remnants and the white dwarf age distribution may prove valuable in distinguishing between explanations for the observed bimodal present-day stellar mass function.
Dörenkamp, Sarah; Mesters, Ilse; de Bie, Rob; Teijink, Joep; van Breukelen, Gerard
2016-01-01
The aim of this study is to investigate the association between age, gender, body-mass index, smoking behavior, orthopedic comorbidity, neurologic comorbidity, cardiac comorbidity, vascular comorbidity, pulmonic comorbidity, internal comorbidity and Initial Claudication Distance during and after Supervised Exercise Therapy at 1, 3, 6 and 12 months in a large sample of patients with Intermittent Claudication. Data was prospectively collected in standard physiotherapy care. Patients received Supervised Exercise Therapy according to the guideline Intermittent Claudication of the Royal Dutch Society for Physiotherapy. Three-level mixed linear regression analysis was carried out to analyze the association between patient characteristics, comorbidities and Initial Claudication Distance at 1, 3, 6 and 12 months. Data from 2995 patients was analyzed. Results showed that being female, advanced age and a high body-mass index were associated with lower Initial Claudication Distance at all-time points (p = 0.000). Besides, a negative association between cardiac comorbidity and Initial Claudication Distance was revealed (p = 0.011). The interaction time by age, time by body-mass index and time by vascular comorbidity were significantly associated with Initial Claudication Distance (p≤ 0.05). Per year increase in age (range: 33-93 years), the reduction in Initial Claudication Distance was 8m after 12 months of Supervised Exercise Therapy. One unit increase in body-mass index (range: 16-44 kg/m2) led to 10 m less improvement in Initial Claudication Distance after 12 months and for vascular comorbidity the reduction in improvement was 85 m after 12 months. This study reveals that females, patients at advanced age, patients with a high body-mass index and cardiac comorbidity are more likely to show less improvement in Initial Claudication Distances (ICD) after 1, 3, 6 and 12 months of Supervised Exercise Therapy. Further research should elucidate treatment adaptations that optimize treatment outcomes for these subgroups.
Sharma, Anjali; Tian, Fang; Yin, Michael T; Keller, Marla J; Cohen, Mardge; Tien, Phyllis C
2012-12-01
To understand how regional body composition affects bone mineral density (BMD) in HIV-infected and HIV-uninfected women. Dual energy x-ray absorptiometry was used to measure regional lean and fat mass and BMD at lumbar spine (LS), total hip (TH), and femoral neck (FN) in 318 HIV-infected and 122 HIV-uninfected Women's Interagency HIV Study participants at baseline and 2 and 5 years later. Total lean and fat mass were measured using bioimpedance analysis. Multivariate marginal linear regression models assessed the association of HIV status and body composition on BMD change. Compared with HIV-uninfected women, HIV-infected women were older (44 vs. 37 years), more likely to be Hepatitis C virus-infected (32% vs. 14%), and postmenopausal (26% vs. 3%) and had lower baseline total fat mass, trunk fat, and leg fat. In multivariate models, increased total lean mass was independently associated with increased BMD at LS, TH, and FN, and total fat mass was associated with increased BMD at TH and FN (all P < 0.05). When total fat was replaced in multivariate models with trunk fat and leg fat, increased trunk fat (and not leg fat) was associated with increased TH and FN BMD (P < 0.001). Total fat and lean mass are strong independent predictors of TH and FN BMD, and lean mass was associated with greater LS BMD. Regardless of HIV status, greater trunk fat (and not leg fat) was associated with increased TH and FN BMD, suggesting that weight-bearing fat may be a more important predictor of BMD in the hip.
[Laparoscopic adjustable gastric-banding treatment for morbid obesity our first year experience].
Iordache, N; Vizeteu, R; Iorgulescu, A; Zmeu, B; Iordache, M
2003-01-01
The authors present the results of a prospective study regarding their 1st year experience in laparoscopic adjustable gastric banding (LABG), which included 21 patients (5 males, 16 females), with an average age of 39 (between 20-53 years). The follow up was made at one and six months postoperative. The medium weight was 138 kg (between 95-172 kg), with a medium excess of body mass of 66.89 kg (extremes between 27.75 and 104 kg). The medium BMI (body mass index) was 48.9 (extremes: 34.5-66), 8 patients being superobese (BMI > 50). The average operating time was 120 min, all operations were finished laparosopically. Postoperative complications were: total disfagia (1 case), parietal suppuration (2 cases) and partial intragastric migration of the prosthesis (1 case). There were no deceased patients. The medium excess of body mass at 6 months after surgery was 46.57 (only 13 patients evaluated in this interval). After 6 months postoperative the comorbidities were healed at half of the patients. Although we do not benefit of a long time follow up, the favorable initial results permits us to state that LABG must find its place in the efforts of struggling against obesity and its consequences.
B+ L violation at colliders and new physics
NASA Astrophysics Data System (ADS)
Cerdeño, David G.; Reimitz, Peter; Sakurai, Kazuki; Tamarit, Carlos
2018-04-01
Chiral electroweak anomalies predict baryon ( B) and lepton ( L) violating fermion interactions, which can be dressed with large numbers of Higgs and gauge bosons. The estimation of the total B + L-violating rate from an initial two-particle state — potentially observable at colliders — has been the subject of an intense discussion, mainly centered on the resummation of boson emission, which is believed to contribute to the cross-section with an exponential function of the energy, yet with an exponent (the "holy-grail" function) which is not fully known in the energy range of interest. In this article we focus instead on the effect of fermions beyond the Standard-Model (SM) in the polynomial contributions to the rate. It is shown that B + L processes involving the new fermions have a polynomial contribution that can be several orders of magnitude greater than in the SM, for high centre-of-mass energies and light enough masses. We also present calculations that hint at a simple dependence of the holy grail function on the heavy fermion masses. Thus, if anomalous B + L violating interactions are ever detected at high-energy colliders, they could be associated with new physics.
Submillimeter studies of main-sequence stars
NASA Technical Reports Server (NTRS)
Zuckerman, B.; Becklin, E. E.
1993-01-01
JCMT maps of the 800-micron emission from Vega, Fomalhaut, and Beta Pictoris are interpreted to indicate that they are not ringed by large reservoirs of distant orbiting dust particles that are too cold to have been detected by IRAS. A search for 800-micron emission from stars in the Pleiades and Ursa Majoris open clusters is reported. In comparison with the mass of dust particles near T Tauri and Herbig Ae stars, the JCMT data indicate a decline in dust mass during the initial 3 x 10 exp 8 yr that a star spends on the main sequence that is at least as rapid as (time) exp -2. It is estimated that in the Kuiper belt the ratio of total mass carried by small particles to that carried by comets is orders of magnitude smaller than this ratio is 1 AU from the sun. If 800-micron opacities calculated by Pollack et al. (1993) are correct, then the particles with radii less than 100 microns that dominate the FIR fluxes measured by IRAS cannot entirely account for the measured 800-micron fluxes at Vega, Beta Pic, and Fomalhaut; larger particles must be present as well.
Atmospheric particulate emissions from dry abrasive blasting using coal slag.
Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya
2006-08-01
Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.
Kim, Seungsuk
2017-08-01
[Purpose] This study aimed to analyze the effects of complex training on carbon monoxide, cardiorespiratory function, and body mass among college students with the highest smoking rate among all age group. [Subjects and Methods] A total of 40 college students voluntarily participated in this study. All subjects smoked and were randomly divided into two groups: the experimental group (N=20) and the control group (N=20). The experimental group underwent complex training (30 min of training five times a week for 12 weeks) while the control group did not participate in such training. The complex training consisted of two parts: aerobic exercise (walking and running) and resistance exercise (weight training). [Results] Two-way ANOVA with repeated measures revealed significant interactions among CO, VO2max, HRmax, VEmax, body fat, and skeletal muscle mass, indicating that the changes were significantly different among groups. [Conclusion] A 12 week of complex physical exercise program would be an effective way to support a stop-smoking campaign as it quickly eliminates CO from the body and improves cardiorespiratory function and body condition.
Integrated propulsion for near-Earth space missions. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.
1981-01-01
Tradeoffs between electric propulsion system mass ratio and transfer time from LEO to GEO were conducted parametrically for various thruster efficiency, specific impulse, and other propulsion parameters. A computer model was developed for performing orbit transfer calculations which included the effects of aerodynamic drag, radiation degradation, and occultation. The tradeoff results showed that thruster technology areas for integrated propulsion should be directed towards improving primary thruster efficiency in the range from 1500 to 2500 seconds, and be continued towards reducing specific mass. Comparison of auxiliary propulsion systems showed large total propellant mass savings with integrated electric auxiliary propulsion. Stationkeeping is the most demanding on orbit propulsion requirement. At area densities above 0.5 sq m/kg, East-West stationkeeping requirements from solar pressure exceed North-South stationkeeping requirements from gravitational forces. A solar array pointing strategy was developed to minimize the effects of atmospheric drag at low altitude, enabling electric propulsion to initiate orbit transfer at Shuttle's maximum cargo carrying altitude. Gravity gradient torques are used during ascent to sustain the spacecraft roll motion required for optimum solar array illumination. A near optimum cover glass thickness of 6 mils was established for LEO to GEO transfer.
Selvam, Ammaiyappan; Xu, Delin; Zhao, Zhenyong; Wong, Jonathan W C
2012-12-01
This study monitored the abundance of antibiotic resistant genes (ARGs) and the bacterial diversity during composting of swine manure spiked with chlortetracycline, sulfadiazine and ciprofloxacin at two different levels and a control without antibiotics. Resistance genes of tetracycline (tetQ, tetW, tetC, tetG, tetZ and tetY), sulfonamide (sul1, sul2, dfrA1 and dfrA7) and fluoroquinolone (gyrA and parC) represented 0.02-1.91%, 0.67-10.28% and 0.00005-0.0002%, respectively, of the total 16S rDNA copies in the initial composting mass. After 28-42 days of composting, these ARGs, except parC, were undetectable in the composting mass indicating that composting is a potential method of manure management. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis of bacterial 16S rDNA of the composting mass indicated that the addition of antibiotics up to 100, 20 and 20mg/kg of chlortetracycline, sulfadiazine and ciprofloxacin, respectively, elicited only a transient perturbation and the bacterial diversity was restored in due course of composting. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grillo, C.; Christensen, L.; Gallazzi, A.; Rasmussen, J.
2013-08-01
We investigate the total and baryonic mass distributions in deflector number 31 (CSWA 31) of the Cambridge And Sloan Survey Of Wide ARcs in the skY (CASSOWARY). We confirm spectroscopically a four-image lensing system at redshift 1.4870 with Very Large Telescope/X-shooter observations. The lensed images are distributed around a bright early-type galaxy at redshift 0.683, surrounded by several smaller galaxies at similar photometric redshifts. We use available optical and X-ray data to constrain the deflector total, stellar and hot gas mass through, respectively, strong lensing, stellar population analysis and plasma modelling. We derive a total mass projected within the Einstein radius REin = 70 kpc of (40 ± 1) × 1012 M⊙, and a central logarithmic slope of -1.7 ± 0.2 for the total mass density. Despite a very high stellar mass and velocity dispersion of the central galaxy of (3 ± 1) × 1012 M⊙ and (450 ± 80) km s-1, respectively, the cumulative stellar-to-total mass profile of the deflector implies a remarkably low stellar mass fraction of 20 per cent (3-6 per cent) in projection within the central galaxy effective radius Re = 25 kpc (R = 100 kpc). We also find that the CSWA 31 deflector has properties suggesting it to be among the most distant and massive fossil systems studied so far. The unusually strong central dark matter dominance and the possible fossil nature of this system render it an interesting target for detailed tests of cosmological models and structure formation scenarios.
Xiao, Manqiu; Dong, Shanshan; Li, Zhaolei; Tang, Xu; Chen, Yi; Yang, Shengmao; Wu, Chunyan; Ouyang, Dongxin; Fang, Changming; Song, Zhiping
2015-12-01
Rice is the staple diet of over half of the world's population and Bacillus thuringiensis (Bt) rice expressing insecticidal Cry proteins is ready for deployment. An assessment of the potential impact of Bt rice on the soil ecosystem under varied field management practices is urgently required. We used litter bags to assess the residue (leaves, stems and roots) decomposition dynamics of two transgenic rice lines (Kefeng6 and Kefeng8) containing stacked genes from Bt and sck (a modified CpTI gene encoding a cowpea trypsin inhibitor) (Bt/CpTI), a non-transgenic rice near-isoline (Minghui86), wild rice (Oryza rufipogon) and crop-wild Bt rice hybrid under contrasting conditions (drainage or continuous flooding) in the field. No significant difference was detected in the remaining mass, total C and total N among cultivars under aerobic conditions, whereas significant differences in the remaining mass and total C were detected between Kefeng6 and Kefeng8 and Minghui86 under the flooded condition. A higher decomposition rate constant (km) was measured under the flooded condition compared with the aerobic condition for leaf residues, whereas the reverse was observed for root residues. The enzyme-linked immunosorbent assay (ELISA), which was used to monitor the changes in the Cry1Ac protein in Bt rice residues, indicated that (1) the degradation of the Cry1Ac protein under both conditions best fit first-order kinetics, and the predicted DT50 (50% degradation time) of the Cry1Ac protein ranged from 3.6 to 32.5 days; (2) the Cry1Ac protein in the residue degraded relatively faster under aerobic conditions; and (3) by the end of the study (~154 days), the protein was present at a low concentration in the remaining residues under both conditions. The degradation rate constant was negatively correlated with the initial carbon content and positively correlated with the initial Cry1Ac protein concentration, but it was only correlated with the mass decomposition rate constants under the flooded condition. No Cry1Ac protein was detected in the soils surrounding the buried residue. Our results did not reveal any evidence that the stacked genes (Bt/CpTI) or the presence of the Cry1Ac protein influenced the decomposition dynamics of the rice residues. Furthermore, our results suggested that field drainage after residue incorporation would promote Cry1Ac protein degradation. Copyright © 2015 Elsevier Inc. All rights reserved.
GASPS—A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
NASA Astrophysics Data System (ADS)
Dent, W. R. F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.; Brittain, S.; Carmona, A.; Ciardi, D.; Danchi, W.; Donaldson, J.; Duchene, G.; Eiroa, C.; Fedele, D.; Grady, C.; de Gregorio-Molsalvo, I.; Howard, C.; Huélamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mathews, G.; Meeus, G.; Mendigutía, I.; Montesinos, B.; Morales-Calderon, M.; Mora, A.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Pinte, C.; Podio, L.; Ramsay, S. K.; Riaz, B.; Riviere-Marichalar, P.; Roberge, A.; Sandell, G.; Solano, E.; Tilling, I.; Torrelles, J. M.; Vandenbusche, B.; Vicente, S.; White, G. J.; Woitke, P.
2013-05-01
We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted ~250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 μm the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 μm, [CII] at 157 μm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 μm. Additionally, GASPS included continuum photometry at 70, 100 and 160 μm, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 μm was the brightest line seen in almost all objects, by a factor of ~10. Overall [OI]63 μm detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI]63 μm detection of ~10-5 Msolar. Normalising to a distance of 140 pc, 84% of objects with dust masses >=10-5 Msolar can be detected in this line in the present survey; 32% of those of mass 10-6-10-5 Msolar, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were ~50%. For each association in the 5-20 Myr age range, ~2 stars remain detectable in [OI]63 μm, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that ~18% of stars retain a gas-rich disk of total mass ~1 MJupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 μm, [CII]157 μm and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
Intermediate to low-mass stellar content of Westerlund 1
NASA Astrophysics Data System (ADS)
Brandner, W.; Clark, J. S.; Stolte, A.; Waters, R.; Negueruela, I.; Goodwin, S. P.
2008-01-01
We have analysed near-infrared NTT/SofI observations of the starburst cluster Westerlund 1, which is among the most massive young clusters in the Milky Way. A comparison of colour-magnitude diagrams with theoretical main-sequence and pre-main sequence evolutionary tracks yields improved extinction and distance estimates of AKs = 1.13 ± 0.03 mag and d = 3.55 ± 0.17 kpc (DM = 12.75 ± 0.10 mag). The pre-main sequence population is best fit by a Palla & Stahler isochrone for an age of 3.2 Myr, while the main sequence population is in agreement with a cluster age of 3 to 5 Myr. An analysis of the structural parameters of the cluster yields that the half-mass radius of the cluster population increases towards lower mass, indicative of the presence of mass segregation. The cluster is clearly elongated with an eccentricity of 0.20 for stars with masses between 10 and 32 M_⊙, and 0.15 for stars with masses in the range 3 to 10 M_⊙. We derive the slope of the stellar mass function for stars with masses between 3.4 and 27 M_⊙. In an annulus with radii between 0.75 and 1.5 pc from the cluster centre, we obtain a slope of Γ = -1.3. Closer in, the mass function of Westerlund 1 is shallower with Γ = -0.6. The extrapolation of the mass function for stars with masses from 0.08 to 120 M_⊙ yields an initial total stellar mass of ≈52 000 M_⊙, and a present-day mass of 20 000 to 45 000 M_⊙ (about 10 times the stellar mass of the Orion nebula cluster, and 2 to 4 times the mass of the NGC 3603 young cluster), indicating that Westerlund 1 is the most massive starburst cluster identified to date in the Milky Way. Based on observations collected at the European Southern Observatory, La Silla, Chile, and retrieved from the ESO archive (Prog ID 67.C-0514).
X-Ray Scaling Relations of Early-type Galaxies
NASA Astrophysics Data System (ADS)
Babyk, Iu. V.; McNamara, B. R.; Nulsen, P. E. J.; Hogan, M. T.; Vantyghem, A. N.; Russell, H. R.; Pulido, F. A.; Edge, A. C.
2018-04-01
X-ray luminosity, temperature, gas mass, total mass, and their scaling relations are derived for 94 early-type galaxies (ETGs) using archival Chandra X-ray Observatory observations. Consistent with earlier studies, the scaling relations, L X ∝ T 4.5±0.2, M ∝ T 2.4±0.2, and L X ∝ M 2.8±0.3, are significantly steeper than expected from self-similarity. This steepening indicates that their atmospheres are heated above the level expected from gravitational infall alone. Energetic feedback from nuclear black holes and supernova explosions are likely heating agents. The tight L X –T correlation for low-luminosity systems (i.e., below 1040 erg s‑1) are at variance with hydrodynamical simulations, which generally predict higher temperatures for low-luminosity galaxies. We also investigate the relationship between total mass and pressure, Y X = M g × T, finding M\\propto {Y}X0.45+/- 0.04. We explore the gas mass to total mass fraction in ETGs and find a range of 0.1%–1.0%. We find no correlation between the gas-to-total mass fraction with temperature or total mass. Higher stellar velocity dispersions and higher metallicities are found in hotter, brighter, and more massive atmospheres. X-ray core radii derived from β-model fitting are used to characterize the degree of core and cuspiness of hot atmospheres.
Black hole genesis of dark matter
NASA Astrophysics Data System (ADS)
Lennon, Olivier; March-Russell, John; Petrossian-Byrne, Rudin; Tillim, Hannah
2018-04-01
We present a purely gravitational infra-red-calculable production mechanism for dark matter (DM) . The source of both the DM relic abundance and the hot Standard Model (SM) plasma is a primordial density of micro black holes (BHs), which evaporate via Hawking emission into both the dark and SM sectors. The mechanism has four qualitatively different regimes depending upon whether the BH evaporation is 'fast' or 'slow' relative to the initial Hubble rate, and whether the mass of the DM particle is 'light' or 'heavy' compared to the initial BH temperature. For each of these regimes we calculate the DM yield, Y, as a function of the initial state and DM mass and spin. In the 'slow' regime Y depends on only the initial BH mass over a wide range of initial conditions, including scenarios where the BHs are a small fraction of the initial energy density. The DM is produced with a highly non-thermal energy spectrum, leading in the 'light' DM mass regime (~260 eV and above depending on DM spin) to a strong constraint from free-streaming, but also possible observational signatures in structure formation in the spin 3/2 and 2 cases. The 'heavy' regime (~1.2 × 108 GeV to MPl depending on spin) is free of these constraints and provides new possibilities for DM detection. In all cases there is a dark radiation component predicted.
Numerical black hole initial data with low eccentricity based on post-Newtonian orbital parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walther, Benny; Bruegmann, Bernd; Mueller, Doreen
2009-06-15
Black hole binaries on noneccentric orbits form an important subclass of gravitational wave sources, but it is a nontrivial issue to construct numerical initial data with minimal initial eccentricity for numerical simulations. We compute post-Newtonian orbital parameters for quasispherical orbits using the method of Buonanno, Chen and Damour, (2006) and examine the resulting eccentricity in numerical simulations. Four different methods are studied resulting from the choice of Taylor-expanded or effective-one-body Hamiltonians, and from two choices for the energy flux. For equal-mass, nonspinning binaries the approach succeeds in obtaining low-eccentricity numerical initial data with an eccentricity of about e=0.002 for rathermore » small initial separations of D > or approx. 10M. The eccentricity increases for unequal masses and for spinning black holes, but remains smaller than that obtained from previous post-Newtonian approaches. The effective-one-body Hamiltonian offers advantages for decreasing initial separation as expected, but in the context of this study also performs significantly better than the Taylor-expanded Hamiltonian for binaries with spin. For mass ratio 4 ratio 1 and vanishing spin, the eccentricity reaches e=0.004. For mass ratio 1 ratio 1 and aligned spins of size 0.85M{sup 2} the eccentricity is about e=0.07 for the Taylor method and e=0.014 for the effective-one-body method.« less
Centennial-scale records of total organic carbon in sediment cores from the South Yellow Sea, China
NASA Astrophysics Data System (ADS)
Zhu, Qing; Lin, Jia; Hong, Yuehui; Yuan, Lirong; Liu, Jinzhong; Xu, Xiaoming; Wang, Jianghai
2018-01-01
Global carbon cycling is a significant factor that controls climate change. The centennial-scale variations in total organic carbon (TOC) contents and its sources in marginal sea sediments may reflect the influence of human activities on global climate change. In this study, two fine-grained sediment cores from the Yellow Sea Cold Water Mass of the South Yellow Sea were used to systematically determine TOC contents and stable carbon isotope ratios. These results were combined with previous data of black carbon and 210Pb dating from which we reconstructed the centennial-scale initial sequences of TOC, terrigenous TOC (TOCter) and marine autogenous TOC (TOCmar) after selecting suitable models to correct the measured TOC (TOCcor). These sequences showed that the TOCter decreased with time in the both cores while the TOCmar increased, particularly the rapid growth in core H43 since the late 1960s. According to the correlation between the Huanghe (Yellow) River discharge and the TOCcor, TOCter, or TOCmar, we found that the TOCter in the two cores mainly derived from the Huanghe River and was transported by it, and that higher Huanghe River discharge could strengthen the decomposition of TOCmar. The newly obtained initial TOC sequences provide important insights into the interaction between human activities and natural processes.
29 CFR 4219.11 - Withdrawal liability upon mass withdrawal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 9 2010-07-01 2010-07-01 false Withdrawal liability upon mass withdrawal. 4219.11 Section... Redetermination of Withdrawal Liability Upon Mass Withdrawal § 4219.11 Withdrawal liability upon mass withdrawal. (a) Initial withdrawal liability. The plan sponsor of a multiemployer plan that experiences a mass...
29 CFR 4219.11 - Withdrawal liability upon mass withdrawal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 9 2011-07-01 2011-07-01 false Withdrawal liability upon mass withdrawal. 4219.11 Section... Redetermination of Withdrawal Liability Upon Mass Withdrawal § 4219.11 Withdrawal liability upon mass withdrawal. (a) Initial withdrawal liability. The plan sponsor of a multiemployer plan that experiences a mass...
Optical Searches for Baryonic Dark Matter
NASA Astrophysics Data System (ADS)
Graff, David Steven
1997-08-01
Microlensing results suggest that a good fraction of the halo is composed of massive chunks (0.1-1 Msolar) called MACHOs. I examine several optical searches for dim stars to constrain the local density of MACHOs. These searches show that (1) there are few red dwarfs in the galactic halo, and (2) they suggest that there are few brown dwarfs. I also find that (3) there may be sufficiently many white dwarfs in the halo to account for the microlensing results, but only if certain interesting conditions are met. (1) I examine a deep search for halo red dwarfs (Bahcall, Flynn, Gould & Kirhakos 1994). Using new stellar models and parallax observations of low mass, low metallicity stars, I find the halo red dwarf density to be <1% of the halo, while my best estimate of this value is 0.14-0.37%. (2) I derive mass functions (MF) for halo red dwarfs (the faintest hydrogen burning stars) and then extrapolate to place limits on the total mass of halo brown dwarfs (stars not quite massive enough to burn hydrogen). I find that the MF for halo red dwarfs cannot rise more quickly than 1/m2 as one approaches the hydrogen burning limit. Using recent results from star formation theory, I extrapolate the MF into the brown-dwarf regime. Likely extrapolations imply that the total mass of brown dwarfs in the halo is less than ~3% of the local mass density of the halo (~0.3% for the more realistic models I consider). My limits apply to brown dwarfs in the halo that come from the same stellar population as the red dwarfs. (3) A ground based search by Liebert, Dahn & Monet (1988) and a search of the Hubble Deep Field by Flynn, Bahcall & Gould (1996) have found no evidence for a substantial halo population of white dwarfs, implying that the putative halo population is either dim enough or sparse enough to elude detection. I use white dwarf luminosity functions calculated from various main sequence progenitor mass functions to re-examine the implications of these searches in light of recent microlensing results. I show that the minimum age of the white dwarf population depends upon assumptions regarding the initial mass function, atmospheric composition, and their total density. When I compare various theoretical white dwarf luminosity functions in which I vary these three parameters with the non detections of Liebert et al. and Flynn et al., I conclude that if white dwarfs constitute a significant portion of the halo then (I) the Universe must be 11 Gyr old and (II) they must have helium dominated atmospheres. Thus, white dwarfs could be the MACHOs and could make a significant contribution to galactic dark matter.
Peters, R; van Duin, M; Tonoli, D; Kwakkenbos, G; Mengerink, Y; van Benthem, R A T M; de Koster, C G; Schoenmakers, P J; van der Wal, Sj
2008-08-08
The dicumyl-peroxide-initiated addition and combination reactions of mixtures of alkanes (n-octane, n-decane) and alkenes [5,6-dihydrodicyclopentadiene (DCPDH), 5-ethylidene-2-norbornane (ENBH) and 5-vinylidene-2-norbornane (VNBH)] were studied to mimic the peroxide cross-linking reactions of terpolymerised ethylene, propylene and a diene monomer (EPDM). The reaction products of the mixtures were separated by both gas chromatography (GC) and comprehensive two-dimensional gas chromatography (GCxGC). The separated compounds were identified from their mass spectra and their GC and GCxGC elution pattern. Quantification of the various alkyl/alkyl, alkyl/allyl and allyl/allyl combination products shows that allylic-radicals comprise approximately 60% of the substrate radicals formed. The total concentration of the products formed by combination is found to be independent of the concentration and the type of alkene. The total concentration of the products formed by addition to the alkene increases with increasing concentration of alkene. In addition, the total concentration of the formed addition products depends strongly on the type of the alkene used, viz. VNBH>ENBH approximately DCPDH, which is a consequence of differences in steric hindrance of the unsaturation. The peroxide curing efficiency, defined as the number of moles of cross-linked products formed per mol of peroxide, is 173% using 9% (w/w) 5-vinylidene-2-norbornane (VNBH). This indicates that the addition reaction is recurrent. All these findings are consistent with experimental studies on peroxide curing of EPDM rubber. In addition, the present results provide more-detailed structural information, increasing the understanding of the mechanism of peroxide curing of EPDM. The described approach to use low-molecular-weight model compounds followed by GC-mass spectrometry (MS) and GCxGC-MS analysis is proven to be a very powerful tool to study the cross-linking of EPDM.
Beskind, Daniel L; Stolz, Uwe; Thiede, Rebecca; Hoyer, Riley; Robertson, Whitney; Brown, Jeffrey; Ludgate, Melissa; Tiutan, Timothy; Shane, Romy; McMorrow, Deven; Pleasants, Michael; Kern, Karl B; Panchal, Ashish R
2017-09-01
CPR training at mass gathering events is an important part of health initiatives to improve cardiac arrest survival. However, it is unclear whether training lay bystanders using an ultra-brief video at a mass gathering event improves CPR quality and responsiveness. To determine if showing a chest-compression only (CCO) Ultra-Brief Video (UBV) at a mass gathering event is effective in teaching lay bystanders CCO-CPR. Prospective control trial in adults (age >18) who attended either a women's University of Arizona or a men's Phoenix Suns basketball game. Participants were evaluated using a standardized cardiac arrest scenario with Laerdal Skillreporter™ mannequins. CPR responsiveness (calling 911, time to calling 911, starting compressions within two minutes) and quality (compression rate, depth, hands-off time) were assessed for participants and data collected at Baseline and Post-intervention. Different participants were tested before and after the exposure of the UBV. Data were analyzed via the intention to treat principle using logistic regression for binary outcomes and median regression for continuous outcomes, controlling for clustering by venue. A total of 96 people were consented (Baseline=45; Post intervention=51). CPR responsiveness post intervention improved with faster time to calling 911 (s) and time to starting compressions (sec). Likewise, CPR quality improved with deeper compressions and improved hands-off time. Showing a UBV at a mass gathering sporting event is associated with improved CPR responsiveness and performance for lay bystanders. This data provides further support for the use of mass media interventions. Copyright © 2017 Elsevier B.V. All rights reserved.
Formation of stellar clusters in magnetized, filamentary infrared dark clouds
NASA Astrophysics Data System (ADS)
Li, Pak Shing; Klein, Richard I.; McKee, Christopher F.
2018-01-01
Star formation in a filamentary infrared dark cloud (IRDC) is simulated over the dynamic range of 4.2 pc to 28 au for a period of 3.5 × 105 yr, including magnetic fields and both radiative and outflow feedback from the protostars. At the end of the simulation, the star formation efficiency is 4.3 per cent and the star formation rate per free-fall time is εff ≃ 0.04, within the range of observed values. The total stellar mass increases as ∼t2, whereas the number of protostars increases as ∼t1.5. We find that the density profile around most of the simulated protostars is ∼ρ ∝ r-1.5. At the end of the simulation, the protostellar mass function approaches the Chabrier stellar initial mass function. We infer that the time to form a star of median mass 0.2 M⊙ is about 1.4 × 105 yr from the median mass accretion rate. We find good agreement among the protostellar luminosities observed in the large sample of Dunham et al., our simulation and a theoretical estimate, and we conclude that the classical protostellar luminosity problem is resolved. The multiplicity of the stellar systems in the simulation agrees, to within a factor of 2, with observations of Class I young stellar objects; most of the simulated multiple systems are unbound. Bipolar protostellar outflows are launched using a subgrid model, and extend up to 1 pc from their host star. The mass-velocity relation of the simulated outflows is consistent with both observation and theory.
The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature
Gonzalez‐Freire, Marta; Semba, Richard D.; Ubaida‐Mohien, Ceereena; Fabbri, Elisa; Scalzo, Paul; Højlund, Kurt; Dufresne, Craig; Lyashkov, Alexey
2016-01-01
Abstract Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer‐reviewed studies was performed using PubMed. Search terms included ‘human’, ‘skeletal muscle’, ‘proteome’, ‘proteomic(s)’, and ‘mass spectrometry’, ‘liquid chromatography‐mass spectrometry (LC‐MS/MS)’. A catalogue of 5431 non‐redundant muscle proteins identified by mass spectrometry‐based proteomics from 38 peer‐reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry‐based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment. PMID:27897395
Nanostructure-initiator mass spectrometry biometrics
Leclerc, Marion; Bowen, Benjamin; Northen, Trent
2015-09-08
Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdogan, Deha; Delden, Otto M. van; Busch, Olivier R. C.
2007-11-15
Hepatocellular adenomas (HCAs) are benign liver lesions which may be complicated by spontaneous intratumoral bleeding, with or without rupture into the abdominal cavity, or malignant degeneration. Recent advances in radiological interventional techniques now offer selective transcatheter arterial embolization (TAE) as an alternative approach to surgery as the initial treatment to stop the bleeding or as an elective treatment to reduce the tumor mass of the HCA. Herein, we report our initial experience using TAE in the management of HCA. Five female patients and one male patient presented with spontaneous hemorrhage of HCA. Four patients were initially treated with selective TAEmore » to stop the bleeding. In two patients in whom the bleeding stopped spontaneously, TAE was electively undertaken 1 year after presentation to reduce the tumor mass of HCAs >5 cm. Selective TAE as initial treatment in patients with spontaneous bleeding of HCA with or without rupture is effective and will change the need for urgent laparotomy to control bleeding. Selective TAE may also be used as an elective treatment to reduce the tumor mass of larger HCAs.« less
Leiomyoma originating from axilla: A rare case report and differential diagnosis.
Kim, Ho Jun; Baek, Sang Oon; Rha, Eun Young; Lee, Jun Yong; Han, Hyun Ho
2016-07-01
Leiomyoma is a form of benign tumor originated in hypertrophy of the smooth muscles, which is most prevalent in the uterus and gastrointestinal tract. However, Leiomyoma originating from smooth muscle at the vessels lying on deep soft tissue is very rare. Our case was a rare case of leiomyoma originating from the axillary region, which was initially diagnosed as a fibroadenoma on radiological examination. The mass was separated from surrounding tissues and totally resected. Pathologically, hematoxylin-eosin-stained biopsy tissue showed the typical findings of leiomyoma. Postoperative follow-up observation was done for 1 year, without any complications or recurrence. Notably, a leiomyoma in the axillary region is difficult to differentiate from other benign or malignant tumors on preoperative radiological examinations such as ultrasonography or computed tomgraphy. Therefore, when an indefinite asymptomatic mass that is not lymphadenopathy or common benign tumor is identified in the axillary region, leiomyoma can be considered as one of the differential diagnoses.
Observing gravitational-wave transient GW150914 with minimal assumptions
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chatterji, S.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clark, M.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Haas, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinder, I.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Laguna, P.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Page, J.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-06-01
The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of ˜600 Mpc . In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of ˜30 M⊙ and a total mass before merger of ˜70 M⊙ in the detector frame.
Torres-Sepúlveda, María del Rosario; Martínez-de Villarreal, Laura E; Esmer, Carmen; González-Alanís, Rogerio; Ruiz-Herrera, Consuelo; Sánchez-Peña, Alejandra; Mendoza-Cruz, José Alberto; Villarreal-Pérez, Jesús Z
2008-01-01
To initiate a statewide expanded metabolic screening program in neonates with the purpose of identifying the most common inborn errors of metabolism. From March 2002 through February 2004, a blood sample was obtained between 24 and 48 hours after delivery from every consecutive child born in public hospitals in Nuevo León. It was spotted on filter paper and analyzed by tandem mass spectrometry for expanded metabolic screening. A total of 42 264 samples were analyzed. Were obtained seven positive results, one for each disorder: homocystinuria, hyperphenylalaninemia, citrulinemia, transient tyrosinemia, 3-methylcrotonyl CoA carboxylase deficiency, 3-hydroxy-3-methylglutaryl CoA deficiency, and classic galactosemia. The estimated incidence of inborn errors of metabolism is 1:5 000, with a false positive rate of 0.22%. The program permitted the identification of metabolic disorders in the newborn, allowing an early intervention and prevention of life-threatening events and permanent neurological damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, R.; Adachi, I.; Aihara, H.
The inclusive cross sections for dihadrons of charged pions and kaons (e +e - → hhX) in electronpositron annihilation are reported. They are obtained as a function of the total fractional energy and invariant mass for any di-hadron combination in the same hemisphere as defined by the thrust event-shape variable and its axis. Since same-hemisphere dihadrons can be assumed to originate predominantly from the same initial parton, di-hadron fragmentation functions are probed. These di-hadron fragmentationfunctions are needed as an unpolarized baseline in order to quantitatively understand related spindependent measurements in other processes and to apply them to the extraction ofmore » quark transversity distribution functions in the nucleon. The di-hadron cross sections are obtained from a 655 fb -1 data sample collected at or near the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e +e - collider.« less
NASA Technical Reports Server (NTRS)
Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray
1992-01-01
Controlled Ecological Life Support System (CELSS) technology is critical to the Space Exploration Initiative. NASA's Kennedy Space Center has been performing CELSS research for several years, developing data related to CELSS design. We have developed OCAM (Object-oriented CELSS Analysis and Modeling), a CELSS modeling tool, and have used this tool to evaluate CELSS concepts, using this data. In using OCAM, a CELSS is broken down into components, and each component is modeled as a combination of containers, converters, and gates which store, process, and exchange carbon, hydrogen, and oxygen on a daily basis. Multiple crops and plant types can be simulated. Resource recovery options modeled include combustion, leaching, enzyme treatment, aerobic or anaerobic digestion, and mushroom and fish growth. Results include printouts and time-history graphs of total system mass, biomass, carbon dioxide, and oxygen quantities; energy consumption; and manpower requirements. The contributions of mass, energy, and manpower to system cost have been analyzed to compare configurations and determine appropriate research directions.
RCB stars from double degenerate white dwarf mergers
NASA Astrophysics Data System (ADS)
Staff, Jan; Wiggins, Brandon K.; Marcello, Dominic; Motl, Patrick; Clayton, Geoffrey C.
2018-01-01
We have conducted grid based and SPH based hydrodynamic simulations of white dwarf mergers, to investigate the role of dredge-up and mixing during the merger. The goal is to test if sufficiently little 16O can be brought up to the surface to explain the observed 16O to 18O ratio of order unity found in RCB stars. In all simulations, the total mass is ~< 1 M⊙. By initializing both the grid based and the SPH simulations with the same setup, we can compare the results from these different methods. In most of the simulations, more than 0.01 M⊙ of 16O is brought up to the surface. Hence a similar mass of 18O must be produced in order to explain the observed oxygen ratio. However,in SPH simulations where the accretor is a hybrid He/CO white dwarf, much less 16O is brought to the surface, making this an excellent candidate for the progenitor of RCB stars.
Segregation for reduction of regulated medical waste in the operating room: a case report
Shinn, Helen Ki; Kim, Byung-Gun; Yang, Chunwoo; Na, WonJu; Song, Jang-Ho
2017-01-01
One-third of all hospital-regulated medical waste (RMW) comes from the operating room (OR), and it considerably consists of disposable packaging and wrapping materials for the sterilization of surgical instruments. This study sought to identify the amount and type of waste produced by ORs in order to reduce the RMW so as to achieve environmentally-friendly waste management in the OR. We performed an initial waste segregation of 4 total knee replacement arthroplasties (TKRAs) and 1 total hip replacement arthroplasty, and later of 1 extra TKRA, 1 laparoscopic anterior resection of the colon, and 1 pelviscopy (with radical vaginal hysterectomy), performed at our OR. The total mass of non-regulated medical waste (non-RMW) and blue wrap amounted to 30.5 kg (24.9%), and that of RMW to 92.1 kg (75.1%). In the course of the study, we noted that the non-RMW included recyclables, such as papers, plastics, cardboards, and various wrapping materials. The study showed that a reduction in RMW generation can be achieved through the systematic segregation of OR waste. PMID:28184276
Marks, Michael; Sokana, Oliver; Nachamkin, Eli; Puiahi, Elliot; Kilua, Georgina; Pillay, Allan; Bottomley, Christian; Solomon, Anthony W; Mabey, David C
2016-08-01
Both yaws and trachoma are endemic in the Pacific. Mass treatment with azithromycin is the mainstay of the WHO strategy for both the eradication of yaws and the elimination of trachoma as a public health problem, but the dose recommended for trachoma is lower than that for yaws. In countries where both diseases are endemic, there is a potential for synergy between yaws and trachoma control programs if mass treatment with the lower dose of azithromycin was shown to be effective for the treatment of yaws. In an earlier study, we demonstrated a profound reduction in the clinical and serological prevalence of yaws following a single round of mass treatment with azithromycin 20 mg/kg undertaken for the purposes of trachoma elimination. This survey was conducted 18 months following a single round of azithromycin mass treatment in the same communities in which we had conducted our previous six-month follow-up survey. We examined children aged 1-14 years and took blood and lesion samples for yaws diagnosis using the Treponema pallidum particle agglutination assay (TPPA) and the non-treponemal Rapid Plasma Reagin (RPR) test. A total of 1,284 children were enrolled in the study. Amongst children aged 5-14 years, 223 had a positive TPPA (27.5%, 95% CI 13.6-47.7%). The TPPA seroprevalence amongst this age group did not differ significantly from either our pre-mass treatment survey or our initial follow-up survey. Thirty-five children had positive TPPA and positive RPR (4.3%, 95% CI 2.1-8.7%), and this did not differ significantly from our initial post-mass drug administration (MDA) follow-up survey (4.3% versus 3.5%, p = 0.43) but remained significantly lower than our initial pre-MDA survey (4.3% vs 21.7%, p <0.0001). Village-level MDA coverage was strongly associated with dual-seropositivity (p = 0.005). Amongst children aged 1-4 years, 16 had a positive TPPA (3.5%, 95% CI 1.6-7.1%). This did not differ significantly from the seroprevalence in this age group that had been predicted based on our previous surveys (3.5% vs 5%, p = 0.11). Fourteen children (1.1%) were considered to have a skin lesion clinically consistent with yaws, but none of these individuals was seropositive for yaws. Of nine cases where a swab could be collected for PCR, all were negative for Treponema pallidum subsp. pertenue DNA. In this study we have shown that the benefit of a single round of mass treatment with azithromycin 20mg/kg appears to extend to 18 months without any further intervention. The lack of a significant change in seroprevalence from 6 to 18 months after mass treatment might suggest that interventions could be spaced at yearly intervals without a significant loss of impact, and that this might facilitate integration of yaws eradication with other neglected tropical disease (NTD) control programmes. MDA coverage above 90% was associated with significantly better outcomes than coverages lower than this threshold, and strategies to improve coverage at all stages of yaws eradication efforts should be investigated.
Excursion set mass functions for hierarchical Gaussian fluctuations
NASA Technical Reports Server (NTRS)
Bond, J. R.; Kaiser, N.; Cole, S.; Efstathiou, G.
1991-01-01
It is pointed out that most schemes for determining the mass function of virialized objects from the statistics of the initial density perturbation field suffer from the cloud-in-cloud problem of miscounting the number of low-mass clumps, many of which would have been subsumed into larger objects. The paper proposes a solution based on the theory of the excursion sets of F(r, R sub f), the four-dimensional initial density perturbation field smoothed with a continuous hierarchy of filters of radii R sub f.
Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae
NASA Astrophysics Data System (ADS)
Wu, C.; Wang, B.; Liu, D.; Han, Z.
2017-07-01
Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.
Ro, Kyoung S; Szogi, Ariel A; Moore, Philip A
2018-05-12
In-house windrowing between flocks is an emerging sanitary management practice to partially disinfect the built-up litter in broiler houses. However, this practice may also increase ammonia (NH 3 ) emission from the litter due to the increase in litter temperature. The objectives of this study were to develop mathematical models to estimate NH 3 emission rates from broiler houses practicing in-house windrowing between flocks. Equations to estimate mass-transfer areas form different shapes windrowed litter (triangular, rectangular, and semi-cylindrical prisms) were developed. Using these equations, the heights of windrows yielding the smallest mass-transfer area were estimated. Smaller mass-transfer area is preferred as it reduces both emission rates and heat loss. The heights yielding the minimum mass-transfer area were 0.8 and 0.5 m for triangular and rectangular windrows, respectively. Only one height (0.6 m) was theoretically possible for semi-cylindrical windrows because the base and the height were not independent. Mass-transfer areas were integrated with published process-based mathematical models to estimate the total house NH 3 emission rates during in-house windrowing of poultry litter. The NH 3 emission rate change calculated from the integrated model compared well with the observed values except for the very high NH 3 initial emission rate from mechanically disturbing the litter to form the windrows. This approach can be used to conveniently estimate broiler house NH 3 emission rates during in-house windrowing between flocks by simply measuring litter temperatures.
Globular cluster systems as tracers of environmental effects on Virgo early-type dwarfs
NASA Astrophysics Data System (ADS)
Sánchez-Janssen, R.; Aguerri, J. A. L.
2012-08-01
Early-type dwarfs (dEs) are by far the most abundant galaxy population in nearby clusters. Whether these objects are primordial, or the recent end products of the different physical mechanisms that can transform galaxies once they enter these high-density environments, is still a matter of debate. Here we present a novel approach to test these scenarios by comparing the properties of the globular cluster systems (GCSs) of Virgo dEs and their potential progenitors with simple predictions from gravitational and hydrodynamical interaction models. We show that low-mass (M★ ≲ 2 × 108 M⊙) dEs have GCSs consistent with the descendants of gas-stripped late-type dwarfs. On the other hand, higher mass dEs have properties - including the high mass specific frequencies of their GCSs and their concentrated spatial distribution within Virgo - incompatible with a recent, environmentally driven evolution. They mostly comprise nucleated systems, but also dEs with recent star formation and/or disc features. Bright, nucleated dEs appear to be a population that has long resided within the cluster potential well, but have surprisingly managed to retain very rich and spatially extended GCSs - possibly an indication of high total masses. Our analysis does not favour violent evolutionary mechanisms that result in significant stellar mass-losses, but more gentle processes involving gas removal by a combination of internal and external factors, and highlights the relevant role of initial conditions. Additionally, we briefly comment on the origin of luminous cluster S0 galaxies.
Star formation in a hierarchical model for Cloud Complexes
NASA Astrophysics Data System (ADS)
Sanchez, N.; Parravano, A.
The effects of the external and initial conditions on the star formation processes in Molecular Cloud Complexes are examined in the context of a schematic model. The model considers a hierarchical system with five predefined phases: warm gas, neutral gas, low density molecular gas, high density molecular gas and protostars. The model follows the mass evolution of each substructure by computing its mass exchange with their parent and children. The parent-child mass exchange depends on the radiation density at the interphase, which is produced by the radiation coming from the stars that form at the end of the hierarchical structure, and by the external radiation field. The system is chaotic in the sense that its temporal evolution is very sensitive to small changes in the initial or external conditions. However, global features such as the star formation efficience and the Initial Mass Function are less affected by those variations.
NASA Astrophysics Data System (ADS)
Jiang, Dengkai; Chen, Xuefei; Li, Lifang; Han, Zhanwen
2017-11-01
Two blue-straggler sequences discovered in globular cluster M30 provide a strong constraint on the formation mechanisms of blue stragglers. We study the formation of blue-straggler binaries through binary evolution, and find that binary evolution can contribute to the blue stragglers in both of the sequences. Whether a blue-straggler is located in the blue sequence or red sequence depends on the contribution of the mass donor to the total luminosity of the binary, which is generally observed as a single star in globular clusters. The blue stragglers in the blue sequence have a cool white dwarf companion, while the majority (˜60%) of the objects in the red sequence are binaries that are still experiencing mass transfer. However, there are also some objects for which the donors have just finished the mass transfer (the stripped-core stars, ˜10%) or the blue stragglers (the accretors) have evolved away from the blue sequence (˜30%). Meanwhile, W UMa contact binaries found in both sequences may be explained by various mass ratios, that is, W UMa contact binaries in the red sequence have two components with comparable masses (e.g., mass ratio q ˜ 0.3-1.0), while those in the blue sequence have low mass ratios (e.g., q< 0.3). However, the fraction of the blue sequence in M30 cannot be reproduced by binary population synthesis if we assumed the initial parameters of a binary sample to be the same as those of the field. This possibly indicates that dynamical effects on binary systems are very important in globular clusters.
Young Cluster Berkeley 59: Properties, Evolution, and Star Formation
NASA Astrophysics Data System (ADS)
Panwar, Neelam; Pandey, A. K.; Samal, Manash R.; Battinelli, Paolo; Ogura, K.; Ojha, D. K.; Chen, W. P.; Singh, H. P.
2018-01-01
Berkeley 59 is a nearby (∼1 kpc) young cluster associated with the Sh2-171 H II region. We present deep optical observations of the central ∼2.5 × 2.5 pc2 area of the cluster, obtained with the 3.58 m Telescopio Nazionale Galileo. The V/(V–I) color–magnitude diagram manifests a clear pre-main-sequence (PMS) population down to ∼0.2 M ⊙. Using the near-infrared and optical colors of the low-mass PMS members, we derive a global extinction of A V = 4 mag and a mean age of ∼1.8 Myr, respectively, for the cluster. We constructed the initial mass function and found that its global slopes in the mass ranges of 0.2–28 M ⊙ and 0.2–1.5 M ⊙ are ‑1.33 and ‑1.23, respectively, in good agreement with the Salpeter value in the solar neighborhood. We looked for the radial variation of the mass function and found that the slope is flatter in the inner region than in the outer region, indicating mass segregation. The dynamical status of the cluster suggests that the mass segregation is likely primordial. The age distribution of the PMS sources reveals that the younger sources appear to concentrate close to the inner region compared to the outer region of the cluster, a phenomenon possibly linked to the time evolution of star-forming clouds. Within the observed area, we derive a total mass of ∼103 M ⊙ for the cluster. Comparing the properties of Berkeley 59 with other young clusters, we suggest it resembles more closely the Trapezium cluster.
Baryons Matter: Why Luminous Satellite Galaxies have Reduced Central Masses
NASA Astrophysics Data System (ADS)
Zolotov, Adi; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Pontzen, Andrew; Christensen, Charlotte; Dekel, Avishai; Quinn, Tom; Shen, Sijing; Wadsley, James
2012-12-01
Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < MV < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M vir >= 109 M ⊙, M * >= 107 M ⊙) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Way's dwarf satellites.
Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81
NASA Technical Reports Server (NTRS)
Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.
1995-01-01
Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.
RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashi, Amit; Davidson, Kris; Humphreys, Roberta M., E-mail: kashi@astro.umn.edu
2016-01-20
We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M{sub ⊙} and 120 M{sub ⊙}, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M{sub ⊙} while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is onmore » the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s{sup −1} wind with a mass loss rate that begins around 0.1 M{sub ⊙} yr{sup −1} and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M{sub ⊙} and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.« less
NASA Astrophysics Data System (ADS)
Lugaro, Maria; Karakas, Amanda I.; Pető, Mária; Plachy, Emese
2018-01-01
We compare literature data for the isotopic ratios of Zr, Sr, and Ba from analysis of single meteoritic stardust silicon carbide (SiC) grains to new predictions for the slow neutron-capture process (the s process) in metal-rich asymptotic giant branch (AGB) stars. The models have initial metallicities Z = 0.014 (solar) and Z = 0.03 (twice-solar) and initial masses 2-4.5 M⊙ , selected such as the condition C/O > 1 for the formation of SiC is achieved. Because of the higher Fe abundance, the twice-solar metallicity models result in a lower number of total free neutrons released by the 13C(α ,n)16O neutron source. Furthermore, the highest-mass (4-4.5 M⊙) AGB stars of twice-solar metallicity present a milder activation of the 22Ne(α ,n)25Mg neutron source than their solar metallicity counterparts, due to cooler temperatures resulting from the effect of higher opacities. They also have a lower amount of the 13C neutron source than the lower-mass models, following their smaller He-rich region. The combination of these different effects allows our AGB models of twice-solar metallicity to provide a match to the SiC data without the need to consider large variations in the features of the 13C neutron source nor neutron-capture processes different from the s process. This raises the question if the AGB parent stars of meteoritic SiC grains were in fact on average of twice-solar metallicity. The heavier-than-solar Si and Ti isotopic ratios in the same grains are in qualitative agreement with an origin in stars of super-solar metallicity because of the chemical evolution of the Galaxy. Further, the SiC dust mass ejected from C-rich AGB stars is predicted to significantly increase with increasing the metallicity.
Relationship of obesity with osteoporosis
Zhao, Lan-Juan; Liu, Yong-Jun; Liu, Peng-Yuan; Hamilton, James; Recker, Robert R.; Deng, Hong-Wen
2007-01-01
Context The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. Objective To re-evaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. Methods We measured whole body fat mass, lean mass, percentage fat mass (PFM), body mass index (BMI), and bone mass in two large samples of different ethnicity: 1,988 unrelated Chinese subjects and 4,489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components, with bone mass unadjusted, or adjusted, for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. Results In both Chinese and Caucasians, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or PFM) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight was controlled. Conclusions Increasing fat mass may not have a beneficial effect on bone mass. PMID:17299077
Rübenthaler, J; Paprottka, K; Marcon, J; Hameister, E; Hoffmann, K; Joiko, N; Reiser, M; Clevert, D A
2016-01-01
To compare the sensitivity and specificity of contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) in the evaluation of unclear renal lesions to the histopathological outcome. A total of 36 patients with a single unclear solid renal lesion with initial imaging studies between 2005 and 2015 were included. CEUS and MRI were used for determining malignancy or benignancy and initial findings were correlated with the histopathological outcome. Out of the 36 renal masses a total of 28 lesions were malignant (77.8%) and 8 were found to be benign (22.2%). Diagnostic accuracy was testes by using the histopathological diagnosis as the gold standard. CEUS showed a sensitivity of 96.4%, a specificity of 100.0%, a positive predictive value (PPV) of 100.0% and a negative predictive value (NPV) of 88,9%. MRI showed a sensitivity of 96.4%, a specificity of 75.0%, a PPV of 93.1% and a NPV of 85.7%. Out of the 28 malignant lesions a total of 18 clear cell renal carcinomas, 6 papillary renal cell carcinomas and 4 other malignant lesions, e.g. metastases, were diagnosed. Out of the 8 benign lesions a total 3 angiomyolipomas, 2 oncocytomas, 1 benign renal cyst and 2 other benign lesions, e.g. renal adenomas were diagnosed. Using CEUS, 1 lesion was falsely identified as benign. Using MRI, 2 lesions were falsely identified as benign and 1 lesion was falsely identified as malignant. CEUS is an useful method which can be additionally used to clinically differentiate between malignant and benign renal lesions. CEUS shows a comparable sensitivity, specificity, PPV and NPV to MRI. In daily clinical routine, patients with contraindications for other imaging modalities can particularly benefit using this method.
The impact of nuclear mass models on r-process nucleosynthesis network calculations
NASA Astrophysics Data System (ADS)
Vaughan, Kelly
2002-10-01
An insight into understanding various nucleosynthesis processes is via modelling of the process with network calculations. My project focus is r-process network calculations where the r-process is nucleosynthesis via rapid neutron capture thought to take place in high entropy supernova bubbles. One of the main uncertainties of the simulations is the Nuclear Physics input. My project investigates the role that nuclear masses play in the resulting abundances. The code tecode, involves rapid (n,γ) capture reactions in competition with photodisintegration and β decay onto seed nuclei. In order to fully analyze the effects of nuclear mass models on the relative isotopic abundances, calculations were done from the network code, keeping the initial environmental parameters constant throughout. The supernova model investigated by Qian et al (1996) in which two r-processes, of high and low frequency with seed nucleus ^90Se and of fixed luminosity (fracL_ν_e(0)r_7(0)^2 ˜= 8.77), contribute to the nucleosynthesis of the heavier elements. These two r-processes, however, do not contribute equally to the total abundance observed. The total isotopic abundance produced from both events was therefore calculated using equation refabund. Y(H+L) = fracY(H)+fY(L)f+1 <~belabund where Y(H) denotes the relative isotopic abundance produced in the high frequency event, Y(L) corresponds to the low freqeuncy event and f is the ratio of high event matter to low event matter produced. Having established reliable, fixed parameters, the network code was run using data files containing parameters such as the mass excess, neutron separation energy, β decay rates and neutron capture rates based around three different nuclear mass models. The mass models tested are the HFBCS model (Hartree-Fock BCS) derived from first principles, the ETFSI-Q model (Extended Thomas-Fermi with Strutinsky Integral including shell Quenching) known for its particular successes in the replication of Solar System abundances, and the P-Scheme Model tePscheme. The aims of this research is to test the applicability of the P-Scheme in relation to the other mass models to the r-process network calculations. 02 Pscheme Aprahamian,A., Gadala-Maria,A. & Cuka,N. 1996, Revista Mexicana de Fisica,42,1 code Surman,R. & Engel,J. 1998, Phys.Rev. C,54,4 thebibliography
NASA Astrophysics Data System (ADS)
Takarada, Shinji; Oikawa, Teruki; Furukawa, Ryuta; Hoshizumi, Hideo; Itoh, Jun'ichi; Geshi, Nobuo; Miyagi, Isoji
2016-08-01
The total mass discharged by the phreatic eruption of Ontake Volcano, central Japan, on September 27, 2014, was estimated using several methods. The estimated discharged mass was 1.2 × 106 t (segment integration method), 8.9 × 105 t (Pyle's exponential method), and varied from 8.6 × 103 to 2.5 × 106 t (Hayakawa's single isopach method). The segment integration and Pyle's exponential methods gave similar values. The single isopach method, however, gave a wide range of results depending on which contour was used. Therefore, the total discharged mass of the 2014 eruption is estimated at between 8.9 × 105 and 1.2 × 106 t. More than 90 % of the total mass accumulated within the proximal area. This shows how important it is to include a proximal area field survey for the total mass estimation of phreatic eruptions. A detailed isopleth mass distribution map was prepared covering as far as 85 km from the source. The main ash-fall dispersal was ENE in the proximal and medial areas and E in the distal area. The secondary distribution lobes also extended to the S and NW proximally, reflecting the effects of elutriation ash and surge deposits from pyroclastic density currents during the phreatic eruption. The total discharged mass of the 1979 phreatic eruption was also calculated for comparison. The resulting volume of 1.9 × 106 t (using the segment integration method) indicates that it was about 1.6-2.1 times larger than the 2014 eruption. The estimated average discharged mass flux rate of the 2014 eruption was 1.7 × 108 kg/h and for the 1979 eruption was 1.0 × 108 kg/h. One of the possible reasons for the higher flux rate of the 2014 eruption is the occurrence of pyroclastic density currents at the summit area.