NASA Astrophysics Data System (ADS)
Rath, Asawari D.; Kundu, S.; Ray, A. K.
2018-02-01
Laser induced photoionization of atoms shows significant dependence on the choice of polarizations of lasers. In multi-step, multi-photon excitation and subsequent ionization of atoms different polarization combinations of the exciting lasers lead to distinctly different ion yields. This fact is exploited in this work to determine total angular momenta of odd-parity energy levels of U I lying at ∼ 4 eV from its ground level using resonance ionization laser polarization spectroscopy in time of flight mass spectrometer. These levels are populated by two-step resonant excitation using two pulsed dye lasers with preset polarizations of choice followed by nonresonant ionization by third laser. The dependence of ionization yield on specific polarizations of the first two lasers is studied experimentally for each level under consideration. This dependence when compared to simulations makes possible unambiguous assignment of J angular momenta to these levels.
NASA Astrophysics Data System (ADS)
Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.
2018-01-01
We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.
Electron impact ionization of the gas-phase sorbitol
NASA Astrophysics Data System (ADS)
Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto
2015-03-01
Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.
The effects of pre-ionization on the impurity and x-ray level in a dense plasma focus device
NASA Astrophysics Data System (ADS)
Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; Salar Elahi, A.; Ghoranneviss, M.
2017-02-01
In this study, the effects of pre-ionization on the reduction of the impurities and non-uniformities, the increased stability of the pinch plasma, the enhancement of the total hard x-ray yield, the plasmoid x-ray yield, and the current sheath dynamics of the argon gas at different pressures in a Mather type plasma focus device were investigated. For this purpose, different shunt resistors together with two x-ray detectors were used, and the data gathered from the x-ray signals showed that the optimum shunt resistor could cause the maximum total hard and plasmoid hard x-ray emissions. Moreover, in order to calculate the average speed of the current sheath, two axial magnetic probes were used. It was revealed that the pre-ionization could increase the whole range of the emitted x-rays and produce a more uniform current sheath layer, which moved faster, and this technique could lead to the reduction of the impurities, creating a more stabilized pinched plasma, which was capable of emitting more x-rays than the usual case without using pre-ionization.
Effects of the Carrier-Envelope Phase in the Multiphoton Ionization Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Takashi; Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581; Watanabe, Shuntaro
2006-06-02
We theoretically investigate the effects of the carrier-envelope phase of few-cycle laser pulses in the multiphoton ionization regime. For atoms with low ionization potential, total ionization yield barely exhibits phase dependence, as expected. However, population of some bound states clearly shows phase dependence. This implies that the measurement of the carrier-envelope phase would be possible through the photoemission between bound states without energy-and-angle-resolved photoelectron detection. The considered scheme could be particularly useful to measure the carrier-envelope phase for a light source without an amplifier, such as a laser oscillator, which cannot provide sufficient pulse energy to induce tunneling ionization.
Dissociative-ionization cross sections for 12-keV-electron impact on CO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Pragya; Singh, Raj; Yadav, Namita
The dissociative ionization of a CO{sub 2} molecule is studied at an electron energy of 12 keV using the multiple ion coincidence imaging technique. The absolute partial ionization cross sections and the precursor-specific absolute partial ionization cross sections of resulting fragment ions are obtained and reported. It is found that {approx}75% of single ionization, 22% of double ionization, and {approx}2% of triple ionization of the parent molecule contribute to the total fragment ion yield; quadruple ionization of CO{sub 2} is found to make a negligibly small contribution. Furthermore, the absolute partial ionization cross sections for ion-pair and ion-triple formation aremore » measured for nine dissociative ionization channels of up to a quadruply ionized CO{sub 2} molecule. In addition, the branching ratios for single-ion, ion-pair, and ion-triple formation are also determined.« less
Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.
2016-01-01
Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170
Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A
2016-09-06
Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.
Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision
NASA Astrophysics Data System (ADS)
Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.
2018-06-01
A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.
NASA Astrophysics Data System (ADS)
Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.
2018-03-01
Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.
NASA Astrophysics Data System (ADS)
Duke, D. L.; Tovesson, F.; Brys, T.; Geppert-Kleinrath, V.; Hambsch, F.-J.; Laptev, A.; Meharchand, R.; Manning, B.; Mayorov, D.; Meierbachtol, K.; Mosby, S.; Perdue, B.; Richman, D.; Shields, D.; Vidali, M.
2017-09-01
The average Total Kinetic Energy (TKE) release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV - 30 MeV. The double-energy (2E) method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data.
NASA Astrophysics Data System (ADS)
Poškus, A.
2016-09-01
This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic Kα, total K (=Kα + Kβ) and Lα X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the Kα yield by more than 40% for the elements with Z > 25. The Lα yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the Lα yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated Kα yields are typically underestimated by (20-30)% for the elements with Z > 25, whereas the Lα yields are underestimated by (60-70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner-shell impact ionization cross sections are significantly more accurate than the corresponding ENDF/B cross sections when energy of incident electrons is of the order of the binding energy.
Poem: A Fast Monte Carlo Code for the Calculation of X-Ray Transition Zone Dose and Current
1975-01-15
stored on the photon interaction data tape. Following the photoelectric ionization the atom will relax emitting either a fluorescent photon or an Auger 50...shell fluorescence yield CL have been obtained from the Storm and Israel1 9 and 25 Bambynek, et al. compilations, with preference given to the...Bambynek compilation, and stored on the photon inter- action data tape. The mean M fluorescence yield wM is approximated by zero. The total electron source
Modeling ionization and recombination from low energy nuclear recoils in liquid argon
Foxe, M.; Hagmann, C.; Jovanovic, I.; ...
2015-03-27
Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recentlymore » reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.« less
Search for Dark Matter Interactions using Ionization Yield in Liquid Xenon
NASA Astrophysics Data System (ADS)
Uvarov, Sergey
Cosmological observations overwhelmingly support the existence of dark matter which constitutes 87% of the universe's total mass. Weakly Interacting Massive Particles (WIMPs) are a prime candidate for dark matter, and the Large Underground Xenon (LUX) experiment aims to a direct-detection of a WIMP-nucleon interaction. The LUX detector is a dual-phase xenon time-projection chamber housed 4,850 feet underground at Sanford Underground Research Facility in Lead, South Dakota. We present the ionization-only analysis of the LUX 2013 WIMP search data. In the 1.04 x 104 kg-days exposure, thirty events were observed out of the 24.8 expected from radioactive backgrounds. We employ a cut-and-count method to set a 1-sided 90% C.L. upper limit for spin-independent WIMP-nucleon cross-sections. A zero charge yield for nuclear-recoils below 0.7 keV is included upper limit calculation. This ionization-only analysis excludes an unexplored region of WIMP-nucleon cross-section for low-mass WIMPs achieving 1.56 x 10-43 cm2 WIMP-nucleon cross-section exclusion for a 5.1 GeV/ c2 WIMP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marley, N. A.; Gaffney, J. S.; Environmental Research
A reactive hydrocarbon analyzer has been constructed on the basis of chemiluminescence reaction with ozone. This detector is designed to operate at varying temperatures which take advantage of the different rates of reaction of the hydrocarbon classes with ozone to yield a measure of their atmospheric reactivity. When operated at high temperatures (170 C), all hydrocarbons will give a chemiluminescence signal. Reported here is a direct comparison of the ozone chemiluminescent detector (operated at a temperature of 170 C) with a flame ionization detector. This comparison was accomplished by connecting a capillary gas chromatograph to each of the two detectorsmore » by means of a switching valve. Twenty-seven compounds representing alkanes, alkenes, aromatics, and oxygenated hydrocarbons (aldehydes, ketones, alcohols, and ethers) were studied. For the compounds studied, analytical sensitivities were 10-1000 times better for the chemiluminescence detector. The results of this comparison indicate that the response of the chemiluminescent detector at 170 C correlates with a total carbon detector (flame ionization detection) and that total response is a measure of total carbon in the sample. The chemiluminescent system will be very useful for gas chromatographic detection of atmospheric hydrocarbons, particularly of oxygenates in complex mixtures.« less
Batz, Nicholas G; Mellors, J Scott; Alarie, Jean Pierre; Ramsey, J Michael
2014-04-01
We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.
Molecular interferometer to decode attosecond electron-nuclear dynamics.
Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando
2014-03-18
Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses.
NASA Astrophysics Data System (ADS)
Farmanfarmaei, B.; Yousefi, H. R.; Salem, M. K.; Sari, A. H.
2018-04-01
The results of an experimental study of pre-ionization and heavy gas introduced into driven gas in a plasma focus device are reported. To achieve this purpose, we made use of two methods: first, the pre-ionization method by applying the shunt resistor and second, the admixture of heavy ions. We applied the different shunt resistors and found the optimum amount to be 200 MΩ at an optimum pressure of 0.5 Torr. Ion yield that was measured by array of Faraday cups and the energy of fast ions that was calculated by using the time-of-flight method were raised up to 22% and 45%, and the impurity caused by anode's erosion was reduced approximately by 67% in comparison to when there was no pre-ionization. Also, we have used the admixture of 5% argon ions with nitrogen (working gas) to improve the ion yield up to 45% in comparison with pure nitrogen. Finally, for the first time, we have utilized the combination of these methods together and have, consequently, reached the maximum ion yield and fusion yield. With this new method, ion yield raised up to 70% greater than that of the previous condition, i.e., without pre-ionization and heavy ion admixture.
Ionization Study of Isomeric Molecules in Strong-field Laser Pulses
Zigo, Stefan; Le, Anh-Thu; Timilsina, Pratap; ...
2017-02-10
Through the use of the technique of time-of-flight mass spectroscopy, we obtain strong-field ionization yields for randomly oriented 1,2-dichloroethylene (1,2-DCE) (C 2H 2Cl 2) and 2-butene (C 4H 8). Here, we are interested in studying the effect of conformal structure in strong-field ionization and, in particular, the role of molecular polarity. That is, we can perform strong-field ionization studies in polar vs non-polar molecules that have the same chemical composition. Here, we report our findings through the ionization yields and the ratio (trans/cis) of each stereoisomer pair as a function of intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbois, Timo; Helm, Hanspeter
2011-11-15
Strong-field ionization of molecular hydrogen is studied at wavelengths ranging from 300 to 800 nm using pulses of 100-fs duration. We find that over this wide wavelength range, from nominally 4-photon to 11-photon ionization, resonance features dominate the ionization probability at intensities below 10{sup 14} W/cm{sup 2}. Photoelectron momentum maps recorded by an imaging spectrometer are analyzed to identify the wavelength-dependent ionization pathways in single ionization of molecular hydrogen. A number of models, some empirical, which are appropriate for a quantitative interpretation of the spectra and the ionization yield are introduced. A near-absolute comparison of measured ionization yields at 398more » nm is made with the predictions based on a numerical solution [Y. V. Vanne and A. Saenz, Phys. Rev. A 79, 023421 (2009)] of the time-dependent Schroedinger equation for two correlated electrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, Wania, E-mail: wania@if.ufrj.br; Luna, Hugo; Sigaud, Lucas
Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful toolmore » to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.« less
Rheology and TIC/TOC results of ORNL tank samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareizs, J. M.; Hansen, E. K.
2013-04-26
The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determinedmore » from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water.« less
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...
2017-05-09
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
Electron impact fragmentation of thymine: partial ionization cross sections for positive fragments
NASA Astrophysics Data System (ADS)
van der Burgt, Peter J. M.; Mahon, Francis; Barrett, Gerard; Gradziel, Marcin L.
2014-06-01
We have measured mass spectra for positive ions for low-energy electron impact on thymine using a reflectron time-of-flight mass spectrometer. Using computer controlled data acquisition, mass spectra have been acquired for electron impact energies up to 100 eV in steps of 0.5 eV. Ion yield curves for most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. The ion yield curves have been normalized by comparing the sum of the ion yields to the average of calculated total ionization cross sections. Appearance energies have been determined. The nearly equal appearance energies of 83 u and 55 u observed in the present work strongly indicate that near threshold the 55 u ion is formed directly by the breakage of two bonds in the ring, rather than from a successive loss of HNCO and CO from the parent ion. Likewise 54 u is not formed by CO loss from 82 u. The appearance energies are in a number of cases consistent with the loss of one or more hydrogen atoms from a heavier fragment, but 70 u is not formed by hydrogen loss from 71 u.
Optical field ionization of atoms and ions using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Fittinghoff, D. N.
1993-12-01
This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He(+2), Ne(+2), and Ar(+2). The ion yields for He(+1), Ne(sup +1) and Ar(sup +1) agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved the following: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.
Extreme ionization of Xe clusters driven by ultraintense laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidenreich, Andreas; Last, Isidore; Jortner, Joshua
We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of themore » inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse length control mechanism of extreme ionization products.« less
NASA Astrophysics Data System (ADS)
Stude, Joan; Wieser, Martin; Barabash, Stas
2016-10-01
Time-of-flight mass spectrometers for upcoming space missions into enhanced radiation environments need to be small, light weight and energy efficient. Time-of-flight systems using surface interactions as start-event generation can be smaller than foil-type instruments. Start surfaces for such applications need to provide narrow angular scattering, high ionization yields and high secondary electron emissions to be effective. We measured the angular scattering, energy distribution and positive ionization yield of micro pore optics for incident hydrogen, nitrogen and water ions at 2 keV. Positive ionization yields of 2% for H+ , 0.5% for N+ and 0.2% for H2O+ were detected.
NASA Astrophysics Data System (ADS)
McLeod, A. F.; Gritschneder, M.; Dale, J. E.; Ginsburg, A.; Klaassen, P. D.; Mottram, J. C.; Preibisch, T.; Ramsay, S.; Reiter, M.; Testi, L.
2016-11-01
We present an analysis of the effect of feedback from O- and B-type stars with data from the integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) mounted on the Very Large Telescope of pillar-like structures in the Carina Nebular Complex, one of the most massive star-forming regions in the Galaxy. For the observed pillars, we compute gas electron densities and temperatures maps, produce integrated line and velocity maps of the ionized gas, study the ionization fronts at the pillar tips, analyse the properties of the single regions, and detect two ionized jets originating from two distinct pillar tips. For each pillar tip, we determine the incident ionizing photon flux Q0, pil originating from the nearby massive O- and B-type stars and compute the mass-loss rate dot{M} of the pillar tips due to photoevaporation caused by the incident ionizing radiation. We combine the results of the Carina data set with archival MUSE data of a pillar in NGC 3603 and with previously published MUSE data of the Pillars of Creation in M16, and with a total of 10 analysed pillars, find tight correlations between the ionizing photon flux and the electron density, the electron density and the distance from the ionizing sources, and the ionizing photon flux and the mass-loss rate. The combined MUSE data sets of pillars in regions with different physical conditions and stellar content therefore yield an empirical quantification of the feedback effects of ionizing radiation. In agreement with models, we find that dot{M}∝ Q_0,pil^{1/2}.
Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Liangyou; Tan Fang; Gong Qihuang
2009-07-15
The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger themore » number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.« less
Carrier-envelope phase-dependent ionization of Xe in intense, ultrafast (two-cycle) laser fields
NASA Astrophysics Data System (ADS)
Vasa, Parinda; Dharmadhikari, Aditya K.; Mathur, Deepak
2018-01-01
We report an experimental study that shows the dependence of the tunnel ionization of Xe by two-cycle, intense, near infrared light on the carrier-envelope-phase (CEP) of incident laser pulses. At low values of the optical field (E), the ionization yield is found to be maximum for cos-like pulses; the CEP dependence of the ion yield becomes stronger for higher charge states. At higher E-values, the CEP dependence either washes out or flips. A simple phenomenological model is used to confirm that our results fall within the ambit of the current understanding of ionization dynamics in strong, ultrashort optical fields. In the observed tunnel ionization of Xe, CEP effects appear to persist for longer, eight-cycle, pulses. Electron rescattering is observed to play a relatively unimportant role in the observed CEP dependence. These results provide fresh perspectives in the ionization mechanisms of multielectron systems in the few-cycle regime.
NASA Astrophysics Data System (ADS)
Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J.-P.
2010-01-01
Thermal ionization mass spectrometry (TIMS) is a well established instrumental technique for providing accurate and precise isotope ratio measurements of elements with reasonably low first ionization potential. In nuclear safeguards and in environmental research, it is often required to measure the isotope ratios in small samples of uranium. Empirical studies had shown that the ionization yield of uranium and plutonium in a TIMS ion source can be significantly increased in the presence of a carbon source. But, even though carbon appeared crucial in providing high ionization yields, processes taking place on the ionization surface were still not well understood. This paper describes the experimental results obtained from an extended study on the evaporation and ionization mechanisms of uranium occurring on a rhenium mass spectrometry filament in the presence of carbon. Solid state reactions were investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, vaporization measurements were performed with a modified-Knudsen cell mass spectrometer for providing information on the neutral uranium species in the vapor phase. Upon heating, under vacuum, the uranyl nitrate sample was found to turn into a uranium carbide compound, independent of the type of carbon used as ionization enhancer. With further heating, uranium carbide leads to formation of single charged uranium metal ions and a small amount of uranium carbide ions. The results are relevant for a thorough understanding of the ion source chemistry of a uranyl nitrate sample under reducing conditions. The significant increase in ionization yield described by many authors on the basis of empirical results can be now fully explained and understood.
Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments
NASA Astrophysics Data System (ADS)
van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel
2015-07-01
Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège
2015-03-15
The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less
Micrometeoroid ablation simulated in the laboratory
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.
2016-04-01
A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.
TARTAGLIA, F.; GIULIANI, A.; SGUEGLIA, M.; PATRIZI, G.; DI ROCCO, G.; BLASI, S.; RUSSO, G.; TORTORELLI, G.; GIANNOTTI, D.; REDLER, A.
2014-01-01
Summary Wanting to find a way of identifying patients suitable for early discharge after thyroidectomy, we set out to establish whether ionized calcium concentration is a better predictor of post-surgical hypocalcemia than total serum calcium. Data were analyzed to establish whether serum ionized calcium concentrations are correlated with total serum calcium levels and symptomatic hypocalcemia after thyroidectomy. Sixty-two patients undergoing total thyroidectomy at the Department of Surgical Sciences of the “Sapienza” University of Rome, Italy, in 2010. Ionized calcium was measured before (day 0) and after surgery (days 1, 2 and 60) in all the patients. These measurements were compared with preoperative (day 0) and postoperative total serum calcium levels (days 1, 2 and 60). The preoperative ionized calcium levels differed from the ionized calcium levels recorded on days 1 and 2; this pattern was not observed for the total calcium concentrations. Conversely, total calcium on days I and II correlated significantly with the various ionized calcium measurements. The presence of parathyroid glands in the surgical specimen did not seem to affect suitability for discharge. The statistical analysis showed that ionized calcium measurements are more reliable than total calcium measurements in the immediate and long-term follow-up of total thyroidectomy patients. Applying a 95% confidence interval we established reference values for both total serum calcium and ionized calcium, below which all patients develop postoperative symptomatic hypocalcemia. In conclusion, measurement of ionized calcium, as opposed to total calcium, should be strongly recommended in the immediate and long-term follow-up of total thyroidectomy patients. PMID:24690338
The effects of frozen tissue storage conditions on the integrity of RNA and protein.
Auer, H; Mobley, J A; Ayers, L W; Bowen, J; Chuaqui, R F; Johnson, L A; Livolsi, V A; Lubensky, I A; McGarvey, D; Monovich, L C; Moskaluk, C A; Rumpel, C A; Sexton, K C; Washington, M K; Wiles, K R; Grizzle, W E; Ramirez, N C
2014-10-01
Unfixed tissue specimens most frequently are stored for long term research uses at either -80° C or in vapor phase liquid nitrogen (VPLN). There is little information concerning the effects such long term storage on tissue RNA or protein available for extraction. Aliquots of 49 specimens were stored for 5-12 years at -80° C or in VPLN. Twelve additional paired specimens were stored for 1 year under identical conditions. RNA was isolated from all tissues and assessed for RNA yield, total RNA integrity and mRNA integrity. Protein stability was analyzed by surface-enhanced or matrix-assisted laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS, MALDI-TOF-MS) and nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). RNA yield and total RNA integrity showed significantly better results for -80° C storage compared to VPLN storage; the transcripts that were preferentially degraded during VPLN storage were these involved in antigen presentation and processing. No consistent differences were found in the SELDI-TOF-MS, MALDI-TOF-MS or nLC-ESI-MS/MS analyses of specimens stored for more than 8 years at -80° C compared to those stored in VPLN. Long term storage of human research tissues at -80° C provides at least the same quality of RNA and protein as storage in VPLN.
This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...
NASA Astrophysics Data System (ADS)
King, Simon J.; Price, Stephen D.
2011-02-01
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl4, in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl4. For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl4. Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl2+ fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl42+. The lowest energy dicationic precursor state, leading to SiCl3+ + Cl+ formation, lies 27.4 ± 0.3 eV above the ground state of SiCl4 and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
King, Simon J; Price, Stephen D
2011-02-21
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
Electrospray Post-Ionization Mass Spectrometry of Electrosurgical Aerosols
NASA Astrophysics Data System (ADS)
Guenther, Sabine; Schäfer, Karl-Christian; Balog, Júlia; Dénes, Júlia; Majoros, Tamás; Albrecht, Katalin; Tóth, Miklós; Spengler, Bernhard; Takáts, Zoltán
2011-11-01
The feasibility of electrospray (ES) ionization of aerosols generated by electrosurgical disintegration methods was investigated. Although electrosurgery itself was demonstrated to produce gaseous ions, post-ionization methods were implemented to enhance the ion yield, especially in those cases when the ion current produced by the applied electrosurgical method is not sufficient for MS analysis. Post-ionization was implemented by mounting an ES emitter onto a Venturi pump, which is used for ion transfer. The effect of various parameters including geometry, high voltage setting, flow parameters, and solvent composition was investigated in detail. Experimental setups were optimized accordingly. ES post-ionization was found to yield spectra similar to those obtained by the REIMS technique, featuring predominantly lipid-type species. Signal enhancement was 20- to 50-fold compared with electrosurgical disintegration in positive mode, while no improvement was observed in negative mode. ES post-ionization was also demonstrated to allow the detection of non-lipid type species in the electrosurgical aerosol, including drug molecules. Since the tissue specificity of the MS data was preserved in the ES post-ionization setup, feasibility of tissue identification was demonstrated using different electrosurgical methods.
Mann, F A; Boon, G D; Wagner-Mann, C C; Ruben, D S; Harrington, D P
1998-05-01
To determine whether pretreatment total and ionized blood magnesium concentrations were associated with outcome for dogs with parvoviral enteritis and whether ionized magnesium concentration was related to total magnesium concentration or other laboratory values. Prospective cohort study. 61 healthy dogs and 72 dogs with parvoviral enteritis. Total, ionized, and pH-normalized ionized magnesium concentrations, ionized and pH-normalized ionized calcium concentrations, pH, sodium and potassium concentrations, and Hct were measured prior to treatment. chi 2 Analyses were used to test for associations between outcome and age and between outcome and treatment with antiendotoxin antibody. Pearson's correlation coefficients were calculated to determine whether ionized magnesium concentration was linearly associated with other laboratory values. Total and ionized magnesium concentrations were not significantly different between healthy dogs and dogs with parvoviral enteritis or between dogs surviving and those not surviving parvoviral enteritis. The only laboratory value strongly correlated with ionized magnesium concentration was pH-normalized ionized magnesium concentration. Of the factors tested, none were significantly associated with outcome, except that dogs 16 weeks old or less treated with antiendotoxin antibody were significantly more likely to die than were dogs 16 weeks old or less that were not treated with antiendotoxin antibody. Total and ionized blood magnesium concentrations cannot be used to consistently predict outcome for dogs with parvoviral enteritis. Antiendotoxin antibody should be used with caution in dogs 16 weeks old or less.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Sosa Vazquez, Xochitl A.; Isborn, Christine M.
2015-12-22
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
Size-dependent error of the density functional theory ionization potential in vacuum and solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2016-07-01
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.
NASA Astrophysics Data System (ADS)
Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.
1998-01-01
Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.
Biomedical applications of laser photoionization
NASA Astrophysics Data System (ADS)
Xiong, Xiaoxiong; Moore, Larry J.; Fassett, John R.; O'Haver, Thomas C.
1991-07-01
Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.
Cao, H.
2015-05-26
We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less
Numerical quasi-linear study of the critical ionization velocity phenomenon
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.
1993-01-01
The critical ionization velocity (CIV) for a neutral barium (Ba) gas cloud moving across the static magnetic field is studied numerically using quasi-linear equations and a parameter range which is typical for the shaped-charge Ba gas release experiments in space. For consistency the charge exchange between the background oxygen ions and neutral atoms and its reverse process, as well as the excitation of the neutral Ba atoms, are included. The numerical results indicate that when the ionization rate due to CIV becomes comparable to the charge exchange rate the energy lost to the ionization and excitation collisions by the superthermal electrons exceeds the energy gain from the waves that are excited by the ion beam. This results in a CIV yield less than the yield by the charge exchange process.
Wang, Michael Z; Howard, Brandon; Campa, Michael J; Patz, Edward F; Fitzgerald, Michael C
2003-09-01
Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.
A thermalized ion explosion model for high energy sputtering and track registration
NASA Technical Reports Server (NTRS)
Seiberling, L. E.; Griffith, J. E.; Tombrello, T. A.
1980-01-01
A velocity spectrum of neutral sputtered particles as well as a low resolution mass spectrum of sputtered molecular ions was measured for 4.74 MeV F-19(+2) incident of UF4. The velocity spectrum is dramatically different from spectra taken with low energy (keV) bombarding ions, and is shown to be consistent with a hot plasma of atoms in thermal equilibrium inside the target. A thermalized ion explosion model is proposed for high energy sputtering which is expected to describe track formation in dielectric materials. The model is shown to be consistent with the observed total sputtering yield and the dependence of the yield on the primary ionization rate of the incident ion.
Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields
NASA Astrophysics Data System (ADS)
Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian
2018-04-01
Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.
Attosecond Spectroscopy Probing Electron Correlation Dynamics
NASA Astrophysics Data System (ADS)
Winney, Alexander H.
Electrons are the driving force behind every chemical reaction. The exchange, ionization, or even relaxation of electrons is behind every bond broken or formed. According to the Bohr model of the atom, it takes an electron 150 as to orbit a proton[6]. With this as a unit time scale for an electron, it is clear that a pulse duration of several femtoseconds will not be sufficient to understanding electron dynamics. Our work demonstrates both technical and scientific achievements that push the boundaries of attosecond dynamics. TDSE studies show that amplification the yield of high harmonic generation (HHG) may be possible with transverse confinement of the electron. XUV-pump-XUV-probe shows that the yield of APT train can be sufficient for 2-photon double ionization studies. A zero dead-time detection system allows for the measurement of state-resolved double ionization for the first time. Exploiting attosecond angular streaking[7] probes sequential and non-sequential double ionization via electron-electron correlations with attosecond time resolution. Finally, using recoil frame momentum correlation, the fast dissociation of CH 3I reveals important orbital ionization dynamics of non-dissociative & dissociative, single & double ionization.
NASA Astrophysics Data System (ADS)
Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun
2018-05-01
We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.
Degradation spectra and ionization yields of electrons in gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inokuti, M.; Douthat, D.A.; Rau, A.R.P.
1975-01-01
Progress in the microscopic theory of electron degradation in gases by Platzman, Fano, and co-workers is outlined. The theory consists of (1) the cataloging of all major inelastic-collision cross sections for electrons (including secondary-electron energy distribution in a single ionizing collision) and (2) the evaluation of cumulative consequences of individual electron collisions for the electrons themselves as well as for target molecules. For assessing the data consistency and reliability and extrapolating the data to the unexplored ranges of variables (such as electron energy), a series of plots devised by Platzman are very powerful. Electron degradation spectra were obtained through numericalmore » solution of the Spencer--Fano equation for all electron energies down to the first ionization thresholds for a few examples such as He and Ne. The systematics of the solutions resulted in the recognition of approximate scaling properties of the degradation spectra for different initial electron energies and pointed to new methods of more efficient treatment. Systematics of the ionization yields and their energy dependence on the initial electron energy were also recognized. Finally, the Spencer--Fano equation for the degradation spectra and the Fowler equation for the ionization and other yields are tightly linked with each other by a set of variational principles. (52 references, 7 figures) (DLC)« less
Ion energies in high power impulse magnetron sputtering with and without localized ionization zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Tanaka, Koichi
2015-03-23
High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.
Using luminescent materials as the active element for radiation sensors
NASA Astrophysics Data System (ADS)
Hollerman, William A.; Fontenot, Ross S.; Williams, Stephen; Miller, John
2016-05-01
Ionizing radiation poses a significant challenge for Earth-based defense applications as well as human and/or robotic space missions. Practical sensors based on luminescence will depend heavily upon research investigating the resistance of these materials to ionizing radiation and the ability to anneal or self-heal from damage caused by such radiation. In 1951, Birks and Black showed experimentally that the luminescent efficiency of anthracene bombarded by alphas varies with total fluence (N) as (I/I0) = 1/(1 + AN), where I is the luminescence yield, I0 is the initial yield, and A is a constant. The half brightness (N1/2) is defined as the fluence that reduce the emission light yield to half and is equal to is the inverse of A. Broser and Kallmann developed a similar relationship to the Birks and Black equation for inorganic phosphors irradiated using alpha particles. From 1990 to the present, we found that the Birks and Black relation describes the reduction in light emission yield for every tested luminescent material except lead phosphate glass due to proton irradiation. These results indicate that radiation produced quenching centers compete with emission for absorbed energy. The purpose of this paper is to present results from research completed in this area over the last few years. Particular emphasis will be placed on recent measurements made on new materials such as europium tetrakis dibenzoylmethide triethylammonium (EuD4TEA). Results have shown that EuD4TEA with its relatively small N1/2 might be a good candidate for use as a personal proton fluence sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less
Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress
Vieira, Helaine Graziele Santos; Grynberg, Priscila; Bitar, Mainá; Pires, Simone da Fonseca; Hilário, Heron Oliveira; Macedo, Andrea Mara; Machado, Carlos Renato; de Andrade, Hélida Monteiro; Franco, Glória Regina
2014-01-01
Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress. PMID:24842666
Using Wannier functions to improve solid band gap predictions in density functional theory
Ma, Jie; Wang, Lin-Wang
2016-04-26
Enforcing a straight-line condition of the total energy upon removal/addition of fractional electrons on eigen states has been successfully applied to atoms and molecules for calculating ionization potentials and electron affinities, but fails for solids due to the extended nature of the eigen orbitals. Here we have extended the straight-line condition to the removal/addition of fractional electrons on Wannier functions constructed within the occupied/unoccupied subspaces. It removes the self-interaction energies of those Wannier functions, and yields accurate band gaps for solids compared to experiments. It does not have any adjustable parameters and the computational cost is at the DFT level.more » This method can also work for molecules, providing eigen energies in good agreement with experimental ionization potentials and electron affinities. Our approach can be viewed as an alternative approach of the standard LDA+U procedure.« less
NASA Technical Reports Server (NTRS)
Samson, James A. R.; Haddad, G. N.; Masuoka, T.; Pareek, P. N.; Kilcoyne, D. A. L.
1989-01-01
Absolute absorption and photoionization cross sections of methane have been measured with an accuracy of about 2 or 3 percent over most of the wavelength range from 950 to 110 A. Also, dissociative photoionization cross sections were measured for the production of CH4(+), CH3(+), CH2(+), CH(+), and C(+) from their respective thresholds to 159 A, and for H(+) and H2(+) measurements were made down to 240 A. Fragmentation was observed at all excited ionic states of CH4.
LTC1877 High Efficiency Regulator Total Ionizing Dose Test Report
NASA Technical Reports Server (NTRS)
Oldham, Timothy; Pellish, Jonathan; Boutte, Alvin
2012-01-01
This report presents total ionizing dose evaluation data for the Linear Technology Corporation LTC1877 high efficiency monolithic synchronous step-down regulator. Data sheet parameters were tracked as a function of ionizing dose up to a total of 20 krad(SiO2). Control devices were also used.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Misra, D.; Tribedi, L. C.
2007-09-01
We study the various inelastic processes such ionization, fragmentation and evaporation of C60 molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C60r+ ions were detected for maximum r = 4. The projectile charge state (qp) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The qp-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C602+ (i.e. C582+, C562+ etc) and C603+ (i.e. C583+, C563+ etc) with qp has also been investigated for various projectiles.
Photoionization and electron-impact ionization of Ar5+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.C.; Lu, M.; Esteves, D.
2007-02-27
Absolute cross sections for photoionization andelectron-impact Photionization of Ar5+ have been measuredusing twodifferent interacting-beams setups. The spectra consist of measurementsof the yield of products dueto single ionization as a function ofelectron or photon energy. In addition, absolute photoionization andelectron-impact ionization cross sections were measured to normalize themeasured Ar6+ product-ion yield spectra. In the energy range from 90 to111 eV, both electron-impact ionization and photoionization of Ar5+aredominated by indirect 3s subshell excitation-autoionization. In theenergy range from 270 to 285 eV, resonances due to 2p-3dexcitation-autoionization are prominent in the photoionization spectrum.In the range from 225 to 335 eV, an enhancement due tomore » 2p-nl (n>2>excitations are evident in the electron-impactionization cross section.The electron and photon impact data show some features due to excitationof the same intermediate autoionizing states.« less
NASA Astrophysics Data System (ADS)
Knochenmuss, Richard
2015-08-01
The Coupled Chemical and Physical Dynamics (CPCD) model of matrix assisted laser desorption ionization has been restricted to relative rather than absolute yield comparisons because the rate constant for one step in the model was not accurately known. Recent measurements are used to constrain this constant, leading to good agreement with experimental yield versus fluence data for 2,5-dihydroxybenzoic acid. Parameters for alpha-cyano-4-hydroxycinnamic acid are also estimated, including contributions from a possible triplet state. The results are compared with the polar fluid model, the CPCD is found to give better agreement with the data.
L -subshell ionization of Ce, Nd, and Lu by 4-10-MeV C ions
NASA Astrophysics Data System (ADS)
Lapicki, G.; Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.; Sen, P.; Sarkadi, L.; Trautmann, D.
2005-08-01
Ll,Lα,Lβ,Lγ,Lγ1+5,Lγ2+3,Lγ4+4' x-ray production cross sections of Ce58 , Nd60 and Lu71 induced by 4-, 6-, 8-, and 10-MeV carbon ions were measured. For Lu, Lγ2+3 is separated from Lγ2+3+6 after revision of the technique of Datz so that Lγ1+5 was used instead of Lγ1 , the Lγ4+4'/Lγ1+5 ratio was corrected for multiple ionization, and uncertainties in Lγ4+4' were incorporated in the fitting process. L -subshell ionization cross sections were extracted as a weighted average from two combinations of these cross sections, {Lα,Lγ1+5,Lγ2+3} and {Lα,Lγ1+5,Lγ} . It is shown that, to within a few percent, the first of these two combinations results in the identical cross sections as this weighted average. Within 10%, permutations of different sets of single-hole atomic parameters yielded the same ionization cross sections. These cross sections are typically within 15% and at most 35% of the cross sections obtained with atomic parameters that were altered in two different ways for multiple ionization. Extracted subshell and total L -shell ionization cross sections as well as Ce and Nd data of Braziewicz are compared with the ECPSSR theory of Brandt and Lapicki that accounts for the energy-loss (E), Coulomb-deflection (C), perturbed-stationary-state (PSS) and relativistic (R) effects. These measurements are also compared with the ECPSSR theory after its corrections—in a separated and united atom (USA) treatment, and for the intrashell (IS) transitions with the factors of Sarkadi and Mukoyama normalized to match L -shell cross section with the sum of L -subshell cross sections—as well as with the similarly improved semiclassical approximation of Trautmann. For Ce and Nd, the agreement of the extracted ionization cross sections with these theories is poor for L1 and good for L2 , L3 , and total L shell ionization. For the L2 subshell, this agreement is better for Ce and Nd than for Lu. The ECPSSR theory corrected for the USA and IS effects is surprisingly good for the L1 -subshell ionization of Lu, while at 4MeV a similarly corrected semiclassical approximation is in excellent agreement with L2 and L3 data but overestimates the L1 measurement by almost a factor of 2.
Orbital Picture of Ionization and Its Breakdown in Nanoarrays of Quantum Dots
NASA Astrophysics Data System (ADS)
Bâldea, Ioan; Cederbaum, Lorenz S.
2002-09-01
We present exact numerical results indicating that ionization could be a useful tool to study electron correlations in artificial molecules and nanoarrays of metallic quantum dots. For nanorings consisting of Ag quantum dots of the type already fabricated, we demonstrate that the molecular orbital picture breaks down even for lowest energy ionization processes, in contrast to ordinary molecules. Our ionization results yield a transition point between localization and delocalization regimes in good agreement with various experimental data.
Multiple ionization of neon by soft x-rays at ultrahigh intensity
NASA Astrophysics Data System (ADS)
Guichard, R.; Richter, M.; Rost, J.-M.; Saalmann, U.; Sorokin, A. A.; Tiedtke, K.
2013-08-01
At the free-electron laser FLASH, multiple ionization of neon atoms was quantitatively investigated at photon energies of 93.0 and 90.5 eV. For ion charge states up to 6+, we compare the respective absolute photoionization yields with results from a minimal model and an elaborate description including standard sequential and direct photoionization channels. Both approaches are based on rate equations and take into account a Gaussian spatial intensity distribution of the laser beam. From the comparison we conclude that photoionization up to a charge of 5+ can be described by the minimal model which we interpret as sequential photoionization assisted by electron shake-up processes. For higher charges, the experimental ionization yields systematically exceed the elaborate rate-based prediction.
Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities.
Kancharla, Vidhyullatha; Bashir, Sajid; Liu, Jingbo L; Ramirez, Oscar M; Derrick, Peter J; Beran, Kyle A
2017-10-01
Different metal surfaces in the form of transmission electron microscope grids were examined as support surfaces in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a view towards enhancement of peptide signal intensity. The observed enhancement between 5-fold and 20-fold relative to the normal stainless steel slide was investigated by applying the thermal desorption model for matrix-assisted laser desorption/ionization. A simple model evaluates the impact that the thermal properties of the metals have on the ion yield of the analyte. It was observed that there was not a direct, or strong, correlation between the thermal properties of the metals and the corresponding ion yield of the peptides. The effects of both fixed and variable laser irradiances versus ion yield were also examined for the respective metals studied. In all cases the use of transmission electron microscope grids required much lower laser irradiances in order to generate similar peak intensities as those observed with a stainless steel surface.
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.
2016-01-01
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M
2016-05-10
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.
2007-06-01
We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.
Gage measures total radiation, including vacuum UV, from ionized high-temperature gases
NASA Technical Reports Server (NTRS)
Wood, A. D.
1969-01-01
Transient-heat transfer gage measures the total radiation intensity from vacuum ultraviolet and ionized high temperature gases. The gage includes a sensitive piezoelectric crystal that is completely isolated from any ionized flow and vacuum ultraviolet irradiation.
Beste, A; Harrison, R J; Yanai, T
2006-08-21
Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.
NASA Technical Reports Server (NTRS)
Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; Label, Kenneth A.; Ladbury, Raymond L.; Mondy, Timothy K.; O'Bryan, Martha V.;
2017-01-01
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose.
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred
2017-10-01
To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.
Threshold law for electron-atom impact ionization
NASA Technical Reports Server (NTRS)
Temkin, A.
1982-01-01
A derivation of the explicit form of the threshold law for electron impact ionization of atoms is presented, based on the Coulomb-dipole theory. The important generalization is made of using a dipole function whose moment is the dipole moment formed by an inner electron and the nucleus. The result is a modulated quasi-linear law for the yield of positive ions which applies to positron-atom impact ionization.
Lago, A F; Januário, R D; Cavasso Filho, R L; Simon, M; Dávalos, J Z
2017-10-01
Time of flight mass spectrometry, electron-ion coincidence, and ion yield spectroscopy were employed to investigate for the first time the thiazole (C 3 H 3 NS) molecule in the gas phase excited by synchrotron radiation in the soft X-ray domain. Total ion yield (TIY) and photoelectron-photoion coincidence (PEPICO) spectra were recorded as a function of the photon energy in the vicinity of the carbon K edge (C1s). The C1s resonant transitions as well as the core ionization thresholds have been determined from the profile of TIY spectrum, and the features were discussed. The corresponding partial ion yields were determined from the PEPICO spectra for the cation species produced upon the molecular photodissociation. Additional ab initio calculations have also been performed from where relevant structural and electronic configuration parameters were obtained for this molecule. Copyright © 2017 John Wiley & Sons, Ltd.
Lai, Yin-Hung; Wang, Yi-Sheng
2017-01-01
Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed. PMID:28959517
Tailored nanopost arrays (NAPA) for laser desorption ionization in mass spectrometry
Vertes, Akos; Walker, Bennett N.; Stolee, Jessica A.; Retterer, Scott T.
2016-11-08
The production and use of semiconducting nanopost arrays made by nanofabrication is described herein. These nanopost arrays (NAPA) provide improved laser ionization yields and controllable fragmentation with switching or modulation capabilities for mass spectrometric detection and identification of samples deposited on them.
NASA Astrophysics Data System (ADS)
Yosri, M. H.; Muhamad, P.; Ismail, M. A.; Yatim, N. H. M.
2018-01-01
Dust and fiber have been identified among the highest contributor for the defect in automotive painting line with range from 40% to 50% of total defect breakdown. Eventually, those defects will effect on both visual appearance and also the performance of the parts. In addition, the significance of controlling dust in an assembly line is crucial in order to maintain the quality of the product, part performance yield and effect on workers’ health [1]. By considering the principle and technology applied in electronic clean room technology, the ionizer have been introduce to control dust contamination in automotive painting line. The first auto maker industry whom found the effectiveness of the clean room application to reduce the defect and production line downtime was Chrysler [2]. By doing so, it’s allowed the transmission plant to offer 50 000 mile guarantee on the transmission systems. The main objective of this research is to verify the effectiveness of ionizer device in order to reduce the rejection contribute by dust and fiber particle in the automotive painting line. Towards the main objective, a few sub areas will be explored, as a supporting factor to ensure the result gain from this study is solid and constructive. The experiment start by verifying the electrostatic value of the raw material (substrate) before and after the ionizer treatment. From here the correlation of the electrostatic value generated by the raw material that effect to production pass rate can be explored. At the meantime, the performance of the production pass rate after the ionizer treatment which related to the painted surface area can be determined.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2017-03-01
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
Zimmermann, P; Weiss, U; Classen, H G; Wendt, B; Epple, A; Zollner, H; Temmel, W; Weger, M; Porta, S
2000-07-14
The impact of three different magnesium diets (70, 1,000 and 9,000 ppm) on total, ionized and bound magnesium as well as ionized calcium in serum and total calcium and magnesium in femoral bone, skeletal muscle, heart and liver of male Sprague-Dawley rats was investigated. The percentage of ionized serum magnesium was unproportionally high in rats fed a low magnesium (70 ppm) diet. Femoral magnesium was correlated with ionized and total serum magnesium. In contrast, there was generally no correlation between total serum magnesium and the magnesium fractions in skeletal muscle, heart and liver. In rats fed the magnesium deficient diet, total cardiac concentration of magnesium was even significantly increased along with total calcium content, while there were no effects on total muscle and liver magnesium. Within the single groups, ionized serum calcium was never proportional to dietary magnesium, but in all three magnesium diet groups together, it was inversely correlated with dietary magnesium. Moreover, ionized serum calcium was inversely correlated with both ionized and total serum magnesium. In all 3 groups together, the concentrations of total calcium and magnesium in heart and skeletal muscle were correlated, within the single groups correlation existed only in the 1000 ppm group. Magnesium influx via calcium channels during low magnesium intake has been seen in non cardiac tissues [35,36], but nothing similar is known about non selective channels for divalent cations in the heart [33]. Thus, magnesium uptake by cardiac cells along with calcium seems to be possible, especially at low intracellular magnesium concentrations, but is still poorly investigated. We suggest that the calcium-antagonistic effect of magnesium is related to the turnover rate of magnesium rather than to its tissue concentrations.
Relative L-shell X-ray intensities of Pt, Pb and Bi following ionization by 59.54 keV γ-rays
NASA Astrophysics Data System (ADS)
Dhal, B. B.; Padhi, H. C.
1994-12-01
Relative L-shell X-ray intensities of Pt, Pb and Bi have been measured following ionization by 59.54 keV photons from an 241 Am point source. The measured ratios have been compared with the theoretical ratios estimated using the photoionization cross-sections of Scofield and different decay yield data. The comparison shows good agreement for Pb and Bi with the decay yield data of Krause, but the decay yield data of Xu and Xu overestimates the ratios, particularly for the {I γ}/{I α} ratio. Our results for Pb and Bi with improved error limits also agree with the previous experimental results of Shatendra et al. For Pt our present results are found to lie between the two theoretical results obtained by using different sets of decay yield data.
NASA Astrophysics Data System (ADS)
Lai, Yu Hang; Xu, Junliang; Szafruga, Urszula B.; Talbert, Bradford K.; Gong, Xiaowei; Zhang, Kaikai; Fuest, Harald; Kling, Matthias F.; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.
2017-12-01
Strong-field-ionization yield versus intensity is investigated for various atomic targets (Ne, Ar, Kr, Xe, Na, K, Zn, and Mg) and light polarization from visible to mid-infrared (0.4-4 μ m ), from multiphoton to tunneling regimes. The experimental findings (normalized yield vs intensity, ratio of circular to linear polarization and saturation intensities) are compared to the theoretical models of Perelomov-Popov-Terent'ev (PPT) and Ammosov-Delone-Krainov (ADK). While PPT is generally satisfactory, ADK validity is found, as expected, to be much more limited.
LASER DESORPTION/IONIZATION OF SINGLE ULTRAFINE MULTICOMPONENT AEROSOLS. (R823980)
Laser desorption/ionization characteristics of single
ultrafine multicomponent aerosols have been investigated.
The results confirm earlier findings that (a) the negative
ion spectra are dominated by free electrons and (b) the ion
yield-to-mass ratio is higher for ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine
2016-05-10
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation andmore » photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.« less
Electron beam plasma ionizing target for the production of neutron-rich nuclides
NASA Astrophysics Data System (ADS)
Panteleev, V. N.; Barzakh, A. E.; Essabaa, S.; Fedorov, D. V.; Ionan, A. M.; Ivanov, V. S.; Lau, C.; Leroy, R.; Lhersonneau, G.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Stroe, L.; Tecchio, L. B.; Villari, A. C. C.; Volkov, Yu. M.
2008-10-01
The production of neutron-rich Ag, In and Sn isotopes from a uranium carbide target of a high density has been investigated at the IRIS facility in the PLOG (PNPI-Legnaro-GANIL-Orsay) collaboration. The UC target material with a density of 12 g/cm3 was prepared by the method of powder metallurgy in a form of pellets of 2 mm thickness, 11 mm in diameter and grain dimensions of about 20 μm. The uranium target mass of 31 g was exposed at a 1 GeV proton beam of intensity 0.05-0.07 μA. For the ionization of the produced species the electron beam-plasma ionization inside the target container (ionizing target) has been used. It was the first experiment when the new high density UC target material was exploited with the electron-plasma ionization. Yields of Sn isotopes have been measured in the target temperature range of (1900-2100) °C. The yields of some Pd, In and Cd isotopes were measured as well to compare to previously measured ones from a high density uranium carbide target having a ceramic-like structure. For the first time a nickel isotope was obtained from a high density UC target.
Zhang, Keda; Abraham, Michael H; Liu, Xiangli
2017-04-15
Experimental values of permeability coefficients, as log K p , of chemical compounds across human skin were collected by carefully screening the literature, and adjusted to 37°C for the effect of temperature. The values of log K p for partially ionized acids and bases were separated into those for their neutral and ionic species, forming a total data set of 247 compounds and species (including 35 ionic species). The obtained log K p values have been regressed against Abraham solute descriptors to yield a correlation equation with R 2 =0.866 and SD=0.432 log units. The equation can provide valid predictions for log K p of neutral molecules, ions and ionic species, with predictive R 2 =0.858 and predictive SD=0.445 log units calculated by the leave-one-out statistics. The predicted log K p values for Na + and Et 4 N + are in good agreement with the observed values. We calculated the values of log K p of ketoprofen as a function of the pH of the donor solution, and found that log K p markedly varies only when ketoprofen is largely ionized. This explains why models that neglect ionization of permeants still yield reasonable statistical results. The effect of skin thickness on log K p was investigated by inclusion of two indicator variables, one for intermediate thickness skin and one for full thickness skin, into the above equation. The newly obtained equations were found to be statistically very close to the above equation. Therefore, the thickness of human skin used makes little difference to the experimental values of log K p . Copyright © 2017 Elsevier B.V. All rights reserved.
Mass Yields and Average Total Kinetic Energy Release in Fission for 235U, 238U, and 239Pu
NASA Astrophysics Data System (ADS)
Duke, Dana
2015-10-01
Mass yield distributions and average total kinetic energy (TKE) in neutron induced fission of 235U, 238U, and 239Pu targets were measured with a gridded ionization chamber. Despite decades of fission research, our understanding of how fragment mass yields and TKE depend on incident neutron energy is limited, especially at higher energies (above 5-10 MeV). Improved accuracy in these quantities is important for nuclear technology as it enhances our simulation capabilities and increases the confidence in diagnostic tools. The data can also guide and validate theoretical fission models where the correlation between the fragment mass and TKE is of particular value for constraining models. The Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE - WNR) provides a neutron beam with energies from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on target nuclei 235U, 238U, and 239Pu will be presented with a focus on exploring data trends as a function of neutron energy from thermal through 30 MeV. Results indicate clear evidence of structure due to multi-chance fission in the TKE . LA-UR-15-24761.
NASA Astrophysics Data System (ADS)
Jalarama Reddy, K.; Jayathilakan, K.; Pandey, M. C.
2015-12-01
Effect of rice bran oil (RBO) and irradiation (0, 1, 2 and 3 kGy) on lipid and protein quality of ready-to-eat mutton kheema were established during refrigerated storage (4±1 °C). Total carbonyls, thiobarbituric acid reactive substance (TBARS), non-heme iron and total volatiles in irradiated RBO samples were significantly lower (p<0.05) from the corresponding sunflower oil (SFO) treated samples initially and during storage. Product with RBO and Flaxseed oil (FSO) at the optimized level yielded a designer meat product having an SFA:MUFA:PUFA and n-6/n-3 ratio of 1:1.3:1.3 and 3.6:1 respectively. Degradation in PUFA levels in SFO samples were significantly higher (p<0.05) and an increase of 31% in metmyoglobin after 50 days was noticed in comparison with RBO samples. Non-linear correlation analysis of chemical markers established polynomial fit equations. 2 kGy radiation processing with RBO yielded a product having 50 days of shelf stability in terms of its chemical characteristics.
NASA Astrophysics Data System (ADS)
Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen
2017-07-01
Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, H.
We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less
NASA Astrophysics Data System (ADS)
Campbell, Ian S.; Ton, Alain T.; Mulligan, Christopher C.
2011-07-01
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.
Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges
NASA Astrophysics Data System (ADS)
Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.
2013-01-01
Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.
Campbell, Ian S; Ton, Alain T; Mulligan, Christopher C
2011-07-01
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.
Coherent control of strong-field two-pulse ionization of Rydberg atoms.
Fedorov, M; Poluektov, N
2000-02-28
Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.
Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.
2007-03-01
Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.
Tiernan, T. O.; Chang, C.; Cheng, C. C.
1980-01-01
A systematic study of the negative-ion chemical ionization mass spectra produced by the reaction of F− with a wide variety of organic compounds has been accomplished. A time-of-flight mass spectrometer fitted with a modified high pressure ion source was employed for these experiments. The F− reagent ion was generated from CF3H or NF3, typically at an ion source pressure of 100 μm. In pure NF3, F− is the major ion formed and constitutes more than 90% of the total ion intensity. While F− is also the major primary ion formed in pure CF3H, it undergoes rapid ion-molecule reactions at elevated source pressures, yielding (HF)nF− (n = 1−3) ions, which makes CF3H less suitable as a chemical ionization reagent gas. Among the organic compounds investigated were carboxylic acids, ketones, aldehydes, esters, alcohols, phenols, halides, nitriles, nitrobenzene, ethers, amines and hydrocarbons. An intense (M − 1)− ion was observed in the F− chemical ionization mass spectra of carboxylic acids, ketones, aldehydes and phenols. Alcohols yield only (M + F)− ions upon reaction with F−. A weaker (M + F)− ion was also detected in the F− chemical ionization spectra of carboxylic acids, aldehydes, ketones and nitriles. The F− chemical ionization mass spectra of esters, halides, nitriles, nitrobenzene and ethers are characterized primarily by the ions, RCOO−, X−, CN−, NO2−, and OR−, respectively. In addition, esters show a very weak (M − 1)− ion (except formates). In the F− chemical ionization spectra of some aliphatic alkanes and o-xylene, a very weak (M + F)− ion was observed. Amines and aliphatic alkenes exhibit only insignificant fragment ions under similar conditions, while aromatic hydrocarbons, such as benzene and toluene are not reactive at all with the F− ion. The mechanisms of the various reactions mentioned are discussed, and several experimental complications are noted. In still other studies, the effects of varying several experimental parameters, including source pressure, relative proportions of the reagent and analyte, and other ion source parameters, on the observed chemical ionization mass spectra were also investigated. In a mixture of NF3 and n-butanol, for example, the ratio of the intensities of the ions characteristic of the alcohol to that of the (HF)nF− ion was found to decrease with increasing sample pressure, with increasing NF3 pressure, and with increasing electron energy. No significant effects on the spectra were observed to result from variation of the source repeller field or the source temperature. The addition of argon to the source as a potential moderator did not alter the F− chemical ionization spectrum significantly, but the use of oxygen appears to inhibit formation of the (HF)nF− cluster ion. The advantages of using F− as a chemical ionization reagent are discussed, and comparisons are made with other reagent ions. PMID:7428746
Extreme ultraviolet photoionization of aldoses and ketoses
NASA Astrophysics Data System (ADS)
Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.
2011-04-01
Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuan; Gottwald, T.; Mattolat, C.
We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less
Liu, Yuan; Gottwald, T.; Mattolat, C.; ...
2017-03-20
We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less
Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas
2017-10-10
An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in somewhat less accurate ionization energies, which, however, are almost as accurate as those obtained from the most commonly used G 0 W 0 variants.
NASA Astrophysics Data System (ADS)
Gets, A. V.; Krainov, V. P.
2018-01-01
The yield of spontaneous photons at the tunneling ionization of atoms by intense low-frequency laser radiation near the classical cut-off is estimated analytically by using the three-step model. The Bell-shaped dependence in the universal photon spectrum is explained qualitatively.
Solar coronal temperature diagnostics using emission line from multiple stages of ionization of iron
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Thompson, William T.
1994-01-01
We obtained spatially resolved extreme-ultraviolet (EUV) spectra of AR 6615 on 1991 May 7 with NASA/ Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS). Included are emission lines from four different stages of ionization of iron: Fe(+15) lambda 335 A, Fe(+14) lambda 327 A, Fe(+13) lambda 334 A, and Fe(+12) lambda 348 A. Using intensity ratios from among these lines, we have calculated the active region coronal temperature along the Solar Extreme Ultraviolet Telescope and Spectrograph (SERTS) slit. Temperatures derived from line ratios which incorporate adjacent stages of ionization are most sensitive to measurement uncertainties and yield the largest scatter. Temperatures derived from line ratios which incorporate nonadjacent stages of ionization are less sensitive to measurement uncertainties and yield little scatter. The active region temperature derived from these latter ratios has an average value of 2.54 x 10(exp 6) K, with a standard deviation approximately 0.12 x 10(exp 6) K, and shows no significant variation with position along the slit.
NASA Technical Reports Server (NTRS)
Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.
1994-01-01
Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).
New Experimental Results of Simulating Micrometeoroid Ablation in the Laboratory
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Thomas, Evan; DeLuca, Michael; Janches, Diego; Munsat, Tobin; Plane, John
2017-04-01
A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron, aluminum and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A new optical observation setup using a 64 channel PMT system was added to the setup to allow the observation of the ablating particle and deceleration of the particle from the neutral drag. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The new experimental data using aluminum particles suggest that the neutral drag acting of the particle is smaller than expected.
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Dateo, Christopher E.
2005-01-01
The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.
Moskovets, Eugene
2015-01-01
RATIONALE Understanding the mechanisms of MALDI promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample has been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laserless matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser was turned off and MALDI sample was removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly- and doubly-charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of the supersonic jet from the inlet capillary accelerating detached particles to kinetic energies suitable for matrix-assisted hypersonic-velocity impact ionization. PMID:26212165
NASA Technical Reports Server (NTRS)
Green, T. J.
1973-01-01
Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.
Electron propagator calculations on the ionization energies of CrH -, MnH - and FeH -
NASA Astrophysics Data System (ADS)
Lin, Jyh-Shing; Ortiz, J. V.
1990-08-01
Electron propagator calculations with unrestricted Hartree-Fock reference states yield the ionization energies of the title anions. Spin contamination in the anionic reference state is small, enabling the use of second-and third-order self-energies in the Dyson equation. Feynman-Dyson amplitudes for these ionizations are essentially identical to canonical spin-orbitals. For most of the final states, these consist of an antibonding combination of an sp metal hybrid, polarized away from the hydrogen, and hydroegen s functions. In one case, the Feynman-Dyson amplitude consists of nonbonding d functions. Calculated ionization energies are within 0.5 eV of experiment.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.;
2012-01-01
Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.
Carbon atom and cluster sputtering under low-energy noble gas plasma bombardment
NASA Astrophysics Data System (ADS)
Oyarzabal, E.; Doerner, R. P.; Shimada, M.; Tynan, G. R.
2008-08-01
Exit-angle resolved carbon atom and cluster (C2 and C3) sputtering yields are measured during different noble gas (Xe, Kr, Ar, Ne, and He) ion bombardments from a plasma, for low incident energies (75-225 eV). A quadrupole mass spectrometer (QMS) is used to detect the fraction of sputtered neutrals that is ionized in the plasma and to obtain the angular distribution by changing the angle between the target normal and the QMS aperture. A one-dimensional Monte Carlo code is used to simulate the interaction of the plasma and the sputtered particles in the region between the sample and the QMS. The effective elastic scattering cross sections of C, C2, and C3 with the different bombarding gas neutrals are obtained by varying the distance between the sample and the QMS and by performing a best fit of the simulation results to the experimental results. The total sputtering yield (C+C2+C3) for each bombarding gas is obtained from weight-loss measurements and the sputtering yield for C, C2, and C3 is then calculated from the integration of the measured angular distribution, taking into account the scattering and ionization of the sputtered particles between the sample and the QMS. We observe undercosine angular distributions of the sputtered atoms and clusters for all the studied bombarding gases and a clear decrease of the atom to cluster (C2 and C3) sputtering ratio as the incident ion mass increases, changing from a carbon atom preferential erosion for the lower incident ion masses (He, Ne, and Ar) to a cluster preferential erosion for the higher incident ion masses (Kr and Xe).
Luminescence of water or ice as a new detection method for magnetic monopoles
NASA Astrophysics Data System (ADS)
Pollmann, Anna Obertacke
2017-12-01
Cosmic ray detectors use air as a radiator for luminescence. In water and ice, Cherenkov light is the dominant light producing mechanism when the particle's velocity exceeds the Cherenkov threshold, approximately three quarters of the speed of light in vacuum. Luminescence is produced by highly ionizing particles passing through matter due to the electronic excitation of the surrounding molecules. The observables of luminescence, such as the wavelength spectrum and decay times, are highly dependent on the properties of the medium, in particular, temperature and purity. The results for the light yield of luminescence of previous measurements vary by two orders of magnitude. It will be shown that even for the lowest measured light yield, luminescence is an important signature of highly ionizing particles below the Cherenkov threshold. These could be magnetic monopoles or other massive and highly ionizing exotic particles. With the highest observed efficiencies, luminescence may even contribute significantly to the light output of standard model particles such as the PeV IceCube neutrinos. We present analysis techniques to use luminescence in neutrino telescopes and discuss experimental setups to measure the light yield of luminescence for the particular conditions in neutrino detectors.
Publications - GMC 14 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 14 Publication Details Title: Total organic carbon and flame ionization detectable carbon Unknown, 1979, Total organic carbon and flame ionization detectable carbon analyses cuttings from on-shore
Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Chen, Dakai; Oldham, Timothy R.; Sanders, Anthony B.; Kim, Hak S.; Campola, Michael J.; Buchner, Stephen P.; LaBel, Kenneth A.; Marshall, Cheryl J.; Pellish, Jonathan A.;
2010-01-01
Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
NASA Astrophysics Data System (ADS)
Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko
2009-06-01
We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.
Statistical time-dependent model for the interstellar gas
NASA Technical Reports Server (NTRS)
Gerola, H.; Kafatos, M.; Mccray, R.
1974-01-01
We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.
Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Weickhardt, C.; Grun, C.; Grotemeyer, J.
1998-12-01
Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent.
Physical parameters for proton induced K-, L-, and M-shell ionization processes
NASA Astrophysics Data System (ADS)
Shehla; Puri, Sanjiv
2016-10-01
The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.;
2011-01-01
Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R
2007-04-06
Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.
Brainard, Benjamin M; Campbell, Vicki L; Drobatz, Kenneth J; Perkowski, Sandra Z
2007-03-01
To demonstrate the effect of anesthesia and surgery on serum ionized magnesium and ionized calcium concentrations in clinical canine and feline patients. 37 client-owned dogs, ASA PS I-III and 10 client-owned cats, ASA PS I, all receiving anesthesia for elective or emergent surgery at a Veterinary Teaching Hospital. Plasma ionized and serum total magnesium, and plasma ionized calcium were measured prior to and after a group-standardized anesthetic protocol. Regardless of pre-operative medication (hydromorphone or butorphanol), anesthetic induction (thiopental or lidocaine/hydromorphone/diazepam (LHD) and propofol combination), or type of surgical procedure (peripheral surgery or laparotomy), post-operative plasma ionized calcium concentration decreased in all groups of dogs, while post-operative plasma ionized magnesium increased in all groups, although the changes were not always significant. The dogs who were induced with an LHD and propofol technique had a greater increase in ionized magnesium (0.36 +/- 0.07 to 0.42 +/- 0.07 mmol L(-1)) than the group in which anesthesia was induced with thiopental (0.41 +/- 0.07 to 0.42 +/- 0.07 mmol L(-1), p = 0.009). The cats showed similar changes in ionized magnesium and ionized calcium, and also had a significant increase in serum total magnesium (2.17 +/- 0.20 to 2.31 +/- 0.25 mg dL(-1), p = 0.009) CONCLUSIONS, CLINICAL RELEVANCE: A post-operative decrease in ionized calcium was demonstrated in healthy animals, as well as an increase in ionized or total magnesium after various anesthetic protocols and surgeries. These changes, while statistically significant, do not appear to be clinically significant, as values remained within reference ranges at all times.
NASA Astrophysics Data System (ADS)
Bagán, H.; Tarancón, A.; Rauret, G.; García, J. F.
2008-07-01
The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach.
Ionized hypercalcemia in dogs: a retrospective study of 109 cases (1998-2003).
Messinger, J S; Windham, W R; Ward, C R
2009-01-01
Serum hypercalcemia in dogs has been reported in association with a variety of diseases. Serum-ionized calcium (iCa) concentration is a more accurate measure of hypercalcemia than total serum calcium or corrected serum calcium concentrations. The severity of hypercalcemia has been utilized to suggest the most likely differential diagnosis for the hypercalcemia. Diseases causing ionized hypercalcemia may be different than those that cause increases in total or corrected serum calcium concentrations. The severity of ionized hypercalcemia in specific diseases cannot be used to determine the most likely differential diagnosis for ionized hypercalcemia. One-hundred and nine client-owned dogs with a definitive cause for their ionized hypercalcemia evaluated between 1998 and 2003 were included in this study. Retrospective, medical records review. Neoplasia, specifically lymphosarcoma, followed by renal failure, hyperparathyroidism, and hypoadrenocorticism were the most common causes of ionized hypercalcemia. Dogs with lymphoma and anal sac adenocarcinoma have higher serum iCa concentrations than those with renal failure, hypoadrenocorticism, and other types of neoplasia. The magnitude of serum-ionized hypercalcemia did not predict specific disease states. Serum-ionized hypercalcemia was most commonly associated with neoplasia, specifically lymphosarcoma. Although dogs with lymphosarcoma and anal sac adenocarcinoma had higher serum iCa concentrations than dogs with other diseases, the magnitude of the serum iCa concentration could not be used to predict the cause of hypercalcemia. Total serum calcium and corrected calcium concentrations did not accurately reflect the calcium status of the dogs in this study.
Electron-Impact Total Ionization Cross Sections of CH and C2H2
Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene
1997-01-01
Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; O'Bryan, Martha V.; Buchner, Stephen P.; Poivey, Christian; Ladbury, Ray L.; LaBel, Kenneth A.
2007-01-01
Sensitivity of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
Du, Lihong; White, Robert L
2009-02-01
A previously proposed partition equilibrium model for quantitative prediction of analyte response in electrospray ionization mass spectrometry is modified to yield an improved linear relationship. Analyte mass spectrometer response is modeled by a competition mechanism between analyte and background electrolytes that is based on partition equilibrium considerations. The correlation between analyte response and solution composition is described by the linear model over a wide concentration range and the improved model is shown to be valid for a wide range of experimental conditions. The behavior of an analyte in a salt solution, which could not be explained by the original model, is correctly predicted. The ion suppression effects of 16:0 lysophosphatidylcholine (LPC) on analyte signals are attributed to a combination of competition for excess charge and reduction of total charge due to surface tension effects. In contrast to the complicated mathematical forms that comprise the original model, the simplified model described here can more easily be employed to predict analyte mass spectrometer responses for solutions containing multiple components. Copyright (c) 2008 John Wiley & Sons, Ltd.
Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case
NASA Technical Reports Server (NTRS)
Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.
2013-01-01
We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.
Energy Balance for a Sonoluminescence Bubble Yields a Measure of Ionization Potential Lowering
NASA Astrophysics Data System (ADS)
Kappus, B.; Bataller, A.; Putterman, S. J.
2013-12-01
Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.
Energy balance for a sonoluminescence bubble yields a measure of ionization potential lowering.
Kappus, B; Bataller, A; Putterman, S J
2013-12-06
Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6 eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.
Analysis of iodinated quorum sensing peptides by LC-UV/ESI ion trap mass spectrometry.
Janssens, Yorick; Verbeke, Frederick; Debunne, Nathan; Wynendaele, Evelien; Peremans, Kathelijne; De Spiegeleer, Bart
2018-02-01
Five different quorum sensing peptides (QSP) were iodinated using different iodination techniques. These iodinated peptides were analyzed using a C 18 reversed phase HPLC system, applying a linear gradient of water and acetonitrile containing 0.1% (m/v) formic acid as mobile phase. Electrospray ionization (ESI) ion trap mass spectrometry was used for the identification of the modified peptides, while semi-quantification was performed using total ion current (TIC) spectra. Non-iodinated peptides and mono- and di-iodinated peptides (NIP, MIP and DIP respectively) were well separated and eluted in that order. Depending on the used iodination method, iodination yields varied from low (2%) to high (57%).
A Compendium of Recent Optocoupler Radiation Test Data
NASA Technical Reports Server (NTRS)
Label, K. A.; Kniffin, S. D.; Reed, R. A.; Kim, H. S.; Wert, J. L.; Oberg, D. L.; Normand, E.; Johnston, A. H.; Lum, G. K.; Koga, R.;
2000-01-01
We present a compendium of optocoupler radiation test data including neutron, proton and heavy ion Displacement Damage (DD), Single Event Transients (SET) and Total Ionizing Dose (TID). Proton data includes ionizing and non-ionizing damage mechanisms.
Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP
NASA Technical Reports Server (NTRS)
Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.
2017-01-01
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.
NASA Astrophysics Data System (ADS)
Souda, Ryutaro
2009-06-01
The ionization mechanism of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry in the temperature range of 15-300 K. Analyses of 1-ethyl-3-methylimidazolium bis[trifluoromethanesulfonyl]imide ([emim][Tf2N]) deposited on a Ni(111) substrate revealed that the [emim]+ and [Tf2N]- yields increase together with the Ni+ yield at monolayer coverage; no such increase was observed for the films deposited on a D2O spacer layer. Results indicated that the [emim][Tf2N] molecule is not perfectly ionized; the Ni(111) surface accepts (for [emim]+) or donates (for [Tf2N]-) an electron with higher efficiency than the counterion because of the metal band effect. This phenomenon might be induced by electrostatic interactions between the separated cation and anion during sputtering. It is also suggested that the sputtered Ni atom can be ionized nonadiabatically by the formation of a quasimolecule with adspecies. The multilayer of [emim][Tf2N] deposited at 15 K has a porous structure, resembling that of polar molecules, because of nonionic intermolecular interactions. The phase transition is identifiable, together with the morphological change in the crystalline film, from temperature evolutions of the secondary ion yields.
Dynamics of the CRRES barium releases in the magnetosphere
NASA Technical Reports Server (NTRS)
Fuselier, S. A.; Mende, S. B.; Geller, S. P.; Miller, M.; Hoffman, R. A.; Wygant, J. R.; Pongratz, M.; Meredith, N. P.; Anderson, R. R.
1994-01-01
The Combined Release and Radiation Effects Satellite (CRRES) G-2, G-3, and G-4 ionized and neutral barium cloud positions are triangulated from ground-based optical data. From the time history of the ionized cloud motion perpendicular to the magnetic field, the late time coupling of the ionized cloud with the collisionless ambient plasma in the magnetosphere is investigated for each of the releases. The coupling of the ionized clouds with the ambient medium is quantitatively consistent with predictions from theory in that the coupling time increases with increasing distance from the Earth. Quantitative comparison with simple theory for the couping time also yields reasonable agreement. Other effects not predicted by the theory are discussed in the context of the observations.
Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator
NASA Technical Reports Server (NTRS)
Chen, Dakai; Forney, James
2017-01-01
The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).
Yield and ion distribution for the barium cloud at 31,000 kilometers, September 21, 1971.
NASA Technical Reports Server (NTRS)
Manring, E. R.; Patty, R. R.
1973-01-01
The photon flux density associated with the 4554-A resonance radiation for Ba II was measured at Mount Hopkins, Arizona, and Cerro Morado, Chile, and was determined to be 36,000 photon/sq cm sec outside the atmosphere; this measurement was made when the cloud was optically thin at 120 sec after release. Using this and a photon scattering efficiency of 0.66 photon/ion sec we estimate a 1.7-kg yield of barium ions that are formed from the initially released atomic barium and are thus associated with the main core of the cloud. Photographic and photometric data are combined to obtain preliminary values for the brightness throughout the cloud for two photographs, and isobrightness plots are presented. These plots indicate that the cloud is quite narrow, that a considerable portion of the ionized barium is outside the main core after a few minutes, and that the striations contain only a small fraction of the total material.
Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.
2007-09-01
Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegfried, M.
2015-10-14
The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For thismore » study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.« less
Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry
NASA Astrophysics Data System (ADS)
Tian, Hua; Wucher, Andreas; Winograd, Nicholas
2016-02-01
Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn + ( n = 1000-10,000) to form a mixed cluster. The `tailored beam' has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl- , allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H-D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1-8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.
NASA Technical Reports Server (NTRS)
Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.
1990-01-01
An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belz, J.; Cao, Z.; Huentemeyer, P.
Measurements are reported on the fluorescence of air as a function of depth in electromagnetic showers initiated by bunches of 28.5 GeV electrons. The light yield is compared with the expected and observed depth profiles of ionization in the showers. It validates the use of atmospheric fluorescence profiles in measuring ultra high energy cosmic rays.
Scattering of low-energetic atoms and molecules from a boron-doped CVD diamond surface
NASA Astrophysics Data System (ADS)
Allenbach, M.; Neuland, M. B.; Riedo, A.; Wurz, P.
2018-01-01
For the detection of low energetic neutral atoms for the remote sensing of space plasmas, charge state conversion surfaces are used to ionize the neutrals for their subsequent measurement. We investigated a boron-doped Chemical Vapor Deposition (CVD) diamond sample for its suitability to serve as a conversion surface on future space missions, such as NASA's Interstellar Mapping and Acceleration Probe. For H and O atoms incident on conversion surface with energies ranging from 195 to 1000 eV and impact angles from 6° to 15° we measured the angular scattering distributions and the ionization yields. Atomic force microscope and laser ablation ionization mass spectrometry analyses were applied to further characterize the sample. Based on a figure-of-merit, which included the ionization yield and angular scatter distribution, the B-doped CVD surface was compared to other, previously characterized conversion surfaces, including e.g. an undoped CVD diamond with a metallized backside. For particle energies below 390 eV the performance of the B-doped CVD conversion surfaces is comparable to surfaces studied before. For higher energies the figure-of-merit indicates a superior performance. From our studies we conclude that the B-doped CVD diamond sample is well suited for its application on future space missions.
Application of paper spray ionization for explosives analysis.
Tsai, Chia-Wei; Tipple, Christopher A; Yost, Richard A
2017-10-15
A desired feature in the analysis of explosives is to decrease the time of the entire analysis procedure, including sampling. A recently utilized ambient ionization technique, paper spray ionization (PSI), provides the possibility of combining sampling and ionization. However, an interesting phenomenon that occurs in generating negatively charged ions pose some challenges in applying PSI to explosives analysis. The goal of this work is to investigate the possible solutions for generating explosives ions in negative mode PSI. The analysis of 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) was performed. Several solvent systems with different surface tensions and additives were compared to determine their effect on the ionization of explosives. The solvents tested include tert-butanol, isopropanol, methanol, and acetonitrile. The additives tested were carbon tetrachloride and ammonium nitrate. Of the solvents tested, isopropanol yielded the best results. In addition, adding ammonium nitrate to the isopropanol enhanced the analyte signal. Experimentally determined limits of detection (LODs) as low as 0.06 ng for PETN, on paper, were observed with isopropanol and the addition of 0.4 mM ammonium nitrate as the spray solution. In addition, the explosive components of two plastic explosive samples, Composition 4 and Semtex, were successfully analyzed via surface sampling when using the developed method. The analysis of explosives using PSI-MS in negative ion mode was achieved. The addition of ammonium nitrate to isopropanol, in general, enhanced the analyte signal and yielded better ionization stability. Real-world explosive samples were analyzed, which demonstrates one of the potential applications of PSI-MS analysis. Copyright © 2017 John Wiley & Sons, Ltd.
Rodríguez Pirani, Lucas S; Della Védova, Carlos O; Geronés, Mariana; Romano, Rosana M; Cavasso-Filho, Reinaldo; Ge, Maofa; Ma, Chunping; Erben, Mauricio F
2017-12-07
Both photoelectron spectroscopy (PES) data and PhotoElectron-PhotoIon-Coincidence (PEPICO) spectra obtained from a synchrotron facility have been used to examine the electronic structure and the dissociative ionization of halomethyl thiocyantes in the valence and shallow-core S 2p and Cl 2p regions. Two simple and closely related molecules, namely, CCl 3 SCN and CCl 2 FSCN, have been analyzed to assess the role of halogen substitution in the electronic properties of thiocyanates. The assignment of the He(I) photoelectron spectra has been achieved with the help of quantum chemical calculations at the outer-valence Green's function (OVGF) level of approximation. The first ionization energies observed at 10.55 and 10.78 eV for CCl 3 SCN and CCl 2 FSCN, respectively, are assigned to ionization processes from the sulfur lone pair orbital [n(S)]. When these molecules are compared with CX 3 SCN (X = H, Cl, F) species, a linear relationship between the vertical first ionization energy and electronegativity of CX 3 group is observed. Irradiation of CCl 3 SCN and CCl 2 FSCN with photons in the valence energy regions leads to the formation of CCl 2 X + and CClXSCN + ions (X = Cl or F). Additionally, the achievement of the fragmentation patterns and the total ion yield spectra obtained from the PEPICO data in the S 2p and Cl 2p regions and several dissociation channels can be inferred for the core-excited species by using the triple coincidence PEPIPICO (PhotoElectron-PhotoIon-PhotoIon-Coincidence) spectra.
NASA Astrophysics Data System (ADS)
Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.
2018-02-01
Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.
NASA Technical Reports Server (NTRS)
Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Mondy, Timothy K.;
2017-01-01
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.
2004-01-01
We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACS), among others.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.
2003-01-01
We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others.
Total Ionizing Dose Effects in Bipolar and BiCMOS Devices
NASA Technical Reports Server (NTRS)
Chavez, Rosa M.; Rax, Bernard G.; Scheick, Leif Z.; Johnston, Allan H.
2005-01-01
This paper describes total ionizing dose (TID) test results performed at JPL. Bipolar and BiCMOS device samples were tested exhibiting significant degradation and failures at different irradiation levels. Linear technology which is susceptible to low-dose dependency (ELDRS) exhibited greater damage for devices tested under zero bias condition.
Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis
NASA Astrophysics Data System (ADS)
Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong
2015-04-01
DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of lysis is primarily determined by the total ozone treatment time.
Lehrer, Steven; Rheinstein, Peter H; Rosenzweig, Kenneth E
2017-01-01
Exposure of the brain to ionizing radiation might promote the development of Alzheimer's disease (AD). Analysis of AD death rates versus radon background radiation and total background radiation in U.S. states. Total background, radon background, cosmic and terrestrial background radiation measurements are from Assessment of Variations in Radiation Exposure in the United States and Report No. 160 - Ionizing Radiation Exposure of the Population of the United States. 2013 AD death rates by U.S. state are from the Alzheimer's Association. Radon background ionizing radiation was significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.467, p = 0.001). Total background ionizing radiation was also significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.452, p = 0.001). Multivariate linear regression weighted by state population demonstrated that AD death rate was significantly correlated with radon background (β= 0.169, p < 0.001), age (β= 0.231, p < 0.001), hypertension (β= 0.155, p < 0.001), and diabetes (β= 0.353, p < 0.001). Our findings, like other studies, suggest that ionizing radiation is a risk factor for AD. Intranasal inhalation of radon gas could subject the rhinencephalon and hippocampus to damaging radiation that initiates AD. The damage would accumulate over time, causing age to be a powerful risk factor.
Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas
2012-01-01
Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637
MALDI-MS/MS with Traveling Wave Ion Mobility for the Structural Analysis of N-Linked Glycans
NASA Astrophysics Data System (ADS)
Harvey, David J.; Scarff, Charlotte A.; Crispin, Max; Scanlan, Christopher N.; Bonomelli, Camille; Scrivens, James H.
2012-11-01
The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.
Efficient ionisation of calcium, strontium and barium by resonant laser pumping
NASA Technical Reports Server (NTRS)
Skinner, C. H.
1980-01-01
Efficient ionization has been observed when an atomic vapor of strontium, barium or calcium was illuminated with a long pulse tunable laser at the frequency of the atomic resonance line. The variation in the degree of ionization with neutral density and laser intensity has been measured using the 'hook' method. The maximum ionization observed was 94%. Excited state populations were measured yielding an excitation temperature (depending on exact experimental conditions) in the region of 0.4 eV. The decay of ion density after the laser pulse was monitored and the recombination coefficients determined. The results are interpreted in terms of an electron heating model.
Critical ionization velocity experiments in space
NASA Astrophysics Data System (ADS)
Lai, Shu T.; Murad, Edmond
1989-07-01
Space experiments to test the critical ionization velocity (CIV) theory have, on the whole, yielded negative results, with two notable exceptions. The results of all the experiments are analyzed with a view towards either optimizing or drawing conclusions about the conditions which lead to the propagation of CIV. In particular, four aspects of the conditions are considered: (1) beam injection angle with the ambient magnetic field in the ionosphere; (2) length of a CIV discharge region in a conical beam; (3) collisional ionization of the neutrals; and (4) chemiionization processes. The analysis leads to the conclusion that using the exhaust of the Shuttle engines may be the best way for testing CIV.
Haddad, Mohamed; Herent, Marie-France; Tilquin, Bernard; Quetin-Leclercq, Joëlle
2007-07-25
The microbiological contamination of raw plant materials is common and may be adequately reduced by radiation processing. This study evaluated the effects of gamma- and e-beam ionizing radiations (25 kGy) on three plants used as food or as medicinal products (Thymus vulgaris L., Eucalyptus radiata D.C., and Lavandula angustifolia Mill.) as well as their effects on extracted or commercial essential oils and pure standard samples. Comparison between irradiated and nonirradiated samples was performed by GC/FID and GC/MS. At the studied doses, gamma and e-beam ionizing radiation did not induce any detectable qualitative or quantitative significant changes in the contents and yields of essential oils immediately after ionizing radiation of plants or commercial essential oils and standards. As the maximum dose tested (25 kGy) is a sterilizing dose (much higher than doses used for decontamination of vegetable drugs), it is likely that even decontamination with lower doses will not modify yields or composition of essential oils of these three plants.
NASA Astrophysics Data System (ADS)
Aydinol, Mahmut
2017-02-01
L shell and L subshells ionization cross sections σL and σLi (i = 1, 2, 3) following electron impact on (N,O, F, Ne, Na, Mg, Al, Si) atoms calculated. By using Lotz' equation for nonrelativistic cases in Matlab σL and σLi cross section values obtained for ten electron impact(Eo) values in the range of ELi
Effects of ionizing radiation on charge-coupled imagers
NASA Technical Reports Server (NTRS)
Killiany, J. M.; Baker, W. D.; Saks, N. S.; Barbe, D. F.
1975-01-01
The effects of ionizing radiation on three different charge coupled imagers have been investigated. Device performance was evaluated as a function of total gamma ray dose. The principal failure mechanisms have been identified for each particular device structure. The clock and bias voltages required for high total dose operation of the devices are presented.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.
2005-01-01
We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; O'Bryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.;
2014-01-01
We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion-induced single-event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). This paper is a summary of test results.
Lee, Meng-Rui; Tsai, Chia-Jung; Teng, Shih-Hua; Hsueh, Po-Ren
2015-01-01
Although some Weissella species play beneficial roles in food fermentation and in probiotic products, others such as Weissella confusa are emerging Gram-positive pathogens in immunocompromised hosts. Weissella species are difficult to identify by conventional biochemical methods and commercial automated systems and are easily misidentified as Lactobacillus and Leuconostoc species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly being used for bacterial identification. Little, however, is known about the effectiveness of MALDI-TOF MS in identifying clinical isolates of Weissella to the species level. In this study, we evaluated whether the MALDI-TOF MS Bruker Biotyper system could accurately identify a total of 20 W. confusa and 2 W. cibaria blood isolates that had been confirmed by 16s rRNA sequencing analysis. The MALDI-TOF Biotyper system yielded no reliable identification results based on the current reference spectra for the two species (all score values <1.7). New W. confusa spectra were created by randomly selecting 3 W. confusa isolates and external validation was performed by testing the remaining 17 W. confusa isolates using the new spectra. The new main spectra projection (MSP) yielded reliable score values of >2 for all isolates with the exception of one (score value, 1.963). Our results showed that the MSPs in the current database are not sufficient for correctly identifying W. confusa or W. cibaria. Further studies including more Weissella isolates are warranted to further validate the performance of MALDI-TOF in identifying Weissella species.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2014-12-01
Laser-induced ionization is a major process that initiates and drives the initial stages of laser-induced damage (LID) of high-quality transparent solids. The ionization and its contribution to LID are characterized in terms of the time-dependent ionization rate and conduction-band electron density. Considering femtosecond pulses of various durations (from 35 to 706 fs) and variable peak irradiances (from 0.01 to 60 TW/cm2), we use a single-rate equation to simulate time variations of conduction-band electron density and rates of the photoionization and impact ionization. The photoionization rate is evaluated with the Keldysh equation. At low irradiance, the electron density and total ionization rate demonstrate power scaling characteristic of multiphoton ionization. With the increase of irradiance, there is observed a saturation of the photoionization rate due to photoionization suppression by the Keldysh-type singularity during the increase in the number of simultaneously absorbed photons by 1. A striking result is that the saturation is followed by a stepwise transition from the ionization regime which is completely dominated by the photoionization to a regime totally dominated by the impact ionization. The transition results in the increase of the electron density by a few orders of magnitude induced by a variation of peak laser irradiance by about 15% to 20%. The physical effects that are involved are discussed.
Cosmic-Ray Nucleosynthesis of p-nuclei: Yields and Routes
NASA Astrophysics Data System (ADS)
Kusakabe, Motohiko; Mathews, Grant J.
2018-02-01
We investigate the cosmic-ray nucleosynthesis (CRN) of proton-rich stable nuclides (p-nuclides). We calculate the cosmic-ray (CR) energy spectra of heavy nuclides with mass number A=[74,209], taking into account the detailed nuclear spallation, decay, energy loss, and escape from the Galaxy during the CR propagation. We adopt the latest semiempirical formula SPACS for the spallation cross sections and the latest data on nuclear decay. Effective electron-capture decay rates are calculated using the proper cross sections for recombination and ionization in the whole CR energy region. Calculated CR spectral shapes vary for different nuclides. Abundances of proton-rich unstable nuclides increase in CRs with increasing energy relative to those of other nuclides. Yields of the primary and secondary spallation processes and differential yields from respective seed nuclides are calculated. We find that the CR energy region of ≤slant { \\mathcal O }(100) MeV/nucleon predominantly contributes to the total yields. The atomic cross sections in the low-energy range adopted in this study are then necessary. Effects of CRN on the Galactic chemical evolution of p-nuclides are calculated. Important seed nuclides are identified for respective p-nuclides. The contribution of CRN is significant for 180m Ta, accounting for about 20% of the solar abundance. About 87% of the 180m Ta CRN yield can be attributed to the primary process. The most important production routes are reactions of 181Ta, 180Hf, and 182W. CRN yields of other p-nuclides are typically about { \\mathcal O }(10‑4–10‑2) of solar abundances.
NASA Astrophysics Data System (ADS)
Oyarzabal, Eider
Exit-angle resolved Mo atom sputtering yield under Xe ion bombardment and carbon atom and cluster (C2 and C3) sputtering yields under Xe, Kr, Ar, Ne and He ion bombardment from a plasma are measured for low incident energies (75--225 eV). An energy-resolved quadrupole mass spectrometer (QMS) is used to detect the fraction of un-scattered sputtered neutrals that become ionized in the plasma; the angular distribution is obtained by changing the angle between the target and the QMS aperture. A one-dimensional Monte Carlo code is used to simulate the interaction of the plasma and the sputtered particles between the sample and the QMS. The elastic scattering cross-sections of C, C2 and C3 with the different bombarding gas neutrals is obtained by varying the distance between the sample and the QMS and by performing a best fit of the simulation results to the experimental results. Because the results obtained with the QMS are relative, the Mo atom sputtering results are normalized to the existing data in the literature and the total sputtering yield for carbon (C+C 2+C3) for each bombarding gas is obtained from weight loss measurements. The absolute sputtering yield for C, C2 and C 3 is then calculated from the integration of the measured angular distribution, taking into account the scattering and ionization of the sputtered particles between the sample and the QMS. The angular sputtering distribution for Mo has a maximum at theta=60°, and this maximum becomes less pronounced as the incident ion energy increases. The results of the Monte Carlo TRIDYN code simulation for the angular distribution of Mo atoms sputtered by Xe bombardment are in agreement with the experiments. For carbon sputtering under-cosine angular distributions of the sputtered atoms and clusters for all the studied bombarding gases are also observed. The C, C2 and C3 sputtering yield data shows a clear decrease of the atom to cluster (C/C2 and C/C3) sputtering ratio as the incident ion mass increases, changing from a carbon atom preferential erosion for the lower incident ion masses (He, Ne and Ar) to a cluster preferential erosion for the higher incident ion masses (Kr and Xe).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooden, Matthew; Arnold, Charles; Bhike, Megha
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurementmore » of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations.« less
Gooden, Matthew; Arnold, Charles; Bhike, Megha; ...
2017-09-13
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurementmore » of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations.« less
Study of Electron Ionization and Fragmentation of Non-hydrated and Hydrated Tetrahydrofuran Clusters
NASA Astrophysics Data System (ADS)
Neustetter, Michael; Mahmoodi-Darian, Masoomeh; Denifl, Stephan
2017-05-01
Mass spectroscopic investigations on tetrahydrofuran (THF, C4H8O), a common model molecule of the DNA-backbone, have been carried out. We irradiated isolated THF and (hydrated) THF clusters with low energy electrons (electron energy 70 eV) in order to study electron ionization and ionic fragmentation. For elucidation of fragmentation pathways, deuterated TDF (C4D8O) was investigated as well. One major observation is that the cluster environment shows overall a protective behavior on THF. However, also new fragmentation channels open in the cluster. In this context, we were able to solve a discrepancy in the literature about the fragment ion peak at mass 55 u in the electron ionization mass spectrum of THF. We ascribe this ion yield to the fragmentation of ionized THF clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samedov, V. V., E-mail: v-samedov@yandex.ru
Fluctuations of charge induced by charge carriers on the detector electrodes make a significant contribution to the energy resolution of ionization detectors, namely, semiconductor detectors and gas and liquid ionization chambers. These fluctuations are determined by the capture of charge carriers, as they drift in the bulk of the detector under the action of an electric field, by traps. In this study, we give a correct mathematical description of charge induction on electrodes of an ionization detector for an arbitrary electric field distribution in the detector with consideration of charge carrier capture by traps. The characteristic function obtained in thismore » study yields the general expression for the distribution function of the charge induced on the detector electrodes. The formulas obtained in this study are useful for analysis of the influence of charge carrier transport on energy resolution of ionization detectors.« less
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.
2010-10-01
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.
Effects of target heating on experiments using Kα and Kβ diagnostics.
Palmeri, P; Boutoux, G; Batani, D; Quinet, P
2015-09-01
We describe the impact of heating and ionization on emission from the target of Kα and Kβ radiation induced by the propagation of hot electrons generated by laser-matter interaction. We consider copper as a test case and, starting from basic principles, we calculate the changes in emission wavelength, ionization cross section, and fluorescence yield as Cu is progressively ionized. We have finally considered the more realistic case when hot electrons have a distribution of energies with average energies of 50 and 500 keV (representative respectively of "shock ignition" and of "fast ignition" experiments) and in which the ions are distributed according to ionization equilibrium. In addition, by confronting our theoretical calculations with existing data, we demonstrate that this study offers a generic theoretical background for temperature diagnostics in laser-plasma interactions.
Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R
2012-03-01
Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.
Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams.
Galassi, M E; Champion, C; Weck, P F; Rivarola, R D; Fojón, O; Hanssen, J
2012-04-07
Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons,whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.
Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams
NASA Astrophysics Data System (ADS)
Galassi, M. E.; Champion, C.; Weck, P. F.; Rivarola, R. D.; Fojón, O.; Hanssen, J.
2012-04-01
Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons, whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.
The accuracy of seminumerical reionization models in comparison with radiative transfer simulations
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-06-01
We have developed a modular seminumerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I), and single-ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different seminumerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the seminumerical approaches produce similar H II and He II morphologies and power spectra of the H I 21 cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double-ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our seminumerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20 per cent ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggest that constraining ionizing emissivity-sensitive parameters from seminumerical galaxy formation-reionization models are subject to photon nonconservation.
The accuracy of semi-numerical reionization models in comparison with radiative transfer simulations
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-03-01
We have developed a modular semi-numerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I) and singly ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different semi-numerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the semi-numerical approaches produce similar H II and He II morphologies and power spectra of the H I 21cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our semi-numerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20% ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggests that constraining ionizing emissivity sensitive parameters from semi-numerical galaxy formation-reionization models are subject to photon nonconservation.
Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin.
Liu, Weixi; Cohenford, Menashi A; Frost, Leslie; Seneviratne, Champika; Dain, Joel A
2014-01-01
Formation of advanced glycation end products (AGEs) by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of analytical methods including ultraviolet-visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA's AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs' total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA's glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia.
Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin
Liu, Weixi; Cohenford, Menashi A; Frost, Leslie; Seneviratne, Champika; Dain, Joel A
2014-01-01
Formation of advanced glycation end products (AGEs) by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of analytical methods including ultraviolet–visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA’s AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs’ total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA’s glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia. PMID:25473284
Quantitative modeling of total ionizing dose reliability effects in device silicon dioxide layers
NASA Astrophysics Data System (ADS)
Rowsey, Nicole L.
The electrical breakdown of oxides and oxide/semiconductor interfaces is one of the main reasons for device failure in integrated circuits, especially devices under high-stress conditions. One high-stress environment of interest is the space environment. All electronics are vulnerable to ionizing radiation; any high-energy particle that passes through an insulating layer will deposit unwanted charge there, causing shifts in device characteristics. Designing electronics for use in space can be a challenge, because much more energetic radiation exits in space than on Earth, as there is no atmosphere in space to collide with, and thereby reduce the energy of, energetic particles. Although oxide charging due to ionizing radiation creates well-known changes in device characteristics, or total ionizing dose effects, it is still poorly-understood exactly how these changes come about. There are many theories that draw upon a large body of both experimental work and, more recently, quantum-mechanical first principles calculations at the molecular level. This work uses FLOODS, a 3D object-oriented device simulator with multi-physics capability, to investigate these theories, by simulating oxide degradation in realistic device geometries, and comparing the subsequent degradation in device characteristics to experimental measurements. The charge trapping and defect-modulated transport models developed and implemented here have resulted in the first quantitative account of the enhanced low-dose-rate sensitivity effect, and are applicable in a comprehensive range of hydrogen environments. Measurements show that devices exposed to ionizing radiation at high dose rates exhibit less degradation that those exposed at low dose rates. Furthermore, the observed trend differs depending on the amount of hydrogen available before, during, and after irradiation. It is therefore important to understand and take into account the effects of dose rate and hydrogen when developing accelerated testing procedures for devices which have been exposed to various levels of hydrogen during processing and packaging, and which must be deployed in the low-dose-rate space environment. Thus, this work represents a substantial increase in the state-of-the-art, since a quantitative model has not previously been available. The success of the model is due in great part to the use of first-principles calculations of defect and hydrogen bond energies. Vanderbilt collaborators provided the results of these calculations as input to the FLOODS simulations. Using these physical insights, a sensitivity analysis in FLOODS yielded insights into key controlling parameters.
Kakizoe, Yuka; Sakaoka, Ken; Kakizoe, Futoshi; Yoshii, Makoto; Nakamura, Hitoshi; Kanou, Yoshihiko; Uchida, Itaru
2007-03-01
Hematologic characteristics and plasma chemistry values of juvenile loggerhead turtles (Caretta caretta) from the ages of 1 mo to 3 yr were obtained to establish baseline values. Five clinically normal loggerhead turtles were selected from the same clutch and raised in an indoor artificial nesting beach. Blood samples were successively collected and examined for various blood characteristics for a maximum total of 15 times. Hematologic characteristics, including packed cell volume, white blood cell counts, and white blood cell differentials; and plasma chemistry values, including total bilirubin, total protein, albumin, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, gamma-glutamic transpeptidase, creatinine, blood urea nitrogen, uric acid, alkaline phosphatase, amylase, triglyceride, total cholesterol, ionized sodium, ionized potassium and ionized chlorine, were measured. These results were used to establish a hematology and blood chemistry baseline for captive juvenile loggerhead turtles and will aid in their medical management.
Basic results on the equations of magnetohydrodynamics of partially ionized inviscid plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunez, Manuel
2009-10-15
The equations of evolution of partially ionized plasmas have been far more studied in one of their many simplifications than in its original form. They present a relation between the velocity of each species, plus the magnetic and electric fields, which yield as an analog of Ohm's law a certain elliptic equation. Therefore, the equations represent a functional evolution system, not a classical one. Nonetheless, a priori estimates and theorems of existence may be obtained in appropriate Sobolev spaces.
QTAIM electron density study of natural chalcones
NASA Astrophysics Data System (ADS)
González Moa, María J.; Mandado, Marcos; Cordeiro, M. Natália D. S.; Mosquera, Ricardo A.
2007-09-01
QTAIM atomic and bond properties, ionization potential, and O-H bond dissociation energies calculated at the B3LYP/6-311++G(2d,2p) level indicate the natural chalcones bear a significant radical scavenging activity. However, their ionization potentials indicate they decrease the electron-transfer rate between antioxidant and oxygen that yields the pro-oxidative cations less than other natural antioxidants. Rings A and B display slight and similar positive charges, whereas ring B is involved in exocycle delocalization at a larger extension.
Ihlenborg, Marvin; Schuster, Ann-Kathrin; Grotemeyer, Juergen; Gunzer, Frank
2018-01-01
Using lasers in ion mobility spectrometry offers a lot of advantages compared to standard ionization sources. Especially, the ion yield can be drastically increased. It can, however, reach levels where the Coulomb repulsion leads to unwanted side effects. Here, we investigate how the Coulomb repulsion can be detected apart from the typical signal broadening by measuring effects created already in the reaction region and comparing them with corresponding finite element method simulations.
Communication: Strong laser alignment of solvent-solute aggregates in the gas-phase
NASA Astrophysics Data System (ADS)
Trippel, Sebastian; Wiese, Joss; Mullins, Terry; Küpper, Jochen
2018-03-01
Strong quasi-adiabatic laser alignment of the indole-water-dimer clusters, an amino-acid chromophore bound to a single water molecule through a hydrogen bond, was experimentally realized. The alignment was visualized through ion and electron imaging following strong-field ionization. Molecular-frame photoelectron angular distributions showed a clear suppression of the electron yield in the plane of the ionizing laser's polarization, which was analyzed as strong alignment of the molecular cluster with ⟨cos2 θ2D⟩ ≥ 0.9.
Single and double multiphoton ionization of Li and Be atoms by strong laser fields
NASA Astrophysics Data System (ADS)
Telnov, Dmitry; Heslar, John; Chu, Shih-I.
2011-05-01
The time-dependent density functional theory with self-interaction correction and proper asymptotic long-range potential is extended for nonperturbative treatment of multiphoton single and double ionization of Li and Be atoms by strong 800 nm laser fields. We make use of the time-dependent Krieger-Li-Iafrate (TDKLI) exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. However, we have found that the discontinuity of the TDKLI potential is not sufficient to reproduce the characteristic feature of double ionization. This may happen because the discontinuity of the TDKLI potential is related to the spin particle numbers only and not to the total particle number. Introducing a discontinuity with respect to the total particle number to the exchange-correlation potential, we were able to obtain the knee structure in the intensity dependence of the double ionization probability of Be. This work was partially supported by DOE and NSF and by NSC-Taiwan.
Effect of an InxGa1-xAs-GaAs blocking heterocathode metal contact on the GaAs TED operation
NASA Astrophysics Data System (ADS)
Arkusha, Yu. V.; Prokhorov, E. D.; Storozhenko, I. P.
2004-09-01
The frequency dependence of the generation efficiency of an mm- -nn:In:InxGaGa1-1-xAs- As-nn:GaAs-:GaAs-nn++:GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the :GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the nn:In:InxGaGa1-1-xAs cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.As cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.
Dynamics of the reactions of O(1D) with HCl, DCl, and Cl2
NASA Astrophysics Data System (ADS)
Matsumi, Yutaka; Tonokura, Kenichi; Kawasaki, Masahiro; Tsuji, Kazuhide; Obi, Kinichi
1993-05-01
The reactions O(1D)+HCl→OH+Cl (1a) and OCl+H (1b), O(1D)+DCl→OD+Cl (2a) and OCl+D (2b), and O(1D)+Cl2→OCl+Cl (3) are studied at an average collision energy of 7.6, 7.7, and 8.8 kcal/mol for (1), (2), and (3), respectively. H, D, and Cl atoms are detected by the resonance-enhanced multiphoton ionization technique. The average kinetic energies released to the products are estimated from Doppler profile measurements of the product atoms. The relative yields [OCl+H]/[OH+Cl] and [OCl+D]/[OD+Cl] are directly measured, and a strong isotope effect (H/D) on the relative yields is found. The fine-structure branding ratios [Cl(2P1/2]/[Cl(2P3/2)] of the reaction products are also measured. The results suggest that nonadiabatic couplings take place at the exit channels of the reactions (1a) and (2a), while the reaction (3) is totally adiabatic.
NASA Astrophysics Data System (ADS)
Suzuki, I. H.; Kono, Y.; Sakai, K.; Kimura, M.; Ueda, K.; Tamenori, Y.; Takahashi, O.; Nagaoka, S.
2013-04-01
Spectator resonant Auger electron spectra with the Si 1s photoexcitation of SiCl4 have been measured using an electron spectroscopic technique combined with undulator radiation. The transition with the highest intensity in the total ion yield (TIY) spectrum, coming from excitation of a 1s electron into the 9t2 valence orbital, generates the resonant Auger decay in which the excited electron remains in the 9t2 orbital. A TIY peak positioned slightly above the 1s ionization threshold induces Auger decay in which the slow photoelectron is re-captured into a higher lying Rydberg orbital or the normal Auger peak shape is distorted due to a post-collision interaction effect. Another structure above the threshold, originating from a doubly excited state, yields the normal Auger peak with the distortion of peak shape and a resonant Auger peak with a higher kinetic energy. These findings provide a clear understanding of the properties of the excited orbitals which were ambiguous previously.
Optimizing pressurized liquid extraction of microbial lipids using the response surface method.
Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L
2011-01-21
Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.
Detection limits of organic compounds achievable with intense, short-pulse lasers.
Miles, Jordan; De Camillis, Simone; Alexander, Grace; Hamilton, Kathryn; Kelly, Thomas J; Costello, John T; Zepf, Matthew; Williams, Ian D; Greenwood, Jason B
2015-06-21
Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.
Measuring Ionization in Highly Compressed, Near-Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Collins, G. W.; Divol, L.; Kritcher, A.; Landen, O. L.; Pak, A.; Weber, C.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; Saunders, A.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, A.
2016-10-01
A precise knowledge of ionization at given temperature and density is required to accurately model compressibility and heat capacity of materials at extreme conditions. We use x-ray Thomson scattering to characterize the plasma conditions in plastic and beryllium capsules near stagnation in implosion experiments at the National Ignition Facility. We expect the capsules to be compressed to more than 20x and electron densities approaching 1025 cm-3, corresponding to a Fermi energy of 170 eV. Zinc Heα x-rays (9 keV) scattering at 120° off the plasma yields high sensitivity to K-shell ionization, while at the same time constraining density and temperature. We will discuss recent results in the context of ionization potential depression at these extreme conditions. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
MESSENGER observations of the composition of Mercury's ionized exosphere and plasma environment.
Zurbuchen, Thomas H; Raines, Jim M; Gloeckler, George; Krimigis, Stamatios M; Slavin, James A; Koehn, Patrick L; Killen, Rosemary M; Sprague, Ann L; McNutt, Ralph L; Solomon, Sean C
2008-07-04
The region around Mercury is filled with ions that originate from interactions of the solar wind with Mercury's space environment and through ionization of its exosphere. The MESSENGER spacecraft's observations of Mercury's ionized exosphere during its first flyby yielded Na+, O+, and K+ abundances, consistent with expectations from observations of neutral species. There are increases in ions at a mass per charge (m/q) = 32 to 35, which we interpret to be S+ and H2S+, with (S+ + H2S+)/(Na+ + Mg+) = 0.67 +/- 0.06, and from water-group ions around m/q = 18, at an abundance of 0.20 +/- 0.03 relative to Na+ plus Mg+. The fluxes of Na+, O+, and heavier ions are largest near the planet, but these Mercury-derived ions fill the magnetosphere. Doubly ionized ions originating from Mercury imply that electrons with energies less than 1 kiloelectron volt are substantially energized in Mercury's magnetosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkar, A. H.; Kadhane, U.; Misra, D.
2010-10-15
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less
NASA Technical Reports Server (NTRS)
Quilligan, Gerard T.; Aslam, Shahid; Lakew, Brook; DuMonthier, Jeffery J.; Katz, Richard B.; Kleyner, Igor
2014-01-01
Radiation hardened by design (RHBD) techniques allow commercial CMOS circuits to operate in high total ionizing dose and particle fluence environments. Our radiation hard multi-channel digitizer (MCD) ASIC (Figure 1) is a versatile analog system on a chip (SoC) fabricated in 180nm CMOS. It provides 18 chopper stabilized amplifier channels, a 16- bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The MCD was evaluated at Goddard Space Flight Center and Texas A&M University's radiation effects facilities and found to be immune to single event latchup (SEL) and total ionizing dose (TID) at 174 MeV-cm(exp 2)/mg and 50 Mrad (Si) respectively.
Total Electron-Impact Ionization Cross-Sections of CFx and NFx (x = 1 - 3)
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Tarnovsky, Vladimir; Becker, Kurt H.; Kwak, Dochan (Technical Monitor)
2001-01-01
The discrepancy between experimental and theoretical total electron-impact ionization cross sections for a group of fluorides, CFx, and NFx, (x = 1 - 3), is attributed to the inadequacies in previous theoretical models. Cross-sections calculated using a recently developed siBED (simulation Binary-Encounter-Dipole) model that takes into account the shielding of the long-range dipole potential between the scattering electron and target are in agreement with experimentation. The present study also carefully reanalyzed the previously reported experimental data to account for the possibility of incomplete collection of fragment ions and the presence of ion-pair formation channels. For NF3, our experimental and theoretical cross-sections compare well with the total ionization cross-sections recently reported by Haaland et al. in the region below dication formation.
Profiling cytosine oxidation in DNA by LC-MS/MS.
Samson-Thibault, Francois; Madugundu, Guru S; Gao, Shanshan; Cadet, Jean; Wagner, J Richard
2012-09-17
Spontaneous and oxidant-induced damage to cytosine is probably the main cause of CG to TA transition mutations in mammalian genomes. The reaction of hydroxyl radical (·OH) and one-electron oxidants with cytosine derivatives produces numerous oxidation products, which have been identified in large part by model studies with monomers and short oligonucleotides. Here, we developed an analytical method based on LC-MS/MS to detect 10 oxidized bases in DNA, including 5 oxidation products of cytosine. The utility of this method is demonstrated by the measurement of base damage in isolated calf thymus DNA exposed to ionizing radiation in aerated aqueous solutions (0-200 Gy) and to well-known Fenton-like reactions (Fe(2+) or Cu(+) with H(2)O(2) and ascorbate). The following cytosine modifications were quantified as modified 2'-deoxyribonucleosides upon exposure of DNA to ionizing radiation in aqueous aerated solution: 5-hydroxyhydantoin (Hyd-Ura) > 5-hydroxyuracil (5-OHUra) > 5-hydroxycytosine (5-OHCyt) > 5,6-dihydroxy-5,6-dihydrouracil (Ura-Gly) > 1-carbamoyl-4,5-dihydroxy-2-oxoimidazolidine (Imid-Cyt). The total yield of cytosine oxidation products was comparable to that of thymine oxidation products (5,6-dihydroxy-5,6-dihydrothymine (Thy-Gly), 5-hydroxy-5-methylhydantotin (Hyd-Thy), 5-(hydroxymethyl)uracil (5-HmUra), and 5-formyluracil (5-ForUra)) as well as the yield of 8-oxo-7,8-dihydroguanine (8-oxoGua). The major oxidation product of cytosine in DNA was Hyd-Ura. In contrast, the formation of Imid-Cyt was a minor pathway of DNA damage, although it is the major product arising from irradiation of the monomers, cytosine, and 2'-deoxycytidine. The reaction of Fenton-like reagents with DNA gave a different distribution of cytosine derived products compared to ionizing radiation, which likely reflects the reaction of metal ions with intermediate peroxyl radicals or hydroperoxides. The analysis of the main cytosine oxidation products will help elucidate the complex mechanism of oxidative degradation of cytosine in DNA and probe the consequences of these reactions in biology and medicine.
Electron induced inelastic and ionization cross section for plasma modeling
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby
2016-09-01
The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.
NASA Technical Reports Server (NTRS)
Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.
1995-01-01
Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.
Derpmann, Valerie; Mueller, David; Bejan, Iustinian; Sonderfeld, Hannah; Wilberscheid, Sonja; Koppmann, Ralf; Brockmann, Klaus J; Benter, Thorsten
2014-03-01
We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.
NASA Technical Reports Server (NTRS)
Meier, R. R.; Samson, James A. R.; Chung, Y.; Lee, E.-M.; He, Z.-X.
1991-01-01
Photodissociative ionization of N2 into the unbound N2(+) H 2Sigma-g(+) state is identified as the parentage of a number of N(+) and N-excited states that contribute to the u.v. dayglow. Yields have been obtained for the production of extreme ultraviolet emission lines of N(+) and N from a laboratory experiment using a broadband synchrotron radiation source with fluorescence spectroscopy. The yields are termed 'effective', in that they are constant percentages of the H state cross section. These are compared wih effective yields needed to reproduce N II 1085 and 916 A lines from four dayglow observations using a model of solar energy deposition and photoelectron production and loss in the earth's thermosphere. The 1085 A effective yield measured in the laboratory (18 percent) agrees with that from the dayglow data (average of 17 percent) to well within experimental uncertainties. Thus, it is concluded that photodissociative ionization of N2 is the primary source of the N II 1085 A dayglow. However, there is an order of magnitude discrepancy among the various dayglow observations of the 1085/916 intensity ratio, only one of which is consistent with the laboratory observation of 4.4. Neither contamination by other dayglow features nor atmospheric extinction can account for the disparities. Laboratory measurements of N2 and O2 absorption cross sections at these wavelengths are also reported.
Sampson, Jason S.; Murray, Kermit K.; Muddiman, David C.
2013-01-01
We report the implementation of an infrared laser onto our previously reported matrix-assisted laser desorption electrospray ionization (MALDESI) source with ESI post-ionization yielding multiply charged peptides and proteins. Infrared (IR)-MALDESI is demonstrated for atmospheric pressure desorption and ionization of biological molecules ranging in molecular weight from 1.2 to 17 kDa. High resolving power, high mass accuracy single-acquisition Fourier transform ion cyclotron resonance (FT-ICR) mass spectra were generated from liquid-and solid-state peptide and protein samples by desorption with an infrared laser (2.94 µm) followed by ESI post-ionization. Intact and top-down analysis of equine myoglobin (17 kDa) desorbed from the solid state with ESI post-ionization demonstrates the sequencing capabilities using IR-MALDESI coupled to FT-ICR mass spectrometry. Carbohydrates and lipids were detected through direct analysis of milk and egg yolk using both UV- and IR-MALDESI with minimal sample preparation. Three of the four classes of biological macromolecules (proteins, carbohydrates, and lipids) have been ionized and detected using MALDESI with minimal sample preparation. Sequencing of O-linked glycans, cleaved from mucin using reductive β-elimination chemistry, is also demonstrated. PMID:19185512
Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf
2009-06-01
An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.
On the SIMS Ionization Probability of Organic Molecules.
Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas
2017-06-01
The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α + ) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10 -5 . Our lab has developed a method for the direct determination of α + in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C 24 H 12 ), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C 60 cluster projectiles is of the order of 10 -3 , with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .
Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor
2009-06-01
Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.
Photoionization Modeling and the K Lines of Iron
NASA Technical Reports Server (NTRS)
Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.
2004-01-01
We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.
Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin
2017-09-01
Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meot-Ner (Mautner), Michael; Somogyi, Árpád
2007-11-01
The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.
Current Status and Future Challenges in Risk-Based Radiation Engineering
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2017-01-01
This presentation covers the basis and challenges for radiation effects in electronic systems. The three main types of radiation effects in electronics are: 1) total ionizing dose (TID), 2) total non-ionizing dose (TNID) / displacement damage dose (DDD), and 3) single-event effect (SEE). Some content on relevant examples of effects, current concerns, and possible environmental model-driven solutions are also included.
Measurement of Nuclear Recoils in the CDMS II Dark Matter Search
NASA Astrophysics Data System (ADS)
Fallows, Scott M.
The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity yield for electron recoils, in aggregate. Subtracting an event's Luke phonon contribution from its calibrated total phonon energy (keV t), as measured by the ionization signal, results in a valid measure of the true recoil energy (keVr) for both electron and nuclear recoils. I discuss systematic uncertainties affecting the reconstruction of this recoil energy, the primary analysis variable, and use several methods to constrain their magnitude. I present the resulting adjusted WIMP limits and discuss their impact in the context of current and projected constraints on the parameter space for WIMP interactions.
Mechanisms of Radiation Induced Effects in Carbon Nanotubes
2016-10-01
the defect types created for both ionizing and non-ionizing particles under exposure to high total ionization and displacement damage doses. Carbon...and displacement damage doses. Additionally, the radiation effects on CNT carrier transport parameters (mobility, lifetime, conductivity) have been...thermal oxidation. 2. Radiation Testing of SWCNTs 2.1 Displacement Damage Dose Effects as a Function of SWCNT Electronic-Type Displacement damage does
Phase-dependent above-barrier ionization of excited-state electrons.
Yang, Weifeng; Song, Xiaohong; Chen, Zhangjin
2012-05-21
The carrier-envelope phase (CEP)-dependent above-barrier ionization (ABI) has been investigated in order to probe the bound-state electron dynamics. It is found that when the system is initially prepared in the excited state, the ionization yield asymmetry between left and right sides can occur both in low-energy and high-energy parts of the photoelectron spectra. Moreover, in electron momentum map, a new interference effect along the direction perpendicular to the laser polarization is found. We show that this interference is related to the competition among different excited states. The interference effect is dependent on CEPs of few-cycle probe pulses, which can be used to trace the superposition information and control the electron wave packet of low excited states.
Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M
2016-03-25
Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced production of low energy electrons by alpha particle impact
Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard
2011-01-01
Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion–atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He+ ions on isolated Ne atoms and on Ne dimers (Ne2). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation. PMID:21730184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, J; National Cancer Center, Goyang-si; Kim, M
Purpose: A fiber-optic radiation sensor using Cerenkov radiation (FOCR) has been widely studied for use as a dosimeter for proton therapeutic beam. We developed the FOCR, and it applied to patient-specific point dose measurement in order to evaluate the effectiveness of the FOCR system for proton therapy QA. Methods: Calibration of FOCR was performed with an ionization chamber whose absolute doses were determined according to the IAEA TRS-398 protocol. To determine the calibration curve, the FOCR was irradiated perpendicularly to the proton beam at the 13 dose levels steps. We selected five actual patient treatment plans performed at proton therapymore » center and compared the resulting FOCR measurements with the ionization chamber measurements. Results: The Cerenkov light yield of the FOCR increases linearly with as the dose measured using the ionization chamber increases from 0 cGy to 500 cGy. The results indicate that the fitting curve is linear, suggesting that dose measurement based on the light yield of the FOCR is possible. The results of proton radiation dose QA performed using the FOCR for 10 proton fields and five patients are good agreement with an ionization chamber. Conclusion: We carried out the patient QA using the FOCR for proton therapeutic beam and evaluated the effectiveness of the FOCR as a proton therapy QA tool. Our results indicate that the FOCR is suitable for use in patient QA of clinical proton beams.« less
Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.
2004-01-01
Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshi, D. Anish; Plunkett, Adele; Rosero, Viviana
2012-04-10
Murray and Raham used the Wilkinson Microwave Anisotropy Probe (WMAP) free-free foreground emission map to identify diffuse ionized regions (DIRs) in the Galaxy. It has been found that the 18 most luminous WMAP sources produce more than half of the total ionizing luminosity of the Galaxy. We observed radio recombination lines (RRLs) toward the luminous WMAP source G49.75-0.45 with the Green Bank Telescope near 1.4 GHz. Hydrogen RRL is detected toward the source but no helium line is detected, implying that n{sub He{sup +}}/n{sub H{sup +}}< 0.024. This limit puts severe constraint on the ionizing spectrum. The total ionizing luminositymore » of G49 (3.05 Multiplication-Sign 10{sup 51} s{sup -1}) is {approx}2.8 times the luminosity of all radio H II regions within this DIR and this is generally the case for other WMAP sources. Murray and Rahman propose that the additional ionization is due to massive clusters ({approx}7.5 Multiplication-Sign 10{sup 3} M{sub Sun} for G49) embedded in the WMAP sources. Such clusters should produce enough photons with energy {>=}24.6 eV to fully ionize helium in the DIR. Our observations rule out a simple model with G49 ionized by a massive cluster. We also considered 'leaky' H II region models for the ionization of the DIR, suggested by Lockman and Anantharamaiah, but these models also cannot explain our observations. We estimate that the helium ionizing photons need to be attenuated by {approx}>10 times to explain the observations. If selective absorption of He ionizing photons by dust is causing this additional attenuation, then the ratio of dust absorption cross sections for He and H ionizing photons should be {approx}>6.« less
Communication: Electron ionization of DNA bases.
Rahman, M A; Krishnakumar, E
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.
Density Bounded H II Regions: Ionization of the Diffuse Interstellar and Intergalactic Media
NASA Astrophysics Data System (ADS)
Zurita, A.; Rozas, M.; Beckman, J. E.
2000-05-01
We present a study of the diffuse ionized gas (DIG) for a sample of nearby spiral galaxies using Hα images, after constructing their H II region catalogues. The integrated Hα emission of the DIG accounts for between 25% to 60% of the total Hα of the galaxy and a high ionizing photon flux is necessary to keep this gas ionized. We suggest that Lyman photons leaking from the most luminous H II regions are the prime source of the ionization of the DIG; they are more than enough to ionize the measured DIG in the model in which H II regions with luminosity in Hα greater than LStr=1038.6 erg sme are density bounded. We go on to show that this model can quantify the ionization observed in the skins of the high velocity clouds well above the plane of our Galaxy and predicts the ionization of the intergalactic medium.
Enhanced ionization efficiency in TIMS analyses of plutonium and americium using porous ion emitters
Baruzzini, Matthew L.; Hall, Howard L.; Watrous, Matthew G.; ...
2016-12-05
Investigations of enhanced sample utilization in thermal ionization mass spectrometry (TIMS) using porous ion emitter (PIE) techniques for the analyses of trace quantities of americium and plutonium were performed. Repeat ionization efficiency (i.e., the ratio of ions detected to atoms loaded on the filament) measurements were conducted on sample sizes ranging from 10–100 pg for americium and 1–100 pg for plutonium using PIE and traditional (i.e., a single, zone-refined rhenium, flat filament ribbon with a carbon ionization enhancer) TIMS filament sources. When compared to traditional filaments, PIEs exhibited an average boost in ionization efficiency of ~550% for plutonium and ~1100%more » for americium. A maximum average efficiency of 1.09% was observed at a 1 pg plutonium sample loading using PIEs. Supplementary trials were conducted using newly developed platinum PIEs to analyze 10 pg mass loadings of plutonium. As a result, platinum PIEs exhibited an additional ~134% boost in ion yield over standard PIEs and ~736% over traditional filaments at the same sample loading level.« less
NASA Astrophysics Data System (ADS)
Gooden, M.; Arnold, C.; Bredeweg, T.; Vieira, D.; Wilhelmy, J.; Tonchev, A.; Stoyer, M.; Bhike, M.; Krishichayan, F.; Tornow, W.; Fowler, M.
2015-10-01
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and ?-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. ?-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of 2 months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. These results are compared to previous measurements and theoretical estimates. This work was performed under the auspices of the USDoE by Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.
Cheng, Yanlei; Li, Fanghua; Mladenov, Emil; Iliakis, George
2015-09-01
The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grechnikov, A. A.; Georgieva, V. B.; Donkov, N.; Borodkov, A. S.; Pento, A. V.; Raicheva, Z. G.; Yordanov, Tc A.
2016-03-01
Four different substrates, namely, graphite, tungsten, amorphous silicon (α-Si) and titanium dioxide (TiO2) films, were compared in view of the laser-induced electron transfer desorption/ionization (LETDI) of metal coordination complexes. A rhenium complex with 8-mercaptoquinoline, a copper complex with diphenylthiocarbazone and chlorophyll A were studied as the test analytes. The dependencies of the ion yield and the surface temperature on the incident radiation fluence were investigated experimentally and theoretically. The temperature was estimated using the numerical solution of a one-dimensional heat conduction problem with a heat source distributed in time and space. It was found that at the same temperature, the ion yield from the different substrates varies in the range of three orders of magnitude. The direct comparison of all studied substrates revealed that LETDI from the TiO2 and α-Si films offer a better choice for producing molecular ions of metal coordination complexes.
Martínez-Ceron, María C; Giudicessi, Silvana L; Marani, Mariela M; Albericio, Fernando; Cascone, Osvaldo; Erra-Balsells, Rosa; Camperi, Silvia A
2010-05-15
Optimization of bead analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after the screening of one-bead-one-peptide combinatorial libraries was achieved, involving the fine-tuning of the whole process. Guanidine was replaced by acetonitrile (MeCN)/acetic acid (AcOH)/water (H(2)O), improving matrix crystallization. Peptide-bead cleavage with NH(4)OH was cheaper and safer than, yet as efficient as, NH(3)/tetrahydrofuran (THF). Peptide elution in microtubes instead of placing the beads in the sample plate yielded more sample aliquots. Successive dry layers deposit sample preparation was better than the dried droplet method. Among the matrices analyzed, alpha-cyano-4-hydroxycinnamic acid resulted in the best peptide ion yield. Cluster formation was minimized by the addition of additives to the matrix. Copyright 2010 Elsevier Inc. All rights reserved.
Carra, Claudio; Nussbaum, Rafael; Bally, Thomas
2006-06-12
2,6-Difluorophenylnitrene was reinvestigated both experimentally, in Ar matrices at 10 K, and computationally, by DFT and CASSCF/CASPT2 calculations. Almost-pure samples of both neutral rearrangement products (the bicyclic azirine and the cyclic ketenimine) of a phenylnitrene were prepared and characterized for the first time. These samples were then subjected to X-irradiation in the presence of CH2Cl2 as an electron scavenger, which led to ionization of the neutral intermediates. Thereby, it was shown that only the phenylnitrene and the cyclic ketenimine yield stable radical cations, whereas the bicyclic azirine decays to both of these compounds on ionization. The cyclic ketenimine yields a novel aromatic azatropylium-type radical cation. The electronic structure of the title compound is discussed in detail, and its relation to those of the iso-pi-electronic benzyl radical and phenylcarbene is traced.
Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)
NASA Astrophysics Data System (ADS)
Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.
2018-05-01
In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.
Phase Transition to an Opaque Plasma in a Sonoluminescing Bubble
NASA Astrophysics Data System (ADS)
Kappus, Brian; Khalid, Shahzad; Chakravarty, Avik; Putterman, Seth
2011-06-01
Time-resolved spectrum measurements of a sonoluminescing Xe bubble reveal a transition from transparency to an opaque Planck blackbody. As the temperature is <10000K and the density is below liquid density, the photon scattering length is 10 000 times too large to explain its opacity. We resolve this issue with a model that reduces the ionization potential. According to this model, sonoluminescence originates in a new phase of matter with high ionization. Analysis of line emission from Xe* also yields evidence of phase segregation for this first-order transition inside a bubble.
Dhiman, Neelam; Hall, Leslie; Wohlfiel, Sherri L; Buckwalter, Seanne P; Wengenack, Nancy L
2011-04-01
Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry was compared to phenotypic testing for yeast identification. MALDI-TOF mass spectrometry yielded 96.3% and 84.5% accurate species level identifications (spectral scores, ≥ 1.8) for 138 common and 103 archived strains of yeast. MALDI-TOF mass spectrometry is accurate, rapid (5.1 min of hands-on time/identification), and cost-effective ($0.50/sample) for yeast identification in the clinical laboratory.
NASA Technical Reports Server (NTRS)
Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)
1973-01-01
A chemical system is described for releasing a good yield of free barium neutral atoms and barium ions in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium. The barium is released in the vapor phase so that it can be ionized by solar radiation and also be excited to emit resonance radiation in the visible range. The ionized luminous cloud of barium becomes a visible indication of magnetic and electrical characteristics in space and allows determination of these properties over relatively large areas at a given time.
NASA Astrophysics Data System (ADS)
Chaplin, R. P.; Dworjanyn, P. A.; Gamage, N. J. W.; Garnett, J. L.; Jankiewicz, S. V.; Khan, M. A.; Sangster, D. F.
1996-03-01
Experimental evidence involving monomer absorption studies using tritiated styrene is shown to support the proposal that additives such as mineral acids and certain inorganic salts when dissolved in the monomer solution enhance radiation grafting yields by a mechanism involving partitioning of reagents. Photoinitiators such as benzoin ethyl ether and its methyl analogue are reported as new additives for grafting of styrene in methanol to cellulose and polypropylene initiated by ionizing radiation. The partitioning concept is shown to be relevant in analogous UV grafting and curing processes.
Effect of Initial Conditions on Gas-Puff Z-Pinch Dynamics.
NASA Astrophysics Data System (ADS)
Peterson, Gus Gordon
This dissertation concerns the effects initial conditions have on the dynamics of an imploded, annular gas-puff z-pinch. The influence of axial magnetic fields, nozzle size and composition, different gases, pre-ionization, and electrode design on pinch quality and x-ray yield is investigated. The experiment uses a 5-kJ capacitor bank to deliver 0.35 MA to the pinch load in 1.4 mu rm s. This research establishes parameters important to increasing the x-ray yield of dense z-pinches. The initial stage of the implosion is diagnosed with a framing camera that photographs visible light emitted from z-pinch gas breakdown. Data from subsequent stages of the pinch is recorded with a B-dot probe, filtered x-ray diodes, an x-ray filtered pinhole camera, and a nitrogen laser interferometer. Applied axial magnetic fields of ~100 gauss increase average x-ray yield by more than 20%. A substantial increase of K-shell x -ray yield of more than 200% was obtained by increasing the energy delivered to the plasma by enlarging the nozzle diameter from 4 to 5 cm. The use of a Teflon outer-mantle for the nozzle resulted in less uniform gas breakdown as compared to graphite and copper outer-mantles, but x-ray yield and final state uniformity were not reduced. Lower Z gases showed poorer breakdown uniformity. Pre-ionization improved the uniformity of helium and neon breakdown but did not appear to affect subsequent dynamics. X-ray yield was significantly higher using a knife-edge annular anode, as opposed to a flat stainless steel honeycomb anode. Annular anodes with diameters more than a few millimeters different than the nozzle diameter produced low quality pinches with substantially lower x-ray yield.
Quasar Outflows and AGN Feedback in the Extreme UV: HST/COS Observations of QSO HE0238-1904
NASA Astrophysics Data System (ADS)
Arav, Nahum; Borguet, B.; Chamberlain, C.; Edmonds, D.; Danforth, C.
2014-01-01
Spectroscopic observations of quasar outflows at rest-frame 500-1000 Angstrom have immense diagnostic power. We present analyses of such data, where absorption troughs from three important ions are measured: first, O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionization phase of the outflow. Their inferred column densities, combined with those of troughs from O VI, N IV, and H I, yield two important results: 1) The outflow shows two ionization phases, where the high ionization phase carries the bulk of the material. This is similar to the situation seen in x-ray warm absorber studies. Furthermore, the low ionization phase is inferred to have a volume filling factor of 10^(-5)-10^(-6). 2) From the O IV to O IV* column density ratio, and the knowledge of the ionization parameter, we determine a distance of 3000 pc. from the outflow to the central source. Since this is a typical high ionization outflow, we can determine robust values for the mass flux and kinetic luminosity of the outflow: 40 solar masses per year and 10^45 ergs/s, respectively, where the latter is roughly equal to 1% of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high ionization wind suggests that quasar outflows are a major contributor to AGN feedback mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golwala, Sunil Ramanlal
2000-01-01
Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and “cold” — nonrelativistic at the time matter began to dominate the energy density of the universe. Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass Mδ ~ 100 GeV c-2 . WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. They would scatter off nuclei via the weakmore » interaction, potentially allowingtheir direct detection. The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scatteringinteractions with nuclei while discriminatingagainst interactions of background particles. The former yield nuclear recoils while the latter produce electron recoils. The ionization yield (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole-pair production to determine recoil energy and ionization yield for each event and thereby discriminate nuclear recoils from electron recoils. This dissertation reports new limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV c-2 WIMP mass and, at > 75% CL, the entire 3σ allowed region for the WIMP signal reported by the DAMA experiment. The experimental apparatus, detector performance, and data analysis are fully described.« less
Advanced p-MOSFET Ionizing-Radiation Dosimeter
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Blaes, Brent R.
1994-01-01
Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.
Photochemical Degradation of Composition B and Its Components
2007-09-01
recorded on the toluene (5.7 mg yield ), ether I (35 mg), and aceto- nitrile (17.8 mg) fractions. Irradiation of solution explosives in soils A...the soil was Soxhlet extracted with acetonitrile for 93 hours. The acetonitrile was removed with a rotary evaporator and the residue redissolved in...ionization to yield an anion of m/z 226. The traces show differences observed in samples with different initial preparation protocols at 15 days. Distance
Communication: Electron ionization of DNA bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve themore » existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.« less
Optimizing the ionization and energy absorption of laser-irradiated clusters
NASA Astrophysics Data System (ADS)
Kundu, M.; Bauer, D.
2008-03-01
It is known that rare-gas or metal clusters absorb incident laser energy very efficiently. However, due to the intricate dependencies on all the laser and cluster parameters, it is difficult to predict under which circumstances ionization and energy absorption are optimal. With the help of three-dimensional particle-in-cell simulations of xenon clusters (up to 17256 atoms), it is shown that for a given laser pulse energy and cluster, an optimum wavelength exists that corresponds to the approximate wavelength of the transient, linear Mie-resonance of the ionizing cluster at an early stage of negligible expansion. In a single ultrashort laser pulse, the linear resonance at this optimum wavelength yields much higher absorption efficiency than in the conventional, dual-pulse pump-probe setup of linear resonance during cluster expansion.
Tunneling ionization and harmonic generation in two-color fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, K.; Kobayashi, Y.; Sagisaka, A.
1996-02-01
Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam ({omega}) and its harmonics (2{omega},3{omega}), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between {omega} and 3{omega} pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the {omega}{endash}2{omega} field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and withmore » the quantum theory for harmonic generation. {copyright} {ital 1996 Optical Society of America.}« less
NASA Astrophysics Data System (ADS)
Moser, Simon
2008-03-01
To get insight to time resolved inner atomic or molecular processes, laser pulses of few femtoseconds or even attoseconds are needed. These short light pulse techniques ask for broad frequency spectra, control of dispersion and control of phase. Hence, linear optics fails and nonlinear optics in high electromagnetic fields is needed to satisfy the amount of control that is needed. One recent application of attosecond laser pulses is time resolved visualization of tunnel ionization in atoms applied to high electromagnetic fields. Here, Ne atom electrons are excited by an extreme ultraviolet attosecond laser pulse. After a while, a few cycles nearly infrared femtosecond laser pulse is applied to the atom causing tunnel ionization. The ion yield distribution can be measured as function of the delay time between excitation and ionization and so deliver insight to the time resolved mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Nora G.; Herrwerth, O.; Wirth, A.
2011-01-15
Single-shot carrier-envelope-phase (CEP) tagging is combined with a reaction mircoscope (REMI) to investigate CEP-dependent processes in atoms. Excellent experimental stability and data acquisition longevity are achieved. Using this approach, we study the CEP effects for nonsequential double ionization of argon in 4-fs laser fields at 750 nm and an intensity of 1.6x10{sup 14} W/cm{sup 2}. The Ar{sup 2+} ionization yield shows a pronounced CEP dependence which compares well with recent theoretical predictions employing quantitative rescattering theory [S. Micheau et al., Phys. Rev. A 79, 013417 (2009)]. Furthermore, we find strong CEP influences on the Ar{sup 2+} momentum spectra along themore » laser polarization axis.« less
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel; ...
2017-05-22
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
NASA Astrophysics Data System (ADS)
Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong
2015-08-01
A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.
Shahraki, Hassan; Tabrizchi, Mahmoud; Farrokhpor, Hossein
2018-05-26
The ionization source is an essential component of most explosive detectors based on negative ion mobility spectrometry. Conventional ion sources suffer from such inherent limitations as special safety regulations on radioactive sources or generating interfering ions (for non-radioactive sources) such as corona discharge operating in the air. In this study, a new negative ion source is introduced for ion mobility spectrometry that is based on thermal ionization and operates in the air, applicable to explosives detection. Our system consists of a heating filament powered by an isolated power supply connected to negative high voltage. The ionization is assisted by doping chlorinated compounds in the gas phase using chlorinated hydrocarbons in contact with the heating element to yield Cl - reactant ions. Several chlorinated hydrocarbons are evaluated as the reagent chemicals for providing Cl- reactant ions, of which CCl 4 is identified as the best ionizing reagent. The ion source is evaluated by recording the ion mobility spectra of common explosives, including TNT, RDX, and PETN in the air. A detection limit of 150 pg is obtained for TNT. Compared to other ionization sources, the new source is found to be low-cost, simple, and long-lived, making it suited to portable explosives detection devices. Copyright © 2018 Elsevier B.V. All rights reserved.
X-ray source characterization of aluminum X-pinch plasmas driven by the 0. 5 TW LION accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, N.; Hammer, D.A.; Kalantar, D.H.
1989-12-01
Recent experiments at Cornell have been performed to investigate X-pinch plasmas as intense x-ray sources which might be used to pump resonant photoexcitation lasers. Crossed Al wires have been driven by up to 600 kA current for 40 ns. High density bright spots are observed at the crossing point(s). Various diagnostics were used to characterize the X-pinch plasmas as a function of initial mass loading for several specific wire configurations. The optimum mass loading for different ionization stages of Al, and the total x-ray energy yields, which are on the order of hundreds of Joules, were examined. Estimates of plasmamore » density, {similar to}10{sup 20} cm{sup {minus}3}, and temperature, about 400 eV, were obtained.« less
Khan, Salman A; Asiri, Abdullah M; Basisi, Hadi Mussa; Arshad, Muhammad Nadeem; Sharma, Kamlesh
2015-11-01
Two push-pull chromophores were synthesized by knoevenagel condensation under microwave irradiation. The structure of synthesized chromophores were established by spectroscopic (FT-IR, (1)H NMR, (13)C NMR, EI-MS) and elemental analysis. Structure of the chromophores was further conformed by X-ray crystallographic. UV-Vis and fluorescence spectroscopy measurements provided that chromophores were good absorbent and fluorescent properties. Fluorescence polarity studies demonstrated that chromophores were sensitive to the polarity of the microenvironment provided by different solvents. Physicochemical parameters, including singlet absorption, extinction coefficient, stokes shift, oscillator strength, dipole moment and flurescence quantum yield were investigated in order to explore the analytical potential of the synthesized chromophores. In addition, the total energy, frontier molecular orbitals, hardness, electron affinity, ionization energy, electrostatic potential map were also studied computationally by using density functional theoretical method.
Ionization Potentials for Isoelectronic Series.
ERIC Educational Resources Information Center
Agmon, Noam
1988-01-01
Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)
Directed Field Ionization: A Genetic Algorithm for Evolving Electric Field Pulses
NASA Astrophysics Data System (ADS)
Kang, Xinyue; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.
2017-04-01
When an ionizing electric field pulse is applied to a Rydberg atom, the electron's amplitude traverses many avoided crossings among the Stark levels as the field increases. The resulting superposition determines the shape of the time resolved field ionization spectrum at a detector. An engineered electric field pulse that sweeps back and forth through avoided crossings can control the phase evolution so as to determine the electron's path through the Stark map. In the region of n = 35 in rubidium there are hundreds of potential avoided crossings; this yields a large space of possible pulses. We use a genetic algorithm to search this space and evolve electric field pulses to direct the ionization of the Rydberg electron in rubidium. We present the algorithm along with a comparison of simulated and experimental results. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.
Ionization Chemistry and Role of Grains on Non-ideal MHD Effects in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Xu, Rui; Bai, Xue-Ning; Oberg, Karin I.
2015-01-01
Ionization in protoplanetary disks (PPDs) is one of the key elements for understanding disk chemistry. It also determines the coupling between gas and magnetic fields hence strongly affect PPD gas dynamics. We study the ionization chemistry in the presence of grains in the midplane region of PPDs and its impact on gas conductivity reflected in non-ideal MHD effects including Ohmic resistivity, Hall effect and ambipolar diffusion. We first develop a reduced chemical reaction network from the UMIST database. The reduced network contains much smaller number of species and reactions while yields reliable estimates of the disk ionization level compared with the full network. We further show that grains are likely the dominant charge carrier in the midplane regions of the inner disk, which significantly affects the gas conductivity. In particular, ambipolar diffusion is strongly reduced and the Hall coefficient changes sign in the presence of strong magnetic field. The latter provides a natural mechanism to the saturation of the Hall-shear instability.
Convoy electron emission from resonant coherently excited 390 MeV/u hydrogen-like Ar ions
NASA Astrophysics Data System (ADS)
Azuma, T.; Takabayashi, Y.; Ito, T.; Komaki, K.; Yamazaki, Y.; Takada, E.; Murakami, T.
2003-12-01
Energetic ions traveling through a single crystal are excited by an oscillating crystal field produced by a periodic arrangement of the atomic strings/planes, which is called Resonant Coherent Excitation (RCE). We have observed enhancement of convoy electron yields associated with RCE of 1s electron to the n=2 excited states of 390 MeV/u hydrogen-like Ar 17+ ions passing through a Si crystal in the (2 2¯ 0) planar channeling condition. Lost electrons from projectile ions due to ionization contribute to convoy electrons emitted in the forward direction with the same velocity as the projectile ions. With combination of a magnet and a thick Si solid-state detector, we measured the energy spectra of convoy electrons of about 200 keV emitted at 0°. The convoy electron yield as a function of the transition energy, i.e. the resonance profile, has a similar structure to the resonance profile observed through the ionized fraction of the emerging ions. It is explained by the fact that both enhancements are due to increase in the fraction of the excited states from which electrons are more easily ionized by target electron impact in the crystal than from the ground state.
NASA Astrophysics Data System (ADS)
Sun, Dong; Meng, Xiangjun; Ren, Tianming; Fawcett, John Paul; Wang, Hualu; Gu, Jingkai
2018-04-01
Sensitivity is generally an issue in bioassays of prostaglandins and their synthetic analogs due to their extremely low concentration in vivo. To improve the ionization efficiency of limaprost, an oral prostaglandin E1 (PGE1) synthetic analog, we investigated a charge reversal derivatization strategy in electrospray ionization mass spectrometry (ESI-MS). We established that the cholamine derivative exhibits much greater signal intensity in the positive-ion mode compared with limaprost in the negative ion mode. Collision-induced dissociation (CID) involved exclusive neutral mass loss and positive charge migration to form stable cationic product ions with the positive charge on the limaprost residue rather than on the modifying group. This has the effect of maintaining the efficiency and specificity of multiple reaction monitoring (MRM) and avoiding cross talk. CID fragmentation patterns of other limaprost derivatives allowed us to relate the dissociation tendency of different neutral leaving groups to an internal energy distribution scale based on the survival yield method. Knowledge of the energy involved in the production of stabilized positive ions will potentially assist the selection of suitable derivatization reagents for the analysis of a wide variety of lipid acids. [Figure not available: see fulltext.
Ross, Charles W; Simonsick, William J; Bogusky, Michael J; Celikay, Recep W; Guare, James P; Newton, Randall C
2016-06-28
Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.;
2014-01-01
We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.
MASS SPECTROMETRY OF INDIVIDUAL AEROSOL PARTICLES. (R823980)
Typically, in real-time aerosol mass spectrometry (RTAMS), individual airborne particles
are ablated and ionized with a single focused laser pulse. This technique yields information that
permits bulk characterization of the particle, but information about the particle's sur...
Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas
2015-01-01
Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045
Complete solution of electronic excitation and ionization in electron-hydrogen molecule scattering
Zammit, Mark C.; Savage, Jeremy S.; Fursa, Dmitry V.; ...
2016-06-08
The convergent close-coupling method has been used to solve the electron-hydrogen molecule scattering problem in the fixed-nuclei approximation. Excellent agreement with experiment is found for the grand total, elastic, electronic-excitation, and total ionization cross sections from the very low to the very high energies. This shows that for the electronic degrees of freedom the method provides a complete treatment of electron scattering on molecules as it does for atoms.
2003-03-01
facility and Mr. Joseph Talnagi of the Ohio State Research Reactor facility for their personal guidance and insight into reactor dosimetry and neutron...62 Test C1: Dosimetry ..................................................................................................... 63 Special...66 Annex A-3. Preliminary Dosimetry Calculations
Total Dose Effects on Single Event Transients in Digital CMOS and Linear Bipolar Circuits
NASA Technical Reports Server (NTRS)
Buchner, S.; McMorrow, D.; Sibley, M.; Eaton, P.; Mavis, D.; Dusseau, L.; Roche, N. J-H.; Bernard, M.
2009-01-01
This presentation discusses the effects of ionizing radiation on single event transients (SETs) in circuits. The exposure of integrated circuits to ionizing radiation changes electrical parameters. The total ionizing dose effect is observed in both complementary metal-oxide-semiconductor (CMOS) and bipolar circuits. In bipolar circuits, transistors exhibit grain degradation, while in CMOS circuits, transistors exhibit threshold voltage shifts. Changes in electrical parameters can cause changes in single event upset(SEU)/SET rates. Depending on the effect, the rates may increase or decrease. Therefore, measures taken for SEU/SET mitigation might work at the beginning of a mission but not at the end following TID exposure. The effect of TID on SET rates should be considered if SETs cannot be tolerated.
MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.
Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji
2007-01-01
We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.
Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.
2014-05-01
To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.
On the origin of increased sensitivity and mass resolution using silicon masks in MALDI.
Diologent, Laurent; Franck, Julien; Wisztorski, Maxence; Treizebre, Anthony; Focsa, Cristian; Fournier, Isabelle; Ziskind, Michael
2014-02-04
Since its development, MALDI has proved its performance in the analysis of intact biomolecules up to high molecular weights, regardless of their polarity. Sensitivity of MALDI instruments is a key point for breaking the limits of observing biomolecules of lower abundances. Instrumentation is one way to improve sensitivity by increasing ion transmission and using more sensitive detection systems. On the other side, improving MALDI ion production yields would have important outcomes. MALDI ion production is still not well-controlled and, indeed, the amount of ions produced per laser shot with respect to the total volume of desorbed material is very low. This has particular implications for certain applications, such as MALDI MS imaging where laser beam focusing as fine as possible (5-10 μm) is searched in order to reach higher spatial resolution images. However, various studies point out an intrinsic decrease in signal intensity for strong focusing. We have therefore been interested in developing silicon mask systems to decrease an irradiated area by cutting rather than focusing the laser beam and to study the parameters affecting sensitivity using such systems. For this, we systematically examined variation with laser fluence of intensity and spectral resolution in MALDI of standard peptides when using silicon-etched masks of various aperture sizes. These studies demonstrate a simultaneous increase in spectral resolution and signal intensity. Origin of this effect is discussed in the frame of the two-step ionization model. Experimental data in the low fluence range are fitted with an increase of the primary ionization through matrix-silicon edge contact provided by the masks. On the other hand, behavior at higher fluence could be explained by an effect on the secondary ionization via changes in the plume dynamics.
NASA Technical Reports Server (NTRS)
Sako, Masao
2003-01-01
Radiative transfer effects due to overlapping X-ray lines in a high-temperature, optically thick, highly ionized medium are investigated. One particular example, in which the O VIII Lyalpha doublet (2(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) coincides in frequency with the N VII Lyzeta lines (7(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) is studied in detail to illustrate the effects on the properties of the emergent line spectrum. We solve the radiative transfer equation to study the energy transport of resonance-line radiation in a static, infinite, plane-parallel geometry, which is used to compute the destruction/escape probabilities for each of the lines for various total optical thicknesses of the medium, as well as destruction probabilities by sources of underlying photoelectric opacity. It is found that a large fraction of the O vIII Lyalpha line radiation can be destroyed by N VII, which can result in a reversal of the O VIII Lyalpha/N VII Lyalpha line intensity ratio similar to what may be seen under nonsolar abundances. Photoelectric absorption by ionized carbon and nitrogen can also subsequently increase the emission-line intensities of these ions. We show that line ratios, which are directly proportional to the abundance ratios in optically thin plasmas, are not good indicators of the true CNO abundances. Conversely, global spectral modeling that assumes optically thin conditions may yield incorrect abundance estimates when compared with observations, especially if the optical depth is large. Other potentially important overlapping lines and continua in the X-ray band are also identified, and their possible relevance to recent high-resolution spectroscopic observations with Chandra and XMM-Newton are briefly discussed.
NASA Astrophysics Data System (ADS)
McLeod, A. F.; Dale, J. E.; Ginsburg, A.; Ercolano, B.; Gritschneder, M.; Ramsay, S.; Testi, L.
2015-06-01
Integral field unit (IFU) data of the iconic Pillars of Creation in M16 are presented. The ionization structure of the pillars was studied in great detail over almost the entire visible wavelength range, and maps of the relevant physical parameters, e.g. extinction, electron density, electron temperature, line-of-sight velocity of the ionized and neutral gas are shown. In agreement with previous authors, we find that the pillar tips are being ionized and photoevaporated by the massive members of the nearby cluster NGC 6611. They display a stratified ionization structure where the emission lines peak in a descending order according to their ionization energies. The IFU data allowed us to analyse the kinematics of the photoevaporative flow in terms of the stratified ionization structure, and we find that, in agreement with simulations, the photoevaporative flow is traced by a blueshift in the position-velocity profile. The gas kinematics and ionization structure have allowed us to produce a sketch of the 3D geometry of the Pillars, positioning the pillars with respect to the ionizing cluster stars. We use a novel method to detect a previously unknown bipolar outflow at the tip of the middle pillar and suggest that it has an embedded protostar as its driving source. Furthermore we identify a candidate outflow in the leftmost pillar. With the derived physical parameters and ionic abundances, we estimate a mass-loss rate due to the photoevaporative flow of 70 M⊙ Myr-1 which yields an expected lifetime of approximately 3 Myr.
Petroselli, Gabriela; Mandal, Mridul Kanti; Chen, Lee Chuin; Ruiz, Gustavo T; Wolcan, Ezequiel; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa
2012-03-01
A group of rhenium (I) complexes including in their structure ligands such as CF(3)SO(3)-, CH(3)CO(2)-, CO, 2,2'-bipyridine, dipyridil[3,2-a:2'3'-c]phenazine, naphthalene-2-carboxylate, anthracene-9-carboxylate, pyrene-1-carboxylate and 1,10-phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF-ESI-CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M](+·) and to produce their reduction yielding the gas species [M](-·). It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV-visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor-harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M](-·) species. Results obtained with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
de la Fuente, D.; Najarro, F.; Borissova, J.; Ramírez Alegría, S.; Hanson, M. M.; Trombley, C.; Figer, D. F.; Davies, B.; Garcia, M.; Kurtev, R.; Urbaneja, M. A.; Smith, L. C.; Lucas, P. W.; Herrero, A.
2016-05-01
It has recently been claimed that the nebula, Dragonfish, is powered by a superluminous but elusive OB association. However, systematic searches in near-infrared photometric surveys have found many other cluster candidates in this region of the sky. Among these, the first confirmed young massive cluster was Mercer 30, where Wolf-Rayet stars were found.We perform a new characterization of Mercer 30 with unprecedented accuracy, combining NICMOS/HST and VVV photometric data with multi-epoch ISAAC/VLT H- and K-band spectra. Stellar parameters for most of spectroscopically observed cluster members are found through precise non-LTE atmosphere modeling with the CMFGEN code. Our spectrophotometric study for this cluster yields a new, revised distance of d = (12.4 ± 1.7) kpc and a total of QHMc30 ≈ 6.70 × 1050 s-1 Lyman ionizing photons. A cluster age of (4.0 ± 0.8) Myr is found through isochrone fitting, and a total mass of (1.6 ± 0.6) × 104M⊙ is estimated, thanks to our extensive knowledge of the post-main-sequence population. As a consequence, membership of Mercer 30 to the Dragonfish star-forming complex is confirmed, allowing us to use this cluster as a probe for the whole complex, which turns out to be extremely large (~400 pc across) and located at the outer edge of the Sagittarius-Carina spiral arm (~11 kpc from the Galactic center). The Dragonfish complex hosts 19 young clusters or cluster candidates (including Mercer 30 and a new candidate presented in this work) and an estimated minimum of nine field Wolf-Rayet stars. All these contributions account for, at least 73% of the ionization of the Dragonfish nebula and leaves little or no room for the alleged superluminous OB association; alternative explanations are discussed. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs IDs 179.B-2002, 081.D-0471, 083.D-0765, 087.D-0957, and 089.D-0989.
Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array
NASA Astrophysics Data System (ADS)
Hunacek, J.; Bock, J.; Bradford, C. M.; Butler, V.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Frez, C.; Hailey-Dunsheath, S.; Hoscheit, B.; Kim, D. W.; Li, C.-T.; Marrone, D.; Moncelsi, L.; Shirokoff, E.; Steinbach, B.; Sun, G.; Trumper, I.; Turner, A.; Uzgil, B.; Weber, A.; Zemcov, M.
2018-04-01
TIME is a mm-wavelength grating spectrometer array that will map fluctuations of the 157.7-μm emission line of singly ionized carbon ([CII]) during the epoch of reionization (redshift z ˜ 5-9). Sixty transition-edge sensor (TES) bolometers populate the output arc of each of the 32 spectrometers, for a total of 1920 detectors. Each bolometer consists of gold absorber on a ˜ 3 × 3 mm silicon nitride micro-mesh suspended near the corners by 1 × 1 × 500 μm silicon nitride legs targeting a photon-noise-dominated NEP ˜ 1 × 10^{-17} W/√{Hz} . Hafnium films are explored as a lower-T_c alternative to Ti (500 mK) for TIME TESs, allowing thicker support legs for improved yield. Hf T_c is shown to vary between 250 and 450 mK when varying the resident Ar pressure during deposition. Magnetic shielding designs and simulations are presented for the TIME first-stage SQUIDs. Total axial field suppression is predicted to be 5 × 10^7.
Hysteresis free negative total gate capacitance in junctionless transistors
NASA Astrophysics Data System (ADS)
Gupta, Manish; Kranti, Abhinav
2017-09-01
In this work, we report on the hysteresis free impact ionization induced off-to-on transition while preserving sub-60 mV/decade Subthreshold swing (S-swing) using asymmetric mode operation in double gate silicon (Si) and germanium (Ge) junctionless (JL) transistor. It is shown that sub-60 mV/decade steep switching due to impact ionization implies a negative value of the total gate capacitance. The performance of asymmetric gate JL transistor is compared with symmetric gate operation of JL device, and the condition for hysteresis free current transition with a sub-60 mV/decade switching is analyzed through the product of current density (J) and electric field (E). It is shown that asymmetric gate operation limits the degree of impact ionization inherent in the semiconductor film to levels sufficient for negative total gate capacitance but lower than that required for the occurrence of hysteresis. The work highlights new viewpoints related to the suppression of hysteresis associated with steep switching JL transistors while maintaining S-swing within the range 6-15 mV/decade leading to the negative value of total gate capacitance.
Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF
Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A.
2016-01-01
The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform, methanol 2:1(v/v). Fatty acids composition of the extracted total lipids were converted to their corresponding methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry (GCMS-QTOF) using both electron ionization (EI) and chemical ionization (CI) techniques. 28 fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to 17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso-17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids using chemical ionization compared to electron ionization which produced fragmentations of the fatty acids methyl esters (FAMEs). PMID:27166662
Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells
Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke
2015-01-01
Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487
Effect of neutrino rest mass on ionization equilibrium freeze-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.
2015-12-23
We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.
Phase transition to an opaque plasma in a sonoluminescing bubble.
Kappus, Brian; Khalid, Shahzad; Chakravarty, Avik; Putterman, Seth
2011-06-10
Time-resolved spectrum measurements of a sonoluminescing Xe bubble reveal a transition from transparency to an opaque Planck blackbody. As the temperature is <10 000 K and the density is below liquid density, the photon scattering length is 10 000 times too large to explain its opacity. We resolve this issue with a model that reduces the ionization potential. According to this model, sonoluminescence originates in a new phase of matter with high ionization. Analysis of line emission from Xe* also yields evidence of phase segregation for this first-order transition inside a bubble.
Inclusion of Theta(12) dependence in the Coulomb-dipole theory of the ionization threshold
NASA Technical Reports Server (NTRS)
Srivastava, M. K.; Temkin, A.
1991-01-01
The Coulomb-dipole (CD) theory of the electron-atom impact-ionization threshold law is extended to include the full electronic repulsion. It is found that the threshold law is altered to a form in contrast to the previous angular-independent model. A second energy regime, is also identified wherein the 'threshold' law reverts to its angle-independent form. In the final part of the paper the dipole parameter is estimated to be about 28. This yields numerical estimates of E(a) = about 0.0003 and E(b) = about 0.25 eV.
Threshold law for positron-atom impact ionisation
NASA Technical Reports Server (NTRS)
Temkin, A.
1982-01-01
The threshold law for ionisation of atoms by positron impact is adduced in analogy with our approach to the electron-atom ionization. It is concluded the Coulomb-dipole region of the potential gives the essential part of the interaction in both cases and leads to the same kind of result: a modulated linear law. An additional process which enters positron ionization is positronium formation in the continuum, but that will not dominate the threshold yield. The result is in sharp contrast to the positron threshold law as recently derived by Klar on the basis of a Wannier-type analysis.
NASA Technical Reports Server (NTRS)
Temkin, A.; Bhatia, A. K.
1988-01-01
A very sensitive test of the electron-atom ionization threshold law is suggested: for spin-aligned heavy negative ions it consists of measuring the polarization asymmetry A(PA) coming from double detachment by left- versus right-circularly polarized light. The respective yields are worked out for the Te(-) (5p)5 2P(3/2) ion. The Coulomb-dipole theory predicts A(PA) to be the ratio of two oscillating functions in sharp contrast to any power law (specifically that of Wannier, 1953) for which the ratio is expected to be a smooth function of energy.
Problems in mechanistic theoretical models for cell transformation by ionizing radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, A.; Holley, W.R.
1991-10-01
A mechanistic model based on yields of double strand breaks has been developed to determine the dose response curves for cell transformation frequencies. At its present stage the model is applicable to immortal cell lines and to various qualities (X-rays, Neon and Iron) of ionizing radiation. Presently, we have considered four types of processes which can lead to activation phenomena: (1) point mutation events on a regulatory segment of selected oncogenes, (2) inactivation of suppressor genes, through point mutation, (3) deletion of a suppressor gene by a single track, and (4) deletion of a suppressor gene by two tracks.
Theel, Elitza S; Schmitt, Bryan H; Hall, Leslie; Cunningham, Scott A; Walchak, Robert C; Patel, Robin; Wengenack, Nancy L
2012-09-01
An on-plate testing method using formic acid was evaluated on the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry system using 90 yeast and 78 Corynebacterium species isolates, and 95.6 and 81.1% of yeast and 96.1 and 92.3% of Corynebacterium isolates were correctly identified to the genus and species levels, respectively. The on-plate method using formic acid yielded identification percentages similar to those for the conventional but more laborious tube-based extraction.
The Effect on the Lunar Exosphere of a Coroual Mass Ejection Passage
NASA Technical Reports Server (NTRS)
Killen, R. M.; Hurley, D. M.; Farrell, W. M.
2011-01-01
Solar wind bombardment onto exposed surfaces in the solar system produces an energetic component to the exospheres about those bodies. The solar wind energy and composition are highly dependent on the origin of the plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into their various components, we have estimated the total sputter yield for each type of solar wind. We show that the heavy ion component, especially the He++ and 0+7 can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. Folding in the flux, we compute the source rate for several species during different types of solar wind. Finally, we use a Monte Carlo model developed to simulate the time-dependent evolution of the lunar exosphere to study the sputtering component of the exosphere under the influence of a CME passage. We simulate the background exosphere of Na, K, Ca, and Mg. Simulations indicate that sputtering increases the mass of those constituents in the exosphere a few to a few tens times the background values. The escalation of atmospheric density occurs within an hour of onset The decrease in atmospheric density after the CME passage is also rapid, although takes longer than the increase, Sputtered neutral particles have a high probability of escaping the moon,by both Jeans escape and photo ionization. Density and spatial distribution of the exosphere can be tested with the LADEE mission.
The Origins of Scintillator Non-Proportionality
NASA Astrophysics Data System (ADS)
Moses, W. W.; Bizarri, G. A.; Williams, R. T.; Payne, S. A.; Vasil'ev, A. N.; Singh, J.; Li, Q.; Grim, J. Q.; Choong, W.-S.
2012-10-01
Recent years have seen significant advances in both theoretically understanding and mathematically modeling the underlying causes of scintillator non-proportionality. The core cause is that the interaction of radiation with matter invariably leads to a non-uniform ionization density in the scintillator, coupled with the fact that the light yield depends on the ionization density. The mechanisms that lead to the luminescence dependence on ionization density are incompletely understood, but several important features have been identified, notably Auger-like processes (where two carriers of excitation interact with each other, causing one to de-excite non-radiatively), the inability of excitation carriers to recombine (caused either by trapping or physical separation), and the carrier mobility. This paper reviews the present understanding of the fundamental origins of scintillator non-proportionality, specifically the various theories that have been used to explain non-proportionality.
Total photoionization cross sections of atomic oxygen from threshold to 44.3 A
NASA Technical Reports Server (NTRS)
Angel, G. C.; Samson, James A. R.
1988-01-01
Synchrotron radiation was used to obtain the relative photoionization cross section of atomic oxygen for the production of singly charged ions over the 44.3-910.5-A wavelength range. Measurement of the contribution of multiple ionization to the cross sections has made possible the determination of total photoionization cross sections below 250 A. The series of autoionizing resonances leading to the 4P state of the oxygen ion has been observed using an ionization-type experimental procedure for the first time.
Total Ionizing Dose Test of Microsemi's Silicon Switching Transistors JANTXV2N2222AUB and 2N2907AUB
NASA Technical Reports Server (NTRS)
Campola, M.; Freeman, B.; Yau, K.
2017-01-01
Microsemi's silicon switching transistors, JANTXV2N2222AUB and 2N2907AUB, were tested for total ionizing dose (TID) response beginning on July 11, 2016. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) could be determined.
Absorption and dissociative photoionization cross sections of NH3 from 80 to 1120 A
NASA Technical Reports Server (NTRS)
Samson, James A. R.; Haddad, G. N.; Kilcoyne, L. D.
1987-01-01
The total absorption, photoionization, and dissociative photoionization cross sections of ammonia have been measured from 80 to 1120 A. All possible fragment ions have been observed including doubly ionized ammonia. The absolute ionization efficiencies have also been measured in this spectral range. The appearance potentials of the fragment ions have been measured and are compared with the calculated appearance potentials derived from published heats of formation and ionization potentials of the fragments.
GaAs MMIC: recovery from upset by x-ray pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armendariz, M.G.; Castle, J.G. Jr.
1986-01-01
Tolerance for fast neutrons and total ionizing dose is a feature of GaAs microwave monolithic integrated circuits (MMIC). However, upset during an ionizing pulse is expected to occur and delayed recovery due to backgating may be a problem. The purpose of this study of an experimental MMIC design is to observe the recovery of oscillator power output following upset by a short ionizing pulse as a function of applied bias, dose per pulse and case temperature.
Peoples, Anita R; Lee, Jane; Weinfeld, Michael; Milligan, Jamie R; Bernhard, William A
2012-07-01
Our mechanistic understanding of damage formation in DNA by the direct effect relies heavily on what is known of free radical intermediates studied by EPR spectroscopy. Bridging this information to stable product formation requires methods with comparable sensitivities, a criterion met by the (32)P-post-labeling assay developed by Weinfeld and Soderlind, [Weinfeld,M. and Soderlind,K.-J.M. (1991) (32)P-Postlabeling detection of radiation-induced DNA damage: identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry, 30, 1091-1097] which when applied to the indirect effect, detected phosphoglycolate (pg) and thymine glycol (Tg). Here we applied this assay to the direct effect, measuring product yields in pUC18 films with hydration levels (Γ) of 2.5, 16 or 23 waters per nucleotide and X-irradiated at either 4 K or room temperature (RT). The yields of pg [G(pg)] for Γ ≈ 2.5 were 2.8 ± 0.2 nmol/J (RT) and 0.2 ± 0.3 nmol/J (4 K), which is evidence that the C4' radical contributes little to the total deoxyribose damage via the direct effect. The yield of detectable base damage [G(B*)] at Γ ≈ 2.5 was found to be 30.2 ± 1.0 nmol/J (RT) and 12.9 ± 0.7 nmol/J (4 K). While the base damage called B*, could be due to either oxidation or reduction, we argue that two reduction products, 5,6-dihydrouracil and 5,6-dihydrothymine, are the most likely candidates.
Tarzi, Olga I; Nonami, Hiroshi; Erra-Balsells, Rosa
2009-02-01
The thermal stability of several commonly used crystalline matrix-assisted ultraviolet laser desorption/ionization mass spectrometry (UV-MALDI-MS) matrices, 2,5-dihydroxybenzoic acid (gentisic acid; GA), 2,4,6-trihydroxyacetophenone (THA), alpha-cyano-4-hydroxycinnamic acid (CHC), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid; SA), 9H-pirido[3,4-b]indole (nor-harmane; nor-Ho), 1-methyl-9H-pirido[3,4-b]indole (harmane; Ho), perchlorate of nor-harmanonium ([nor-Ho+H]+) and perchlorate of harmanonium ([Ho+H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI-MS), ultraviolet laserdesorption/ionization-time-of-flight-mass spectrometry (UV-LDI-TOF-MS) and electrospray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV-absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H-NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans-/cis-4-hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H-NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well-known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV-MALDI-MS. Commercial SA (SA 98%; trans-SA/cis-SA 5:1) showed mainly cis- to-trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3',5'-dimethoxy-4'-hydroxyphenyl)-1-ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV-MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright (c) 2008 John Wiley & Sons, Ltd.
Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment.
Chen, Min-Hua; Hanagata, Nobutaka; Ikoma, Toshiyuki; Huang, Jian-Yuan; Li, Keng-Yuan; Lin, Chun-Pin; Lin, Feng-Huei
2016-06-01
Recently, photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. However, the optical approach of PDT is limited by tissue penetration depth of visible light. In this study, we propose that a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which is a material to yield large quantities of ROS inside the cells when the nanoparticles are bombarded with high penetrating power of ionizing radiation. Hf:HAp nanoparticles are generated by wet chemical precipitation with total doping concentration of 15mol% Hf(4+) relative to Ca(2+) in HAp host material. The results show that the HAp particles could be successfully doped with Hf ions, resulted in the formation of nano-sized rod-like shape and with pH-dependent solubility. The impact of ionizing radiation on Hf:HAp nanoparticles is assessed by using in-vitro and in-vivo model using A549 cell line. The 2',7'-dichlorofluorescein diacetate (DCFH-DA) results reveal that after being exposed to gamma rays, Hf:HAp could significantly lead to the formation of ROS in cells. Both cell viability (WST-1) and cytotoxicity (LDH) assay show the consistent results that A549 lung cancer cell lines are damaged with changes in the cells' ROS level. The in-vivo studies further demonstrate that the tumor growth is inhibited owing to the cells apoptosis when Hf:HAp nanoparticles are bombarded with ionizing radiation. This finding offer a new therapeutic method of interacting with ionizing radiation and demonstrate the potential of Hf:HAp nanoparticles in tumor treatment, such as being used in a palliative treatment after lung surgical procedure. Photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. Unfortunately, the approach of PDT is usually limited to the treatment of systemic disease and deeper tumor, due to the limited tissue penetration depth of visible light (620-690nm). Here we report a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which can trigger ROS when particles are irradiated with high penetrating power of ionizing radiation. The present study provides quantitative data relating ROS generation and the therapeutic effect of Hf:HAp nanoparticles in lung cancer cells. As such, this material has opened an innovative window for deeper tumor and systemic disease treatment. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bresler, S E; Kalinin, V L; Kopylova, Y U; Krivisky, A S; Rybchin, V N; Shelegedin, V N
1975-07-01
The inactivating and mutagenic action of high-energy radiations with different ionizing capacities (gamma-rays, protons, alpha-particles and accelerated ions of 12C and 20Ne) was studied by using coliphages lambda11 and SD as subjects. In particular the role of irradiation conditions (broth suspension, pure buffer, dry samples) and of the host functions recA, exrA and polA was investigated. The dose-response curve of induced mutagenesis was studied by measuring the yield of vir mutants in lambda11 and plaque mutants in SD. The following results were obtained. (1) The inactivation kinetics of phages under the action of gamma-rays and protons was first order to a survival of 10(-7). Heavy ions also showed exponential inactivation kinetics to a survival of 10(-4). At higher doses of 20Ne ion bombardment some deviation from one-hit kinetics was observed. For dry samples of phages the dimensions of targets for all types of radiation were approximately proportional to the molecular weights of phage DNA's. For densely ionizing radiation (heavy ions) the inactivating action was 3-5 times weaker than for gamma-rays and protons. (2) Mutagenesis was observed for all types of radiation, but heavy ions were 1-5-2 times less efficient than gamma-rays. For both phages studied the dose-response curve of mutagenesis was non-linear. The dependence on the dose was near to parabolic for lambda11. For SD a plateau or maximum of mutagenesis was observed for the relative number of mutants at a survival of about 10(-4). (3) Host-cell functions recA and exrA were practically indifferent for survival of gamma-irradiated phage lambda11, but indispensable for mutagenesis. Mutation recAI3 abolished induced vir mutations totally and exrA- reduced them significantly. The absence of the function polA had a considerable influence on phage survival, but no effect on vir mutation yield (if compared at the same survival level). (4) In conditions of indirect action of gamma-rays no vir mutations were induced. This is regarded as evidence that the single-strand breaks formed under indirect action conditions cannot serve as pre-mutational damage in DNA.
Lasserre, Camille; De Saint Martin, Luc; Cuzon, Gaelle; Bogaerts, Pierre; Lamar, Estelle; Glupczynski, Youri; Naas, Thierry; Tandé, Didier
2015-07-01
The recognition of carbapenemase-producing Enterobacteriaceae (CPE) isolates is a major laboratory challenge, and their inappropriate or delayed detection may have negative impacts on patient management and on the implementation of infection control measures. We describe here a matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-based method to detect carbapenemase activity in Enterobacteriaceae. After a 20-min incubation of the isolate with 0.5 mg/ml imipenem at 37°C, supernatants were analyzed by MALDI-TOF in order to identify peaks corresponding to imipenem (300 Da) and an imipenem metabolite (254 Da). A total of 223 strains, 77 CPE (OXA-48 variants, KPC, NDM, VIM, IMI, IMP, and NMC-A) and 146 non-CPE (cephalosporinases, extended-spectrum β-lactamases [ESBLs], and porin defects), were tested and used to calculate a ratio of imipenem hydrolysis: mass spectrometry [MS] ratio = metabolite/(imipenem + metabolite). An MS ratio cutoff was statistically determined to classify strains as carbapenemase producers (MS ratio of ≥0.82). We validated this method first by testing 30 of our 223 isolates (15 CPE and 15 non-CPE) 10 times to calculate an intraclass correlation coefficient (ICC of 0.98), showing the excellent repeatability of the method. Second, 43 strains (25 CPE and 18 non-CPE) different from the 223 strains used to calculate the ratio cutoff were used as external controls and blind tested. They yielded sensitivity and specificity of 100%. The total cost per test is <0.10 U.S. dollars (USD). This easy-to-perform assay is time-saving, cost-efficient, and highly reliable and might be used in any routine laboratory, given the availability of mass spectrometry, to detect CPE. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
2013-07-01
31st ICPIG, July 14-19, 2013, Granada , Spain Investigation of ozone yield of air fed ozonizer by high pressure homogeneous dielectric barrier...Phenomena in Ionized Gases (31st) (ICPIG) Held in Granada , Spain on 14-19 July 2013 14. ABSTRACT We succeed in generating an atmospheric and high...8-98) Prescribed by ANSI Std Z39-18 31st ICPIG, July 14-19, 2013, Granada , Spain size and thickness are 100 cm2 and 2 mm respectively. The
Space experiments with particle accelerators
NASA Technical Reports Server (NTRS)
Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Roberts, W. T.; Chappell, C. R.; Reasoner, D. L.; Garriott, O. K.;
1984-01-01
Electron and plasma beams and neutral gas plumes were injected into the space environment by instruuments on Spacelab 1, and various diagnostic measurements including television camera observations were performed. The results yield information on vehicle charging and neutralization, beam-plasma interactions, and ionization enhancement by neutral beam injection.
Fast Atom Bombardment Mass Spectrometry.
ERIC Educational Resources Information Center
Rinehart, Kenneth L., Jr.
1982-01-01
Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)
Development of a Computationally Efficient, High Fidelity, Finite Element Based Hall Thruster Model
NASA Technical Reports Server (NTRS)
Jacobson, David (Technical Monitor); Roy, Subrata
2004-01-01
This report documents the development of a two dimensional finite element based numerical model for efficient characterization of the Hall thruster plasma dynamics in the framework of multi-fluid model. Effect of the ionization and the recombination has been included in the present model. Based on the experimental data, a third order polynomial in electron temperature is used to calculate the ionization rate. The neutral dynamics is included only through the neutral continuity equation in the presence of a uniform neutral flow. The electrons are modeled as magnetized and hot, whereas ions are assumed magnetized and cold. The dynamics of Hall thruster is also investigated in the presence of plasma-wall interaction. The plasma-wall interaction is a function of wall potential, which in turn is determined by the secondary electron emission and sputtering yield. The effect of secondary electron emission and sputter yield has been considered simultaneously, Simulation results are interpreted in the light of experimental observations and available numerical solutions in the literature.
Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS
Cochran, Kristin H.; Barry, Jeremy A.; Robichaud, Guillaume
2016-01-01
Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers. PMID:25081013
Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS.
Cochran, Kristin H; Barry, Jeremy A; Robichaud, Guillaume; Muddiman, David C
2015-01-01
Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers.
Radiation induced degradation of xanthan gum in aqueous solution
NASA Astrophysics Data System (ADS)
Hayrabolulu, Hande; Demeter, Maria; Cutrubinis, Mihalis; Güven, Olgun; Şen, Murat
2018-03-01
In our previous study, we have investigated the effect of gamma rays on xanthan gum in the solid state and it was determined that dose rate was an important factor effecting the radiation degradation of xanthan gum. In the present study, in order to provide a better understanding of how ionizing radiation effect xanthan gum, we have investigated the effects of ionizing radiation on aqueous solutions of xanthan at various concentrations (0.5-4%). Xanthan solutions were irradiated with gamma rays in air, at ambient temperature, at different dose rates (0.1-3.3-7.0 kGy/h) and doses (2.5-50 kGy). Change in their molecular weights was followed by size exclusion chromatography (SEC). Chain scission yield (G(S)), and degradation rate constants (k) were calculated. It was determined that, solution concentration was a factor effecting the degradation chemical yield and degradation rate of xanthan gum. Chain scission reactions were more effective for lower solution concentrations.
Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904
NASA Astrophysics Data System (ADS)
Arav, Nahum; Borguet, Benoit; Chamberlain, Carter; Edmonds, Doug; Danforth, Charles
2013-12-01
Spectroscopic observations of quasar outflows at rest-frame 500-1000 Å have immense diagnostic power. We present analyses of such data, where absorption troughs from O IV and O IV* allow us to obtain the distance of the outflows from the AGN and troughs from Ne VIII and Mg X reveal the warm absorber phase of the outflow. Their inferred column densities, combined with those of O VI, N IV and H I, yield two important results. (1) The outflow shows two ionization phases, where the high-ionization phase carries the bulk of the material. This is similar to the situation seen in X-ray warm absorber studies. Furthermore, the low-ionization phase is inferred to have a volume filling factor of 10-5-10-6. (2) We determine a distance of 3000 pc from the outflow to the central source using the O IV*/O IV column density ratio and the knowledge of the ionization parameter. Since this is a typical high-ionization outflow, we can determine robust values for the outflow's mass flux and kinetic luminosity of 40 M⊙ yr-1 and 1045 erg s-1, respectively, where the latter is roughly equal to 1 per cent of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high-ionization wind suggest that quasar outflows are a major contributor to AGN feedback mechanisms.
Hu, S. X.; Collins, Lee A.; Goncharov, V. N.; ...
2016-04-14
Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations on the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm 3 and T = 15,625 to 500,000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which exhibits the correct behaviors of continuum lowering and pressure ionization. The thermal conductivities (κ QMD) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted withmore » a generalized Coulomb logarithm [(lnΛ) QMD] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Furthermore, hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted –20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less
Autoionizing resonances in electron-impact ionization of O5+ ions
NASA Astrophysics Data System (ADS)
Müller, A.; Teng, H.; Hofmann, G.; Phaneuf, R. A.; Salzborn, E.
2000-12-01
We report on a detailed experimental and theoretical study of electron-impact ionization of O5+ ions. A high-resolution scan measurement of the K-shell excitation threshold region has been performed with statistical uncertainties as low as 0.03%. At this level of precision a wealth of features in the cross section arising from indirect ionization processes becomes visible, and even interference of direct ionization with resonant-excitation/auto-double-ionization (READI) is clearly observed. The experimental results are compared with R-matrix calculations that include both direct and indirect processes in a unified way. Radiative damping of autoionizing Li-like states is found to be about 10-15 %. The calculations almost perfectly reproduce most of the experimental resonance features found in the present measurement including READI. They also agree with the direct-ionization converged close-coupling results of I. Bray [J. Phys. B 28, L247 (1995)] and the absolute total ionization cross section measurement of K. Rinn et al. [Phys. Rev. A 36, 595 (1987)].
Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yue; Sawyer, Jordan C.; Su, Liu
2016-05-07
Here we present quantitative measurements of total electron numbers in laser-induced air breakdown at pressures ranging from atmospheric to 40 bar{sub g} by 10 ns and 100 ps laser pulses. A quantifiable definition for the laser-induced breakdown threshold is identified by a sharp increase in the measurable total electron numbers via dielectric-calibrated coherent microwave scattering. For the 10 ns laser pulse, the threshold of laser-induced breakdown in atmospheric air is defined as the total electron number of ∼10{sup 6}. This breakdown threshold decreases with an increase of pressure and laser photon energy (shorter wavelength), which is consistent with the theory of initialmore » multiphoton ionization and subsequent avalanche processes. For the 100 ps laser pulse cases, a clear threshold is not present and only marginal pressure effects can be observed, which is due to the short pulse duration leading to stronger multiphoton ionization and minimal collisional avalanche ionization.« less
Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections
NASA Astrophysics Data System (ADS)
Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.
2011-06-01
Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.
Podgorski, David C; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G; Cooper, William T
2012-06-05
Dissolved organic nitrogen (DON) comprises a heterogeneous family of organic compounds that includes both well-known biomolecules such as urea or amino acids and more complex, less characterized compounds such as humic and fulvic acids. Typically, DON represents only a small fraction of the total dissolved organic carbon pool and therefore presents inherent problems for chemical analysis and characterization. Here, we demonstrate that DON may be selectively ionized by atmospheric pressure photionization (APPI) and characterized at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry. Unlike electrospray ionization (ESI), APPI ionizes polar and nonpolar compounds, and ionization efficiency is not determined by polarity. APPI is tolerant to salts, due to the thermal treatment inherent to nebulization, and thus avoids salt-adduct formation that can complicate ESI mass spectra. Here, for dissolved organic matter from various aquatic environments, we selectively ionize DON species that are not efficiently ionized by other ionization techniques and demonstrate significant signal-to-noise increase for nitrogen species by use of APPI relative to ESI.
NASA Technical Reports Server (NTRS)
Green, A. E. S.; Singhal, R. P.
1979-01-01
An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.
Climatological influences on site-specific ecohydrology are particularly germane in semiarid regions where instream flows are strongly influenced by effluent discharges. Because many traditional and emerging aquatic contaminants, such as pharmaceuticals, are ionizable, we examin...
Fujii, Makiko; Shishido, Rie; Satoh, Takaya; Suzuki, Shigeru; Matsuo, Jiro
2016-07-30
Bi cluster secondary ion mass spectrometry (SIMS) is one of the most promising tools for precise analysis of synthetic polymers. However, the sensitivity in the high-mass region is still insufficient compared with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Accordingly, the effects of metal assistance (cationization agents) were investigated in this study. To investigate the effects caused by varying the ionization agent, three different polyethylene glycol (PEG) samples were prepared, one with an Ag-deposited film, and two others mixed with Ag and Na, respectively. The measurements were performed by using a commercial Bi cluster SIMS and MALDI-TOFMS systems. The mass spectrum obtained with MALDI-TOFMS was used as a reference molecular weight distribution to evaluate the effects of molecular weight and primary ion species (Bi + , Bi 3 + , Bi 3 2 + ) on the sensitivity of Bi cluster SIMS. The intensity of each secondary ion was the highest in Bi 3 2 + irradiation, and the lowest in Bi + irradiation. Regarding the cationization agents, the secondary ion yield was the highest for the sample mixed with Ag, while the degree of decay of sensitivity along with the increase in molecular weight was the smallest for the sample mixed with Na. It was suggested that the cationization mechanism consists of pre-formed ionization and gas-phase ionization processes. The sensitivity of Bi cluster SIMS decreases to approximately one-fiftieth in every 1000 u. These results might help in understanding the mechanism of cationization and further enhancement of secondary ion yields of polymers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Constraining the contribution of active galactic nuclei to reionization
NASA Astrophysics Data System (ADS)
Hassan, Sultan; Davé, Romeel; Mitra, Sourav; Finlator, Kristian; Ciardi, Benedetta; Santos, Mario G.
2018-01-01
Recent results have suggested that active galactic nuclei (AGN) could provide enough photons to reionize the Universe. We assess the viability of this scenario using a semi-numerical framework for modelling reionization, to which we add a quasar contribution by constructing a Quasar Halo Occupancy Distribution (QHOD) based on Giallongo et al. observations. Assuming a constant QHOD, we find that an AGN-only model cannot simultaneously match observations of the optical depth τe, neutral fraction and ionizing emissivity. Such a model predicts τe too low by ∼2σ relative to Planck constraints, and reionizes the Universe at z ≲ 5. Arbitrarily increasing the AGN emissivity to match these results yields a strong mismatch with the observed ionizing emissivity at z ∼ 5. If we instead assume a redshift-independent AGN luminosity function yielding an emissivity evolution like that assumed in Madau & Haardt model, then we can match τe albeit with late reionization; however, such evolution is inconsistent with observations at z ∼ 4-6 and poorly motivated physically. These results arise because AGN are more biased towards massive haloes than typical reionizing galaxies, resulting in stronger clustering and later formation times. AGN-dominated models produce larger ionizing bubbles that are reflected in ∼×2 more 21 cm power on all scales. A model with equal part galaxies and AGN contribution is still (barely) consistent with observations, but could be distinguished using next-generation 21 cm experiments such as Hydrogen Epoch of Reionization Array and SKA-low. We conclude that, even with recent claims of more faint AGN than previously thought, AGN are highly unlikely to dominate the ionizing photon budget for reionization.
Studies of Neutron-Induced Fission of 235U, 238U, and 239Pu
NASA Astrophysics Data System (ADS)
Duke, Dana; TKE Team
2014-09-01
A Frisch-gridded ionization chamber and the double energy (2E) analysis method were used to study mass yield distributions and average total kinetic energy (TKE) release from neutron-induced fission of 235U, 238U, and 239Pu. Despite decades of fission research, little or no TKE data exist for high incident neutron energies. Additional average TKE information at incident neutron energies relevant to defense- and energy-related applications will provide a valuable observable for benchmarking simulations. The data can also be used as inputs in theoretical fission models. The Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE - WNR) provides a neutron beam from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on 238U, 235U, and 239Pu will be presented. LA-UR-14-24921.
Dron, Julien; Linke, Robert; Rosenberg, Erwin; Schreiner, Manfred
2004-08-20
A procedure for the determination of fatty acids (FA) and glycerol in oils has been developed. The method includes a derivatization step of the FAs into their methyl esters or a transesterification of the triacylglycerols with trimethylsulfonium hydroxide (TMSH), respectively. The analysis is carried out by gas chromatography with parallel flame ionization and mass spectrometric detection. The parameters involved in the transesterification reaction were optimized. Only the stoichiometric ratio of TMSH:total FA amount showed a significant influence on the reaction yield. Relative standard deviations for 10 replicates were below 3% for all FAs studied and their linearity range was 0.5-50 mmol/L, when using heptadecanoic acid as an internal standard. The final procedure was rapid and required little sample handling. It was then tested on fresh oil samples and presented satisfying results, in agreement with previous works.
A Comparison of Observed Abundances in Five Well-Studied Planetary Nebulae
NASA Astrophysics Data System (ADS)
Tanner, Jolene; Balick, B.; Kwitter, K. B.
2013-01-01
We have assembled data and derived abundances in several recent careful studies for five bright planetary nebulae (PNe) of low, moderate, and high ionization and relatively simple morphology. Each of the studies employ different apertures, aperture placement, and facilities for the observations. Various methods were used to derive total abundances. All used spectral windows that included [OII]3727 in the UV through Argon lines in the red. Our ultimate goal is to determine the extent to which the derived abundances are consistent. We show that the reddening-corrected line ratios are surprisingly similar despite the different modes of observation and that the various abundance analysis methods yield generally consistent results for He/H, N/H, O/H, and Ne/H (within 50% with a few larger deviations). In addition we processed the line ratios from the different sources using a common abundance derivation method (ELSA) to search for clues of systematic methodological inconsistencies. None were uncovered.
NASA Technical Reports Server (NTRS)
Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.
1991-01-01
Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene
1992-01-01
Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.
Spontaneous-Desorption Ionizer for a TOF-MS
NASA Technical Reports Server (NTRS)
Schultz, J. Albert
2006-01-01
A time-of-flight mass spectrometer (TOF-MS) like the one mentioned in the immediately preceding article has been retrofitted with an ionizer based on a surface spontaneous-desorption process. This ionizer includes an electron multiplier in the form of a microchannel plate (MCP). Relative to an ionizer based on a hot-filament electron source, this ionizer offers advantages of less power consumption and greater mechanical ruggedness. The current density and stability characteristics of the electron emission of this ionizer are similar to those of a filament-based ionizer. In tests of various versions of this ionizer in the TOF-MS, electron currents up to 100 nA were registered. Currents of microamperes or more - great enough to satisfy requirements in most TOFMS applications - could be obtained by use of MCPs different from those used in the tests, albeit at the cost of greater bulk. One drawback of this ionizer is that the gain of the MCP decreases as a function of the charge extracted thus far; the total charge that can be extracted over the operational lifetime is about 1 coulomb. An MCP in the ion-detector portion of the TOF-MS is subject to the same limitation.
Low-energy electron-impact single ionization of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Pindzola, M. S.; Childers, G.
2006-04-15
A study is made of low-energy electron-impact single ionization of ground-state helium. The time-dependent close-coupling method is used to calculate total integral, single differential, double differential, and triple differential ionization cross sections for impact electron energies ranging from 32 to 45 eV. For all quantities, the calculated cross sections are found to be in very good agreement with experiment, and for the triple differential cross sections, good agreement is also found with calculations made using the convergent close-coupling technique.
Electron-Impact Ionization Cross Section Database
National Institute of Standards and Technology Data Gateway
SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access) This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.
Spectrophotometry of six broad absorption line QSOs
NASA Technical Reports Server (NTRS)
Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.
1987-01-01
Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.
Electron impact ionization of cycloalkanes, aldehydes, and ketones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com
The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A., E-mail: schweikert@chem.tamu.edu
We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimentalmore » yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.« less
Chatterley, Adam S; Lackner, Florian; Neumark, Daniel M; Leone, Stephen R; Gessner, Oliver
2016-06-07
Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 10(13) and 2.2 × 10(14) W cm(-2). The major elimination products are bromine atoms in charge states of 0, +1, and +2. The charge state distribution is strongly dependent on the incident NIR intensity. While the yield of neutral fragments is essentially constant for all measurements, charged fragment yields grow rapidly with increasing NIR intensities with the most pronounced effect observed for Br(++). However, the appearance times of all bromine fragments are independent of the incident field strength; these are found to be 320 fs, 70 fs, and 30 fs for Br˙, Br(+), and Br(++), respectively. Transient molecular ion features assigned to DBE(+) and DBE(++) are observed, with dynamics linked to the production of Br(+) products. Neutral Br˙ atoms are produced on a timescale consistent with dissociation of DBE(+) ions on a shallow potential energy surface. The appearance of Br(+) ions by dissociative ionization is also seen, as evidenced by the simultaneous decay of a DBE(+) ionic species. Dicationic Br(++) products emerge within the instrument response time, presumably from Coulomb explosion of triply charged DBE.
Chatterley, Adam S.; Lackner, Florian; Neumark, Daniel M.; ...
2016-05-11
Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 10 13 and 2.2 × 10 14 W cm -2. The major elimination products are bromine atoms in charge states of 0, +1, and +2. The charge state distribution is strongly dependent on the incident NIR intensity. While the yield of neutral fragments is essentially constant for all measurements, charged fragment yields grow rapidly with increasing NIR intensities with the most pronounced effect observed for Br ++. However,more » the appearance times of all bromine fragments are independent of the incident field strength; these are found to be 320 fs, 70 fs, and 30 fs for Br˙, Br +, and Br ++, respectively. Transient molecular ion features assigned to DBE + and DBE ++ are observed, with dynamics linked to the production of Br + products. Neutral Br˙ atoms are produced on a timescale consistent with dissociation of DBE + ions on a shallow potential energy surface. The appearance of Br + ions by dissociative ionization is also seen, as evidenced by the simultaneous decay of a DBE + ionic species. Dicationic Br ++ products emerge within the instrument response time, presumably from Coulomb explosion of triply charged DBE.« less
NASA Astrophysics Data System (ADS)
Tarkeshian, R.; Vay, J. L.; Lehe, R.; Schroeder, C. B.; Esarey, E. H.; Feurer, T.; Leemans, W. P.
2018-04-01
Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today's free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.
Useful ion yields for Cameca IMS 3f and 6f SIMS: Limits on quantitative analysis
Hervig, R.L.; Mazdab, F.K.; Williams, Pat; Guan, Y.; Huss, G.R.; Leshin, L.A.
2006-01-01
The useful yields (ions detected/atom sputtered) of major and trace elements in NIST 610 glass were measured by secondary ion mass spectrometry (SIMS) using Cameca IMS 3f and 6f instruments. Useful yields of positive ions at maximum transmission range from 10-4 to 0.2 and are negatively correlated with ionization potential. We quantified the decrease in useful yields when applying energy filtering or high mass resolution techniques to remove molecular interferences. The useful yields of selected negative ions (O, S, Au) in magnetite and pyrite were also determined. These data allow the analyst to determine if a particular analysis (trace element contents or isotopic ratio) can be achieved, given the amount of sample available and the conditions of the analysis. ?? 2005 Elsevier B.V. All rights reserved.
FAMBE-pH: A Fast and Accurate Method to Compute the Total Solvation Free Energies of Proteins
Vorobjev, Yury N.; Vila, Jorge A.
2009-01-01
A fast and accurate method to compute the total solvation free energies of proteins as a function of pH is presented. The method makes use of a combination of approaches, some of which have already appeared in the literature; (i) the Poisson equation is solved with an optimized fast adaptive multigrid boundary element (FAMBE) method; (ii) the electrostatic free energies of the ionizable sites are calculated for their neutral and charged states by using a detailed model of atomic charges; (iii) a set of optimal atomic radii is used to define a precise dielectric surface interface; (iv) a multilevel adaptive tessellation of this dielectric surface interface is achieved by using multisized boundary elements; and (v) 1:1 salt effects are included. The equilibrium proton binding/release is calculated with the Tanford–Schellman integral if the proteins contain more than ∼20–25 ionizable groups; for a smaller number of ionizable groups, the ionization partition function is calculated directly. The FAMBE method is tested as a function of pH (FAMBE-pH) with three proteins, namely, bovine pancreatic trypsin inhibitor (BPTI), hen egg white lysozyme (HEWL), and bovine pancreatic ribonuclease A (RNaseA). The results are (a) the FAMBE-pH method reproduces the observed pKa's of the ionizable groups of these proteins within an average absolute value of 0.4 pK units and a maximum error of 1.2 pK units and (b) comparison of the calculated total pH-dependent solvation free energy for BPTI, between the exact calculation of the ionization partition function and the Tanford–Schellman integral method, shows agreement within 1.2 kcal/mol. These results indicate that calculation of total solvation free energies with the FAMBE-pH method can provide an accurate prediction of protein conformational stability at a given fixed pH and, if coupled with molecular mechanics or molecular dynamics methods, can also be used for more realistic studies of protein folding, unfolding, and dynamics, as a function of pH. PMID:18683966
In-gas-cell laser ionization studies of plutonium isotopes at IGISOL
NASA Astrophysics Data System (ADS)
Pohjalainen, I.; Moore, I. D.; Kron, T.; Raeder, S.; Sonnenschein, V.; Tomita, H.; Trautmann, N.; Voss, A.; Wendt, K.
2016-06-01
In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of 238-240,242Pu and 244Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.
NASA Astrophysics Data System (ADS)
Randazzo, J. M.; Ancarani, L. U.
2015-12-01
For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e -H problem), we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way of defining the kinetic energy fraction, using Bohm's definition of velocities instead of the usual asymptotic kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is equally related to the components of the probability flux. Compared to what is usually observed, the correction yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons carries all the energy while the other has zero energy. We also discuss, within the S -wave model of the e -H ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so clearly observed in published benchmark results obtained with integral and S -matrix formulas with unequal final states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Jaroslaw H.
2011-03-15
In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is proportional to the laser frequency {omega} (for a constant intensity of the laser field). In the present work I show that for circularly polarized laser fields the ionization rate is proportional to {omega}{sup 4} for H(1s) and H(2s) atoms, to {omega}{sup 6} for H(2p{sub x}) and H(2p{sub y})more » atoms, and to {omega}{sup 8} for H(2p{sub z}) atoms. The analytical expressions for asymptotic ionization rates (which become nearly accurate in the limit {omega}{yields}0) contain no summations over multiphoton contributions. For very low laser frequencies (optical or infrared) these expressions usually remain with an order-of-magnitude agreement with the velocity gauge strong-field approximation.« less
Atmospheric helium and geomagnetic field reversals.
NASA Technical Reports Server (NTRS)
Sheldon, W. R.; Kern, J. W.
1972-01-01
The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.
Track structure in radiation biology: theory and applications.
Nikjoo, H; Uehara, S; Wilson, W E; Hoshi, M; Goodhead, D T
1998-04-01
A brief review is presented of the basic concepts in track structure and the relative merit of various theoretical approaches adopted in Monte-Carlo track-structure codes are examined. In the second part of the paper, a formal cluster analysis is introduced to calculate cluster-distance distributions. Total experimental ionization cross-sections were least-square fitted and compared with the calculation by various theoretical methods. Monte-Carlo track-structure code Kurbuc was used to examine and compare the spectrum of the secondary electrons generated by using functions given by Born-Bethe, Jain-Khare, Gryzinsky, Kim-Rudd, Mott and Vriens' theories. The cluster analysis in track structure was carried out using the k-means method and Hartigan algorithm. Data are presented on experimental and calculated total ionization cross-sections: inverse mean free path (IMFP) as a function of electron energy used in Monte-Carlo track-structure codes; the spectrum of secondary electrons generated by different functions for 500 eV primary electrons; cluster analysis for 4 MeV and 20 MeV alpha-particles in terms of the frequency of total cluster energy to the root-mean-square (rms) radius of the cluster and differential distance distributions for a pair of clusters; and finally relative frequency distribution for energy deposited in DNA, single-strand break and double-strand breaks for 10MeV/u protons, alpha-particles and carbon ions. There are a number of Monte-Carlo track-structure codes that have been developed independently and the bench-marking presented in this paper allows a better choice of the theoretical method adopted in a track-structure code to be made. A systematic bench-marking of cross-sections and spectra of the secondary electrons shows differences between the codes at atomic level, but such differences are not significant in biophysical modelling at the macromolecular level. Clustered-damage evaluation shows: that a substantial proportion of dose ( 30%) is deposited by low-energy electrons; the majority of DNA damage lesions are of simple type; the complexity of damage increases with increased LET, while the total yield of strand breaks remains constant; and at high LET values nearly 70% of all double-strand breaks are of complex type.
Sharma, Kiran K; Razskazovskiy, Yuriy; Purkayastha, Shubhadeep; Bernhard, William A
2009-06-11
The question of how NA base sequence influences the yield of DNA strand breaks produced by the direct effect of ionizing radiation was investigated in a series of oligodeoxynucleotides of the form (d(CG)(n))(2) and (d(GC)(n))(2). The yields of free base release from X-irradiated DNA films containing 2.5 waters/nucleotide were measured by HPLC as a function of oligomer length. For (d(CG)(n))(2), the ratio of the Gua yield to Cyt yield, R, was relatively constant at 2.4-2.5 for n = 2-4 and it decreased to 1.2 as n increased from 5 to 10. When Gua was moved to the 5' end, for example going from d(CG)(5) to d(GC)(5), R dropped from 1.9 +/- 0.1 to 1.1 +/- 0.1. These effects are poorly described if the chemistry at the oligomer ends is assumed to be independent of the remainder of the oligomer. A mathematical model incorporating charge transfer through the base stack was derived to explain these effects. In addition, EPR was used to measure the yield of trapped-deoxyribose radicals at 4 K following X-irradiation at 4 K. The yield of free base release was substantially greater, by 50-100 nmol/J, than the yield of trapped-deoxyribose radicals. Therefore, a large fraction of free base release stems from a nonradical intermediate. For this intermediate, a deoxyribose carbocation formed by two one-electron oxidations is proposed. This reaction pathway requires that the hole (electron loss site) transfers through the base stack and, upon encountering a deoxyribose hole, oxidizes that site to form a deoxyribose carbocation. This reaction mechanism provides a consistent way of explaining both the absence of trapped radical intermediates and the unusual dependence of free base release on oligomer length.
MALDI versus ESI: The Impact of the Ion Source on Peptide Identification.
Nadler, Wiebke Maria; Waidelich, Dietmar; Kerner, Alexander; Hanke, Sabrina; Berg, Regina; Trumpp, Andreas; Rösli, Christoph
2017-03-03
For mass spectrometry-based proteomic analyses, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are the commonly used ionization techniques. To investigate the influence of the ion source on peptide detection in large-scale proteomics, an optimized GeLC/MS workflow was developed and applied either with ESI/MS or with MALDI/MS for the proteomic analysis of different human cell lines of pancreatic origin. Statistical analysis of the resulting data set with more than 72 000 peptides emphasized the complementary character of the two methods, as the percentage of peptides identified with both approaches was as low as 39%. Significant differences between the resulting peptide sets were observed with respect to amino acid composition, charge-related parameters, hydrophobicity, and modifications of the detected peptides and could be linked to factors governing the respective ion yields in ESI and MALDI.
Anomalous photo-ionization of 4d shell in medium-Z ionized atoms
NASA Astrophysics Data System (ADS)
Klapisch, M.; Busquet, M.
2013-09-01
Photoionization (PI) cross sections (PICS) are necessary for the simulation of astrophysical and ICF plasmas. In order to be used in plasma modeling, the PICS are usually fit to simple analytical formulas. We observed an unusual spectral shape of the PICS of the 4d shell of ionized Xe and other elements, computed with different codes: a local minimum occurs around twice the threshold energy. We explain this phenomenon as interference between the bound 4d wavefunction and the free electron wavefunction, which is similar to the Cooper minima for neutral atoms. Consequently, the usual fitting formulas, which consist of a combination of inverse powers of the frequency beyond threshold, may yield rates for PI and radiative recombination (RR) that are incorrect by orders of magnitude. A new fitting algorithm is proposed and is included in the latest version of HULLAC.v9.5.
Weiler, Martin; Nakamura, Takashi; Sekiya, Hiroshi; Dopfer, Otto; Miyazaki, Mitsuhiko; Fujii, Masaaki
2012-12-07
We present the resonance-enhanced multiphoton ionization, infrared-ultraviolet hole burning (IR-UV HB), and IR dip spectra of the trans-acetanilide-methanol (AA-MeOH) cluster in the S(0), S(1), and cationic ground state (D(0)) in a supersonic jet. The IR-UV HB spectra demonstrate the co-existence of two isomers in S(0,1), in which MeOH binds either to the NH or the CO site of the peptide linkage in AA, denoted as AA(NH)-MeOH and AA(CO)-MeOH. When AA(CO)-MeOH is selectively ionized, its IR spectrum in D(0) is the same as that measured for AA(+) (NH)-MeOH. Thus, photoionization of AA(CO)-MeOH induces migration of MeOH from the CO to the NH site with 100% yield. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neon in ultrashort and intense x-rays from free electron lasers
NASA Astrophysics Data System (ADS)
Buth, Christian; Beerwerth, Randolf; Obaid, Razib; Berrah, Nora; Cederbaum, Lorenz S.; Fritzsche, Stephan
2018-03-01
We theoretically examine neon atoms in ultrashort and intense x-rays from free electron lasers and compare our results with data from experiments conducted at the Linac Coherent Light Source. For this purpose, we treat in detail the electronic structure in all possible nonrelativistic cationic configurations using a relativistic multiconfiguration approach. The interaction with the x-rays is described in rate-equation approximation. To understand the mechanisms of the interaction, a path analysis is devised which allows us to investigate what sequences of photoionization and decay processes lead to a specific configuration and with what probability. Thereby, we uncover a connection to the mathematics of graph theory and formal languages. In detail, we study the ion yields and find that plain rate equations do not provide a satisfactory description. We need to extend the rate equations for neon to incorporate double Auger decay of a K-shell vacancy and photoionization shake off for neutral neon. Shake off is included for valence and core ionization; the former has hitherto been overlooked but has important consequences for the ion yields from an x-ray energy below the core ionization threshold. Furthermore, we predict the photon yields from XUV and x-ray fluorescence these allow one insights into the configurations populated by the interaction with the x-rays. Finally, we discover that inaccuracies in those Auger decay widths employed in previous studies have only a minor influence on ion and photon yields.
Sequential double photodetachment of He- in elliptically polarized laser fields
NASA Astrophysics Data System (ADS)
Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier
2018-02-01
Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.
A new X-ray spectral observation of NGC 1068
NASA Technical Reports Server (NTRS)
Marshall, F. E.; Netzer, H.; Arnaud, K. A.; Boldt, E. A.; Holt, S. S.; Jahoda, K. M.; Kelley, R.; Mushotzky, R. F.; Petre, R.; Serlemitsos, P. J.
1993-01-01
A new X-ray observation of NGC 1068, in which improved spectral resolution (R is approximately equal to 40) and broad energy range provide important new constraints on models for this galaxy, is reported. The observed X-ray continuum of NGC 1068 from 0.3 to 10 keV is well fitted as the sum of two power-law spectra with no evidence for absorption intrinsic to the source. Strong Fe K emission lines with a total equivalent width of 2700 eV were detected due to iron less ionized than Fe XX and to iron more ionized than Fe XXIII. No evidence was seen for lines due to the recombination of highly ionized oxygen with an upper limit for the O Ly-alpha emission line of 40 eV. The discovery of multiple Fe K and Fe L emission lines indicates a broad range of ionization states for this gas. The X-ray emission from the two components is modeled for various geometries using a photoionization code that calculates the temperature and ionization state of the gas. Typical model parameters are a total Compton depth of a few percent, an inner boundary of the hot component of about 1 pc, and an inner boundary of the warm component of about 20 pc.
Forming Rb(+) snowballs in the center of He nanodroplets.
Theisen, Moritz; Lackner, Florian; Ernst, Wolfgang E
2010-12-07
Helium nanodroplets doped with rubidium atoms are ionized by applying a resonant two-step ionization scheme. Subsequent immersion of rubidium ions is observed in time-of-flight mass spectra. While alkali-metal atoms usually desorb from the surface of a helium nanodroplet upon electronic excitation, rubidium in its excited 5(2)P(1/2) state provides an exception from this rule (Auböck et al., Phys. Rev. Lett., 2008, 101, 35301). In our new experiment, Rb atoms are selectively excited either to the 5(2)P(1/2) or to the 5(2)P(3/2) state. From there they are ionized by a laser pulse. Time-of-flight mass spectra of the ionization products reveal that the intermediate population of the 5(2)P(1/2) state does not only make the ionization process Rb-monomer selective, but also gives rise to a very high yield of Rb(+)-He(N) complexes. Ions with masses of up to several thousand amu have been monitored, which can be explained by an immersion of the single Rb ion into the He nanodroplet, where most likely a snowball is formed in the center of the He nanodroplet. As the most stable position for an ion is in the center of a He nanodroplet, our results agree well with theory.
Wang, Liang; Zhang, En Xia; Schrimpf, Ronald D.; ...
2015-12-17
Here, the total ionizing dose response of Ge channel pFETs with raised Si 0.55Ge 0.45 source/drain is investigated under different radiation bias conditions. Threshold-voltage shifts and transconductance degradation are noticeable only for negative-bias (on state) irradiation, and are mainly due to negative bias-temperature instability (NBTI). Nonmonotonic leakage changes during irradiation are observed, which are attributed to the competition of radiation-induced field transistor leakage and S/D junction leakage.
Turner, H C; Shuryak, I; Taveras, M; Bertucci, A; Perrier, J R; Chen, C; Elliston, C D; Johnson, G W; Smilenov, L B; Amundson, S A; Brenner, D J
2015-03-01
The biological risks associated with low-dose-rate (LDR) radiation exposures are not yet well defined. To assess the risk related to DNA damage, we compared the yields of two established biodosimetry end points, γ-H2AX and micronuclei (MNi), in peripheral mouse blood lymphocytes after prolonged in vivo exposure to LDR X rays (0.31 cGy/min) vs. acute high-dose-rate (HDR) exposure (1.03 Gy/min). C57BL/6 mice were total-body irradiated with 320 kVP X rays with doses of 0, 1.1, 2.2 and 4.45 Gy. Residual levels of total γ-H2AX fluorescence in lymphocytes isolated 24 h after the start of irradiation were assessed using indirect immunofluorescence methods. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to determine apoptotic cell frequency in lymphocytes sampled at 24 h. Curve fitting analysis suggested that the dose response for γ-H2AX yields after acute exposures could be described by a linear dependence. In contrast, a linear-quadratic dose-response shape was more appropriate for LDR exposure (perhaps reflecting differences in repair time after different LDR doses). Dose-rate sparing effects (P < 0.05) were observed at doses ≤2.2 Gy, such that the acute dose γ-H2AX and TUNEL-positive cell yields were significantly larger than the equivalent LDR yields. At the 4.45 Gy dose there was no difference in γ-H2AX expression between the two dose rates, whereas there was a two- to threefold increase in apoptosis in the LDR samples compared to the equivalent 4.45 Gy acute dose. Micronuclei yields were measured at 24 h and 7 days using the in vitro cytokinesis-blocked micronucleus (CBMN) assay. The results showed that MNi yields increased up to 2.2 Gy with no further increase at 4.45 Gy and with no detectable dose-rate effect across the dose range 24 h or 7 days post exposure. In conclusion, the γ-H2AX biomarker showed higher sensitivity to measure dose-rate effects after low-dose LDR X rays compared to MNi formation; however, confounding factors such as variable repair times post exposure, increased cell killing and cell cycle block likely contributed to the yields of MNi with accumulating doses of ionizing radiation.
Uncatalyzed, Regioselective Oxidation of Saturated Hydrocarbons in an Ambient Corona Discharge.
Ayrton, Stephen T; Jones, Rhys; Douce, David S; Morris, Mike R; Cooks, R Graham
2018-01-15
Atmospheric pressure chemical ionization (APCI) in air or in nitrogen with just traces of oxygen is shown to yield regioselective oxidation, dehydrogenation, and fragmentation of alkanes. Ozone is produced from ambient oxygen in situ and is responsible for the observed ion chemistry, which includes partial oxidation to ketones and C-C cleavage to give aldehydes. The mechanism of oxidation is explored and relationships between ionic species produced from individual alkanes are established. Unusually, dehydrogenation occurs by water loss. Competitive incorporation into the hydrocarbon chain of nitrogen versus oxygen as a mode of ionization is also demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellin, M. J.; Veryovkin, I. V.; Levine, J.
2010-01-01
There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.
Compact modeling of total ionizing dose and aging effects in MOS technologies
Esqueda, Ivan S.; Barnaby, Hugh J.; King, Michael Patrick
2015-06-18
This paper presents a physics-based compact modeling approach that incorporates the impact of total ionizing dose (TID) and stress-induced defects into simulations of metal-oxide-semiconductor (MOS) devices and integrated circuits (ICs). This approach utilizes calculations of surface potential (ψs) to capture the charge contribution from oxide trapped charge and interface traps and to describe their impact on MOS electrostatics and device operating characteristics as a function of ionizing radiation exposure and aging effects. The modeling approach is demonstrated for bulk and silicon-on-insulator (SOI) MOS device. The formulation is verified using TCAD simulations and through the comparison of model calculations and experimentalmore » I-V characteristics from irradiated devices. The presented approach is suitable for modeling TID and aging effects in advanced MOS devices and ICs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ti; Li, De-Feng; Zhou, Ning-Yi, E-mail: n.zhou@pentium.whiov.ac.cn
2011-07-08
Highlights: {yields} Application of site-directed mutagenesis to probe the active site residues of glutathione-dependent maleylpyruvate isomerase. {yields} Two conserved residues, Arg8 and Arg176, in zeta class glutathione S-transferases are critical for maleylpyruvate orientation and enolization. {yields} Arg109, found exclusively in NagL, participates in k{sub cat} regulation. {yields} The T11A mutant exhibited a significantly decreased K{sub m} value for glutathione with little impact on maleylpyruvate kinetics. {yields} The Thr11 residue appears to have significance in the evolution of glutathione S-transferase classes. -- Abstract: The maleylpyruvate isomerase NagL from Ralstonia sp. strain U2, which has been structurally characterized previously, catalyzes the isomerizationmore » of maleylpyruvate to fumarylpyruvate. It belongs to the class zeta glutathione S-transferases (GSTZs), part of the cytosolic GST family (cGSTs). In this study, site-directed mutagenesis was conducted to probe the functions of 13 putative active site residues. Steady-state kinetic information for mutants in the reduced glutathione (GSH) binding site, suggested that (a) Gln64 and Asp102 interact directly with the glutamyl moiety of glutathione, (b) Gln49 and Gln64 are involved in a potential electron-sharing network that influences the ionization of the GSH thiol. The information also suggests that (c) His38, Asn108 and Arg109 interact with the GSH glycine moiety, (d) His104 has a role in the ionization of the GSH sulfur and the stabilization of the maleyl terminal carboxyl group in the reaction intermediate and (e) Arg110 influences the electron distribution in the active site and therefore the ionization of the GSH thiolate. Kinetic data for mutants altered in the substrate-binding site imply that (a) Arg8 and Arg176 are critical for maleylpyruvate orientation and enolization, and (b) Arg109 (exclusive to NagL) participates in k{sub cat} regulation. Surprisingly, the T11A mutant had a decreased GSH K{sub m} value, whereas little impact on maleylpyruvate kinetics was observed, suggesting that this residue plays an important role in GSH binding. An evolutionary trend in this residue appears to have developed not only in prokaryotic and eukaryotic GSTZs, but also among the wider class of cGSTs.« less
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Kim, Yong-Ki
1999-01-01
Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.
NASA Astrophysics Data System (ADS)
Tapani Nikkanen, Timo; Hieta, Maria; Schmidt, Walter; Genzer, Maria; Haukka, Harri; Harri, Ari-Matti
2016-04-01
The Finnish Meteorological Institute (FMI) has delivered a pressure and a humidity instrument for the ESA ExoMars 2016 Schiaparelli lander mission. Schiaparelli is scheduled to launch towards Mars with the Trace Gas Orbiter on 14th of March 2016. The DREAMS-P (pressure) and DREAMS-H (Humidity) instruments are operated utilizing a novel FMI instrument controller design based on a commercial automotive microcontroller (MCU). A custom qualification program was implemented to qualify the MCU for the relevant launch, cruise and surface operations environment of a Mars lander. Resilience to ionizing radiation is one of the most critical requirements for a digital component operated in space or at planetary bodies. Thus, the expected Total Ionizing Dose accumulated by the MCU was determined and a sample of these components was exposed to a Co-60 gamma radiation source. Part of the samples was powered during the radiation exposure to include the effect of electrical biasing. All of the samples were verified to withstand the expected total ionizing dose with margin. The irradiated test samples were then radiated until failure to determine their ultimate TID.
USDA-ARS?s Scientific Manuscript database
A method has been developed for screening glyceollins and their metabolites based upon precursor ion scanning. Under higher-energy collision conditions, employing a triple quadrupole mass spectrometer in the negative ion mode, deprotonated glyceollin precursors yield a diagnostic radical product ion...
Aschmann, Sara M; Arey, Janet; Atkinson, Roger
2002-02-15
Alkanes are important constituents of gasoline fuel and vehicle exhaust, with branched alkanes comprising a significant fraction of the total alkanes observed in urban areas. Products of the gas-phase reactions of OH radicals with 2,2,4-trimethylpentane and 2,2,4-trimethylpentane-d18 in the presence of NO at 298+/-2 K and atmospheric pressure of air have been investigated using gas chromatography with flame ionization detection (GC-FID), combined gas chromatography-mass spectrometry (GC-MS), and in situ atmospheric pressure ionization tandem mass spectrometry (API-MS). Acetone, 2-methylpropanal, and 4-hydroxy-4-methyl-2-pentanone were identified and quantified by GC-FID from 2,2,4-trimethylpentane with molar formation yields of 54+/-7%, 26+/-3%, and 5.1+/-0.6%, respectively; upper limits to the formation yields of acetaldehyde, 2,2-dimethylpropanal, and 4,4-dimethyl-2-pentanone were obtained. Additional products observed from 2,2,4-trimethylpentane by API-MS and API-MS/MS analyses using positive and negative ion modes were hydroxy products of molecular weight 130 and 144, a product of molecular weight 128 (attributed to a C8-carbonyl), and hydroxynitrates of molecular weight 135, 177, and 191 (attributed to HOC4H8ONO2, HOC7H14ONO2, and HOC8H16-ONO2, respectively). Formation of HOC8H16ONO2 and HOC7H14-ONO2 is consistent with the observation of products of molecular weight 207 (HOC8D16ONO2) and 191 (HOC7D14-ONO2), respectively, in the API-MS analyses of the 2,2,4-trimethylpentane-d18 reaction (-OD groups rapidly exchange to -OH groups under our experimental conditions). These product data allow the reaction pathways to be delineated to a reasonable extent, and the reaction mechanism is discussed.
Ionization of biomolecular targets by ion impact: input data for radiobiological applications
NASA Astrophysics Data System (ADS)
de Vera, Pablo; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.
2013-06-01
In this work we review and further develop a semiempirical model recently proposed for the ion impact ionization of complex biological media. The model is based on the dielectric formalism, and makes use of a semiempirical parametrization of the optical energy-loss function of bioorganic compounds, allowing the calculation of single and total ionization cross sections and related quantities for condensed biological targets, such as liquid water, DNA and its components, proteins, lipids, carbohydrates or cell constituents. The model shows a very good agreement with experimental data for water, adenine and uracil, and allows the comparison of the ionization efficiency of different biological targets, and also the average kinetic energy of the ejected secondary electrons.
Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G.; Ahmad, Shakeel; Madkour, Mohamed H.; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir
2016-01-01
The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry. PMID:27379151
Low-energy electron stimulated desorption of neutrals from multilayers of SiCl4 on Si(111).
Lane, Christopher D; Orlando, Thomas M
2006-04-28
The interaction of low-energy electrons with multilayers of SiCl(4) adsorbed on Si(111) leads to production and desorption of Cl((2)P(32)), Cl((2)P(12)), Si, and SiCl. Resonant structure in the yield versus incident electron energy (E(i)) between 6 and 12 eV was seen in all neutral channels and assigned to dissociative electron attachment (DEA), unimolecular decay of excited products produced via autodetachment and direct dissociation. These processes yield Cl((2)P(32)) and Cl((2)P(12)) with nonthermal kinetic energies of 425 and 608 meV, respectively. The Cl((2)P(12)) is produced solely at the vacuum surface interface, whereas the formation of Cl((2)P(32)) likely involves subsurface dissociation, off-normal trajectories, and collisions with neighbors. Structure in the Cl((2)P(32)) yield near 14 and 25 eV can originate from excitation of electrons in the 2e, 7t(2) and 6t(2), 6a(1) levels, respectively. Although the 14 eV feature was not present in the Cl((2)P(12)) yield, the broad 25 eV feature, which involves complex Auger filling of holes in the 6t(2) and 6a(1) levels of SiCl(4), is observed. Direct ionization, exciton decay, and DEA from secondary electron scattering all occur at E(i)>14 eV. Si and SiCl were detected via nonresonant ionization of SiCl(x) precursors that are produced via the same states and mechanisms that yield Cl. The Si retains the kinetic energy profile of the desorbed precursors.
Dense clumps of ionized gas near Pi Scorpii, as revealed by the fine-structure excitation of N II
NASA Technical Reports Server (NTRS)
Bertoldi, Frank; Jenkins, Edward B.
1992-01-01
The column density and the emission of the ionized gas along the line of sight toward the B1 V + B2 V binary star Pi Sco are measured on the basis of the fine-structure absorption lines of the ground state N II. It is found that the bulk of this ionized gas must be clumped on a length scale of 0.025 pc, which is far smaller than the observed size of the diffuse H II region surrounding Pi Sco of about 6 pc. The observed column density of S III toward Pi Sco yields an upper limit on the distance of the absorbing, clumped gas from the star of less than about 0.02 pc, assuming that both the N II and S III absorption arise from the same gas. The possibility that the ionized gas originates from a photoevaporating circumstellar disk directly surrounding Pi Sco is excluded, since such a disk would have an unusual size of order 0.025 pc and would have had to survive for the estimated age of Pi Sco of 5-8 Myr. The derived mean density of the clumped gas is of order 40/cu cm, so that the gas is at a pressure that far exceeds the mean pressure in the H II region. It is concluded that the ionized gas could originate from evaporation flows off a cluster of compact neutral objects that evaporate due to the ionizing radiation of Pi Sco.
NASA Technical Reports Server (NTRS)
Attia, John Okyere
1993-01-01
Naturally occurring space radiation particles can produce transient and permanent changes in the electrical properties of electronic devices and systems. In this work, the transient radiation effects on DRAM and CMOS SRAM were considered. In addition, the effect of total ionizing dose radiation of the switching times of CMOS logic gates were investigated. Effects of transient radiation on the column and cell of MOS dynamic memory cell was simulated using SPICE. It was found that the critical charge of the bitline was higher than that of the cell. In addition, the critical charge of the combined cell-bitline was found to be dependent on the gate voltage of the access transistor. In addition, the effect of total ionizing dose radiation on the switching times of CMOS logic gate was obtained. The results of this work indicate that, the rise time of CMOS logic gates increases, while the fall time decreases with an increase in total ionizing dose radiation. Also, by increasing the size of the P-channel transistor with respect to that of the N-channel transistor, the propagation delay of CMOS logic gate can be made to decrease with, or be independent of an increase in total ionizing dose radiation. Furthermore, a method was developed for replacing polysilicon feedback resistance of SRAMs with a switched capacitor network. A switched capacitor SRAM was implemented using MOS Technology. The critical change of the switched capacitor SRAM has a very large critical charge. The results of this work indicate that switched capacitor SRAM is a viable alternative to SRAM with polysilicon feedback resistance.
Ionizing radiation environment for the TOMS mission
NASA Technical Reports Server (NTRS)
Lauriente, M.; Maloy, J. O.; Vampola, A. L.
1992-01-01
The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.
Methods and compositions for protection of cells and tissues from computed tomography radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grdina, David J.
Described are methods for preventing or inhibiting genomic instability and in cells affected by diagnostic radiology procedures employing ionizing radiation. Embodiments include methods of preventing or inhibiting genomic instability and in cells affected by computed tomography (CT) radiation. Subjects receiving ionizing radiation may be those persons suspected of having cancer, or cancer patients having received or currently receiving cancer therapy, and or those patients having received previous ionizing radiation, including those who are approaching or have exceeded the recommended total radiation dose for a person.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Fletcher, Graham D.
2004-01-01
As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.
NASA Astrophysics Data System (ADS)
Locke, Clayton R.; Kobayashi, Tohru; Midorikawa, Katsumi
2017-01-01
Odd-mass-selective ionization of palladium for purposes of resource recycling and management of long-lived fission products can be achieved by exploiting transition selection rules in a well-established three-step excitation process. In this conventional scheme, circularly polarized lasers of the same handedness excite isotopes via two intermediate 2D5/2 core states, and a third laser is then used for ionization via autoionizing Rydberg states. We propose an alternative excitation scheme via intermediate 2D3/2 core states before the autoionizing Rydberg state, improving ionization efficiency by over 130 times. We confirm high selectivity and measure odd-mass isotopes of >99.7(3)% of the total ionized product. We have identified and measured the relative ionization efficiency of the series of Rydberg states that converge to upper ionization limit of the 4 d 9(2D3/2) level, and identify the most efficient excitation is via the Rydberg state at 67668.18(10) cm-1.
NASA Astrophysics Data System (ADS)
Wen, Lin; Li, Yu-dong; Guo, Qi; Wang, Chao-min
2018-02-01
Total ionizing dose effect is a major threat to space applications of CCD, which leads to the decrease of CCD saturation output voltage and the increase of dark signal. This paper investigated CCD and its readout circuit for experimental samples of different channel width to length ratio of MOSFET, and readout circuit amplifier, and CCD. The irradiation source was 60Co- gamma ray. through testing the parameters degradation of MOSFET and amplifier degradation, the generation and annealing law of irradiation induced defects in MOS single tube are analyzed. Combined with the radiation effect of amplifier and CCD, The correlation of radiation damage of the MOSFET and the readout circuit amplifier and CCD parameter degradation is established. Finally, this paper reveals the physical mechanism of ionizing radiation damage of the readout circuit. The research results provide a scientific basis for the selection of anti-radiation technology and structure optimization of domestic CCD.
Materials erosion and redeposition studies at the PISCES-facility: net erosion under redeposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirooka, Y.; Goebel, D.M.; Conn, R.W.
1986-05-01
Simultaneous erosion and redeposition of copper and 304 stainless steel under controlled and continuous plasma (D,He,Ar) bombardment has been investigated in the PISCES-facility, which generates typical edge-plasma conditions of magnetic fusion devices. The plasma bombardment conditions are: incident ion flux in the range from 10/sup 17/ to 10/sup 18/ ions/sec/cm/sup 2/, ion bombarding energy of 100 eV, electron temperature in the range from 5 to 15 eV, plasma density in the range from 10/sup 11/ to 10/sup 13/ cm/sup -3/, target temperature in the range from 300 to 900K, and the total ion fluence in the range from 10/sup 20/more » to 10/sup 22/ ions/cm/sup 2/. The net erosion yield under redeposition is found to be significantly smaller than the classical sputtering yield data. A first-order modeling is attempted to interpret the erosion and redeposition behavior of materials under plasma bombardment. It is pointed out both theoretically and experimentally that the mean free path for electron impact ionization of the sputtered material is the key parameter to control the overall mechanism of erosion and redeposition. Strongly modified surface morphologies of bombarded targets are observed and indicate a retrapping effect.« less
Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV
NASA Astrophysics Data System (ADS)
Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans
2016-05-01
Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.
Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium
NASA Astrophysics Data System (ADS)
Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.
2006-09-01
An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.
Absolute measurement of the extreme UV solar flux
NASA Technical Reports Server (NTRS)
Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.
1984-01-01
A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.
NASA Astrophysics Data System (ADS)
Nina, A.; Čadež, V. M.; Bajčetić, J.
2015-12-01
The solar Lyα line emission can be considered as the dominant source of ionization processes in the ionospheric D-region at altitudes above 70 km during unperturbed conditions. However, large sudden impacts of radiation in some other energy domains can also significantly influence the ionization rate and, in this paper, we present a study on the contribution of Lyα radiation to the ionization rate when the ionosphere is disturbed by solar X-flares. We give relevant analytical expressions and make calculations and numerical simulations for the low ionosphere using data collected by the VLF receiver located in Serbia for the VLF radio signal emitted by the DHO transmitter in Germany.
Resonance ionization laser ion sources for on-line isotope separators (invited).
Marsh, B A
2014-02-01
A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; McCrory, R. L.
2016-04-15
Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm{sup 3} and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atommore » model in conjunction with the pressure-matching mixing rule. The thermal conductivities (κ{sub QMD}) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(lnΛ){sub QMD}] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ∼20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less
Radiation of partially ionized atomic hydrogen
NASA Technical Reports Server (NTRS)
Soon, W. H.; Kunc, J. A.
1990-01-01
A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.
McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; ...
2014-11-11
This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaO x) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×10 7 rad(Si)/s to 4.7 ×10 8 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×10 8 rad(Si)/s. This is the first dose rate study on any type ofmore » memristive memory technology. In addition to assessing the tolerance of TaO x memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less
Ghergherehchi, Mitra; Afarideh, Hossein; Ghannadi, Mohammad; Mohammadzadeh, Ahmad; Aslani, Golam Reza; Boghrati, Behzad
2010-01-01
In this study, a comparison was made between a plastic scintillator (BC400), a Faraday Cup (FC) and an ionization chamber (IC) used for routine proton dosimetry. Thin scintillators can be applied to proton dosimetry and consequently to proton therapy as relative dosimeters because of their water-equivalent nature, high energy-light conversion efficiency, low dimensions and good proportionality to the absorbed dose at low stopping powers. To employ such scintillators as relative dosimeters in proton therapy, the corrective factors must be applied to correct the quenching luminescence at the Bragg peak. A fine linear proportionality between the luminescence light yield Y and the proton flux in a thin (0.5 mm) scintillator for the 20 and 30 MeV proton beams were observed. The experimental peak/plateau ratios of Bragg Curve for 2, 1 and 0.5 mm scintillators with an accuracy of 0.5% were obtained to be 1.87, 1.91 and 2.30, respectively. With combination of the Markus chamber and the CR-39 detector, the peak/plateau ratio was improved to 3.26. The obtained data of the luminescence yield as a function of the specific energy loss is in agreement with the Craun-Birk's theory. Results show that the FC and Markus ionization chamber are in agreement within 4%, while the FC gives a lower dose evaluation. For a defined beam, the data for the fluence measurements are reproducible within a good accuracy.
Deep UV emitting scintillators for alpha and beta particle detection
NASA Astrophysics Data System (ADS)
Zhou, Y.; Jia, D. D.; Lewis, L. A.; Feofilov, S. P.; Meltzer, R. S.
2011-03-01
Several deep UV emitting scintillators, whose emission falls in the solar blind region of the spectrum (200-280 nm), are described and their scintillator properties are characterized. They include LaPO 4:Pr, YPO 4:Pr, YAlO 3:Pr, Pr(PO 3) 3, YPO 4:Bi and ScPO 4. These materials would facilitate the detection of ionizing radiation in open areas, even during the daylight hours, and could be used to support large area surveys that monitor for the presence of ionization radiation due, for example, to system leaks or transfer contamination. These materials can be used in the form of powders, thin films or paints for radiation detection. They are characterized for both beta radiation using electron beams (2-35 keV) and 137Cs and alpha radiations using 241Am sources. Their absolute light yields are estimated and are compared to that of Y 2SiO 5:Ce. Their light yields decrease as a function of electron energy but at 10 keV they approach 8000 ph/MeV.
Synchrotron-based valence shell photoionization of CH radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C.; Holzmeier, F.
2016-05-28
We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg statesmore » of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.« less
Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I
2008-02-07
The Hamiltonian description of the spin-conversion induced by a hyperfine interaction (HFI) in photogenerated radical-ion pairs is substituted for the rate (incoherent) description of the same conversion provided by the widely used earlier elementary spin model. The quantum yields of the free ions as well as the singlet and triplet products of geminate recombination are calculated using distant dependent ionization and recombination rates, instead of their contact analogs. Invoking the simplest models of these rates, we demonstrate with the example of a spin-less system that the diffusional acceleration of radical-ion pair recombination at lower viscosity gives way to its diffusional deceleration (Angulo effect), accomplished with a kinetic plateau inherent with the primitive exponential model. Qualitatively the same behavior is found in real systems, assuming both ionization and recombination is carried out by the Marcus electron-transfer rates. Neglecting the Coulomb interaction between solvated ions, the efficiencies of radical-ion pair recombination to the singlet and triplet products are well fitted to the available experimental data. The magnetic field dependence of these yields is specified.
Photoionization and photofragmentation of the C 60 + molecular ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baral, K. K.; Aryal, N. B.; Esteves-Macaluso, D. A.
2016-03-01
Cross-section measurements are reported for single and double photoionization of Cmore » $$+\\atop{60}$$ ions in the photon energy range 18-150 eV accompanied by the loss of zero to seven pairs of carbon atoms, as well as for fragmentation without ionization resulting in loss of two to eight pairs of C atoms in the photon energy range 18-65 eV. Absolute measurements were performed by merging a beam of C$$+\\atop{60}$$ molecular ions with a beam of monochromatized synchrotron radiation. Product channels involving dissociation yielding smaller fullerene fragment ions account for nearly half of the total measured oscillator strength in this energy range. The sum of cross sections for the measured product channels is compared to a published calculation of the total photoabsorption cross section of neutral C 60 based on time-dependent density-functional theory. Lastly, this comparison and an accounting of oscillator strengths indicate that with the exception of C$$+\\atop{58}$$, the most important product channels resulting from photoabsorption were accounted for in the experiment. Threshold energies for the successive removal of carbon atom pairs accompanying photoionization are also determined from the measurements.« less
NASA Astrophysics Data System (ADS)
Yiǧitoǧlu, Merve; Veske, Doǧa; Nilüfer Öztürk, Zeynep; Bilge Demirköz, Melahat
2016-07-01
All devices which operate in space are exposed to cosmic rays during their operation. The resulting radiation may cause fatal damages in the solid structure of devices and the amount of absorbed radiation dose and secondary particle production for each component should be calculated carefully before the production. Solar panels are semiconductor solid state devices and are very sensitive to radiation. Even a short term power cut-off may yield a total failure of the satellite. Even little doses of radiation can change the characteristics of solar cells. This deviation can be caused by rarer high energetic particles as well as the total ionizing dose from the abundant low energy particles. In this study, solar panels planned for a specific LEO satellite, IMECE, are analyzed layer by layer. The Space Environment Information System (SPENVIS) database and GEANT4 simulation software are used to simulate the layers of the panels. The results obtained from the simulation will be taken in account to determine the amount of radiation protection and resistance needed for the panels or to revise the design of the panels.
Inglis, Jeremy D.; Maassen, Joel; Kara, Azim; ...
2017-04-28
This study presents a total evaporation method for the analysis of sub-picogram quantities of Pu, utilizing an array of multiple ion counters. Data from three standards are presented to assess the utility of the technique. An external precision of 1.5% RSD (2σ) was achieved on aliquots approaching 100 fg for the minor 240Pu isotope. Accurate analysis of <1 femtogram of 240Pu, is achievable, with an external reproducibility of better than 10% RSD (2σ). Finally, this new technique represents a significant advance in the total evaporation method and will allow routine measurement of femtogram sized Pu samples by thermal ionization massmore » spectrometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inglis, Jeremy D.; Maassen, Joel; Kara, Azim
This study presents a total evaporation method for the analysis of sub-picogram quantities of Pu, utilizing an array of multiple ion counters. Data from three standards are presented to assess the utility of the technique. An external precision of 1.5% RSD (2σ) was achieved on aliquots approaching 100 fg for the minor 240Pu isotope. Accurate analysis of <1 femtogram of 240Pu, is achievable, with an external reproducibility of better than 10% RSD (2σ). Finally, this new technique represents a significant advance in the total evaporation method and will allow routine measurement of femtogram sized Pu samples by thermal ionization massmore » spectrometry.« less
Quantitative ionization chamber alignment to a water surface: Theory and simulation.
Siebers, Jeffrey V; Ververs, James D; Tessier, Frédéric
2017-07-01
To examine the response properties of cylindrical cavity ionization chambers (ICs) in the depth-ionization buildup region so as to obtain a robust chamber-signal - based method for definitive water surface identification, hence absolute ionization chamber depth localization. An analytical model with simplistic physics and geometry is developed to explore the theoretical aspects of ionization chamber response near a phantom water surface. Monte Carlo simulations with full physics and ionization chamber geometry are utilized to extend the model's findings to realistic ion chambers in realistic beams and to study the effects of IC design parameters on the entrance dose response. Design parameters studied include full and simplified IC designs with varying central electrode thickness, wall thickness, and outer chamber radius. Piecewise continuous fits to the depth-ionization signal gradient are used to quantify potential deviation of the gradient discontinuity from the chamber outer radius. Exponential, power, and hyperbolic sine functional forms are used to model the gradient for chamber depths of zero to the depth of the gradient discontinuity. The depth-ionization gradient as a function of depth is maximized and discontinuous when a submerged IC's outer radius coincides with the water surface. We term this depth the gradient chamber alignment point (gCAP). The maximum deviation between the gCAP location and the chamber outer radius is 0.13 mm for a hypothetical 4 mm thick wall, 6.45 mm outer radius chamber using the power function fit, however, the chamber outer radius is within the 95% confidence interval of the gCAP determined by this fit. gCAP dependence on the chamber wall thickness is possible, but not at a clinically relevant level. The depth-ionization gradient has a discontinuity and is maximized when the outer-radius of a submerged IC coincides with the water surface. This feature can be used to auto-align ICs to the water surface at the time of scanning and/or be applied retrospectively to scan data to quantify absolute IC depth. Utilization of the gCAP should yield accurate and reproducible depth calibration for clinical depth-ionization measurements between setups and between users. © 2017 American Association of Physicists in Medicine.
Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules
NASA Astrophysics Data System (ADS)
Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten
2016-05-01
Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.
The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines
NASA Technical Reports Server (NTRS)
Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi;
2007-01-01
We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.
Nanoengineering of strong field processes in solids
NASA Astrophysics Data System (ADS)
Almalki, S.; Parks, A. M.; Brabec, T.; McDonald, C. R.
2018-04-01
We present a theoretical investigation of the effect of quantum confinement on high harmonic generation in semiconductor materials by systematically varying the confinement width along one or two directions transverse to the laser polarization. Our analysis shows a growth in high harmonic efficiency concurrent with a reduction of ionization. This decrease in ionization comes as a consequence of an increased band gap resulting from the confinement. The increase in harmonic efficiency results from a restriction of wave packet spreading, leading to greater recollision probability. Consequently, nanoengineering of one and two-dimensional nanosystems may prove to be a viable means to increase harmonic yield and photon energy in semiconductor materials driven by intense laser fields.
Ionization tube simmer current circuit
Steinkraus, R.F. Jr.
1994-12-13
A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.
A feasibility study of ion implantation techniques for mass spectrometer calibration
NASA Technical Reports Server (NTRS)
Koslin, M. E.; Krycuk, G. A.; Schatz, J. G., Jr.; White, F. A.; Wood, G. M.
1978-01-01
An experimental study was undertaken to examine the feasibility of using ion-implanted filaments doped with either an alkali metal or noble gas for in situ recalibration of onboard mass spectrometers during extended space missions. Implants of rubidium and krypton in rhenium ribbon filaments were subsequently tested in a bakeable 60 deg sector mass spectrometer operating in the static mode. Surface ionization and electron impact ion sources were both used, each yielding satisfactory results. The metallic implant with subsequent ionization provided a means of mass scale calibration and determination of system operating parameters, whereas the noble gas thermally desorbed into the system was more suited for partial pressure and sensitivity determinations.
On determining absolute entropy without quantum theory or the third law of thermodynamics
NASA Astrophysics Data System (ADS)
Steane, Andrew M.
2016-04-01
We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.
Ionization tube simmer current circuit
Steinkraus, Jr., Robert F.
1994-01-01
A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.
Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas
2012-01-01
Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.
Shelley, Jacob T; Wiley, Joshua S; Chan, George C Y; Schilling, Gregory D; Ray, Steven J; Hieftje, Gary M
2009-05-01
Two relatively new ambient ionization sources, direct analysis in real time (DART) and the flowing atmospheric-pressure afterglow (FAPA), use direct current, atmospheric-pressure discharges to produce reagent ions for the direct ionization of a sample. Although at a first glance these two sources appear similar, a fundamental study reveals otherwise. Specifically, DART was found to operate with a corona-to-glow transition (C-G) discharge whereas the FAPA was found to operate with a glow-to-arc transition (G-A) discharge. The characteristics of both discharges were evaluated on the basis of four factors: reagent-ion production, response to a model analyte (ferrocene), infrared (IR) thermography of the gas used for desorption and ionization, and spatial emission characteristics. The G-A discharge produced a greater abundance and a wider variety of reagent ions than the C-G discharge. In addition, the discharges yielded different adducts and signal strengths for ferrocene. It was also found that the gas exiting the discharge chamber reached a maximum of 235 degrees C and 55 degrees C for the G-A and C-G discharges, respectively. Finally, spatially resolved emission maps of both discharges showed clear differences for N(2)(+) and O(I). These findings demonstrate that the discharges used by FAPA and DART are fundamentally different and should have different optimal applications for ambient desorption/ionization mass spectrometry (ADI-MS).
ERIC Educational Resources Information Center
Türk, Gülseda Eyceyurt; Tüzün, Ümmüye Nur
2018-01-01
The purpose of this study was to uncover pre-service science teachers' images and misconceptions regarding atomic orbital and self-ionization concepts. This study involved a total of 68 pre-service science teachers working at a public university during the 2015-2016 academic year. In this qualitative study, data were collated with the use of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2015-06-27
Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less
Stinson, Craig A; Xia, Yu
2016-06-21
Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).
NASA Astrophysics Data System (ADS)
Adamovich, Igor
2006-10-01
The paper presents results of three experiments using high voltage, short pulse duration, high repetition rate discharge plasmas. High electric field during the pulse (E/N˜500-1000 Td) allows efficient ionization and molecular dissociation. Between the pulses, additional energy can be coupled to the decaying plasma using a DC field set below the breakdown threshold. While the DC sustainer discharge adds 90-95% of all the power to the flow, it does not produce any additional ionization. The pulser and the sustainer discharges are fully overlapped in space. Low duty cycle of the pulsed ionizer, ˜1/1000, allows sustaining diffuse and uniform pulser-sustainer plasmas at high pressures and power loadings. The first experiment using the pulsed discharge is ignition of premixed hydrocarbon-air flows, which occurs at low pulsed discharge powers, ˜100 W, and very low plasma temperatures, 100-200^0 C. The second experiment is Lorentz force acceleration of low-temperature supersonic flows. The pulsed discharge was used to generate electrical conductivity in M=3 nitrogen and air flows, while the sustainer discharge produced transverse current in the presence of magnetic field of B=1.5 T. Retarding Lorentz force applied to the flow produced a static pressure increase of up to 15-20%, while accelerating force of the same magnitude resulted in static pressure rise of up to 7-8%, i.e. a factor of two smaller. The third experiment is singlet delta oxygen (SDO) generation in a high-pressure pulser-sustainer discharge. SDO yield was inferred from the integrated intensity of SDO infrared emission spectra calibrated using a blackbody source. The measured yield exceeds the laser threshold yield by about a factor of three, which makes possible achieving positive gain in the laser cavity. The highest gain measured so far is 0.03%/cm.
NASA Astrophysics Data System (ADS)
Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu
2017-12-01
Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS.
Peltenburg, Hester; Droge, Steven T J; Hermens, Joop L M; Bosman, Ingrid J
2015-04-17
A solid-phase microextraction (SPME) method based on a sampler coating that includes strong cation groups (C18/SCX) is explored as a rapid direct sampling tool to detect and quantify freely dissolved basic drugs. Sampling kinetics, sorption isotherms and competitive effects on extraction yields in mixtures were tested for amphetamine and the relatively large/hydrophobic tricyclic antidepressant amitriptyline. Both compounds are >99% ionized at pH 7.4 but their affinity for the C18/SCX fiber is markedly different with distribution coefficients (Dfw values) of 2.49±0.02 for amphetamine and 4.72±0.10 for amitriptyline. Typical changes in electrolyte homeostasis that may occur in biomedical samples were simulated by altering pH and ionic composition (Na(+) and K(+) concentrations). These changes were shown to affect C18/SCX sorption affinities of the tested drugs with less than 0.2log units. At relatively low fiber loadings (<10mmol/L coating) and at all tested exposure times, linear sorption isotherms were obtained for both compounds but at aqueous concentrations of the individual drugs corresponding to concentrations in blood that are lethal, sorption isotherms became strongly nonlinear. Competition effects within binary mixtures occurred only if combinations of aqueous concentrations resulted in total fiber loadings that were in the nonlinear range of the SPME sorption isotherm for the individual compounds. We also compared sorption to the (prototype) C18/SCX SPME coating with analogue (biocompatible) C18 coated SPME fibers. C18/SCX fibers show increased sorption affinity for cationic compounds compared to C18 fibers, as tested using amitriptyline, amphetamine and trimethoprim. Surprisingly, sorption affinity of these ionized compounds for the C18 SPME fibers were within 1log unit of the C18/SCX SPME fibers. This shows that the strong cation exchange groups within the C18/SCX coating only has a relatively small contribution to the total sorption affinity of cationic compounds. Also the role of negatively charged silanol groups in both the C18 and C18/SCX coating seems small, as anionic diclofenac species sorbed strongly to the C18 fiber. Ionized organic species seem to be substantially adsorbed to the high surface area of C18 in SPME types using porous silica based coatings. Copyright © 2015 Elsevier B.V. All rights reserved.
Barjaktarović, Branislava; Sovilj, Milan; Knez, Zeljko
2005-04-06
Ground fruits of the common juniper (Juniperus communis L.), with a particle size range from 0.250-0.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO(2) at pressures of 80, 90, and 100 bars and at a temperature of 40 degrees C. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varied from 0.65 to 4.00% (wt). At each investigated pressure, supercritical CO(2) extract fractions collected in successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about 8 and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar in 1.2 and 3 h, respectively. This initial fast extraction period was consequently followed by much slower extraction of oxygenated sesquiterpenes.
Atmospheric Fluorescence Yield
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.
Shelley, Jacob T; Chan, George C-Y; Hieftje, Gary M
2012-02-01
The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H(2)O vapor, N(2), and O(2) diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (T(rot)) and electron number density (n(e)), were also measured in the APGD. Maximum values for T(rot) and n(e) were found to be ~1100 K and ~4×10(19) m(-3), respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N(2)(+) yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N(2)(+) temperature is believed to be caused by charge-transfer ionization of N(2) by He(2)(+). These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source. © American Society for Mass Spectrometry, 2011
NASA Astrophysics Data System (ADS)
Shelley, Jacob T.; Chan, George C.-Y.; Hieftje, Gary M.
2012-02-01
The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H2O vapor, N2, and O2 diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (Trot) and electron number density (ne), were also measured in the APGD. Maximum values for Trot and ne were found to be ~1100 K and ~4 × 1019 m-3, respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N{2/+} yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N{2/+} temperature is believed to be caused by charge-transfer ionization of N2 by He{2/+}. These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source.
NASA Astrophysics Data System (ADS)
Patel, U. R.; Joshipura, K. N.
2015-05-01
Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.
NASA Astrophysics Data System (ADS)
Friedman, B.; Link, M.; Farmer, D.
2016-12-01
We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.
Tani, Akio; Sahin, Nurettin; Fujitani, Yoshiko; Kato, Akiko; Sato, Kazuhiro; Kimbara, Kazuhide
2015-01-01
Methylobacterium species frequently inhabit plant surfaces and are able to utilize the methanol emitted from plants as carbon and energy sources. As some of the Methylobacterium species are known to promote plant growth, significant attention has been paid to the mechanism of growth promotion and the specificity of plant–microbe interactions. By screening our Methylobacterium isolate collection for the high growth promotion effect in vitro, we selected some candidates for field and pot growth tests for rice and barley, respectively. We found that inoculation resulted in better ripening of rice seeds, and increased the size of barley grains but not the total yield. In addition, using whole-cell matrix-assister laser desorption/ionization- time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, we identified and classified Methylobacterium isolates from Methylobacterium-inoculated rice plants. The inoculated species could not be recovered from the rice plants, and in some cases, the Methylobacterium community structure was affected by the inoculation, but not with predomination of the inoculated species. The isolates from non-inoculated barley of various cultivars grown in the same field fell into just two species. These results suggest that there is a strong selection pressure at the species level of Methylobacterium residing on a given plant species, and that selection of appropriate species that can persist on the plant is important to achieve growth promotion. PMID:26053875
Couderc, Carine; Nappez, Claude; Drancourt, Michel
2012-03-30
It is recommended that harmful Biosafety Level 3 (BSL-3) bacteria be inactivated prior to identification by mass spectrometry, yet optimal effects of inactivation protocol have not been defined. Here, we compare trifluoroacetic acid inactivation (protocol A) with ethanol inactivation (protocol B) of Yersinia organisms prior to identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The total number of peaks detected was 10.5 ± 1.7 for protocol A and 15.7 ± 4.2 for protocol B (ρ <0.001, ANOVA test). The signal-to-noise ratio for the m/z 6049 peak present in all of the tested Yersinia isolates was 9.7 ± 3.1 for protocol A and 18.1 ± 4.6 for protocol B (ρ < 0.001). Compared with spectra in our local database containing 48 Yersinia spp., including 20 strains of Y. pestis, the identification score was 1.79 ± 0.2 for protocol A and 1.97 ± 0.19 for protocol B (ρ = 0.0024). Our observations indicate that for the identification of Yersinia organisms, ethanol inactivation yielded MALDI-TOF-MS spectra of significantly higher quality than spectra derived from trifluoroacetic acid inactivation. Combined with previously published data, our results permit the updating of protocols for inactivating BSL-3 bacteria. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Davidsen, Arthur F.; Blair, William P.; Bowers, Charles W.; Van Dyke Dixon, W.; Durrance, Samuel T.; Feldman, Paul D.; Ferguson, Henry C.; Henry, Richard C.; Kriss, Gerard A.
1993-01-01
During the Astro-l mission in 1990 December, the Hopkins Ultraviolet Telescope (HUT) was used to observe the extreme ultraviolet spectrum (415-912 A) of the hot DA white dwarf GI91-B2B. Absorption by neutral helium shortward of the 504 A He I absorption edge is clearly detected in the raw spectrum. Model fits to the observed spectrum require interstellar neutral helium and neutral hydrogen column densities of 1.45 +/- 0.065 x 10 exp 17/sq cm and 1.69 +/- 0.12 x 10 exp 18/sq cm, respectively. Comparison of the neutral columns yields a direct assessment of the ionization state of the local interstellar cloud surrounding the Sun. The neutral hydrogen to helium ratio of 11.6 +/- 1.0 observed by HUT strongly contradicts the widespread view that hydrogen is much more ionized than helium in the local interstellar medium, a view which has motivated some exotic theoretical explanations for the supposed high ionization.
NASA Technical Reports Server (NTRS)
Agrawal, P. C.; Ramsey, B. D.
1988-01-01
An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.
Jochim, Bethany; Siemering, R; Zohrabi, M; Voznyuk, O; Mahowald, J B; Schmitz, D G; Betsch, K J; Berry, Ben; Severt, T; Kling, Nora G; Burwitz, T G; Carnes, K D; Kling, M F; Ben-Itzhak, I; Wells, E; de Vivie-Riedle, R
2017-06-30
Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C 2 D 2 , C 2 D 4 and C 2 D 6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.
NASA Astrophysics Data System (ADS)
Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; SalarElahi, A.; Ghoranneviss, M.
2017-08-01
In this research, the effects of pre-ionization using a shunt resistor on reproducibility of x-ray emission in a Mather type plasma focus device have been studied. This technique increased the intensities of the emitted x-rays from argon as the filling gas of the device and made the x-ray yields with similar intensities reproducible. A Mirnov coil was also used to record the variations of the plasma's magnetic field, and the wavelet spectrums of these recorded signals showed the reduced instabilities due to the application of the pre-ionization technique. Moreover, it was demonstrated that this technique was capable of reducing the number of initial runaway electrons that could increase the impurities and instabilities inside the plasma. In addition to the above-mentioned features, this technique could improve the uniform formation of the current sheath during the breakdown phase that might later lead to a high quality pinch and high intensity emitted x-rays.
Detection of the H92α recombination line from NGC 4945
NASA Astrophysics Data System (ADS)
Roy, A. L.; Oosterloo, T.; Goss, W. M.; Anantharamaiah, K. R.
2010-07-01
Context. Hydrogen ionized by young, high-mass stars in starburst galaxies radiates radio recombination lines (RRLs), whose strength can be used as a diagnostic of the ionization rate, conditions and gas dynamics in the starburst region, without problems of dust obscuration. However, the lines are weak and only few extragalactic starburst systems have been detected. Aims: We aimed to increase the number of known starburst systems with detectable RRLs for detailed studies, and we used the line properties to study the gas properties and dynamics. Methods: We searched for the RRLs H91α and H92α with rest frequencies of 8.6 GHz and 8.3 GHz in the nearby southern Seyfert galaxy NGC 4945 using the Australia Telescope Compact Array with resolution of 3”. This yielded a detection from which we derived conditions in the starburst regions. Results: We detected RRLs from the nucleus of NGC 4945 with a peak line strength integrated over the source of 17.8 mJy, making it the strongest extragalactic RRL emitter known at this frequency. The line and continuum emission from NGC 4945 can be matched by a model consisting of a collection of 10 to 300 H II regions with temperatures of 5000 K, densities of 103 cm-3 to 104 cm-3 and a total effective diameter of 2 pc to 100 pc. The Lyman continuum production rate required to maintain the ionization is 6 × 1052 s-1 to 3 × 1053 s-1, which requires 2000 to 10 000 O5 stars to be produced in the starburst, inferring a star formation rate of 2 M_⊙ yr-1 to 8 M_⊙ yr-1. We resolved the rotation curve within the central 70 pc region and this is well described by a set of rotating rings that were coplanar and edge on. We found no reason to depart from a simple flat rotation curve. The rotation speed of 120 km s-1 within the central 1” (19 pc) radius infers an enclosed mass of 3 × 107 M⊙, and an average surface density with the central 19 pc of 25 000 pc-2, which exceeds the threshold gas surface density for star formation. Conclusions: We discovered RRLs from NGC 4945. It is the strongest known extragalactic RRL emitter and is suited to high-quality spectroscopic study. We resolved the dynamics of the ionized gas in the central 70 pc and derived conditions and star formation rates in the ionized gas.
The oncogenic action of ionizing radiation on rat skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, F.J.; Garte, S.J.
1992-01-01
The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/[mu]), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression formore » each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of [sup 14]C-thymidine. The return of these cells to S-phase a second time was detected by a second label ([sup 3]H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The [sup 14]C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with [sup 14]C increased after 42 hr and remained relatively constant thereafter.« less
Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium
NASA Astrophysics Data System (ADS)
Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.
2013-05-01
In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2013-05-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.
Observation of new even-parity states of Sm I by resonance ionization mass spectrometry
NASA Astrophysics Data System (ADS)
Jayasekharan, T.; Razvi, M. A. N.; Bhale, G. L.
1996-04-01
Resonance ionization mass spectrometry is applied to investigate high-lying even-parity states of Sm I. Eighty-six even-parity states of Sm I are discovered in the region 32950-36000 cm -1 . Absolute energies of these states are measured with an uncertainty of +/- 0.3 cm -1 , and total angular momenta are uniquely assigned for most of them.
NASA Astrophysics Data System (ADS)
Liu, Jing; Chen, Wei; Wang, Zujun; Xue, Yuanyuan; Yao, Zhibin; He, Baoping; Ma, Wuying; Jin, Junshan; Sheng, Jiangkun; Dong, Guantao
2017-06-01
This paper presents an investigation of total ionizing dose (TID) induced image lag sources in pinned photodiodes (PPD) CMOS image sensors based on radiation experiments and TCAD simulation. The radiation experiments have been carried out at the Cobalt -60 gamma-ray source. The experimental results show the image lag degradation is more and more serious with increasing TID. Combining with the TCAD simulation results, we can confirm that the junction of PPD and transfer gate (TG) is an important region forming image lag during irradiation. These simulations demonstrate that TID can generate a potential pocket leading to incomplete transfer.
Hersh, Cheryl; Wentland, Carissa; Sally, Sarah; de Stadler, Marie; Hardy, Steven; Fracchia, M Shannon; Liu, Bob; Hartnick, Christopher
2016-10-01
Radiation exposure is recognized as having long term consequences, resulting in increased risks over the lifetime. Children, in particular, have a projected lifetime risk of cancer, which should be reduced if within our capacity. The objective of this study is to quantify the amount of ionizing radiation in care for children being treated for aspiration secondary to a type 1 laryngeal cleft. With this baseline data, strategies can be developed to create best practice pathways to maintain quality of care while minimizing radiation exposure. Retrospective review of 78 children seen in a tertiary pediatric aerodigestive center over a 5 year period from 2008 to 2013 for management of a type 1 laryngeal cleft. The number of videofluoroscopic swallow studies (VFSS) per child was quantified, as was the mean effective dose of radiation exposure. The 78 children reviewed were of mean age 19.9 mo (range 4 mo-12 years). All children were evaluated at the aerodigestive center with clinical symptomatology and subsequent diagnosis of a type 1 laryngeal cleft. Aspiration was assessed via VFSS and exposure data collected. Imaging exams where dose parameters were not available were excluded. The mean number of VFSS each child received during the total course of treatment was 3.24 studies (range 1-10). The average effective radiation dose per pediatric VFSS was 0.16 mSv (range: 0.03 mSv-0.59 mSv) per study. Clinical significance was determined by comparison to a pediatric CXR. At our facility a CXR yields an effective radiation dose of 0.017 mSv. Therefore, a patient receives an equivalent total of 30.6 CXR over the course of management. Radiation exposure has known detrimental effects particularly in pediatric patients. The total ionizing radiation from VFSS exams over the course of management of aspiration has heretofore not been reported in peer reviewed literature. With this study's data in mind, future developments are indicated to create innovative clinical pathways and limit radiation exposure. Copyright © 2016. Published by Elsevier Ireland Ltd.
Ionizing Collisions of Electrons with Radical Species OH, H2 O2 and HO2; Theoretical Calculations
NASA Astrophysics Data System (ADS)
Joshipura, K. N.; Pandya, S. H.; Vaishnav, B. G.; Patel, U. R.
2016-05-01
In this paper we present our calculated total ionization cross sections (TICS) of electron impact on radical targets OH, H2 O2 and HO2 at energies from threshold to 2000 eV. Reactive species such as these pose difficulties in measurements of electron scattering cross sections. No measured data have been reported in this regard except an isolated TICS measurement on OH radical, and hence the present work on the title radicals hold significance. These radical species are present in an environment in which water molecules undergo dissociation (neutral or ionic) in interactions with photons or electrons. The embedding environments could be quite diverse, ranging from our atmosphere to membranes of living cells. Ionization of OH, H2 O2 or HO2 can give rise to further chemistry in the relevant bulk medium. Therefore, it is appropriate and meaningful to examine electron impact ionization of these radicals in comparison with that of water molecules, for which accurate da are available. For the OH target single-centre scattering calculations are performed by starting with a 4-term complex potential, that describes simultaneous elastic plus inelastic scattering. TICS are obtained from the total inelastic cross sections in the complex scattering potential - ionization contribution formalism , a well established method. For H2 O2 and HO2 targets, we employ the additivity rule with overlap or screening corrections. Detailed results will be presented in the Conference.
Ketkov, Sergey Y; Selzle, Heinrich L; Cloke, F Geoffrey N; Markin, Gennady V; Shevelev, Yury A; Domrachev, Georgy A; Schlag, Edward W
2010-10-28
For over 25 years zero kinetic energy (ZEKE) spectroscopy has yielded a rich foundation of high-resolution results of molecular ions. This was based on the discovery in the late 60's of long-lived ion states throughout the ionization continuum of molecular ions. Here, an example is chosen from another fundamental system pioneered at this university. The mass-analyzed threshold ionization (MATI) spectra of jet-cooled chromium bisarene complexes (η(6)-RPh)(2)Cr (R = Me (1), Et (2), i-Pr (3), and t-Bu (4)) have been measured and interpreted on the basis of DFT calculations. The MATI spectra of complexes 1 and 2 appear to reveal features arising from ionizations of the isomers formed by the rotation of one arene ring relative to the other. The 1 and 2 MATI spectra show two intense peaks corresponding to the 0(0)(0) ionizations with inverse intensity ratios. As indicated by the DFT calculations, the intensity ratio change on going from 1 to 2 results from different isomers contributing to each MATI peak. The ionization energies corresponding to the 0(0)(0) peaks are 42746 ± 5 and 42809 ± 5 cm(-1) for compound 1 and 42379 ± 5 and 42463 ± 5 cm(-1) for complex 2. The 1 and 2 spectra show also the weaker features representing transitions to the vibrationally excited cationic levels, the signals of individual rotamers being detected and assigned on the basis of calculated vibrational frequencies. The MATI spectra of compounds 3 and 4 reveal only one strong peak because of close ionization potentials of the isomers contributing to the MATI signal. The 3 and 4 ionization energies are 42104 ± 5 and 41917 ± 5 cm(-1), respectively. The precise values of ionization energies obtained from the MATI spectra reveal a nonlinear dependence of the IE on the number of Me groups in the alkyl substituents of (η(6)-RPh)(2)Cr. This can be explained by an increase in the molecular zero point energies on methylation of the substituents.
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)
NASA Astrophysics Data System (ADS)
Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; Manning, Brett; Geppert-Kleinrath, Verena
2017-09-01
Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.
Efficient star formation in the spiral arms of M51
NASA Technical Reports Server (NTRS)
Lord, Steven D.; Young, Judith S.
1990-01-01
The molecular, neutral, and ionized hydrogen distributions in the Sbc galaxy M51 (NGC 5194) are compared. To estimate H2 surface densities observations of the CO (J = 1 - 0) transition were made in 60 positions out to a radius of 155 arcsec. Extinction-corrected H-alpha intensities were used to compute the detailed massive star formation rates (MSFRs) in the disk. Estimates of the gas surface density, the MSFR, and the ratio of these quantities, MSFR/sigma(p), were then examined. The spiral arms were found to exhibit an excess gas density, measuring between 1.4 and 1.6 times the interarm values at 45 arcsec resolution. The total (arm and interarm) gas content and massive star formation rates in concentric annuli in the disk of M51 were computed. The two quantities fall off together with radius, yielding a relatively constant MSFR/sigma(p) with radius. This behavior is not explained by current models of star formation in galactic disks.
Abundances of sulfur in the Milky Way Disk from Peimbert Type II planetary nebulae
NASA Astrophysics Data System (ADS)
Milingo, Jacquelynne Brenda
2000-08-01
Sulfur abundance gradients and heavy element ratios for the Milky Way Disk are constructed based upon newly acquired spectrophotometry of Type II planetary nebulae (PN). These spectra extend from 3600-9600 angstroms allowing us to use the [SIII] 9069 and 9532 angstrom lines to improve upon earlier sulfur abundance estimates. Considering a significant portion of sulfur in PN exists in the S(+2) ionization stage (and higher) this method should allow us to extrapolate more reliable total element abundance from ionic abundances. Given the progenitor mass and location of Type II PN (close to the Galactic disk), this sample of objects is free of nucleosynthetic self-contamination and thus their S abundances in particular are expected to reflect levels of these elements in the interstellar medium at the time of PN progenitor formation. These sulfur abundances provide constraints for studying various aspects of GCE such as massive star yields and the distribution of S across the Milky Way disk.
Extending Measurements to En=30 MeV and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Dana Lynn
The majority of energy release in the fission process is due to the kinetic energy of the fission fragments. Average Total Kinetic Energy measurements for the major actinides over a wide range of incident neutron energies were performed at LANSCE using a Frisch-gridded ionization chamber. The experiments and results of the 238U(n,f) and 235U(n,f) will be presented, including (En), (A), and mass yield distributions as a function of neutron energy. A preliminary (En) for 239Pu(n,f) will also be shown. The (En) shows a clear structure at multichance fission thresholds for all the reactions that we studied. The fragment masses aremore » determined using the iterative double energy (2E) method, with a resolution of A = 4 - 5 amu. The correction for the prompt fission neutrons is the main source of uncertainty, especially at high incident neutron energies, since the behavior of nubar(A,En) is largely unknown. Different correction methods will be discussed.« less
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)
Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; ...
2017-09-13
Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana
Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less
Shining a light on galactic outflows: photoionized outflows
NASA Astrophysics Data System (ADS)
Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida
2016-04-01
We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.
On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.
2014-09-30
It is well known that the achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. In this report we systematically study the ion transmission and ionization efficiencies in different ESI-MS interface configurations. The configurations under investigation include a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interfaces with a single emitter and an emitter array, respectively. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuringmore » the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Our experimental results suggest that the overall ion utilization efficiency in the SPIN-MS interface configurations is better than that in the inlet capillary based ESI-MS interface configurations.« less
Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components
NASA Astrophysics Data System (ADS)
Champion, Christophe
2013-05-01
Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.
An Atlas of Far-ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications
NASA Astrophysics Data System (ADS)
Hagen Bauer, Wendy; Bennett, Philip D.
2014-04-01
The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe III and Cr III) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe II and O I) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ~80 km s-1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.
Total photoionization cross sections of atomic oxygen from threshold to 44.3A
NASA Technical Reports Server (NTRS)
Angel, G. C.; Samson, James A. R.
1987-01-01
The relative cross section of atomic oxygen for the production of singly charged ions has been remeasured in more detail and extended to cover the wavelength range 44.3 to 910.5 A by the use of synchrotron radiation. In addition, the contribution of multiple ionization to the cross sections has been measured allowing total photoionization cross sections to be obtained below 250 A. The results have been made absolute by normalization to previously measured data. The use of synchrotron radiation has enabled measurements of the continuum cross section to be made between the numerous autoionizing resonances that occur near the ionization thresholds. This in turn has allowed a more critical comparison of the various theoretical estimates of the cross section to be made. The series of autoionizing resonances leading to the 4-P state of the oxygen ion have been observed for the first time in an ionization type experiment and their positions compared with both theory and previous photographic recordings.
Agreement of Experiment and Theory on the Single Ionization of Helium by Fast Proton Impact.
Gassert, H; Chuluunbaatar, O; Waitz, M; Trinter, F; Kim, H-K; Bauer, T; Laucke, A; Müller, Ch; Voigtsberger, J; Weller, M; Rist, J; Pitzer, M; Zeller, S; Jahnke, T; Schmidt, L Ph H; Williams, J B; Zaytsev, S A; Bulychev, A A; Kouzakov, K A; Schmidt-Böcking, H; Dörner, R; Popov, Yu V; Schöffler, M S
2016-02-19
Even though the study of ion-atom collisions is a mature field of atomic physics, large discrepancies between experiment and theoretical calculations are still common. Here we present experimental results with high momentum resolution on the single ionization of helium induced by 1-MeV protons, and we compare these to theoretical calculations. The overall agreement is strikingly good, and even the first Born approximation yields good agreement between theory and experiment. This has been expected for several decades, but so far has not been accomplished. The influence of projectile coherence effects on the measured data is briefly discussed in terms of an ongoing dispute on the existence of nodal structures in the electron angular emission distributions.
Analytical solutions for avalanche-breakdown voltages of single-diffused Gaussian junctions
NASA Astrophysics Data System (ADS)
Shenai, K.; Lin, H. C.
1983-03-01
Closed-form solutions of the potential difference between the two edges of the depletion layer of a single diffused Gaussian p-n junction are obtained by integrating Poisson's equation and equating the magnitudes of the positive and negative charges in the depletion layer. By using the closed form solution of the static Poisson's equation and Fulop's average ionization coefficient, the ionization integral in the depletion layer is computed, which yields the correct values of avalanche breakdown voltage, depletion layer thickness at breakdown, and the peak electric field as a function of junction depth. Newton's method is used for rapid convergence. A flowchart to perform the calculations with a programmable hand-held calculator, such as the TI-59, is shown.
Optimization of carrier multiplication for more effcient solar cells: the case of Sn quantum dots.
Allan, Guy; Delerue, Christophe
2011-09-27
We present calculations of impact ionization rates, carrier multiplication yields, and solar-power conversion efficiencies in solar cells based on quantum dots (QDs) of a semimetal, α-Sn. Using these results and previous ones on PbSe and PbS QDs, we discuss a strategy to select QDs with the highest carrier multiplication rate for more efficient solar cells. We suggest using QDs of materials with a close to zero band gap and a high multiplicity of the bands in order to favor the relaxation of photoexcited carriers by impact ionization. Even in that case, the improvement of the maximum solar-power conversion efficiency appears to be a challenging task. © 2011 American Chemical Society
Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.
2013-01-01
Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater than 10 percent point-source flow contributions to streamflow had higher yields relative to undeveloped watersheds (having less than 10 and 15 percent developed and agricultural land uses, respectively) and watersheds with relatively low agricultural land use (between 15 and 30 percent). The statistical tests further indicated that the median annual yields for total P were statistically higher for watersheds with high agricultural land use (greater than 30 percent) compared to the undeveloped watersheds and watersheds with low agricultural land use. The total P yields also were higher for watersheds with low urban land use (between 10 and 30 percent developed land) compared to the undeveloped watersheds. The study data indicate that grouping and examining stream nutrient yields based on the land-use classifications used in this report can be useful for characterizing relations between watershed settings and nutrient yields in streams located throughout central and eastern North Carolina. Compiled study data also were analyzed with four regression tree models as a means of determining which watershed environmental variables or combination of variables result in basins that are likely to have high or low nutrient yields. The regression tree analyses indicated that some of the environmental variables examined in this study were useful for predicting yields of nitrate, total N, and total P. When the median annual nutrient yields for all 48 sites were evaluated as a group (Model 1), annual point-source flow yields had the greatest influence on nitrate and total N yields observed in streams, and annual streamflow yields had the greatest influence on yields of total P. The Model 1 results indicated that watersheds with higher annual point-source flow yields had higher annual yields of nitrate and total N, and watersheds with higher annual streamflow yields had higher annual yields of total P. When sites with high point-source flows (greater than 10 percent of total streamflow) were excluded from the regression tree analyses (Models 2–4), the percentage of forested land in the watersheds was identified as the primary environmental variable influencing stream yields for both total N and total P. Models 2, 3 and 4 did not identify any watershed environmental variables that could adequately explain the observed variability in the nitrate yields among the set of sites examined by each of these models. The results for Models 2, 3, and 4 indicated that watersheds with higher percentages of forested land had lower annual total N and total P yields compared to watersheds with lower percentages of forested land, which had higher median annual total N and total P yields. Additional environmental variables determined to further influence the stream nutrient yields included median annual percentage of point-source flow contributions to the streams, variables of land cover (percentage of forested land, agricultural land, and (or) forested land plus wetlands) in the watershed and (or) in the stream buffer, and drainage area. The regression tree models can serve as a tool for relating differences in select watershed attributes to differences in stream yields of nitrate, total N, and total P, which can provide beneficial information for improving nutrient management in streams throughout North Carolina and for reducing nutrient loads to coastal waters.
Gold nanoparticles and their alternatives for radiation therapy enhancement
Cooper, Daniel R.; Bekah, Devesh; Nadeau, Jay L.
2014-01-01
Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy (PDT). Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions. PMID:25353018
Trojanowicz, Marek; Bobrowski, Krzysztof; Szostek, Bogdan; Bojanowska-Czajka, Anna; Szreder, Tomasz; Bartoszewicz, Iwona; Kulisa, Krzysztof
2018-01-15
The monitoring of Advanced Oxidation/Reduction Processes (AO/RPs) for the evaluation of the yield and mechanisms of decomposition of perfluorinated compounds (PFCs) is often a more difficult task than their determination in the environmental, biological or food samples with complex matrices. This is mostly due to the formation of hundreds, or even thousands, of both intermediate and final products. The considered AO/RPs, involving free radical reactions, include photolytic and photocatalytic processes, Fenton reactions, sonolysis, ozonation, application of ionizing radiation and several wet oxidation processes. The main attention is paid to the most commonly occurring PFCs in the environment, namely PFOA and PFOS. The most powerful and widely exploited method for this purpose is without a doubt LC/MS/MS, which allows the identification and trace quantitation of all species with detectability and resolution power depending on the particular instrumental configurations. The GC/MS is often employed for the monitoring of volatile fluorocarbons, confirming the formation of radicals in the processes of C‒C and C‒S bonds cleavage. For the direct monitoring of radicals participating in the reactions of PFCs decomposition, the molecular spectrophotometry is employed, especially electron paramagnetic resonance (EPR). The UV/Vis spectrophotometry as a detection method is of special importance in the evaluation of kinetics of radical reactions with the use of pulse radiolysis methods. The most commonly employed for the determination of the yield of mineralization of PFCs is ion-chromatography, but there is also potentiometry with ion-selective electrode and the measurements of general parameters such as Total Organic Carbon and Total Organic Fluoride. The presented review is based on about 100 original papers published in both analytical and environmental journals. Copyright © 2017 Elsevier B.V. All rights reserved.
Rejoining and misrejoining of radiation-induced chromatin breaks. IV. Charged particles
NASA Technical Reports Server (NTRS)
Durante, M.; Furusawa, Y.; George, K.; Gialanella, G.; Greco, O.; Grossi, G.; Matsufuji, N.; Pugliese, M.; Yang, T. C.
1998-01-01
We have recently reported the kinetics of chromosome rejoining and exchange formation in human lymphocytes exposed to gamma rays using the techniques of fluorescence in situ hybridization (FISH) and premature chromosome condensation (PCC). In this paper, we have extended previous measurements to cells exposed to charged particles. Our goal was to determine differences in chromatin break rejoining and misrejoining after exposure to low- and high-linear energy transfer (LET) radiation. Cells were irradiated with hydrogen, neon, carbon or iron ions in the LET range 0.3-140 keV/microm and were incubated at 37 degrees C for various times after exposure. Little difference was observed in the yield of early prematurely condensed chromosome breaks for the different ions. The kinetics of break rejoining was exponential for all ions and had similar time constants, but the residual level of unrejoined breaks after prolonged incubation was higher for high-LET radiation. The kinetics of exchange formation was also similar for the different ions, but the yield of chromosome interchanges measured soon after exposure was higher for high-LET particles, suggesting that a higher fraction of DNA breaks are misrejoined quickly. On the other hand, the rate of formation of complete exchanges was slightly lower for densely ionizing radiation. The ratios between the yields of different types of aberrations observed at 10 h postirradiation in prematurely condensed chromosome preparations were dependent on LET. We found significant differences between the yields of aberrations measured in interphase (after repair) and metaphase for densely ionizing radiation. This difference might be caused by prolonged mitotic delay and/or interphase death. Overall, the results point out significant differences between low- and high-LET radiation for the formation of chromosome aberrations.
Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus
2013-10-01
The success of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as a widely employed analytical tool in the biomolecular sciences builds strongly on an effective laser-material interaction that is resulting in a soft co-desorption and ionization of matrix and imbedded biomolecules. To obtain a maximized ion yield for the analyte(s) of interest, in general both wavelength and fluence need to be tuned to match the specific optical absorption profile of the used matrix. However, commonly only lasers with fixed emission wavelengths of either 337 or 355 nm are used for MALDI-MS. Here, we employed a wavelength-tunable dye laser and recorded both the neutral material ejection and the MS ion data in a wide wavelength and fluence range between 280 and 377.5 nm. α-Cyano-4-hydroxycinnamic acid (HCCA), 4-chloro-α-cyanocinnamic acid (ClCCA), α-cyano-2,4-difluorocinnamic acid (DiFCCA), and 2,5-dihydroxybenzoic acid (DHB) were investigated as matrices, and several peptides as analytes. Recording of the material ejection was achieved by adopting a photoacoustic approach. Relative ion yields were derived by division of photoacoustic and ion signals. In this way, distinct wavelength/fluence regions can be identified for which maximum ion yields were obtained. For the tested matrices, optimal results were achieved for wavelengths corresponding to areas of high optical absorption of the respective matrix and at fluences about a factor of 2-3 above the matrix- and wavelength-dependent ion detection threshold fluences. The material ejection as probed by the photoacoustic method is excellently fitted by the quasithermal model, while a sigmoidal function allows for an empirical description of the ion signal-fluence relationship.
Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki
2015-05-01
Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Astrophysics Data System (ADS)
D'Ambro, E.; Schobesberger, S.; Lopez-Hilfiker, F.; Shilling, J. E.; Lee, B. H.; Thornton, J. A.
2017-12-01
α-Pinene (C10H16), the most abundantly emitted monoterpene, is a large contributor to global biogenic secondary organic aerosol (SOA) budgets due to its high SOA yields upon oxidation. We probe the volatility and evaporation behavior upon dilution of α-pinene SOA to further our understanding of the nascent volatility distribution, viscosity, and how these evolve in time absent photochemical oxidation. We present molecular composition measurements of the gas and particle phases of α-pinene ozonolysis SOA formed at 0% and 50% relative humidity (RH), followed by room-temperature evaporation in ultra-high purity N2 humidified to 20-90% RH. Experiments were performed in the Pacific Northwest National Laboratory 10.6 m3 and the University of Washington 0.7 m3 environmental chambers utilizing a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time of flight chemical ionization mass spectrometer utilizing iodide adduct ionization. We present novel insights into the total mass that evaporates as a function of time from 10 min to 24 hours without heating, the molecular speciation of the evaporate, as well as the effective volatility and composition of the SOA mass remaining. Consistent with previous studies, we find two stages of evaporation: a rapid loss of a large portion of the total signal over the course of ≤3 hours, followed by a stage of much slower evaporation over the proceeding 21 hours. Varying the RH of formation effects evaporation rate on timescales ≤3 hours, however the mass fraction remaining after 24 hours converges to 30-50% under all formation and evaporation RHs. We simulate the evaporation behavior and remaining fractions desorbed via temperature programmed thermal desorption to derive effective saturation vapor concentrations, mass accommodation coefficients, and rates of chemical evolution producing both higher and lower volatility components during the evaporation time period.
NASA Astrophysics Data System (ADS)
Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.
2017-07-01
In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.
Accuracy of theory for calculating electron impact ionization of molecules
NASA Astrophysics Data System (ADS)
Chaluvadi, Hari Hara Kumar
The study of electron impact single ionization of atoms and molecules has provided valuable information about fundamental collisions. The most detailed information is obtained from triple differential cross sections (TDCS) in which the energy and momentum of all three final state particles are determined. These cross sections are much more difficult for theory since the detailed kinematics of the experiment become important. There are many theoretical approximations for ionization of molecules. One of the successful methods is the molecular 3-body distorted wave (M3DW) approximation. One of the strengths of the DW approximation is that it can be applied for any energy and any size molecule. One of the approximations that has been made to significantly reduce the required computer time is the OAMO (orientation averaged molecular orbital) approximation. In this dissertation, the accuracy of the M3DW-OAMO is tested for different molecules. Surprisingly, the M3DW-OAMO approximation yields reasonably good agreement with experiment for ionization of H2 and N2. On the other hand, the M3DW-OAMO results for ionization of CH4, NH3 and DNA derivative molecules did not agree very well with experiment. Consequently, we proposed the M3DW with a proper average (PA) calculation. In this dissertation, it is shown that the M3DW-PA calculations for CH4 and SF6 are in much better agreement with experimental data than the M3DW-OAMO results.
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
ERIC Educational Resources Information Center
Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin
2011-01-01
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…
Perturbative calculation of two-photon double electron ionization of helium
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.
2008-05-01
We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.
NASA Astrophysics Data System (ADS)
Belkić, Dževad; Mančev, Ivan; Milojevićb, Nenad
2013-09-01
The total cross sections for the various processes for Li3+-He collisions at intermediate-to-high impact energies are compared with the corresponding theories. The possible reasons for the discrepancies among various theoretical predictions are thoroughly discussed. Special attention has been paid to single and double electron capture, simultaneous transfer and ionization, as well as to single and double ionization.
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.; ...
2016-06-17
Here, we describe CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis at high spatial resolution and high sensitivity of small samples like contemporary interstellar dust grains returned by the Stardust spacecraft. We explain how CHILI addresses the technical challenges associated with such analyses by pushing most technical specifications towards their physical limits. As an initial demonstration, after many years of designing and developing CHILI, we have analyzed presolar silicon carbide grains for their isotopic compositions of strontium, zirconium, and barium. Subsequently, after further technical improvements, we have used CHILI to analyze,more » for the first time without interference, all stable isotopes of iron and nickel simultaneously in presolar silicon carbide grains. With a special timing scheme for the ionization lasers, we separated iron and nickel isotopes in the time-of-flight spectrum such that the isobaric interference between 58Fe and 58Ni was resolved. In-depth discussion of the astrophysical implications of the presolar grain results is deferred to dedicated later publications. Here we focus on the technical aspects of CHILI, its status quo, and further developments necessary to achieve CHILI’s ultimate goals, 10 nm lateral resolution and 30–40% useful yield.« less
Non-ideal magnetohydrodynamic simulations of the two-stage fragmentation model for cluster formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Nicole D.; Basu, Shantanu, E-mail: N.Bailey@leeds.ac.uk, E-mail: basu@uwo.ca
2014-01-01
We model molecular cloud fragmentation with thin-disk, non-ideal magnetohydrodynamic simulations that include ambipolar diffusion and partial ionization that transitions from primarily ultraviolet-dominated to cosmic-ray-dominated regimes. These simulations are used to determine the conditions required for star clusters to form through a two-stage fragmentation scenario. Recent linear analyses have shown that the fragmentation length scales and timescales can undergo a dramatic drop across the column density boundary that separates the ultraviolet- and cosmic-ray-dominated ionization regimes. As found in earlier studies, the absence of an ionization drop and regular perturbations leads to a single-stage fragmentation on pc scales in transcritical clouds, somore » that the nonlinear evolution yields the same fragment sizes as predicted by linear theory. However, we find that a combination of initial transcritical mass-to-flux ratio, evolution through a column density regime in which the ionization drop takes place, and regular small perturbations to the mass-to-flux ratio is sufficient to cause a second stage of fragmentation during the nonlinear evolution. Cores of size ∼0.1 pc are formed within an initial fragment of ∼pc size. Regular perturbations to the mass-to-flux ratio also accelerate the onset of runaway collapse.« less
NASA Astrophysics Data System (ADS)
Kouznetsov, A.; Cully, C. M.
2017-12-01
During enhanced magnetic activities, large ejections of energetic electrons from radiation belts are deposited in the upper polar atmosphere where they play important roles in its physical and chemical processes, including VLF signals subionospheric propagation. Electron deposition can affect D-Region ionization, which are estimated based on ionization rates derived from energy depositions. We present a model of D-region ion production caused by an arbitrary (in energy and pitch angle) distribution of fast (10 keV - 1 MeV) electrons. The model relies on a set of pre-calculated results obtained using a general Monte Carlo approach with the latest version of the MCNP6 (Monte Carlo N-Particle) code for the explicit electron tracking in magnetic fields. By expressing those results using the ionization yield functions, the pre-calculated results are extended to cover arbitrary magnetic field inclinations and atmospheric density profiles, allowing ionization rate altitude profile computations in the range of 20 and 200 km at any geographic point of interest and date/time by adopting results from an external atmospheric density model (e.g. NRLMSISE-00). The pre-calculated MCNP6 results are stored in a CDF (Common Data Format) file, and IDL routines library is written to provide an end-user interface to the model.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration
2018-06-01
We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.
NASA Astrophysics Data System (ADS)
Chen, Zhangjin; Li, Xiaojin; Sun, Xiaoli; Hao, Xiaolei; Chen, Jing
2017-12-01
We use the semiclassical model to study the intensity dependence of nonsequential double ionization (NSDI) of Ar in short strong laser pulses. The contributions to NSDI through sequential ionization of doubly excited states (SIDE) are identified by tracking the energy trajectories of the two outgoing electrons. The correlated electron momentum distributions are calculated from which the longitudinal momentum distributions of the fast and the slow electrons for the side-by-side and the back-to-back emissions are obtained. The simulated momentum distributions of the fast and the slow electrons for NSDI of Ar by linearly polarized fields with a wavelength of 795 nm at an intensity of 7 × 1013 W cm-2 are in good agreement with the experimental measurements of Liu et al (2014 Phys. Rev. Lett. 112 013003). We demonstrate that the process of double ionization through SIDE dominates NSDI only when the laser intensities are below the recollision threshold; nevertheless, for higher intensities the SIDE process still takes place although the contribution to the NSDI yields decreases rapidly as the intensity increases. It has been found that for SIDE at different intensities, both the correlated electron momentum spectra and the momentum distributions of the fast and the slow electrons remain the same.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.
2016-08-01
We describe CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis at high spatial resolution and high sensitivity of small samples like contemporary interstellar dust grains returned by the Stardust spacecraft. We explain how CHILI addresses the technical challenges associated with such analyses by pushing most technical specifications towards their physical limits. As an initial demonstration, after many years of designing and developing CHILI, we have analyzed presolar silicon carbide grains for their isotopic compositions of strontium, zirconium, and barium. Subsequently, after further technical improvements, we have used CHILI to analyze, formore » the first time without interference, all stable isotopes of iron and nickel simultaneously in presolar silicon carbide grains. With a special timing scheme for the ionization lasers, we separated iron and nickel isotopes in the time-of-flight spectrum such that the isobaric interference between Fe-58 and Ni-58 was resolved. In-depth discussion of the astrophysical implications of the presolar grain results is deferred to dedicated later publications. Here we focus on the technical aspects of CHILI, its status quo, and further developments necessary to achieve CHILI's ultimate goals, similar to 10 nm lateral resolution and 30-40% useful yield.« less
Quantum interference in laser-induced nonsequential double ionization
NASA Astrophysics Data System (ADS)
Quan, Wei; Hao, XiaoLei; Wang, YanLan; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Xiao, ZhiLei; Sun, RenPing; Lai, XuanYang; Hu, ShiLin; Liu, MingQing; Shu, Zheng; Wang, XiaoDong; Li, WeiDong; Becker, Wilhelm; Liu, XiaoJun; Chen, Jing
2017-09-01
Quantum interference plays an important role in various intense-laser-driven atomic phenomena, e.g., above-threshold ionization and high-order-harmonic generation, and provides a useful tool in ultrafast imaging of atomic and molecular structure and dynamics. However, it has eluded observation in nonsequential double ionization (NSDI), which serves as an ideal prototype to study electron-electron correlation. Thus far, NSDI usually could be well understood from a semiclassical perspective, where all quantum aspects have been ignored after the first electron has tunneled. Here we perform coincidence measurements for NSDI of xenon subject to laser pulses at 2400 nm. It is found that the intensity dependence of the asymmetry parameter between the yields in the second and fourth quadrants and those in the first and third quadrants of the electron-momentum-correlation distributions exhibits a peculiar fast oscillatory structure, which is beyond the scope of the semiclassical picture. Our theoretical analysis indicates that this oscillation can be attributed to interference between the contributions of different excited states in the recollision-excitation-with-subsequent-ionization channel. Our work demonstrates the significant role of quantum interference in NSDI and may create an additional pathway towards manipulation and imaging of the ultrafast atomic and molecular dynamics in intense laser fields.
Bernier, Matthew C; Wysocki, Vicki H; Dagan, Shai
2015-07-01
Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are attractive options due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3 , in microparticle (μP) powder forms, can efficiently facilitate ionization of various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/µL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under laser desorption ionization. Qualitatively, the WO3 μP showed improved detection of apigenin, sodiated glucose, and precharged analyte choline, while the ReO3 μP allowed better detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/µL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than α-cyano-4-hydroxycinnaminic acid. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to those used with α-cyano-4-hydroxycinnaminic acid. Copyright © 2015 John Wiley & Sons, Ltd.
Nell, Marika; Helbling, Damian E
2018-05-23
Hydraulic fracturing (HF) operations utilize millions of gallons of water amended with chemical additives including biocides, corrosion inhibitors, and surfactants. Fluids injected into the subsurface return to the surface as wastewaters, which contain a complex mixture of additives, transformation products, and geogenic chemical constituents. Quantitative analytical methods are needed to evaluate wastewater disposal alternatives or to conduct adequate exposure assessments. However, our narrow understanding of how matrix effects change the ionization efficiency of target analytes limits the quantitative analysis of polar to semi-polar HF additives by means of liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). To address this limitation, we explored the ways in which matrix chemistry influences the ionization of seventeen priority HF additives with a modified standard addition approach. We then used the data to quantify HF additives in HF-associated fluids. Our results demonstrate that HF additives generally exhibit suppressed ionization in HF-associated fluids, though HF additives that predominantly form sodiated adducts exhibit significantly enhanced ionization in produced water samples, which is largely the result of adduct shifting. In a preliminary screening, we identified glutaraldehyde and 2-butoxyethanol along with homologues of benzalkonium chloride (ADBAC), polyethylene glycol (PEG), and polypropylene glycol (PPG) in HF-associated fluids. We then used matrix recovery factors to provide the first quantitative measurements of individual homologues of ADBAC, PEG, and PPG in HF-associated fluids ranging from mg L-1 levels in hydraulic fracturing fluid to low μg L-1 levels in PW samples. Our approach is generalizable across sample types and shale formations and yields important data to evaluate wastewater disposal alternatives or implement exposure assessments.
DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhanjoy; Ercolano, Barbara; Turner, Neal J., E-mail: s.mohanty@imperial.ac.uk, E-mail: ercolano@usm.lmu.de, E-mail: neal.turner@jpl.nasa.gov
We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M {sub *} = 0.7 M {sub Sun} and 0.1 M {sub Sun }. In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with Mmore » {sub disk}/M {sub *} = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L{sub X} /L {sub *} Almost-Equal-To 10{sup -3.5}, as observed. Ionization rates are calculated with the MOCCASIN Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 {mu}m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only {approx}5%-10% of the total disk mass; (3) the accretion rate ( M-dot ) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10{sup -2}; and (5) the current non-detection of polarized emission from field-aligned grains in the outer disk regions is consistent with active MRI at those radii.« less
Ramsey-type spectroscopy in the XUV spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirri, A.; European Laboratory for Nonlinear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino; Sali, E.
2010-02-02
We report an experimental and theoretical investigation of Ramsey-type spectroscopy with high-order harmonic generation applied to autoionizing states of Krypton. The ionization yield, detected by an ion-mass spectrometer, shows the characteristic quantum interference pattern. The behaviour of the fringe contrast was interpreted on the basis of a simple analytic model, which reproduces the experimental data without any free parameter.
Watching the Real-time Evolution of a Laser Modified Atom Using Attosecond Pulses
NASA Astrophysics Data System (ADS)
Shivaram, Niranjan; Timmers, Henry; Tong, Xiao-Min; Sandhu, Arvinder
2011-10-01
In the presence of even moderately strong laser fields, atomic states are heavily modified and develop rich structure. Such a laser dressed atom can be described using the Floquet theory in which the laser dressed states called Floquet states are composed of different Fourier components. In this work we use XUV attosecond pulses to excite a He atom from its ground state to near-infrared (NIR) laser dressed Floquet states, which are ionized by the dressing laser field. Quantum interferences between Fourier components of these Floquet states lead to oscillations in He ion yield as a function of time-delay between the XUV and NIR pulses. From the ion yield signal we measure the quantum phase difference between transition matrix elements to two different Fourier components as a function of both time-delay (instantaneous NIR intensity) and NIR pulse peak intensity. These measurements along with information from time-dependent Schrodinger equation simulations enable us to observe the real-time evolution of the laser modified atom as the dominant Floquet state mediating the ionization changes from the 5p Floquet state to the 2p Floquet state with increasing NIR intensity.
New diagnostic methods for laser plasma- and microwave-enhanced combustion
Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur
2015-01-01
The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432
Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul
2016-02-09
We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.
Nishikaze, Takashi
2017-01-01
Mass spectrometry (MS) has become an indispensable tool for analyzing post translational modifications of proteins, including N-glycosylated molecules. Because most glycosylation sites carry a multitude of glycans, referred to as “glycoforms,” the purpose of an N-glycosylation analysis is glycoform profiling and glycosylation site mapping. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has unique characteristics that are suited for the sensitive analysis of N-glycosylated products. However, the analysis is often hampered by the inherent physico-chemical properties of N-glycans. Glycans are highly hydrophilic in nature, and therefore tend to show low ion yields in both positive- and negative-ion modes. The labile nature and complicated branched structures involving various linkage isomers make structural characterization difficult. This review focuses on MALDI-MS-based approaches for enhancing analytical performance in N-glycosylation research. In particular, the following three topics are emphasized: (1) Labeling for enhancing the ion yields of glycans and glycopeptides, (2) Negative-ion fragmentation for less ambiguous elucidation of the branched structure of N-glycans, (3) Derivatization for the stabilization and linkage isomer discrimination of sialic acid residues. PMID:28794918
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège
2015-09-15
The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less
Hettick, Justin M; Green, Brett J; Buskirk, Amanda D; Kashon, Michael L; Slaven, James E; Janotka, Erika; Blachere, Francoise M; Schmechel, Detlef; Beezhold, Donald H
2008-09-15
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral fingerprints for 12 species of fungi of the genus Aspergillus and 5 different strains of Aspergillus flavus. Prior to MALDI-TOF MS analysis, the fungi were subjected to three 1-min bead beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contain abundant peaks in the range of 5 to 20kDa and may be used to discriminate between species unambiguously. A discriminant analysis using all peaks from the MALDI-TOF MS data yielded error rates for classification of 0 and 18.75% for resubstitution and cross-validation methods, respectively. If a subset of 28 significant peaks is chosen, resubstitution and cross-validation error rates are 0%. Discriminant analysis of the MALDI-TOF MS data for 5 strains of A. flavus using all peaks yielded error rates for classification of 0 and 5% for resubstitution and cross-validation methods, respectively. These data indicate that MALDI-TOF MS data may be used for unambiguous identification of members of the genus Aspergillus at both the species and strain levels.
Stinson, Craig A; Zhang, Wenpeng; Xia, Yu
2018-03-01
Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu
2018-03-01
Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Montanari, C. C.; Miraglia, J. E.
2018-01-01
In this contribution we present ab initio results for ionization total cross sections, probabilities at zero impact parameter, and impact parameter moments of order +1 and -1 of Ne, Ar, Kr, and Xe by proton impact in an extended energy range from 100 keV up to 10 MeV. The calculations were performed by using the continuum distorted wave eikonal initial state approximation (CDW-EIS) for energies up to 1 MeV, and using the first Born approximation for larger energies. The convergence of the CDW-EIS to the first Born above 1 MeV is clear in the present results. Our inner-shell ionization cross sections are compared with the available experimental data and with the ECPSSR results. We also include in this contribution the values of the ionization probabilities at the origin, and the impact parameter dependence. These values have been employed in multiple ionization calculations showing very good description of the experimental data. Tables of the ionization probabilities are presented, disaggregated for the different initial bound states, considering all the shells for Ne and Ar, the M-N shells of Kr and the N-O shells of Xe.
Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stranak, Vitezslav, E-mail: stranak@prf.jcu.cz; Hubicka, Zdenek; Cada, Martin
2014-04-21
The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ξ. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionizedmore » flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.« less
Tutorial: Radiation Effects in Electronic Systems
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2017-01-01
This tutorial presentation will give an overview of radiation effects in electrical, electronic, and electromechanical (EEE) components as it applies to civilian space systems of varying size and complexity. The natural space environment presents many unique threats to electronic systems regardless of where the systems operate from low-Earth orbit to interplanetary space. The presentation will cover several topics, including: an overview and introduction to the applicable space radiation environments common to a broad range of mission designs; definitions and impacts of effects due to impinging particles in the space environment e.g., total ionizing dose (TID), total non-ionizing dose (TNID), and single-event effects (SEE); and, testing for and evaluation of TID, TNID, and SEE in EEE components.
Study of elastic and inelastic cross sections by positron impact on inert gases
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2018-04-01
In this article, a modified computational method recently introduced is used for the calculation of total, positronium (Ps) formation and ionization cross sections including direct and total ionization cross sections for positron scattering from noble gases. The incident positron is assumed to have energies over a wide range from 5 eV to 5 keV. The positron-atom interaction potential is developed under an optical potential framework and the computations of cross sections for each process are performed by introducing appropriate absorption thresholds. The calculated results obtained by employing this modified approach are found to be in reasonably good agreement with most of the existing data.
Strong interference effects in the resonant Auger decay of atoms induced by intense x-ray fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demekhin, Philipp V.; Cederbaum, Lorenz S.
2011-02-15
The theory of resonant Auger decay of atoms in a high-intensity coherent x-ray pulse is presented. The theory includes the coupling between the ground state and the resonance due to an intense x-ray pulse, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the final ionic states coherently. The theory also considers the impact of the direct photoionization of the resonance state itself which typically populates highly excited ionic states. The combined action of the resonant decay and of the direct ionization of the ground state in the field induces amore » non-Hermitian time-dependent coupling between the ground and the ''dressed'' resonance stats. The impact of these competing processes on the total electron yield and on the 2s{sup 2}2p{sup 4}({sup 1}D)3p {sup 2}P spectator and 2s{sup 1}2p{sup 6} {sup 2}S participator Auger decay spectra of the Ne 1s{yields}3p resonance is investigated. The role of the direct photoionization of the ground state and of the resonance increases dramatically with the field intensity. This results in strong interference effects with distinct patterns in the electron spectra, which differ for the participator and spectator final states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yongxi; Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca; Bahmann, Hilke
Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, variousmore » interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials.« less
Multi-photon ionization of atoms in intense short-wavelength radiation fields
NASA Astrophysics Data System (ADS)
Meyer, Michael
2015-05-01
The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing the intensity dependent variation of the angular distribution patterns for the sequential ionization process.
Estimating total suspended sediment yield with probability sampling
Robert B. Thomas
1985-01-01
The ""Selection At List Time"" (SALT) scheme controls sampling of concentration for estimating total suspended sediment yield. The probability of taking a sample is proportional to its estimated contribution to total suspended sediment discharge. This procedure gives unbiased estimates of total suspended sediment yield and the variance of the...
Mizrahi, V; Usdin, M T; Harington, A; Dudding, L R
1990-01-01
Substitution of the conserved Asp-443 residue of HIV-1 reverse transcriptase by asparagine specifically suppressed the ribonuclease H activity of the enzyme without affecting the reverse transcriptase activity, suggesting involvement of this ionizable residue at the ribonuclease H active site. An analogous asparagine substitution of the Asp-498 residue yielded an unstable enzyme that was difficult to enzymatically characterize. However, the instability caused by the Asn-498 mutation was relieved by the introduction of a second distal Asn-443 substitution, yielding an enzyme with wild type reverse transcriptase activity, but lacking ribonuclease H activity. Images PMID:1699202
Total Dose Effects on Single Event Transients in Linear Bipolar Systems
NASA Technical Reports Server (NTRS)
Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent
2008-01-01
Single Event Transients (SETs) originating in linear bipolar integrated circuits are known to undermine the reliability of electronic systems operating in the radiation environment of space. Ionizing particle radiation produces a variety of SETs in linear bipolar circuits. The extent to which these SETs threaten system reliability depends on both their shapes (amplitude and width) and their threshold energies. In general, SETs with large amplitudes and widths are the most likely to propagate from a bipolar circuit's output through a subsystem. The danger these SET pose is that, if they become latched in a follow-on circuit, they could cause an erroneous system response. Long-term exposure of linear bipolar circuits to particle radiation produces total ionizing dose (TID) and/or displacement damage dose (DDD) effects that are characterized by a gradual degradation in some of the circuit's electrical parameters. For example, an operational amplifier's gain-bandwidth product is reduced by exposure to ionizing radiation, and it is this reduction that contributes to the distortion of the SET shapes. In this paper, we compare SETs produced in a pristine LM124 operational amplifier with those produced in one exposed to ionizing radiation for three different operating configurations - voltage follower (VF), inverter with gain (IWG), and non-inverter with gain (NIWG). Each configuration produces a unique set of transient shapes that change following exposure to ionizing radiation. An important finding is that the changes depend on operating configuration; some SETs decrease in amplitude, some remain relatively unchanged, some become narrower and some become broader.
An atomic model for neutral and singly ionized uranium
NASA Technical Reports Server (NTRS)
Maceda, E. L.; Miley, G. H.
1979-01-01
A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.
Excitation and Ionization Cross Sections for Electron-Beam Energy Deposition in High Temperature Air
1987-07-09
are given and compared to existing experimental results or other theoretical approaches. This information can readily be used as input for a deposition...of the doubly-differential, singly- differential and total ionization cross sections which subsequently served to guide theoretical calculations on...coworkers have been leaders in developing a theoretical base for studying electron production and energy deposition in atmospheric gases such as He, N2
NASA Technical Reports Server (NTRS)
Rydberg, B.; Chatterjee, A. (Principal Investigator)
1996-01-01
The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.
Berndt, Torsten; Richters, Stefanie; Kaethner, Ralf; Voigtländer, Jens; Stratmann, Frank; Sipilä, Mikko; Kulmala, Markku; Herrmann, Hartmut
2015-10-15
The gas-phase reaction of ozone with C5-C8 cycloalkenes has been investigated in a free-jet flow system at atmospheric pressure and a temperature of 297 ± 1 K. Highly oxidized RO2 radicals bearing at least 5 O atoms in the molecule and their subsequent reaction products were detected in most cases by means of nitrate-CI-APi-TOF mass spectrometry. Starting from a Criegee intermediate after splitting-off an OH-radical, the formation of these RO2 radicals can be explained via an autoxidation mechanism, meaning RO2 isomerization (ROO → QOOH) and subsequently O2 addition (QOOH + O2 → R'OO). Time-dependent RO2 radical measurements concerning the ozonolysis of cyclohexene indicate rate coefficients of the intramolecular H-shifts, ROO → QOOH, higher than 1 s(-1). The total molar yield of highly oxidized products (predominantly RO2 radicals) from C5-C8 cycloalkenes in air is 4.8-6.0% affected with a calibration uncertainty by a factor of about two. For the most abundant RO2 radical from cyclohexene ozonolysis, O,O-C6H7(OOH)2O2 ("O,O" stands for two O atoms arising from the ozone attack), the determination of the rate coefficients of the reaction with NO2, NO, and SO2 yielded (1.6 ± 0.5) × 10(-12), (3.4 ± 0.9) × 10(-11), and <10(-14) cm(3) molecule(-1) s(-1), respectively. The reaction of highly oxidized RO2 radicals with other peroxy radicals (R'O2) leads to detectable accretion products, RO2 + R'O2 → ROOR' + O2, which allows to acquire information on peroxy radicals not directly measurable with the nitrate ionization technique applied here. Additional experiments using acetate as the charger ion confirm conclusively the existence of highly oxidized RO2 radicals and closed-shell products. Other reaction products, detectable with this ionization technique, give a deeper insight in the reaction mechanism of cyclohexene ozonolysis.
Decomposition reaction of the veterinary antibiotic ciprofloxacin using electron ionizing energy.
Cho, Jae Young; Chung, Byung Yeoup; Lee, Kyeong-Bo; Lee, Geon-Hwi; Hwang, Seon Ah
2014-12-01
The application of electron ionizing energy for degrading veterinary antibiotic ciprofloxacin (CFX) in aqueous solution was elucidated. The degradation efficiency of CFX after irradiation with electron ionizing energy was 38% at 1 kGy, 80% at 5kGy, and 97% at 10 kGy. Total organic carbon of CFX in aqueous solution after irradiation with electron ionizing energy decreased 2% at 1 kGy, 18% at 5 kGy, and 53% at 10 kGy. The CFX degradation products after irradiation with electron ionizing energy were CFX1 ([M+H] m/z 330), CFX2 ([M+H] m/z 314), and CFX3 ([M+H] m/z 263). CFX1 had an F atom substituted with OH and CFX2 was expected to originate from CFX via loss of F or H2O. CFX3 was expected to originate from CFX via loss of the piperazynilic ring. Among the several radicals, hydrate electron (eaq(-)) is expected to play an important role in degradation of veterinary antibiotic during irradiation with electron ionizing energy. The toxicity of the degraded products formed during irradiation with electron ionizing energy was evaluated using microbes such as Escherichia coli, Pseudomonas putida, and Bacillus subtilis, and the results revealed that the toxicity decreased with irradiation. These results demonstrate that irradiation technology using electron ionizing energy is an effective was to remove veterinary antibiotics from an aquatic ecosystem. Copyright © 2014 Elsevier Ltd. All rights reserved.
The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells
NASA Astrophysics Data System (ADS)
Zou, Yunlong; Holmes, Russell
2015-03-01
Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.
Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew
2014-07-16
Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.
Taylor, Malcolm; Elliott, Herschel A; Navitsky, Laura O
2018-05-01
The production of hydraulic fracturing fluids (HFFs) in natural gas extraction and their subsequent management results in waste streams highly variable in total dissolved solids (TDS). Because TDS measurement is time-consuming, it is often estimated from electrical conductivity (EC) assuming dissolved solids are predominantly ionic species of low enough concentration to yield a linear TDS-EC relationship: TDS (mg/L) = k e × EC (μS/cm) where k e is a constant of proportionality. HHFs can have TDS levels from 20,000 to over 300,000 mg/L wherein ion-pair formation and non-ionized solutes invalidate a simple TDS-EC relationship. Therefore, the composition and TDS-EC relationship of several fluids from Marcellus gas wells in Pennsylvania were assessed. Below EC of 75,000 μS/cm, TDS (mg/L) can be estimated with little error assuming k e = 0.7. For more concentrated HFFs, a curvilinear relationship (R 2 = 0.99) is needed: TDS = 27,078e 1.05 × 10 -5 *EC . For hypersaline HFFs, the use of an EC/TDS meter underestimates TDS by as much as 50%. A single linear relationship is unreliable as a predictor of brine strength and, in turn, potential water quality and soil impacts from accidental releases or the suitability of HFFs for industrial wastewater treatment.
Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation
NASA Technical Reports Server (NTRS)
Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan
2002-01-01
Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.
NASA Astrophysics Data System (ADS)
Suzuki, Yohichi; Seki, Kazuhiko
2018-03-01
We studied ion concentration profiles and the charge density gradient caused by electrode reactions in weak electrolytes by using the Poisson-Nernst-Planck equations without assuming charge neutrality. In weak electrolytes, only a small fraction of molecules is ionized in bulk. Ion concentration profiles depend on not only ion transport but also the ionization of molecules. We considered the ionization of molecules and ion association in weak electrolytes and obtained analytical expressions for ion densities, electrostatic potential profiles, and ion currents. We found the case that the total ion density gradient was given by the Kuramoto length which characterized the distance over which an ion diffuses before association. The charge density gradient is characterized by the Debye length for 1:1 weak electrolytes. We discuss the role of these length scales for efficient water splitting reactions using photo-electrocatalytic electrodes.
Simplified Numerical Description of SPT Operations
NASA Technical Reports Server (NTRS)
Manzella, David H.
1995-01-01
A simplified numerical model of the plasma discharge within the SPT-100 stationary plasma thruster was developed to aid in understanding thruster operation. A one dimensional description was used. Non-axial velocities were neglected except for the azimuthal electron velocity. A nominal operating condition of 4.5 mg/s of xenon anode flow was considered with 4.5 Amperes of discharge current, and a peak radial magnetic field strength of 130 Gauss. For these conditions, the calculated results indicated ionization fractions of 0.99 near the thruster exit with a potential drop across the discharge of approximately 250 Volts. Peak calculated electron temperatures were found to be sensitive to the choice of total ionization cross section for ionization of atomic xenon by electron bombardment and ranged from 51 eV to 60 eV. The calculated ionization fraction, potential drop, and electron number density agree favorably with previous experiments. Calculated electron temperatures are higher than previously measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xin -Hu; Ye, Yun -Xiu; Chen, Jian -Ping
2015-07-17
The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab. Radiation and ionization energy loss are discussed formore » $$^{12}C$$ elastic scattering simulation. The relative momentum ratio $$\\frac{\\Delta p}{p}$$ and $$^{12}C$$ elastic cross section are compared without and with radiation energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for $$^{12}C$$ elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.« less
Empirical Observations on the Sensitivity of Hot Cathode Ionization Type Vacuum Gages
NASA Technical Reports Server (NTRS)
Summers, R. L.
1969-01-01
A study of empirical methods of predicting tile relative sensitivities of hot cathode ionization gages is presented. Using previously published gage sensitivities, several rules for predicting relative sensitivity are tested. The relative sensitivity to different gases is shown to be invariant with gage type, in the linear range of gage operation. The total ionization cross section, molecular and molar polarizability, and refractive index are demonstrated to be useful parameters for predicting relative gage sensitivity. Using data from the literature, the probable error of predictions of relative gage sensitivity based on these molecular properties is found to be about 10 percent. A comprehensive table of predicted relative sensitivities, based on empirical methods, is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com
L shell ionization cross section and L{sub i} subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (E{sub o}) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σ{sub L} total and σ{sub Li}(i = 1,2,3) subshells ionisation cross section values obtained for E{sub o} values in the energy range of E{sub Li}
NASA Technical Reports Server (NTRS)
Roy, N. L.
1975-01-01
Signals from impact ionization plasmas were studied as a means of performing microparticle composition analysis. Impact ionization signal response was measured in a time-of-flight (TOF) system for lanthanum hexaboride, carbonyl iron, and aluminum microparticle impacts on a tantalum target, primarily in the 1 - 8 km/s velocity range. Oscilloscope photographs of representative ion TOF signal response are given for each material studied. Graphs and histograms are presented of the total charge collected as well as the charge collected in each observed ion mass group. Data show that ion signals consist primarily of the lower ionization potential elements over the 1 - 8 km/s range.
NASA Technical Reports Server (NTRS)
Irom, Farokh; Agarwal, Shri G.
2012-01-01
This paper reports single-event latchup and total dose results for a variety of analog to digital converters targeted for possible use in NASA spacecraft's. The compendium covers devices tested over the last 15 years.
Charge transfer and ionization in collisions of Si3+ with H from low to high energy
NASA Astrophysics Data System (ADS)
Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.
2006-11-01
Charge transfer processes due to collisions of ground state Si3+(3sS1) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01eV/u to 1MeV/u . Total and state-selective rate coefficients are also presented for temperatures from 2×103K to 107K . Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.
Liquid-purity monitor for the LUX-ZEPLIN dark matter search
NASA Astrophysics Data System (ADS)
Manalaysay, Aaron; Lux-Zeplin Collaboration
2016-03-01
The LUX-ZEPLIN (LZ) experiment will be the first liquid-xenon (LXe) dark matter search to feature a multi-tonne fiducial target. Drawing on the lessons learned in the LUX and ZEPLIN experiments, this next step will probe dark-matter candidates with unprecedented sensitivity. As these LXe detectors have grown larger, so too has the distance over which ionization electrons (from particle interactions) must be drifted through the liquid. Because of this, even minute levels of electronegative impurities can significantly attenuate the ionization signal, and must therefore be closely monitored. I will present the concept of a liquid-purity monitor which uses new and novel techniques, including state-of-the-art UV LEDs and low-work-function materials, and will measure levels of impurities in LZ's liquid circulation line in real time. This device will provide vital supplemental data to the roughly weekly in-situ purity measurements carried out within the detector's active volume, will greatly improve the resolution of the ionization channel in this detector, and will yield instant feedback in response to changing detector conditions.
Past Exposure to Densely Ionizing Radiation Leaves a Unique Permanent Signature in the Genome
Hande, M. Prakash; Azizova, Tamara V.; Geard, Charles R.; Burak, Ludmilla E.; Mitchell, Catherine R.; Khokhryakov, Valentin F.; Vasilenko, Evgeny K.; Brenner, David J.
2003-01-01
Speculation has long surrounded the question of whether past exposure to ionizing radiation leaves a unique permanent signature in the genome. Intrachromosomal rearrangements or deletions are produced much more efficiently by densely ionizing radiation than by chemical mutagens, x-rays, or endogenous aging processes. Until recently, such stable intrachromosomal aberrations have been very hard to detect, but a new chromosome band painting technique has made their detection practical. We report the detection and quantification of stable intrachromosomal aberrations in lymphocytes of healthy former nuclear-weapons workers who were exposed to plutonium many years ago. Even many years after occupational exposure, more than half the blood cells of the healthy plutonium workers contain large (>6 Mb) intrachromosomal rearrangements. The yield of these aberrations was highly correlated with plutonium dose to the bone marrow. The control groups contained very few such intrachromosomal aberrations. Quantification of this large-scale chromosomal damage in human populations exposed many years earlier will lead to new insights into the mechanisms and risks of cytogenetic damage. PMID:12679897
NASA Technical Reports Server (NTRS)
Bathke, C. G.
1976-01-01
Electron energy distribution functions were calculated in a U235 plasma at 1 atmosphere for various plasma temperatures and neutron fluxes. The distributions are assumed to be a summation of a high energy tail and a Maxwellian distribution. The sources of energetic electrons considered are the fission-fragment induced ionization of uranium and the electron induced ionization of uranium. The calculation of the high energy tail is reduced to an electron slowing down calculation, from the most energetic source to the energy where the electron is assumed to be incorporated into the Maxwellian distribution. The pertinent collisional processes are electron-electron scattering and electron induced ionization and excitation of uranium. Two distinct methods were employed in the calculation of the distributions. One method is based upon the assumption of continuous slowing and yields a distribution inversely proportional to the stopping power. An iteration scheme is utilized to include the secondary electron avalanche. In the other method, a governing equation is derived without assuming continuous electron slowing. This equation is solved by a Monte Carlo technique.
Yang, Guang; Wang, Jianlong
2018-05-01
In this study, the combined ionizing radiation-acid pretreatment process was firstly applied to enhance hydrogen fermentation of grass waste. Results showed that the combined pretreatment synergistically enhanced hydrogen fermentation of grass waste. The SCOD and soluble polysaccharide contents of grass waste increased by 1.6 and 2.91 times after the combined pretreatment, respectively. SEM observation and crystallinity test showed the combined pretreatment effectively disrupted the grass structure. Owing to the more favorable substrate conditions, the hydrogen yield achieved 68 mL/g-dry grass added after the combined pretreatment, which was 161.5%, 112.5% and 28.3% higher than those from raw, ionizing radiation pretreated and acid pretreated grass waste, respectively. The VS removal also increased from 13.9% to 25.6% by the combined pretreatment. Microbial community analysis showed that the abundance of dominant hydrogen producing genus Clostridium sensu stricto 1 increased from 37.9% to 69.4% after the combined pretreatment, which contributed to more efficient hydrogen fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multiple outer-shell ionization effect in inner-shell x-ray production by light ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapicki, G.; Mehta, R.; Duggan, J.L.
1986-11-01
L-shell x-ray production cross sections by 0.25--2.5-MeV /sub 2//sup 4/He/sup +/ ions in /sub 28/Ni, /sub 29/Cu, /sub 32/Ge, /sub 33/As, /sub 37/Rb, /sub 38/Sr, /sub 39/Y, /sub 40/Zr, and /sub 46/Pd are reported. The data are compared to the first Born approximation and the ECPSSR theory that accounts for the projectile energy loss (E) and Coulomb deflection (C) as well as the perturbed-stationary-state (PSS) and relativistic (R) effects in the treatment of the target L-shell electron. Surprisingly, the first Born approximation appears to converge to the data while the ECPSSR predictions underestimate them in the low-velocity limit. This ismore » explained as the result of improper use of single-hole fluorescence yields. A heuristic formula is proposed to account for multiple ionizations in terms of a classical probability for these phenomena and, after it is applied, the ECPSSR theory of L-shell ionization is found to be in good agreement with the data.« less
Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses.
Duffy, Martin J; Kelly, Orla; Calvert, Christopher R; King, Raymond B; Belshaw, Louise; Kelly, Thomas J; Costello, John T; Timson, David J; Bryan, William A; Kierspel, Thomas; Turcu, I C Edmond; Cacho, Cephise M; Springate, Emma; Williams, Ian D; Greenwood, Jason B
2013-09-01
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.
Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.
2015-09-01
A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.
NASA Astrophysics Data System (ADS)
Rogister, A. L. M.; Hasselberg, G.
1993-12-01
For pt.I, see ibid, p.1799-1816 (1993). To the ionization instability described in Part I correspond odd phi, even br eigenfunctions leading, as for the tearing mode, to a magnetic island belt centred about the rational magnetic surface q = m < qa (q is the safety factor; m is the mode number). Plasma dumping on the target plates, along the island magnetic field lines, releases the neutrals, the ionization of which drives the instability. This self-consistent model of the plasma edge yields the electron temperature on the last closed equilibrium magnetic surface and the particle confinement time, which are compared with the values measured in TEXTOR and other tokamaks; interestingly, the value obtained for τp is very reminiscent of the heuristic energy confinement time expression proposed by Kaye and Goldston(1985). Theory also predicts an equilibrium bifurcation at high power, corresponding to a reduction, and then a collapse, of the island width. The hypothesis that the (L mode) island belt be hooked up to the machine's structure is briefly discussed
Xuan, Xueyi; Xu, Liyuan; Li, Liangxing; Gao, Chongkai; Li, Ning
2015-07-25
A new biomembrane-mimetic liquid chromatographic method using a C8 stationary phase and phosphatidylcholine-modified (PC-modified) microemulsion mobile phase was used to estimate unionized and ionized drugs lipophilicity expressed as an n-octanol/water partition coefficient (logP and logD). The introduction of PC into sodium dodecyl sulfate (SDS) microemulsion yielded a good correlation between logk and logD (R(2)=0.8). The optimal composition of the PC-modified microemulsion liquid chromatography (PC-modified MELC) mobile phase was 0.2% PC-3.0% SDS-6.0% n-butanol-0.8% ethyl acetate-90.0% water (pH 7.0) for neutral and ionized molecules. The interactions between the analytes and system described by this chromatographic method is more similar to biological membrane than the n-octanol/water partition system. The result in this paper suggests that PC-modified MELC can serve as a possible alternative to the shake-flask method for high-throughput unionized and ionized drugs lipophilicity determination and simulation of biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Dissociation of dicyclohexyl phthalate molecule induced by low-energy electron impact
NASA Astrophysics Data System (ADS)
Lacko, Michal; Papp, Peter; Matejčík, Štefan
2018-06-01
Experimental investigation of electron ionization (EI) of and electron attachment (EA) onto dicyclohexyl phthalate (DCHP) was carried out using a crossed electron and molecular beam technique. Formation of positive and negative ions by EI and EA with the corresponding dissociation processes was studied and discussed. Due to a low ion yield of the parent positive ion, we were not able to estimate the ionization energy of DCHP. However, we estimated the appearance energies for the protonated phthalate anhydride (m/z 149) to be 10.5 eV and other significant ionic fragments of m/z 249 [DCHP—(R—2H)]+, m/z 167 [DCHP—(2R—3H)]+, and m/z 83 [C6H11]+. The reaction mechanisms of the dissociative ionization process were discussed. In the case of negative ions, we estimated the relative cross sections for a transient negative ion (TNI) and for several detected ions. At low electron energies (close to 0 eV), the TNI of DCHP molecules was the dominant ion, with products of dissociative EA dominating in broad resonances at 7.5 and 8.5 eV.
Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix
Hou, Junjie; Xie, Zhensheng; Xue, Peng; Cui, Ziyou; Chen, Xiulan; Li, Jing; Cai, Tanxi; Wu, Peng; Yang, Fuquan
2010-01-01
Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP) and diammonium hydrogen citrate (DAHC), and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1) by MALDI-TOF/TOF MS. PMID:20339515
Screening of exciplex formation by distant electron transfer.
Fedorenko, S G; Khokhlova, S S; Burshtein, A I
2012-01-12
The excitation quenching by reversible exciplex formation, combined with irreversible but distant electron transfer, is considered by means of the integral encounter theory (IET). Assuming that the quenchers are in great excess, the set of IET equations for the excitations, free ions, and exciplexes is derived. Solving these equations gives the Laplace images of all these populations, and these are used to specify the quantum yields of the corresponding reaction products. It appears that diffusion facilitates the exciplex production and the electron transfer. On the other hand the stronger the electron transfer is, the weaker is the exciplex production. At slow diffusion the distant quenching of excitations by ionization prevents their reaching the contact where they can turn into exciplexes. This is a screening effect that is most pronounced when the ionization rate is large.
Marto, J A; White, F M; Seldomridge, S; Marshall, A G
1995-11-01
Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.
Identification of mammalian proteins cross-linked to DNA by ionizing radiation.
Barker, Sharon; Weinfeld, Michael; Zheng, Jing; Li, Liang; Murray, David
2005-10-07
Ionizing radiation (IR) is an important environmental risk factor for various cancers and also a major therapeutic agent for cancer treatment. Exposure of mammalian cells to IR induces several types of damage to DNA, including double- and single-strand breaks, base and sugar damage, as well as DNA-DNA and DNA-protein cross-links (DPCs). Little is known regarding the biological consequences of DPCs. Identifying the proteins that become cross-linked to DNA by IR would be an important first step in this regard. We have therefore undertaken a proteomics study to isolate and identify proteins involved in IR-induced DPCs. DPCs were induced in AA8 Chinese hamster ovary or GM00637 human fibroblast cells using 0-4 gray of gamma-rays under either aerated or hypoxic conditions. DPCs were isolated using a recently developed method, and proteins were identified by mass spectrometry. We identified 29 proteins as being cross-linked to DNA by IR under aerated and/or hypoxic conditions. The identified proteins include structural proteins, actin-associated proteins, transcription regulators, RNA-splicing components, stress-response proteins, cell cycle regulatory proteins, and GDP/GTP-binding proteins. The involvement of several proteins (actin, histone H2B, and others) in DPCs was confirmed by using Western blot analysis. The dose responsiveness of DPC induction was examined by staining one-dimensional SDS-polyacrylamide gels with SYPRO Tangerine followed by analysis using fluorescence imaging. Quantitation of the fluorescence signal indicated no significant difference in total yields of IR-induced DPCs generated under aerated or hypoxic conditions, although differences were observed for several individual protein bands.
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A; Munsat, Tobin; Plane, John M C; Sternovsky, Zoltan
2017-03-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N 2 , air, CO 2 , and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
NASA Astrophysics Data System (ADS)
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan
2017-03-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
κ -distributed protons in the solar wind and their charge-exchange coupling to energetic hydrogen
Heerikhuisen, J.; Zirnstein, Eric; Pogorelov, Nikolai
2015-03-16
The interaction between the solar wind and the interstellar medium represents a collision between two plasma flows, resulting in a heliosphere with an extended tail. While the solar wind is mostly ionized material from the corona, the interstellar medium is only partially ionized. The ion and neutral populations are coupled through charge-exchange collisions that operate on length scales of tens to hundreds of astronomical units. About half the interstellar hydrogen flows into the heliosphere where it may charge-exchange with solar wind protons. This process gives rise to a nonthermal proton, known as a pickup ion, which joins the plasma. Inmore » this paper we investigate the effects of approximating the total ion distribution of the subsonic solar wind as a generalized Lorentzian, or κ distribution, using an MHD neutral code. We illustrate the effect different values of the κ parameter have on both the structure of the heliosphere and the energetic neutral atom flux at 1 AU. We find that using a κ distribution in our simulations yields levels of energetic neutral atom flux that are within a factor of about 2 or 3 over the IBEX-Hi range of energies from 0.5 to 6 keV. In conclusion, while the presence of a suprathermal tail in the proton distribution leads to the production of high-energy neutrals, the sharp decline in the charge-exchange cross section around 10 keV mitigates the enhanced transfer of energy from the ions to the neutrals that might otherwise be expected.« less
NASA Technical Reports Server (NTRS)
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan
2017-01-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 kilometers. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 centimeters along the ablating particles path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities greater than 20 kilometers per second, and are reported by Thomas et al. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 centimeters and 90 nanoseconds. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.