Sample records for total input energy

  1. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    NASA Technical Reports Server (NTRS)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  2. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran.

    PubMed

    Yousefi, Mohammad; Mahdavi Damghani, Abdolmajid; Khoramivafa, Mahmud

    2016-04-01

    The aims of this study were to determine energy requirement and global warming potential (GWP) in low and high input wheat production systems in western of Iran. For this purpose, data were collected from 120 wheat farms applying questionnaires via face-to-face interviews. Results showed that total energy input and output were 60,000 and 180,000 MJ ha(-1) in high input systems and 14,000 and 56,000 MJ ha(-1) in low input wheat production systems, respectively. The highest share of total input energy in high input systems recorded for electricity power, N fertilizer, and diesel fuel with 36, 18, and 13 %, respectively, while the highest share of input energy in low input systems observed for N fertilizer, diesel fuel, and seed with 32, 31, and 27 %. Energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Total CO2, N2O, and CH4 emissions in high input systems were 1981.25, 31.18, and 1.87 kg ha(-1), respectively. These amounts were 699.88, 0.02, and 0.96 kg ha(-1) in low input systems. In high input wheat production systems, total GWP was 11686.63 kg CO2eq ha(-1) wheat. This amount was 725.89 kg CO2eq ha(-1) in low input systems. The results show that 1 ha of high input system will produce greenhouse effect 17 times of low input systems. So, high input production systems need to have an efficient and sustainable management for reducing environmental crises such as change climate.

  3. Fertilizer consumption and energy input for 16 crops in the United States

    USGS Publications Warehouse

    Amenumey, Sheila E.; Capel, Paul D.

    2014-01-01

    Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.

  4. AIRCRAFT REACTOR CONTROL SYSTEM APPLICABLE TO TURBOJET AND TURBOPROP POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorker, G.E.

    1955-07-19

    Control systems proposed for direct cycle nuclear powered aircraft commonly involve control of engine speed, nuclear energy input, and chcmical energy input. A system in which these parameters are controlled by controlling the total energy input, the ratio of nuclear and chemical energy input, and the engine speed is proposed. The system is equally applicable to turbojet or turboprop applications. (auth)

  5. Output from Linear Generator for VIV-driven Buoys

    DTIC Science & Technology

    2014-09-01

    demonstration of VIV-based energy harvesting was accomplished by Bernitsas of Vortex Hydro Energy and their Vortex Induced Vibration Aquatic Clean Energy...the total actuation distance of the force input device was limited to 2.75 inches, a lever arm amplified the stroke input by 4.93X to raise the...magnet plunger ±6.78 inches above and below the horizontal axis (total 13.56-inch stroke distance). The magnet plunger served to drive two 2-inch

  6. The energy balance of the nighttime thermosphere

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.

    1977-01-01

    The discrepancy between the input from the day hemisphere and the observed loss rates is discussed in terms of ion-neutral processes and gravity wave inputs. There has been considerable speculation as to the energy balance of the thermosphere and in particular about the fraction of the total energy input supplied by ultraviolet radiation. The problem is considerably simplified by considering the energy balance of the nighttime hemisphere alone. Sunrise and sunset vapor trail measurements provide data on the wind systems at the terminator boundary, and temperature measurements provide information on the vertical energy conduction. North-south winds from high latitude vapor trail measurements provide a measure of the energy input from auroral processes.

  7. 40 CFR 60.4102 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil-or other fuel.... Total energy input means, with regard to a cogeneration unit, total energy of all forms supplied to the cogeneration unit, excluding energy produced by the cogeneration unit itself. Each form of energy supplied...

  8. 40 CFR 60.4102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil-or other fuel.... Total energy input means, with regard to a cogeneration unit, total energy of all forms supplied to the cogeneration unit, excluding energy produced by the cogeneration unit itself. Each form of energy supplied...

  9. [Energy flow characteristics of the compound agriculture-fruit farming system in Xipo Village, Shaanxi, Northwest China].

    PubMed

    Wu, Fa-Qi; Zhu, Li; Wang, Hong-Hong

    2014-01-01

    Taking the crop-fruit farming system in Xipo Village in Chunhua, Shaanxi Province as a case, the energy flow path, input and output structure, and the indices of energy cycle for the agriculture, fruit, stockbreeding and human subsystems were compared between 2008 and 2010. Results showed that during the study period the total investment to the agriculture-fruit farming system (CAF) decreased by 1.6%, while the total output increased by 56.7%, which led to a 59.4% increase of the output/input ratio. Energy output/input ratio of the agriculture, fruit, stockbreeding, human subsystems increased by 36.6%, 21.0%, 10.0% and 3.8%, respectively. The Xipo Village still needed to stabilize the agriculture, develop stockbreeding and strengthen fruit to upgrade the compound agriculture-fruit farming system.

  10. Observations in energy balance in man during spaceflight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Leach, C. S.; Leonard, J. I.

    1977-01-01

    An investigation was undertaken of the changes in metabolic energy balance which occur in weightlessness. Daily energy intake was determined each day throughout the 28-, 59-, and 84-day flights for each of the nine Skylab astronauts. The energy content of the urine and feces was also measured. Changes in body composition were inferred from measurements of weight, volume, water, and total exchangeable potassium before and after flight. During flight, changes were followed by a daily measurement of body mass and by metabolic balance. Examination of the data reveal losses in body weight during the 1st and 2nd months of flight, a loss in body water and protein during the 1st month and a loss of fat during the 1st, 2nd, and 3rd months of flight. The energy input was about 41.7 kcal/kg per day on the ground, and 43.7 kcal/kg per day after 3 months in space. The increase in net energy input of about 1.6% per month is significant (P less than 0.05). When the net energy input is expressed on the basis of total body potassium, the increase in the resulting normalized net energy input of about 3.7% per month is also significant (P less than 0.05).

  11. Life cycle energy use, costs, and greenhouse gas emission of broiler farms in different production systems in Iran-a case study of Alborz province.

    PubMed

    Pishgar-Komleh, Seyyed Hassan; Akram, Asadollah; Keyhani, Alireza; van Zelm, Rosalie

    2017-07-01

    In order to achieve sustainable development in agriculture, it is necessary to quantify and compare the energy, economic, and environmental aspects of products. This paper studied the energy, economic, and greenhouse gas (GHG) emission patterns in broiler chicken farms in the Alborz province of Iran. We studied the effect of the broiler farm size as different production systems on the energy, economic, and environmental indices. Energy use efficiency (EUE) and benefit-cost ratio (BCR) were 0.16 and 1.11, respectively. Diesel fuel and feed contributed the most in total energy inputs, while feed and chicks were the most important inputs in economic analysis. GHG emission calculations showed that production of 1000 birds produces 19.13 t CO 2-eq and feed had the highest share in total GHG emission. Total GHG emissions based on different functional units were 8.5 t CO 2-eq per t of carcass and 6.83 kg CO 2-eq per kg live weight. Results of farm size effect on EUE revealed that large farms had better energy management. For BCR, there was no significant difference between farms. Lower total GHG emissions were reported for large farms, caused by better management of inputs and fewer bird losses. Large farms with more investment had more efficient equipment, resulting in a decrease of the input consumption. In view of our study, it is recommended to support the small-scale broiler industry by providing subsidies to promote the use of high-efficiency equipment. To decrease the amount of energy usage and GHG emissions, replacing heaters (which use diesel fuel) with natural gas heaters can be considered. In addition to the above recommendations, the use of energy saving light bulbs may reduce broiler farm electricity consumption.

  12. Input design for identification of aircraft stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.; Hall, W. E., Jr.

    1975-01-01

    An approach for designing inputs to identify stability and control derivatives from flight test data is presented. This approach is based on finding inputs which provide the maximum possible accuracy of derivative estimates. Two techniques of input specification are implemented for this objective - a time domain technique and a frequency domain technique. The time domain technique gives the control input time history and can be used for any allowable duration of test maneuver, including those where data lengths can only be of short duration. The frequency domain technique specifies the input frequency spectrum, and is best applied for tests where extended data lengths, much longer than the time constants of the modes of interest, are possible. These technqiues are used to design inputs to identify parameters in longitudinal and lateral linear models of conventional aircraft. The constraints of aircraft response limits, such as on structural loads, are realized indirectly through a total energy constraint on the input. Tests with simulated data and theoretical predictions show that the new approaches give input signals which can provide more accurate parameter estimates than can conventional inputs of the same total energy. Results obtained indicate that the approach has been brought to the point where it should be used on flight tests for further evaluation.

  13. Assessing environmental impacts embodied in manufacturing and labor input for the China-U.S. trade.

    PubMed

    Xu, Ming; Williams, Eric; Allenby, Braden

    2010-01-15

    Previous studies on environmental impacts embodied in trade have paid little attention to the impacts of labor input, or environmental overhead of labor input (EOLI). EOLI occurs to support lifestyles both in the purchase of goods and services and in the consumption of fuels and electricity by workers. This research investigates both supply chain manufacturing and EOLI energy use and carbon dioxide (CO(2)) emissions embodied in the 2002 China-U.S. trade. EOLI is substantial in scale: 24% of manufacturing energy in the U.S. and 6% for China. The higher share of EOLI in the U.S. is the result of higher energy use to support worker lifestyles. Analysis shows China's EOLI is dominated by the manufacturing of products consumed by workers, while EOLI on the U.S. side is primarily from workers' direct consumption. The total manufacturing and EOLI energy and CO(2) embodied in the eastbound trade from China to the U.S. are 6.5 exajoules (EJ) of energy (6% EOLI) and 440 million tons (Mt) of CO(2) (8% EOLI). The total manufacturing and EOLI energy and CO(2) embodied in the westbound trade from the U.S. to China are 424 petajoules (PJ) of energy (19% EOLI) and 25.3 Mt of CO(2) (21% EOLI).

  14. Energy and the food system.

    PubMed

    Woods, Jeremy; Williams, Adrian; Hughes, John K; Black, Mairi; Murphy, Richard

    2010-09-27

    Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources.

  15. Energy and the food system

    PubMed Central

    Woods, Jeremy; Williams, Adrian; Hughes, John K.; Black, Mairi; Murphy, Richard

    2010-01-01

    Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources. PMID:20713398

  16. Jupiter's Auroral Energy Input Observed by Hisaki/EXCEED and its Modulations by Io's Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Tao, C.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Yoshioka, K.; Kita, H.; Yamazaki, A.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.

    2016-12-01

    Aurora is an important indicator representing the momentum transfer from the fast-rotating outer planet to the magnetosphere and the energy input into the atmosphere through the magnetosphere-ionosphere coupling. Long-term monitoring of Jupiter's northern aurora was achieved by the Extreme Ultraviolet (EUV) spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) onboard JAXA's Earth-orbiting planetary space telescope Hisaki until today after its launch in September 2013. We have proceeded the statistical survey of the Jupiter's auroral energy input into the upper atmosphere. The auroral electron energy is estimated using a hydrocarbon color ratio (CR) adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. Temporal dynamic variation of the auroral intensity was detected when Io's volcanic activity and thus EUV emission from the Io plasma torus are enhanced in the early 2015. Average of the total input power over 80 days increases by 10% with sometimes sporadically more than a factor of 3 upto 7, while the CR indicates the auroral electron energy decrease by 20% during the volcanic event compared to the other period. This indicates much more increase in the current system and Joule heating which contributes heating of the upper atmosphere. We will discuss the impact of this event on the upper atmosphere and ionosphere.

  17. Energy accounting of River Severn tidal power schemes

    NASA Astrophysics Data System (ADS)

    Roberts, F.

    1982-07-01

    Energy accounting comparisons are constructed in order to make an economic analysis of three different tidal generating schemes for the Severn River in Britain. The plans included ebb generation, flood generation, and turbine-sluice configurations, and the analysis comprised totaling the energy needed to complete the construction in relation to the projected output. Necessary construction components numbered caissons, shipping locks, embankments, transmission facilities, and turbines, with inputs limited to 1.75%/yr once the installations are completed. The total outputs for the installations were modeled as 12, 18, and 18 TWh/yr, respectively, with a projected lifetime of 120 yr. The least output/input ratio was found to be 10:1, with a highest possible value of 16:1. The energy return is highest with the smallest installation, a factor which is offset by the increased return with larger capacity.

  18. Net energy output from harvesting small-diameter trees using a mechanized system

    Treesearch

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    What amount of extra energy can be generated after subtracting the total energy consumed to produce the biomass energy? Knowing the ratio between energy output and input is a valid question when highly mechanized systems that consume fossil fuels are used to harvest and transport forest biomass for energy. We estimated the net energy generated from mechanical fuel...

  19. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    NASA Astrophysics Data System (ADS)

    Jaffke, Patrick; Möller, Peter; Talou, Patrick; Sierk, Arnold J.

    2018-03-01

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U(nth,f ) and 239Pu(nth,f ) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ -ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicity ν ¯ and the average heavy-fragment mass 〈Ah〉 of the input mass yields ∂ ν ¯/∂ 〈Ah〉 =±0.1 (n /f ) /u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, ν¯T(TKE ) . Typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ ν ¯=4 % for the average prompt neutron multiplicity, δ M ¯γ=1 % for the average prompt γ -ray multiplicity, δ ɛ¯nLAB=1 % for the average outgoing neutron energy, δ ɛ¯γ=1 % for the average γ -ray energy, and δ 〈TKE 〉=0.4 % for the average total kinetic energy of the fission fragments.

  20. 18 CFR 292.205 - Criteria for qualifying cogeneration facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... standard. For any topping-cycle cogeneration facility, the useful thermal energy output of the facility... thermal energy output, during the 12-month period beginning with the date the facility first produces... total energy input of natural gas and oil to the facility; or (B) If the useful thermal energy output is...

  1. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  2. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig Turchi; Guangdong Zhu; Michael Wagner

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant usingmore » the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.« less

  3. Input-output modeling for urban energy consumption in Beijing: dynamics and comparison.

    PubMed

    Zhang, Lixiao; Hu, Qiuhong; Zhang, Fan

    2014-01-01

    Input-output analysis has been proven to be a powerful instrument for estimating embodied (direct plus indirect) energy usage through economic sectors. Using 9 economic input-output tables of years 1987, 1990, 1992, 1995, 1997, 2000, 2002, 2005, and 2007, this paper analyzes energy flows for the entire city of Beijing and its 30 economic sectors, respectively. Results show that the embodied energy consumption of Beijing increased from 38.85 million tonnes of coal equivalent (Mtce) to 206.2 Mtce over the past twenty years of rapid urbanization; the share of indirect energy consumption in total energy consumption increased from 48% to 76%, suggesting the transition of Beijing from a production-based and manufacturing-dominated economy to a consumption-based and service-dominated economy. Real estate development has shown to be a major driving factor of the growth in indirect energy consumption. The boom and bust of construction activities have been strongly correlated with the increase and decrease of system-side indirect energy consumption. Traditional heavy industries remain the most energy-intensive sectors in the economy. However, the transportation and service sectors have contributed most to the rapid increase in overall energy consumption. The analyses in this paper demonstrate that a system-wide approach such as that based on input-output model can be a useful tool for robust energy policy making.

  4. Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison

    PubMed Central

    Zhang, Lixiao; Hu, Qiuhong; Zhang, Fan

    2014-01-01

    Input-output analysis has been proven to be a powerful instrument for estimating embodied (direct plus indirect) energy usage through economic sectors. Using 9 economic input-output tables of years 1987, 1990, 1992, 1995, 1997, 2000, 2002, 2005, and 2007, this paper analyzes energy flows for the entire city of Beijing and its 30 economic sectors, respectively. Results show that the embodied energy consumption of Beijing increased from 38.85 million tonnes of coal equivalent (Mtce) to 206.2 Mtce over the past twenty years of rapid urbanization; the share of indirect energy consumption in total energy consumption increased from 48% to 76%, suggesting the transition of Beijing from a production-based and manufacturing-dominated economy to a consumption-based and service-dominated economy. Real estate development has shown to be a major driving factor of the growth in indirect energy consumption. The boom and bust of construction activities have been strongly correlated with the increase and decrease of system-side indirect energy consumption. Traditional heavy industries remain the most energy-intensive sectors in the economy. However, the transportation and service sectors have contributed most to the rapid increase in overall energy consumption. The analyses in this paper demonstrate that a system-wide approach such as that based on input-output model can be a useful tool for robust energy policy making. PMID:24595199

  5. Energy balance in olive oil farms: comparison of organic and conventional farming systems.

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Meco, Ramón; Moreno, Carmen

    2013-04-01

    The viability of an agricultural production system not only depends on the crop yields, but especially on the efficient use of available resources. However, the current agricultural systems depend heavily on non-renewable energy consumption in the form of fertilizers, fossil fuels, pesticides and machinery. In developed countries, the economic profitability of different productive systems is dependent on the granting of subsidies of diverse origin that affect both production factors (or inputs) and the final product (or output). Leaving such external aids, energy balance analysis reveals the real and most efficient form of management for each agroclimatic region, and is also directly related to the economic activity and the environmental state. In this work we compare the energy balance resulting from organic and conventional olive oil farms under the semi-arid conditions of Central Spain. The results indicate that the mean energy supplied to the organic farms was sensitively lower (about 30%) in comparison with the conventional management, and these differences were more pronounced for the biggest farms (> 15 ha). Mean energy outputs were about 20% lower in the organic system, although organic small farms (< 15 ha) resulted more productive than the conventional small ones. However, these lower outputs were compensated by the major market value obtained from the organic products. Chemical fertilizers and pesticides reached about 60% of the total energy inputs in conventional farming; in the organic farms, however, this ratio scarcely reached 25%. Human labor item only represented a very small amount of the total energy input in both cases (less than 1%). As conclusions, both management systems were efficient from an energy point of view. The value of the organic production should be focused on the environmental benefits it provides, which are not usually considered in the conventional management on not valuing the damage it produces to the environment. Organic farming would improve the energy efficiency in these environmental conditions, offering a sustainable production with minimal inputs.

  6. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less

  7. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    DOE PAGES

    Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John; ...

    2018-03-15

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less

  8. Pluri-energy analysis of livestock systems--a comparison of dairy systems in different territories.

    PubMed

    Vigne, Mathieu; Vayssières, Jonathan; Lecomte, Philippe; Peyraud, Jean-Louis

    2013-09-15

    This paper introduces a generic assessment method called pluri-energy analysis. It aims to assess the types of energy used in agricultural systems and their conversion efficiencies. Four types of energy are considered: fossil energy, gross energy contained in the biomass, energy from human and animal labor and solar energy. The method was applied to compare smallholder low-input dairy-production systems, which are common in developing countries, to the high-input systems encountered in OECD countries. The pluri-energy method is useful for analyzing the functioning of agricultural systems by highlighting their modes of energy management. Since most dairy systems in South Mali (SM) are low-input systems, they are primarily based on solar and labor energy types and do not require substantial fossil-energy inputs to produce milk. Farms in Poitou-Charentes (PC) and Bretagne (BR) show intermediate values of fossil-energy use for milk production, similar to that found in the literature for typical European systems. However, fossil-energy use for milk production is higher on PC than BR farms because of a higher proportion of maize silage in the forage area; grazing pastures are more common on BR farms. Farms on Reunion Island (RI) require a relatively large amount of fossil energy to produce milk, mainly because the island context limits the amount of arable land. Consequently, milk production is based on large imports of concentrated feed with a high fossil-energy cost. The method also enables assessment of fossil-energy-use efficiency in order to increase the performance of biological processes in agricultural systems. Comparing the low-input systems represented by SM to the high-input systems represented by RI, PC and BR, an increase in solar-energy conversion, and thus land productivity, was observed due to intensification via increased fossil-energy use. Conversely, though fossil-energy use at the herd level increased milk productivity, its effect on gross-energy conversion by the herd was less evident. Partitioning the total on-farm gross energy produced among animal co-products (milk, meat and manure) highlights the major functions of SM herds, which are managed to produce organic crop fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks

    NASA Image and Video Library

    2017-09-28

    In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle of Stinger-Ghaffarian Technologies performs spacewalk tool fit-checks of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.

  10. Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks

    NASA Image and Video Library

    2017-09-28

    In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle of Stinger-Ghaffarian Technologies performs a sharp edge inspection of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.

  11. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations--Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; More, Tanaji; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2015-07-01

    The effect of thermal pre-treatment on sludge anaerobic digestion (AD) efficiency was studied at different total solids (TS) concentrations (20.0, 30.0 and 40.0 g TS/L) and digestion times (0, 5, 10, 15, 20 and 30 days) for primary, secondary and mixed wastewater sludge. Moreover, sludge pre-treatment, AD and disposal processes were evaluated based on a mass-energy balance and corresponding greenhouse gas (GHG) emissions. Mass balance revealed that the least quantity of digestate was generated by thermal pre-treated secondary sludge at 30.0 g TS/L. The net energy (energy output-energy input) and energy ratio (energy output/energy input) for thermal pre-treated sludge was greater than control in all cases. The reduced GHG emissions of 73.8 × 10(-3) g CO2/g of total dry solids were observed for the thermal pre-treated secondary sludge at 30.0 g TS/L. Thermal pre-treatment of sludge is energetically beneficial and required less retention time compared to control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  13. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2011-01-01 2011-01-01 false Permanent exemption for certain fuel mixtures containing...

  14. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2012-01-01 2012-01-01 false Permanent exemption for certain fuel mixtures containing...

  15. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2013-01-01 2013-01-01 false Permanent exemption for certain fuel mixtures containing...

  16. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2014-01-01 2014-01-01 false Permanent exemption for certain fuel mixtures containing...

  17. Factor demand in Swedish manufacturing industry with special reference to the demand for energy. Instantaneous adjustment models; some results

    NASA Astrophysics Data System (ADS)

    Sjoeholm, K. R.

    1981-02-01

    The dual approach to the theory of production is used to estimate factor demand functions of the Swedish manufacturing industry. Two approximations of the cost function, the translog and the generalized Leontief models, are used. The price elasticities of the factor demand do not seem to depend on the choice of model. This is at least true as to the sign pattern and as to the inputs capital, labor, total energy and other materials. Total energy is separated into solid fuels, gasoline, fuel oil, electricity and a residual. Fuel oil and electricity are found to be substitutes by both models. Capital and energy are shown to be substitutes. This implies that Swedish industry will save more energy if the capital cost can be reduced. Both models are, in the best versions, able to detect an inappropriate variable. The assumption of perfect competition on the product market, is shown to be inadequate by both models. When this assumption is relaxed, the normal substitution pattern among the inputs is resumed.

  18. Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana.

    PubMed

    Safi, C; Cabas Rodriguez, L; Mulder, W J; Engelen-Smit, N; Spekking, W; van den Broek, L A M; Olivieri, G; Sijtsma, L

    2017-09-01

    Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg -1 biomass ). Enzymatic treatment required low energy input (<0.34kWh.kg -1 biomass ), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg -1 biomass ) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kg Protein -1 in case of HPH, and up to 2-20 €.kg Protein -1 in case of PEF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Method for Evaluating Energy Use of Dishwashers, Clothes Washers, and Clothes Dryers: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastment, M.; Hendron, R.

    Building America teams are researching opportunities to improve energy efficiency for some of the more challenging end-uses, such as lighting (both fixed and occupant-provided), appliances (clothes washer, dishwasher, clothes dryer, refrigerator, and range), and miscellaneous electric loads, which are all heavily dependent on occupant behavior and product choices. These end-uses have grown to be a much more significant fraction of total household energy use (as much as 50% for very efficient homes) as energy efficient homes have become more commonplace through programs such as ENERGY STAR and Building America. As modern appliances become more sophisticated the residential energy analyst ismore » faced with a daunting task in trying to calculate the energy savings of high efficiency appliances. Unfortunately, most whole-building simulation tools do not allow the input of detailed appliance specifications. Using DOE test procedures the method outlined in this paper presents a reasonable way to generate inputs for whole-building energy-simulation tools. The information necessary to generate these inputs is available on Energy-Guide labels, the ENERGY-STAR website, California Energy Commission's Appliance website and manufacturer's literature. Building America has developed a standard method for analyzing the effect of high efficiency appliances on whole-building energy consumption when compared to the Building America's Research Benchmark building.« less

  20. Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks

    NASA Image and Video Library

    2017-09-28

    In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, left, of Stinger-Ghaffarian Technologies, and other payload team members performs spacewalk tool fit-checks of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.

  1. Total & Spectral Solar Irradiance Sensor (TSIS) EVA Tool Fitchecks

    NASA Image and Video Library

    2017-09-28

    In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle of Stinger-Ghaffarian Technologies, and other payload team members performs spacewalk tool fit-checks of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.

  2. Energy-dominated local carbon emissions in Beijing 2007: inventory and input-output analysis.

    PubMed

    Guo, Shan; Liu, J B; Shao, Ling; Li, J S; An, Y R

    2012-01-01

    For greenhouse gas (GHG) emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO(2)-eq, of which energy-related CO(2) emissions comprise 90.49%, non-energy-related CO(2) emissions 6.35%, CH(4) emissions 2.33%, and N(2)O emissions 0.83%, respectively. In terms of energy-related CO(2) emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry) holds the top local emissions embodied in final demand of 1.86E + 07 t CO(2)-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage) and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals). The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO(2)-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers.

  3. Energy-Dominated Local Carbon Emissions in Beijing 2007: Inventory and Input-Output Analysis

    PubMed Central

    Guo, Shan; Liu, J. B.; Shao, Ling; Li, J. S.; An, Y. R.

    2012-01-01

    For greenhouse gas (GHG) emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO2-eq, of which energy-related CO2 emissions comprise 90.49%, non-energy-related CO2 emissions 6.35%, CH4 emissions 2.33%, and N2O emissions 0.83%, respectively. In terms of energy-related CO2 emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry) holds the top local emissions embodied in final demand of 1.86E + 07 t CO2-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage) and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals). The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO2-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers. PMID:23193385

  4. Monitoring the biomechanics of a wheelchair sprinter racing the 100 m final at the 2016 Paralympic Games

    NASA Astrophysics Data System (ADS)

    Barbosa, Tiago M.; Coelho, Eduarda

    2017-07-01

    The aim was to run a case study of the biomechanics of a wheelchair sprinter racing the 100 m final at the 2016 Paralympic Games. Stroke kinematics was measured by video analysis in each 20 m split. Race kinetics was estimated by employing an analytical model that encompasses the computation of the rolling friction, drag, energy output and energy input. A maximal average speed of 6.97 m s-1 was reached in the last split. It was estimated that the contributions of the rolling friction and drag force would account for 54% and 46% of the total resistance at maximal speed, respectively. Energy input and output increased over the event. However, we failed to note a steady state or any impairment of the energy input and output in the last few metres of the race. Data suggest that the 100 m is too short an event for the sprinter to be able to achieve his maximal power in such a distance.

  5. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    ERIC Educational Resources Information Center

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  6. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    PubMed

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  7. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Demonstration and Validation of a Waste-to-Energy Conversion System for Fixed DoD Installations

    DTIC Science & Technology

    2013-09-01

    hydrocarbon HVAC heating, ventilation , and air conditioning HX heat exchanger I/O input/output ISO International Organization for Standardization...DEMONSTRATION In 2011, renewable energy accounted for just 9% of total energy consumption in the United States, and just 5% (or 0.45% overall) of that (477...operations and facilities.3 Facility energy costs accounted for ~21% ($4.1 billion). DoD has made great progress in reducing its energy consumption for

  9. Energy Input Flux in the Global Quiet-Sun Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission,more » and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.« less

  10. Compact millijoule diode-seeded two-stage fiber master oscillator power amplifier using a multipass and forward pumping scheme.

    PubMed

    Lai, Po-Yen; Chang, Chun-Lin; Huang, Sheng-Lung; Chen, Shih-Hung

    2018-05-01

    The multipass scheme for a diode-seeded fiber master oscillator power amplifier with a nanojoule-to-millijoule output energy level at a repetition rate of <100  kHz is numerically analyzed for comparison to an experimental benchmark. For a 6/125 single-mode preamplifier with a small input energy (<1  nJ), there is a significant improvement in the output energy from 0.7% to 80% and 95% of the maximum extractable energy using the double-pass and four-pass schemes, respectively. For a 30/250 large-mode-area power amplifier using the double-pass and forward pumping scheme, the required input energy is decreased from 100 μJ to 18 μJ for millijoule energy extraction with accompanying Stokes waves of less than 10% of the total energy. The system based on the full master oscillator power amplifier configuration with an output energy exceeding millijoule level can be optimally simplified to two stages for commercialization.

  11. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  12. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A computer program to trace seismic ray distribution in complex two-dimensional geological models

    USGS Publications Warehouse

    Yacoub, Nazieh K.; Scott, James H.

    1970-01-01

    A computer program has been developed to trace seismic rays and their amplitudes and energies through complex two-dimensional geological models, for which boundaries between elastic units are defined by a series of digitized X-, Y-coordinate values. Input data for the program includes problem identification, control parameters, model coordinates and elastic parameter for the elastic units. The program evaluates the partitioning of ray amplitude and energy at elastic boundaries, computes the total travel time, total travel distance and other parameters for rays arising at the earth's surface. Instructions are given for punching program control cards and data cards, and for arranging input card decks. An example of printer output for a simple problem is presented. The program is written in FORTRAN IV language. The listing of the program is shown in the Appendix, with an example output from a CDC-6600 computer.

  14. Environmental efficiency of energy, materials, and emissions.

    PubMed

    Yagi, Michiyuki; Fujii, Hidemichi; Hoang, Vincent; Managi, Shunsuke

    2015-09-15

    This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    NASA Technical Reports Server (NTRS)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  16. Using multiple-accumulator CMACs to improve efficiency of the X part of an input-buffered FX correlator

    NASA Astrophysics Data System (ADS)

    Lapshev, Stepan; Hasan, S. M. Rezaul

    2017-04-01

    This paper presents the approach of using complex multiplier-accumulators (CMACs) with multiple accumulators to reduce the total number of memory operations in an input-buffered architecture for the X part of an FX correlator. A processing unit of this architecture uses an array of CMACs that are reused for different groups of baselines. The disadvantage of processing correlations in this way is that each input data sample has to be read multiple times from the memory because each input signal is used in many of these baseline groups. While a one-accumulator CMAC cannot switch to a different baseline until it is finished integrating the current one, a multiple-accumulator CMAC can. Thus, the array of multiple-accumulator CMACs can switch between processing different baselines that share some input signals at any moment to reuse the current data in the processing buffers. In this way significant reductions in the number of memory read operations are achieved with only a few accumulators per CMAC. For example, for a large number of input signals three-accumulator CMACs reduce the total number of memory operations by more than a third. Simulated energy measurements of four VLSI designs in a high-performance 28 nm CMOS technology are presented in this paper to demonstrate that using multiple accumulators can also lead to reduced power dissipation of the processing array. Using three accumulators as opposed to one has been found to reduce the overall energy of 8-bit CMACs by 1.4% through the reduction of the switching activity within their circuits, which is in addition to a more than 30% reduction in the memory.

  17. Effect of gravity waves on the North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2017-04-01

    The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.

  18. Optimization of a hybrid electric power system design for large commercial buildings: An application design guide

    NASA Astrophysics Data System (ADS)

    Lee, Keun

    Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals with the optimization of the hybrid system design (which consists of PV panels and/or wind turbines and/or storage devices for building applications) by developing an algorithm designed to make the system cost effective and energy efficient. Input data includes electrical load demand profile of the buildings, buildings' structural and geographical characteristics, real time pricing of electricity, and the costs of hybrid systems and storage devices. When the electrical load demand profile of a building that is being studied is available, a measured demand profile is directly used as input data. However, if that information is not available, a building's electric load demand is estimated using a developed algorithm based on three large data sources from a public domain, and used as input data. Using the acquired input data, the algorithm of this research is designed and programmed in order to determine the size of renewable components and to minimize the total yearly net cost. This dissertation also addresses the parametric sensitivity analysis to determine which factors are more significant and are expected to produce useful guidelines in the decision making process. An engineered and more practical, simplified solution has been provided for the optimized design process.

  19. Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks

    NASA Image and Video Library

    2017-09-28

    In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, left, of Stinger-Ghaffarian Technologies performs a sharp edge inspection of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. Hardcastle is joined by Dwayne Swieter, right, a TSIS-1 payload team member from the Laboratory for Atmospheric and Space Physics, a Research Institute at the University of Colorado (Boulder). TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.

  20. Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks

    NASA Image and Video Library

    2017-09-28

    In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, right, of Stinger-Ghaffarian Technologies performs a sharp edge inspection of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. Hardcastle is joined by Norm Perish, left, a TSIS-1 payload team member from the Laboratory for Atmospheric and Space Physics, a Research Institute at the University of Colorado (Boulder). TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.

  1. Water footprint and carbon footprint of the energy consumption in sunflower agroecosystems.

    PubMed

    Yousefi, Mohammad; Khoramivafa, Mahmud; Damghani, Abdolmajid Mahdavi

    2017-08-01

    The aims of this study were to assess the energy requirements, carbon footprint, and water footprint of sunflower production in Kermanshah province, western Iran. Data were collected from 70 sunflower production agroecosystems which were selected based on random sampling method in summer 2012. Results indicated that total input and output energy in sunflower production were 26,973.87 and 64,833.92 MJha -1 , respectively. The highest share of total input energy in sunflower agroecosystems was recorded for electricity power, N fertilizer, and diesel fuel with 35, 19, and 17%, respectively. Also, energy use efficiency, water footprint, greenhouse gas (GHG) emission, and carbon footprint were calculated as 2.40, 3.41 m 3  kg -1 , 2042.091 kg CO 2eq ha -1 , and 0.875 kg CO 2eq kg -1 , respectively. 0.18 of sunflower water footprint was related to green water footprint and the remaining 82% was related to blue water footprint. Also, the highest share of carbon footprint was related to electricity power (nearby 80%). Due to the results of this study, reducing use of fossil fuel and non-renewable energy resource and application of sufficient irrigation systems by efficient use of water resource are essential in order to achieve low carbon footprint, environmental challenges, and also sustainability of agricultural production systems.

  2. Exergetic assessment for resources input and environmental emissions by Chinese industry during 1997-2006.

    PubMed

    Zhang, Bo; Peng, Beihua; Liu, Mingchu

    2012-01-01

    This paper presents an overview of the resources use and environmental impact of the Chinese industry during 1997-2006. For the purpose of this analysis the thermodynamic concept of exergy has been employed both to quantify and aggregate the resources input and the environmental emissions arising from the sector. The resources input and environmental emissions show an increasing trend in this period. Compared with 47568.7 PJ in 1997, resources input in 2006 increased by 75.4% and reached 83437.9 PJ, of which 82.5% came from nonrenewable resources, mainly from coal and other energy minerals. Furthermore, the total exergy of environmental emissions was estimated to be 3499.3 PJ in 2006, 1.7 times of that in 1997, of which 93.4% was from GHG emissions and only 6.6% from "three wastes" emissions. A rapid increment of the nonrenewable resources input and GHG emissions over 2002-2006 can be found, owing to the excessive expansion of resource- and energy-intensive subsectors. Exergy intensities in terms of resource input intensity and environmental emission intensity time-series are also calculated, and the trends are influenced by the macroeconomic situation evidently, particularly by the investment-derived economic development in recent years. Corresponding policy implications to guide a more sustainable industry system are addressed.

  3. Simulation and Evaluation of Small Scale Solar Power Tower Performance under Malaysia Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gamil, A. M.; Gilani, S. I.; Al-Kayiem, H. H.

    2013-06-01

    Solar energy is the most available, clean, and inexpensive source of energy among the other renewable sources of energy. Malaysia is an encouraging location for the development of solar energy systems due to abundant sunshine (10 hours daily with average solar energy received between 1400 and 1900 kWh/m2). In this paper the design of heliostat field of 3 dual-axis heliostat units located in Ipoh, Malaysia is introduced. A mathematical model was developed to estimate the sun position and calculate the cosine losses in the field. The study includes calculating the incident solar power to a fixed target on the tower by analysing the tower height and ground distance between the heliostat and the tower base. The cosine efficiency was found for each heliostat according to the sun movement. TRNSYS software was used to simulate the cosine efficiencies and field hourly incident solar power input to the fixed target. The results show the heliostat field parameters and the total incident solar input to the receiver.

  4. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana.

    PubMed

    Buniowska, Magdalena; Carbonell-Capella, Juana M; Frigola, Ana; Esteve, Maria J

    2017-04-15

    A comparative study of the bioaccessibility of bioactive compounds and antioxidant capacity in a fruit juice-Stevia rebaudiana mixture processed by pulsed electric fields (PEF), high voltage electrical discharges (HVED) and ultrasound (USN) technology at two equivalent energy inputs (32-256kJ/kg) was made using an in vitro model. Ascorbic acid was not detected following intestinal digestion, while HVED, PEF and USN treatments increased total carotenoid bioaccessibility. HVED at an energy input of 32kJ/kg improved bioaccessibility of phenolic compounds (34.2%), anthocyanins (31.0%) and antioxidant capacity (35.8%, 29.1%, 31.9%, for TEAC, ORAC and DPPH assay, respectively) compared to untreated sample. This was also observed for PEF treated samples at an energy input of 256kJ/kg (37.0%, 15.6%, 29.4%, 26.5%, 23.5% for phenolics, anthocyanins, and antioxidant capacity using TEAC, ORAC and DPPH method, respectively). Consequently, pulsed electric technologies (HVED and PEF) show good prospects for enhanced bioaccessibility of compounds with putative health benefit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Importance of energy balance in agriculture.

    NASA Astrophysics Data System (ADS)

    Meco, R.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Moreno, C.

    2012-04-01

    Since the beginning, man has tried to control nature and the environment, and the use of energy, mainly from non-renewable sources providing the necessary power for that. The consequences of this long fight against nature has reached a critical state of unprecedented worldwide environmental degradation, as evidenced by the increasing erosion of fertile lands, the deforestation processes, the pollution of water, air and land by agrochemicals, the loss of plant and animal species, the progressive deterioration of the ozone layer and signs of global warming. This is exacerbated by the increasing population growth, implying a steady increase in consumption, and consequently, in the use of energy. Unfortunately, all these claims are resulting in serious economic and environmental problems worldwide. Because the economic and environmental future of the countries is interrelated, it becomes necessary to adopt sustainable development models based on the use of renewable and clean energies, the search for alternative resources and the use of productive systems more efficient from an energy standpoint, always with a reduction of greenhouse gas emissions. In relation to the agricultural sector, the question we ask is: how long can we keep the current energy-intensive agricultural techniques in developed countries? To analyze this aspect, energy balance is a very helpful tool because can lead to more efficient, sustainable and environment-friendly production systems for each agro-climatic region. This requires the identification of all the inputs and the outputs involved and their conversion to energy values by means of corresponding energy coefficients or equivalents (International Federation of Institutes for Advanced Studies). Energy inputs (EI) can be divided in direct (energy directly used in farms as fuel, machines, fertilizers, seeds, herbicides, human labor, etc.) and indirect (energy not consumed in the farm but in the elaboration, manufacturing or manipulation of inputs) ones. Energy outputs (EO) are considered as the calorific value of the harvested biomass (main products and sub-products), calculated from the total production (kg/ha) and its corresponding energy coefficient (strongly correlated to the biochemical composition of the products). Based on energy inputs and outputs, energy efficiency can be expressed as (i) net energy produced (NE) (also known as energy gain or energy balance, calculated as EI-EO and expressed as MJ/ha), (ii) the energy output/input ratio (also known as energy efficiency and calculated as EO/EI), and (iii) energy productivity (EP) (Crop yield/EI, expressed as kg/MJ). Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  6. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model

    DTIC Science & Technology

    2013-08-26

    Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds

  7. Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks

    NASA Image and Video Library

    2017-09-28

    In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, center, of Stinger-Ghaffarian Technologies performs a sharp edge inspection of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. Hardcastle is joined by Dwayne Swieter, left, and Norm Perish, right, TSIS-1 payload team members from the Laboratory for Atmospheric and Space Physics, a Research Institute at the University of Colorado (Boulder). TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.

  8. Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks

    NASA Image and Video Library

    2017-09-28

    In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, left, of Stinger-Ghaffarian Technologies applies crew preference tape to the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. Hardcastle is joined by TSIS-1 payload team members from the Laboratory for Atmospheric and Space Physics, a Research Institute at the University of Colorado (Boulder). Standing from left to right are Tom Patton, Greg Ucker and Norm Perish. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.

  9. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.

    PubMed

    Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter

    2013-04-15

    In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues.

    PubMed

    Li, Yangyang; Xu, Fuqing; Li, Yu; Lu, Jiaxin; Li, Shuyan; Shah, Ajay; Zhang, Xuehua; Zhang, Hongyu; Gong, Xiaoyan; Li, Guoxue

    2018-03-01

    Anaerobic co-digestion is commonly believed to be benefical for biogas production. However, additional of co-substrates may require additional energy inputs and thus affect the overall energy efficiency of the system. In this study, reactor performance and energy analysis of solid state anaerobic digestion (SS-AD) of tomato residues with dairy manure and corn stover were investigated. Different fractions of tomato residues (0, 20, 40, 60, 80 and 100%, based on volatile solid weight (VS)) were co-digested with dairy manure and corn stover at 15% total solids. Energy analysis based on experimental data was conducted for three scenarios: SS-AD of 100% dairy manure, SS-AD of binary mixture (60% dairy manure and 40% corn stover, VS based), and SS-AD of ternary mixture (36% dairy manure, 24% corn stover, and 40% tomato residues, VS based). For each scenario, the energy requirements for individual process components, including feedstock collection and transportation, feedstock pretreatment, biogas plant operation, digestate processing and handling, and the energy production were examined. Results showed that the addition of 20 and 40% tomato residues increased methane yield compared to that of the dairy manure and corn stover mixture, indicating that the co-digestion could balance nutrients and improve the performance of solid-state anaerobic digestion. The energy required for heating substrates had the dominant effect on the total energy consumption. The highest volatile solids (VS) reduction (57.0%), methane yield (379.1 L/kg VS feed ), and net energy production were achieved with the mixture of 24% corn stover, 36% dairy manure, and 40% tomato residues. Thus, the extra energy input for adding tomato residues for co-digestion could be compensated by the increase of methane yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Variables that influence energy partition in asymmetric reconnection

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Yamada, M.; Yoo, J.

    2017-12-01

    The energy conversion in the diffusion region during asymmetric reconnection is studied using particle-in-cell (PIC) simulations and measurements from the Magnetospheric Multiscale (MMS) spacecraft. The simulation analysis shows that the energy partition is highly region-dependent and varies with the guide field strength. Without a guide field, within the central electron diffusion region, the input magnetic energy is mostly converted to the electron thermal energies; half of the magnetic energy input to the region extending from the X-line to a few ion inertial lengths downstream where the ion outflow peaks is converted to the plasma energy gain, with approximately equal partition between ions and electrons, similar to the laboratory results from the Magnetic Reconnection Experiment (MRX); over the entire ion diffusion region, about half of the energy goes to ions, and 20% goes to electrons. Electrons obtain energies mainly from the reconnection electric field (Er). For the ion total energy gain in the diffusion region, about 2/3 comes from the in-plane electrostatic field Ein and 1/3 comes from Er. Adding a guide field tends to reduce the plasma energy gain through reducing the contribution from Ein, even though the reconnection rates are similar. The energy partition in the diffusion region observed by MMS is estimated and compared with the results from PIC simulations and MRX experiments.

  12. Exergetic Assessment for Resources Input and Environmental Emissions by Chinese Industry during 1997–2006

    PubMed Central

    Zhang, Bo; Peng, Beihua; Liu, Mingchu

    2012-01-01

    This paper presents an overview of the resources use and environmental impact of the Chinese industry during 1997–2006. For the purpose of this analysis the thermodynamic concept of exergy has been employed both to quantify and aggregate the resources input and the environmental emissions arising from the sector. The resources input and environmental emissions show an increasing trend in this period. Compared with 47568.7 PJ in 1997, resources input in 2006 increased by 75.4% and reached 83437.9 PJ, of which 82.5% came from nonrenewable resources, mainly from coal and other energy minerals. Furthermore, the total exergy of environmental emissions was estimated to be 3499.3 PJ in 2006, 1.7 times of that in 1997, of which 93.4% was from GHG emissions and only 6.6% from “three wastes” emissions. A rapid increment of the nonrenewable resources input and GHG emissions over 2002–2006 can be found, owing to the excessive expansion of resource- and energy-intensive subsectors. Exergy intensities in terms of resource input intensity and environmental emission intensity time-series are also calculated, and the trends are influenced by the macroeconomic situation evidently, particularly by the investment-derived economic development in recent years. Corresponding policy implications to guide a more sustainable industry system are addressed. PMID:22973176

  13. Excitation and Ionization Cross Sections for Electron-Beam Energy Deposition in High Temperature Air

    DTIC Science & Technology

    1987-07-09

    are given and compared to existing experimental results or other theoretical approaches. This information can readily be used as input for a deposition...of the doubly-differential, singly- differential and total ionization cross sections which subsequently served to guide theoretical calculations on...coworkers have been leaders in developing a theoretical base for studying electron production and energy deposition in atmospheric gases such as He, N2

  14. Materials and energy flow in the life cycle of leather: a case study of Bangladesh

    NASA Astrophysics Data System (ADS)

    Chowdhury, Zia Uddin Md.; Ahmed, Tanvir; Hashem, Md. Abul

    2018-05-01

    This article presents the results of the materials and energy flow analysis for leather produced in Bangladesh and establishes an inventory for the life cycle assessment. Also, a comparison is made with the material and energy flow of the Indian leather. A cradle to gate analysis is performed for full-chrome leather (FCL), a representative leather article from an export-oriented industry in Bangladesh, taking into consideration the main processes associated with leather production and the corresponding materials and energy input. Data was collected on annual wet-salted rawhide consumption, water, and steam consumption, chemicals requirement, tannery solid waste generation, electricity, fuel oil use for the generator and steam boiler. Moreover, an analysis of the physical and chemical properties of wastewater emissions of the different leather unit processes was performed. The input and output profiles of the FCL were compared to those of an Indian leather. It was seen that FCL consumed water 2 times higher than the Indian leather while the electricity consumption of Indian leather was almost 2 times higher than its Bangladeshi counterpart. The Indian leather had significantly higher carbon footprint (in terms of CO2 equivalent emission) mainly because of the consumption of grid electricity that comes from coal-based power generation. Wastewater parameters such as chloride, Total Dissolved Solids (TDS) and Total Solids (TS) for the Indian leather are more than 4.5, 3 and 3 times higher respectively than that of corresponding emissions for the Bangladeshi FCL, which can be attributed to the higher use of inorganic salts in the process. Despite similar input of chromium compounds for both the leathers, the emission of total chromium was slightly higher in the case of Indian leather probably due to lower uptake of chromium by the substrate. Bangladeshi FCL used twice in the amount of (NH4)2SO4 than India, which may be responsible for the higher BOD load in the wastewater. It can also be seen that a significant amount of rawhide input is not converted into the usable leather as demonstrated by the high proportion of solid waste generation (70% and 55% for Bangladeshi FCL and Indian leather respectively). This study highlights that wide variations exist in the materials and energy flows from different tanneries. Understanding these variations is essential to pinpoint areas where resources can be used more efficiently and optimally in the leather manufacturing process.

  15. Energy balances of bioenergy crops (Miscanthus, maize, rapeseed) and their CO2-mitigation potential on a regional farm scale

    NASA Astrophysics Data System (ADS)

    Felten, D.; Emmerling, C.

    2012-04-01

    Increasing cultivation of energy crops in agriculture reveals the progressive substitution of fossil fuels, such as crude oil or brown coal. For the future development of renewable resources, the efficiency of different cropping systems will be crucial, as energy crops differ in terms of the energy needed for crop cultivation and refinement and the respective energy yield, e.g. per area. Here, balancing is certainly the most suitable method for the assessment of cropping system efficiency, contrasting energy inputs with energy outputs and the related CO2 emissions with potential CO2 credits due to substitution of fossil fuels, respectively. The aim of the present study was to calculate both energy and CO2 balances for rapeseed and maize, representing the recently most often cultivated energy crops in Germany, on a regional farm scale. Furthermore, special emphasis was made on perennial Miscanthus x giganteus, which is commonly used as a solid fuel for combustion. This C4-grass is of increasing interest due to its high yield potential accompanied by low requirements for soil tillage, weed control, and fertilization as well as long cultivation periods up to 25 years. In contrast to more general approaches, balances were calculated with local data from commercial farms. The site-specific consumption of diesel fuel was calculated using an online-based calculator, developed by the German Association for Technology and Structures in Agriculture (KTBL). By balancing each of the aforementioned cropping systems, our research focused on (i) the quantification of energy gains and CO2 savings due to fossil fuel substitution and (ii) the assessment of energy efficiency, expressed as the ratio of energy output to input. The energy input was highest for maize sites (33.8 GJ ha-1 yr-1), followed by rapeseed (18.2 GJ ha-1 yr-1), and Miscanthus (1.1 GJ ha-1 yr-1); corresponding energy yields were 129.5 GJ ha-1 yr-1 (maize), 83.6 GJ ha-1 yr-1 (rapeseed), and 259.7 GJ ha-1 yr-1 (Miscanthus), respectively. The energy output:input ratios were 3.83 (maize), 4.59 (rapeseed), and 236 (Miscanthus). The cultivation of rapeseed for biodiesel led to reduced CO2 emissions of 3.552 Mg ha-1 yr-1 due to substitution of diesel fuel. An amount of 9.312 Mg CO2 ha-1 yr-1 was saved by maize as co-ferment for biogas. Thereby, biogas was a substitute for electrical power from German energy mix (esp. nuclear power, utilization of coal), whereas the simultaneously used thermal energy was assumed to replace heating oil. Miscanthus cropping saved up to 18.540 Mg CO2 ha-1 yr-1 as a substitute for heating oil, including approx. 4 Mg CO2 ha-1 from organic carbon, which got sequestered within the soil organic matter due to site-remaining crop residues. In sum, each cropping system gained energy and reduced greenhouse gas emissions, although energy inputs and outputs differed significantly. High energy inputs for maize and rapeseed were mainly related to mineral N-fertilization. Also the need of methanol for biodiesel refining and the energy consumed by the biogas plant increased the total energy consumption markedly. Due to its low-input character, Miscanthus seems promising to fulfill several demands in the context of sustainability.

  16. Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.

    PubMed

    Li, Wenfeng; Cui, Zhaojie; Han, Feng

    2015-01-01

    The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140.96%, respectively. The computation result for each indicator revealed that IS could lead to the use of energy with high efficiency and lighten the financial burden of enterprises in the XF IP. And the proposed index system may help IPs and EIPs to make strategic decisions when designing IS modes.

  17. Energy yields in the prebiotic synthesis of hydrogen cyanide and formaldehyde

    NASA Technical Reports Server (NTRS)

    Stribling, R.; Miller, S. L.

    1986-01-01

    Prebiotic experiments are usually reported in terms of carbon yields, i.e., the yield of product based on the total carbon in the system. These experiments usually involve a large input of energy and are designed to maximize the yields of product. However, large inputs of energy result in multiple activation of the reactants and products. A more realistic prebiotic experiment is to remove the products of the activation step so they are not exposed a second time to the energy source. This is equivalent to transporting the products synthesized in the primitive atmosphere to the ocean, and thereby protecting them from destruction by atmospheric energy sources. Experiments of this type, using lower inputs of energy, give energy yields (moles of products/joule) which can be used to estimate the relative importance of the different energy sources on the primitive earth. Simulated prebiotic atmospheres containing either CH4, CO or CO2 with N2, H2O and variable amounts of H2 were subjected to a high frequency Tesla coil. Samples of the aqueous phase were taken at various time intervals from 1 hr to 7 days, and the energy yields were obtained by extrapolation to zero time. The samples were analyzed for HCN with the cyanide electrode and for H2CO by chromotropic acid. The spark energy was estimated by calorimetry. The temperature rise in an insulated discharge flask was compared with the temperature rise from a resistance heater in the same flask. These results will be compared with calculated production rates of HCN and H2CO from lightning and a number of photochemical processes on the primitive Earth.

  18. Luminosity measurements for the R scan experiment at BESIII

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...

    2017-02-08

    By analyzing the large-angle Bhabha scattering events e +e - → (γ)e +e - and diphoton events e +e - → (γ)γγ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. Finally, the results are important inputs for the R value and J/ψ resonance parameter measurements.

  19. Food-related energy requirements.

    PubMed

    Hirst, E

    1974-04-12

    I have used data from input-output studies to determine the quantities of primary and electric energy consumed in the agricultural, processing, transportation, wholesale and retail trade, and household sectors for personal consumption of food. Before one draws conclusions from these results, it is important to note the assumptions and approximations used in this analysis. First, the economic input-output data published by the Department of Commerce are subject to a number of inaccuracies, including lack of complete coverage for an industry, restriction of data for proprietary reasons, and use of different time periods for different data. Second, aggregation can combine within the same sector industries whose energy intensities differ widely. For example, eating and drinking establishments probably consume more energy per dollar of sales (because of refrigerators, stoves, and freezers) than do department stores. However, both types of establishment are included in retail trade. Thus energy use for food-related retail trade may be underestimated because of aggregation. Third, the energy coefficients are subject to error. In particular, the coefficients for the agricultural and trade sectors are vulnerable because energy use within these sectors is not well documented. Finally, the scaling factor used to estimate food-related energy use for the 1960's is approximate, in that it neglects the possibility that these energy coefficients changed differently with time. Because of these limitations, which are described more fully by Herendeen (6), a number of important issues were not addressed here. such as relative energy requirements for fresh, frozen, and canned vegetables; and for soybeans as compared to beef. This analysis shows that the U.S. food cycle consumes a considerable amount of energy, about 12 percent of the total national energy budget. The residential sector, which accounts for 30 percent of the total, is the most energy-intensive sector in terms of energy consumed per dollar of food-related expenditure. This is because food-related expenditures in homes are primarily for fuel to operate kitchen appliances and automobiles. The electricity consumed in these activities constitutes 22 percent of the total amount used in the United States. More than half of the electricity is used in homes, and more than two-thirds in the trade and household sectors. Thus agriculture and processing consume little electricity relative to the total amount used. From past trends, it appears that the amount of energy used in food-related activities will continue to increase at a rate faster than the population, principally because of growing affluence, that is, the use of processed foods, purchase of meals away from home, and the use of kitchen appliances equipped with energy-intensive devices, such as refrigerators with automatic icemakers. However, fuel shortages, rapidly increasing fuel prices, the growing need to import oil, and a host of other problems related to our use of energy suggest that these past trends will not continue. Fortunately, there are many ways to reduce the amounts of energy used for food-related activities. In the home, for example, smaller refrigerators with thicker insulation would use less electricity than do present units. If closer attention were given to the use of ranges and ovens (for example, if oven doors were not opened so often) energy would be saved. Changes in eating habits could also result in energy savings. Greater reliance on vegetable and grain products, rather than meats, for protein would reduce fuel use. Similarly, a reduction in the amounts of heavily processcd foods consumed-TV dinners and frozen desserts-would save energy. Retailers could save energy by using closed freezers to store food and by reducing the amount of lighting they use. Processors could use heat recovery methods, more efficient processes, and less packaging. Shipping more food by train rather than by truck would also cut energy use. Farmers could reduce their fuel use by combining operations (for example, by harrowing, planting, and fertilizing in the same operation), by reducing tillage practices, by increasing thc use of diesel rather than gasoline engines, and by increasing labor inputs. A partial return to organic farming (that is, greater use of animal manure and crop rotation) would save energy because chemical fertilizers require large energy inputs for their production.

  20. Dynamic balance sensory motor control and symmetrical or asymmetrical equilibrium training.

    PubMed

    Guillou, Emmanuel; Dupui, Philippe; Golomer, Eveline

    2007-02-01

    Determine whether symmetrical or asymmetrical equilibrium training can enhance the proprioceptive input of the left versus right supporting leg (SL) motor control. Proprioceptive input was tested using a seesaw platform through a cross-sectional study. The total spectral energy was recorded and divided into 0-2 and 2-20Hz frequency bands. Experts in asymmetrical tasks (soccer players) were compared to experts in symmetrical tasks (dancers, acrobats) and untrained subjects according to pitch versus roll imbalance direction on each SL. Regarding the low frequency band, spectral energy values were lower for experts than for untrained subjects in the roll direction only, whatever the SL (p<0.05). Regarding the high frequency band, spectral energy values were lower for the left SL compared to the right one for soccer players only (p<0.05). Furthermore, soccer players also exhibited lower values than other subjects on the left SL. Asymmetrical equilibrium training minimizes the proprioceptive input, emphasizing the role of the biomechanical component in postural regulation. Testing athletes on a spontaneous unstable platform is a way to accurately discriminate each SL performance for one type of sport training. In sport medicine rehabilitation, injured SL could be detected with this protocol comparing it with healthy SL.

  1. Life comparative analysis of energy consumption and CO₂ emissions of different building structural frame types.

    PubMed

    Kim, Sangyong; Moon, Joon-Ho; Shin, Yoonseok; Kim, Gwang-Hee; Seo, Deok-Seok

    2013-01-01

    The objective of this research is to quantitatively measure and compare the environmental load and construction cost of different structural frame types. Construction cost also accounts for the costs of CO₂ emissions of input materials. The choice of structural frame type is a major consideration in construction, as this element represents about 33% of total building construction costs. In this research, four constructed buildings were analyzed, with these having either reinforced concrete (RC) or steel (S) structures. An input-output framework analysis was used to measure energy consumption and CO₂ emissions of input materials for each structural frame type. In addition, the CO₂ emissions cost was measured using the trading price of CO₂ emissions on the International Commodity Exchange. This research revealed that both energy consumption and CO₂ emissions were, on average, 26% lower with the RC structure than with the S structure, and the construction costs (including the CO₂ emissions cost) of the RC structure were about 9.8% lower, compared to the S structure. This research provides insights through which the construction industry will be able to respond to the carbon market, which is expected to continue to grow in the future.

  2. Life-cycle environmental inventory of passenger transportation modes in the United States

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail Vin

    To appropriately mitigate environmental impacts from transportation, it is necessary for decision makers to consider the life-cycle energy consumption and emissions associated with each mode. A life-cycle energy, greenhouse gas, and criteria air pollutant emissions inventory is created for the passenger transportation modes of automobiles, urban buses, heavy rail transit, light rail transit, and aircraft in the U.S. Each mode's inventory includes an assessment of vehicles, infrastructure, and fuel components. For each component, analysis is performed for material extraction through use and maintenance in both direct and indirect (supply chain) processes. For each mode's life-cycle components, energy inputs and emission outputs are determined. Energy inputs include electricity and petroleum-based fuels. Emission outputs include greenhouse gases (CO2, CH4, and N2O) and criteria pollutants (CO, SO2, NOx , VOCs, and PM). The inputs and outputs are normalized by vehicle lifetime, vehicle mile traveled, and passenger mile traveled. A consistent system boundary is applied to all modal inventories which captures the entire life-cycle, except for end-of-life. For each modal life-cycle component, both direct and indirect processes are included if possible. A hybrid life-cycle assessment approach is used to estimate the components in the inventories. We find that life-cycle energy inputs and emission outputs increase significantly compared to the vehicle operational phase. Life-cycle energy consumption is 39-56% larger than vehicle operation for autos, 38% for buses, 93-160% for rail, and 19-24% for air systems per passenger mile traveled. Life-cycle greenhouse gas emissions are 47-65% larger than vehicle operation for autos, 43% for buses, 39-150% for rail, and 24-31% for air systems per passenger mile traveled. The energy and greenhouse gas increases are primarily due to vehicle manufacturing and maintenance, infrastructure construction, and fuel production. For criteria air pollutants, life-cycle components often dominate total emissions and can be a magnitude larger than operational counterparts. Per passenger mile traveled, total SO2 emissions (between 350 and 460 mg) are 19-27 times larger than operational emissions as a result of electricity generation in vehicle manufacturing, infrastructure construction, and fuel production. NOx emissions increase 50-73% for automobiles, 24% for buses, 13-1300% for rail, and 19-24% for aircraft. Non-tailpipe VOCs are 27-40% of total automobile, 71-95% of rail, and 51-81% of air total emissions. Infrastructure and parking construction are major components of total PM10 emissions resulting in total emissions over three times larger than operational emissions for autos and even larger for many rail systems and aircraft (the major contributor being emissions from hot-mix asphalt plants and concrete production). Infrastructure construction and operation as well as vehicle manufacturing increase total CO emissions by 5-17 times from tailpipe performance for rail and 3-9 times for air. A case study comparing the environmental performance of metropolitan regions is presented as an application of the inventory results. The San Francisco Bay Area, Chicago, and New York City are evaluated capturing passenger transportation life-cycle energy inputs and greenhouse gas and criteria air pollutant emissions. The regions are compared between off-peak and peak travel as well as personal and public transit. Additionally, healthcare externalities are computed from vehicle emissions. It is estimated that life-cycle energy varies from 6.3 MJ/PMT in the Bay Area to 5.7 MJ/PMT in Chicago and 5.3 MJ/PMT in New York for an average trip. Life-cycle GHG emissions range from 480 g CO2e/PMT in the Bay Area to 440 g CO2e/PMT for Chicago and 410 g CO 2e/PMT in New York. CAP emissions vary depending on the pollutant with differences as large as 25% between regions. Life-cycle CAP emissions are between 11% and 380% larger than their operational counterparts. Peak travel, with typical higher riderships, does not necessarily environmentally outperform off-peak travel due to the large share of auto PMT and less than ideal operating conditions during congestion. The social costs of travel range from ¢51 (in ¢2007) per auto passenger per trip during peak in New York to ¢6 per public transit passenger per trip during peak hours in the Bay Area and New York. Average personal transit costs are around ¢30 while public transit ranges from ¢28 to ¢41. (Abstract shortened by UMI.)

  3. Central Plant Optimization for Waste Energy Reduction (CPOWER). ESTCP Cost and Performance Report

    DTIC Science & Technology

    2016-12-01

    in the regression models. The solar radiation data did not appear reliable in the weather dataset for the location, and hence it was not used. The...and additional factors (e.g., solar insolation) may be needed to obtain a better model. 2. Inputs to optimizer: During several periods of...Location: North Carolina Energy Consumption Cost Savings $ 443,698.00 Analysis Type: FEMP PV of total savings 215,698.00$ Base Date: April 1

  4. Handbook of energy utilization in agriculture. [Collection of available data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimentel, D.

    1980-01-01

    Available data, published and unpublished, on energy use in agriculture and forestry production are presented. The data specifically focus on the energy-input aspects of crop, livestock, and forest production. Energy values for various agricultural inputs are discussed in the following: Energy Inputs for Nitrogen, Phosphorus, and Potash Fertilizers; Energy Used in the US for Agricultural Liming Materials; Assessing the Fossil Energy Costs of Propagating Agricultural Crops; Energy Requirements for Irrigation; Energy Inputs for the Production, Formulation, Packaging, and Transport of Various Pesticides; Energy Requirements for Various Methods of Crop Drying; Energy Used for Transporting Supplies to the Farm; and Unitmore » Energy Cost of Farm Buildings. Energy inputs and outputs for field crop systems are discussed for barley, corn, oats, rice, rye, sorghum, wheat, soybeans, dry beans, snap beans, peas, safflower, sugarcane in Louisiana, sugar beet, alfalfa, hay, and corn silage. Energy inputs for vegetables are discussed for cabbage, Florida celery, lettuce, potato, pickling cucumbers, cantaloupes, watermelon, peppers, and spinach. Energy inputs and outputs for fruits and tree crops discussed are: Eastern US apples, apricots, cherries, peaches, pears, plums and prunes, grapes in the US, US citrus, banana in selected areas, strawberries in the US, red raspberries, blueberries, cranberries, pecans, walnuts, almonds, and maple production in Vermont. Energy inputs and outputs for livestock production are determined for dairy products, poultry, swine, beef, sheep, and aquaculture. Energy requirments for inshore and offshore fishing crafts (the case of the Northeast fishery) and energy production and consumption in wood harvest are presented.« less

  5. System and methods for reducing harmonic distortion in electrical converters

    DOEpatents

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2013-12-03

    Systems and methods are provided for delivering energy using an energy conversion module. An exemplary method for delivering energy from an input interface to an output interface using an energy converison module coupled between the input interface and the output interface comprises the steps of determining an input voltage reference for the input interface based on a desired output voltage and a measured voltage and the output interface, determining a duty cycle control value based on a ratio of the input voltage reference and the measured voltage, operating one or more switching elements of the energy conversion module to deliver energy from the input interface to the output interface to the output interface with a duty cycle influenced by the dute cycle control value.

  6. Energy in the environment and the second law of thermodynamics

    NASA Technical Reports Server (NTRS)

    Mueller, R. F.

    1972-01-01

    The relationship between the consumption of energy by technological cultures and the second law of thermodynamics is discussed. The analysis is based on a description of the operation of a mechanical device which consumes energy. It is concluded that the flow of energy in manifold spontaneous conditions, which play a vital role in the operation of any technological process, remove most of the energy flow path from the control of the operator. It is stated that the increased efficiency of a process can benefit the environment only as much as this efficiency enables the total energy input to be reduced for a given level of production and increasing efficiency cannot meet the problems of an increased rate of energy utilization.

  7. Determination of solar wind energy input during different form of geomagnetic disturbances.

    NASA Astrophysics Data System (ADS)

    Dahal, S.; Adhikari, B.; Narayan, C.; Shapkota, N.

    2017-12-01

    A quantitative study on solar wind energy input during different form of geomagnetic disturbances as well as during quite period was performed. To enable a quantitative analysis, we estimate Akasofu parameter which plays an important role to understand the relationships between ionosphere-magnetosphere and solar wind energy input. For comparative purpose, the total energy budget of Non storm HILDCAA event (19th to 24th April 2003), Storm preceding HILDCAA event (14th to 19th May 2005), Geomagnetic sub-storm (12nd to 16th November 2003), Geomagnetic super sub-storm (12nd to 16th November 2003) and a Quiet period (18th to 21st July 2006) were also analyzed. Among these events the highest total energy budget was found during the occurrence of storm preceding HILDCAA. This is due to significant geomagnetic field perturbation as displayed on the value of interplanetary parameters. The principal cause of geomagnetic disturbance is the magnetic reconnection, which establishes an electrodynamic coupling between the solar plasma and the magnetosphere. Although there is distinct perturbation on SYM-H index for all events but the values are different. The highest pick value of SYM-H index ( -300nT) was found for the storm preceding HILDCAA.This results suggest that the effects of HILDCAAs, displayed on the value of the SYM-H index, depends on the amount of the energy injected into the ring current. In a complementary way, fluctuation pattern of Temperature, IMF magnitude, Bx component, By component, and AE index are also studied and the possible physical interpretations for the statistical results obtained during each events were discussed. We shall report the characteristics of Bz component during each events by the implementation of discrete wavelet transform (DWT) and cross correlation analysis. We did cross-correlation between solar wind energy and Bz component of IMF and found a negative correlation between them during the main phase of geomagnetic disturbances. These results help to understand the coupling process between solar wind and magnetosphere-ionosphere system. By DWT analysis we found distinct singularity in solar wind energy signal during the period when Bz component is highly perturbed. This result indicates that there are impulsive energy injections superposed to the smooth background process.

  8. Partitioning of Electromagnetic Energy Inputs to the Thermosphere during Geomagnetic Disturbances

    DTIC Science & Technology

    2012-06-01

    boundary of a local flux tube volume is an equipotential . Figure 4 contains maps of Poynting flux normal to a 500 km altitude surface and maps of height...as a cell quantity throughout its computational volume, we are able to generate maps of the Poynting flux, ⃗ ⃗⃗⃗⃗⃗⃗ , on altitude surfaces at...the top of the thermosphere. We used separate modules to integrate the Poynting flux over this surface to compute the total electromagnetic energy

  9. Generation of Near-Inertial Currents on the Mid-Atlantic Bight by Hurricane Arthur (2014)

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Li, Ming; Miles, Travis

    2018-04-01

    Near-inertial currents (NICs) were observed on the Mid-Atlantic Bight (MAB) during the passage of Hurricane Arthur (2014). High-frequency radars showed that the surface currents were weak near the coast but increased in the offshore direction. The NICs were damped out in 3-4 days in the southern MAB but persisted for up to 10 days in the northern MAB. A Slocum glider deployed on the shelf recorded two-layer baroclinic currents oscillating at the inertial frequency. A numerical model was developed to interpret the observed spatial and temporal variabilities of the NICs and their vertical modal structure. Energy budget analysis showed that most of the differences in the NICs between the shelf and the deep ocean were determined by the spatial variations in wind energy input. In the southern MAB, energy dissipation quickly balanced the wind energy input, causing a rapid damping of the NICs. In the northern MAB, however, the dissipation lagged the wind energy input such that the NICs persisted. The model further showed that mode-1 waves dominated throughout the MAB shelf and accounted for over 70% of the current variability in the NICs. Rotary spectrum analyses revealed that the NICs were the largest component of the total kinetic energy except in the southern MAB and the inner shelf regions with strong tides. The NICs were also a major contributor to the shear spectrum over an extensive area of the MAB shelf and thus may play an important role in producing turbulent mixing and cooling of the surface mixed layer.

  10. Study of component technologies for fuel cell on-site integrated energy system. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Lee, W. D.; Mathias, S.

    1980-01-01

    This data base catalogue was compiled in order to facilitate the analysis of various on site integrated energy system with fuel cell power plants. The catalogue is divided into two sections. The first characterizes individual components in terms of their performance profiles as a function of design parameters. The second characterizes total heating and cooling systems in terms of energy output as a function of input and control variables. The integrated fuel cell systems diagrams and the computer analysis of systems are included as well as the cash flows series for baseline systems.

  11. Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone.

    PubMed

    Geng, Yong; Liu, Zuoxi; Xue, Bing; Dong, Huijuan; Fujita, Tsuyoshi; Chiu, Anthony

    2014-12-01

    Industrial symbiosis is the sharing of services, utility, and by-product resources among industries. This is usually made in order to add value, reduce costs, and improve the environment, and therefore has been taken as an effective approach for developing an eco-industrial park, improving resource efficiency, and reducing pollutant emission. Most conventional evaluation approaches ignored the contribution of natural ecosystem to the development of industrial symbiosis and cannot reveal the interrelations between economic development and environmental protection, leading to a need of an innovative evaluation method. Under such a circumstance, we present an emergy analysis-based evaluation method by employing a case study at Shenyang Economic and Technological Development Zone (SETDZ). Specific emergy indicators on industrial symbiosis, including emergy savings and emdollar value of total emergy savings, were developed so that the holistic picture of industrial symbiosis can be presented. Research results show that nonrenewable inputs, imported resource inputs, and associated services could be saved by 89.3, 32.51, and 15.7 %, and the ratio of emergy savings to emergy of the total energy used would be about 25.58 %, and the ratio of the emdollar value of total emergy savings to the total gross regional product (GRP) of SETDZ would be 34.38 % through the implementation of industrial symbiosis. In general, research results indicate that industrial symbiosis could effectively reduce material and energy consumption and improve the overall eco-efficiency. Such a method can provide policy insights to industrial park managers so that they can raise appropriate strategies on developing eco-industrial parks. Useful strategies include identifying more potential industrial symbiosis opportunities, optimizing energy structure, increasing industrial efficiency, recovering local ecosystems, and improving public and industrial awareness of eco-industrial park policies.

  12. Derivation of energy-based base shear force coefficient considering hysteretic behavior and P-delta effects

    NASA Astrophysics Data System (ADS)

    Ucar, Taner; Merter, Onur

    2018-01-01

    A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.

  13. A ferrofluid-based neural network: design of an analogue associative memory

    NASA Astrophysics Data System (ADS)

    Palm, R.; Korenivski, V.

    2009-02-01

    We analyse an associative memory based on a ferrofluid, consisting of a system of magnetic nano-particles suspended in a carrier fluid of variable viscosity subject to patterns of magnetic fields from an array of input and output magnetic pads. The association relies on forming patterns in the ferrofluid during a training phase, in which the magnetic dipoles are free to move and rotate to minimize the total energy of the system. Once equilibrated in energy for a given input-output magnetic field pattern pair, the particles are fully or partially immobilized by cooling the carrier liquid. Thus produced particle distributions control the memory states, which are read out magnetically using spin-valve sensors incorporated into the output pads. The actual memory consists of spin distributions that are dynamic in nature, realized only in response to the input patterns that the system has been trained for. Two training algorithms for storing multiple patterns are investigated. Using Monte Carlo simulations of the physical system, we demonstrate that the device is capable of storing and recalling two sets of images, each with an accuracy approaching 100%.

  14. Performance, Emission, Energy, and Exergy Analysis of a C.I. Engine Using Mahua Biodiesel Blends with Diesel

    PubMed Central

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2014-01-01

    This paper presents an experimental investigation on a four-stroke single cylinder diesel engine fuelled with the blends of Mahua oil methyl ester (MOME) and diesel. The performance emission, energy, and exergy analysis has been carried out in B20 (mixture of 80% diesel by volume with 20% MOME). From energy analysis, it was observed that the fuel energy input as well as energy carried away by exhaust gases was 6.25% and 11.86% more in case of diesel than that of B20. The unaccounted losses were 10.21% more in case of diesel than B20. The energy efficiency was 28%, while the total losses were 72% for diesel. In case of B20, the efficiency was 65.74 % higher than that of diesel. The exergy analysis shows that the input availability of diesel fuel is 1.46% more than that of B20. For availability in brake power as well as exhaust gases of diesel were 5.66 and 32% more than that of B20. Destructed availability of B20 was 0.97% more than diesel. Thus, as per as performance, emission, energy, and exergy part were concerned; B20 is found to be very close with that of diesel. PMID:27350999

  15. Performance, Emission, Energy, and Exergy Analysis of a C.I. Engine Using Mahua Biodiesel Blends with Diesel.

    PubMed

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2014-01-01

    This paper presents an experimental investigation on a four-stroke single cylinder diesel engine fuelled with the blends of Mahua oil methyl ester (MOME) and diesel. The performance emission, energy, and exergy analysis has been carried out in B20 (mixture of 80% diesel by volume with 20% MOME). From energy analysis, it was observed that the fuel energy input as well as energy carried away by exhaust gases was 6.25% and 11.86% more in case of diesel than that of B20. The unaccounted losses were 10.21% more in case of diesel than B20. The energy efficiency was 28%, while the total losses were 72% for diesel. In case of B20, the efficiency was 65.74 % higher than that of diesel. The exergy analysis shows that the input availability of diesel fuel is 1.46% more than that of B20. For availability in brake power as well as exhaust gases of diesel were 5.66 and 32% more than that of B20. Destructed availability of B20 was 0.97% more than diesel. Thus, as per as performance, emission, energy, and exergy part were concerned; B20 is found to be very close with that of diesel.

  16. Embodied energy use in China's infrastructure investment from 1992 to 2007: calculation and policy implications.

    PubMed

    Liu, Hongtao; Xi, Youmin; Ren, Bingqun; Zhou, Heng

    2012-01-01

    Infrastructure has become an important topic in a variety of areas of the policy debate, including energy saving and climate change. In this paper, we use an energy input-output model to evaluate the amounts of China's embodied energy use in infrastructure investment from 1992 to 2007. We also use the structure decomposition model to analyze the factors impacting the embodied energy use in infrastructure investment for the same time period. The results show that embodied energy use in infrastructure investment accounted for a significant proportion of China's total energy use with an increasing trend and reflect that improper infrastructure investment represents inefficient use of energy and other resources. Some quantitative information is provided for further determining the low carbon development potentials of China's economy.

  17. Embodied Energy Use in China's Infrastructure Investment from 1992 to 2007: Calculation and Policy Implications

    PubMed Central

    Liu, Hongtao; Xi, Youmin; Ren, Bingqun; Zhou, Heng

    2012-01-01

    Infrastructure has become an important topic in a variety of areas of the policy debate, including energy saving and climate change. In this paper, we use an energy input-output model to evaluate the amounts of China's embodied energy use in infrastructure investment from 1992 to 2007. We also use the structure decomposition model to analyze the factors impacting the embodied energy use in infrastructure investment for the same time period. The results show that embodied energy use in infrastructure investment accounted for a significant proportion of China's total energy use with an increasing trend and reflect that improper infrastructure investment represents inefficient use of energy and other resources. Some quantitative information is provided for further determining the low carbon development potentials of China's economy. PMID:23365534

  18. Influence of PVP molecular weight on the microwave assisted in situ amorphization of indomethacin.

    PubMed

    Doreth, Maria; Löbmann, Korbinian; Priemel, Petra; Grohganz, Holger; Taylor, Robert; Holm, René; Lopez de Diego, Heidi; Rades, Thomas

    2018-01-01

    In situ amorphization is an approach that enables a phase transition of a crystalline drug to its amorphous form immediately prior to administration. In this study, three different polyvinylpyrrolidones (PVP K12, K17 and K25) were selected to investigate the influence of the molecular weight of the polymer on the degree of amorphization of the model drug indomethacin (IND) upon microwaving. Powder mixtures of crystalline IND and the respective PVP were compacted at 1:2 (w/w) IND:PVP ratios, stored at 54% RH and subsequently microwaved with a total energy input of 90 or 180kJ. After storage, all compacts had a similar moisture content (∼10% (w/w)). Upon microwaving with an energy input of 180kJ, 58±4% of IND in IND:PVP K12 compacts was amorphized, whereas 31±8% of IND was amorphized by an energy input of 90kJ. The drug stayed fully crystalline in all IND:PVP K17 and IND:PVP K25 compacts. After plasticization by moisture, PVP K12 reached a T g below ambient temperature (16±2°C) indicating that the T g of the plasticized polymer is a key factor for the success of in situ amorphization. DSC analysis showed that the amorphized drug was part of a ternary glass solution consisting of IND, PVP K12 and water. In dissolution tests, IND:PVP K12 compacts showed a delayed initial drug release due to a lack of compact disintegration, but reached a higher total drug release eventually. In summary, this study showed that the microwave assisted in situ amorphization was highly dependent on the T g of the plasticized polymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Modeling of clover detector in addback mode

    NASA Astrophysics Data System (ADS)

    Kshetri, R.

    2012-07-01

    Based on absorption and scattering of gamma-rays, a formalism has been presented for modeling the clover germanium detector in addback mode and to predict its response for high energy γ-rays. In the present formalism, the operation of a bare clover detector could be described in terms of three quantities only. Considering an additional parameter, the formalism could be extended for suppressed clover. Using experimental data on relative single crystal efficiency and addback factor as input, the peak-to-total ratio has been calculated for three energies (Eγ = 3.401, 5.324 and 10.430 MeV) where direct measurement of peak-to-total ratio is impossible due to absence of a radioactive source having single monoenergetic gamma-ray of that energy. The experimental validation and consistency of the formalism have been shown considering data for TIGRESS clover detector. In a recent work (R. Kshetri, JINST 2012 7 P04008), we showed that for a given γ-ray energy, the formalism could be used to predict the peak-to-total ratio as a function of number of detector modules. In the present paper, we have shown that for a given composite detector (clover detector is considered here), the formalism could be used to predict the peak-to-total ratio as a function of γ-ray energy.

  20. Life Comparative Analysis of Energy Consumption and CO2 Emissions of Different Building Structural Frame Types

    PubMed Central

    Kim, Sangyong; Moon, Joon-Ho; Shin, Yoonseok; Kim, Gwang-Hee; Seo, Deok-Seok

    2013-01-01

    The objective of this research is to quantitatively measure and compare the environmental load and construction cost of different structural frame types. Construction cost also accounts for the costs of CO2 emissions of input materials. The choice of structural frame type is a major consideration in construction, as this element represents about 33% of total building construction costs. In this research, four constructed buildings were analyzed, with these having either reinforced concrete (RC) or steel (S) structures. An input-output framework analysis was used to measure energy consumption and CO2 emissions of input materials for each structural frame type. In addition, the CO2 emissions cost was measured using the trading price of CO2 emissions on the International Commodity Exchange. This research revealed that both energy consumption and CO2 emissions were, on average, 26% lower with the RC structure than with the S structure, and the construction costs (including the CO2 emissions cost) of the RC structure were about 9.8% lower, compared to the S structure. This research provides insights through which the construction industry will be able to respond to the carbon market, which is expected to continue to grow in the future. PMID:24227998

  1. The effect of the polymer relaxation time on the nonlinear energy cas- cade and dissipation of statistically steady and decaying homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.

    2013-11-01

    We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.

  2. Sensitivity Analysis of Cf-252 (sf) Neutron and Gamma Observables in CGMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Austin Lewis; Talou, Patrick; Stetcu, Ionel

    CGMF is a Monte Carlo code that simulates the decay of primary fission fragments by emission of neutrons and gamma rays, according to the Hauser-Feshbach equations. As the CGMF code was recently integrated into the MCNP6.2 transport code, great emphasis has been placed on providing optimal parameters to CGMF such that many different observables are accurately represented. Of these observables, the prompt neutron spectrum, prompt neutron multiplicity, prompt gamma spectrum, and prompt gamma multiplicity are crucial for accurate transport simulations of criticality and nonproliferation applications. This contribution to the ongoing efforts to improve CGMF presents a study of the sensitivitymore » of various neutron and gamma observables to several input parameters for Californium-252 spontaneous fission. Among the most influential parameters are those that affect the input yield distributions in fragment mass and total kinetic energy (TKE). A new scheme for representing Y(A,TKE) was implemented in CGMF using three fission modes, S1, S2 and SL. The sensitivity profiles were calculated for 17 total parameters, which show that the neutron multiplicity distribution is strongly affected by the TKE distribution of the fragments. The total excitation energy (TXE) of the fragments is shared according to a parameter RT, which is defined as the ratio of the light to heavy initial temperatures. The sensitivity profile of the neutron multiplicity shows a second order effect of RT on the mean neutron multiplicity. A final sensitivity profile was produced for the parameter alpha, which affects the spin of the fragments. Higher values of alpha lead to higher fragment spins, which inhibit the emission of neutrons. Understanding the sensitivity of the prompt neutron and gamma observables to the many CGMF input parameters provides a platform for the optimization of these parameters.« less

  3. Critical Zone Services as a Measure for Evaluating the Trade-offs in Intensively Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Kumar, P.

    2015-12-01

    The Critical Zone includes the range of biophysical processes occurring from the top of the vegetation canopy to the weathering zone below the groundwater table. These services (Field et al. 2015) provide a measure to value processes that support the goods and services from our landscapes. In intensively managed landscapes the provisioning and regulating services are being altered through anthropogenic energy inputs so as to derive more agricultural productivity from the landscapes. Land use change and other alterations to the environment result in positive and/or negative net Critical Zone services. Through studies in the Critical Zone Observatory for Intensively Managed Landscapes (IMLCZO), this research seeks to answer questions such as: Are perennial bioenergy crops or annual replaced crops better for the land and surrounding environment? How do we evaluate the products and services from the land for the energy and resources we put in? Before the economic valuation of Critical Zone services, these questions seemed abstract. However, with developments such as Critical Zone services and life cycle assessments, they are more concrete. To evaluate the trade-offs between positive and negative impacts, life cycle assessments are used to create an inventory of all the energy inputs and outputs in a landscape management system. Total energy is computed by summing the mechanical energy used to construct tile drains, fertilizer, and other processes involved in intensely managed landscapes and the chemical energy gained by the production of biofuels from bioenergy crops. A multi-layer canopy model (MLCan) computes soil, water, and nutrient outputs for each crop type, which can be translated into Critical Zone services. These values are then viewed alongside the energy inputs into the system to show the relationship between agricultural practices and their corresponding ecosystem and environmental impacts.

  4. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  5. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    PubMed

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  6. Energy-positive sewage sludge pre-treatment with a novel ultrasonic flatbed reactor at low energy input.

    PubMed

    Lippert, Thomas; Bandelin, Jochen; Musch, Alexandra; Drewes, Jörg E; Koch, Konrad

    2018-05-20

    The performance of a novel ultrasonic flatbed reactor for sewage sludge pre-treatment was assessed for three different waste activated sludges. The study systematically investigated the impact of specific energy input (200 - 3,000 kJ/kg TS ) on the degree of disintegration (DD COD , i.e. ratio between ultrasonically and maximum chemically solubilized COD) and methane production enhancement. Relationship between DD COD and energy input was linear, for all sludges tested. Methane yields were significantly increased for both low (200 kJ/kg TS ) and high (2,000 - 3,000 kJ/kg TS ) energy inputs, while intermediate inputs (400 - 1,000 kJ/kg TS ) showed no significant improvement. High inputs additionally accelerated reaction kinetics, but were limited to similar gains as low inputs (max. 12%), despite the considerably higher DD COD values. Energy balance was only positive for 200 kJ/kg TS -treatments, with a maximum energy recovery of 122%. Results suggest that floc deagglomeration rather than cell lysis (DD COD =1% - 5% at 200 kJ/kg TS ) is the key principle of energy-positive sludge sonication. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Energy-water nexus for mass cultivation of algae.

    PubMed

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  8. Revolutions in energy input and material cycling in Earth history and human history

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Pichler, Peter-Paul; Weisz, Helga

    2016-04-01

    Major revolutions in energy capture have occurred in both Earth and human history, with each transition resulting in higher energy input, altered material cycles and major consequences for the internal organization of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxygenic photosynthesis, and land colonization by eukaryotic photosynthesizers as step changes in free energy input to the biosphere. In human history we focus on the Palaeolithic use of fire, the Neolithic revolution to farming, and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quantify the resulting increase in energy input, and discuss the consequences for material cycling and for biological and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolution gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and income brackets we show the unequal distribution in energy and material use among contemporary humans. Looking ahead, a prospective sustainability revolution will require scaling up new renewable and decarbonized energy technologies and the development of much more efficient material recycling systems - thus creating a more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can implement the changes in energy input and material cycling without losing the large achievements in standard of living and individual liberation associated with industrial societies.

  9. Measures of the environmental footprint of the front end of the nuclear fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Schneider; B. Carlsen; E. Tavrides

    2013-11-01

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC. These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation. To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as wellmore » as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle. Total energy input is calculated at 8.7 x 10- 3 GJ(e)/MWh(e) of electricity and 5.9 x 10- 3 GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 x 10- 3 m2/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up to 2.« less

  10. Energy Survey of Machine Tools: Separating Power Information of the Main Transmission System During Machining Process

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao

    The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.

  11. Abatement of N{sub 2}O emissions from circulating fluidized bed combustion through afterburning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, L.; Leckner, B.

    1995-04-01

    A method for the abatement of N{sub 2}O emission from fluidized bed combustion has been investigated. The method consists of burning a secondary fuel after the normal circulating fluidized bed combustor. Liquefied petroleum gas (LPG), fuel oil, pulverized coal, and wood, as well as sawdust, were used as the secondary fuel. Experiments showed that the N{sub 2}O emission can be reduced by 90% or more by this technique. The resulting N{sub 2}O emission was principally a function of the gas temperature achieved in the afterburner and independent of afterburning fuel, but the amount of air in the combustion gases frommore » the primary combustion also influences the results. No negative effects on sulfur capture or on NO or CO emissions were recorded. In the experiments, the primary cyclone of the fluidized bed boiler was used for afterburning. If afterburning is implemented in a plant optimized for this purpose, an amount of secondary fuel corresponding to 10% of the total energy input should remove practically all N{sub 2}O. During the present experiments the secondary fuel consumption was greater than 10% of the total energy input due to various losses.« less

  12. Systems and methods for compensating for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M.; Kajouke, Lateef A.

    2013-06-18

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.

  13. Energy coupling during the August 2011 magnetic storm

    NASA Astrophysics Data System (ADS)

    Huang, C. Y.; Su, Y.; Sutton, E. K.; Weimer, D. R.; Davidson, R.

    2013-12-01

    We present results from an analysis of high-latitude ionosphere-thermosphere (IT) coupling to the solar wind during a moderate magnetic storm which occurred on 5-6 August 2011. During the storm, a multi-point set of observations of the ionosphere and thermosphere was available. We make use of ionospheric measurements of electromagnetic and particle energy made by the Defense Meteorological Satellite Program (DMSP), and neutral densities measured by the Gravity Recovery and Climate Experiment (GRACE) satellite to infer: (1) the energy budget and (2) timing of the energy transfer process during the storm. We conclude that the primary location for energy input to the IT system is the extremely high latitude region. We suggest that the total energy available to the IT system is not completely captured either by observation or empirical models.

  14. A new response matrix for a 6LiI scintillator BSS system

    NASA Astrophysics Data System (ADS)

    Lacerda, M. A. S.; Méndez-Villafañe, R.; Lorente, A.; Ibañez, S.; Gallego, E.; Vega-Carrillo, H. R.

    2017-10-01

    A new response matrix was calculated for a Bonner Sphere Spectrometer (BSS) with a 6 LiI(Eu) scintillator, using the Monte Carlo N-Particle radiation transport code MCNPX. Responses were calculated for 6 spheres and the bare detector, for energies varying from 1.059E(-9) MeV to 105.9 MeV, with 20 equal-log(E)-width bins per energy decade, totalizing 221 energy groups. A comparison was done among the responses obtained in this work and other published elsewhere, for the same detector model. The calculated response functions were inserted in the response input file of the MAXED code and used to unfold the total and direct neutron spectra generated by the 241Am-Be source of the Universidad Politécnica de Madrid (UPM). These spectra were compared with those obtained using the same unfolding code with the Mares and Schraube matrix response.

  15. Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars

    NASA Astrophysics Data System (ADS)

    Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan

    2018-06-01

    Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets' upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically active planet-bearing host stars, Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well-studied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass- loss in these hot Jupiters.

  16. Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Tristram O.; Brandt, Craig C; Marland, Gregg

    2009-01-01

    Changes in cropland production and management influence energy consumption and emissions of CO2 from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO2 emissions for cropping practices in the US at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO2 emissions for cropping practices enable (a) the monitoring of energy and emissions with changes in land management, and (b) the calculation and balancingmore » of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on US croplands in 2004 ranged from 1.6-7.9 GJ ha-1 yr-1 and from 5.5-20.5 GJ ha-1 yr-1, respectively. On-site and total CO2 emissions in 2004 ranged from 23-176 kg C ha-1 yr-1 and from 91-365 kg C ha-1 yr-1, respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204-1297 PJ yr-1 (Petajoule = 1 1015 Joule) with associated total fossil CO2 emissions ranging from 22.0-23.2 Tg C yr-1 (Teragram = 1 1012 gram). The annual proportion of on-site CO2 to total CO2 emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the US from 1990 to 2004 resulted in a net emissions reduction of 2.4 Tg C.« less

  17. Weather Correlations to Calculate Infiltration Rates for U. S. Commercial Building Energy Models.

    PubMed

    Ng, Lisa C; Quiles, Nelson Ojeda; Dols, W Stuart; Emmerich, Steven J

    2018-01-01

    As building envelope performance improves, a greater percentage of building energy loss will occur through envelope leakage. Although the energy impacts of infiltration on building energy use can be significant, current energy simulation software have limited ability to accurately account for envelope infiltration and the impacts of improved airtightness. This paper extends previous work by the National Institute of Standards and Technology that developed a set of EnergyPlus inputs for modeling infiltration in several commercial reference buildings using Chicago weather. The current work includes cities in seven additional climate zones and uses the updated versions of the prototype commercial building types developed by the Pacific Northwest National Laboratory for the U. S. Department of Energy. Comparisons were made between the predicted infiltration rates using three representations of the commercial building types: PNNL EnergyPlus models, CONTAM models, and EnergyPlus models using the infiltration inputs developed in this paper. The newly developed infiltration inputs in EnergyPlus yielded average annual increases of 3 % and 8 % in the HVAC electrical and gas use, respectively, over the original infiltration inputs in the PNNL EnergyPlus models. When analyzing the benefits of building envelope airtightening, greater HVAC energy savings were predicted using the newly developed infiltration inputs in EnergyPlus compared with using the original infiltration inputs. These results indicate that the effects of infiltration on HVAC energy use can be significant and that infiltration can and should be better accounted for in whole-building energy models.

  18. [Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].

    PubMed

    Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng

    2015-12-01

    To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.

  19. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  20. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  1. Hybrid life-cycle assessment (LCA) of CO2 emission with management alternatives for household food wastes in Japan.

    PubMed

    Inaba, Rokuta; Nansai, Keisuke; Fujii, Minoru; Hashimoto, Seiji

    2010-06-01

    In this study, we conducted a hybrid life-cycle assessment (LCA) to evaluate reductions in CO(2) emissions by food waste biogasification of household food wastes in Japan. Two alternative scenarios were examined. In one alternative (Ref), all combustible municipal solid wastes (MSWs), including food waste, are incinerated. In the other (Bio), food waste is biogasified, while the other combustible wastes are incinerated. An inventory analysis of energy and material flow in the MSW management system was conducted. Subsequently, the inventory data were summarized into an input-output format, and a make-use input-output framework was applied. Furthermore, a production equilibrium model was established using a matrix representing the input- output relationship of energy and materials among the processes and sectors. Several levels of power generation efficiency from incineration were applied as a sensitivity analysis. The hybrid LCA indicated that the difference between the Bio and Ref scenarios, from the perspective of CO( 2) emissions, is relatively small. However, a 13-14% reduction of CO(2) emissions of the total waste management sector in Japan may be achieved by improving the efficiency of power generation from incineration from 10% to 25%.

  2. Advancing the Food-Energy-Water Nexus: Closing Nutrient Loops in Arid River Corridors.

    PubMed

    Mortensen, Jacob G; González-Pinzón, Ricardo; Dahm, Clifford N; Wang, Jingjing; Zeglin, Lydia H; Van Horn, David J

    2016-08-16

    Closing nutrient loops in terrestrial and aquatic ecosystems is integral to achieve resource security in the food-energy-water (FEW) nexus. We performed multiyear (2005-2008), monthly sampling of instream dissolved inorganic nutrient concentrations (NH4-N, NO3-N, soluble reactive phosphorus-SRP) along a ∼ 300-km arid-land river (Rio Grande, NM) and generated nutrient budgets to investigate how the net source/sink behavior of wastewater and irrigated agriculture can be holistically managed to improve water quality and close nutrient loops. Treated wastewater on average contributed over 90% of the instream dissolved inorganic nutrients (101 kg/day NH4-N, 1097 kg/day NO3-N, 656 kg/day SRP). During growing seasons, the irrigation network downstream of wastewater outfalls retained on average 37% of NO3-N and 45% of SRP inputs, with maximum retention exceeding 60% and 80% of NO3-N and SRP inputs, respectively. Accurate quantification of NH4-N retention was hindered by low loading and high variability. Nutrient retention in the irrigation network and instream processes together limited downstream export during growing seasons, with total retention of 33-99% of NO3-N inputs and 45-99% of SRP inputs. From our synoptic analysis, we identify trade-offs associated with wastewater reuse for agriculture within the scope of the FEW nexus and propose strategies for closing nutrient loops in arid-land rivers.

  3. Double differential cross sections for proton induced electron emission from molecular analogues of DNA constituents for energies in the Bragg peak region

    NASA Astrophysics Data System (ADS)

    Rudek, Benedikt; Bennett, Daniel; Bug, Marion U.; Wang, Mingjie; Baek, Woon Yong; Buhr, Ticia; Hilgers, Gerhard; Champion, Christophe; Rabus, Hans

    2016-09-01

    For track structure simulations in the Bragg peak region, measured electron emission cross sections of DNA constituents are required as input for developing parameterized model functions representing the scattering probabilities. In the present work, double differential cross sections were measured for the electron emission from vapor-phase pyrimidine, tetrahydrofuran, and trimethyl phosphate that are structural analogues to the base, the sugar, and the phosphate residue of the DNA, respectively. The range of proton energies was from 75 keV to 135 keV, the angles ranged from 15° to 135°, and the electron energies were measured from 10 eV to 200 eV. Single differential and total electron emission cross sections are derived by integration over angle and electron energy and compared to the semi-empirical Hansen-Kocbach-Stolterfoht (HKS) model and a quantum mechanical calculation employing the first Born approximation with corrected boundary conditions (CB1). The CB1 provides the best prediction of double and single differential cross section, while total cross sections can be fitted with semi-empirical models. The cross sections of the three samples are proportional to their total number of valence electrons.

  4. Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks.

    PubMed

    Yao, Kun; Parkhill, John

    2016-03-08

    We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from an input electron density. The output of the network is used as a nonlocal correction to conventional local and semilocal kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. The density which minimizes the total energy given by the functional is examined in detail. We identify several avenues to improve on this exploratory work, by reducing numerical noise and changing the structure of our functional. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.

  5. The temperature structure, mass, and energy flow in the corona and inner solar wind

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.

    1988-01-01

    Remote-sensing and in situ data are used to constrain a radiative energy balance model in order to study the radial variations of coronal temperatures, densities, and outflow speeds in several types of coronal holes and in an unstructured quiet region of the corona. A one-fluid solar wind model is used which takes into account the effects of radiative and inward conductive losses in the low corona and the chromospheric-coronal transition region. The results show that the total nonradiative energy input in magnetically open coronal regions is 5 + or - 10 to the 5th ergs/sq cm, and that most of the energy heating the coronal plasma is dissipated within 2 solar radii of the solar surface.

  6. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Sugita, Michiaki

    1992-01-01

    Evaporation from natural land surfaces often exhibits a strong variation during the course of a day, mostly in response to the daily variation of radiative energy input at the surface. This makes it difficult to derive the total daily evaporation, when only one or a few instantaneous estimates of evaporation are available. It is often possible to resolve this difficulty by assuming self-preservation in the diurnal evolution of the surface energy budget. Thus if the relative partition of total incoming energy flux among the different components remains the same, the ratio of latent heat flux and any other flux component can be taken as constant through the day. This concept of constant flux ratios is tested by means of data obtained during the First ISLSCP Field Experiment; the instantaneous evaporation values were calculated by means of the atmospheric boundary layer bulk similarity approach with radiosonde profiles and radiative surface temperatures. Good results were obtained for evaporative flux ratios with available energy flux, with net radiation, and with incoming shortwave radiation.

  7. A new interpretation and validation of variance based importance measures for models with correlated inputs

    NASA Astrophysics Data System (ADS)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  8. Compensation for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A

    2013-11-19

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.

  9. Anaerobic digestion of ultrasonicated sludge at different solids concentrations - Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; Yan, S; Tyagi, R D; Surampalli, R Y

    2016-01-15

    Two cases of anaerobic digestion (AD) of sludge, namely (i) with pre-treatment and (ii) without pre-treatment, were assessed using mass-energy balance and the corresponding greenhouse gas (GHG) emissions. For a digestion period of 30 days, volatile solids degradation of the control sludge and the ultrasonicated secondary sludge was 51.4% and 60.1%, respectively. Mass balance revealed that the quantity of digestate required for dewatering, transport and land application was the lowest (20.2 × 10(6) g dry sludge/day) for ultrasonicated secondary sludge at 31.4 g TS/L. Furthermore, for ultrasonicated secondary sludge at 31.4 g TS/L, the maximum net energy (energy output - energy input) of total dry solids (TDS) was 7.89 × 10(-6) kWh/g and the energy ratio (output/input) was 1.0. GHG emissions were also reduced with an increase in the sludge solids concentration (i.e., 40.0 g TS/L < 30.0 g TS/L < 20.0 g TS/L). Ultrasonication pre-treatment proved to be efficient and beneficial for enhancing anaerobic digestion efficiency of the secondary sludge when compared to the primary and mixed sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. BRLSC: An Advanced Eulerian Code for Predicting Shaped Charges. Volume 1

    DTIC Science & Technology

    1975-12-01

    of cell. sec sec sec cm 124 J 𔃽 Variable Name Location Dimension Units Definition ECK ■2(76)- -1 -f n n EMI.V »Z(8S) EMOB =Z...energy sum: (2-r Ek - ETI1 j/ETII; where E^ is total energy in cell K. If | ECK | > DMIN, execution is stopped. INPUT parameter. Mininum specific...NMXCLS 74. BBOUND 75. UN 7 5 76. ECK 77. NECYCL 78. NTPMX 79. UN 7 9 80. UVMAX 81. NTCC 82. UN S 2 83. IVARDX 84. T Sb. EM IN S6. PMIN

  11. Life cycle biological efficiency of mice divergently selected for heat loss.

    PubMed

    Bhatnagar, A S; Nielsen, M K

    2014-08-01

    Divergent selection in mice for heat loss was conducted in 3 independent replicates creating a high maintenance, high heat loss (MH) and low maintenance, low heat loss (ML) line and unselected control (MC). Improvement in feed efficiency was observed in ML mice due to a reduced maintenance energy requirement but there was also a slight decline in reproductive performance, survivability, and lean content, particularly when compared to MC animals. The objective of this study was to model a life cycle scenario similar to a livestock production system and calculate total inputs and outputs to estimate overall biological efficiency of these lines and determine if reduced feed intake resulted in improved life cycle efficiency. Feed intake, reproductive performance, growth, and body composition were recorded on 21 mating pairs from each line × replicate combination, cohabitated at 7 wk of age and maintained for up to 1 yr unless culled. Proportion of animals at each parity was calculated from survival rates estimated from previous research when enforcing a maximum of 4, 8, or 12 allowed parities. This parity distribution was then combined with values from previous studies to calculate inputs and outputs of mating pairs and offspring produced in a single cycle at equilibrium. Offspring output was defined as kilograms of lean output of offspring at 49 d. Offspring input was defined as megacalories of energy intake for growing offspring from 21 to 49 d. Parent output was defined as kilograms of lean output of culled parents. Parent input was defined as megacalories of energy intake for mating pairs from weaning of one parity to weaning of the next. Offspring output was greatest in MC mice due to superior BW and numbers weaned, while output was lowest in ML mice due to smaller litter sizes and lean content. Parent output did not differ substantially between lines but was greatest in MH mice due to poorer survival rates resulting in more culled animals. Input was greatest in MH and lowest for ML mice for both offspring and parent pairs, consistent with previous results in these lines. Life cycle efficiency was similar in MC and ML mice, while MH mice were least efficient. Ultimately, superior output in MC mice slightly outweighed the lower inputs in ML animals resulting from decreased maintenance energy requirements. Therefore, selection to reduce maintenance energy requirements may be more useful in terminal crosses or in a selection index to reduce possible negative effects on output, especially reproductive performance.

  12. Energy intensity of computer manufacturing: hybrid assessment combining process and economic input-output methods.

    PubMed

    Williams, Eric

    2004-11-15

    The total energy and fossil fuels used in producing a desktop computer with 17-in. CRT monitor are estimated at 6400 megajoules (MJ) and 260 kg, respectively. This indicates that computer manufacturing is energy intensive: the ratio of fossil fuel use to product weight is 11, an order of magnitude larger than the factor of 1-2 for many other manufactured goods. This high energy intensity of manufacturing, combined with rapid turnover in computers, results in an annual life cycle energy burden that is surprisingly high: about 2600 MJ per year, 1.3 times that of a refrigerator. In contrast with many home appliances, life cycle energy use of a computer is dominated by production (81%) as opposed to operation (19%). Extension of usable lifespan (e.g. by reselling or upgrading) is thus a promising approach to mitigating energy impacts as well as other environmental burdens associated with manufacturing and disposal.

  13. Intrinsic Information Processing and Energy Dissipation in Stochastic Input-Output Dynamical Systems

    DTIC Science & Technology

    2015-07-09

    Crutchfield. Information Anatomy of Stochastic Equilibria, Entropy , (08 2014): 0. doi: 10.3390/e16094713 Virgil Griffith, Edwin Chong, Ryan James...Christopher Ellison, James Crutchfield. Intersection Information Based on Common Randomness, Entropy , (04 2014): 0. doi: 10.3390/e16041985 TOTAL: 5 Number...Learning Group Seminar, Complexity Sciences Center, UC Davis. Korana Burke and Greg Wimsatt (UCD), reviewed PRL “Measurement of Stochastic Entropy

  14. Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001

    DOE Data Explorer

    Blasing, T. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (USA); Marland, Gregg [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (USA); Broniak, Christine [Oregon State Univ., Corvallis, OR (United States)

    2004-01-01

    Consumption data for coal, petroleum, and natural gas are multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel consumed (i.e., per cubic foot, barrel, or ton), to calculate the amount of heat energy derived from fuel combustion. The thermal conversion factors are given in Appendix A of each issue of Monthly Energy Review, published by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). Results are expressed in terms of heat energy obtained from each fuel type. These energy values were obtained from the State Energy Data Report (EIA, 2003a), ( http://www.eia.doe.gov/emeu/states/sep_use/total/csv/use_csv.html), and served as our basic input. The energy data are also available in hard copy from the Energy Information Administration, U.S. Department of Energy, as the State Energy Data Report (EIA, 2003a,b).

  15. Neutron total cross-section of hydrogenous and deuterated 1- and 2-propanol and n-butanol measured using the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Rodríguez Palomino, L. A.; Dawidowski, J.; Márquez Damián, J. I.; Cuello, G. J.; Romanelli, G.; Krzystyniak, M.

    2017-10-01

    This work presents the total cross sections of a set of normal and deuterated alcohols (hydrogenous 1- and 2-propanol and n-butanol, 1-propanol(OD) and fully deuterated 2-propanol and n-butanol), measured at spectrometer VESUVIO (ISIS spallation neutron source, United Kingdom). Granada's Synthetic Model was applied to describe those systems and a satisfactory agreement with the measured total cross section was achieved in the range of energies from 10-3 to 100 eV. The input parameters of the model were determined from the essential features of the vibrational spectra of the atoms that compose the systems, which were studied using Molecular Dynamics.

  16. Effect of corn stover compositional variability on minimum ethanol selling price (MESP).

    PubMed

    Tao, Ling; Templeton, David W; Humbird, David; Aden, Andy

    2013-07-01

    A techno-economic sensitivity analysis was performed using a National Renewable Energy Laboratory (NREL) 2011 biochemical conversion design model varying feedstock compositions. A total of 496 feedstock near infrared (NIR) compositions from 47 locations in eight US Corn Belt states were used as the inputs to calculate minimum ethanol selling price (MESP), ethanol yield (gallons per dry ton biomass feedstock), ethanol annual production, as well as total installed project cost for each composition. From this study, the calculated MESP is $2.20 ± 0.21 (average ± 3 SD) per gallon ethanol. Copyright © 2013. Published by Elsevier Ltd.

  17. Prediction, scenarios and insight: The uses of an end-to-end model

    NASA Astrophysics Data System (ADS)

    Steele, John H.

    2012-09-01

    A major function of ecosystem models is to provide extrapolations from observed data in terms of predictions or scenarios or insight. These models can be at various levels of taxonomic resolution such as total community production, abundance of functional groups, or species composition, depending on the data input as drivers. A 40-year dynamic simulation of end-to-end processes in the Georges Bank food web is used to illustrate the input/output relations and the insights gained at the three levels of food web aggregation. The focus is on the intermediate level and the longer term changes in three functional fish guilds - planktivores, benthivores and piscivores - in terms of three ecosystem-based metrics - nutrient input, relative productivity of plankton and benthos, and food intake by juvenile fish. These simulations can describe the long term constraints imposed on guild structure and productivity by energy fluxes over the 40 years but cannot explain concurrent switches in abundance of individual species within guilds. Comparing time series data for individual species with model output provides insights; but including the data in the model would confer only limited extra information. The advantages and limitations of the three levels of resolution of models in relation to ecosystem-based management are: The correlations between primary production and total yield of fish imply a “bottom-up” constraint on end-to-end energy flow through the food web that can provide predictions of such yields. Functionally defined metrics such as nutrient input, relative productivity of plankton and benthos and food intake by juvenile fish, represent bottom-up, mid-level and top-down forcing of the food web. Model scenarios using these metrics can demonstrate constraints on the productivity of these functionally defined guilds within the limits set by (1). Comparisons of guild simulations with time series of fish species provide insight into the switches in species dominance that accompany changes in guild productivity and can illuminate the top-down aspects of regime shifts.

  18. Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover.

    PubMed

    Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab

    2009-12-01

    Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.

  19. A new cooperative MIMO scheme based on SM for energy-efficiency improvement in wireless sensor network.

    PubMed

    Peng, Yuyang; Choi, Jaeho

    2014-01-01

    Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system.

  20. Influence of Joint Configuration on the Strength of Laser Welded Presshardened Steel

    NASA Astrophysics Data System (ADS)

    Kügler, H.; Mittelstädt, C.; Vollertsen, F.

    Presshardened steel is used in nowadays automotive production. Due to its high strength, sheet thicknesses can be reduced which results in decreasing weight of car body components. However, because of microstructure softening and coating agglomerations in the seam, welding is still a challenge. In this paper laser beam welding of 22MnB5 with varying energy input per irradiated area is presented. It is found that increasing energy input per seam length reduces tensile strength. Using a small spot size of 200 μm, tensile strength of 1434 N/mm2 can be reached in bead on plate welds. In lap welds tensile strength is limited because of coating particles agglomerating at the melt pool border line. However, the resulting strength is higher when using several small weld seams than using one seam with the same total seam width. With three weld seams, each 0.5mm in width, tensile strength of 911N/mm2 is reached in lap welding.

  1. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  2. Impact of the FY 2009 Building Technologies Program on United States Employment and Earned Income

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Olga V.; Scott, Michael J.; Hostick, Donna J.

    2008-06-17

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is interested in assessing the potential economic impacts of its portfolio of subprograms on national employment and income. A special purpose input-output model called ImSET is used in this study of 14 Building Technologies Program subprograms in the EERE final FY 2009 budget request to the Office of Management and Budget in February 2008. Energy savings, investments, and impacts on U.S. national employment and earned income are reported by subprogram for selected years to the year 2025. Energy savings and investments from these subprograms have the potentialmore » of creating a total of 258,000 jobs and about $3.7 billion in earned income (2007$) by the year 2025.« less

  3. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Barrier-discharge-excited coaxial excilamps with the enhanced pulse energy

    NASA Astrophysics Data System (ADS)

    Panchenko, A. N.; Tarasenko, V. F.

    2008-01-01

    The parameters of sealed off barrier excilamps are studied at high excitation powers. The total output pulse energy up to 25 mJ is achieved (the emitting area of a KrCl excilamp was up to 1500 cm2, the output power was above 100 kW, and the efficiency achieved 10%). It is shown that a volume discharge was formed in the coaxial excilamp when the energy supplied to the working mixture was increased and the pulse repetition rate was increased up to 50 Hz. The peak radiation intensity on the excilamp surface achieved ~100 W cm-2. The optimal excitation energy of a barrier excilamp was found to be 0.1-0.2 mJ cm-3. The excilamp efficiency rapidly decreases with further increasing the input energy.

  4. On the influence of noise correlations in measurement data on basis image noise in dual-energylike x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roessl, Ewald; Ziegler, Andy; Proksa, Roland

    2007-03-15

    In conventional dual-energy systems, two transmission measurements with distinct spectral characteristics are performed. These measurements are used to obtain the line integrals of two basis material densities. Usually, the measurement process is such that the two measured signals can be treated as independent and therefore uncorrelated. Recently, however, a readout system for x-ray detectors has been introduced for which this is no longer the case. The readout electronics is designed to obtain simultaneous measurements of the total number of photons N and the total energy E they deposit in the sensor material. Practically, this is realized by a signal replicationmore » and separate counting and integrating processing units. Since the quantities N and E are (electronically) derived from one and the same physical sensor signal, they are statistically correlated. Nevertheless, the pair N and E can be used to perform a dual-energy processing following the well-known approach by Alvarez and Macovski. Formally, this means that N is to be identified with the first dual-energy measurement M{sub 1} and E with the second measurement M{sub 2}. In the presence of input correlations between M{sub 1}=N and M{sub 2}=E, however, the corresponding analytic expressions for the basis image noise have to be modified. The main observation made in this paper is that for positively correlated data, as is the case for the simultaneous counting and integrating device mentioned above, the basis image noise is suppressed through the influence of the covariance between the two signals. We extend the previously published relations for the basis image noise to the case where the original measurements are not independent and illustrate the importance of the input correlations by comparing dual-energy basis image noise resulting from the device mentioned above and a device measuring the photon numbers and the deposited energies consecutively.« less

  5. Global sensitivity analysis in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Tsvetkova, O.; Ouarda, T. B.

    2012-12-01

    Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present research show that the brute force method is best for wind assessment purpose, SBSS outperforms other sampling strategies in the majority of cases. The results indicate that the Weibull scale parameter, turbine lifetime and Weibull shape parameter are the three most influential variables in the case study setting. The following conclusions can be drawn from these results: 1) SBSS should be recommended for use in Monte Carlo experiments, 2) The brute force method should be recommended for conducting sensitivity analysis in wind resource assessment, and 3) Little variation in the Weibull scale causes significant variation in energy production. The presence of the two distribution parameters in the top three influential variables (the Weibull shape and scale) emphasizes the importance of accuracy of (a) choosing the distribution to model wind regime at a site and (b) estimating probability distribution parameters. This can be labeled as the most important conclusion of this research because it opens a field for further research, which the authors see could change the wind energy field tremendously.

  6. Net Energetics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underhill, Gary K.; Carlson, Ronald A.; Clendinning, William A.

    1976-01-01

    Econimic analysis, next to technical analysis, has traditionally constituted the major decision-making tool of the capitalist economic system. As lon as capitalism survives, this will remain to be the case. However, during the current period of increasing scarcity and cost of energy -- a period accompanied by higher than normal inflation rates -- a proposed project may appear attractive and economic when, in fact, its demands on energy resources are extraordinarily high. Such a conclusion could well be the case when the major energy expenditure in construction or operation is directed toward a fuel, the price of which is heldmore » unusually low by legal regulation. Net energetics analysis, as applied to energy generation facilities, is a method for determining the total amount of energy, IE, required to construct, operate, and maintain the energy generation facility compared to the total energy, TE, generated (or converted) throughout the facility's lifetime. Fuel consumed by the facility as direct input to the conversion or utiliztion process is not considered a debit while energy generated is not considered a credit in the calculation of the construction, operation, and maintenance energy account, IE. Energy required to run equipment auxiliary to the conversion process is, on the other hand, considered a debit to IE. The latter considerations apply to the production, processing, and transport of fuel but not to the energy content of the fuel itself.« less

  7. Energetics of oscillating lifting surfaces using integral conservation laws

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali R.; Widnall, Sheila E.

    1987-01-01

    The energetics of oscillating flexible lifting surfaces in two and three dimensions is calculated by the use of integral conservation laws in inviscid incompressible flow for general and harmonic transverse oscillations. Total thrust is calculated from the momentum theorem and energy loss rate due to vortex shedding in the wake from the principle of conservation of mechanical energy. Total power required to maintain the oscillations and hydrodynamic efficiency are also determined. In two dimensions, the results are obtained in closed form. In three dimensions, the distribution of vorticity on the lifting surface is also required as input to the calculations. Thus, unsteady lifting-surface theory must be used as well. The analysis is applicable to oscillating lifting surfaces of arbitrary planform, aspect ratio, and reduced frequency and does not require calculation of the leading-edge thrust.

  8. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  9. enoLOGOS: a versatile web tool for energy normalized sequence logos

    PubMed Central

    Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.

    2005-01-01

    enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495

  10. Sliding Mode Control of a Thermal Mixing Process

    NASA Technical Reports Server (NTRS)

    Richter, Hanz; Figueroa, Fernando

    2004-01-01

    In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.

  11. Red meat production in australia: life cycle assessment and comparison with overseas studies.

    PubMed

    Peters, Gregory M; Rowley, Hazel V; Wiedemann, Stephen; Tucker, Robyn; Short, Michael D; Schulz, Matthias

    2010-02-15

    Greenhouse gas emissions from beef production are a significant part of Australia's total contribution to climate change. For the first time an environmental life cycle assessment (LCA) hybridizing detailed on-site process modeling and input-output analysis is used to describe Australian red meat production. In this paper we report the carbon footprint and total energy consumption of three supply chains in three different regions in Australia over two years. The greenhouse gas (GHG) emissions and energy use data are compared to those from international studies on red meat production, and the Australian results are either average or below average. The increasing proportion of lot-fed beef in Australia is favorable, since this production system generates lower total GHG emissions than grass-fed production; the additional effort in producing and transporting feeds is effectively offset by the increased efficiency of meat production in feedlots. In addition to these two common LCA indicators, in this paper we also quantify solid waste generation and a soil erosion indicator on a common basis.

  12. Energy-Efficient Querying of Wireless Sensor Networks

    DTIC Science & Technology

    2007-09-01

    will fail to locate the desired information. Depending on the rate of node movement , this data exchange will be costly in terms of total network...nodes is best accomplished using a small time window to reduce errors introduced by the node’s movement (i.e., older measurements are less likely to...embedded processor or input from upper layer applications,” nodes which detect their own movement transmit an alert signal over a “wake-up” channel

  13. Disinfection by electrohydraulic treatment.

    PubMed

    Allen, M; Soike, K

    1967-04-28

    Electrohydraulic treatment was applied to suspensions of Escherichia coli, spores of Bacillus subtilis var. niger, Saccharomyces cerevisiae, and bacteriophage T2 at an input energy that, in most cases, was below the energy required to sterilize. The input energy was held relatively constant for each of these microorganisms, but the capacitance and voltage were varied. Data are presented which show the degree of disinfection as a function of capacitance and voltage. In all cases, the degree of disinfection for a given input energy increases as both capacitance and voltage are lowered.

  14. Regenerative braking device with rotationally mounted energy storage means

    DOEpatents

    Hoppie, Lyle O.

    1982-03-16

    A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

  15. A comparison of LBW and GTAW processes in miniature closure welds

    NASA Astrophysics Data System (ADS)

    Knorovsky, G. A.; Fuerschbach, P. W.; Gianoulakis, S. E.; Burchett, S. N.

    When small electronic components with glass-to-metal seals are closure welded, the residual stresses that develop in the glass are of concern. If these stresses exceed allowable tensile levels' the resulting weld-induced seal failure may cause the entire component to be scrapped or reworked at a substantial cost. Conventional wisdom says the best welding process for these applications is that which provides the least heat input, and so in that respect, Laser Beam Welding (LBW) provides less heat input than Gas Tungsten Arc Welding (GTAW), however, other concerns, such as weld fit-up, part variability, and material weldability, can modify the final choice of a welding process. In this paper, we compare the characteristic levels of heat input and the residual stresses generated in glass seals for two processes (as calculated by a 3D Finite Element Analysis) as a function of heat input and travel speed, and contrast some of the other manufacturing decisions that must be made in choosing a production process. The geometry chosen is that of a standing edge corner weld in a cylindrical container about 20 mm diameter by 35 mm tall. Four metal pins are glassed into the part lid. The stresses calculated from the resulting from continuous wave CO2 LBW are compared with those resulting from GTAW. The total energy required by the laser weld is significantly less than that needed for the equivalent size GTA weld. The energy input requirements for a given size weld is inversely proportional to the travel speed, but approaches a saturation level as the travel speed increases. LBW travel speeds ranging from 10 mm/s to 50 mm/s were examined.

  16. Skylab water balance analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    The water balance of the Skylab crew was analyzed. Evaporative water loss using a whole body input/output balance equation, water, body tissue, and energy balance was analyzed. The approach utilizes the results of several major Skylab medical experiments. Subsystems were designed for the use of the software necessary for the analysis. A partitional water balance that graphically depicts the changes due to water intake is presented. The energy balance analysis determines the net available energy to the individual crewman during any period. The balances produce a visual description of the total change of a particular body component during the course of the mission. The information is salvaged from metabolic balance data if certain techniques are used to reduce errors inherent in the balance method.

  17. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  18. Environmental Impact of Buildings--What Matters?

    PubMed

    Heeren, Niko; Mutel, Christopher L; Steubing, Bernhard; Ostermeyer, York; Wallbaum, Holger; Hellweg, Stefanie

    2015-08-18

    The goal of this study was to identify drivers of environmental impact and quantify their influence on the environmental performance of wooden and massive residential and office buildings. We performed a life cycle assessment and used thermal simulation to quantify operational energy demand and to account for differences in thermal inertia of building mass. Twenty-eight input parameters, affecting operation, design, material, and exogenic building properties were sampled in a Monte Carlo analysis. To determine sensitivity, we calculated the correlation between each parameter and the resulting life cycle inventory and impact assessment scores. Parameters affecting operational energy demand and energy conversion are the most influential for the building's total environmental performance. For climate change, electricity mix, ventilation rate, heating system, and construction material rank the highest. Thermal inertia results in an average 2-6% difference in heat demand. Nonrenewable cumulative energy demand of wooden buildings is 18% lower, compared to a massive variant. Total cumulative energy demand is comparable. The median climate change impact is 25% lower, including end-of-life material credits and 22% lower, when credits are excluded. The findings are valid for small offices and residential buildings in Switzerland and regions with similar building culture, construction material production, and climate.

  19. Quantitative investigation of hydraulic mixing energy input during batch mode anaerobic digestion and its impact on performance.

    PubMed

    McLeod, James; Othman, Maazuza Z; Parthasarathy, Rajarathinam

    2018-05-26

    The relationship between mixing energy input and biogas production was investigated by anaerobically digesting sewage sludge in lab scale, hydraulically mixed, batch mode digesters at six different specific energy inputs. The goal was to identify how mixing energy influenced digestion performance at quantitative levels to help explain the varying results in other published works. The results showed that digester homogeneity was largely uninfluenced by energy input, whereas cumulative biogas production and solids destruction were. With similar solids distributions between conditions, the observed differences were attributed to shear forces disrupting substrate-microbe flocs rather than the formation of temperature and/or concentration gradients. Disruption of the substrate-microbe flocs produced less favourable conditions for hydrolytic bacteria, resulting in less production of biomass and more biogas. Overall, this hypothesis explains the current body of research including the inhibitory conditions reported at extreme mixing power inputs. However, further work is required to definitively prove it. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogasmore » and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.« less

  1. Influence of Energy Input on the Flow Past Hypersonic Aircraft X-43

    NASA Astrophysics Data System (ADS)

    Khankhasaeva, Ya V.; E Borisov, V.; E Lutsky, A.

    2017-02-01

    This paper deals with a numerical study of the influence of energy sources on the flow past hypersonic aircraft X-43. Flight mode with M = 6 and angle of attack α = 0°, 4° with energy deposition in areas around various parts of HA was considered. It is shown that energy input in front of the bow of the HA leads to a significant weakening of the bow shock wave and an increase in aerodynamic efficiency of the vehicle. The results of studies on the impact of energy input in the scramjet intake are also presented.

  2. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  3. Low-energy ion outflow modulated by the solar wind energy input

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas

    2017-04-01

    Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.

  4. Reconstruction of solar spectral irradiance since the Maunder minimum

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Vieira, L. E. A.; Solanki, S. K.

    2010-12-01

    Solar irradiance is the main external driver of the Earth's climate. Whereas the total solar irradiance is the main source of energy input into the climate system, solar UV irradiance exerts control over chemical and physical processes in the Earth's upper atmosphere. The time series of accurate irradiance measurements are, however, relatively short and limit the assessment of the solar contribution to the climate change. Here we reconstruct solar total and spectral irradiance in the range 115-160,000 nm since 1610. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is appraised from the historical record of the sunspot number using a simple but consistent physical model. The model predicts an increase of 1.25 W/m2, or about 0.09%, in the 11-year averaged solar total irradiance since the Maunder minimum. Also, irradiance in individual spectral intervals has generally increased during the past four centuries, the magnitude of the trend being higher toward shorter wavelengths. In particular, the 11-year averaged Ly-α irradiance has increased by almost 50%. An exception is the spectral interval between about 1500 and 2500 nm, where irradiance has slightly decreased (by about 0.02%).

  5. Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position

    NASA Astrophysics Data System (ADS)

    Rahmatalla, Salam; DeShaw, Jonathan

    2011-12-01

    Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.

  6. Inventory of CO2 emissions driven by energy consumption in Hubei Province: a time-series energy input-output analysis

    NASA Astrophysics Data System (ADS)

    Li, Jiashuo; Luo, Ran; Yang, Qing; Yang, Haiping

    2016-12-01

    Based on an input-output analysis, this paper compiles inventories of fuel-related CO2 emissions of Hubei economy in the years of 2002, 2005, and 2007. Results show that calculated total direct CO2 emissions rose from 114,462.69 kt (2002) to 196,650.31 kt (2005), reaching 210,419.93 kt in 2007, with an average 22.50% rate of increase. Raw coal was the dominant source of the direct emissions throughout the three years. The sector of Electric Power, Heat Production, and Supply was the main direct emissions contributor, with the largest intensities observed from 2002 (1192.97 g/CNY) to 2007 (1739.15 g/ CNY). From the industrial perspective, the secondary industry, which is characterized as manufacture of finished products, was still the pillar of the Hubei economy during this period concerned, contributing more than 80% of the total direct emissions. As a net exporter of embodied CO2 emissions in 2002 and 2007, Hubei reported net-exported emissions of 4109.00 kt and 17,871.77 kt respectively; however, Hubei was once a net importer of CO2 emissions in 2005 (2511.93 kt). The CO2 emissions embodied in export and fixed capital formation had the two leading fractions of emissions embodied in the final use. The corresponding countermeasures, such as promoting renewable and clean energy and properly reducing the exports of low value added and carbon-intensive products are suggestions for reducing CO2 emissions in Hubei.

  7. Studies of Neutron-Induced Fission of 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana; TKE Team

    2014-09-01

    A Frisch-gridded ionization chamber and the double energy (2E) analysis method were used to study mass yield distributions and average total kinetic energy (TKE) release from neutron-induced fission of 235U, 238U, and 239Pu. Despite decades of fission research, little or no TKE data exist for high incident neutron energies. Additional average TKE information at incident neutron energies relevant to defense- and energy-related applications will provide a valuable observable for benchmarking simulations. The data can also be used as inputs in theoretical fission models. The Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE - WNR) provides a neutron beam from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on 238U, 235U, and 239Pu will be presented. LA-UR-14-24921.

  8. Intermediate photovoltaic system application experiment operational performance report. Volume 6: Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.

  9. Intermediate photovoltaic system application experiment operational performance report: Volume 5, for Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.

  10. A novel microgrid demand-side management system for manufacturing facilities

    NASA Astrophysics Data System (ADS)

    Harper, Terance J.

    Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable. For this research, a manufacturing process that had approximately 20 kW of peak demand was matched with a solar photovoltaic array that had a peak output of approximately 3 KW. An innovative Demand-Side Management (DSM) strategy was developed to manage the process loads as part of this smart microgrid system. The DSM algorithm managed the intermittent nature of the microgrid and the instantaneous demand of the manufacturing process. The control algorithm required three input signals; one from the microgrid indicating the availability of renewable energy, another from the manufacturing process indicating energy use as a percent of peak production, and historical data for renewable sources and facility demand. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage. The results show that a real-time management of a manufacturing process with a microgrid will reduce electrical consumption and peak demand. The renewable energy system for this research was rated to provide up to 13% of the total manufacturing capacity. With actively managing the process loads with the DSM program alone, electrical consumption from the utility grid was reduced by 17% on average. An additional 24% reduction was accomplished when the microgrid and DSM program was enabled together, resulting in a total reduction of 37%. On average, peak demand was reduced by 6%, but due to the intermittency of the renewable source and the billing structure for peak demand, only a 1% reduction was obtained. During a billing period, it only takes one day when solar irradiance is poor to affect the demand reduction capabilities. To achieve further demand reduction, energy storage should be introduced and integrated.

  11. Estimated anthropogenic nitrogen and phosphorus inputs to the land surface of the conterminous United States--1992, 1997, and 2002

    USGS Publications Warehouse

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2013-01-01

    Anthropogenic inputs of nitrogen and phosphorus to each county in the conterminous United States and to the watersheds of 495 surface-water sites studied as part of the U.S. Geological Survey National Water-Quality Assessment Program were quantified for the years 1992, 1997, and 2002. Estimates of inputs of nitrogen and phosphorus from biological fixation by crops (for nitrogen only), human consumption, crop production for human consumption, animal production for human consumption, animal consumption, and crop production for animal consumption for each county are provided in a tabular dataset. These county-level estimates were allocated to the watersheds of the surface-water sites to estimate watershed-level inputs from the same sources; these estimates also are provided in a tabular dataset, together with calculated estimates of net import of food and net import of feed and previously published estimates of inputs from atmospheric deposition, fertilizer, and recoverable manure. The previously published inputs are provided for each watershed so that final estimates of total anthropogenic nutrient inputs could be calculated. Estimates of total anthropogenic inputs are presented together with previously published estimates of riverine loads of total nitrogen and total phosphorus for reference.

  12. Antihydrogen from positronium impact with cold antiprotons: a Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cassidy, D. B.; Merrison, J. P.; Charlton, M.; Mitroy, J.; Ryzhikh, G.

    1999-04-01

    A Monte Carlo simulation of the reaction to form antihydrogen by positronium impact upon antiprotons has been undertaken. Total and differential cross sections have been utilized as inputs to the simulation which models the conditions foreseen in planned antihydrogen formation experiments using positrons and antiprotons held in Penning traps. Thus, predictions of antihydrogen production rates, angular distributions and the variation of the mean antihydrogen temperature as a function of incident positronium kinetic energy have been produced.

  13. Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors.

    PubMed

    Jin, Hongyue; Afiuny, Peter; Dove, Stephen; Furlan, Gojmir; Zakotnik, Miha; Yih, Yuehwern; Sutherland, John W

    2018-03-20

    Neodymium-iron-boron (NdFeB) magnets offer the strongest magnetic field per unit volume, and thus, are widely used in clean energy applications such as electric vehicle motors. However, rare earth elements (REEs), which are the key materials for creating NdFeB magnets, have been subject to significant supply uncertainty in the past decade. NdFeB magnet-to-magnet recycling has recently emerged as a promising strategy to mitigate this supply risk. This paper assesses the environmental footprint of NdFeB magnet-to-magnet recycling by directly measuring the environmental inputs and outputs from relevant industries and compares the results with production from "virgin" materials, using life cycle assessments. It was found that magnet-to-magnet recycling lowers environmental impacts by 64-96%, depending on the specific impact categories under investigation. With magnet-to-magnet recycling, key processes that contribute 77-95% of the total impacts were identified to be (1) hydrogen mixing and milling (13-52%), (2) sintering and annealing (6-24%), and (3) electroplating (6-75%). The inputs from industrial sphere that play key roles in creating these impacts were electricity (24-93% of the total impact) and nickel (5-75%) for coating. Therefore, alternative energy sources such as wind and hydroelectric power are suggested to further reduce the overall environmental footprint of NdFeB magnet-to-magnet recycling.

  14. Catastrophic cooling and cessation of heating in the solar corona

    NASA Astrophysics Data System (ADS)

    Peter, H.; Bingert, S.; Kamio, S.

    2012-01-01

    Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org

  15. A review on waste heat recovery from exhaust in the ceramics industry

    NASA Astrophysics Data System (ADS)

    Delpech, Bertrand; Axcell, Brian; Jouhara, Hussam

    2017-11-01

    Following the energy crisis in 1980, many saving technologies have been investigated with attempts to implement them into various industries, one of them is the field of ceramic production. In order to comply with energy saving trends and environmental issues, the European ceramic industry sector has developed energy efficient systems which reduced significantly production time and costs and reduced total energy consumption. The last achievement is of great importance as the energy consumption of the ceramic process accounts for a significant percentage of the total production costs. More precisely, the firing stage consumes the highest amount of energy during the whole ceramic production process. The use of roller kilns, fired by natural gas, involves a loss of 50% of the input energy via the flue gas and the cooling gas exhausts. This review paper briefly describes the production process of the different ceramic products, with a focus on the ceramic sector in Europe. Due to the limited on waste heat recovery in the ceramic industry, other high temperature waste heat recovery applications are considered in the paper, such as in concrete and steel production, which could have a potential use in the ceramic industry. The state of the art technologies used in the ceramics industry are reviewed with a special interest in waste heat recovery from the ceramic process exhaust stacks and energy saving technologies.

  16. Structural Decomposition Analysis of China’s Industrial Energy Consumption Based on Input-Output Analysis

    NASA Astrophysics Data System (ADS)

    Huang, X. Y.; Zhou, J. Q.; Wang, Z.; Deng, L. C.; Hong, S.

    2017-05-01

    China is now at a stage of accelerated industrialization and urbanization, with energy-intensive industries contributing a large proportion of economic growth. In this study, we examined industrial energy consumption by decomposition analysis to describe the driving factors of energy consumption in China. Based on input-output (I-O) tables from the World Input-Output Database (WIOD) website and China’s energy use data from 1995 to 2011, we studied the sectorial changes of energy efficiency during the examined period. The results showed that all industries increased their energy efficiency. Energy consumption was decomposed into three factors by the logarithmic mean Divisia index (LMDI) method. The increase in production output was the leading factor that drives up China’s energy consumption. World Trade Organization accession and financial crises had great impact on the energy consumption. Based on these results, a series of energy policy suggestions for decision-makers has been proposed.

  17. Embodied energy comparison of surface water and groundwater supply options.

    PubMed

    Mo, Weiwei; Zhang, Qiong; Mihelcic, James R; Hokanson, David R

    2011-11-01

    The embodied energy associated with water provision comprises an important part of water management, and is important when considering sustainability. In this study, an input-output based hybrid analysis integrated with structural path analysis was used to develop an embodied energy model. The model was applied to a groundwater supply system (Kalamazoo, Michigan) and a surface water supply system (Tampa, Florida). The two systems evaluated have comparable total energy embodiments based on unit water production. However, the onsite energy use of the groundwater supply system is approximately 27% greater than the surface water supply system. This was primarily due to more extensive pumping requirements. On the other hand, the groundwater system uses approximately 31% less indirect energy than the surface water system, mainly because of fewer chemicals used for treatment. The results from this and other studies were also compiled to provide a relative comparison of embodied energy for major water supply options. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. High-yield maize with large net energy yield and small global warming intensity

    PubMed Central

    Grassini, Patricio; Cassman, Kenneth G.

    2012-01-01

    Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684

  19. Crosstalk compensation in analysis of energy storage devices

    DOEpatents

    Christophersen, Jon P; Morrison, John L; Morrison, William H; Motloch, Chester G; Rose, David M

    2014-06-24

    Estimating impedance of energy storage devices includes generating input signals at various frequencies with a frequency step factor therebetween. An excitation time record (ETR) is generated to include a summation of the input signals and a deviation matrix of coefficients is generated relative to the excitation time record to determine crosstalk between the input signals. An energy storage device is stimulated with the ETR and simultaneously a response time record (RTR) is captured that is indicative of a response of the energy storage device to the ETR. The deviation matrix is applied to the RTR to determine an in-phase component and a quadrature component of an impedance of the energy storage device at each of the different frequencies with the crosstalk between the input signals substantially removed. This approach enables rapid impedance spectra measurements that can be completed within one period of the lowest frequency or less.

  20. Orchestrating TRANSP Simulations for Interpretative and Predictive Tokamak Modeling with OMFIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grierson, B. A.; Yuan, X.; Gorelenkova, M.

    TRANSP simulations are being used in the OMFIT work- flow manager to enable a machine independent means of experimental analysis, postdictive validation, and predictive time dependent simulations on the DIII-D, NSTX, JET and C-MOD tokamaks. The procedures for preparing the input data from plasma profile diagnostics and equilibrium reconstruction, as well as processing of the time-dependent heating and current drive sources and assumptions about the neutral recycling, vary across machines, but are streamlined by using a common workflow manager. Settings for TRANSP simulation fidelity are incorporated into the OMFIT framework, contrasting between-shot analysis, power balance, and fast-particle simulations. A previouslymore » established series of data consistency metrics are computed such as comparison of experimental vs. calculated neutron rate, equilibrium stored energy vs. total stored energy from profile and fast-ion pressure, and experimental vs. computed surface loop voltage. Discrepancies between data consistency metrics can indicate errors in input quantities such as electron density profile or Zeff, or indicate anomalous fast-particle transport. Measures to assess the sensitivity of the verification metrics to input quantities are provided by OMFIT, including scans of the input profiles and standardized post-processing visualizations. For predictive simulations, TRANSP uses GLF23 or TGLF to predict core plasma profiles, with user defined boundary conditions in the outer region of the plasma. ITPA validation metrics are provided in post-processing to assess the transport model validity. By using OMFIT to orchestrate the steps for experimental data preparation, selection of operating mode, submission, post-processing and visualization, we have streamlined and standardized the usage of TRANSP.« less

  1. Orchestrating TRANSP Simulations for Interpretative and Predictive Tokamak Modeling with OMFIT

    DOE PAGES

    Grierson, B. A.; Yuan, X.; Gorelenkova, M.; ...

    2018-02-21

    TRANSP simulations are being used in the OMFIT work- flow manager to enable a machine independent means of experimental analysis, postdictive validation, and predictive time dependent simulations on the DIII-D, NSTX, JET and C-MOD tokamaks. The procedures for preparing the input data from plasma profile diagnostics and equilibrium reconstruction, as well as processing of the time-dependent heating and current drive sources and assumptions about the neutral recycling, vary across machines, but are streamlined by using a common workflow manager. Settings for TRANSP simulation fidelity are incorporated into the OMFIT framework, contrasting between-shot analysis, power balance, and fast-particle simulations. A previouslymore » established series of data consistency metrics are computed such as comparison of experimental vs. calculated neutron rate, equilibrium stored energy vs. total stored energy from profile and fast-ion pressure, and experimental vs. computed surface loop voltage. Discrepancies between data consistency metrics can indicate errors in input quantities such as electron density profile or Zeff, or indicate anomalous fast-particle transport. Measures to assess the sensitivity of the verification metrics to input quantities are provided by OMFIT, including scans of the input profiles and standardized post-processing visualizations. For predictive simulations, TRANSP uses GLF23 or TGLF to predict core plasma profiles, with user defined boundary conditions in the outer region of the plasma. ITPA validation metrics are provided in post-processing to assess the transport model validity. By using OMFIT to orchestrate the steps for experimental data preparation, selection of operating mode, submission, post-processing and visualization, we have streamlined and standardized the usage of TRANSP.« less

  2. Analysis of influence mechanism of energy-related carbon emissions in Guangdong: evidence from regional China based on the input-output and structural decomposition analysis.

    PubMed

    Wang, Changjian; Wang, Fei; Zhang, Xinlin; Deng, Haijun

    2017-11-01

    It is important to analyze the influence mechanism of energy-related carbon emissions from a regional perspective to effectively achieve reductions in energy consumption and carbon emissions in China. Based on the "energy-economy-carbon emissions" hybrid input-output analysis framework, this study conducted structural decomposition analysis (SDA) on carbon emissions influencing factors in Guangdong Province. Systems-based examination of direct and indirect drivers for regional emission is presented. (1) Direct effects analysis of influencing factors indicated that the main driving factors of increasing carbon emissions were economic and population growth. Carbon emission intensity was the main contributing factor restraining carbon emissions growth. (2) Indirect effects analysis of influencing factors showed that international and interprovincial trades significantly affected the total carbon emissions. (3) Analysis of the effects of different final demands on the carbon emissions of industrial sector indicated that the increase in carbon emission arising from international and interprovincial trades is mainly concentrated in energy- and carbon-intensive industries. (4) Guangdong had to compromise a certain amount of carbon emissions during the development of its export-oriented economy because of industry transfer arising from the economic globalization, thereby pointing to the existence of the "carbon leakage" problem. At the same time, interprovincial export and import resulted in Guangdong transferring a part of its carbon emissions to other provinces, thereby leading to the occurrence of "carbon transfer."

  3. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  4. Production Function Geometry with "Knightian" Total Product

    ERIC Educational Resources Information Center

    Truett, Dale B.; Truett, Lila J.

    2007-01-01

    Authors of principles and price theory textbooks generally illustrate short-run production using a total product curve that displays first increasing and then diminishing marginal returns to employment of the variable input(s). Although it seems reasonable that a temporary range of increasing returns to variable inputs will likely occur as…

  5. Comparison of mass balance, energy consumption and cost of composting facilities for different types of organic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Huijun; Matsuto, Toshihiko, E-mail: matsuto@eng.hokudai.ac.jp

    2011-03-15

    Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in themore » compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.« less

  6. An Approach to Assess Delamination Propagation Simulation Capabilities in Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2008-01-01

    An approach for assessing the delamination propagation simulation capabilities in commercial finite element codes is presented and demonstrated. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. The load-displacement relationship and the total strain energy obtained from the propagation analysis results and the benchmark results were compared and good agreements could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as was expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.

  7. A Reexamination of the Emergy Input to a System from the Wind.

    EPA Science Inventory

    The wind energy absorbed in the global boundary layer (GBL, 900 mb surface) is the basis for calculating the wind emergy input for any system on the Earth’s surface. Estimates of the wind emergy input to a system depend on the amount of wind energy dissipated, which can have a ra...

  8. Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon

    Treesearch

    Christina Tague; Michael Farrell; Gordon Grant; Sarah Lewis; Serge Rey

    2007-01-01

    Stream temperature is a complex function of energy inputs including solar radiation and latent and sensible heat transfer. In streams where groundwater inputs are significant, energy input through advection can also be an important control on stream temperature. For an individual stream reach, models of stream temperature can take advantage of direct measurement or...

  9. Variation in active and passive resource inputs to experimental pools: mechanisms and possible consequences for food webs

    USGS Publications Warehouse

    Kraus, Johanna M.; Pletcher, Leanna T.; Vonesh, James R.

    2010-01-01

    1. Cross-ecosystem movements of resources, including detritus, nutrients and living prey, can strongly influence food web dynamics in recipient habitats. Variation in resource inputs is thought to be driven by factors external to the recipient habitat (e.g. donor habitat productivity and boundary conditions). However, inputs of or by ‘active’ living resources may be strongly influenced by recipient habitat quality when organisms exhibit behavioural habitat selection when crossing ecosystem boundaries. 2. To examine whether behavioural responses to recipient habitat quality alter the relative inputs of ‘active’ living and ‘passive’ detrital resources to recipient food webs, we manipulated the presence of caged predatory fish and measured biomass, energy and organic content of inputs to outdoor experimental pools of adult aquatic insects, frog eggs, terrestrial plant matter and terrestrial arthropods. 3. Caged fish reduced the biomass, energy and organic matter donated to pools by tree frog eggs by ∼70%, but did not alter insect colonisation or passive allochthonous inputs of terrestrial arthropods and plant material. Terrestrial plant matter and adult aquatic insects provided the most energy and organic matter inputs to the pools (40–50%), while terrestrial arthropods provided the least (7%). Inputs of frog egg were relatively small but varied considerably among pools and over time (3%, range = 0–20%). Absolute and proportional amounts varied by input type. 4. Aquatic predators can strongly affect the magnitude of active, but not passive, inputs and that the effect of recipient habitat quality on active inputs is variable. Furthermore, some active inputs (i.e. aquatic insect colonists) can provide similar amounts of energy and organic matter as passive inputs of terrestrial plant matter, which are well known to be important. Because inputs differ in quality and the trophic level they subsidise, proportional changes in input type could have strong effects on recipient food webs. 5. Cross-ecosystem resource inputs have previously been characterised as donor-controlled. However, control by the recipient food web could lead to greater feedback between resource flow and consumer dynamics than has been appreciated so far.

  10. Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Jayson F.; Dirks, James A.

    2008-08-29

    EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energymore » Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.« less

  11. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.

    PubMed

    Koga, Nobuhisa; Tajima, Ryosuke

    2011-03-01

    To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw was removed from the paddy fields in an effort to mitigate CH(4) emissions. Thus, rice straw removal avers itself a key practice with respect to lessening the impacts of greenhouse gas emissions in paddy rice-based ethanol production systems in northern Japan. More crucially, the rice straw removed is available for ethanol production and generation of heat energy with a biomass boiler, all elements required for biomass-to-ethanol transformation steps including saccharification, fermentation and distillation. This indicates opportunities for further improvement in energy efficiency and reductions in greenhouse gas emissions under whole rice plant-based bioethanol production systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices

    NASA Astrophysics Data System (ADS)

    Uzun, Yunus

    2016-08-01

    Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.

  13. Low reflectance high power RF load

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  14. Low reflectance radio frequency load

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  15. On the energy crisis in the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.; Bagenal, Fran; Cheng, Andrew F.; Strobel, Darrell

    1988-01-01

    Recent calculations of the energy balance of the Io plasma torus show that the observed UV and EUV radiation cannot be maintained solely via energy input by the ion pickup mechanism. Current theoretical models of the torus must be modified to include non-local energy input. It is argued that the required energy may be supplied by inward diffusion of energetic heavy ions with energies less than about 20 keV.

  16. Proof of concept for a new energy-positive wastewater treatment scheme.

    PubMed

    Remy, C; Boulestreau, M; Lesjean, B

    2014-01-01

    For improved exploitation of the energy content present in the organic matter of raw sewage, an innovative concept for treatment of municipal wastewater is tested in pilot trials and assessed in energy balance and operational costs. The concept is based on a maximum extraction of organic matter into the sludge via coagulation, flocculation and microsieving (100 μm mesh size) to increase the energy recovery in anaerobic sludge digestion and decrease aeration demand for carbon mineralisation. Pilot trials with real wastewater yield an extraction of 70-80% of total chemical oxygen demand into the sludge while dosing 15-20 mg/L Al and 5-7 mg/L polymer with stable operation of the microsieve and effluent limits below 2-3 mg/L total phosphorus. Anaerobic digestion of the microsieve sludge results in high biogas yields of 600 NL/kg organic dry matter input (oDMin) compared to 430 NL/kg oDMin for mixed sludge from a conventional activated sludge process. The overall energy balance for a 100,000 population equivalent (PE) treatment plant (including biofilter for post-treatment with full nitrification and denitrification with external carbon source) shows that the new concept is an energy-positive treatment process with comparable effluent quality than conventional processes, even when including energy demand for chemicals production. Estimated operating costs for electricity and chemicals are in the same range for conventional activated sludge processes and the new concept.

  17. Energy and nutrient cycling in pig production systems

    NASA Astrophysics Data System (ADS)

    Lammers, Peter J.

    United States pig production is centered in Iowa and is a major influence on the economic and ecological condition of that community. A pig production system includes buildings, equipment, production of feed ingredients, feed processing, and nutrient management. Although feed is the largest single input into a pig production system, nearly 30% of the non-solar energy use of a conventional--mechanically ventilated buildings with liquid manure handling--pig production system is associated with constructing and operating the pig facility. Using bedded hoop barns for gestating sows and grow-finish pigs reduces construction resource use and construction costs of pig production systems. The hoop based systems also requires approximately 40% less non-solar energy to operate as the conventional system although hoop barn-based systems may require more feed. The total non-solar energy input associated with one 136 kg pig produced in a conventional farrow-to-finish system in Iowa and fed a typical corn-soybean meal diet that includes synthetic lysine and exogenous phytase is 967.9 MJ. Consuming the non-solar energy results in emissions of 79.8 kg CO2 equivalents. Alternatively producing the same pig in a system using bedded hoop barns for gestating sows and grow-finish pigs requires 939.8 MJ/pig and results in emission of 70.2 kg CO2 equivalents, a reduction of 3 and 12% respectively. Hoop barn-based swine production systems can be managed to use similar or less resources than conventional confinement systems. As we strive to optimally allocate non-solar energy reserves and limited resources, support for examining and improving alternative systems is warranted.

  18. Derivation and application of the energy dissipation factor in the design of fishways

    USGS Publications Warehouse

    Towler, Brett; Mulligan, Kevin; Haro, Alexander J.

    2015-01-01

    Reducing turbulence and associated air entrainment is generally considered advantageous in the engineering design of fish passage facilities. The well-known energy dissipation factor, or EDF, correlates with observations of the phenomena. However, inconsistencies in EDF forms exist and the bases for volumetric energy dissipation rate criteria are often misunderstood. A comprehensive survey of EDF criteria is presented. Clarity in the application of the EDF and resolutions to these inconsistencies are provided through formal derivations; it is demonstrated that kinetic energy represents only 1/3 of the total energy input for the special case of a broad-crested weir. Specific errors in published design manuals are identified and resolved. New, fundamentally sound, design equations for culvert outlet pools and standard Denil Fishway resting pools are developed. The findings underscore the utility of EDF equations, demonstrate the transferability of volumetric energy dissipation rates, and provide a foundation for future refinement of component-, species-, and life-stage-specific EDF criteria.

  19. Transported Geothermal Energy Technoeconomic Screening Tool - Calculation Engine

    DOE Data Explorer

    Liu, Xiaobing

    2016-09-21

    This calculation engine estimates technoeconomic feasibility for transported geothermal energy projects. The TGE screening tool (geotool.exe) takes input from input file (input.txt), and list results into output file (output.txt). Both the input and ouput files are in the same folder as the geotool.exe. To use the tool, the input file containing adequate information of the case should be prepared in the format explained below, and the input file should be put into the same folder as geotool.exe. Then the geotool.exe can be executed, which will generate a output.txt file in the same folder containing all key calculation results. The format and content of the output file is explained below as well.

  20. Ionization of biomolecular targets by ion impact: input data for radiobiological applications

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2013-06-01

    In this work we review and further develop a semiempirical model recently proposed for the ion impact ionization of complex biological media. The model is based on the dielectric formalism, and makes use of a semiempirical parametrization of the optical energy-loss function of bioorganic compounds, allowing the calculation of single and total ionization cross sections and related quantities for condensed biological targets, such as liquid water, DNA and its components, proteins, lipids, carbohydrates or cell constituents. The model shows a very good agreement with experimental data for water, adenine and uracil, and allows the comparison of the ionization efficiency of different biological targets, and also the average kinetic energy of the ejected secondary electrons.

  1. Flower Power: Prospects for Photosynthetic Energy

    ERIC Educational Resources Information Center

    Poole, Alan D.; Williams, Robert H.

    1976-01-01

    This report focuses on the prospects and possibilities for using biomass as an energy source for the United States. However, the greatest potential for utilizing biomass as fuel exists in energy-starved developing nations, since it appears possible to develop biomass technologies keeping capital inputs low in relation to labor inputs. (BT)

  2. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.

    PubMed

    López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A

    2015-08-01

    Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach. © The Author(s) 2015.

  3. Differential dpa calculations with SPECTRA-PKA

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Sublet, J.-Ch.

    2018-06-01

    The processing code SPECTRA-PKA produces energy spectra of primary atomic recoil events (or primary knock-on atoms, PKAs) for any material composition exposed to an irradiation spectrum. Such evaluations are vital inputs for simulations aimed at understanding the evolution of damage in irradiated material, which is generated in cascade displacement events initiated by PKAs. These PKA spectra present the full complexity of the input (to SPECTRA-PKA) nuclear data-library evaluations of recoil events. However, the commonly used displacements per atom (dpa) measure, which is an integral measure over all possible recoil events of the displacement damage dose, is still widely used and has many useful applications - as both a comparative and correlative quantity. This paper describes the methodology employed that allows the SPECTRA-PKA code to evaluate dpa rates using the energy-dependent recoil (PKA) cross section data used for the PKA distributions. This avoids the need for integral displacement kerma cross sections and also provides new insight into the relative importance of different reaction channels (and associated different daughter residual and emitted particles) to the total integrated dpa damage dose. Results are presented for Fe, Ni, W, and SS316. Fusion dpa rates are compared to those in fission, highlighting the increased contribution to damage creation in the former from high-energy threshold reactions.

  4. Resonator design and performance estimation for a space-based laser transmitter

    NASA Astrophysics Data System (ADS)

    Agrawal, Lalita; Bhardwaj, Atul; Pal, Suranjan; Kamalakar, J. A.

    2006-12-01

    Development of a laser transmitter for space applications is a highly challenging task. The laser must be rugged, reliable, lightweight, compact and energy efficient. Most of these features are inherently achieved by diode pumping of solid state lasers. Overall system reliability can further be improved by appropriate optical design of the laser resonator besides selection of suitable electro-optical and opto-mechanical components. This paper presents the design details and the theoretically estimated performance of a crossed-porro prism based, folded Z-shaped laser resonator. A symmetrically pumped Nd: YAG laser rod of 3 mm diameter and 60 mm length is placed in the gain arm with total input peak power of 1800 W from laser diode arrays. Electro-optical Q-switching is achieved through a combination of a polarizer, a fractional waveplate and LiNbO 3 Q-switch crystal (9 x 9 x 25 mm) placed in the feedback arm. Polarization coupled output is obtained by optimizing azimuth angle of quarter wave plate placed in the gain arm. Theoretical estimation of laser output energy and pulse width has been carried out by varying input power levels and resonator length to analyse the performance tolerances. The designed system is capable of meeting the objective of generating laser pulses of 10 ns duration and 30 mJ energy @ 10 Hz.

  5. How carbon-friendly is nuclear energy? A hybrid MRIO-LCA model of a Spanish facility.

    PubMed

    Zafrilla, Jorge E; Cadarso, María-Ángeles; Monsalve, Fabio; de la Rúa, Cristina

    2014-12-16

    Spain faces the challenge of 80-95% greenhouse gas emissions reduction by 2050 (European Energy Roadmap). As a possible first step to fulfill this objective, this paper presents a two-level analysis. First, we estimate the carbon footprint of a hypothetical nuclear facility in Spain. Using a hybrid multiregional input-output model, to avoid truncation while diminishing sector aggregation problems and to improve environmental leakages estimations, we calculate the CO2 equivalent emissions associated with the different phases of the nuclear life-cycle--construction, fuel processing and operation and maintenance--taking into account the countries or regions where the emissions have been generated. Our results estimate a nuclear carbon footprint of 21.30 gCO2e/kWh, of which 89% comes from regions outside Spain. In some regions, the highest impacts are mostly direct (92%, 95%, and 92% of total carbon emissions in the U.S., France, and UK, respectively), meaning that these emissions are linked to the inputs directly required for nuclear energy production; in other regions, indirect emissions are higher (83% in China), which becomes relevant for policy measures. Second, through the analyses of different scenarios, we unravel and quantify how different assumptions that are often taken in the literature result in different carbon emissions.

  6. Time delay between the SYMH and the solar wind energy input during intense storms determined by response function analysis

    NASA Astrophysics Data System (ADS)

    Cao, X.; Du, A.

    2014-12-01

    We statistically studied the response time of the SYMH to the solar wind energy input ɛ by using the RFA approach. The average response time was 64 minutes. There was no clear trend among these events concerning to the minimum SYMH and storm type. It seems that the response time of magnetosphere to the solar wind energy input is independent on the storm intensity and the solar wind condition. The response function shows one peak even when the solar wind energy input and the SYMH have multi-peak. The response time exhibits as the intrinsic property of the magnetosphere that stands for the typical formation time of the ring current. This may be controlled by magnetospheric temperature, average number density, the oxygen abundance et al.

  7. The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions.

    PubMed

    Roberts, Thomas J; Azizi, Emanuel

    2010-08-01

    Elastic tendons can act as muscle power amplifiers or energy-conserving springs during locomotion. We used an in situ muscle-tendon preparation to examine the mechanical function of tendons during lengthening contractions, when muscles absorb energy. Force, length, and power were measured in the lateral gastrocnemius muscle of wild turkeys. Sonomicrometry was used to measure muscle fascicle length independently from muscle-tendon unit (MTU) length, as measured by a muscle lever system (servomotor). A series of ramp stretches of varying velocities was applied to the MTU in fully activated muscles. Fascicle length changes were decoupled from length changes imposed on the MTU by the servomotor. Under most conditions, muscle fascicles shortened on average, while the MTU lengthened. Energy input to the MTU during the fastest lengthenings was -54.4 J/kg, while estimated work input to the muscle fascicles during this period was only -11.24 J/kg. This discrepancy indicates that energy was first absorbed by elastic elements, then released to do work on muscle fascicles after the lengthening phase of the contraction. The temporary storage of energy by elastic elements also resulted in a significant attenuation of power input to the muscle fascicles. At the fastest lengthening rates, peak instantaneous power input to the MTU reached -2,143.9 W/kg, while peak power input to the fascicles was only -557.6 W/kg. These results demonstrate that tendons may act as mechanical buffers by limiting peak muscle forces, lengthening rates, and power inputs during energy-absorbing contractions.

  8. Anthropogenic heat flux: advisable spatial resolutions when input data are scarce

    NASA Astrophysics Data System (ADS)

    Gabey, A. M.; Grimmond, C. S. B.; Capel-Timms, I.

    2018-02-01

    Anthropogenic heat flux (QF) may be significant in cities, especially under low solar irradiance and at night. It is of interest to many practitioners including meteorologists, city planners and climatologists. QF estimates at fine temporal and spatial resolution can be derived from models that use varying amounts of empirical data. This study compares simple and detailed models in a European megacity (London) at 500 m spatial resolution. The simple model (LQF) uses spatially resolved population data and national energy statistics. The detailed model (GQF) additionally uses local energy, road network and workday population data. The Fractions Skill Score (FSS) and bias are used to rate the skill with which the simple model reproduces the spatial patterns and magnitudes of QF, and its sub-components, from the detailed model. LQF skill was consistently good across 90% of the city, away from the centre and major roads. The remaining 10% contained elevated emissions and "hot spots" representing 30-40% of the total city-wide energy. This structure was lost because it requires workday population, spatially resolved building energy consumption and/or road network data. Daily total building and traffic energy consumption estimates from national data were within ± 40% of local values. Progressively coarser spatial resolutions to 5 km improved skill for total QF, but important features (hot spots, transport network) were lost at all resolutions when residential population controlled spatial variations. The results demonstrate that simple QF models should be applied with conservative spatial resolution in cities that, like London, exhibit time-varying energy use patterns.

  9. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor

    NASA Astrophysics Data System (ADS)

    Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg

    2018-03-01

    A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.

  10. Demand-driven energy requirement of world economy 2007: A multi-region input-output network simulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Ming; Chen, G. Q.

    2013-07-01

    This study presents a network simulation of the global embodied energy flows in 2007 based on a multi-region input-output model. The world economy is portrayed as a 6384-node network and the energy interactions between any two nodes are calculated and analyzed. According to the results, about 70% of the world's direct energy input is invested in resource, heavy manufacture, and transportation sectors which provide only 30% of the embodied energy to satisfy final demand. By contrast, non-transportation services sectors contribute to 24% of the world's demand-driven energy requirement with only 6% of the direct energy input. Commodity trade is shown to be an important alternative to fuel trade in redistributing energy, as international commodity flows embody 1.74E + 20 J of energy in magnitude up to 89% of the traded fuels. China is the largest embodied energy exporter with a net export of 3.26E + 19 J, in contrast to the United States as the largest importer with a net import of 2.50E + 19 J. The recent economic fluctuations following the financial crisis accelerate the relative expansions of energy requirement by developing countries, as a consequence China will take over the place of the United States as the world's top demand-driven energy consumer in 2022 and India will become the third largest in 2015.

  11. Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1976-01-01

    Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.

  12. EnergyPlus™

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Originally developed in 1999, an updated version 8.8.0 with bug fixes was released on September 30th, 2017. EnergyPlus™ is a whole building energy simulation program that engineers, architects, and researchers use to model both energy consumption—for heating, cooling, ventilation, lighting and plug and process loads—and water use in buildings. EnergyPlus is a console-based program that reads input and writes output to text files. It ships with a number of utilities including IDF-Editor for creating input files using a simple spreadsheet-like interface, EP-Launch for managing input and output files and performing batch simulations, and EP-Compare for graphically comparing the results ofmore » two or more simulations. Several comprehensive graphical interfaces for EnergyPlus are also available. DOE does most of its work with EnergyPlus using the OpenStudio® software development kit and suite of applications. DOE releases major updates to EnergyPlus twice annually.« less

  13. Effects of Nitrogen Inputs and Watershed Characteristics on ...

    EPA Pesticide Factsheets

    Nitrogen (N) inputs to the landscape have been linked previously to N loads exported from watersheds at the national scale; however, stream N concentration is arguably more relevant than N load for drinking water quality, freshwater biological responses and establishment of nutrient criteria. In this study, we combine national-scale anthropogenic N input data, including synthetic fertilizer, crop biological N fixation, manure applied to farmland, atmospheric N deposition, and point source inputs, with data from the 2008-09 National Rivers and Streams Assessment to quantify the relationship between N inputs and in-stream concentrations of total N (TN), dissolved inorganic N (DIN), and total organic N (TON) (calculated as TN – DIN). In conjunction with simple linear regression, we use multiple regression to understand how watershed and stream reach attributes modify the effect of N inputs on N concentrations. Median TN was 0.50 mg N L-1 with a maximum of 25.8 mg N L-1. Total N inputs to the watershed ranged from less than 1 to 196 kg N ha-1 y-1, with a median of 14.4 kg N ha-1 y-1. Atmospheric N deposition was the single largest anthropogenic N source in the majority of sites, but, agricultural sources generally dominate total N inputs in sites with elevated N concentrations. The sum of all N inputs were positively correlated with concentrations of all forms of N [r2 = 0.44, 0.43, and 0.18 for TN, DIN, and TON, respectively (all log-transformed), n = 1112], indi

  14. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper.

    PubMed

    Barclay, Paul; Srinivasan, Kartik; Painter, Oskar

    2005-02-07

    A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7x10(4) are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 microW, corresponding to a dropped power of 100 microW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~ 0.5 ns is also estimated from power dependent loss and dispersion measurements.

  15. An Empirical Test of the Nominal Group Technique in State Solar Energy Planning.

    ERIC Educational Resources Information Center

    Stephenson, Blair Y.; And Others

    1982-01-01

    Investigated use of the Nominal Group Technique (NGT) as an informational input mechanism into the formulation of a Solar Energy Plan. Data collected from a questionnaire indicated that the NGT was rated as being a highly effective mechanism providing input into the solar energy planning process. (Author/RC)

  16. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting

    PubMed Central

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-01-01

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from −40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions. PMID:28282910

  17. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting.

    PubMed

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-03-09

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from -40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions.

  18. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  19. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    PubMed

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Variable ratio regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1981-12-15

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  1. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attalah, Said; Waller, Peter M.; Khawam, George

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare themore » productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.« less

  2. An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks

    PubMed Central

    Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung

    2012-01-01

    In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes. PMID:22368459

  3. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  4. Edible energy: balancing inputs and waste in food supply chain and biofuels from algae

    NASA Astrophysics Data System (ADS)

    Alimonti, Gianluca; Brambilla, Riccardo; Pileci, Rosaria; Romano, Riccardo; Rosa, Francesca; Spinicci, Luca

    2017-01-01

    Energy is life. Without it there is no water, there is no nutrition. Man's ability to live, grow, produce wealth is closely linked to the energy availability and use. Fire has been the first energy conversion technology; since that moment, the link between energy and progress has been indissoluble. Nowadays, a much greater energy input into the food supply chain has made a much higher food production possible. This might have an impact on the water availability. Algae are a promising solution for the energy-food-water nexus.

  5. The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions

    PubMed Central

    Azizi, Emanuel

    2010-01-01

    Elastic tendons can act as muscle power amplifiers or energy-conserving springs during locomotion. We used an in situ muscle-tendon preparation to examine the mechanical function of tendons during lengthening contractions, when muscles absorb energy. Force, length, and power were measured in the lateral gastrocnemius muscle of wild turkeys. Sonomicrometry was used to measure muscle fascicle length independently from muscle-tendon unit (MTU) length, as measured by a muscle lever system (servomotor). A series of ramp stretches of varying velocities was applied to the MTU in fully activated muscles. Fascicle length changes were decoupled from length changes imposed on the MTU by the servomotor. Under most conditions, muscle fascicles shortened on average, while the MTU lengthened. Energy input to the MTU during the fastest lengthenings was −54.4 J/kg, while estimated work input to the muscle fascicles during this period was only −11.24 J/kg. This discrepancy indicates that energy was first absorbed by elastic elements, then released to do work on muscle fascicles after the lengthening phase of the contraction. The temporary storage of energy by elastic elements also resulted in a significant attenuation of power input to the muscle fascicles. At the fastest lengthening rates, peak instantaneous power input to the MTU reached −2,143.9 W/kg, while peak power input to the fascicles was only −557.6 W/kg. These results demonstrate that tendons may act as mechanical buffers by limiting peak muscle forces, lengthening rates, and power inputs during energy-absorbing contractions. PMID:20507964

  6. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.

    PubMed

    Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia

    2018-01-01

    For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kW e , converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH 4 , CO 2 , H 2 S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kW e (70.4% of nominal power), and the last period the power resulted in 788kW e (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma.

    PubMed

    Li, O L; Guo, Y; Chang, J S; Saito, N

    2015-01-01

    The disposal of enormous amount of stormwater sediments becomes an emerging worldwide problem. Stormwater sediments are contaminated by heavy metals, phosphorus, trace organic and hydrocarbons, and cannot be disposed without treatment. Thermal plasma decontamination technology offers a high decomposition rate in a wide range of toxic organic compound and immobilization of heavy metal. In this study, we compared the treatment results between two different modes of thermal plasma: (1) a non-transferred direct current (DC) mode and (2) a partial DC-transferred mode. The reductions of total organic carbon (TOC) were, respectively, 25% and 80% for non-transferred and partially transferred plasma, respectively. Most of the toxic organic compounds were converted majorly to CxHy. In the gaseous emission, the accumulated CxHy, CO, NO and H2S were significantly higher in partially transferred mode than in non-transferred mode. The solid analysis demonstrated that the concentrations of Ca and Fe were enriched by 500% and 40%, respectively. New chemical compositions such as KAlSi3O8, Fe3O4, NaCl and CaSO4 were formed after treatment in partially DC-transferred mode. The power inputs were 1 and 10 kW, respectively, for non-transferred DC mode and a partially DC-transferred mode. With a lower energy input, non-transferred plasma treatment can be used for decontamination of sediments with low TOC and metal concentration. Meanwhile, partially transferred thermal plasma with higher energy input is suitable for treating sediments with high TOC percentage and volatile metal concentration. The organic compounds are converted into valuable gaseous products which can be recycled as an energy source.

  8. Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy.

    PubMed

    Bemmerer, D; Confortola, F; Costantini, H; Formicola, A; Gyürky, Gy; Bonetti, R; Broggini, C; Corvisiero, P; Elekes, Z; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Laubenstein, M; Lemut, A; Limata, B; Lozza, V; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2006-09-22

    The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity, and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148, and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S factor to solar energies.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit

    In this study, a process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h –1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The majormore » factor for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.« less

  10. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of greenhouse gas emitting electric generation plants. However, renewable energy policies do not have an effect on productivity growth. Renewable energy inputs are found to be as efficient if not more efficient than traditional energy sources.

  11. Calculation of the final energy demand for the Federal Republic of Germany with the simulation model MEDEE-2

    NASA Astrophysics Data System (ADS)

    Loeffler, U.; Weible, H.

    1981-08-01

    The final energy demand for the Federal Republic of Germany was calculated. The model MEDEE-2 describes, in relationship to a given distribution of the production of single industrial sectors, of energy specific values and of population development, the final energy consumption of the domestic, service industry and transportation sectors for a given region. The input data, consisting of constants and variables, and the proceeding, by which the projections for the input data of single sectors are performed, are discussed. The results of the calculations are presented and are compared. The sensitivity of single results in relation to the variation of input values is analyzed.

  12. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by... total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures... generating unit load during the 30-day period does not have to be the maximum design heat input capacity, but...

  13. Riparian litter inputs to streams in the central Oregon Coast Range

    USGS Publications Warehouse

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  14. Differential capacity of kaolinite and birnessite to protect surface associated proteins against thermal degradation [Fate of protein at mineral surfaces: influence of protein characteristics mineralogy, pH, and energy input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Stephany S.; Garcia-Jaramillo, Manuel; Liu, Suet Yi

    We report it is widely accepted that soil organic carbon cycling depends on the presence and catalytic functionality of extracellular enzymes. Recent reports suggest that combusted and autoclaved soils may have the capacity to degrade organic test substrates to a larger extent than the living, enzyme-bearing soils. In search of the underlying mechanisms, we adsorbed Beta-Glucosidase (BG) and Bovine Serum Albumin (BSA) on the phyllosilicate kaolinite and the manganese oxide birnessite at pH 5 and pH 7. The protein-mineral samples were then subjected to gradual energy inputs of a magnitude equivalent to naturally occurring wildfire events. The abundance and molecularmore » masses of desorbed organic compounds were recorded after ionization with tunable synchrotron vacuum ultraviolet radiation (VUV). The mechanisms controlling the fate of proteins varied with mineralogy. Kaolinite adsorbed protein largely through hydrophobic interactions and, even at large energy inputs, produced negligible amounts of desorption fragments compared to birnessite. Acid birnessite adsorbed protein through coulombic forces at low energy levels, became a hydrolyzing catalyst at low energies and low pH, and eventually turned into a reactant involving disintegration of both mineral and protein at higher energy inputs. Fragmentation of proteins was energy dependent and did not occur below an energy threshold of 0.20 MW cm -2 . Neither signal abundance nor signal intensity were a function of protein size. Above the energy threshold value, BG that had been adsorbed to birnessite at pH 7 showed an increase in signal abundance with increasing energy applications. Signal intensities differed with adsorption pH for BSA but only at the highest energy level applied. Our results indicate that proteins adsorbed to kaolinite may remain intact after exposure to such energy inputs as can be expected to occur in natural ecosystems. Protein fragmentation and concomitant loss of functionality must be expected in surface soils replete with pedogenic manganese oxides. Lastly, we conclude that minerals can do both: protect enzymes at high energy intensities in the case of kaolinite and, in the case of birnessite, substitute for and even exceed the oxidative functionality that may have been lost when unprotected oxidative enzymes were denatured at high energy inputs.« less

  15. 2013 DOE Vehicle Technologies Office Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The 2013 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held May 13-17, 2013, in Crystal City, Virginia. The review encompassed all of the work done by the FCTO and the VTO: a total of 287 individual activities were reviewed for VTO, by a total of 187 reviewers. A total of 1,382 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide anmore » opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less

  16. 2014 DOE Vehicle Technologies Office Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 16-20, 2014, in Washington, DC. The review encompassed all of the work done by the FCTO and the VTO: a total of 295 individual activities were reviewed for VTO, by a total of 179 reviewers. A total of 1,354 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunitymore » for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less

  17. A study of the effectiveness and energy efficiency of ultrasonic emulsification.

    PubMed

    Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O

    2017-12-20

    Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.

  18. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    PubMed Central

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  19. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    PubMed

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  20. Interpretation of the microwave effect on induction time during CaSO4 primary nucleation by a cluster coagulation model

    NASA Astrophysics Data System (ADS)

    Guo, Zhichao; Li, Liye; Han, Wenxiang; Li, Jiawei; Wang, Baodong; Xiao, Yongfeng

    2017-10-01

    The effects of microwave on the induction time of CaSO4 are studied experimentally and theoretically. In the experiments, calcium sulfate is precipitated by mixing aqueous CaCl2 solution and Na2SO4 solution. The induction time is measured by recording the change of turbidity in solution. Various energy inputs are used to investigate the effect of energy input on nucleation. The results show that the induction time decreases with increasing supersaturation and increasing energy input. Employing the classical nucleation theory, the interfacial tension is estimated. In addition, the microwave effects on nucleation order (n) and nucleation coefficient (kN) are also investigated, and the corresponding values of homogeneous nucleation are compared with the values of heterogeneous nucleation in the microwave field. A cluster coagulation model, which brings together the classic nucleation models and the theories describing the behavior of colloidal suspension, was applied to estimate the induction time under various energy inputs. It is found that when nucleation is prominently homogeneous, the microwave energy input does not change the number of monomers in dominating clusters. And when nucleation is prominently heterogeneous, although the dominating cluster size increases with supersaturation increasing, at the same supersaturation level, the dominating cluster size remains constant in the microwave field.

  1. Performance evaluation of a full-scale innovative swine waste-to-energy system.

    PubMed

    Xu, Jiele; Adair, Charles W; Deshusses, Marc A

    2016-09-01

    Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Energy and the agroeconomic complexity of Ethiopia

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios

    2016-04-01

    Since the Industrial Revolution, modern agriculture has transformed from a net energy supplier to a net energy user, via the extensive use fossil fuels -that substituted solar energy inputs- and petroleum derivative products (fertilizers) (Pimentel and Pimentel 2008; Woods et al. 2010). This condenses a significant overview of agricultural energetics, especially for economies set on their first stage of development, growth and economic diversification, such as Ethiopia. Ethiopia is the Blue Nile's most upstream country, constituting a very sensitive hydroclimatic area. Since 2008, Ethiopian agriculture experiences a boost in energy use and agricultural value-added per worker, due to the rapid introduction of oil-fueled agricultural machinery that increased productivity and allowed crop diversification. Agriculture in Ethiopia accounts for ~82% of its total exports, ~45% of its Gross Domestic Product (GDP) and ~75% of its total labor force. In addition, Ethiopia's agricultural sector is equipped with a set of new financial tools to deal with hydroclimatic extremes, like the 1983-85 droughts that deteriorated its crop output, causing a devastating famine. In fact, Ethiopia's resilience from the (most) recent drought (2015-16) has been remarkable. These facts signify that Ethiopia satisfies the necessary conditions to become a regional agritrade gravity center in the Blue Nile, granted that the dispersion of agricultural trade comprises a primary tool for securing food supply. As gravity equations have been used to model global trade webs (Tinbergen 1962), similar principles may apply to agritrade as well, for identifying emergent topological structures and supply chains. By examining the relation between energy inputs in agriculture with crop diversification and value-added chains of Ethiopia's agritrade, we could extract accurate information on the importance of energy for the country's agroeconomic complexity and regionalization trend across its first stages of development. Via the use of entropy we may identify patterns of agritrade agglomeration or dispersal; alternatively study the continuity or fragmentation of Ethiopia's agritrade gravity field. Agglomeration towards Ethiopian agricultural supply would indicate the upgrade of the country's supply stability and -therefore- importance in the global agritrade web. Keywords: Industrial Revolution, net energy, diversification, Blue Nile, hydroclimatic extremes, agritrade, gravity, value-added, complexity, regionalization, entropy References 1. Tinbergen, J. (1962), Shaping the World Economy: Suggestions for an International Economic Policy, The Twentieth Century Fund, New York 2. Pimentel, David and Marcia H. Pimentel (2008), Food, Energy and Society (3rd Ed.), CRC Press, Taylor and Francis Group 3. Woods, Jeremy et al. (2010), Energy and the food system, Philosophical Transactions of the Royal Society B, 365, 2991-3006

  3. Computational Analysis of Hybrid Two-Photon Absorbers with Excited State Absorption

    DTIC Science & Technology

    2007-03-01

    level. This hybrid arrangement creates a complex dynamical system in which the electron carrier concentration of every photo-activated energy level...spatiotemporal details of the electron population densities of each photo-activated energy level as well as the pulse shape in space and time. The main...experiments at low input energy . However, further additions must be done to the calculation of the optical path for high input energy . 1 15. SUBJECT TERM

  4. Ovalis TAH: development and in vitro testing of a new electromechanical energy converter for a total artificial heart.

    PubMed

    Sauer, I M; Frank, J; Spiegelberg, A; Bücherl, E S

    2000-01-01

    A new electromechanical energy converting system has been developed to yield an efficient and durable orthotopic total artificial heart (TAH). The energy converter we developed transforms the unidirectional rotational motion of the motor into a longitudinal forward-reverse movement of an internal geared oval, linked directly to pusher plates on both sides. To ensure a permanent positive connection between the drive gear and the internally geared wheel, a ball bearing runs inside an oval shaped guide track. Motor, gear unit, and conical pusher plates are seated between alternately ejecting and filling ventricles. The unidirectional motion of the brushless DC motor affords easier motor control, reduces energy demand, and ensures longer life of the motor when compared with a bidirectional motion system. In vitro testing has been performed on a mock circulation loop. The overall system efficiency of the TAH Ovalis was 27-39% (mean, 36%) for the pump output range of 2-7 L/min. The maximum output of 7 L/min can be obtained with a pump rate of 130 min(-1) and an afterload pressure of 140 mm Hg. For an average sized human with a mean cardiac output of 6 L/min at a mean aortic pressure of 120 mm Hg, 5 watts of input power would be required. The size of the prototype is 560 cm3, the weight is 950 g. Our first in vitro studies demonstrated the excellent efficiency and pump performance of this new electromechanical energy converter. The results prove the feasibility of this new concept's use as an energy converter for a total artificial heart.

  5. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed.

  6. Forest impacts on snow accumulation and ablation across an elevation gradient in a temperate montane environment

    NASA Astrophysics Data System (ADS)

    Roth, Travis R.; Nolin, Anne W.

    2017-11-01

    Forest cover modifies snow accumulation and ablation rates via canopy interception and changes in sub-canopy energy balance processes. However, the ways in which snowpacks are affected by forest canopy processes vary depending on climatic, topographic and forest characteristics. Here we present results from a 4-year study of snow-forest interactions in the Oregon Cascades. We continuously monitored snow and meteorological variables at paired forested and open sites at three elevations representing the Low, Mid, and High seasonal snow zones in the study region. On a monthly to bi-weekly basis, we surveyed snow depth and snow water equivalent across 900 m transects connecting the forested and open pairs of sites. Our results show that relative to nearby open areas, the dense, relatively warm forests at Low and Mid sites impede snow accumulation via canopy snow interception and increase sub-canopy snowpack energy inputs via longwave radiation. Compared with the Forest sites, snowpacks are deeper and last longer in the Open site at the Low and Mid sites (4-26 and 11-33 days, respectively). However, we see the opposite relationship at the relatively colder High sites, with the Forest site maintaining snow longer into the spring by 15-29 days relative to the nearby Open site. Canopy interception efficiency (CIE) values at the Low and Mid Forest sites averaged 79 and 76 % of the total event snowfall, whereas CIE was 31 % at the lower density High Forest site. At all elevations, longwave radiation in forested environments appears to be the primary energy component due to the maritime climate and forest presence, accounting for 93, 92, and 47 % of total energy inputs to the snowpack at the Low, Mid, and High Forest sites, respectively. Higher wind speeds in the High Open site significantly increase turbulent energy exchanges and snow sublimation. Lower wind speeds in the High Forest site create preferential snowfall deposition. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.

  7. Low NO sub x burner operations with natural gas cofiring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkau, E.; Breen, B.; Gabrielson, J.E.

    1990-10-02

    This patent describes an improved combustion method for reducing NO{sub x} emissions from a coal burner of the type where pulverized coal is injected into a combustion zone. It comprises the addition of at least one flammable fuel, other than coal, the addition being from 2% to 25% of the total energy input into the combustion zone, wherein the addition provides at least one of NO{sub x} reduction, stable ignition, prevention of flame lift-off, elimination of rumble, recovery of lost load and reduction of slagging, fouling and corrosion.

  8. Market definition study of photovoltaic power for remote villages in the United States

    NASA Technical Reports Server (NTRS)

    Ragsdale, C.; Quashie, P.

    1980-01-01

    A grass roots evaluation of the market potential was carried out for photovoltaic applications in remote villages in the U. S. and its possessions. An estimate of almost 14 MWp available for conversion from a potential to a real market was defined. The total power potential was based on the energy needs of almost 400 sites reported by Federal agencies and inputs from over 100 Indian tribes. The methodology used, the results achieved, and some recommendations of how to convert this domestic market potential into a real market are detailed.

  9. A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.

    2016-10-01

    We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.

  10. A study of the thermal and optical characteristics of radiometric channels for Earth radiation budget applications

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Tira, Nour E.

    1991-01-01

    An improved dynamic electrothermal model for the Earth Radiation Budget Experiment (ERBE) total, nonscanning channels is formulated. This model is then used to accurately simulate two types of dynamic solar observation: the solar calibration and the so-called pitchover maneuver. Using a second model, the nonscanner active cavity radiometer (ACR) thermal noise is studied. This study reveals that radiative emission and scattering by the surrounding parts of the nonscanner cavity are acceptably small. The dynamic electrothermal model is also used to compute ACR instrument transfer function. Accurate in-flight measurement of this transfer function is shown to depend on the energy distribution over the frequency spectrum of the radiation input function. A new array-type field of view limiter, whose geometry controls the input function, is proposed for in-flight calibration of an ACR and other types of radiometers. The point spread function (PSF) of the ERBE and the Clouds and Earth's Radiant Energy System (CERES) scanning radiometers is computed. The PSF is useful in characterizing the channel optics. It also has potential for recovering the distribution of the radiative flux from Earth by deconvolution.

  11. EURELIOS, the world's first thermomechanical helioelectric power plant

    NASA Astrophysics Data System (ADS)

    Gretz, J.

    Characteristics of the power source, design, costs and operating mechanisms and performance of the EURELIOS central receiver solar electric power plant are described. Noting that the solar input at the earth's surface is about 1 kW/sq m, 6200 sq m of float glass mirrors mounted on 182 heliostats were fabricated to focus the incoming radiation onto a receiver aperture atop a 55 m high tower. The curved mirrors permit the focus of 80% of the energy input to be deposited on a 2.2 m diam aperture which is equipped with heat exchangers imbedded in pyrex and darkened and finned to maximize absorption. Feedwater is superheated in the receiver and is transferred to a buffer tank of hot water at 19 bar and molten salt at 410 C, and then on to turbines for actual power production. The grid serves as back-up power system. Total costs are calculated at $1600/kWe.

  12. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less

  13. Effect of screen-based media on energy expenditure and heart rate in 9- to 12-year-old children.

    PubMed

    Straker, Leon; Abbott, Rebecca

    2007-11-01

    This study compared the cardiovascular responses and energy costs of new and traditional screen based entertainments, as played by twenty 9- to 12-year-old children. Playing traditional electronic games resulted in little change to heart rate or energy expenditure compared with watching a DVD. In contrast, playing an active-input game resulted in a 59% increase in heart rate (p < .001) and a 224% increase in energy expenditure (p < .001) for boys and girls. The average heart rate of 130 bpm and energy expenditure of 0.13 kcal . min-1 . kg-1 achieved during active-input game use equates with moderate intensity activities such as basketball and jogging. Active-input electronic games might provide children with opportunities to engage with technology and be physically active at the same time.

  14. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1982-01-01

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  15. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  16. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Astrophysics Data System (ADS)

    Cull, R. C.; Eltimsahy, A. H.

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  17. Development of an automated energy audit protocol for office buildings

    NASA Astrophysics Data System (ADS)

    Deb, Chirag

    This study aims to enhance the building energy audit process, and bring about reduction in time and cost requirements in the conduction of a full physical audit. For this, a total of 5 Energy Service Companies in Singapore have collaborated and provided energy audit reports for 62 office buildings. Several statistical techniques are adopted to analyse these reports. These techniques comprise cluster analysis and development of prediction models to predict energy savings for buildings. The cluster analysis shows that there are 3 clusters of buildings experiencing different levels of energy savings. To understand the effect of building variables on the change in EUI, a robust iterative process for selecting the appropriate variables is developed. The results show that the 4 variables of GFA, non-air-conditioning energy consumption, average chiller plant efficiency and installed capacity of chillers should be taken for clustering. This analysis is extended to the development of prediction models using linear regression and artificial neural networks (ANN). An exhaustive variable selection algorithm is developed to select the input variables for the two energy saving prediction models. The results show that the ANN prediction model can predict the energy saving potential of a given building with an accuracy of +/-14.8%.

  18. Gravitational convergence, shear deformation and rotation of magnetic forcelines

    NASA Astrophysics Data System (ADS)

    Giantsos, Vangelis; Tsagas, Christos G.

    2017-11-01

    We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.

  19. FreeSolv: A database of experimental and calculated hydration free energies, with input files

    PubMed Central

    Mobley, David L.; Guthrie, J. Peter

    2014-01-01

    This work provides a curated database of experimental and calculated hydration free energies for small neutral molecules in water, along with molecular structures, input files, references, and annotations. We call this the Free Solvation Database, or FreeSolv. Experimental values were taken from prior literature and will continue to be curated, with updated experimental references and data added as they become available. Calculated values are based on alchemical free energy calculations using molecular dynamics simulations. These used the GAFF small molecule force field in TIP3P water with AM1-BCC charges. Values were calculated with the GROMACS simulation package, with full details given in references cited within the database itself. This database builds in part on a previous, 504-molecule database containing similar information. However, additional curation of both experimental data and calculated values has been done here, and the total number of molecules is now up to 643. Additional information is now included in the database, such as SMILES strings, PubChem compound IDs, accurate reference DOIs, and others. One version of the database is provided in the Supporting Information of this article, but as ongoing updates are envisioned, the database is now versioned and hosted online. In addition to providing the database, this work describes its construction process. The database is available free-of-charge via http://www.escholarship.org/uc/item/6sd403pz. PMID:24928188

  20. Morphometric analysis of root canal cleaning after rotary instrumentation with or without laser irradiation

    NASA Astrophysics Data System (ADS)

    Marchesan, Melissa A.; Geurisoli, Danilo M. Z.; Brugnera, Aldo, Jr.; Barbin, Eduardo L.; Pecora, Jesus D.

    2002-06-01

    The present study examined root canal cleaning, using the optic microscope, after rotary instrumentation with ProFile.04 with or without laser application with different output energies. Cleaning and shaping can be accomplished manually, with ultra-sonic and sub-sonic devices, with rotary instruments and recently, increasing development in laser radiation has shown promising results for disinfection and smear layer removal. In this study, 30 palatal maxillary molar roots were examined using an optic microscope after rotary instrumentation with ProFile .04 with or without Er:YAG laser application (KaVo KeyLaser II, Germany) with different output energies (2940 nm, 15 Hz, 300 pulses, 500 milli-sec duration, 42 J, 140 mJ showed on the display- input, 61 mJ at fiberoptic tip-output and 140 mJ showed on the display-input and 51 mJ at fiberoptic tip-output). Statistical analysis showed no statistical differences between the tested treatments (ANOVA, p>0.05). ANOVA also showed a statistically significant difference (p<0.01) between the root canal thirds, indicating that the middle third had less debris than the apical third. We conclude that: 1) none of the tested treatments led to totally cleaned root canals; 2) all treatments removed debris similarly, 3) the middle third had less debris than the apical third; 4) variation in output energy did not increase cleaning.

  1. Apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons

    NASA Technical Reports Server (NTRS)

    Tabatabaie-Raissi, Ali (Inventor); Muradov, Nazim Z. (Inventor); Smith, Franklyn (Inventor)

    2012-01-01

    A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO.sub.2) and other oxidizing agents. The method, apparatus and process of the present invention is applicable to any gaseous or liquid hydrocarbon fuel and it produces no or significantly less CO.sub.2 emissions compared to conventional processes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit

    Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h -1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets,more » respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less

  3. Net energy ratio for the production of steam pretreated biomass-based pellets

    DOE PAGES

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...

    2015-06-21

    In this study, a process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h –1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The majormore » factor for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.« less

  4. Distribution and sources of the polycyclic aromatic hydrocarbons in the sediments of the Pearl River estuary, China.

    PubMed

    Zhang, Jian-Dong; Wang, You-Shao; Cheng, Hao; Jiang, Zhao-Yu; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River delta, one of the most prosperous economically region in China, has experienced significant contaminant inputs. However, the dynamics of pollutants in the Pearl River estuary and the adjacent coastal areas are still unclear at present. In the paper, distribution and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in the surface sediments of the Pearl River estuary. The total PAHs concentrations ranged from 126.08 to 3828.58 ng/g with a mean value of 563.52 ng/g, whereas the highest PAHs were observed in Guangzhou channel. Among the U.S. Environmental Protection Agency's 16 priority PAHs, PAHs with 3-4 rings exhibited relative higher levels. A positive relationship was found between PAHs and total organic carbon. The source analysis further showed that the major sources of PAHs in the Pearl River estuary were originated from the pyrolytic inputs, reflecting a mixed energy structure such as wood, coal and petroleum combustion. In summary, although PAHs in Lingding Bay and the adjacent coastal areas of the Pearl River estuary exhibited a relatively low pollution level, the relatively high pollution level of PAHs in Guangzhou channel will be attended.

  5. Electromagnetic Compatibility of Transcutaneous Energy Transmission Systemfor Totally Implantable Artificial Heart

    NASA Astrophysics Data System (ADS)

    Shiba, Kenji; Koshiji, Kohji

    Transcutaneous Energy Transmission (TET) is one way of providing the energy needed to power a totally implantable artificial heart (TIAH). In the present study, an externally coupled TET system was implanted in a prototype human phantom to evaluate emission and immunity. In the emission evaluation, measurements were conducted based on CISPR Pub.11 and VDE 0871 standards, while immunity tests were based on the standards of the IEC 61000-4 series. The magnetic field of the radiated emission was measured using a loop antenna. At 0.1[MHz], we found the greatest magnetic field of 47.8 [dBμA/m], somewhat less than CISPR’s upper limit of 54 [dBμA/m]. For the conducted emission, by installing a noise filter and ferrite beads in the input section of the DC-power supply, conducted emission could be kept within the allowable limits of CISPR Pub.11 and VDE 0871. Finally, the immunity tests against radiated and conducted emission, electrostatic discharge and voltage fluctuation proved that the prototype could withstand the maximum level of disturbance. These results confirmed that the TET system implanted in a human phantom could, through modification, meet the emission and immunity standards.

  6. Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences

    NASA Astrophysics Data System (ADS)

    Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.

    2018-02-01

    Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.

  7. Methane potential of sterilized solid slaughterhouse wastes.

    PubMed

    Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo

    2012-07-01

    The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  9. Calculation of Stress Intensity Factors for Interfacial Cracks in Fiber Metal Laminates

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2009-01-01

    Stress intensity factors for interfacial cracks in Fiber Metal Laminates (FML) are computed by using the displacement ratio method recently developed by Sun and Qian (1997, Int. J. Solids. Struct. 34, 2595-2609). Various FML configurations with single and multiple delaminations subjected to different loading conditions are investigated. The displacement ratio method requires the total energy release rate, bimaterial parameters, and relative crack surface displacements as input. Details of generating the energy release rates, defining bimaterial parameters with anisotropic elasticity, and selecting proper crack surface locations for obtaining relative crack surface displacements are discussed in the paper. Even though the individual energy release rates are nonconvergent, mesh-size-independent stress intensity factors can be obtained. This study also finds that the selection of reference length can affect the magnitudes and the mode mixity angles of the stress intensity factors; thus, it is important to report the reference length used with the calculated stress intensity factors.

  10. Bursty Precipitation Driven by Chorus Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Telnikhin, A. A.; Kronberg, T. K.

    2011-01-01

    The electron precipitation bursts have been shown to be a major sink for the radiation belt relativistic electrons. As underlying mechanism of such bursts, we propose particle scattering into the loss cone due to nonlinear resonance interaction between electrons and chorus. Stochastic heating due to the coupling leads to diffusion in pitch angle, and the rate of diffusion would be sufficient to account for the emptying of the Earth's radiation belt over the time of the main phase of geomagnetic storms. The results obtained in the present paper account for a strong energy dependence in the electron precipitation event and the correlation between the energization and loss processes on macroscopic timescales, which is primarily attributed to the cooperative effects of the coupling. This mechanism of chorus scattering should produce pitch angle distributions that are energy-dependent and butterfly-shaped. The calculated timescales and the total energy input to the atmosphere from precipitating relativistic electrons are in reasonable agreement with experimental data.

  11. NECAP 4.1: NASA's Energy-Cost Analysis Program fast input manual and example

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.; Miner, D. L.

    1982-01-01

    NASA's Energy-Cost Analysis Program (NECAP) is a powerful computerized method to determine and to minimize building energy consumption. The program calculates hourly heat gain or losses taking into account the building thermal resistance and mass, using hourly weather and a response factor method. Internal temperatures are allowed to vary in accordance with thermostat settings and equipment capacity. NECAP 4.1 has a simplified input procedure and numerous other technical improvements. A very short input method is provided. It is limited to a single zone building. The user must still describe the building's outside geometry and select the type of system to be used.

  12. Fume generation and content of total chromium and hexavalent chromium in flux-cored arc welding.

    PubMed

    Yoon, Chung Sik; Paik, Nam Won; Kim, Jeong Han

    2003-11-01

    This study was performed to investigate the fume generation rates (FGRs) and the concentrations of total chromium and hexavalent chromium when stainless steel was welded using flux-cored arc welding (FCAW) with CO2 gas. FGRs and concentrations of total chromium and hexavalent chromium were quantified using a method recommended by the American Welding Society, inductively coupled plasma-atomic emission spectroscopy (NIOSH Method 7300) and ion chromatography (modified NIOSH Method 7604), respectively. The amount of total fume generated was significantly related to the level of input power. The ranges of FGR were 189-344, 389-698 and 682-1157 mg/min at low, optimal and high input power, respectively. It was found that the FGRs increased with input power by an exponent of 1.19, and increased with current by an exponent of 1.75. The ranges of total chromium fume generation rate (FGRCr) were 3.83-8.27, 12.75-37.25 and 38.79-76.46 mg/min at low, optimal and high input power, respectively. The ranges of hexavalent chromium fume generation rate (FGRCr6+) were 0.46-2.89, 0.76-6.28 and 1.70-11.21 mg/min at low, optimal and high input power, respectively. Thus, hexavalent chromium, which is known to be a carcinogen, generated 1.9 (1.0-2.7) times and 3.7 (2.4-5.0) times as the input power increased from low to optimal and low to high, respectively. As a function of input power, the concentration of total chromium in the fume increased from 1.57-2.65 to 5.45-8.13% while the concentration of hexavalent chromium ranged from 0.15 to 1.08%. The soluble fraction of hexavalent chromium produced by FCAW was approximately 80-90% of total hexavalent chromium. The concentration of total chromium and the solubility of hexavalent chromium were similar to those reported from other studies of shielded metal arc welding fumes, and the concentration of hexavalent chromium was similar to that obtained for metal inert gas-welding fumes.

  13. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an officemore » building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.« less

  14. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  15. A Reexamination of the Emergy Input to a System from the ...

    EPA Pesticide Factsheets

    The wind energy absorbed in the global boundary layer (GBL, 900 mb surface) is the basis for calculating the wind emergy input for any system on the Earth’s surface. Estimates of the wind emergy input to a system depend on the amount of wind energy dissipated, which can have a range of magnitudes for a given velocity depending on surface drag and atmospheric stability at the location and time period under study. In this study, we develop a method to consider this complexity in estimating the emergy input to a system from the wind. A new calculation of the transformity of the wind energy dissipated in the GBL (900 mb surface) based on general models of atmospheric circulation in the planetary boundary layer (PBL, 100 mb surface) is presented and expressed on the 12.0E+24 seJ y-1 geobiosphere baseline to complete the information needed to calculate the emergy input from the wind to the GBL of any system. The average transformity of wind energy dissipated in the GBL (below 900 mb) was 1241±650 sej J-1. The analysis showed that the transformity of the wind varies over the course of a year such that summer processes may require a different wind transformity than processes occurring with a winter or annual time boundary. This is a paper in the proceedings of Emergy Synthesis 9, thus it will be available online for those interested in this subject. The paper describes a new and more accurate way to estimate the wind energy input to any system. It also has a new cal

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Paul T; Hagerman, George; Scott, George

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array,more » even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.« less

  17. Evolution of the solar radiative forcing on climate during the Holocene

    NASA Astrophysics Data System (ADS)

    Vieira, Luis Eduardo; Solanki, Sami K.; Krivova, Natalie

    The main external heating source of the Earth's coupled atmosphere-ocean system is the solar radiative energy input. The variability of this energy source produces corresponding changes on the coupled system. However, there is still significant uncertainty on the level of changes. One way to distinguish the influence of the Sun on the climate from other sources is to search for its influence in the pre-industrial period, when the influence of human activities on the atmosphere composition and Earth's surface properties can be neglected. Such studies require long time series of solar and geophysical parameters, ideally covering the whole Holocene. Here, we compute the total and spectral irradiance for the Holocene employing the reconstructions of the open flux and sunspot number obtained from the cosmogenic isotope 14C. The model employed in this study is identical to the spectral and total irradiance reconstruction (SATIRE) models employed to study these parameters on time scales from days to centuries, but adapted to work with decadal averaged data. The model is tested by comparing to the total and spectral solar irradiance reconstructions from the sunspot number for the last 4 centuries. We also discuss limits and uncertainties of the model.

  18. The relative importance of oceanic nutrient inputs for Bass Harbor Marsh Estuary at Acadia National Park, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    The U.S. Geological Survey and Acadia National Park (ANP) collaborated on a study of nutrient inputs into Bass Harbor Marsh Estuary on Mount Desert Island, Maine, to better understand ongoing eutrophication, oceanic nutrient inputs, and potential management solutions. This report includes the estimation of loads of nitrate, ammonia, total dissolved nitrogen, and total dissolved phosphorus to the estuary derived from runoff within the watershed and oceanic inputs during summers 2011 and 2012. Nutrient outputs from the estuary were also monitored, and nutrient inputs in direct precipitation to the estuary were calculated. Specific conductance, water temperature, and turbidity were monitored at the estuary outlet. This report presents a first-order analysis of the potential effects of projected sea-level rise on the inundated area and estuary volume. Historical aerial photographs were used to investigate the possibility of widening of the estuary channel over time. The scope of this report also includes analysis of sediment cores collected from the estuary and fringing marsh surfaces to assess the sediment mass accumulation rate. Median concentrations of nitrate, ammonium, and total dissolved phosphorus on the flood tide were approximately 25 percent higher than on the ebb tide during the 2011 and 2012 summer seasons. Higher concentrations on the flood tide suggest net assimilation of these nutrients in biota within the estuary. The dissolved organic nitrogen fraction dominated the dissolved nitrogen fraction in all tributaries. The median concentration of dissolved organic nitrogen was about twice as high on the on the ebb tide than the flood tide, indicating net export of dissolved organic nitrogen from the estuary. The weekly total oceanic inputs of nitrate, ammonium, and total dissolved phosphorus to the estuary were usually much larger than inputs from runoff or direct precipitation. The estuary was a net sink for nitrate and ammonium in most weeks during both years. Oceanic inputs of nitrate and ammonium were an important source of inorganic nitrogen to the estuary in both years. In both years, the total seasonal inputs of ammonium to the estuary in flood tides were much larger than the inputs from watershed runoff or direct precipitation. In 2011, the total seasonal input of nitrate from flood tides to the estuary was more than twice as large the inputs from watershed runoff and precipitation, but in 2012, the inputs from flood tides were only marginally larger than the inputs from watershed runoff and precipitation. Turbidity was measured intermittently in 2012, and the pattern that emerged from the measurements indicated that the estuary was a source of particulate matter to the ocean rather than the ocean being a source to the estuary. From the nutrient budgets determined for the estuary it is evident that oceanic sources of nitrate and ammonium are an important part of the supply of nutrients that are contributing to the growth of macroalgae in the estuary. The relative importance of these oceanic nutrients compared with sources within the watershed typically increases as the summer progresses and runoff decreases. It is likely that rising sea levels, estimated by the National Oceanic and Atmospheric Administration to be 11 centimeters from 1950 through 2006 in nearby Bar Harbor, have resulted in an increase in oceanic inputs (tidal volume and nutrients derived from oceanic sources).

  19. Compact, high energy gas laser

    DOEpatents

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  20. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  1. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.

    PubMed

    Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B

    2014-07-01

    This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.

  2. Prompt fission neutron multiplicity and spectrum model for 30-80 MeV neutrons incident on 238U

    NASA Astrophysics Data System (ADS)

    Tudora, Anabella; Vladuca, G.; Morillon, B.

    2004-08-01

    The improved Los Alamos model is developed for the first time in order to provide prompt fission neutron multiplicity, prompt fission neutron spectra and other quantities at high incident neutron energies where the fission of secondary compound nuclei formed by charged particle emission occurs. In this model (exemplified by the n+ 238U reaction up to 80 MeV incident energy) the fission of the secondary nuclei formed by proton emission, neutron evaporation from the nuclei formed by proton emission, deuteron emission, alpha emission and neutron evaporation from the nuclei formed by alpha emission is taken into account. Input model parameters and related excitation energy dependences are determined using available experimental information and systematics as well as total and partial neutron induced fission cross-sections and their ratios obtained separately from a recent evaluation performed up to medium energies. Our present model predictions are in good agreement with the measured prompt neutron spectra and multiplicities.

  3. Comparative net energy ratio analysis of pellet produced from steam pretreated biomass from agricultural residues and energy crops

    DOE PAGES

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...

    2016-04-05

    Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h -1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets,more » respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less

  4. The effect of welding parameters on high-strength SMAW all-weld-metal. Part 1: AWS E11018-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vercesi, J.; Surian, E.

    Three AWS A5.5-81 all-weld-metal test assemblies were welded with an E110180-M electrode from a standard production batch, varying the welding parameters in such a way as to obtain three energy inputs: high heat input and high interpass temperature (hot), medium heat input and medium interpass temperature (medium) and low heat input and low interpass temperature (cold). Mechanical properties and metallographic studies were performed in the as-welded condition, and it was found that only the tensile properties obtained with the test specimen made with the intermediate energy input satisfied the AWS E11018-M requirements. With the cold specimen, the maximal yield strengthmore » was exceeded, and with the hot one, neither the yield nor the tensile minimum strengths were achieved. The elongation and the impact properties were high enough to fulfill the minimal requirements, but the best Charpy-V notch values were obtained with the intermediate energy input. Metallographic studies showed that as the energy input increased the percentage of the columnar zones decreased, the grain size became larger, and in the as-welded zone, there was a little increment of both acicular ferrite and ferrite with second phase, with a consequent decrease of primary ferrite. These results showed that this type of alloy is very sensitive to the welding parameters and that very precise instructions must be given to secure the desired tensile properties in the all-weld-metal test specimens and under actual working conditions.« less

  5. Design of a portable artificial heart drive system based on efficiency analysis.

    PubMed

    Kitamura, T

    1986-11-01

    This paper discusses a computer simulation of a pneumatic portable piston-type artificial heart drive system with a linear d-c-motor. The purpose of the design is to obtain an artificial heart drive system with high efficiency and small dimensions to enhance portability. The design employs two factors contributing the total efficiency of the drive system. First, the dimensions of the pneumatic actuator were optimized under a cost function of the total efficiency. Second, the motor performance was studied in terms of efficiency. More than 50 percent of the input energy of the actuator with practical loads is consumed in the armature circuit in all linear d-c-motors with brushes. An optimal design is: the piston cross-sectional area of 10.5 cm2 cylinder longitudinal length of 10 cm. The total efficiency could be up to 25 percent by improving the gasket to reduce the frictional force.

  6. Regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  7. The importance of utility systems in today's biorefineries and a vision for tomorrow.

    PubMed

    Eggeman, Tim; Verser, Dan

    2006-01-01

    Heat and power systems commonly found in today's corn processing facilities, sugar mills, and pulp and paper mills will be reviewed. We will also examine concepts for biorefineries of the future. We will show that energy ratio, defined as the ratio of renewable energy produced divided by the fossil energy input, can vary widely from near unity to values greater than 12. Renewable-based utility systems combined with low-fossil input agricultural systems lead to high-energy ratios.

  8. Low noise niobium dc SQUID with a planar input coil

    NASA Astrophysics Data System (ADS)

    de Waal, V. J.; van den Hamer, P.; Klapwijk, T. M.

    1983-02-01

    A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4×10-32 J/Hz. A 20-turn 1.2-μH input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1×10-30 J/Hz.

  9. Requirement, balance and energy efficiency under two models of cropping systems in the center-south of Buenos Aires, Argentina.

    NASA Astrophysics Data System (ADS)

    Zamora, Martin; Barbera, Agustin; Hansson, Alejandro; Carrasco, Natalia; Domenech, Marisa

    2017-04-01

    In a natural ecosystem, the solar energy is the main source. However, in the agro ecosystem we should use others in order to sustain specific processes or to avoid some interactions. This energy is introduced in the agro-system not only as fossil fuel but also as inputs like fertilizers and pesticides or for agricultural machines. Since February 2011, two adjacent fields were set at Barrow Experimental Station (Lat:-38.322844, Lon:-60.25572): one of them adopting agro-ecology principles (AGROE), as biodiversity increase, polyculture with legumes, less use of agrochemicals; while the other one is based on industrial model of agriculture (ACTUAL). This model is defined by its capital intensity and dependence on massive inputs like seeds, fertilizer, and pesticides. In both fields, beef cattle and agriculture production have been implemented with different intensity. The aim of this study was to compare the demand, production, balance and energy efficiency between these two agro-systems. To do this, we use tables of energy associated with different processes and inputs. For both systems, we estimate the energetic demand used in seeds, pesticides, fertilizers and labor during the crop sequence from February 2011 to December 2015; the energy production according to grains and meat yield achieved; the energetic balance calculated as the difference between inputs and outputs of energy in the system and finally, the energy efficiency which is the ratio between the energy produced and consumed. Inputs-outputs ratios of energy were transformed into equivalent units = GJ (Gigajoules). After a sequence of seven crops, ACTUAL consumed 60 GJ, which represents 158% more energy than AGROE. Particularly, ACTUAL consumed a 72% more energy in cultivation labor, 372% more in herbicides and 10 times more energy used in fertilizers than AGROE. Even though ACTUAL produced 37% more energy than AGROE (187 GJ vs 127 GJ) in grain and meat, the energetic balance was only 12% higher. However, AGROE double the energy efficiency (5.9 vs. 3.13). AGROE was more efficient in the use of energy resources and less energy-dependent to produce goods and food. In addition, this model produces less environmental deterioration, preserve natural resources and produce food on a sustainable basis.

  10. Microwave Driven Magnetic Plasma Accelerator Studies (CYCLOPS)

    NASA Technical Reports Server (NTRS)

    Crimi, G. F.; Eckert, A. C.; Miller, D. B.

    1967-01-01

    A microwave-driven cyclotron resonance plasma acceleration device was investigated using argon, krypton, xenon, and mercury as propellants. Limited ranges of propellant flow rate, input power, and magnetic field strength were used. Over-all efficiencies (including the 65% efficiency of the input polarizer) less than 10% were obtained for specific impulse values between 500 and 1500 sec. Power transfer efficiencies, however, approached 100% of the input power available in the right-hand component of the incident circularly polarized radiation. Beam diagnostics using Langmuir probes, cold gas mapping, r-f mapping and ion energy analyses were performed in conjunction with an engine operating in a pulsed mode. Measurements of transverse electron energies at the position of cyclotron resonant absorption yielded energy values more than an order of magnitude lower than anticipated. The measured electron energies were, however, consistent with the low values of average ion energy measured by retarding potential techniques. The low values of average ion energy were also consistent with the measured thrust values. It is hypothesized that ionization and radiation limit the electron kinetic energy to low-values thus limiting the energy which is finally transferred to the ion. Thermalization by electron-electron collision was also identified as an additional loss mechanism. The use of light alkali metals, which have relatively few low lying energy levels to excite, with the input power to mass ratio selected so as to limit the electron energies to less than the second ionization potential, is suggested. It is concluded, however, that the over-all efficiency for such propellants would be less than 40 per cent.

  11. Heat dissipation in water-cooled reflectors

    NASA Technical Reports Server (NTRS)

    Kozai, Toyoki

    1994-01-01

    The energy balance of a lamp varies with the thermal and optical characteristics of the reflector. The photosynthetic radiation efficiency of lamps, defined as input power divided by photosynthetically active radiation (PAR, 400-700 nm) emitted from the lamp ranges between 0.17 and 0.26. The rest of the energy input is wasted as longwave (3000 nm and over) and non-PAR shortwave radiation (from 700 nm to 3000 nm), convective, and conductive heat from the lamp, reflector, and ballast, and simply for increasing the cooling load. Furthermore, some portion of the PAR is uselessly absorbed by the inner walls, shelves, vessels, etc. and some portion of the PAR received by the plantlets is converted into sensible and latent heat. More than 98% of the energy input is probably converted into heat, with only less than 2% of the energy input being converted into chemical energy as carbohydrates by photosynthesis. Therefore, it is essential to reduce the generation of heat in the culture room in order to reduce the cooling load. Through use of a water-cooled reflector, the generation of convective and conductive heat and longwave radiation from the reflector can be reduced, without reduction of PAR.

  12. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes?

    USGS Publications Warehouse

    Jones, Stuart E.; Solomon, Christopher T.; Weidel, Brian C.

    2012-01-01

    Cross-ecosystem fluxes are ubiquitous in food webs and are generally thought of as subsidies to consumer populations. Yet external or allochthonous inputs may in fact have complex and habitat-specific effects on recipient ecosystems. In lakes, terrestrial inputs of organic carbon contribute to basal resource availability, but can also reduce resource availability via shading effects on phytoplankton and periphyton. Terrestrial inputs might therefore either subsidise or subtract from consumer production. We developed and parameterised a simple model to explore this idea. The model estimates basal resource supply and consumer production given lake-level characteristics including total phosphorus (TP) and dissolved organic carbon (DOC) concentration, and consumer-level characteristics including resource preferences and growth efficiencies. Terrestrial inputs diminished primary production and total basal resource supply at the whole-lake level, except in ultra-oligotrophic systems. However, this system-level generalisation masked complex habitat-specific effects. In the pelagic zone, dissolved and particulate terrestrial carbon inputs were available to zooplankton via several food web pathways. Consequently, zooplankton production usually increased with terrestrial inputs, even as total whole-lake resource availability decreased. In contrast, in the benthic zone the dominant, dissolved portion of the terrestrial carbon load had predominantly negative effects on resource availability via shading of periphyton. Consequently, terrestrial inputs always decreased zoobenthic production except under extreme and unrealistic parameterisations of the model. Appreciating the complex and habitat-specific effects of allochthonous inputs may be essential for resolving the effects of cross-habitat fluxes on consumers in lakes and other food webs.

  13. Energy consumption of agitators in activated sludge tanks - actual state and optimization potential.

    PubMed

    Füreder, K; Svardal, K; Frey, W; Kroiss, H; Krampe, J

    2018-02-01

    Depending on design capacity, agitators consume about 5 to 20% of the total energy consumption of a wastewater treatment plant. Based on inhabitant-specific energy consumption (kWh PE 120 -1 a -1 ; PE 120 is population equivalent, assuming 120 g chemical oxygen demand per PE per day), power density (W m -3 ) and volume-specific energy consumption (Wh m -3 d -1 ) as evaluation indicators, this paper provides a sound contribution to understanding energy consumption and energy optimization potentials of agitators. Basically, there are two ways to optimize agitator operation: the reduction of the power density and the reduction of the daily operating time. Energy saving options range from continuous mixing with low power densities of 1 W m -3 to mixing by means of short, intense energy pulses (impulse aeration, impulse stirring). However, the following correlation applies: the shorter the duration of energy input, the higher the power density on the respective volume-specific energy consumption isoline. Under favourable conditions with respect to tank volume, tank geometry, aeration and agitator position, mixing energy can be reduced to 24 Wh m -3 d -1 and below. Additionally, it could be verified that power density of agitators stands in inverse relation to tank volume.

  14. Reference-material system for estimating health and environmental risks of selected material cycles and energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Moskowitz, P.D.

    1981-07-01

    Sample analyses and detailed documentation are presented for a Reference Material System (RMS) to estimate health and environmental risks of different material cycles and energy systems. Data inputs described include: end-use material demands, efficiency coefficients, environmental emission coefficients, fuel demand coefficients, labor productivity estimates, and occupational health and safety coefficients. Application of this model permits analysts to estimate fuel use (e.g., Btu), occupational risk (e.g., fatalities), and environmental emissions (e.g., sulfur oxide) for specific material trajectories or complete energy systems. Model uncertainty is quantitatively defined by presenting a range of estimates for each data input. Systematic uncertainty not quantified relatesmore » to the boundaries chosen for analysis and reference system specification. Although the RMS can be used to analyze material system impacts for many different energy technologies, it was specifically used to examine the health and environmental risks of producing the following four types of photovoltaic devices: silicon n/p single-crystal cells produced by a Czochralski process; silicon metal/insulator/semiconductor (MIS) cells produced by a ribbon-growing process; cadmium sulfide/copper sulfide backwall cells produced by a spray deposition process; and gallium arsenide cells with 500X concentrator produced by a modified Czochralski process. Emission coefficients for particulates, sulfur dioxide and nitrogen dioxide; solid waste; total suspended solids in water; and, where applicable, air and solid waste residuals for arsenic, cadmium, gallium, and silicon are examined and presented. Where data are available the coefficients for particulates, sulfur oxides, and nitrogen oxides include both process and on-site fuel-burning emissions.« less

  15. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  16. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning.

    PubMed

    Elfwing, Stefan; Uchibe, Eiji; Doya, Kenji

    2016-12-01

    Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state and action spaces. However, the FERL method does only really work well with binary, or close to binary, state input, where the number of active states is fewer than the number of non-active states. In the FERL method, the value function is approximated by the negative free energy of a restricted Boltzmann machine (RBM). In our earlier study, we demonstrated that the performance and the robustness of the FERL method can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that RBM function approximation can be further improved by approximating the value function by the negative expected energy (EERL), instead of the negative free energy, as well as being able to handle continuous state input. We validate our proposed method by demonstrating that EERL: (1) outperforms FERL, as well as standard neural network and linear function approximation, for three versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art results in stochastic SZ-Tetris in both model-free and model-based learning settings; and (3) significantly outperforms FERL and standard neural network function approximation for a robot navigation task with raw and noisy RGB images as state input and a large number of actions. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Passive states as optimal inputs for single-jump lossy quantum channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Mari, Andrea; Lloyd, Seth; Giovannetti, Vittorio

    2016-06-01

    The passive states of a quantum system minimize the average energy among all the states with a given spectrum. We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output generated by any input state ρ majorizes the output generated by the passive input state ρ0 with the same spectrum of ρ . Then, the output generated by ρ can be obtained applying a random unitary operation to the output generated by ρ0. This is an extension of De Palma et al. [IEEE Trans. Inf. Theory 62, 2895 (2016)], 10.1109/TIT.2016.2547426, where the same result is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality property can fail already in a two-level system, where the best input is a coherent superposition of the two energy eigenstates.

  18. Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event

    DOE PAGES

    Strydom, Gerhard

    2013-01-01

    The Very High Temperature Reactor Methods Development group at the Idaho National Laboratory identified the need for a defensible and systematic uncertainty and sensitivity approach in 2009. This paper summarizes the results of an uncertainty and sensitivity quantification investigation performed with the SUSA code, utilizing the International Atomic Energy Agency CRP 5 Pebble Bed Modular Reactor benchmark and the INL code suite PEBBED-THERMIX. Eight model input parameters were selected for inclusion in this study, and after the input parameters variations and probability density functions were specified, a total of 800 steady state and depressurized loss of forced cooling (DLOFC) transientmore » PEBBED-THERMIX calculations were performed. The six data sets were statistically analyzed to determine the 5% and 95% DLOFC peak fuel temperature tolerance intervals with 95% confidence levels. It was found that the uncertainties in the decay heat and graphite thermal conductivities were the most significant contributors to the propagated DLOFC peak fuel temperature uncertainty. No significant differences were observed between the results of Simple Random Sampling (SRS) or Latin Hypercube Sampling (LHS) data sets, and use of uniform or normal input parameter distributions also did not lead to any significant differences between these data sets.« less

  19. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting

    PubMed Central

    Mohammad, Ashfaq; Alahmari, Abdulrahman M.; Mohammed, Muneer Khan; Renganayagalu, Ravi Kottan; Moiduddin, Khaja

    2017-01-01

    Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM), an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route. PMID:28772572

  20. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting.

    PubMed

    Mohammad, Ashfaq; Alahmari, Abdulrahman M; Mohammed, Muneer Khan; Renganayagalu, Ravi Kottan; Moiduddin, Khaja

    2017-02-21

    Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM), an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  1. Life cycle water use of energy production and its environmental impacts in China.

    PubMed

    Zhang, Chao; Anadon, Laura Diaz

    2013-12-17

    The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.

  2. On the energy budget in the current disruption region. [of geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    1993-01-01

    This study investigates the energy budget in the current disruption region of the magnetotail, coincident with a pre-onset thin current sheet, around substorm onset time using published observational data and theoretical estimates. We find that the current disruption/dipolarization process typically requires energy inflow into the primary disruption region. The disruption dipolarization process is therefore endoenergetic, i.e., requires energy input to operate. Therefore we argue that some other simultaneously operating process, possibly a large scale magnetotail instability, is required to provide the necessary energy input into the current disruption region.

  3. Understanding the Thermodynamics of Biological Order

    ERIC Educational Resources Information Center

    Peterson, Jacob

    2012-01-01

    By growth in size and complexity (i.e., changing from more probable to less probable states), plants and animals appear to defy the second law of thermodynamics. The usual explanation describes the input of nutrient and sunlight energy into open thermodynamic systems. However, energy input alone does not address the ability to organize and create…

  4. Observations of the directional distribution of the wind energy input function over swell waves

    NASA Astrophysics Data System (ADS)

    Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.

    2016-02-01

    Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos⁡3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.

  5. Synaptic control of the shape of the motoneuron pool input-output function

    PubMed Central

    Heckman, Charles J.

    2017-01-01

    Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs. PMID:28053245

  6. [Emergy analysis on different planting patterns of typical watersheds in Loess Plateau.

    PubMed

    Deng, Jian; Zhao, Fa Zhu; Han, Xin Hui; Feng, Yong Zhong; Yang, Gai He

    2016-05-01

    To objectively evaluate and compare the stability and sustainability of different planting patterns of typical watersheds in Loess Plateau of China after the Grain for Green Project, this paper used the emergy analysis method to quantify the emergy inputs and outputs of three watersheds with different planting patterns, i.e., both grains and fruit trees (Gaoxigou watershed), mainly grains (Wuliwan watershed) and mainly fruit trees (Miaozuigou watershed). In addition, an emergy analysis system was established to evaluate the suitability of the three patterns from the perspectives of natural resources pressure as well as social and economic development levels. More than 75% of the total emergy inputs of all the three watersheds were purchased, and nonrenewable emergy inputs had a much larger contribution than renewable emergy inputs, indicating the characteristic of low emergy self-sufficient ratio and considerable high environmental loading ratio. The pattern of planting grains had high emergy inputs but low emergy outputs, while the patterns of planting fruit trees and planting both had high emergy inputs and outputs. The energy densities of all three patterns reached two times of the average of agricultural systems in China. Especially, the net emergy of planting grains pattern was the lowest while that of planting both grains and fruit trees was the highest. The environmental sustainability index (ESI) of planting grains pattern was less than 1 and both emergy and ESI were much lower than national averages. The ESI of planting both grains and fruit trees pattern was the highest. In summary, comparison of the three patterns showed that planting both grains and fruit trees had better sustainability and high stability and the emergy production efficiency was high. Thus, it was suggested to change the agricultural development from watershed based units to multi-industry integrated mode.

  7. Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers.

    PubMed

    Kaltsa, O; Michon, C; Yanniotis, S; Mandala, I

    2013-05-01

    Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20wt%) were formulated (pH∼7) using whey protein (3wt%), three kinds of hydrocolloids (0.1-0.5wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5°C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool-heat cyclic method (40 to -40°C) was performed to examine stability via crystallization phenomena of the dispersed phase. Ultrasonication energy input duplication from 11kJ to 25kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS∼1% after 10days of storage) at 0.5wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D(50)=0.615μm compared to D(50)=1.3μm using method A) with narrower particle size distribution and in viscosity reduction. DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. 47 CFR 73.51 - Determining operating power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stage of the transmitter, using the following formula: Where: Antenna input power = Ep × Ip × F Ep=DC input voltage of final radio stage. Ip=Total DC input current of final radio stage. F= Efficiency factor...

  9. Studies on maximum yield of wheat for the controlled environments of space

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1986-01-01

    The economic feasibility of using food-producing crop plants in a closed ecological Life-Support System (CELSS) will ultimately depend on the energy and area (or volume) required to provide the nutritional requirements for each person. Energy and area requirements are, to some extent, inversely related; that is, an increased energy input results in a decreased area requirement and vice versa. A major goal of the research effort was to determine the controlled-environment good-production efficiency of wheat per unit area, per unit time, and per unit energy input.

  10. Snowmass 2013 Young Physicists Science and Career Survey Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Asaadi, J.; Carls, B.

    2013-07-30

    From April to July 2013 the Snowmass Young Physicists (SYP) administered an online survey collecting the opinions and concerns of the High Energy Physics (HEP) community. The aim of this survey is to provide input into the long term planning meeting known as the Community Summer Study (CSS), or Snowmass on the Mississippi. In total, 1112 respondents took part in the survey including 74 people who had received their training within HEP and have since left for non-academic jobs. This paper presents a summary of the survey results including demographic, career outlook, planned experiments and non-academic career path information collected.

  11. Prestressed elastomer for energy storage

    DOEpatents

    Hoppie, Lyle O.; Speranza, Donald

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  12. CHANDRA Observations OF The Shock Heated Gas Around 3c 288 And 3c 449

    NASA Astrophysics Data System (ADS)

    Lal, Dharam V.; Kraft, R. P.; Evans, D. A.; Hardcastle, M. J.; Nulsen, P. E. J.; Croston, J. H.; Forman, W. R.; Jones, C.; Lee, J. C.

    2010-03-01

    The inflation of radio bubbles in the hot gas atmospheres of clusters of galaxies plays an important role in the overall energy budget of the ICM. Regular gentle (i.e. subsonic) nuclear outbursts may be able to provide sufficient energy to the gas in the cool cores of clusters to offset radiative losses and regulate large cooling flows; and one method to supplement the total energy input into the gas is for the lobes to initially drive strong shocks into the gas. We present results from Chandra/ACIS-S observations of the hot gas atmospheres of two powerful, nearby radio galaxies in poor clusters: 3C 288 and 3C 449. We measure the total energy of the current outburst to be a few times 10^{59} ergs for 3C 288 (T = 2.8 keV, L_X = 1.4 × 10^{44} ergs) and ˜10^{58} ergs for 3C 449 (T = 1.5 keV, L_X = 2.0 × 10^{42} ergs). We find multiple surface brightness discontinuities in the gas, which are probably shocks and are indicative of supersonic heating by the inflation of the radio lobe. We do not find X-ray cavity in 3C 288, whereas cavities are associated with both the radio lobes in 3C 449.

  13. First-principles study of intermetallic phase stability in the ternary Ti-Al-Nb alloy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asta, M.; Ormeci, A.; Wills, J.M.

    The stability of bcc-based phases in the Ti-Al-Nb alloy system has been studied from first-principles using a combination of ab-initio total energy and cluster variation method (CVM) calculations. Total energies have been computed for 18 binary and ternary bcc superstructures in order to determine low temperature ordering tendencies. From the results of these calculations a set of effective cluster interaction parameters have been derived. These interaction parameters are required input for CVM computations of alloy thermodynamic properties. The CVM has been used to study the effect of composition on finite-temperature ordering tendencies and site preferences for bcc-based phases. Strong orderingmore » tendencies are observed for binary Nb-Al and Ti-Al bcc phases as well as for ternary alloys with compositions near Ti{sub 2}AlNb. For selected superstructures we have also analyzed structural stabilities with respect to tetragonal distortions which transform the bcc into an fcc lattice. Instabilities with respect to such distortions are found to exist for binary but not ternary bcc compounds.« less

  14. 75 FR 72956 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Clean Air Interstate Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... ``biomass'' was added so that cogeneration units could exclude biomass energy input in efficiency... the cogeneration unit definition to exclude energy input from biomass. At 326 IAC 24-1-2 (8), 326 IAC... ``Biomass'' in Reference to ``Cogeneration Unit'' H. The State's Complete CAIR Regulations I. NO X Reduction...

  15. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation

    EPA Science Inventory

    Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. These processes include examples of coupling reactions, the synthesis of heterocyclic compounds, and a variety of reactio...

  16. Testing two temporal upscaling schemes for the estimation of the time variability of the actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.

    2015-10-01

    Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.

  17. Texturing effects in molybdenum and aluminum nitride films correlated to energetic bombardment during sputter deposition

    NASA Astrophysics Data System (ADS)

    Drüsedau, T. P.; Koppenhagen, K.; Bläsing, J.; John, T.-M.

    Molybdenum films sputter-deposited at low pressure show a (110) to (211) texture turnover with increasing film thickness, which is accompanied by a transition from a fiber texture to a mosaic-like texture. The degree of (002) texturing of sputtered aluminum nitride (AlN) films strongly depends on nitrogen pressure in Ar/N2 or in a pure N2 atmosphere. For the understanding of these phenomena, the power density at the substrate during sputter deposition was measured by a calorimetric method and normalized to the flux of deposited atoms. For the deposition of Mo films and various other elemental films, the results of the calorimetric measurements are well described by a model. This model takes into account the contributions of plasma irradiation, the heat of condensation and the kinetic energy of sputtered atoms and reflected Ar neutrals. The latter two were calculated by TRIM.SP Monte Carlo simulations. An empirical rule is established showing that the total energy input during sputter deposition is proportional to the ratio of target atomic mass to sputtering yield. For the special case of a circular planar magnetron the radial dependence of the Mo and Ar fluxes and related momentum components at the substrate were calculated. It is concluded that mainly the lateral inhomogeneous radial momentum component of the Mo atoms is the cause of the in-plane texturing. For AlN films, maximum (002) texturing appears at about 250 eV per atom energy input.

  18. Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach

    PubMed Central

    Soomro, Rizwan R.; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K.

    2016-01-01

    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075

  19. Differential capacity of kaolinite and birnessite to protect surface associated proteins against thermal degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Stephany S.; Garcia-Jaramillo, Manuel; Liu, Suet Yi

    2018-02-28

    We report it is widely accepted that soil organic carbon cycling depends on the presence and catalytic functionality of extracellular enzymes. Recent reports suggest that combusted and autoclaved soils may have the capacity to degrade organic test substrates to a larger extent than the living, enzyme-bearing soils. In search of the underlying mechanisms, we adsorbed Beta-Glucosidase (BG) and Bovine Serum Albumin (BSA) on the phyllosilicate kaolinite and the manganese oxide birnessite at pH 5 and pH 7. The protein-mineral samples were then subjected to gradual energy inputs of a magnitude equivalent to naturally occurring wildfire events. The abundance and molecularmore » masses of desorbed organic compounds were recorded after ionization with tunable synchrotron vacuum ultraviolet radiation (VUV). The mechanisms controlling the fate of proteins varied with mineralogy. Kaolinite adsorbed protein largely through hydrophobic interactions and, even at large energy inputs, produced negligible amounts of desorption fragments compared to birnessite. Acid birnessite adsorbed protein through coulombic forces at low energy levels, became a hydrolyzing catalyst at low energies and low pH, and eventually turned into a reactant involving disintegration of both mineral and protein at higher energy inputs. Fragmentation of proteins was energy dependent and did not occur below an energy threshold of 0.20 MW cm -2 . Neither signal abundance nor signal intensity were a function of protein size. Above the energy threshold value, BG that had been adsorbed to birnessite at pH 7 showed an increase in signal abundance with increasing energy applications. Signal intensities differed with adsorption pH for BSA but only at the highest energy level applied. Our results indicate that proteins adsorbed to kaolinite may remain intact after exposure to such energy inputs as can be expected to occur in natural ecosystems. Protein fragmentation and concomitant loss of functionality must be expected in surface soils replete with pedogenic manganese oxides. Lastly, we conclude that minerals can do both: protect enzymes at high energy intensities in the case of kaolinite and, in the case of birnessite, substitute for and even exceed the oxidative functionality that may have been lost when unprotected oxidative enzymes were denatured at high energy inputs.« less

  20. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001).

    PubMed

    Prasad, V Krishna; Badarinath, K V S; Yonemura, S; Tsuruta, H

    2004-11-01

    Nitrogen regulates several ecological and biogeochemical processes and excess reactive nitrogen in the environment can lead to pollution problems, including the deterioration of air quality, disruption of forest processes, acidification of lakes and streams, and degradation of coastal waters. Much of the excess nitrogen inputs are related to food and energy production. An important step to understanding the sources of nitrogen and ultimately defining solutions to excess nitrogen is to describe the geographic distribution of agricultural nitrogen contributions from different regions. In this study, soil surface nitrogen loads were quantified for different states of India for the period 2000-2001. Nearly 35.4 Tg of nitrogen has been estimated as inputs from different sources, with output nitrogen from harvested crops of about 21.20 Tg. The soil surface nitrogen balance, estimated as inputs minus outputs, is found to be about 14.4 Tg surplus from the agricultural land of India. Livestock manure constituted a major percentage of total inputs (44.06%), followed by inorganic fertilizer (32.48%), atmospheric deposition (11.86%) and nitrogen fixation (11.58%). Nitrogen balance varied from deficit to surplus for different states. The highest nitrogen surplus was found in Uttar Pradesh (2.50 Tg) followed by Madhya Pradesh (1.83 Tg), Andhra Pradesh (1.79 Tg), etc. A negative nitrogen balance was found in Orissa (-0.01 Tg), Andaman Nicobar Islands (-0.32 Tg) and for some of the northeastern states. Major fertilizer consumption states were found to be Tamilnadu (204 kg/ha), Haryana (132 kg/ha), Punjab (148 kg/ha), followed by others. Similarly, nitrogen inputs from total livestock excretions were found to be high for Kerala (616 kg/ha), Jammu and Kashmir (389 kg/ha), Tamil Nadu (338 kg/ha), etc. The average nitrogen surplus of about 54 kg/ha observed for the agricultural land of the entire country of India is comparatively higher than the average surplus of about 31 kg/ha reported for European countries. These results, obtained from nutrient mass balance calculations, will be useful to formulate nutrient management plans relating to fertilizer usage, livestock management and for adopting some best management strategies at a state level in India.

  1. Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Ranjith

    2011-09-15

    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas formore » the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N{sub s}, the fidelity is minimized by any multimode Fock state with N{sub s} total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances. The experimental outlook for realizing nonclassical gains from number state transmitters with current technology at moderate to high values of the reflectances is argued to be good.« less

  2. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  3. A 1.1nW Energy Harvesting System with 544pW Quiescent Power for Next Generation Implants

    PubMed Central

    Mercier, Patrick P.; Lysaght, Andrew C.; Stankovic, Konstantina M.; Chandrakasan, Anantha P.

    2015-01-01

    This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70–100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited to 1.1–6.25 nW. A nW boost converter is used to increase the input voltage (30–55 mV) to a higher voltage (0.8 to 1.1 V) usable by CMOS circuits in the sensor. A pW Charge Pump circuit is used to minimize the leakage in the boost converter. Further, ultra-low-power control circuits consisting of digital implementations of input impedance adjustment circuits and Zero Current Switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself and a duty-cyled ultra-low power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18µm CMOS process. PMID:25983340

  4. A 1.1nW Energy Harvesting System with 544pW Quiescent Power for Next Generation Implants.

    PubMed

    Bandyopadhyay, Saurav; Mercier, Patrick P; Lysaght, Andrew C; Stankovic, Konstantina M; Chandrakasan, Anantha P

    2014-12-01

    This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70-100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited to 1.1-6.25 nW. A nW boost converter is used to increase the input voltage (30-55 mV) to a higher voltage (0.8 to 1.1 V) usable by CMOS circuits in the sensor. A pW Charge Pump circuit is used to minimize the leakage in the boost converter. Further, ultra-low-power control circuits consisting of digital implementations of input impedance adjustment circuits and Zero Current Switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself and a duty-cyled ultra-low power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18µm CMOS process.

  5. Distribution and bioavailability of cadmium in ornithogenic coral-sand sediments of the Xisha archipelago, South China Sea.

    PubMed

    Liu, Xiaodong; Lou, Chuangneng; Xu, Liqiang; Sun, Liguang

    2012-09-01

    Total cadmium (Cd) concentrations in four ornithogenic coral-sand sedimentary profiles displayed a strong positive correlation with guano-derived phosphorus, but had no correlation with plant-originated organic matter in the top sediments. These results indicate that the total Cd distributions were predominantly controlled by guano input. Bioavailable Cd and zinc (Zn) had a greater input rate in the top sediments with respect to total Cd and total Zn, and a positive correlation with total organic carbon (TOC) derived from plant humus. Multi-regression analysis showed that the total Cd and TOC explained over 80% of the variation of bioavailable Cd, suggesting that both guano and plant inputs could significantly influence the distribution of bioavailable Cd, and that plant biocycling processes contribute more to the recent increase of bioavailable Cd. A pollution assessment indicates that the Yongle archipelago is moderately to strongly polluted with guano-derived Cd. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Electron transport in furfural: dependence of the electron ranges on the cross sections and the energy loss distribution functions

    NASA Astrophysics Data System (ADS)

    Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.

    2016-09-01

    Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.

  7. Defining treatment conditions for pulsed electric field pasteurization of apple juice.

    PubMed

    Saldaña, G; Puértolas, E; Monfort, S; Raso, J; Alvarez, I

    2011-11-15

    The influence of temperature and the presence of N(α)-lauroyl ethylester (ethyl lauroyl arginate, LAE) on the inactivation caused by continuous pulsed electric field treatments (PEF) in Escherichia coli O157:H7 suspended in apple juice have been investigated to define treatment conditions applicable at industrial scale that promote an equivalent safety level when compared with thermal processing. In the range of experimental conditions investigated (outlet temperature: 20-40 °C, electric field strength: 20-30 kV, treatment time: 5-125 μs) at outlet temperatures equal or lower than 55±1 °C, the inactivation of E. coli O157:H7 treated in apple juice ranged from 0.4 to 3.6 Log₁₀ cycles reduction and treated in apple juice supplemented with LAE (50 ppm) ranged from 0.9 to 6.7 Log₁₀ cycles reduction. An empirical mathematical model was developed to estimate the treatment time and total specific energy input to obtain 5 Log₁₀ cycles reduction in the population of E. coli O157:H7 suspended in apple juice supplemented with 50 ppm of LAE at different electric field strengths and inlet temperatures. Treatment conditions established for E. coli O157:H7 were validated with other PEF resistant Gram-positive (Listeria monocytogenes, and Staphylococcus aureus) and Gram-negative (Salmonella enterica serovar Typhimurium) strains. When the treatment was applied to the apple juice, a treatment of 25 kV/cm for 63 μs corresponding with an outlet temperature of 65 °C and input energy of 125 kJ/kg was required to achieve more than 5 Log₁₀ cycles in the four strains investigated. The addition of LAE reduced the treatment time required to obtain an equivalent inactivation (>5 Log₁₀ cycles) in the four microorganisms to 38.4 μs, the outlet temperature to 55 °C, and the input energy to 83.2 kJ/kg. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Parametric analysis of parameters for electrical-load forecasting using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael

    1997-04-01

    Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.

  9. High-energy, tunable, mid-infrared, picosecond optical parametric generation in CdSiP2

    NASA Astrophysics Data System (ADS)

    Chaitanya Kumar, S.; Jelínek, M.; Baudisch, M.; Zawilski, K. T.; Schunemann, P. G.; Kubecek, V.; Biegert, J.; Ebrahim-Zadeh, M.

    2012-06-01

    We report a tunable, high-energy, single-pass, optical parametric generator (OPG) based on the new nonlinear material, cadmium silicon phosphide, CdSiP2. The OPG is pumped by a laboratory designed cavity-dumped passively mode-locked, diode-pumped, Nd:YAG oscillator, providing 25 μJ pulses in 20 ps at 5 Hz. The pump energy is further boosted by a flashlamp-pumped Nd:YAG amplifier to 2.5 mJ. The OPG is temperature tunable over 1263-1286 nm (23 nm) in the signal and 6153-6731 nm (578 nm) in the idler, corresponding to a total tuning range of 601 nm. Using the single-pass OPG configuration, we have generated signal energy as high as 636 μJ at 1283 nm, together with an idler energy of 33 μJ at 6234 nm, for 2.1 mJ of input pump energy. The signal pulses generated from the OPG have a Gaussian pulse duration of 24 ps and an FWHM spectral bandwidth of 10.4 nm at central wavelength of 1276 nm. The corresponding idler spectrum has an FWHM bandwidth of 140 nm centered at 6404 nm.

  10. CALiPER Exploratory Study: Accounting for Uncertainty in Lumen Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergman, Rolf; Paget, Maria L.; Richman, Eric E.

    2011-03-31

    With a well-defined and shared understanding of uncertainty in lumen measurements, testing laboratories can better evaluate their processes, contributing to greater consistency and credibility of lighting testing a key component of the U.S. Department of Energy (DOE) Commercially Available LED Product Evaluation and Reporting (CALiPER) program. Reliable lighting testing is a crucial underlying factor contributing toward the success of many energy-efficient lighting efforts, such as the DOE GATEWAY demonstrations, Lighting Facts Label, ENERGY STAR® energy efficient lighting programs, and many others. Uncertainty in measurements is inherent to all testing methodologies, including photometric and other lighting-related testing. Uncertainty exists for allmore » equipment, processes, and systems of measurement in individual as well as combined ways. A major issue with testing and the resulting accuracy of the tests is the uncertainty of the complete process. Individual equipment uncertainties are typically identified, but their relative value in practice and their combined value with other equipment and processes in the same test are elusive concepts, particularly for complex types of testing such as photometry. The total combined uncertainty of a measurement result is important for repeatable and comparative measurements for light emitting diode (LED) products in comparison with other technologies as well as competing products. This study provides a detailed and step-by-step method for determining uncertainty in lumen measurements, working closely with related standards efforts and key industry experts. This report uses the structure proposed in the Guide to Uncertainty Measurements (GUM) for evaluating and expressing uncertainty in measurements. The steps of the procedure are described and a spreadsheet format adapted for integrating sphere and goniophotometric uncertainty measurements is provided for entering parameters, ordering the information, calculating intermediate values and, finally, obtaining expanded uncertainties. Using this basis and examining each step of the photometric measurement and calibration methods, mathematical uncertainty models are developed. Determination of estimated values of input variables is discussed. Guidance is provided for the evaluation of the standard uncertainties of each input estimate, covariances associated with input estimates and the calculation of the result measurements. With this basis, the combined uncertainty of the measurement results and finally, the expanded uncertainty can be determined.« less

  11. Chapter 13: Assessing Persistence and Other Evaluation Issues Cross-Cutting Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Violette, Daniel M.

    Addressing other evaluation issues that have been raised in the context of energy efficiency programs, this chapter focuses on methods used to address the persistence of energy savings, which is an important input to the benefit/cost analysis of energy efficiency programs and portfolios. In addition to discussing 'persistence' (which refers to the stream of benefits over time from an energy efficiency measure or program), this chapter provides a summary treatment of these issues -Synergies across programs -Rebound -Dual baselines -Errors in variables (the measurement and/or accuracy of input variables to the evaluation).

  12. Hypothalamic control of energy and glucose metabolism.

    PubMed

    Sisley, Stephanie; Sandoval, Darleen

    2011-09-01

    The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.

  13. Alternative Energy Development and China's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thusmore » seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO 2 emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.« less

  14. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    NASA Astrophysics Data System (ADS)

    Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.

    2009-12-01

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.

  15. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Oblozinsky, P.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less

  16. RIPL-Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Capote,R.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less

  17. Characterization of Dietary Energy in Swine Feed and Feed Ingredients: A Review of Recent Research Results

    PubMed Central

    Velayudhan, D. E.; Kim, I. H.; Nyachoti, C. M.

    2015-01-01

    Feed is single most expensive input in commercial pork production representing more than 50% of the total cost of production. The greatest proportion of this cost is associated with the energy component, thus making energy the most important dietary in terms of cost. For efficient pork production, it is imperative that diets are formulated to accurately match dietary energy supply to requirements for maintenance and productive functions. To achieve this goal, it is critical that the energy value of feeds is precisely determined and that the energy system that best meets the energy needs of a pig is used. Therefore, the present review focuses on dietary supply and needs for pigs and the available energy systems for formulating swine diets with particular emphasis on the net energy system. In addition to providing a more accurate estimate of the energy available to the animal in an ingredient and the subsequent diet, diets formulated using the this system are typically lower in crude protein, which leads to additional benefits in terms of reduced nitrogen excretion and consequent environmental pollution. Furthermore, using the net energy system may reduce diet cost as it allows for increased use of feedstuffs containing fibre in place of feedstuffs containing starch. A brief review of the use of distiller dried grains with solubles in swine diets as an energy source is included. PMID:25557670

  18. Characterization of dietary energy in Swine feed and feed ingredients: a review of recent research results.

    PubMed

    Velayudhan, D E; Kim, I H; Nyachoti, C M

    2015-01-01

    Feed is single most expensive input in commercial pork production representing more than 50% of the total cost of production. The greatest proportion of this cost is associated with the energy component, thus making energy the most important dietary in terms of cost. For efficient pork production, it is imperative that diets are formulated to accurately match dietary energy supply to requirements for maintenance and productive functions. To achieve this goal, it is critical that the energy value of feeds is precisely determined and that the energy system that best meets the energy needs of a pig is used. Therefore, the present review focuses on dietary supply and needs for pigs and the available energy systems for formulating swine diets with particular emphasis on the net energy system. In addition to providing a more accurate estimate of the energy available to the animal in an ingredient and the subsequent diet, diets formulated using the this system are typically lower in crude protein, which leads to additional benefits in terms of reduced nitrogen excretion and consequent environmental pollution. Furthermore, using the net energy system may reduce diet cost as it allows for increased use of feedstuffs containing fibre in place of feedstuffs containing starch. A brief review of the use of distiller dried grains with solubles in swine diets as an energy source is included.

  19. Comparisons of Solar Wind Coupling Parameters with Auroral Energy Deposition Rates

    NASA Technical Reports Server (NTRS)

    Elsen, R.; Brittnacher, M. J.; Fillingim, M. O.; Parks, G. K.; Germany G. A.; Spann, J. F., Jr.

    1997-01-01

    Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. In this session. A number of parameters that predict the rate of coupling of solar wind energy into the magnetosphere have been proposed in the last few decades. Some of these parameters, such as the epsilon parameter of Perrault and Akasofu, depend on the instantaneous values in the solar wind. Other parameters depend on the integrated values of solar wind parameters, especially IMF Bz, e.g. applied flux which predicts the net transfer of magnetic flux to the tail. While these parameters have often been used successfully with substorm studies, their validity in terms of global energy input has not yet been ascertained, largely because data such as that supplied by the ISTP program was lacking. We have calculated these and other energy coupling parameters for January 1997 using solar wind data provided by WIND and other solar wind monitors. The rates of energy input predicted by these parameters are compared to those measured through UVI data and correlations are sought. Whether these parameters are better at providing an instantaneous rate of energy input or an average input over some time period is addressed. We also study if either type of parameter may provide better correlations if a time delay is introduced; if so, this time delay may provide a characteristic time for energy transport in the coupled solar wind-magnetosphere-ionosphere system.

  20. Emissions-critical charge cooling using an organic rankine cycle

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  1. DREAM-3D and the importance of model inputs and boundary conditions

    NASA Astrophysics Data System (ADS)

    Friedel, Reiner; Tu, Weichao; Cunningham, Gregory; Jorgensen, Anders; Chen, Yue

    2015-04-01

    Recent work on radiation belt 3D diffusion codes such as the Los Alamos "DREAM-3D" code have demonstrated the ability of such codes to reproduce realistic magnetospheric storm events in the relativistic electron dynamics - as long as sufficient "event-oriented" boundary conditions and code inputs such as wave powers, low energy boundary conditions, background plasma densities, and last closed drift shell (outer boundary) are available. In this talk we will argue that the main limiting factor in our modeling ability is no longer our inability to represent key physical processes that govern the dynamics of the radiation belts (radial, pitch angle and energy diffusion) but rather our limitations in specifying accurate boundary conditions and code inputs. We use here DREAM-3D runs to show the sensitivity of the modeled outcomes to these boundary conditions and inputs, and also discuss alternate "proxy" approaches to obtain the required inputs from other (ground-based) sources.

  2. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  3. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.

    PubMed

    Schwarzböck, Therese; Rechberger, Helmut; Cencic, Oliver; Fellner, Johann

    2016-03-01

    Different directives of the European Union require operators of waste-to-energy (WTE) plants to report the amount of electricity that is produced from biomass in the waste feed, as well as the amount of fossil CO2 emissions generated by the combustion of fossil waste materials. This paper describes the application of the Balance Method for determining the overall amount of fossil and thus climate relevant CO2 emissions from waste incineration in Austria. The results of 10 Austrian WTE plants (annual waste throughput of around 2,300 kt) demonstrate large seasonal variations in the specific fossil CO2 emissions of the plants as well as large differences between the facilities (annual means range from 32±2 to 51±3 kg CO(2,foss)/GJ heating value). An overall amount of around 924 kt/yr of fossil CO2 for all 10 WTE plants is determined. In comparison biogenic (climate neutral) CO2 emissions amount to 1,187 kt/yr, which corresponds to 56% of the total CO2 emissions from waste incineration. The total energy input via waste feed to the 10 facilities is about 22,500 TJ/yr, of which around 48% can be assigned to biogenic and thus renewable sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Composition of riparian litter input regulates organic matter decomposition: Implications for headwater stream functioning in a managed forest landscape.

    PubMed

    Lidman, Johan; Jonsson, Micael; Burrows, Ryan M; Bundschuh, Mirco; Sponseller, Ryan A

    2017-02-01

    Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in-stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse- and fine-mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse-mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter-input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher-quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower-quality litter inputs. Birch litter decomposition rate in coarse-mesh bags was best predicted by the same environmental variables as in fine-mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous trees along streams, as they promote conditions that favor higher decomposition rates of terrestrial plant litter.

  5. Energy distribution of nanoflares in the quiet solar corona

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom

    2012-07-01

    We present a detailed statistical analysis of flare-like events in low layer of solar corona detected with TESIS instrument onboard CORONAS-PHOTON satellite in 171 {Å} during high-cadence (5 sec) time-series. The estimated thermal energies of these small events amount to 10^{23} - 10^{26} erg. According to modern classification flare-like events with such energies are usually referred to as nanoflares. The big number of registered events (above 2000) allowed us to obtain precise distributions of geometric and physical parameters of nanoflares, the most intriguing being energy distribution. Following Aschwanden et al. (2000) and other authors we approximated the calculated energy distribution with a single power law slope: N(E)dE ˜ N^{-α}dE. The power law index was derived to be α = 2.4 ± 0.2, which is very close to the value reported by Krucker & Benz (1998): α ≈ 2.3 - 2.4. The total energy input from registered events constitute about 10^4 erg \\cdot cm^{-2} \\cdot s^{-1}, which is well beyond net losses in quiet corona (3 \\cdot 10^5 erg \\cdot cm^{-2} \\cdot s^{-1}). However, the value of α > 2 indicates that nanoflares with lower energies dominate over nanoflares with bigger energies and could contribute considerably to quiet corona heating.

  6. World energy projection system: Model documentation

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  7. Late-time emission of prompt fission γ rays

    DOE PAGES

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu( nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less

  8. MEDOF - MINIMUM EUCLIDEAN DISTANCE OPTIMAL FILTER

    NASA Technical Reports Server (NTRS)

    Barton, R. S.

    1994-01-01

    The Minimum Euclidean Distance Optimal Filter program, MEDOF, generates filters for use in optical correlators. The algorithm implemented in MEDOF follows theory put forth by Richard D. Juday of NASA/JSC. This program analytically optimizes filters on arbitrary spatial light modulators such as coupled, binary, full complex, and fractional 2pi phase. MEDOF optimizes these modulators on a number of metrics including: correlation peak intensity at the origin for the centered appearance of the reference image in the input plane, signal to noise ratio including the correlation detector noise as well as the colored additive input noise, peak to correlation energy defined as the fraction of the signal energy passed by the filter that shows up in the correlation spot, and the peak to total energy which is a generalization of PCE that adds the passed colored input noise to the input image's passed energy. The user of MEDOF supplies the functions that describe the following quantities: 1) the reference signal, 2) the realizable complex encodings of both the input and filter SLM, 3) the noise model, possibly colored, as it adds at the reference image and at the correlation detection plane, and 4) the metric to analyze, here taken to be one of the analytical ones like SNR (signal to noise ratio) or PCE (peak to correlation energy) rather than peak to secondary ratio. MEDOF calculates filters for arbitrary modulators and a wide range of metrics as described above. MEDOF examines the statistics of the encoded input image's noise (if SNR or PCE is selected) and the filter SLM's (Spatial Light Modulator) available values. These statistics are used as the basis of a range for searching for the magnitude and phase of k, a pragmatically based complex constant for computing the filter transmittance from the electric field. The filter is produced for the mesh points in those ranges and the value of the metric that results from these points is computed. When the search is concluded, the values of amplitude and phase for the k whose metric was largest, as well as consistency checks, are reported. A finer search can be done in the neighborhood of the optimal k if desired. The filter finally selected is written to disk in terms of drive values, not in terms of the filter's complex transmittance. Optionally, the impulse response of the filter may be created to permit users to examine the response for the features the algorithm deems important to the recognition process under the selected metric, limitations of the filter SLM, etc. MEDOF uses the filter SLM to its greatest potential, therefore filter competence is not compromised for simplicity of computation. MEDOF is written in C-language for Sun series computers running SunOS. With slight modifications, it has been implemented on DEC VAX series computers using the DEC-C v3.30 compiler, although the documentation does not currently support this platform. MEDOF can also be compiled using Borland International Inc.'s Turbo C++ v1.0, but IBM PC memory restrictions greatly reduce the maximum size of the reference images from which the filters can be calculated. MEDOF requires a two dimensional Fast Fourier Transform (2DFFT). One 2DFFT routine which has been used successfully with MEDOF is a routine found in "Numerical Recipes in C: The Art of Scientific Programming," which is available from Cambridge University Press, New Rochelle, NY 10801. The standard distribution medium for MEDOF is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. MEDOF was developed in 1992-1993.

  9. Fate of polychlorinated dibenzo-p-dioxins and dibenzofurans in a fly ash treatment plant.

    PubMed

    Li, Hsing-Wang; Wu, Yee-Lin; Lee, Wen-Jhy; Chang-Chien, Guo-Ping

    2007-09-01

    To understand the fate of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in a fly ash treatment plant that used the Waelz rotary kiln process (hereafter the Waelz process), the samples of input and output media were collected and analyzed. The most important PCDD/F source in input mass was electric arc furnace (EAF) fly ash, which had a mean PCDD/F content of 18.51 ng/g and contributed more than 99% of PCDD/F input mass, whereas the PCDD/F input mass fractions contributed by the coke, sand, and ambient air were only 0.04%, 0.02%, and 0.000002%, respectively. For the PCDD/F output mass in the Waelz process, the major total PCDD/F contents of 43.73 and 10.78 ng/g were in bag-filter and cyclone ashes, which accounted for approximately 69% and 17%, respectively, whereas those of stack flue gas and slag were 14% and 0.423%, respectively. The Waelz process has a dechlorination mechanism for higher chlorinated congeners, but it is difficult to decompose the aromatic rings of PCDD/Fs. Therefore, this resulted in the accumulation of lower chlorinated congeners. The output/input ratio of total PCDD/F mass and total PCDD/F international toxicity equivalence (I-TEQ) was 0.62 and 1.19, respectively. Thus, the Waelz process for the depletion effect of total PCDD/F mass was positive but minor, whereas the effect for total PCDD/F I-TEQ was adverse overall.

  10. Nitrogen deposition and its contribution to nutrient inputs to intensively managed agricultural ecosystems.

    PubMed

    He, Chun-E; Wang, Xin; Liu, Xuejun; Fangmeier, Andreas; Christie, Peter; Zhang, Fusuo

    2010-01-01

    Interest in nitrogen inputs via atmospheric deposition to agricultural ecosystems has increased recently, especially on the North China Plain because of extremely intensive agricultural systems and rapid urbanization in this region. Nitrogen deposition may make a significant contribution to crop N requirements but may also impose a considerable nutrient burden on the environment in general. We quantified total N deposition at two locations, Dongbeiwang near Beijing and Quzhou in Hebei province, over a two-year period from 2005 to 2007 using an 15N tracer method, the integrated total N input (ITNI) system. Total airborne N inputs to a maize wheat rotation system at both locations ranged from 99 to 117 kg N x ha(-1) x yr(-1), with higher N deposition during the maize season (57-66 kg N/ha) than the wheat season (42-51 kg N/ha). Plant available N from deposition for maize and wheat was about 52 kg N x ha(-1) x yr(-1), accounting for 50% of the total N deposition or 31% of total N uptake by the two crop species. In addition, a correction factor was derived for the maize season to adjust values obtained from small pots (0.057 m2) compared with field trays (0.98 m2) because of higher plant density in the pots. The results indicate that atmospheric N deposition is a very important N input and must be taken into account when calculating nutrient budgets in very intensively managed agricultural ecosystems.

  11. On the Thermal Anomaly of Lake Untersee

    NASA Technical Reports Server (NTRS)

    Bevington, James

    2015-01-01

    Reported here is the outcome from a student internship undertaken with Dr. Chris McKay at the NASA Ames Research Center. The project for this internship focuses on Lake Untersee, an Earth analog for icy moons. The anoxic hole of Lake Untersee has a thermal bump that was first observed by Wand et al., 1997 and has been confirmed several times (Wand et al., 2006; Andersen 2011). The expected thermal profile of the hole is linear from 0 C at the thermocline to approximately 4 C, the ground temperature in Antarctica, at the bottom. Instead, there is an increase from 0 C near the thermocline to 5 C which is maintained for 7 m, then a linear profile to approximately 4 C near the bottom. Thermal modeling was conducted to quantify the energy input required to maintain the bump. The results revealed 2 sources. Chemical reactions and radiative energy were analyzed as possible explanation. The chemical analysis revealed a peak in Chlorophyll a at the same depth as the shallower source and several interesting reactions with maximum rates at the same location as the lower depth source. However, the energy released from these reactions was orders of magnitude smaller than required source. The radiation analysis revealed a profile with two peaks in similar locations to the sources and a total energy input within a factor of 1.5 of the required sources. The conclusion from this work is that photosynthesis and the chemical reactions support microbial life in the water column which in turn acts as an opacity to convert radiative energy into thermal energy. Recommendations for future work are aimed at quantifying the quantity and types of microbes present in the water column. Beyond the work of the project, two field trips are described and a discussion on benefits to the student of the internship is given.

  12. Energy balances and greenhouse gas emissions of crude palm oil production system in Indonesia (Case study: Mill P, PT X, Sumatera Island)

    NASA Astrophysics Data System (ADS)

    Andarani, Pertiwi; Nugraha, Winardi Dwi; Wieddya

    2017-03-01

    Indonesia is one of the largest palm oil producers in the world. The total exported crude palm oil (CPO) and its derivatives in 2015 reached about 26.40 million tons or increase at 21% compared to the previous year (2014). However, the further expansion of the CPO production system could potentially have environmental impacts. The objective of this study is to analyze the energy balances and greenhouse gas emissions at mill P, PT X located in Sumatera Island. System analysis approaches was applied to this study and the assessment was focused on a CPO production system in PT XYZ located on the Sumatera Island. The system boundary was determined based on the field study. The data collection consisted of all the input and output energy which involving all input materials (including fertilizers, herbicides, pesticides, water, etc.) and energy consumption (consumption of diesel, electricity, etc.) starting from plantation activities (at the oil palm plantation) to the conversion process (at the palm oil mill). The energy output from biodiesel was 480.46 GJ/ha (2014) and decreased to 450.79 GJ/ha (2015). Surplus energy from biogas was 15.21 GJ/ha (2014) and 13.57 GJ/ha (2015). The NEP was 494.56 GJ/ha and decreased to 317.84 GJ/ha. Meanwhile, the NER decreased from 3.27 (2014) to 3.17 (2015). The NEP in this mill is significantly higher than other related studies of similar palm oil production system in other companies. The emission of the activities in the palm estate increased from 12.50 kgCO2eq/ton FFB to 22.057 kgCO2eq/ton FFB. In the palm oil mill, the emission decreased from 2,509.93 kgCO2eq/ton CPO to 2,057.14 kgCO2eq/ton CPO.

  13. Projecting Electricity Demand in 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly datamore » for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.« less

  14. Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

    PubMed Central

    Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas

    2012-01-01

    NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589

  15. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    PubMed Central

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-01-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545

  16. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition.

    PubMed

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-06-03

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.

  17. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-06-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.

  18. Year rather than farming system influences protein utilization and energy value of vegetables when measured in a rat model.

    PubMed

    Jørgensen, Henry; Brandt, Kirsten; Lauridsen, Charlotte

    2008-12-01

    The aim of the study was to measure protein utilization and energy value of dried apple, carrot, kale, pea, and potato prepared for human consumption and grown in 2 consecutive years with 3 different farming systems: (1) low input of fertilizer without pesticides (LIminusP), (2) low input of fertilizers and high input of pesticides (LIplusP), (3) and high input of fertilizers and high input of pesticides (HIplusP). In addition, the study goal was to verify the nutritional values, taking into consideration the physiologic state. In experiment 1, the nutritive values, including protein digestibility-corrected amino acid score, were determined in single ingredients in trials with young rats (3-4 weeks) as recommended by the Food and Agriculture Organization of the United Nations/World Health Organization for all age groups. A second experiment was carried out with adult rats to assess the usefulness of digestibility values to predict the digestibility and nutritive value of mixed diets and study the age aspect. Each plant material was included in the diet with protein-free basal mixtures or casein to contain 10% dietary protein. The results showed that variations in protein utilization and energy value determined on single ingredients between cultivation strategies were inconsistent and smaller than between harvest years. Overall, dietary crude fiber was negatively correlated with energy digestibility. The energy value of apple, kale, and pea was lower than expected from literature values. A mixture of plant ingredients fed to adult rats showed lower protein digestibility and higher energy digestibility than predicted. The protein digestibility data obtained using young rats in the calculation of protein digestibility-corrected amino acid score overestimates protein digestibility and quality and underestimates energy value for mature rats. The present study provides new data on protein utilization and energy digestibility of some typical plant foods that may contribute new information for databases on food quality. Growing year but not cultivation system influenced the protein quality and energy value of the vegetables and fruit typical for human consumption.

  19. CHARACTERISTIC LENGTH SCALE OF INPUT DATA IN DISTRIBUTED MODELS: IMPLICATIONS FOR MODELING GRID SIZE. (R824784)

    EPA Science Inventory

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model resp...

  20. Sun/Earth: how to use solar and climatic energies today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.

    1976-01-01

    This book graphically presents many concepts that are cost-effective today for the utilization of free natural energy sources in homes and other buildings. All of the natural energy concepts presented are in a process of continuing development. Many of them are immediately economic and practical, while some are not. It takes the application of money to construct devices to harness natural energy or to construct energy efficient forms of architecture. In numerous cases operational energy is not required to employ the Sun, wind, water, and Earth as free anti-inflationary energy sources. In other cases a very small input of operationalmore » energy in comparison to the total energy output is required. All land and buildings are solar collectors. The problem is how to cost effectively make them efficient collectors of solar radiation in winter and how to use natural forms of energy to cool and ventilate them during summer and other seasons of the year. Regional and microclimatic conditions vary throughout the world. Topography and landscaping can play an important role in climatic control and climatic effect upon architecture. The examples presented for optimized energy conservation and solar active and passive systems are generic to most northern latitudes, but need modification or adaption to specific locations and climates. An annotated bibliography, containing additional reference, is included.« less

  1. The building loads analysis system thermodynamics (BLAST) program, Version 2. 0: input booklet. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.

    1979-06-01

    The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption in buildings. There are three major subprograms: (1) the space load predicting subprogram, which computes hourly space loads in a building or zone based on user input and hourly weather data; (2) the air distribution system simulation subprogram, which uses the computed space load and user inputs describing the building air-handling system to calculate hot water or steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solarmore » energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost.« less

  2. Optically-powered Voltage-supply-device for Effective Utilization of Optical Energy in the Fiber-To-The-Home Network

    NASA Astrophysics Data System (ADS)

    Fukano, Hideki; Shinagawa, Takeshi; Tsuruta, Kenji

    An optically powered device with using InGaAs-Photodiode has been developed. This study aims to harvest light energy (2.8∼500μW) from the FTTH (Fiber To The Home) network and to utilize it for operating remote sensors without external energy sources. First, we designed and evaluated the characteristics of the booster circuit and confirmed that it could boost an input voltage of 0.3 V to 3.0 V. Next, we also evaluated the characteristics of InGaAs photodiode and confirmed that it can output a voltage over 0.3 V at 10-μW input light. We demonstrate that a ready-made sensor can be operated with an input optical power as low as 10 μW.

  3. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    NASA Astrophysics Data System (ADS)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  4. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    PubMed

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  5. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    NASA Astrophysics Data System (ADS)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  6. Element Cycling and Energy Flux Responses in Ecosystem Simulations Conducted at the Chinese Lunar Palace-1

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Fu, Yuming; Xie, Beizhen; Wang, Minjuan; Liu, Hong

    2017-01-01

    Bioregenerative life-support systems (BLSS) address interactions between organisms and their environment as an integrated system through the study of factors that regulate the pools and fluxes of materials and energy through ecological systems. As a simple model, using BLSS is very important in the investigation of element cycling and energy flux for sustainable development on Earth. A 105-day experiment with a high degree of closure was carried out in this system from February to May, 2014, with three volunteers. The results indicate that 247 g·d-1 carbon was imported into the system from stored food. Most hydrogen is circulated as water, and more than 99% H2O can be lost through leaf transpiration into the atmosphere. A total of 1.8 g·d-1 "unknown oxygen" emerged between the input and output of the plant growth module. For the urine processing module, 20.5% nitrogen was reused and 5.35 g·d-1 was put into the nutrient solution.

  7. Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

    1975-01-01

    Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.

  8. Assessing the importance of internal tide scattering in the deep ocean

    NASA Astrophysics Data System (ADS)

    Haji, Maha; Peacock, Thomas; Carter, Glenn; Johnston, T. M. Shaun

    2014-11-01

    Tides are one of the main sources of energy input to the deep ocean, and the pathways of energy transfer from barotropic tides to turbulent mixing scales via internal tides are not well understood. Large-scale (low-mode) internal tides account for the bulk of energy extracted from barotropic tides and have been observed to propagate over 1000 km from their generation sites. We seek to examine the fate of these large-scale internal tides and the processes by which their energy is transferred, or ``scattered,'' to small-scale (high-mode) internal tides, which dissipate locally and are responsible for internal tide driven mixing. The EXperiment on Internal Tide Scattering (EXITS) field study conducted in 2010-2011 sought to examine the role of topographic scattering at the Line Islands Ridge. The scattering process was examined via data from three moorings equipped with moored profilers, spanning total depths of 3000--5000 m. The results of our field data analysis are rationalized via comparison to data from two- and three-dimensional numerical models and a two-dimensional analytical model based on Green function theory.

  9. Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast -- Improvement via Situation Dependent Error Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar

    With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual modelmore » has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.« less

  10. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    PubMed

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (p<0.05) increased cumulative methane yield (by 63%) over that of untreated biomass (217L/kgVS). LHW pretreatment obtained negative net electrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprintmore » of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.« less

  12. A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China.

    PubMed

    Zan, Fengyu; Huo, Shouliang; Xi, Beidou; Zhu, Chaowei; Liao, Haiqing; Zhang, Jingtian; Yeager, Kevin M

    2012-03-01

    In this study, the sediment profiles of total organic carbon, total nitrogen, C/N ratios, total phosphorus, N/P ratios, C/P ratios, particle sizes, and stable carbon and nitrogen isotopes (δ(13)C and δ(15)N) were used to investigate natural and anthropogenic impacts on Lake Chaohu over the past 100 years. Before 1960, Lake Chaohu experienced low productivity and a relatively steady and low nutrient input. The increasing concentration and fluxes of total organic carbon, total nitrogen, total phosphorus, together with changes in the δ(13)C and δ(15)N of organic material in the sediment cores, suggested that the anthropogenic effects on trophic status first started because of an increase in nutrient input caused by a population increase in the drainage area. With the construction of the Chaohu Dam, an increase in the utilization of fertilizer and the population growth which occurred since 1960, stable depositional conditions and increasing nutrient input resulted in a dominantly algae-derived organic matter source and high productivity. Nutrient input increased most significantly around 1980 following the rapidly growing population, with concomitant urbanization, industrial and agricultural development. This study also revealed that the concentration and distribution of nutrients varied between different areas of sediment within Lake Chaohu because of the influence of different drainage basins and pollution sources. This journal is © The Royal Society of Chemistry 2012

  13. Electric energy costs and firm productivity in the countries of the Pacific Alliance

    NASA Astrophysics Data System (ADS)

    Camacho, Anamaria

    This paper explores the relation between energy as an input of production and firm-level productivity for Chile, Colombia, Mexico and Peru, all country members of the Pacific Alliance economic bloc. The empirical literature, has explored the impact of infrastructure on productivity; however there is limited analysis on the impact of particular infrastructure variables, such as energy, on productivity at the firm level in Latin America. Therefore, this study conducts a quantitative assessment of the responsiveness of productivity to energy cost and quality for Chile, Colombia, Mexico and Peru. For this, the empirical strategy is to estimate a Cobb-Douglas production function using the World Bank's Enterprise Survey to obtain comparable measures of output and inputs of production. This approach provides estimates of input factor elasticities for all of the factors of production including energy. The results indicate that electric energy costs explain cross-country differences in firm level productivity. For the particular case of Colombia, the country exhibits the lowest capital and labor productivity of the PA, and firm output is highly responsive to changes in energy use. As a result, the evidence suggests that policies reducing electric energy costs are an efficient alternative to increase firm performance, particularly in the case of Colombia.

  14. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  15. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and variability. This new system could be a long term economical solution for solar energy applications.xample of SW Flux Analysis global hemispheric (light blue) and direct (yellow) clear-sky shortwave (SW) along with corresponding actual global hemispheric (blue) and direct (red) SW, and the corresponding fractional sky cover (black, right Y-axis). Note in afternoon about 40-50% of the global SW is available, yet most times there is no direct SW.

  16. Sparse Polynomial Chaos Surrogate for ACME Land Model via Iterative Bayesian Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.

    2015-12-01

    For computationally expensive climate models, Monte-Carlo approaches of exploring the input parameter space are often prohibitive due to slow convergence with respect to ensemble size. To alleviate this, we build inexpensive surrogates using uncertainty quantification (UQ) methods employing Polynomial Chaos (PC) expansions that approximate the input-output relationships using as few model evaluations as possible. However, when many uncertain input parameters are present, such UQ studies suffer from the curse of dimensionality. In particular, for 50-100 input parameters non-adaptive PC representations have infeasible numbers of basis terms. To this end, we develop and employ Weighted Iterative Bayesian Compressive Sensing to learn the most important input parameter relationships for efficient, sparse PC surrogate construction with posterior uncertainty quantified due to insufficient data. Besides drastic dimensionality reduction, the uncertain surrogate can efficiently replace the model in computationally intensive studies such as forward uncertainty propagation and variance-based sensitivity analysis, as well as design optimization and parameter estimation using observational data. We applied the surrogate construction and variance-based uncertainty decomposition to Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Neural circuit mechanisms of short-term memory

    NASA Astrophysics Data System (ADS)

    Goldman, Mark

    Memory over time scales of seconds to tens of seconds is thought to be maintained by neural activity that is triggered by a memorized stimulus and persists long after the stimulus is turned off. This presents a challenge to current models of memory-storing mechanisms, because the typical time scales associated with cellular and synaptic dynamics are two orders of magnitude smaller than this. While such long time scales can easily be achieved by bistable processes that toggle like a flip-flop between a baseline and elevated-activity state, many neuronal systems have been observed experimentally to be capable of maintaining a continuum of stable states. For example, in neural integrator networks involved in the accumulation of evidence for decision making and in motor control, individual neurons have been recorded whose activity reflects the mathematical integral of their inputs; in the absence of input, these neurons sustain activity at a level proportional to the running total of their inputs. This represents an analog form of memory whose dynamics can be conceptualized through an energy landscape with a continuum of lowest-energy states. Such continuous attractor landscapes are structurally non-robust, in seeming violation of the relative robustness of biological memory systems. In this talk, I will present and compare different biologically motivated circuit motifs for the accumulation and storage of signals in short-term memory. Challenges to generating robust memory maintenance will be highlighted and potential mechanisms for ameliorating the sensitivity of memory networks to perturbations will be discussed. Funding for this work was provided by NIH R01 MH065034, NSF IIS-1208218, Simons Foundation 324260, and a UC Davis Ophthalmology Research to Prevent Blindness Grant.

  18. Advances in Estimating Methane Emissions from Enteric Fermentation

    NASA Astrophysics Data System (ADS)

    Kebreab, E.; Appuhamy, R.

    2016-12-01

    Methane from enteric fermentation of livestock is the largest contributor to the agricultural GHG emissions. The quantification of methane emissions from livestock on a global scale relies on prediction models because measurements require specialized equipment and may be expensive. Most countries use a fixed number (kg methane/year) or calculate as a proportion of energy intake to estimate enteric methane emissions in national inventories. However, diet composition significantly regulates enteric methane production in addition to total feed intake and thus the main target in formulating mitigation options. The two current methodologies are not able to assess mitigation options, therefore, new estimation methods are required that can take feed composition into account. The availability of information on livestock production systems has increased substantially enabling the development of more detailed methane prediction models. Limited number of process-based models have been developed that represent biological relationships in methane production, however, these require extensive inputs and specialized software that may not be easily available. Empirical models may provide a better alternative in practical situations due to less input requirements. Several models have been developed in the last 10 years but none of them work equally well across all regions of the world. The more successful models particularly in North America require three major inputs: feed (or energy) intake, fiber and fat concentration of the diet. Given the significant variability of emissions within regions, models that are able to capture regional variability of feed intake and diet composition perform the best in model evaluation with independent data. The utilization of such models may reduce uncertainties associated with prediction of methane emissions and allow a better examination and representation of policies regulating emissions from cattle.

  19. The economic impact of the Department of Energy on the state of New Mexico fiscal year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansford, R.R.; Nielsen, T.G.; Schultz, J.

    1998-05-29

    The US Department of Energy (DOE) provides a major source of economic benefits in New Mexico. The agency`s far-reaching economic influence within the state is the focus of this report. Economic benefits arising from the various activities and functions of both DOE and its contractors have accrued to the state continuously for over 50 years. For several years, DOE/Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained inter-industry, input-output modeling capabilities to assess DOE`s impacts on the state of New Mexico and the other substate regions most directly impacted by DOE activities. One of the major usesmore » of input-output techniques is to assess the effects of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy. The information on which the models are based is updated periodically to ensure the most accurate depiction possible of the economy for the period of reference. For this report, the reference periods are Fiscal Year (FY) 1996 and FY 1997. Total impacts represents both direct and indirect impacts (respending by business), including induced (respending by households) effects. The standard multipliers used in determining impacts result from the inter-industry, input-output models uniquely developed for New Mexico. This report includes seven main sections: (1) introduction; (2) profile of DOE activities in New Mexico; (3) DOE expenditure patterns; (4) measuring DOE/New Mexico`s economic impact; (5) technology transfer within the federal labs funded by DOE/New Mexico; (6) glossary of terms; and (7) technical appendix containing a description of the model. 9 figs., 19 tabs.« less

  20. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].

    PubMed

    Tian, Wang; Liao, Cuiping; Li, Li; Zhao, Daiqing

    2011-03-01

    Life Cycle Assessment (LCA) is the only standardized tool currently used to assess environmental loads of products and processes. The life cycle analysis, as a part of LCA, is a useful and powerful methodology for studying life cycle energy efficiency and life cycle GHG emission. To quantitatively explain the potential of energy saving and greenhouse gas (GHG) emissions reduction of corn stover-based ethanol, we analyzed life cycle energy consumption and GHG emissions of corn stover-based ethanol by the method of life cycle analysis. The processes are dilute acid prehydrolysis and enzymatic hydrolysis. The functional unit was defined as 1 km distance driven by the vehicle. Results indicated: compared with gasoline, the corn stover-based E100 (100% ethanol) and E10 (a blend of 10% ethanol and 90% gasoline by volume) could reduce life cycle fossil energy consumption by 79.63% and 6.25% respectively, as well as GHG emissions by 53.98% and 6.69%; the fossil energy consumed by biomass stage was 68.3% of total fossil energy input, N-fertilizer and diesel were the main factors which contributed 45.78% and 33.26% to biomass stage; electricity production process contributed 42.06% to the net GHG emissions, the improvement of technology might reduce emissions markedly.

  1. Economic Impacts of Wind Turbine Development in U.S. Counties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J., Brown; B., Hoen; E., Lantz

    2011-07-25

    The objective is to address the research question using post-project construction, county-level data, and econometric evaluation methods. Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show that penetrations of at least 20 percentmore » are feasible. Several studies have used input-output models to predict direct, indirect, and induced economic development impacts. These analyses have often been completed prior to project construction. Available studies have not yet investigated the economic development impacts of wind development at the county level using post-construction econometric evaluation methods. Analysis of county-level impacts is limited. However, previous county-level analyses have estimated operation-period employment at 0.2 to 0.6 jobs per megawatt (MW) of power installed and earnings at $9,000/MW to $50,000/MW. We find statistically significant evidence of positive impacts of wind development on county-level per capita income from the OLS and spatial lag models when they are applied to the full set of wind and non-wind counties. The total impact on annual per capita income of wind turbine development (measured in MW per capita) in the spatial lag model was $21,604 per MW. This estimate is within the range of values estimated in the literature using input-output models. OLS results for the wind-only counties and matched samples are similar in magnitude, but are not statistically significant at the 10-percent level. We find a statistically significant impact of wind development on employment in the OLS analysis for wind counties only, but not in the other models. Our estimates of employment impacts are not precise enough to assess the validity of employment impacts from input-output models applied in advance of wind energy project construction. The analysis provides empirical evidence of positive income effects at the county level from cumulative wind turbine development, consistent with the range of impacts estimated using input-output models. Employment impacts are less clear.« less

  2. Comprehensive overview of the Point-by-Point model of prompt emission in fission

    NASA Astrophysics Data System (ADS)

    Tudora, A.; Hambsch, F.-J.

    2017-08-01

    The investigation of prompt emission in fission is very important in understanding the fission process and to improve the quality of evaluated nuclear data required for new applications. In the last decade remarkable efforts were done for both the development of prompt emission models and the experimental investigation of the properties of fission fragments and the prompt neutrons and γ-ray emission. The accurate experimental data concerning the prompt neutron multiplicity as a function of fragment mass and total kinetic energy for 252Cf(SF) and 235 ( n, f) recently measured at JRC-Geel (as well as other various prompt emission data) allow a consistent and very detailed validation of the Point-by-Point (PbP) deterministic model of prompt emission. The PbP model results describe very well a large variety of experimental data starting from the multi-parametric matrices of prompt neutron multiplicity ν (A,TKE) and γ-ray energy E_{γ}(A,TKE) which validate the model itself, passing through different average prompt emission quantities as a function of A ( e.g., ν(A), E_{γ}(A), < ɛ > (A) etc.), as a function of TKE ( e.g., ν (TKE), E_{γ}(TKE)) up to the prompt neutron distribution P (ν) and the total average prompt neutron spectrum. The PbP model does not use free or adjustable parameters. To calculate the multi-parametric matrices it needs only data included in the reference input parameter library RIPL of IAEA. To provide average prompt emission quantities as a function of A, of TKE and total average quantities the multi-parametric matrices are averaged over reliable experimental fragment distributions. The PbP results are also in agreement with the results of the Monte Carlo prompt emission codes FIFRELIN, CGMF and FREYA. The good description of a large variety of experimental data proves the capability of the PbP model to be used in nuclear data evaluations and its reliability to predict prompt emission data for fissioning nuclei and incident energies for which the experimental information is completely missing. The PbP treatment can also provide input parameters of the improved Los Alamos model with non-equal residual temperature distributions recently reported by Madland and Kahler, especially for fissioning nuclei without any experimental information concerning the prompt emission.

  3. Nutrient and organic matter inputs to Hawaiian anchialine ponds: influences of n-fixing and non-n-fixing trees

    Treesearch

    Kehauwealani K. Nelson-Kaula; Rebecca Ostertag; R. Flint Hughes; Bruce D. Dudley

    2016-01-01

    Invasive nitrogen-fixing plants often increase energy and nutrient inputs to both terrestrial and aquatic ecosystems via litterfall, and these effects may be more pronounced in areas lacking native N2-fixers. We examined organic matter and nutrient inputs to and around anchialine ponds...

  4. Field measurement of moisture-buffering model inputs for residential buildings

    DOE PAGES

    Woods, Jason; Winkler, Jon

    2016-02-05

    Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the onlymore » unmeasured term—the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. Furthermore, these results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model.« less

  5. Financial crisis, virtual carbon in global value chains, and the importance of linkage effects. The Spain-china case.

    PubMed

    López, Luis-Antonio; Arce, Guadalupe; Zafrilla, Jorge

    2014-01-01

    Trade has a disproportionate environmental impact, while the international fragmentation of production promotes different patterns of intermediate inputs and final goods. Therefore, we split up the balance of domestic embodied emissions in trade (BDEET) to assess it. We find that Spain has a significant emissions deficit with China between 2005 and 2011. The Global Financial Crisis of 2008 reduced Spanish imports of pollution-intensive inputs from China and slightly improved the BDEET. China primarily exports indirect virtual carbon, representing 86% of the total, especially from Production of electricity, gas, and water sector. These linkages effects in China indicate that post-Kyoto agreements must focus not only on traded goods but also on the environmental efficiency of all domestic production chains. The methodology proposed allows us to identify the agents responsible for this trade in both Spain and China, namely the sectors importing intermediate inputs (Construction and Transport equipment) and industries and consumers importing final goods (Textiles, Other manufactures, Computers, and Machinery). The relevant sectors uncertainties found when we compare the results for BDEET and emissions embodied in bilateral trade (BEET) lead us to recommend the former methodology to evaluate the implications of environmental and energy policy for different industries and agents.

  6. Experimental Studies of Nuclear Physics Input for γ -Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Scholz, Philipp; Heim, Felix; Mayer, Jan; Netterdon, Lars; Zilges, Andreas

    The predictions of reaction rates for the γ process in the scope of the Hauser-Feshbach statistical model crucially depend on nuclear physics input-parameters as optical-model potentials (OMP) or γ -ray strength functions. Precise cross-section measurements at astrophysically relevant energies help to constrain adopted models and, therefore, to reduce the uncertainties in the theoretically predicted reaction rates. During the last years, several cross-sections of charged-particle induced reactions on heavy nuclei have been measured at the University of Cologne. Either by means of the in-beam method at the HORUS γ -ray spectrometer or the activation technique using the Cologne Clover Counting Setup, total and partial cross-sections could be used to further constrain different models for nuclear physics input-parameters. It could be shown that modifications on the α -OMP in the case of the 112Sn(α , γ ) reaction also improve the description of the recently measured cross sections of the 108Cd(α , γ ) and 108Cd(α , n) reaction and other reactions as well. Partial cross-sections of the 92Mo(p, γ ) reaction were used to improve the γ -strength function model in 93Tc in the same way as it was done for the 89Y(p, γ ) reaction.

  7. Effective utilization of ozone in plasma-based advanced oxidation process

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Ishibashi, Naoto; Sugiyama, Tsuyoshi; Kim, Hyun-Ha

    2018-05-01

    Decomposition of acetic acid in water was conducted using multiple plasmas generated within oxygen bubbles. Ballast capacitors were used to control the plasma input power, allowing hydrogen peroxide and ozone to be produced at different rates in each plasma by adjusting the capacitance. By using an ozone absorber connected to the plasma reactor, OH radicals, both generated by the plasmas directly and reproduced from hydrogen peroxide through reactions with ozone, could be effectively utilized for the reduction of total organic carbon (TOC). Under the condition with the highest ozone production rate, higher processing speed and energy efficiency for the TOC reduction were achieved compared with other plasma methods.

  8. Kinetics of low pressure CVD growth of SiO2 on InP and Si

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.

    1988-01-01

    The kinetics of low pressure CVD growth of SiO2 from SiH4 and O2 has been investigated for the case of an indirect (remote) plasma process. Homogeneous (gas phase) and heterogeneous operating ranges have been experimentally identified. The process was shown to be consistent within the heterogeneous surface-reaction dominated range of operation. A kinetic rate equation is given for growth at 14 W RF power input and 400 mtorr total pressure on both InP and Si substrates. The process exhibits an activation energy of 8.4 + or - 0.6 kcal/mol.

  9. Energy and air emissions embodied in China-U.S. trade: eastbound assessment using adjusted bilateral trade data.

    PubMed

    Xu, Ming; Allenby, Braden; Chen, Weiqiang

    2009-05-01

    It is critical to understand environmental impacts embodied in the bilateral trade between China and the United States, given the political, economic, and geographical importance of the two countries and the fact that few studies have investigated this before. This article studies the environmental impacts, particularly energy consumption and air emissions, embodied in the eastbound (from China to the U.S.) trade from 2002 to 2007 using an environmental input-output analysis technique and the adjusted bilateral trade data. In general,trade volume increased until the panic of 2008, and shifting trade patterns cause fluctuating embodied energy and air emissions in trade in China. Results show that embodied energy ranges from 7 to 11 exajoule (EJ) and takes about 12-17% of China's energy consumption. Embodied CO2 ranges between 400 and 800 Mt and represents about 8-12% of China's CO2 emissions. SO2 and NOx embodied in the eastbound trade generally grow over this period, from 4.2 to 6.3 Mt and from 1.4 to 2.9 Mt and account for 10-15% and 8-12% of China's total emissions, respectively.

  10. Impact of parametric uncertainty on estimation of the energy deposition into an irradiated brain tumor

    NASA Astrophysics Data System (ADS)

    Taverniers, Søren; Tartakovsky, Daniel M.

    2017-11-01

    Predictions of the total energy deposited into a brain tumor through X-ray irradiation are notoriously error-prone. We investigate how this predictive uncertainty is affected by uncertainty in both the location of the region occupied by a dose-enhancing iodinated contrast agent and the agent's concentration. This is done within the probabilistic framework in which these uncertain parameters are modeled as random variables. We employ the stochastic collocation (SC) method to estimate statistical moments of the deposited energy in terms of statistical moments of the random inputs, and the global sensitivity analysis (GSA) to quantify the relative importance of uncertainty in these parameters on the overall predictive uncertainty. A nonlinear radiation-diffusion equation dramatically magnifies the coefficient of variation of the uncertain parameters, yielding a large coefficient of variation for the predicted energy deposition. This demonstrates that accurate prediction of the energy deposition requires a proper treatment of even small parametric uncertainty. Our analysis also reveals that SC outperforms standard Monte Carlo, but its relative efficiency decreases as the number of uncertain parameters increases from one to three. A robust GSA ameliorates this problem by reducing this number.

  11. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  12. Activation energy and energy density: a bioenergetic framework for assessing soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Plante, A. F.

    2017-12-01

    The stability and cycling of natural organic matter depends on the input of energy needed to decompose it and the net energy gained from its decomposition. In soils, this relationship is complicated by microbial enzymatic activity which decreases the activation energies associated with soil organic matter (SOM) decomposition and by chemical and physical protection mechanisms which decreases the concentrations of the available organic matter substrate and also require additional energies to overcome for decomposition. In this study, we utilize differential scanning calorimetry and evolved CO2 gas analysis to characterize differences in the energetics (activation energy and energy density) in soils that have undergone degradation in natural (bare fallow), field (changes in land-use), chemical (acid hydrolysis), and laboratory (high temperature incubation) experimental conditions. We will present this data in a novel conceptual framework relating these energy dynamics to organic matter inputs, decomposition, and molecular complexity.

  13. Transformation between divacancy defects induced by an energy pulse in graphene.

    PubMed

    Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn

    2016-07-08

    The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.

  14. Late Quaternary environmental changes inferred from n-alkane evidence in coastal area of southern Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Mengyuan; Zheng, Zhuo

    2016-04-01

    The studied core was a coastal core in Hainan Island, China. It is in length of 49.01m and divided into four Units (MIS 1~MIS 6) according to lithology description. The Optically Stimulated Luminescence (OSL) attributes the sediments from Unit 3 to the Oxygen Isotope Stage of MIS 5e (Unit 3b and 3c) and 5d (Unit 3a). To interpret the origination of organic carbons and to reconstruct paleovegetation changes, n-alkane, δ13C and TOC have been used in the present research. The result of n-alkanes distribution indicates a series of changes of sedimentary environment and terrestrial input. The shallow water facies at Unit 2, 3a and 4 is mainly characterized by short carbon chain n-alkanes and relatively low concentration. Contrasting with that of deep-water marine facies of MIS 5e (Unit 3b), the n-alkane pattern is typical bimodal and the main peaks are both in short and long carbon chains. During Unit 3b-1 (MIS 5e), more terrestrial original n-alkanes contribute to the concentration of TOC than oceanic. Organic matter source is mainly terrestrial origination. Total organic matter input mechanism of TLG-01 correlates with sediment grain size (average grain size). Total organic carbon input is enhanced with the increasing of fine grain size component. The variation of CPI (25-33) value in this study correlates with hydrological energy. The highest CPI (25-33) value is shown in the high sea level period of MIS 5e, comparing with that in MIS 5d and MIS 1. High CPI value corresponds to high TOC and average grain size (Φ) value. In the weak hydrological energy sedimentary environment, more terrestrial organic matter, together with TOC, deposit in the study area. ACL (25-33) index display higher values in the interglacial period (MIS 5 and MIS 1) than MIS 3 (sediments weathered during MIS 2) and MIS 6. Paq proxy, together with δ13C, estimates the mangrove growing depth in MIS 5e. The correlation between δ13C and each carbon chain alkane state stabilize and turbulence of sedimentary environment in MIS 5e. Sediments deposit in stable weak hydrological energy environment show order and grouped alkanes distribution (Unit 3b-2). High and positive correlation coefficients of δ13C and each carbon chain alkane show the dominant alkanes contributed to organic carbon (δ13C).

  15. Program document for Energy Systems Optimization Program 2 (ESOP2). Volume 1: Engineering manual

    NASA Technical Reports Server (NTRS)

    Hamil, R. G.; Ferden, S. L.

    1977-01-01

    The Energy Systems Optimization Program, which is used to provide analyses of Modular Integrated Utility Systems (MIUS), is discussed. Modifications to the input format to allow modular inputs in specified blocks of data are described. An optimization feature which enables the program to search automatically for the minimum value of one parameter while varying the value of other parameters is reported. New program option flags for prime mover analyses and solar energy for space heating and domestic hot water are also covered.

  16. Free Energy and Heat Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurata, Masaki; Devanathan, Ramaswami

    2015-10-13

    Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuel fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed.

  17. Sustainable agricultural practices: energy inputs and outputs, pesticide, fertilizer and greenhouse gas management.

    PubMed

    Wang, Yue-Wen

    2009-01-01

    The food security issue was addressed by the development of "modern agriculture" in the last century. But food safety issues and environment degradation were the consequences suffered as a result. Climate change has been recognized as the result of release of stored energy in fossil fuel into the atmosphere. Homogeneous crop varieties, machinery, pesticides and fertilizers are the foundation of uniform commodities in modern agriculture. Fossil fuels are used to manufacture fertilizers and pesticides as well as the energy source for agricultural machinery, thus characterizes modern agriculture. Bio-fuel production and the possibility of the agriculture system as a form of energy input are discussed.

  18. Efficient transformer for electromagnetic waves

    DOEpatents

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  19. Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Pourmand, Seyed Ebrahim; Sidi Ahmad, Muhamad Fakaruddin; Khrisnan, Ganesan; Mohd Taib, Nur Athirah; Nadia Adnan, Nurul; Bakhtiar, Hazri

    2013-02-01

    The influence of temperature and pumping energy on stimulated emission cross section and the laser output of quasi-three level laser transition are reported. Flashlamp is used to pump Nd:YAG laser rod. Distilled water is mixed with ethylene glycol to vary the temperature of the cooling system between -30 and 60 °C. The capacitor voltage of flashlamp driver is verified to manipulate the input energy within the range of 10-70 J. The line of interest in quasi-three level laser comprised of 938.5 and 946 nm. The stimulated emission cross section of both lines is found to be inversely proportional to the temperature but directly proportional to the input energy. This is attributed from thermal broadening effect. The changes of stimulated emission cross section and the output laser with respect to the temperature and input energy on line 946 nm are realized to be more dominant in comparison to 938.5 nm.

  20. Meeting the challenge of food and energy security.

    PubMed

    Karp, Angela; Richter, Goetz M

    2011-06-01

    Growing crops for bioenergy or biofuels is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. Focussing on the question of food or fuel is thus not helpful. The bigger, more pertinent, challenge is how the increasing demands for food and energy can be met in the future, particularly when water and land availability will be limited. Energy crop production systems differ greatly in environmental impact. The use of high-input food crops for liquid transport fuels (first-generation biofuels) needs to be phased out and replaced by the use of crop residues and low-input perennial crops (second/advanced-generation biofuels) with multiple environmental benefits. More research effort is needed to improve yields of biomass crops grown on lower grade land, and maximum value should be extracted through the exploitation of co-products and integrated biorefinery systems. Policy must continually emphasize the changes needed and tie incentives to improved greenhous gas reduction and environmental performance of biofuels.

  1. Major sources of nitrogen input and loss in the upper Snake River basin, Idaho and western Wyoming, 1990

    USGS Publications Warehouse

    Rupert, Michael

    1996-01-01

    A mass balance of total nitrogen input and loss in Gooding, Jerome, Lincoln, and Twin Falls Counties suggests that more than 6,000,000 kg (6,600 tons) of total nitrogen is input in this four-county area than is discharged by the Snake River. This excess nitrogen probably is utilized by aquatic vegetation in the Snake River (causing eutrophication), stored as nitrogen in soil, stored as nitrate in the ground water and eventually discharged through the springs, utilized by noncrop vegetation, and lost through denitrification.

  2. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is comparedmore » to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.« less

  3. From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy.

    PubMed

    Amthor, Jeffrey S

    2010-12-01

    The relationship between solar radiation capture and potential plant growth is of theoretical and practical importance. The key processes constraining the transduction of solar radiation into phyto-energy (i.e. free energy in phytomass) were reviewed to estimate potential solar-energy-use efficiency. Specifically, the out-put:input stoichiometries of photosynthesis and photorespiration in C(3) and C(4) systems, mobilization and translocation of photosynthate, and biosynthesis of major plant biochemical constituents were evaluated. The maintenance requirement, an area of important uncertainty, was also considered. For a hypothetical C(3) grain crop with a full canopy at 30°C and 350 ppm atmospheric [CO(2) ], theoretically potential efficiencies (based on extant plant metabolic reactions and pathways) were estimated at c. 0.041 J J(-1) incident total solar radiation, and c. 0.092 J J(-1) absorbed photosynthetically active radiation (PAR). At 20°C, the calculated potential efficiencies increased to 0.053 and 0.118 J J(-1) (incident total radiation and absorbed PAR, respectively). Estimates for a hypothetical C(4) cereal were c. 0.051 and c. 0.114 J J(-1), respectively. These values, which cannot be considered as precise, are less than some previous estimates, and the reasons for the differences are considered. Field-based data indicate that exceptional crops may attain a significant fraction of potential efficiency. © The Author (2010). Journal compilation © New Phytologist Trust (2010).

  4. Uncertainty analysis of the simulations of effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota

    USGS Publications Warehouse

    Wesolowski, Edwin A.

    1996-01-01

    Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.

  5. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    USGS Publications Warehouse

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent of the orthophosphate budget. We identified several data gaps and areas for future research, which include the need for better understanding nutrient inputs to the lake from sediment resuspension and better quantification of indirect nutrient inputs to the lake from Salmon Creek.

  6. Three essays in energy consumption: Time series analyses

    NASA Astrophysics Data System (ADS)

    Ahn, Hee Bai

    1997-10-01

    Firstly, this dissertation investigates that which demand specification is an appropriate model for long-run energy demand between the conventional demand specification and the limited demand specification. In order to determine the components of a stable long-run demand for different sectors of the energy industry, I perform cointegration tests by using the Johansen test procedure. First, I test the conventional demand specification including prices and income as components. Second, I test a limited demand specification only income as a component. The reason for performing these tests is that we can determine that which demand specification is a good long-run predictor of energy consumption between the two demand specifications by using the cointegration tests. Secondly, for the purpose of planning and forecasting energy demand in case of cointegrated system, long-run elasticities are of particular interest. To retrieve the optimal level of energy demand in case of price shock, we need long-run elasticities rather than short-run elasticities. The energy demand study provides valuable information to the energy policy makers who are concerned about the long-run impact of taxes and tariffs. A long-run price elasticity is a primary barometer of the substitution effect between energy and non-energy inputs and long-run income elasticity is an important factor since we can measure the energy demand growing slowly or fast than in the past depending on the magnitude of long-run elasticity. The one other problem in estimating the total energy demand is that there exists an aggregation bias stemming from the process of summation in four different energy types for the total aggregation prices and total aggregation energy consumption. In order to measure the aggregation bias between the Btu aggregation method and the Divisia Index method, i.e., which methodology has less aggregation bias in the long-run, I compare the two estimation results with calculated results estimated on a disaggregated basis. Thus, we can confirm whether or not the theoretically superior methodology has less aggregation bias in empirical estimation. Thirdly, I investigate the causal relationships between energy use and GDP. In order to detect causal relationships both in the long-run and in the short-run, the VECM (Vector Error Correction Model) can be used if there exists cointegration relationships among the variables. I detect the causal effects between energy use and GDP by estimating the VECM based on the multivariate production function including the labor and capital variables.

  7. An exergy approach to efficiency evaluation of desalination

    NASA Astrophysics Data System (ADS)

    Ng, Kim Choon; Shahzad, Muhammad Wakil; Son, Hyuk Soo; Hamed, Osman A.

    2017-05-01

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  8. Energetics of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1980-01-01

    The approximate magnitudes of several power inputs and energies associated with the Earth's magnetosphere will be derived. They include: Solar wind power impinging on the dayside magnetopause approximately 1.4 10 to the 13th power watt; power input to cross tail current approximately 3 10 to the 11th power watt; energy of moderate magnetic storm approximately 2 10 to the 15th power joule; power related to the flow of j approximately 1 to 3 10 to the 11th power watt; average power deposited by the aurora approximately 2 10 to the 10th power watt. Stored magnetic energy: released in a substorm approximately 1.5 10 to the 14th power joule. Compared to the above, the rate at which energy is released locally in magnetospheric regions where magnetic merging occurs is probably small. Merging is essential, however, for the existence of open field lines, which provide the most likely explanation for some major energy inputs listed here. Merging is also required if part of the open flux of the tail lobes is converted into closed flux, as seems to happen during substorms. Again, most of the energy release becomes evident only beyond the merging region, though some particles may gain appreciable energy in that region itself, if the plasma sheet is completely squeezed out and the high latitude lobes interact directly.

  9. User's manual: Computer-aided design programs for inductor-energy-storage dc-to-dc electronic power converters

    NASA Technical Reports Server (NTRS)

    Huffman, S.

    1977-01-01

    Detailed instructions on the use of two computer-aided-design programs for designing the energy storage inductor for single winding and two winding dc to dc converters are provided. Step by step procedures are given to illustrate the formatting of user input data. The procedures are illustrated by eight sample design problems which include the user input and the computer program output.

  10. Impact of high-latitude energy input on the mid- and low-latitude ionosphere and thermosphere

    NASA Astrophysics Data System (ADS)

    Lu, G.; Sheng, C.

    2017-12-01

    High-latitude energy input has a profound impact on the ionosphere and thermosphere especially during geomagnetic storms. Intense auroral particle precipitation ionizes neutral gases and modifies ionospheric conductivity; collisions between neutrals and fast-moving ions accelerate the neutral winds and produce Joule frictional heating; and the excess Joule and particle heating causes atmospheric upwelling and changes neutral composition due to the rising of the heavier, molecular-rich air. In addition, impulsive Joule heating launches large-scale gravity waves that propagate equatorward toward middle and low latitudes and even into the opposite hemisphere, altering the mean global circulation of the thermosphere. Furthermore, high-latitude electric field can also directly penetrate to lower latitudes under rapidly changing external conditions, causing prompt ionospheric variations in the mid- and low-latitude regions. To study the effects of high-latitude energy input, we apply the different convection and auroral precipitation patterns based on both empirical models and the AMIE outputs. We investigate how the mid- and low-latitude regions respond to the different specifications of high-latitude energy input. The main purpose of the study is to delineate the various dynamical, electrodynamical, and chemical processes and to determine their relative importance in the resulting ionospheric and thermospheric properties at mid and low latitudes.

  11. Treatment of industrial exhaust gases by a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Hołub, Marcin; Jõgi, Indrek; Sikk, Martin

    2016-08-01

    Volatile organic compounds (VOCs) in industrial exhaust gases were treated by a dielectric barrier discharge (DBD) operated with two different mobile power supplies. Together with the plasma source various gas diagnostics were used, namely fourier transform infrared (FTIR) spectroscopy, flame ionization detector (FID) and GC-MS. The analysis revealed that some exhaust gases consist of a rather complex mixture of hydrocarbons and inorganic compounds and also vary in pollutants concentration and flow rate. Thus, analysis of removal efficiencies and byproduct concentrations is more demanding than under laboratory conditions. This contribution presents the experimental apparatus used under the harsh conditions of industrial exhaust systems as well as the mobile power source used. Selected results obtained in a shale oil processing plant, a polymer concrete production facility and a yacht hull factory are discussed. In the case of total volatile organic compounds in oil processing units, up to 60% were removed at input energy of 21-37 J/L when the concentrations were below 500 mg/m3. In the yacht hull factory up to 74% of styrene and methanol were removed at specific input energies around 300 J/L. In the polymer concrete production site 195 ppm of styrene were decomposed with the consumption of 1.8 kJ/L. These results demonstrate the feasibility of plasma assisted methods for treatment of VOCs in the investigated production processes but additional analysis is needed to improve the energy efficiency. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  12. LCA and emergy accounting of aquaculture systems: towards ecological intensification.

    PubMed

    Wilfart, Aurélie; Prudhomme, Jehane; Blancheton, Jean-Paul; Aubin, Joël

    2013-05-30

    An integrated approach is required to optimise fish farming systems by maximising output while minimising their negative environmental impacts. We developed a holistic approach to assess the environmental performances by combining two methods based on energetic and physical flow analysis. Life Cycle Assessment (LCA) is a normalised method that estimates resource use and potential impacts throughout a product's life cycle. Emergy Accounting (EA) refers the amount of energy directly or indirectly required by a product or a service. The combination of these two methods was used to evaluate the environmental impacts of three contrasting fish-farming systems: a farm producing salmon in a recirculating system (RSF), a semi-extensive polyculture pond (PF1) and an extensive polyculture pond (PF2). The RSF system, with a low feed-conversion ratio (FCR = 0.95), had lower environmental impacts per tonne of live fish produced than did the two pond farms, when the effects on climate change, acidification, total cumulative energy demand, land competition and water dependence were considered. However, RSF was clearly disconnected from the surrounding environment and depended highly on external resources (e.g. nutrients, energy). Ponds adequately incorporated renewable natural resources but had higher environmental impacts due to incomplete use of external inputs. This study highlighted key factors necessary for the successful ecological intensification of fish farming, i.e., minimise external inputs, lower the FCR, and increase the use of renewable resources from the surrounding environment. The combination of LCA and EA seems to be a practical approach to address the complexity of optimising biophysical efficiency in aquaculture systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. High Latitude Precipitating Energy Flux and Joule Heating During Geomagnetic Storms Determined from AMPERE Field-aligned Currents

    NASA Astrophysics Data System (ADS)

    Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.

    2016-12-01

    A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.

  14. Energy and mass balance in the three-phase interstellar medium

    NASA Technical Reports Server (NTRS)

    Wang, Zhong; Cowie, Lennox L.

    1988-01-01

    Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.

  15. Uranium plasma emission at gas-core reaction conditions

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.

    1976-01-01

    The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.

  16. Joining sheet aluminum AA6061-T4 to cast magnesium AM60B by vaporizing foil actuator welding: Input energy, interface, and strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bert; Vivek, Anupam; Daehn, Glenn S.

    Dissimilar joining of sheet aluminum AA6061-T4 to cast magnesium AM60B was achieved by vaporizing foil actuator welding (VFAW). Three input energy levels were used (6, 8, and 10 kJ), and as a trend, higher input energies resulted in progressively higher flyer velocities, more pronounced interfacial wavy features, larger weld zones, higher peel strengths, and higher peel energies. In all cases, weld cross section revealed a soundly bonded interface characterized by well-developed wavy features and lack of voids and continuous layers of intermetallic compounds (IMCs). At 10 kJ input energy, flyer speed of 820 m/s, peel strength of 22.4 N/mm, andmore » peel energy of 5.2 J were obtained. In lap-shear, failure occurred in AA6061- T4 flyer at 97% of the base material’s peak tensile load. Peel samples failed along the weld interface, and the AM60B-side of the fracture surface showed thin, evenly-spaced lines of Al residuals which had been torn out of the base AA6061-T4 in a ductile fashion and transferred over to the AM60B side, indicating very strong AA6061-T4/AM60B bond in these areas. Furthermore, this work demonstrates VFAW’s capability in joining dissimilar lightweight metals such as Al/Mg, which is expected to be a great enabler in the ongoing push for vehicle weight reduction.« less

  17. Ring current-energy balance during intense magnetic storms

    NASA Astrophysics Data System (ADS)

    Clua de Gonzalez, A. L.; Gonzalez, W. D.

    2013-12-01

    The energy-rate balance that governs the storm-time ring current is analyzed in terms of the Burton-McPherron-Russell equation (Burton et al., 1975). This is a first order differential equation relating the time variation of the pressure corrected Dst index, with the energy input to the magnetosphere. Based on the Burton et al. equation, we have analyzed in detail the geomagnetic storm of February 11, 2004. The energy input is taken proportional to the interplanetary electric field, Q(t) = αBsV, where Bs is the southward component of the interplanetary magnetic field in GSM coordinates, V is the flow speed of the solar wind and α a constant. The equation is integrated using the OMNI-combined interplanetary data and, the value of the decay time is estimated from a best fit of the response to the observed curve. For this storm we also use a rectangular approximation for the energy input function, thus allowing an analytical solution of the Burton et al. equation. The results from this approximation are then compared to the numerical solution. The study is also extended to the geomagnetic storm of April 22, 2001. This analysis seems to indicate that the Burton et al. equation should contain also a corrective term proportional to the second time derivative of the Dst index. This corrective term might become important for intense storms, with an effect of counteracting the growth of |Dst| before the energy input from the interplanetary medium declines, such that the value of |Dst| starts to decrease instead of continuing to grow.

  18. Joining sheet aluminum AA6061-T4 to cast magnesium AM60B by vaporizing foil actuator welding: Input energy, interface, and strength

    DOE PAGES

    Liu, Bert; Vivek, Anupam; Daehn, Glenn S.

    2017-09-19

    Dissimilar joining of sheet aluminum AA6061-T4 to cast magnesium AM60B was achieved by vaporizing foil actuator welding (VFAW). Three input energy levels were used (6, 8, and 10 kJ), and as a trend, higher input energies resulted in progressively higher flyer velocities, more pronounced interfacial wavy features, larger weld zones, higher peel strengths, and higher peel energies. In all cases, weld cross section revealed a soundly bonded interface characterized by well-developed wavy features and lack of voids and continuous layers of intermetallic compounds (IMCs). At 10 kJ input energy, flyer speed of 820 m/s, peel strength of 22.4 N/mm, andmore » peel energy of 5.2 J were obtained. In lap-shear, failure occurred in AA6061- T4 flyer at 97% of the base material’s peak tensile load. Peel samples failed along the weld interface, and the AM60B-side of the fracture surface showed thin, evenly-spaced lines of Al residuals which had been torn out of the base AA6061-T4 in a ductile fashion and transferred over to the AM60B side, indicating very strong AA6061-T4/AM60B bond in these areas. Furthermore, this work demonstrates VFAW’s capability in joining dissimilar lightweight metals such as Al/Mg, which is expected to be a great enabler in the ongoing push for vehicle weight reduction.« less

  19. The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study

    PubMed Central

    Brockett, Claire L; Abdelgaied, Abdellatif; Haythornthwaite, Tony; Hardaker, Catherine; Fisher, John; Jennings, Louise M

    2016-01-01

    Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation. PMID:27160561

  20. An extended environmental input-output lifecycle assessment model to study the urban food-energy-water nexus

    NASA Astrophysics Data System (ADS)

    Sherwood, John; Clabeaux, Raeanne; Carbajales-Dale, Michael

    2017-10-01

    We developed a physically-based environmental account of US food production systems and integrated these data into the environmental-input-output life cycle assessment (EIO-LCA) model. The extended model was used to characterize the food, energy, and water (FEW) intensities of every US economic sector. The model was then applied to every Bureau of Economic Analysis metropolitan statistical area (MSA) to determine their FEW usages. The extended EIO-LCA model can determine the water resource use (kGal), energy resource use (TJ), and food resource use in units of mass (kg) or energy content (kcal) of any economic activity within the United States. We analyzed every economic sector to determine its FEW intensities per dollar of economic output. This data was applied to each of the 382 MSAs to determine their total and per dollar of GDP FEW usages by allocating MSA economic production to the corresponding FEW intensities of US economic sectors. Additionally, a longitudinal study was performed for the Los Angeles-Long Beach-Anaheim, CA, metropolitan statistical area to examine trends from this singular MSA and compare it to the overall results. Results show a strong correlation between GDP and energy use, and between food and water use across MSAs. There is also a correlation between GDP and greenhouse gas emissions. The longitudinal study indicates that these correlations can shift alongside a shifting industrial composition. Comparing MSAs on a per GDP basis reveals that central and southern California tend to be more resource intensive than many other parts of the country, while much of Florida has abnormally low resource requirements. Results of this study enable a more complete understanding of food, energy, and water as key ingredients to a functioning economy. With the addition of the food data to the EIO-LCA framework, researchers will be able to better study the food-energy-water nexus and gain insight into how these three vital resources are interconnected. Applying this extended model to MSAs has demonstrated that all three resources are important to a MSA’s vitality, though the exact proportion of each resource may differ across urban areas.

  1. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, A.; Eden, C.; von Storch, J.

    2012-12-01

    Coexistence of stable stratification, the meridional overturning circulation and meso-scale eddies and their influence on the ocean's circulation still raise complex questions concerning the ocean energetics. Oceanic general circulation is mainly forced by the wind field and deep water tides. Its essential energetics are the conversion of kinetic energy of the winds and tides into oceanic potential and kinetic energy. Energy needed for the circulation is bound to internal wave fields. Direct internal wave generation by the wind at the sea surface is one of the sources of this energy. Previous studies using mixed-layer type of models and low frequency wind forcings (six-hourly and daily) left room for improvement. Using mixed-layer models it is not possible to assess the distribution of near-inertial energy into the deep ocean. Also, coarse temporal resolution of wind forcing strongly underestimates the near-inertial wave energy. To overcome this difficulty we use a high resolution ocean model with high frequency wind forcings. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal (250km versus 40km) and temporal resolution (six versus one-hourly). In our study we answer the following questions: How big is the wind kinetic energy input to the near-inertial waves? Is the kinetic energy of the near-inertial waves enhanced when high-frequency wind forcings are used? If so, by how much and why, due to higher level of temporal wind variability or due to better spatial representation of the near-inertial waves? How big is the total power of near-inertial waves generated by the wind at the surface of the ocean? We run the model for one year. Our model results show that the near-inertial waves are excited both using wind forcings of high and low horizontal and temporal resolution. Near-inertial energy is almost two times higher when we force the model with high frequency wind forcings. The influence on the energy mostly depends on the time difference between two forcing fields while the spatial difference has little influence.

  2. Many small consumers, one growing problem: Achieving energy savings for electronic equipment operating in low power modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Christopher T.; Meier, Alan K.

    2004-08-24

    An increasing amount of electricity is used by equipment that is neither fully ''on'' nor fully ''off.'' We call these equipment states low power modes, or ''lopomos.'' ''Standby'' and ''sleep'' are the most familiar lopomos, but some new products already have many modes. Lopomos are becoming common in household appliances, safety equipment, and miscellaneous products. Ross and Meier (2000) reports that several international studies have found standby power to be as much as 10 percent of residential energy consumption. Lopomo energy consumption is likely to continue growing rapidly as products with lopomos that use significant amounts of energy penetrate themore » market. Other sectors such as commercial buildings and industry also have lopomo energy use, perhaps totaling more in aggregate than that of households, but no comprehensive measurements have been made. In this paper, we propose a research agenda for study of lopomo energy consumption. This agenda has been developed with input from over 200 interested parties. Overall, there is consensus that lopomo energy consumption is an important area for research. Many see this as a critical time for addressing lopomo issues. As equipment designs move from the binary ''on/off'' paradigm to one that encompasses multiple power modes, there is a unique opportunity to address the issue of low power mode energy consumption while technology development paths are still flexible.« less

  3. Impact of energy taxation on economy, environmental and public health quality.

    PubMed

    Wang, Baoqing; Liu, Bowei; Niu, Honghong; Liu, Jianfeng; Yao, Shu

    2018-01-15

    This paper argues computable general equilibrium model and assess impact of energy taxation on economy, environmental and public health quality in Tianjin. In order to investigate different energy taxation based on medical cost and labor loss, the computable general equilibrium model integrating with input-output table and social accounting matrix (SAM) was constructed. The medical expense caused by air pollution of Tianjin in 2007 is 396 million yuan and death for 18104 people, which accounted for the total GDP and population 0.754‰ and 1.6‰, respectively. The results show that the enery taxes levy can improve the GDP, but it is only slightly. The energy taxes have adverse impact on energy sector because that the energy cost is increased. The scale of production is reduced, and the capital and labor resources are transferred to low energy consumption low emissions sector. The energy tax levy can reduce air pollutants concentration and improve air environmental quality. The PM 10 , SO 2 and NO 2 concentration in the energy taxes 5%-30% was reduced by 0.24%-0.24%, 0.09-0.52% and 0.29%-0.52% respectively. The medical expense has little impact on GDP, but labor loss has a certain effect on GDP. For higher energy taxes rate, the health effects on GDP can reach 0.06%-0.16%. This simultaneous economic and environmental improvement and health effect would thus have positive implications regarding energy taxes of the country. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Triboelectric generators and sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhong Lin; Wang, Sihong; Zhu, Guang

    2017-10-17

    A triboelectric power system includes a triboelectric generator, a rechargeable energy storage unit and a power management circuit. The rechargeable energy storage unit is associated to the triboelectric generator. The power management circuit is configured to receive an input current from the triboelectric generator and to deliver an output current corresponding to the input current to the rechargeable battery so that the output current has a current direction and a voltage that will recharge the rechargeable battery.

  5. An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Chase, Clement G.

    1990-01-01

    An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.

  6. Nanophotonics-enabled solar membrane distillation for off-grid water purification.

    PubMed

    Dongare, Pratiksha D; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R; Hogan, Nathaniel J; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J

    2017-07-03

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination.

  7. Nanophotonics-enabled solar membrane distillation for off-grid water purification

    PubMed Central

    Dongare, Pratiksha D.; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R.; Hogan, Nathaniel J.; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J.

    2017-01-01

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination. PMID:28630307

  8. Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance.

    PubMed

    Banks, Charles J; Chesshire, Michael; Heaven, Sonia; Arnold, Rebecca

    2011-01-01

    An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne(-1) VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne(-1). This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Energy balance in rainfed herbaceous crops in a semiarid environment for a 15-year experiment. 1. Impact of farming systems

    NASA Astrophysics Data System (ADS)

    Moreno, M. M.; Moreno, C.; Lacasta, C.; Tarquis, A. M.; Meco, R.

    2012-04-01

    During the last years, agricultural practices have led to increase yields by means of the massive consumption on non-renewable fossil energy. However, the viability of a production system does not depend solely on crop yield, but also on its efficiency in the use of available resources. This work is part of a larger study assessing the effects of three farming systems (conventional, conservation with zero tillage, and organic) and four barley-based crop rotations (barley monoculture and in rotation with vetch, sunflower and fallow) on the energy balance of crop production under the semi-arid conditions over a 15 year period. However, the present work is focused on the farming system effect, so crop rotations and years are averaged. Experiments were conducted at "La Higueruela" Experimental Farm (4°26' W, 40°04' N, altitude 450 m) (Spanish National Research Council, Santa Olalla, Toledo, central Spain). The climate is semi-arid Mediterranean, with an average seasonal rainfall of 480 mm irregularly distributed and a 4-month summer drought period. Conventional farming included the use of moldboard plow for tillage, chemical fertilizers and herbicides. Conservation farming was developed with zero tillage, direct sowing and chemical fertilizers and herbicides. Organic farming included the use of cultivator and no chemical fertilizers or herbicides. The energy balance method used required the identification and quantification of all the inputs and outputs implied, and the conversion to energy values by corresponding coefficients. The parameters considered were (i) energy inputs (EI) (diesel, machines, fertilizers, herbicides, seeds) (ii) energy outputs (EO) (energy in the harvested biomass), (iii) net energy produced (NE) (EI - EO), (iv) the energy output/input ratio (O/I), and (v) energy productivity (EP) (Crop yield/EI). EI was 3.0 and 3.5 times higher in conservation (10.4 GJ ha-1 year-1) and conventional (11.7 GJ ha-1 year-1) than in organic farming (3.41 GJ ha-1 year-1). The difference between conservation and conventional systems was as result of the greater use of machinery and, consequently, of fuel in conventional, though the use of herbicides was slightly lower. In both systems, fertilizer was the most important energy input. EO was lower for organic (17.9 GJ ha-1 year-1) than for either conventional or conservation systems (25.7 and 23.4 GJ ha-1 year-1, respectively), a result of the lower barley grain and vetch hay yields. The highest NE was obtained in organic (14.5 GJ ha-1 year-1), and the lowest in conservation (13.0 GJ ha-1 year-1). In relation to O/I, organic farming were about 2.3 times more energetically efficient (5.36) than either the conventional or conservation systems (about 2.35). EP ranged from 400 kg GJ-1 in organic to 177 kg GJ-1 in conventional. No differences in all the energy variables considered were recorded between the conventional and conservation managements. As conclusions and in terms of energy efficiency, farming systems requiring agrochemicals in semi-arid Mediterranean conditions, whether conventional or conservation, appeared to be little efficient. Chemical fertilizer was the most important energy input in these two systems, but their use did not lead to an equivalent increase in yield because of the irregular distribution in many years. Organic farming would improve the energy efficiency in these environmental conditions, offering a sustainable production with minimal inputs.

  10. The effects of particle swarm optimization algorithm on volume ignition gain of Proton-Lithium (7) pellets

    NASA Astrophysics Data System (ADS)

    Livari, As. Ali; Malekynia, B.; Livari, Ak. A.; Khoda-Bakhsh, R.

    2017-11-01

    When it was found out that the ignition of nuclear fusion hinges upon input energy laser, the efforts in order to make giant lasers began, and energy gains of DT fuel were obtained. But due to the neutrons generation and emitted radioactivity from DT reaction, gains of fuels like Proton-Lithium (7) were also adverted. Therefore, making larger and powerful lasers was followed. Here, using new versions of particle swarm optimization algorithm, it will be shown that available maximum gain of Proton-Lithium (7) is reached only at energies about 1014 J, and not only the highest input energy is not helpful but the efficiency is also decreased.

  11. Machine learning prediction for classification of outcomes in local minimisation

    NASA Astrophysics Data System (ADS)

    Das, Ritankar; Wales, David J.

    2017-01-01

    Machine learning schemes are employed to predict which local minimum will result from local energy minimisation of random starting configurations for a triatomic cluster. The input data consists of structural information at one or more of the configurations in optimisation sequences that converge to one of four distinct local minima. The ability to make reliable predictions, in terms of the energy or other properties of interest, could save significant computational resources in sampling procedures that involve systematic geometry optimisation. Results are compared for two energy minimisation schemes, and for neural network and quadratic functions of the inputs.

  12. The importance of carbon footprint estimation boundaries.

    PubMed

    Matthews, H Scott; Hendrickson, Chris T; Weber, Christopher L

    2008-08-15

    Because of increasing concern about global climate change and carbon emissions as a causal factor, many companies and organizations are pursuing "carbon footprint" projects to estimate their own contributions to global climate change. Protocol definitions from carbon registries help organizations analyze their footprints. The scope of these protocols varies but generally suggests estimating only direct emissions and emissions from purchased energy, with less focus on supply chain emissions. In contrast approaches based on comprehensive environmental life-cycle assessment methods are available to track total emissions across the entire supply chain, and experience suggests that following narrowly defined estimation protocols will generally lead to large underestimates of carbon emissions for providing products and services. Direct emissions from an industry are, on average, only 14% of the total supply chain carbon emissions (often called Tier 1 emissions), and direct emissions plus industry energy inputs are, on average, only 26% of the total supply chain emissions (often called Tier 1 and 2 emissions). Without a full knowledge of their footprints, firms will be unable to pursue the most cost-effective carbon mitigation strategies. We suggest that firms use the screening-level analysis described here to set the bounds of their footprinting strategy to ensure that they do not ignore large sources of environmental effects across their supply chains. Such information can help firms pursue carbon and environmental emission mitigation projects not only within their own plants but also across their supply chain.

  13. Coronal heating by stochastic magnetic pumping

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Uchida, Y.

    1980-01-01

    Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength.

  14. Analysis of energy recovery potential using innovative technologies of waste gasification.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2012-04-01

    In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The energy requirements of an aircraft triggered discharge

    NASA Astrophysics Data System (ADS)

    Bicknell, J. A.; Shelton, R. W.

    The corona produced at aircraft surfaces requires an energy input before the corona can develop into a high current discharge and, thus, a possible lightning stroke. This energy must be drawn from the space charge field of the thundercloud and, since this is of low density, the unique propagation characteristics of positive corona streamers may be important. Estimates of the energy made available by the propagation are compared with laboratory measurements of the minimum energy input required to trigger a breakdown. The comparison indicates a minimum streamer range for breakdown of several tens of meters. Also estimated is the energy released as a consequence of streamer-hydrometer interactions; this is shown to be significant so that breakdown could depend upon the precipitation rate within the cloud. Inhibiting streamer production may therefore provide an aircraft with a degree of corona protection.

  16. Integration and dynamics of a renewable regenerative hydrogen fuel cell system

    NASA Astrophysics Data System (ADS)

    Bergen, Alvin Peter

    2008-10-01

    This thesis explores the integration and dynamics of residential scale renewable-regenerative energy systems which employ hydrogen for energy buffering. The development of the Integrated Renewable Energy Experiment (IRENE) test-bed is presented. IRENE is a laboratory-scale distributed energy system with a modular structure which can be readily re-configured to test newly developed components for generic regenerative systems. Key aspects include renewable energy conversion, electrolysis, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability to accept dynamic inputs from and provide dynamic loads to real devices as well as from simulated energy sources/sinks. The integration issues encountered while developing IRENE and innovative solutions devised to overcome these barriers are discussed. Renewable energy systems that employ a regenerative approach to enable intermittent energy sources to service time varying loads rely on the efficient transfer of energy through the storage media. Experiments were conducted to evaluate the performance of the hydrogen energy buffer under a range of dynamic operating conditions. Results indicate that the operating characteristics of the electrolyser under transient conditions limit the production of hydrogen from excess renewable input power. These characteristics must be considered when designing or modeling a renewable-regenerative system. Strategies to mitigate performance degradation due to interruptions in the renewable power supply are discussed. Experiments were conducted to determine the response of the IRENE system to operating conditions that are representative of a residential scale, solar based, renewable-regenerative system. A control algorithm, employing bus voltage constraints and device current limitations, was developed to guide system operation. Results for a two week operating period that indicate that the system response is very dynamic but repeatable are presented. The overall system energy balance reveals that the energy input from the renewable source was sufficient to meet the demand load and generate a net surplus of hydrogen. The energy loss associated with the various system components as well as a breakdown of the unused renewable energy input is presented. In general, the research indicates that the technical challenges associated with hydrogen energy buffing can be overcome, but the round trip efficiency for the current technologies is low at only 22 percent.

  17. Mecanismes physiques et fondements theoriques de la recuperation d'energie micro-ondes ambiante pour les dispositifs sans fil a faible consommation

    NASA Astrophysics Data System (ADS)

    Petzl Lorenz, Carlos Henrique

    Powering low consumption and low duty cycle devices and circuits using Ambient Microwave Energy Harvesting (AMEH) has been the subject of several investigations in recent years. The interest for this research topic has been promoted mainly by various and new applications driven mainly by the Internet of things, Building Automation and new developments in devices for the Body Area Networks. A common characteristic among several of these applications is the need for a wireless source which does not require regular maintenance, and has a small size and low weight. Batteries are often too cumbersome and require a maintenance plan to recharge or replace them, which is not always possible. A new source of energy is thus necessary. Ambient energy harvesting is proposed as an alternative source of power to these low power consumption devices and circuits. This M.A.Sc. work is developed to explore the microwave ambient energy harvesting using diode rectifier circuits. A mathematical model is first developed to explain the mechanisms that contribute to the process of recovery of microwave energy in the range of power found in the ambient microwave energy harvesting applications. An evaluation of this model is made using simulation results and then measurements results from three prototypes developed under this M.A.Sc. program. The results show an excellent agreement between the three methods. The developed model includes losses in the parasitic components of the non-linear element used for the rectification of energy as well as the impedance matching network insertion losses. Based on this model, two possible ways of improving the efficiency of ambient microwave power rectifiers at the power levels found in the AMEH are explored. In this work, it is considered that the AMEH takes place within the range of powers with a peak value of -30 dBm, however at average power levels well below this threshold. First, a cooperative hybrid circuit of ambient energy harvesting is presented where collected microwave and mechanical energies are converted in a cooperative manner through a single nonlinear component. Theory, simulations and measurements show that the total power recovered by the proposed scheme can provide up to twice the efficiency of a circuit combining the output of two independent harvesters. Then, a work demonstrating for the first time that the limitations of a Schottky diode harvester can be overcome by using backward tunnel diodes is presented. It is shown that the limitation reached by the Schottky diodes half a century ago can be overcome thanks to a higher current responsivity obtained through tunneling transport. The measured power recovery efficiency was equal to 18.2% when a -30 dBm signal at 2.4 GHz was applied to the input of the microwave energy harvesting circuit. The efficiency of conversion for a similar circuit using Schottky diodes, which is presented in the first chapter together with the mathematical model, does not exceed 11% at the same input power level and similar frequency. On the date of publication of the articles presented in this thesis, the highest published microwave power conversion efficiency was close to 5% for input power levels equal to -30 dBm and frequency close to 2 GHz. Finally, an application of microwave power transfer is presented. A rectenna operating at 94 GHz is built and measured, an energy conversion efficiency equal to 37.7% was obtained for an input power equal to 3 dBm. This rectenna is proposed as an alternative power source for microrobots, which may not use batteries due to their small size and light weight.

  18. Associative memory model with spontaneous neural activity

    NASA Astrophysics Data System (ADS)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  19. Monitoring agricultural processing electrical energy use and efficiency

    USDA-ARS?s Scientific Manuscript database

    Energy costs have become proportionately larger as cotton post-harvest processing facilities have utilized other inputs more efficiently. A discrepancy in energy consumption per unit processed between facilities suggests that energy could be utilized more efficiently. Cotton gin facilities were in...

  20. Energy demand on dairy farms in Ireland.

    PubMed

    Upton, J; Humphreys, J; Groot Koerkamp, P W G; French, P; Dillon, P; De Boer, I J M

    2013-10-01

    Reducing electricity consumption in Irish milk production is a topical issue for 2 reasons. First, the introduction of a dynamic electricity pricing system, with peak and off-peak prices, will be a reality for 80% of electricity consumers by 2020. The proposed pricing schedule intends to discourage energy consumption during peak periods (i.e., when electricity demand on the national grid is high) and to incentivize energy consumption during off-peak periods. If farmers, for example, carry out their evening milking during the peak period, energy costs may increase, which would affect farm profitability. Second, electricity consumption is identified in contributing to about 25% of energy use along the life cycle of pasture-based milk. The objectives of this study, therefore, were to document electricity use per kilogram of milk sold and to identify strategies that reduce its overall use while maximizing its use in off-peak periods (currently from 0000 to 0900 h). We assessed, therefore, average daily and seasonal trends in electricity consumption on 22 Irish dairy farms, through detailed auditing of electricity-consuming processes. To determine the potential of identified strategies to save energy, we also assessed total energy use of Irish milk, which is the sum of the direct (i.e., energy use on farm) and indirect energy use (i.e., energy needed to produce farm inputs). On average, a total of 31.73 MJ was required to produce 1 kg of milk solids, of which 20% was direct and 80% was indirect energy use. Electricity accounted for 60% of the direct energy use, and mainly resulted from milk cooling (31%), water heating (23%), and milking (20%). Analysis of trends in electricity consumption revealed that 62% of daily electricity was used at peak periods. Electricity use on Irish dairy farms, therefore, is substantial and centered around milk harvesting. To improve the competitiveness of milk production in a dynamic electricity pricing environment, therefore, management changes and technologies are required that decouple energy use during milking processes from peak periods. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Greenhouse gas impacts of declining hydrocarbon resource quality: Depletion, dynamics, and process emissions

    NASA Astrophysics Data System (ADS)

    Brandt, Adam Robert

    This dissertation explores the environmental and economic impacts of the transition to hydrocarbon substitutes for conventional petroleum (SCPs). First, mathematical models of oil depletion are reviewed, including the Hubbert model, curve-fitting methods, simulation models, and economic models. The benefits and drawbacks of each method are outlined. I discuss the predictive value of the models and our ability to determine if one model type works best. I argue that forecasting oil depletion without also including substitution with SCPs results in unrealistic projections of future energy supply. I next use information theoretic techniques to test the Hubbert model of oil depletion against five other asymmetric and symmetric curve-fitting models using data from 139 oil producing regions. I also test the assumptions that production curves are symmetric and that production is more bell-shaped in larger regions. Results show that if symmetry is enforced, Gaussian production curves perform best, while if asymmetry is allowed, asymmetric exponential models prove most useful. I also find strong evidence for asymmetry: production declines are consistently less steep than inclines. In order to understand the impacts of oil depletion on GHG emissions, I developed the Regional Optimization Model for Emissions from Oil Substitutes (ROMEO). ROMEO is an economic optimization model of investment and production of fuels. Results indicate that incremental emissions (with demand held constant) from SCPs could be 5-20 GtC over the next 50 years. These results are sensitive to the endowment of conventional oil and not sensitive to a carbon tax. If demand can vary, total emissions could decline under a transition because the higher cost of SCPs lessens overall fuel consumption. Lastly, I study the energetic and environmental characteristics of the in situ conversion process, which utilizes electricity to generate liquid hydrocarbons from oil shale. I model the energy inputs and outputs from the ICP use them to calculate the GHG emissions from the ICP. Energy outputs (as refined liquid fuel) range from 1.2 to 1.6 times the total primary energy inputs. Well-to-tank greenhouse gas emissions range from 30.6 to 37.1 gCeq./MJ of final fuel delivered, 21 to 47% larger than those from conventionally produced petroleum-based fuels.

  2. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.

    PubMed

    Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan

    2015-12-01

    Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.

  3. Analysing uncertainties of supply and demand in the future use of hydrogen as an energy vector

    NASA Astrophysics Data System (ADS)

    Lenel, U. R.; Davies, D. G. S.; Moore, M. A.

    An analytical technique (Analysis with Uncertain Qualities), developed at Fulmer, is being used to examine the sensitivity of the outcome to uncertainties in input quantities in order to highlight which input quantities critically affect the potential role of hydrogen. The work presented here includes an outline of the model and the analysis technique, along with basic considerations of the input quantities to the model (demand, supply and constraints). Some examples are given of probabilistic estimates of input quantities.

  4. Effect of Circuit Inductance on Ceramics Joining by Titanium Foil Explosion

    NASA Astrophysics Data System (ADS)

    Takada, Yoshihiro; Takaki, Koichi; Itagaki, Minoru; Mukaigawa, Seiji; Fujiwara, Tamiya; Ohshima, Shuzo; Takahashi, Ikuo; Kuwashima, Takayuki

    This article describes the influences of circuit inductance on alumina (Al2O3) tile joining using explosive titanium foil. Several kAs pulse current was supplied from 8.28 µF storage capacitor to the 50 µm thickness titanium foil which was sandwiched between the Al2O3 tiles with pressure of 8.3 MPa. The temperature of the foil was rapidly increased owing to ohmic heating with the large current, and then the foil was liquefied and vaporized. The Al2O3 tiles were successfully bonded when the input energy to the titanium foil was higher than the energy required for the foil vaporization. The bonding strength increases with increasing the energy input to the foil. However, the foil explosion cracked the tiles when the input energy exceeds a critical value. Increasing the circuit inductance from 1.13 µH to 64.8 µH, the critical energy of tile cracking increase from 160 J to 507 J, respectively. the maximum bonding strength of 330 kg was obtained when the circuit inductance was 21.8 µH. An investigation of the interfacial structure of the joints using electron probe micro-analysis revealed that distinct reaction areas existed in the interlayer.

  5. Water Use and Quality Footprints of Biofuel Crops in Florida

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the first study to quantify water use and nutrient load footprint based on measurements in the southeast and perhaps the USA, and will be useful for selecting suitable biofuel crops in Florida and elsewhere with similar environment.

  6. Multi-service highly sensitive rectifier for enhanced RF energy scavenging.

    PubMed

    Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran

    2015-05-07

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869 MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of -10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments.

  7. Multi-Service Highly Sensitive Rectifier for Enhanced RF Energy Scavenging

    PubMed Central

    Shariati, Negin; Rowe, Wayne S. T.; Scott, James R.; Ghorbani, Kamran

    2015-01-01

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478–496 and 852–869 MHz) and exhibits favorable impedance matching over a broad input power range (−40 to −10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of −10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137

  8. An investigation on nuclear energy policy in Turkey and public perception

    NASA Astrophysics Data System (ADS)

    Coskun, Mehmet Burhanettin; Tanriover, Banu

    2016-11-01

    Turkey, which meets nearly 70 per cent of its energy demands with import, is facing the problems of energy security and current account deficit as a result of its dependence on foreign sources in terms of energy input. It is also known that Turkey is having environmental problems due to the increases in CO2 emission. Considering these problems in Turkish economy, where energy input is commonly used, it is necessary to use energy sources efficiently and provide alternative energy sources. Due to the dependency of renewable sources on meteorological conditions (the absence of enough sun, wind, and water sources), the energy generation could not be provided efficiently and permanently from these sources. At this point, nuclear energy as analternative energy source maintains its importance as a sustainable energy source that providing energy in 7 days and 24 hours. The main purpose of this study is to evaluate the nuclear energy subject within the context of negative public perceptions emerged after Chernobyl (1986) and Fukushima (2011) disasters and to investigate in the economic framework.

  9. Energy Balance of Rural Ecosystems In India

    NASA Astrophysics Data System (ADS)

    Chhabra, A.; Madhava Rao, V.; Hermon, R. R.; Garg, A.; Nag, T.; Bhaskara Rao, N.; Sharma, A.; Parihar, J. S.

    2014-11-01

    India is predominantly an agricultural and rural country. Across the country, the villages vary in geographical location, area, human and livestock population, availability of resources, agricultural practices, livelihood patterns etc. This study presents an estimation of net energy balance resulting from primary production vis-a-vis energy consumption through various components in a "Rural Ecosystem". Seven sites located in different agroclimatic regions of India were studied. An end use energy accounting "Rural Energy Balance Model" is developed for input-output analysis of various energy flows of production, consumption, import and export through various components of crop, trees outside forest plantations, livestock, rural households, industry or trade within the village system boundary. An integrated approach using field, ancillary, GIS and high resolution IRS-P6 Resourcesat-2 LISS IV data is adopted for generation of various model inputs. The primary and secondary field data collection of various energy uses at household and village level were carried out using structured schedules and questionnaires. High resolution multi-temporal Resourcesat-2 LISS IV data (2013-14) was used for generating landuse/landcover maps and estimation of above-ground Trees Outside Forests phytomass. The model inputs were converted to energy equivalents using country-specific energy conversion factors. A comprehensive geotagged database of sampled households and available resources at each study site was also developed in ArcGIS framework. Across the study sites, the estimated net energy balance ranged from -18.8 Terra Joules (TJ) in a high energy consuming Hodka village, Gujarat to 224.7 TJ in an agriculture, aquaculture and plantation intensive Kollaparru village, Andhra Pradesh. The results indicate that the net energy balance of a Rural Ecosystem is largely driven by primary production through crops and natural vegetation. This study provides a significant insight to policy relevant recommendations for Energy Sustainable Rural India.

  10. NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available formore » model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.« less

  11. Multi-mode horn

    NASA Technical Reports Server (NTRS)

    Neilson, Jeffrey M. (Inventor)

    2002-01-01

    A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.

  12. [Emergy of agro-ecosystem in Hunan Province: evolution and trend].

    PubMed

    Zhu, Yu-Lin; Li, Ming-Jie

    2012-02-01

    By using emergy analysis method, a trend analysis was made on the total emergy, its input-output structure, and emergy indices of the agro-ecosystem in Hunan Province of South-central China from 1999 to 2008. In the study period, the available total emergy input of the ecosystem was basically maintained at a stable level, but the input structure changed with the input of non-renewable industrial auxiliary emergy increased from 4.00E+22 sej in 1999 to 5.53E+22 sej in 2008, while that of renewable organic emergy decreased from 1.32E+23 sej to 1.20E+23 sej. Both the total emergy output and the output efficiency of the ecosystem had a great increase, with the total output reached 1.69E+23 sej in 2008, which was 23.8% higher than that in 1999, and the net output ratio increased from 0.79 to 0.96. Owing to the ever-increasing trend of the environmental loading ratio which was from 1.12 to 1.79, the sustainable development index of the ecosystem presented a decreasing trend, from 0.71 to 0.54, indicating that the agriculture in Hunan Province was overall belonged to the type of ecosystem driven by high consumption, and had relatively apparent extensive development characteristics.

  13. New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis.

    PubMed

    Wu, Qingru; Wang, Shuxiao; Hui, Mulin; Wang, Fengyang; Zhang, Lei; Duan, Lei; Luo, Yao

    2015-03-17

    The mercury (Hg) flow paths from three zinc (Zn) smelters indicated that a large quantity of Hg, approximately 38.0-57.0% of the total Hg input, was stored as acid slag in the landfill sites. Approximately 15.0-27.1% of the Hg input was emitted into water or stored as open-dumped slags, and 3.3-14.5% of the Hg input ended in sulfuric acid. Atmospheric Hg emissions, accounting for 1.4-9.6% of the total Hg input, were from both the Zn production and waste disposal processes. Atmospheric Hg emissions from the waste disposal processes accounted for 40.6, 89.6, and 94.6% of the total atmospheric Hg emissions of the three studied smelters, respectively. The Zn production process mainly contributed to oxidized Hg (Hg2+) emissions, whereas the waste disposal process generated mostly elemental Hg (Hg0) emissions. When the emissions from these two processes are considered together, the emission proportion of the Hg2+ mass was 51, 46, and 29% in smelters A, B, and C, respectively. These results indicated that approximately 10.8±5.8 t of atmospheric Hg emissions from the waste disposal process were ignored in recent inventories. Therefore, the total atmospheric Hg emissions from the Zn industry of China should be approximately 50 t.

  14. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria

    DOE PAGES

    Cano, Melissa A.; Holland, Steven C.; Artier, Juliana; ...

    2018-04-17

    Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could alsomore » be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. Lastly, these findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories.« less

  15. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, Melissa A.; Holland, Steven C.; Artier, Juliana

    Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could alsomore » be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. Lastly, these findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories.« less

  16. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria.

    PubMed

    Cano, Melissa; Holland, Steven C; Artier, Juliana; Burnap, Rob L; Ghirardi, Maria; Morgan, John A; Yu, Jianping

    2018-04-17

    Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Effect of chronic nitrogen additions on soil nitrogen fractions in red spruce stands

    USGS Publications Warehouse

    David, M.B.; Cupples, A.M.; Lawrence, G.B.; Shi, G.; Vogt, K.; Wargo, P.M.

    1998-01-01

    The responses of temperate and boreal forest ecosystems to increased nitrogen (N) inputs have been varied, and the responses of soil N pools have been difficult to measure. In this study, fractions and pool sizes of N were determined in the forest floor of red spruce stands at four sites in the northeastern U.S. to evaluate the effect of increased N inputs on forest floor N. Two of the stands received 100 kg N ha-1 yr-1 for three years, one stand received 34 kg N ha-1 yr-1 for six years, and the remaining stand received only ambient N inputs. No differences in total N content or N fractions were measured in samples of the Oie and Oa horizons between treated and control plots in the three sites that received N amendments. The predominant N fraction in these samples was amino acid N (31-45 % of total N), followed by hydrolyzable unidentified N (16-31% of total N), acid- soluble N (18-22 % of total N), and NH4/+-N (9-13 % of total N). Rates of atmospheric deposition varied greatly among the four stands. Ammonium N and amino acid N concentrations in the Oie horizon were positively related to wet N deposition, with respective r2 values of 0.92 and 0.94 (n = 4, p < 0.05). These relationships were somewhat stronger than that observed between atmospheric wet N deposition and total N content of the forest floor, suggesting that these pools retain atmospherically deposited N. The NH4/+- N pool may represent atmospherically deposited N that is incorporated into organic matter, whereas the amino acid N pool could result from microbial immobilization of atmospheric N inputs. The response of forest floor N pools to applications of N may be masked, possibly by the large soil N pool, which has been increased by the long-term input of N from atmospheric deposition, thereby overwhelming the short-term treatments.

  18. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.

  19. A framework to analyze emissions implications of ...

    EPA Pesticide Factsheets

    Future year emissions depend highly on the evolution of the economy, technology and current and future regulatory drivers. A scenario framework was adopted to analyze various technology development pathways and societal change while considering existing regulations and future uncertainty in regulations and evaluate resulting emissions growth patterns. The framework integrates EPA’s energy systems model with an economic Input-Output (I/O) Life Cycle Assessment model. The EPAUS9r MARKAL database is assembled from a set of technologies to represent the U.S. energy system within MARKAL bottom-up technology rich energy modeling framework. The general state of the economy and consequent demands for goods and services from these sectors are taken exogenously in MARKAL. It is important to characterize exogenous inputs about the economy to appropriately represent the industrial sector outlook for each of the scenarios and case studies evaluated. An economic input-output (I/O) model of the US economy is constructed to link up with MARKAL. The I/O model enables user to change input requirements (e.g. energy intensity) for different sectors or the share of consumer income expended on a given good. This gives end-users a mechanism for modeling change in the two dimensions of technological progress and consumer preferences that define the future scenarios. The framework will then be extended to include environmental I/O framework to track life cycle emissions associated

  20. What Drives Saline Circulation Cells in Coastal Aquifers? An Energy Balance for Density-Driven Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Harvey, C. F.; Michael, H. A.

    2017-12-01

    We formulate the energy balance for coastal groundwater systems and apply it to: (1) Explain the energy driving offshore saline circulation cells, and; (2) Assess the accuracy of numerical simulations of coastal groundwater systems. The flow of fresh groundwater to the ocean is driven by the loss of potential energy as groundwater drops from the elevation of the inland watertable, where recharge occurs, to discharge at sea level. This freshwater flow creates an underlying circulation cell of seawater, drawn into coastal aquifers offshore and discharging near shore, that adds to total submarine groundwater discharge. The saline water in the circulation cell enters and exits the aquifer through the sea floor at the same hydraulic potential. Existing theory explains that the saline circulation cell is driven by mixing of fresh and saline without any additional source of potential or mechanical power. This explanation raises a basic thermodynamic question: what is the source of energy that drives the saline circulation cell? Here, we resolve this question by building upon Hubbert's conception of hydraulic potential to formulate an energy balance for density-dependent flow and salt transport through an aquifer. We show that, because local energy dissipation within the aquifer is proportional to the square of the groundwater velocity, more groundwater flow may be driven through an aquifer for a given energy input if local variations in velocity are smoothed. Our numerical simulations of coastal groundwater systems show that dispersion of salt across the fresh-saline interface spreads flow over larger volumes of the aquifer, smoothing the velocity field, and increasing total flow and submarine groundwater discharge without consuming more power. The energy balance also provides a criterion, in addition to conventional mass balances, for judging the accuracy of numerical solutions of non-linear density-dependent flow problems. Our results show that some numerical simulations of saline circulation converge to excellent balances of both mass and energy, but that other simulations may poorly balance energy even after converging to a good mass balance. Thus, the energy balance can be used to identify incorrect simulations that pass convential mass balance criteria for accuracy.

  1. Energy Vs. Productivity: Diminishing Returns

    ERIC Educational Resources Information Center

    MOSAIC, 1975

    1975-01-01

    Energy invested in corn production is compared with food energy returned in calculations by David Pimentel at Cornell University. The rate of return is falling off sharply in this already energy-intensive agriculture. Increased energy input, in the form of fertilizer, would yield far greater returns where agriculture is less sophisticated.…

  2. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Nakamura, A.; Kunii, A.; Kusano, K.; Futagawa, M.

    2015-12-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture.

  3. Effect of input signal and filter parameters on patterning effect in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Hussain, Kamal; Pratap Singh, Satya; Kumar Datta, Prasanta

    2013-11-01

    A numerical investigation is presented to show the dependence of patterning effect (PE) of an amplified signal in a bulk semiconductor optical amplifier (SOA) and an optical bandpass filter based amplifier on various input signal and filter parameters considering both the cases of including and excluding intraband effects in the SOA model. The simulation shows that the variation of PE with input energy has a characteristic nature which is similar for both the cases. However the variation of PE with pulse width is quite different for the two cases, PE being independent of the pulse width when intraband effects are neglected in the model. We find a simple relationship between the PE and the signal pulse width. Using a simple treatment we study the effect of the amplified spontaneous emission (ASE) on PE and find that the ASE has almost no effect on the PE in the range of energy considered here. The optimum filter parameters are determined to obtain an acceptable extinction ratio greater than 10 dB and a PE less than 1 dB for the amplified signal over a wide range of input signal energy and bit-rate.

  4. Analyzing Power Supply and Demand on the ISS

    NASA Technical Reports Server (NTRS)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  5. Computer programs for pressurization (RAMP) and pressurized expulsion from a cryogenic liquid propellant tank

    NASA Technical Reports Server (NTRS)

    Masters, P. A.

    1974-01-01

    An analysis to predict the pressurant gas requirements for the discharge of cryogenic liquid propellants from storage tanks is presented, along with an algorithm and two computer programs. One program deals with the pressurization (ramp) phase of bringing the propellant tank up to its operating pressure. The method of analysis involves a numerical solution of the temperature and velocity functions for the tank ullage at a discrete set of points in time and space. The input requirements of the program are the initial ullage conditions, the initial temperature and pressure of the pressurant gas, and the time for the expulsion or the ramp. Computations are performed which determine the heat transfer between the ullage gas and the tank wall. Heat transfer to the liquid interface and to the hardware components may be included in the analysis. The program output includes predictions of mass of pressurant required, total energy transfer, and wall and ullage temperatures. The analysis, the algorithm, a complete description of input and output, and the FORTRAN 4 program listings are presented. Sample cases are included to illustrate use of the programs.

  6. Measuring and explaining eco-efficiencies of wastewater treatment plants in China: An uncertainty analysis perspective.

    PubMed

    Dong, Xin; Zhang, Xinyi; Zeng, Siyu

    2017-04-01

    In the context of sustainable development, there has been an increasing requirement for an eco-efficiency assessment of wastewater treatment plants (WWTPs). Data envelopment analysis (DEA), a technique that is widely applied for relative efficiency assessment, is used in combination with the tolerances approach to handle WWTPs' multiple inputs and outputs as well as their uncertainty. The economic cost, energy consumption, contaminant removal, and global warming effect during the treatment processes are integrated to interpret the eco-efficiency of WWTPs. A total of 736 sample plants from across China are assessed, and large sensitivities to variations in inputs and outputs are observed for most samples, with only three WWTPs identified as being stably efficient. Size of plant, overcapacity, climate type, and influent characteristics are proven to have a significant influence on both the mean efficiency and performance sensitivity of WWTPs, while no clear relationships were found between eco-efficiency and technology under the framework of uncertainty analysis. The incorporation of uncertainty quantification and environmental impact consideration has improved the liability and applicability of the assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Midinfrared radiation energy harvesting device

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Ren; Wang, Wei-Chih

    2017-07-01

    The International Energy Agency reports a 17.6% annual growth rate in sustainable energy production. However, sustainable power generation based on environmental conditions (wind and solar) requires an infrastructure that can handle intermittent power generation. An electromagnetic thermoelectric (EMTE) device to overcome the intermittency problems of current sustainable energy technologies, providing the continuous supply unachievable by photovoltaic cells with portability impossible for traditional thermoelectric (TE) generators, is proposed. The EMTE converts environmental electromagnetic waves to a voltage output without requiring additional input. A single cell of this TE-inspired broadband EMTE can generate a 19.50 nV output within a 7.2-μm2 area, with a verified linear scalability of the output voltage through cell addition. This idea leads to a challenge: the electrical polarity of each row of cells is the same but may require additional routing to combine output from each row. An innovative layout is proposed to overcome this issue through switching the electrical polarity every other row. In this scheme, the EM wave absorption spectrum is not altered, and a simple series connection can be implemented to boost the total voltage output by 1 order within a limited area.

  8. Transition sum rules in the shell model

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  9. Development of control strategies for safe microburst penetration: A progress report

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1987-01-01

    A single-engine, propeller-driven, general-aviation model was incorporated into the nonlinear simulation and into the linear analysis of root loci and frequency response. Full-scale wind tunnel data provided its aerodynamic model, and the thrust model included the airspeed dependent effects of power and propeller efficiency. Also, the parameters of the Jet Transport model were changed to correspond more closely to the Boeing 727. In order to study their effects on steady-state repsonse to vertical wind inputs, altitude and total specific energy (air-relative and inertial) feedback capabilities were added to the nonlinear and linear models. Multiloop system design goals were defined. Attempts were made to develop controllers which achieved these goals.

  10. The Upper Atmosphere Research Satellite (UARS)

    NASA Technical Reports Server (NTRS)

    Reber, Carl A.

    1993-01-01

    The Upper Atmosphere Research Satellite (UARS) was launched by the Space Shuttle on September 12, 1991 into a near circular orbit at 585 km altitude inclined 57 degrees to the Equator. Measurements were initiated a few days later, including solar energy inputs to the atmosphere and vertical profiles of temperature, important minor gas species, and wind fields. The orbital parameters, combined with the sensor measurements characteristics, yield a measurement pattern that produces near global coverage with a duty cycle that periodically favors the Northern or the Southern Hemispheres. A few spacecraft and instrument anomalies have impacted the total amount of data obtained to date, but the overall performance of the mission has been very good.

  11. Eurelios - The 1-MW(el) helioelectric power plant of the European Community Program

    NASA Astrophysics Data System (ADS)

    Borgese, D.; Dinelli, G.; Faure, J. J.; Gretz, J.; Schober, G.

    1984-02-01

    The Eurelios solar thermal electricity-generating plant is based on the central receiver principle. Mirror surfaces totaling 6200 sq m are mounted on 182 heliostats which reflect solar flux into a central receiver atop a 55-m high tower. Water is circulated through the receiver, which converts it to steam that in turn drives a turbine generator. A bypass is used for start-up and shut-down procedures, and a thermal buffer system has been incorporated so that the plant can continue operating without solar energy input over a period of 30 min. Attention is given to heliostat and central receiver design details and optical performance values.

  12. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non-isolated or isolated PV inverter. For the non-isolated transformer-less solution, a semi-Z-source inverter for single phase photovoltaic systems has been proposed. The proposed semi-Z-source inverter utilizes only two switching devices with doubly grounded feature. The total cost have been reduced, the safety and EMI issues caused by the high frequency ground current are solved. For the transformer isolated solution, a boost half-bridge dc-ac micro-inverter has been proposed. The proposed boost half-bridge dc-dc converter utilizes only two switching devices with zero voltage switching features which is able to reduce the total system cost and power loss.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Jason; Winkler, Jon

    Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the onlymore » unmeasured term—the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. Furthermore, these results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model.« less

  14. Minimum energy control for in vitro neurons.

    PubMed

    Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden

    2013-06-01

    To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron's biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron's phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.

  15. Minimum energy control for in vitro neurons

    NASA Astrophysics Data System (ADS)

    Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden

    2013-06-01

    Objective. To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. Approach. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron’s biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron’s phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. Main result. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. Significance. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.

  16. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH2-BioCH4-MFC-integrated system.

    PubMed

    Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk

    2017-01-01

    In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.

  17. Evidence of Significant Energy Input in the Late Phase of a Solar Flare from NuSTAR X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; Wright, Paul J.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ˜18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  18. EVIDENCE OF SIGNIFICANT ENERGY INPUT IN THE LATE PHASE OF A SOLAR FLARE FROM NuSTAR X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray ( NuSTAR ) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory ( SDO )/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/ AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of newmore » post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8–4.6 MK, emission measure (0.3–1.8) × 10{sup 46} cm{sup −3}, and density estimated at (2.5–6.0) × 10{sup 8} cm{sup −3}. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0–4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.« less

  19. Evidence of Significant Energy Input in the Late Phase of A Solar Flare from NuSTAR X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kuhar, Matej; Krucker, Sam; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; hide

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/ AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at approximately 18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops' cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  20. User Guide for the International Jobs and Economic Development Impacts Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, David; Flores-Espino, Francisco; Uriarte, Caroline

    The International Jobs and Economic Development Impacts (I-JEDI) model is a freely available economic model that estimates gross economic impacts from wind, solar, and geothermal energy projects for several different countries. Building on the original JEDI model, which was developed for the United States, I-JEDI was developed under the USAID Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to support countries in assessing economic impacts of LEDS actions in the energy sector. I-JEDI estimates economic impacts by characterizing the construction and operation of energy projects in terms of expenditures and the portion of these expenditures made within the countrymore » of analysis. These data are then used in a country-specific input-output (I-O) model to estimate employment, earnings, gross domestic product (GDP), and gross output impacts. Total economic impacts are presented as well as impacts by industry. This user guide presents general information about how to use I-JEDI and interpret results as well as detailed information about methodology and model limitations.« less

  1. Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.

    PubMed

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-05-28

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.

  2. Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks

    PubMed Central

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-01-01

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087

  3. Ab initio parameterization of a charge optimized many-body forcefield for Si-SiO2: Validation and thermal transport in nanostructures.

    PubMed

    France-Lanord, Arthur; Soukiassian, Patrick; Glattli, Christian; Wimmer, Erich

    2016-03-14

    In an effort to extend the reach of current ab initio calculations to simulations requiring millions of configurations for complex systems such as heterostructures, we have parameterized the third-generation Charge Optimized Many-Body (COMB3) potential using solely ab initio total energies, forces, and stress tensors as input. The quality and the predictive power of the new forcefield are assessed by computing properties including the cohesive energy and density of SiO2 polymorphs, surface energies of alpha-quartz, and phonon densities of states of crystalline and amorphous phases of SiO2. Comparison with data from experiments, ab initio calculations, and molecular dynamics simulations using published forcefields including BKS (van Beest, Kramer, and van Santen), ReaxFF, and COMB2 demonstrates an overall improvement of the new parameterization. The computed temperature dependence of the thermal conductivity of crystalline alpha-quartz and the Kapitza resistance of the interface between crystalline Si(001) and amorphous silica is in excellent agreement with experiment, setting the stage for simulations of complex nanoscale heterostructures.

  4. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  5. Diet and Energy-Sensing Inputs Affect TorC1-Mediated Axon Misrouting but Not TorC2-Directed Synapse Growth in a Drosophila Model of Tuberous Sclerosis

    PubMed Central

    Dimitroff, Brian; Lee, Hyun-Gwan; Zhao, Na; O'Connor, Michael B.; Neufeld, Thomas P.; Selleck, Scott B.

    2012-01-01

    The Target of Rapamycin (TOR) growth regulatory system is influenced by a number of different inputs, including growth factor signaling, nutrient availability, and cellular energy levels. While the effects of TOR on cell and organismal growth have been well characterized, this pathway also has profound effects on neural development and behavior. Hyperactivation of the TOR pathway by mutations in the upstream TOR inhibitors TSC1 (tuberous sclerosis complex 1) or TSC2 promotes benign tumors and neurological and behavioral deficits, a syndrome known as tuberous sclerosis (TS). In Drosophila, neuron-specific overexpression of Rheb, the direct downstream target inhibited by Tsc1/Tsc2, produced significant synapse overgrowth, axon misrouting, and phototaxis deficits. To understand how misregulation of Tor signaling affects neural and behavioral development, we examined the influence of growth factor, nutrient, and energy sensing inputs on these neurodevelopmental phenotypes. Neural expression of Pi3K, a principal mediator of growth factor inputs to Tor, caused synapse overgrowth similar to Rheb, but did not disrupt axon guidance or phototaxis. Dietary restriction rescued Rheb-mediated behavioral and axon guidance deficits, as did overexpression of AMPK, a component of the cellular energy sensing pathway, but neither was able to rescue synapse overgrowth. While axon guidance and behavioral phenotypes were affected by altering the function of a Tor complex 1 (TorC1) component, Raptor, or a TORC1 downstream element (S6k), synapse overgrowth was only suppressed by reducing the function of Tor complex 2 (TorC2) components (Rictor, Sin1). These findings demonstrate that different inputs to Tor signaling have distinct activities in nervous system development, and that Tor provides an important connection between nutrient-energy sensing systems and patterning of the nervous system. PMID:22319582

  6. Thermochemical water decomposition. [hydrogen separation for energy applications

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1977-01-01

    At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.

  7. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution.

    PubMed

    Pellegrini, Pedro; Fernández, Roberto J

    2018-03-06

    We analyzed crop production, physical inputs, and land use at the country level to assess technological changes behind the threefold increase in global crop production from 1961 to 2014. We translated machinery, fuel, and fertilizer to embedded energy units that, when summed up, provided a measure of agricultural intensification (human subsidy per hectare) for crops in the 58 countries responsible for 95% of global production. Worldwide, there was a 137% increase in input use per hectare, reaching 13 EJ, or 2.6% of the world's primary energy supply, versus only a 10% increase in land use. Intensification was marked in Asia and Latin America, where input-use levels reached those that North America and Europe had in the earlier years of the period; the increase was more accentuated, irrespective of continent, for the 12 countries with mostly irrigated production. Half of the countries (28/58), mainly developed ones, had an average subsidy >5 GJ/ha/y (with fertilizers accounting for 27% in 1961 and 45% in 2014), with most of them (23/28) using about the same area or less than in 1961 (net land sparing of 31 Mha). Most of the remaining countries (24/30 with inputs <5 GJ/ha/y), mainly developing ones, increased their cropped area (net land extensification of 135 Mha). Overall, energy-use efficiency (crop output/inputs) followed a U-shaped trajectory starting at about 3 and finishing close to 4. The prospects of a more sustainable intensification are discussed, and the inadequacy of the land-sparing model expectation of protecting wilderness via intensified agriculture is highlighted.

  8. Economic cost of initial attack and large-fire suppression

    Treesearch

    Armando González-Cabán

    1983-01-01

    A procedure has been developed for estimating the economic cost of initial attack and large-fire suppression. The procedure uses a per-unit approach to estimate total attack and suppression costs on an input-by-input basis. Fire management inputs (FMIs) are the production units used. All direct and indirect costs are charged to the FMIs. With the unit approach, all...

  9. Minimizing energy utilization for growing strawberries during long-duration space habitation

    NASA Astrophysics Data System (ADS)

    Massa, Gioia D.; Santini, Judith B.; Mitchell, Cary A.

    2010-09-01

    Strawberry is a candidate crop for space that is rich in protective antioxidants and could also have psychological benefits as a component of crew diets during long-duration space habitation. Energy for electric lighting is a major input to a controlled-environment crop-production system for space habitation. Day-neutral strawberry cultivars were evaluated at several different photoperiods to determine minimum lighting requirements without limiting yield or negatively impacting fruit quality. The cultivars 'Tribute', 'Seascape', and 'Fern' were grown at 14, 17, or 20 h of light per day, and fruit yield was evaluated over a 31-week production period. This amounted to a difference of 2418 kWh m -2 in energy usage between the longest and shortest photoperiods. All cultivars produced similar total fresh weight of fruit regardless of photoperiod. Volunteer tasters rated organoleptic characteristics including sweetness, tartness, texture, and overall appeal as measures of fruit quality. Generally, organoleptic attributes were not affected by photoperiod, but these attributes were somewhat dependent upon cultivar and harvest time. Cultivars under different photoperiods varied in their production of fruit over time. 'Seascape' was the most consistent producer, typically with the largest, most palatable fruit. 'Seascape' plants subsequently were grown at 10-, 12-, or 14-h photoperiods over a treatment period of 33 weeks. Photoperiod again had no significant effect on total fruit weight, although there were periodic flushes of productivity. Fruit under all photoperiods had acceptable approval ratings. A large-fruited, day-neutral strawberry cultivar such as 'Seascape' remains productive under shortened photoperiods, allowing reductions in energy and crew labor while maintaining flexibility for mixed-cropping scenarios in space.

  10. Input-current shaped ac to dc converters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

  11. Calibration of controlling input models for pavement management system.

    DOT National Transportation Integrated Search

    2013-07-01

    The Oklahoma Department of Transportation (ODOT) is currently using the Deighton Total Infrastructure Management System (dTIMS) software for pavement management. This system is based on several input models which are computational backbones to dev...

  12. Water vapour correction of the daily 1 km AVHRR global land dataset: Part I validation and use of the Water Vapour input field

    USGS Publications Warehouse

    DeFelice, Thomas P.; Lloyd, D.; Meyer, D.J.; Baltzer, T. T.; Piraina, P.

    2003-01-01

    An atmospheric correction algorithm developed for the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land dataset was modified to include a near real-time total column water vapour data input field to account for the natural variability of atmospheric water vapour. The real-time data input field used for this study is the Television and Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder A global total column water vapour dataset. It was validated prior to its use in the AVHRR atmospheric correction process using two North American AVHRR scenes, namely 13 June and 28 November 1996. The validation results are consistent with those reported by others and entail a comparison between TOVS, radiosonde, experimental sounding, microwave radiometer, and data from a hand-held sunphotometer. The use of this data layer as input to the AVHRR atmospheric correction process is discussed.

  13. The magnitude and effects of extreme solar particle events

    NASA Astrophysics Data System (ADS)

    Jiggens, Piers; Chavy-Macdonald, Marc-Andre; Santin, Giovanni; Menicucci, Alessandra; Evans, Hugh; Hilgers, Alain

    2014-06-01

    The solar energetic particle (SEP) radiation environment is an important consideration for spacecraft design, spacecraft mission planning and human spaceflight. Herein is presented an investigation into the likely severity of effects of a very large Solar Particle Event (SPE) on technology and humans in space. Fluences for SPEs derived using statistical models are compared to historical SPEs to verify their appropriateness for use in the analysis which follows. By combining environment tools with tools to model effects behind varying layers of spacecraft shielding it is possible to predict what impact a large SPE would be likely to have on a spacecraft in Near-Earth interplanetary space or geostationary Earth orbit. Also presented is a comparison of results generated using the traditional method of inputting the environment spectra, determined using a statistical model, into effects tools and a new method developed as part of the ESA SEPEM Project allowing for the creation of an effect time series on which statistics, previously applied to the flux data, can be run directly. The SPE environment spectra is determined and presented as energy integrated proton fluence (cm-2) as a function of particle energy (in MeV). This is input into the SHIELDOSE-2, MULASSIS, NIEL, GRAS and SEU effects tools to provide the output results. In the case of the new method for analysis, the flux time series is fed directly into the MULASSIS and GEMAT tools integrated into the SEPEM system. The output effect quantities include total ionising dose (in rads), non-ionising energy loss (MeV g-1), single event upsets (upsets/bit) and the dose in humans compared to established limits for stochastic (or cancer-causing) effects and tissue reactions (such as acute radiation sickness) in humans given in grey-equivalent and sieverts respectively.

  14. Life cycle inventory of oil palm lumber production: A gate-to-gate case study

    NASA Astrophysics Data System (ADS)

    Shamsudin, Noor Ainna; Sahid, Ismail; Mokhtar, Anis; Muhamad, Halimah; Ahmad, Shamim

    2018-04-01

    Life Cycle Assessment (LCA) has been applied in the Malaysian oil palm industry since 2010. It is important to ensure that this main industry is ready to meet the demands and expectations of European market on the environmental performance of the oil palm industry. In addition, oil palm biomass, especially oil palm trunk (OPT) are abundantly available after replanting every year. In order to maximize the usage of OPT as a green product, it can be converted to palm lumber as a value-added product. Palm lumber act as a basis product from OPT before it is converted to panel product such as plywood, sandwich board and so on. However, the LCA study on palm lumber production is still scarce in Malaysia. Hence, this paper aims to perform and collect the inventory data for palm lumber production, which is known as Life Cycle Inventory (LCI). A gate-to-gate system boundary and the functional unit of 1 m3 of palm lumber produced have been used in this study. This inventory data was collected from three batches of the production cycle. The inputs are mainly the raw materials which are the OPT and the energy from diesel and electricity from the grid. Generally, each consumption of input such as energy and fossil fuel were different at each stage of palm lumber production. Kiln-drying represents a prominent stage in terms of energy consumption, which electrical use in the dryer represents 94% of total electrical grid consumption as compared to another stage of palm lumber production. By adding the inventory information especially in the downstream sector of biomass industry, hopefully it can improve the sustainability of oil palm industry in Malaysia.

  15. Addressing the policy cacophony does not require more evidence: an argument for reframing obesity as caloric overconsumption.

    PubMed

    Shelley, Jacob J

    2012-11-30

    Numerous policies have been proposed to address the public health problem of obesity, resulting in a policy cacophony. The noise of so many policy options renders it difficult for policymakers to determine which policies warrant implementation. This has resulted in calls for more and better evidence to support obesity policy. However, it is not clear that evidence is the solution. This paper argues that to address the policy cacophony it is necessary to rethink the problem of obesity, and more specifically, how the problem of obesity is framed. This paper argues that the frame "obesity" be replaced by the frame "caloric overconsumption", concluding that the frame caloric overconsumption can overcome the obesity policy cacophony. Frames are important because they influence public policy. Understood as packages that define issues, frames influence how best to approach a problem. Consequently, debates over public policy are considered battles over framing, with small shifts in how an issue is framed resulting in significant changes to the policy environment. This paper presents a rationale for reframing the problem of obesity as caloric overconsumption. The frame "obesity" contributes to the policy cacophony by including policies aimed at both energy output and energy input. However, research increasingly demonstrates that energy input is the primary cause of obesity, and that increases in energy input are largely attributable to the food environment. By focusing on policies that aim to prevent increases in energy input, the frame caloric overconsumption will reduce the noise of the obesity policy cacophony. While the proposed frame will face some challenges, particularly industry opposition, policies aimed at preventing caloric overconsumption have a clearer focus, and can be more politically palatable if caloric overconsumption is seen as an involuntary risk resulting from the food environment. The paper concludes that policymakers will be able to make better sense of the obesity policy cacophony if the problem of obesity is reframed as caloric overconsumption. By focusing on a specific cause of obesity, energy input, the frame caloric overconsumption allows policymakers to focus on the most promising obesity prevention policies.

  16. DMSP observations of high latitude Poynting flux during magnetic storms

    NASA Astrophysics Data System (ADS)

    Huang, Cheryl Y.; Huang, Yanshi; Su, Yi-Jiun; Hairston, Marc R.; Sotirelis, Thomas

    2017-11-01

    Previous studies have demonstrated that energy can enter the high-latitude regions of the Ionosphere-Thermosphere (IT) system on open field lines. To assess the extent of high-latitude energy input, we have carried out a study of Poynting flux measured by the Defense Meteorological Satellite Program (DMSP) satellites during magnetic storms. We report sporadic intense Poynting fluxes measured by four DMSP satellites at polar latitudes during two moderate magnetic storms which occurred in August and September 2011. Comparisons with a widely used empirical model for energy input to the IT system show that the model does not adequately capture electromagnetic (EM) energy at very high latitudes during storms. We have extended this study to include more than 30 storm events and find that intense EM energy is frequently detected poleward of 75° magnetic latitude.

  17. Input-Independent Energy Harvesting in Bistable Lattices from Transition Waves.

    PubMed

    Hwang, Myungwon; Arrieta, Andres F

    2018-02-26

    We demonstrate the utilisation of transition waves for realising input-invariant, frequency-independent energy harvesting in 1D lattices of bistable elements. We propose a metamaterial-inspired design with an integrated electromechanical transduction mechanism to the unit cell, rendering the power conversion capability an intrinsic property of the lattice. Moreover, focusing of transmitted energy to desired locations is demonstrated numerically and experimentally by introducing engineered defects in the form of perturbation in mass or inter-element forcing. We achieve further localisation of energy and numerically observe a breather-like mode for the first time in this type of lattice, improving the harvesting performance by an order of magnitude. Our approach considers generic bistable unit cells and thus provides a universal mechanism to harvest energy and realise metamaterials effectively behaving as a capacitor and power delivery system.

  18. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    NASA Astrophysics Data System (ADS)

    Drott, A.; Skyllberg, U.

    2007-12-01

    Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (p<0.001) positive relationship between the experimentally determined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of brackish waters (p<0.001, n=23), southern, high-productivity freshwaters (p<0.001, n=20) as well as northern, low-productivity freshwater (p=0.048, n=6), the sum of neutral Hg-sulfides [Hg(SH)20 (aq)] and [HgS0 (aq)] in the sediment pore water was significantly, positively correlated with both the potential methylation rate constant (Km) and total MeHg concentrations (2). This indicates that methylating sulphate reducing bacteria passively take up neutral Hg-sulfides, which are transformed to MeHg. Differences in slopes of the relationships were explained by differences in primary productivity and availability of energy-rich organic matter to methylating bacteria. High primary productivity at southern freshwater sites, reflected by a low C/N ratio (large contribution from free living algae and bacteria) in the sediment and a high annual temperature sum, resulted in high methylation rates. In conclusion, concentrations of neutral Hg-sulfides and availability of energy rich organic matter, but also total Hg concentrations in sediments are important factors behind net production and accumulation of MeHg . References: (1) Drott et. al. submitted, (2) Drott, A.; Lambertsson, L.; Björn, E.; Skyllberg, U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology 2007, 41, 2270-2276.

  19. Transition of fertilizer application and agricultural pollution loads: a case study in the Nhue-Day River basin.

    PubMed

    Giang, P H; Harada, H; Fujii, S; Lien, N P H; Hai, H T; Anh, P N; Tanaka, S

    2015-01-01

    Rapid socio-economic development in suburban areas of developing countries has induced changes in agricultural waste and nutrient management, resulting in water pollution. The study aimed at estimating agricultural nutrient cycles and their contribution to the water environment. A material flow model of nitrogen (N) and phosphorus (P) was developed focusing on agricultural activities from 1980 to 2010 in Trai hamlet, an agricultural watershed in Nhue-Day River basin, Vietnam. The model focused on the change in household management of human excreta and livestock excreta, and chemical fertilizer consumption. The results showed that the proportion of nutrients from compost/manure applied to paddy fields decreased from 85 to 41% for both N and P between 1980 and 2010. The nutrient inputs derived from chemical fertilizer decreased 6% between 1980 and 2000 for both N and P. Then, these nutrients increased 1.4 times for N and 1.2 times for P from 2000 to 2010. As of 2010, the total inputs to paddy fields have amounted to 435 kg-N/ha/year and 90 kg-P/ha/year. Of these nutrient inputs, 40% of N and 65% of P were derived from chemical fertilizer. Thirty per cent (30%) of total N input was discharged to the water bodies through agricultural runoff and 47% of total P input accumulated in soil.

  20. Land-use change in Indian tropical agro-ecosystems: eco-energy estimation for socio-ecological sustainability.

    PubMed

    Nautiyal, Sunil; Kaechele, Harald; Umesh Babu, M S; Tikhile, Pavan; Baksi, Sangeeta

    2017-04-01

    This study was carried out to understand the ecological and economic sustainability of floriculture and other main crops in Indian agro-ecosystems. The cultivation practices of four major flower crops, namely Jasminum multiflorum, Crossandra infundibuliformis, Chrysanthemum and Tagetes erecta, were studied in detail. The production cost of flowers in terms of energy was calculated to be 99,622-135,996 compared to 27,681-69,133 MJ ha -1 for the main crops, namely Oryza sativa, Eleusine coracana, Zea mays and Sorghum bicolor. The highest-energy input amongst the crops was recorded for Z. mays (69,133 MJ ha -1 ) as this is a resource-demanding crop. However, flower cultivation requires approximately twice the energy required for the cultivation of Z. mays. In terms of both energy and monetary inputs, flower cultivation needs two to three times the requirements of the main crops cultivated in the region. The monetary inputs for main crop cultivation were calculated to be ₹ 27,349 to ₹ 46,930 as compared to flower crops (₹ 62,540 to ₹ 144,355). Floriculture was found to be more efficient in monetary terms when compared to the main crops cultivated in the region. However, the energy efficiency of flower crops is lower than that of the main crops, and the energy output from flower cultivation was found to be declining in tropical agro-ecosystems in India. Amongst the various inputs, farmyard manure accounts for the highest proportion, and for its preparation, most of the raw material comes from the surrounding ecosystems. Thus, flower cultivation has a direct impact on the ecosystem resource flow. Therefore, keeping the economic and environmental sustainability in view, this study indicates that a more field-based research is required to frame appropriate policies for flower cultivation to achieve sustainable socio-ecological development.

Top