[Effect analysis on the two total load control methods for poisonous heavy metals].
Fu, Guo-Wei
2012-12-01
Firstly it should be made clear that implementation of source total load control for the first type of pollutants is necessary for environmental pollution control legislation and economic structure regulation. This kind of surveillance method has been more practical to be implemented since the Manual of the Industry Discharge Coefficient of First National Pollution Sources Investigation was published. The source total load control and water environment total load control are independent of each other and none of them is redundant, on the other side they can be complementary to each other. In the present, some local planning managers are blurring and confusing the contents and styles of the two surveillance methods. They just use the water total load control to manage all the pollutants, and source total load control is discarded, which results in the loss of control for the first type of pollutants especially for the drinking water source surveillance. There is a big difference between the water quality standards and the water environmental background concentration values for the first type of pollutants in the Environmental quality standard for surface water (GB 3838-88), which means that there are problems such as "relaxing the pollutant discharge permit" and "risk induced by valence state change". Taking an enterprise with 10t electrolytic lead production capacity as an example, there is a big difference between the allowable lead discharged loads by the two total load surveillance methods. In summary, it will bring a lot of harmful effects if the water total load control is implemented for the two types of pollutants, so the source total load control and water environmental total load control should be implemented strictly at the same time.
Zarriello, Phillip J.; Breault, Robert F.; Weiskel, Peter K.
2002-01-01
The water quality of the lower Charles River is periodically impaired by combined sewer overflows (CSOs) and non-CSO stormwater runoff. This study examined the potential non-CSO load reductions of suspended solids, fecal coliform bacteria, total phosphorus, and total lead that could reasonably be achieved by implementation of stormwater best management practices, including both structural controls and systematic street sweeping. Structural controls were grouped by major physical or chemical process; these included infiltration-filtration (physical separation), biofiltration-bioretention (biological mechanisms), or detention-retention (physical settling). For each of these categories, upper and lower quartiles, median, and average removal efficiencies were compiled from three national databases of structural control performance. Removal efficiencies obtained indicated a wide range of performance. Removal was generally greatest for infiltration-filtration controls and suspended solids, and least for biofiltration-bioretention controls and fecal coliform bacteria. Street sweeping has received renewed interest as a water-quality control practice because of reported improvements in sweeper technology and the recognition that opportunities for implementing structural controls are limited in highly urbanized areas. The Stormwater Management Model that was developed by the U.S. Geological Survey for the lower Charles River Watershed was modified to simulate the effects of street sweeping in a single-family land-use basin. Constituent buildup and washoff variable values were calibrated to observed annual and storm-event loads. Once calibrated, the street sweeping model was applied to various permutations of four sweeper efficiencies and six sweeping frequencies that ranged from every day to once every 30 days. Reduction of constituent loads to the lower Charles River by the combined hypothetical practices of structural controls and street sweeping was estimated for a range of removal efficiencies because of their inherent variability and uncertainty. This range of efficiencies, with upper and lower estimates, provides reasonable bounds on the load that could be removed by the practices examined. The upper estimated load reduction from combined street sweeping and structural controls, as a percentage of the total non-CSO load entering the lower Charles River downstream of Watertown Dam, was 44 percent for suspended solids, 34 percent for total lead, 14 percent for total phosphorus, and 17 percent for fecal coliform bacteria. The lower estimated load reduction from combined street sweeping and structural controls from non-CSO sources downstream of Watertown Dam, was 14 percent for suspended solids, 11 percent for total lead, 4.9 percent for total phosphorus, and 7.5 percent for fecal coliform bacteria. Load reductions by these combined management practices can be a small as 1.4 percent for total phosphorus to about 4 percent for the other constituents if the total load above Watertown Dam is added to the load from below the dam. Although the reductions in stormwater loads to the lower Charles River from the control practices examined appear to be minor, these practices would likely provide water-quality benefits to portions of the river during those times that they are most impaired-during and immediately after storms. It should also be recognized that only direct measurements of changes in stormwater loads before and after implementation of control practices can provide definitive evidence of the beneficial effects of these practices on water-quality conditions in the lower Charles River.
Breysse, Jill; Wendt, Jean; Dixon, Sherry; Murphy, Amy; Wilson, Jonathan; Meurer, John; Cohn, Jennifer; Jacobs, David E.
2011-01-01
Objective We examined the impact of a combination of home environmental interventions and nurse case management services on total settled dust loadings and on allergen concentrations in the homes of asthmatic children. Methods Using a randomized longitudinal controlled trial study design, we randomly assigned homes of asthmatic children in Milwaukee to either a control (n=64) or an intervention (n=57) group. Control group homes received a visual assessment, education, bed/pillow dust mite encasings, and treatment of lead-based paint hazards. The intervention group received these same services plus nurse case management that included tailored, individual asthma action plans, provision of minor home repairs, home cleaning using special vacuuming and wet washing, and integrated pest management. Dust vacuum samples were collected from measured surface areas of floors in the TV room, kitchen, and child's bedroom at baseline and at three-, six-, and 12-month follow-up visits. Dust loading (mass per surface area) is a means of measuring total dust and the total amount of allergen present. Results For the intervention group, geometric mean dust loadings declined significantly from baseline (39 milligrams per square foot [mg/ft2]) to post-intervention (11 mg/ft2) (p<0.001). Baseline dust loading, treatment group, visit, and season were significant predictors of follow-up dust loadings. Mean post-intervention dust loadings were 72% higher in the control group. The total amount of allergen in settled house dust declined significantly following the intervention because total dust loading declined; the concentration of allergens in settled dust did not change significantly. Conclusion The combination of nurse case management and home environmental interventions promotes collaboration between health and housing professionals and is effective in reducing exposures to allergens in settled dust. PMID:21563716
Ying Ouyang; Johnny M. Grace; Wayne C. Zipperer; Jeff Hatten; Janet Dewey
2018-01-01
Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) instreams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities throughabsorption of light and complex metals with production of carcinogenic compounds....
Chloride Content of Fluids Used for Large-Volume Resuscitation Is Associated With Reduced Survival.
Sen, Ayan; Keener, Christopher M; Sileanu, Florentina E; Foldes, Emily; Clermont, Gilles; Murugan, Raghavan; Kellum, John A
2017-02-01
We sought to investigate if the chloride content of fluids used in resuscitation was associated with short- and long-term outcomes. We identified patients who received large-volume fluid resuscitation, defined as greater than 60 mL/kg over a 24-hour period. Chloride load was determined for each patient based on the chloride ion concentration of the fluids they received during large-volume fluid resuscitation multiplied by the volume of fluids. We compared the development of hyperchloremic acidosis, acute kidney injury, and survival among those with higher and lower chloride loads. University Medical Center. Patients admitted to ICUs from 2000 to 2008. None. Among 4,710 patients receiving large-volume fluid resuscitation, hyperchloremic acidosis was documented in 523 (11%). Crude rates of hyperchloremic acidosis, acute kidney injury, and hospital mortality all increased significantly as chloride load increased (p < 0.001). However, chloride load was no longer associated with hyperchloremic acidosis or acute kidney injury after controlling for total fluids, age, and baseline severity. Conversely, each 100 mEq increase in chloride load was associated with a 5.5% increase in the hazard of death even after controlling for total fluid volume, age, and severity (p = 0.0015) over 1 year. Chloride load is associated with significant adverse effects on survival out to 1 year even after controlling for total fluid load, age, and baseline severity of illness. However, the relationship between chloride load and development of hyperchloremic acidosis or acute kidney injury is less clear, and further research is needed to elucidate the mechanisms underlying the adverse effects of chloride load on survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiangqi; Wang, Jiyu; Mulcahy, David
This paper presents a voltage-load sensitivity matrix (VLSM) based voltage control method to deploy demand response resources for controlling voltage in high solar penetration distribution feeders. The IEEE 123-bus system in OpenDSS is used for testing the performance of the preliminary VLSM-based voltage control approach. A load disaggregation process is applied to disaggregate the total load profile at the feeder head to each load nodes along the feeder so that loads are modeled at residential house level. Measured solar generation profiles are used in the simulation to model the impact of solar power on distribution feeder voltage profiles. Different casemore » studies involving various PV penetration levels and installation locations have been performed. Simulation results show that the VLSM algorithm performance meets the voltage control requirements and is an effective voltage control strategy.« less
Hydrologic and biogeochemical controls on phosphorus export from western Lake Erie tributaries
USDA-ARS?s Scientific Manuscript database
Understanding the processes controlling phosphorus (P) export from agricultural watersheds is essential for predicting and mitigating adverse environmental impacts. In this study, discharge, dissolved reactive phosphorus load, and total phosphorus load time series data (1975-2014) from two Lake Erie...
Telemetry and control system for interplatform crude loading at the Statfjord field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malmin, P.C.; Lassa, P.
1988-04-01
A control system for crude loading to tankers at Statfjord field has been designed to allow tanker loading to the place at all times to prevent production shutdowns caused by loading-buoy problems. This paper discusses how the control system was designed to maximize the flexibility of loading operations and to meet all safety and regulatory requirements. The experience gained from more than 4 years of operation of the system is reviewed. The system has allowed maximum use of total field crude oil storage capacity while loading to 125,000-DWT (127 000-Mg) tankers nearly every day throughout the year. It has beenmore » possible to maintain a high production rate even through the periods of difficult weather conditions experienced in the northern North Sea.« less
Carvin, Rebecca; Good, Laura W.; Fitzpatrick, Faith A.; Diehl, Curt; Songer, Katherine; Meyer, Kimberly J.; Panuska, John C.; Richter, Steve; Whalley, Kyle
2018-01-01
This study tested a focused strategy for reducing phosphorus (P) and sediment loads in agricultural streams. The strategy involved selecting small watersheds identified as likely to respond relatively quickly, and then focusing conservation practices on high-contributing fields within those watersheds. Two 5,000 ha (12,360 ac) watersheds in the Driftless Area of south central Wisconsin, previously ranked in the top 6% of similarly sized Wisconsin watersheds for expected responsiveness to conservation efforts to reduce high P and sediment loads, were chosen for the study. The stream outlets from both watersheds were monitored from October of 2006 through September of 2016 for streamflow and concentrations of sediment, total P, and, beginning in October of 2009, total dissolved P. Fields and pastures having the highest potential P delivery to the streams in each watershed were identified using the Wisconsin P Index (Good et al. 2012). After three years of baseline monitoring (2006 to 2009), farmers implemented both field- and farm-based conservation practices in one watershed (treatment) as a means to reduce sediment and P inputs to the stream from the highest contributing areas, whereas there were no out-of-the-ordinary conservation efforts in the second watershed (control). Implementation occurred primarily in 2011 and 2012. In the four years following implementation of conservation practices (2013 through 2016), there was a statistically significant reduction in storm-event suspended sediment loads in the treatment watershed compared to the control watershed when the ground was not frozen (p = 0.047). While there was an apparent reduction in year-round suspended sediment event loads, it was not statistically significant at the 95% confidence level (p = 0.15). Total P loads were significantly reduced for runoff events (p < 0.01) with a median reduction of 50%. Total P and total dissolved P concentrations for low-flow conditions were also significantly reduced (p < 0.01) compared to the control watershed. This study demonstrated that a strategy that first identifies watersheds likely to respond to conservation efforts and then focuses implementation on relatively high-contributing fields within those watersheds can be successful in reducing stream P concentrations and loads.
Walton-Day, Katherine; Runkel, Robert L.; Kimball, Briant A.
2012-01-01
Spatially detailed mass-loading studies and solute-transport modeling using OTIS (One-dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass-loading data collected during low-flow from Cement Creek (a low-pH, metal-rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL-recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53-63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse-source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse-source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.
Telemetry and control system for interplatform crude loading at the Statfjord Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malmin, P.C.; Lassa, P.
1986-01-01
A control system for crude loading to tankers at the Statfjord field has been designed by Mobil Exploration Norway Inc. The objective of the interplatform crude tieline and control system was to allow tanker loading to take place at all times in order to prevent production shutdowns due to loading buoy problems. The control system has been designed to maximize the flexibility of loading operations and meet all safety and regulatory requirements. This paper discusses the design criteria for the crude tieline control system, and describes how these were met by utilizing fail safe telemetry equipment, hardwired permissive relay logicmore » and programmable logic controllers (PLC's). The experience gained from more than three years of operation of the system is reviewed. The system has allowed maximum use of total field storage capacity while loading crude to 125000 DWT tankers nearly every day throughout the year. It has been possible to maintain a high production rate event through periods of difficult weather conditions as experienced in the northern North Sea.« less
Morgan, A R; Turic, D; Jehu, L; Hamilton, G; Hollingworth, P; Moskvina, V; Jones, L; Lovestone, S; Brayne, C; Rubinsztein, D C; Lawlor, B; Gill, M; O'Donovan, M C; Owen, M J; Williams, J
2007-09-05
Late-onset Alzheimer's disease (LOAD) is a common neurodegenerative disorder, with a complex etiology. APOE is the only confirmed susceptibility gene for LOAD. Others remain yet to be found. Evidence from linkage studies suggests that a gene (or genes) conferring susceptibility for LOAD resides on chromosome 10. We studied 23 positional/functional candidate genes from our linkage region on chromosome 10 (APBB1IP, ALOX5, AD037, SLC18A3, DKK1, ZWINT, ANK3, UBE2D1, CDC2, SIRT1, JDP1, NET7, SUPV3L1, NEN3, SAR1, SGPL1, SEC24C, CAMK2G, PP3CB, SNCG, CH25H, PLCE1, ANXV111) in the MRC genetic resource for LOAD. These candidates were screened for sequence polymorphisms in a sample of 14 LOAD subjects and detected polymorphisms tested for association with LOAD in a three-stage design involving two stages of genotyping pooled DNA samples followed by a third stage in which markers showing evidence for association in the first stages were subjected to individual genotyping. One hundred and twenty polymorphisms were identified and tested in stage 1 (4 case + 4 control pools totaling 366 case and 366 control individuals). Single nucleotide polymorphisms (SNPs) showing evidence of association with LOAD were then studied in stage 2 (8 case + 4 control pools totaling 1,001 case and 1,001 control individuals). Five SNPs, in four genes, showed evidence for association (P < 0.1) at stage 2 and were individually genotyped in the complete dataset, comprising 1,160 LOAD cases and 1,389 normal controls. Two SNPs in SGPL1 demonstrated marginal evidence of association, with uncorrected P values of 0.042 and 0.056, suggesting that variation in SGPL1 may confer susceptibility to LOAD. Copyright 2007 Wiley-Liss, Inc.
Crewther, Blair T; Cronin, John; Keogh, Justin W L
2008-11-01
This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.
Relationship of obesity with osteoporosis
Zhao, Lan-Juan; Liu, Yong-Jun; Liu, Peng-Yuan; Hamilton, James; Recker, Robert R.; Deng, Hong-Wen
2007-01-01
Context The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. Objective To re-evaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. Methods We measured whole body fat mass, lean mass, percentage fat mass (PFM), body mass index (BMI), and bone mass in two large samples of different ethnicity: 1,988 unrelated Chinese subjects and 4,489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components, with bone mass unadjusted, or adjusted, for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. Results In both Chinese and Caucasians, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or PFM) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight was controlled. Conclusions Increasing fat mass may not have a beneficial effect on bone mass. PMID:17299077
Pollutant loading from low-density residential neighborhoods in California.
Bale, Andrew E; Greco, Steven E; Pitton, Bruno J L; Haver, Darren L; Oki, Lorence R
2017-08-01
This paper presents a comparison of pollutant load estimations for runoff from two geographically distinct residential suburban neighborhoods in northern and southern California. The two neighborhoods represent a single urban land use type: low-density residential in small catchments (<0.3 km 2 ) under differing regional climates and irrigation practices. Pollutant loads of pesticides, nutrients, and drinking water constituents of concern are estimated for both storm and non-storm runoff. From continuous flow monitoring, it was found that a daily cycle of persistent runoff that peaks mid-morning occurs at both sites. These load estimations indicate that many residential neighborhoods in California produce significant non-storm pollutant loads year-round. Results suggest that non-storm flow accounted for 47-69% of total annual runoff and significantly contributed to annual loading rates of most nutrients and pesticides at both sites. At the Southern California site, annual non-storm loads are 1.2-10 times higher than storm loads of all conventional constituents and nutrients with one exception (total suspended solids). At the Northern California site, annual storm loads range from 51 to 76% of total loads for all conventional constituents and nutrients with one exception (total dissolved solids). Non-storm yields of pesticides at the Southern California site range from 1.3-65 times higher than those at the Northern California site. The disparity in estimated pollutant loads between the two sites indicates large potential variation from site-to-site within the state and suggests neighborhoods in drier and milder climates may produce significantly larger non-storm loads due to persistent dry season runoff and year-round pest control.
[Effect of antecedent dry weather period on urban storm runoff pollution load].
Li, Li-qing; Yin, Cheng-qing; Kong, Ling-li; He, Qing-ci
2007-10-01
Twelve storm events were surveyed at Shilipu catchment in Wuhan City through three-year monitoring regime. The flow discharges, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in runoff were measured to study the mechanism of urban stormwater runoff pollution. The relationship between the event pollution load and the antecedent dry weather period was identified to discuss the influence of the urban surface sanitation management, operation of sewer pipe maintenance and rainfall characteristics on the urban stormwater runoff pollution. It was found that the antecedent dry weather period and runoff amount were the important determining factors in the generation of urban stormwater runoff pollution. The event pollution load was positively correlated to the antecedent dry weather period between two rainfall events (R2 = 0.95, p < 0.01). It was the most important hydrological factor influencing the events pollution loads. The best regression equation to estimate pollution load for storm events was developed based on the antecedent dry weather period and runoff depth. Source control including improving urban street sweeping activities and operation of sewer pipe maintenance should be made to reduce the amount of available pollutant over the dry days. It is important alternative to control urban stormwater runoff pollution for Hanyang District.
NASA Astrophysics Data System (ADS)
Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.
2017-10-01
The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Standifird, Tyler W; Saxton, Arnold M; Coe, Dawn P; Cates, Harold E; Reinbolt, Jeffrey A; Zhang, Songning
2016-01-01
This study compared biomechanics during stair ascent in replaced and non-replaced limbs of total knee arthroplasty (TKA) patients with control limbs of healthy participants. Thirteen TKA patients and fifteen controls performed stair ascent. Replaced and non-replaced knees of TKA patients were less flexed at contact compared to controls. The loading response peak knee extension moment was greater in control and non-replaced knees compared with replaced. The push-off peak knee abduction moment was elevated in replaced limbs compared to controls. Loading and push-off peak hip abduction moments were greater in replaced limbs compared to controls. The push-off peak hip abduction moment was greater in non-replaced limbs compared to controls. Future rehabilitation protocols should consider the replaced knee and also the non-replaced knee and surrounding joints. Copyright © 2016 Elsevier Inc. All rights reserved.
Cy5 total protein normalization in Western blot analysis.
Hagner-McWhirter, Åsa; Laurin, Ylva; Larsson, Anita; Bjerneld, Erik J; Rönn, Ola
2015-10-01
Western blotting is a widely used method for analyzing specific target proteins in complex protein samples. Housekeeping proteins are often used for normalization to correct for uneven sample loads, but these require careful validation since expression levels may vary with cell type and treatment. We present a new, more reliable method for normalization using Cy5-prelabeled total protein as a loading control. We used a prelabeling protocol based on Cy5 N-hydroxysuccinimide ester labeling that produces a linear signal response. We obtained a low coefficient of variation (CV) of 7% between the ratio of extracellular signal-regulated kinase (ERK1/2) target to Cy5 total protein control signals over the whole loading range from 2.5 to 20.0μg of Chinese hamster ovary cell lysate protein. Corresponding experiments using actin or tubulin as controls for normalization resulted in CVs of 13 and 18%, respectively. Glyceraldehyde-3-phosphate dehydrogenase did not produce a proportional signal and was not suitable for normalization in these cells. A comparison of ERK1/2 signals from labeled and unlabeled samples showed that Cy5 prelabeling did not affect antibody binding. By using total protein normalization we analyzed PP2A and Smad2/3 levels with high confidence. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Taowen; Andrukhov, Oleh; Haririan, Hady; Müller-Kern, Michael; Liu, Shutai; Liu, Zhonghao; Rausch-Fan, Xiaohui
2016-01-01
The detection of salivary biomarkers has a potential application in early diagnosis and monitoring of periodontal inflammation. However, searching sensitive salivary biomarkers for periodontitis is still ongoing. Oxidative stress is supposed to play an important role in periodontitis progression and tissue destruction. In this cross-sectional study, we investigated total antioxidant capacity (TAC) and total oxidant status (TOS) in saliva of periodontitis patients compared to healthy controls and their relationship with periodontopathic bacteria and periodontal disease severity. Unstimulated saliva was collected from 45 patients with generalized severe periodontitis and 37 healthy individuals and the TAC/TOS were measured. In addition, salivary levels of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Fusobacterium nucleatum in saliva were measured. Salivary TAC was lower in periodontitis patients compared to healthy controls. Moreover, a significant negative correlation of salivary TAC with clinical attachment loss was observed in periodontitis patients. No significant difference in the salivary TOS was observed between periodontitis patients and healthy controls. Bacterial load was enhanced in periodontitis patients and exhibited correlation with periodontal disease severity but not with salivary TAC/TOS. Our data suggest that changes in antioxidant capacity in periodontitis patients are not associated with increased bacterial load and are probably due to a dysregulated immune response. PMID:26779448
Distributed plug-and-play optimal generator and load control for power system frequency regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Mallada, Enrique; Low, Steven H.
A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less
Distributed plug-and-play optimal generator and load control for power system frequency regulation
Zhao, Changhong; Mallada, Enrique; Low, Steven H.; ...
2018-03-14
A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-01-12
The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers willmore » now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.« less
40 CFR 65.158 - Performance test procedures for control devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... loading period during which regulated materials are loaded, and samples shall be collected using... applicable. The regulated material concentration and percent reduction may be measured as either total regulated material or as TOC (minus methane and ethane) according to the procedures specified. (1) Method 1...
40 CFR 65.158 - Performance test procedures for control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... loading period during which regulated materials are loaded, and samples shall be collected using... applicable. The regulated material concentration and percent reduction may be measured as either total regulated material or as TOC (minus methane and ethane) according to the procedures specified. (1) Method 1...
40 CFR 65.158 - Performance test procedures for control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... loading period during which regulated materials are loaded, and samples shall be collected using... applicable. The regulated material concentration and percent reduction may be measured as either total regulated material or as TOC (minus methane and ethane) according to the procedures specified. (1) Method 1...
Chen, W. J.; Zheng, Yue; Wang, Biao
2012-01-01
Vortex domain patterns in low-dimensional ferroelectrics and multiferroics have been extensively studied with the aim of developing nanoscale functional devices. However, control of the vortex domain structure has not been investigated systematically. Taking into account effects of inhomogeneous electromechanical fields, ambient temperature, surface and size, we demonstrate significant influence of mechanical load on the vortex domain structure in ferroelectric nanoplatelets. Our analysis shows that the size and number of dipole vortices can be controlled by mechanical load, and yields rich temperature-stress (T-S) phase diagrams. Simulations also reveal that transformations between “vortex states” induced by the mechanical load are possible, which is totally different from the conventional way controlled on the vortex domain by the electric field. These results are relevant to application of vortex domain structures in ferroelectric nanodevices, and suggest a novel route to applications including memories, mechanical sensors and transducers. PMID:23150769
Physical load handling and listening comprehension effects on balance control.
Qu, Xingda
2010-12-01
The purpose of this study was to determine the physical load handling and listening comprehension effects on balance control. A total of 16 young and 16 elderly participants were recruited in this study. The physical load handling task required holding a 5-kg load in each hand with arms at sides. The listening comprehension task involved attentive listening to a short conversation. Three short questions were asked regarding the conversation right after the testing trial to test the participants' attentiveness during the experiment. Balance control was assessed by centre of pressure-based measures, which were calculated from the force platform data when the participants were quietly standing upright on a force platform. Results from this study showed that both physical load handling and listening comprehension adversely affected balance control. Physical load handling had a more deleterious effect on balance control under the listening comprehension condition vs. no-listening comprehension condition. Based on the findings from this study, interventions for the improvement of balance could be focused on avoiding exposures to physically demanding tasks and cognitively demanding tasks simultaneously. STATEMENT OF RELEVANCE: Findings from this study can aid in better understanding how humans maintain balance, especially when physical and cognitive loads are applied. Such information is useful for developing interventions to prevent fall incidents and injuries in occupational settings and daily activities.
ERIC Educational Resources Information Center
Soil Conservation Service (USDA), Washington, DC.
Nonpoint source pollution is both a relatively recent concern and a complex phenomenon with many unknowns. Knowing the extent to which agricultural sources contribute to the total pollutant load, the extent to which various control practices decrease this load, and the effect of reducing the pollutants delivered to a water body are basic to the…
Incorporating uncertainty in watershed management decision-making: A mercury TMDL case study
Labiosa, W.; Leckie, J.; Shachter, R.; Freyberg, D.; Rytuba, J.; ,
2005-01-01
Water quality impairment due to high mercury fish tissue concentrations and high mercury aqueous concentrations is a widespread problem in several sub-watersheds that are major sources of mercury to the San Francisco Bay. Several mercury Total Maximum Daily Load regulations are currently being developed to address this problem. Decisions about control strategies are being made despite very large uncertainties about current mercury loading behavior, relationships between total mercury loading and methyl mercury formation, and relationships between potential controls and mercury fish tissue levels. To deal with the issues of very large uncertainties, data limitations, knowledge gaps, and very limited State agency resources, this work proposes a decision analytical alternative for mercury TMDL decision support. The proposed probabilistic decision model is Bayesian in nature and is fully compatible with a "learning while doing" adaptive management approach. Strategy evaluation, sensitivity analysis, and information collection prioritization are examples of analyses that can be performed using this approach.
Knee Joint Loading during Gait in Healthy Controls and Individuals with Knee Osteoarthritis
Kumar, Deepak; Manal, Kurt T.; Rudolph, Katherine S.
2013-01-01
Objective People with knee osteoarthritis (OA) are thought to walk with high loads at the knee which are yet to be quantfied using modeling techniques that account for subject specific EMG patterns, kinematics and kinetics. The objective was to estimate medial and lateral loading for people with knee OA and controls using an approach that is sensitive to subject specific muscle activation patterns. Methods 16 OA and 12 control (C) subjects walked while kinematic, kinetic and EMG data were collected. Muscle forces were calculated using an EMG-Driven model and loading was calculated by balancing the external moments with internal muscle and contact forces Results OA subjects walked slower and had greater laxity, static and dynamic varus alignment, less flexion and greater knee adduction moment (KAM). Loading (normalized to body weight) was no different between the groups but OA subjects had greater absolute medial load than controls and maintained a greater %total load on the medial compartment. These patterns were associated with body mass, sagittal and frontal plane moments, static alignment and close to signficance for dynamic alignment. Lateral compartment unloading during mid-late stance was observed in 50% of OA subjects. Conclusions Loading for control subjects was similar to data from instrumented prostheses. Knee OA subjects had high medial contact loads in early stance and half of the OA cohort demonstared lateral compartment lift-off. Results suggest that interventions aimed at reducing body weight and dynamic malalignment might be effective in reducing medial compartment loading and establishing normal medio-lateral load sharing patterns. PMID:23182814
First flush of storm runoff pollution from an urban catchment in China.
Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li
2007-01-01
Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.
Que, Z; Seidou, O; Droste, R L; Wilkes, G; Sunohara, M; Topp, E; Lapen, D R
2015-03-01
Controlled tile drainage (CTD) can reduce pollutant loading. The Annualized Agricultural Nonpoint Source model (AnnAGNPS version 5.2) was used to examine changes in growing season discharge, sediment, nitrogen, and phosphorus loads due to CTD for a ∼3900-km agriculturally dominated river basin in Ontario, Canada. Two tile drain depth scenarios were examined in detail to mimic tile drainage control for flat cropland: 600 mm depth (CTD) and 200 mm (CTD) depth below surface. Summed for five growing seasons (CTD), direct runoff, total N, and dissolved N were reduced by 6.6, 3.5, and 13.7%, respectively. However, five seasons of summed total P, dissolved P, and total suspended solid loads increased as a result of CTD by 0.96, 1.6, and 0.23%. The AnnAGNPS results were compared with mass fluxes observed from paired experimental watersheds (250, 470 ha) in the river basin. The "test" experimental watershed was dominated by CTD and the "reference" watershed by free drainage. Notwithstanding environmental/land use differences between the watersheds and basin, comparisons of seasonal observed and predicted discharge reductions were comparable in 100% of respective cases. Nutrient load comparisons were more consistent for dissolved, relative to particulate water quality endpoints. For one season under corn crop production, AnnAGNPS predicted a 55% decrease (CTD) in dissolved N from the basin. AnnAGNPS v. 5.2 treats P transport from a surface pool perspective, which is appropriate for many systems. However, for assessment of tile drainage management practices for relatively flat tile-dominated systems, AnnAGNPS may benefit from consideration of P and particulate transport in the subsurface. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Lerch, R.N.; Blanchard, P.E.; Thurman, E.M.
1998-01-01
The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites)in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites) in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.
[On evaluating the robot-based experimental system for biomechanical experiment of human knee].
Deng, Guoyong; Tian, Lianfang; Bai, Bo; Sun, Hui
2010-02-01
This is a report on how we use the hybrid force-displacement control method to load the human knee and analyze the effect and value of our robot experimental system through the biomechanical experiments of total meniscal resection of human knee. The whole robot control system can load continuously on the specimens, thus overcoming the shortcomings of the traditional loading methods which can only load discretely. In the meantime, by using the robot-based testing system, the force (torque) of the specimens and the spatial position under the force can be measured in real-time, which overcomes the shortcomings caused by the separation of force (torque) measurement from displacement measurement and so greatly improves the measurement accuracy.
Abramovici, Adi; Lobashevsky, Elena; Cliver, Suzanne P; Edwards, Rodney K; Hauth, John C; Biggio, Joseph R
2015-10-01
The aim of this study was to determine whether quantitative polymerase chain reaction (qPCR) bacterial load measurement is a valid method to assess response to treatment of bacterial vaginosis and risk of preterm birth in pregnant women. Secondary analysis by utilizing stored vaginal samples obtained during a previous randomized controlled trial studying the effect of antibiotics on preterm birth (PTB). All women had risk factors for PTB: (1) positive fetal fibronectin (n=146), (2) bacterial vaginosis (BV) and a prior PTB (n=43), or (3) BV and a prepregnancy weight<50 kg (n=54). Total and several individual BV-related bacteria loads were measured using qPCR for 16S rRNA. Loads were correlated with Nugent scores (Spearman correlation coefficients). Loads were compared pre- and posttreatment with Wilcoxon rank-sum test. Individual patient differences were examined with Wilcoxon signed-rank test. A total of 243 paired vaginal samples were available for analysis: 123 antibiotics and 120 placebo. Groups did not differ by risk factors for PTB. For all samples, bacterial loads were correlated with Nugent score and each of its specific bacterial components (all p<0.01). Baseline total bacterial load did not differ by treatment group (p=0.87). Posttreatment total bacterial load was significantly lower in the antibiotics group than the placebo group (p<0.01). Individual patient total bacterial load decreased significantly posttreatment in the antibiotics group (p<0.01), but not in the placebo group (p=0.12). The rate of PTB did not differ between groups (p=0.24). PTB relative risks calculated for BV positive versus BV negative women and women with the highest quartile total and individual bacterial loads were not statistically significant. qPCR correlates with Nugent score and demonstrates decreased bacterial load after antibiotic treatment. Therefore, it is a valid method of vaginal flora assessment in pregnant women who are at high risk for PTB. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Xu, Hua-Shan; Xu, Zong-Xue; Liu, Pin
2013-03-01
One of the key techniques in establishing and implementing TMDL (total maximum daily load) is to utilize hydrological model to quantify non-point source pollutant loads, establish BMPs scenarios, reduce non-point source pollutant loads. Non-point source pollutant loads under different years (wet, normal and dry year) were estimated by using SWAT model in the Zhangweinan River basin, spatial distribution characteristics of non-point source pollutant loads were analyzed on the basis of the simulation result. During wet years, total nitrogen (TN) and total phosphorus (TP) accounted for 0.07% and 27.24% of the total non-point source pollutant loads, respectively. Spatially, agricultural and residential land with steep slope are the regions that contribute more non-point source pollutant loads in the basin. Compared to non-point source pollutant loads with those during the baseline period, 47 BMPs scenarios were set to simulate the reduction efficiency of different BMPs scenarios for 5 kinds of pollutants (organic nitrogen, organic phosphorus, nitrate nitrogen, dissolved phosphorus and mineral phosphorus) in 8 prior controlled subbasins. Constructing vegetation type ditch was optimized as the best measure to reduce TN and TP by comparing cost-effective relationship among different BMPs scenarios, and the costs of unit pollutant reduction are 16.11-151.28 yuan x kg(-1) for TN, and 100-862.77 yuan x kg(-1) for TP, which is the most cost-effective measure among the 47 BMPs scenarios. The results could provide a scientific basis and technical support for environmental protection and sustainable utilization of water resources in the Zhangweinan River basin.
Bedload and Total Load Sediment Transport Equations for Rough Open-Channel Flow
NASA Astrophysics Data System (ADS)
Abrahams, A. D.; Gao, P.
2001-12-01
The total sediment load transported by an open-channel flow may be divided into bedload and suspended load. Bedload transport occurs by saltation at low shear stress and by sheetflow at high shear stress. Dimensional analysis is used to identify the dimensionless variables that control the transport rate of noncohesive sediments over a plane bed, and regression analysis is employed to isolate the significant variables and determine the values of the coefficients. In the general bedload transport equation (i.e. for saltation and sheetflow) the dimensionless bedload transport rate is a function of the dimensionless shear stress, the friction factor, and an efficiency coefficient. For sheetflow the last term approaches 1, so that the bedload transport rate becomes a function of just the dimensionless shear stress and the friction factor. The dimensional analysis indicates that the dimensionless total load transport rate is a function of the dimensionless bedload transport rate and the dimensionless settling velocity of the sediment. Predicted values of the transport rates are graphed against the computed values of these variables for 505 flume experiments reported in the literature. These graphs indicate that the equations developed in this study give good unbiased predictions of both the bedload transport rate and total load transport rate over a wide range of conditions.
Rollín, R; Alvarez-Lafuente, R; Marco, F; Jover, J A; Hernández-García, C; Rodríguez-Navas, C; López-Durán, L; Fernández-Gutiérrez, B
2007-04-01
To investigate whether there is a possible viral transmission using mesenchymal stem cells (MSCs) in autologous or allogeneic transplantation in the context of osteoarthritis (OA) patients. The presence of parvovirus B19 (B19), varicella zoster virus (VZV), and human herpesvirus-6 (HHV-6) was studied in MSCs from bone marrow of patients with OA and healthy controls. MSCs were prepared from bone marrow aspirates obtained from 18 patients undergoing joint replacement as a result of OA and from 10 healthy controls. DNA was extracted from primary MSCs' culture established from these cells and quantitative real-time polymerase chain reaction was performed to analyse the prevalence and viral load of B19, VZV and HHV-6. The prevalence of total viral DNA among patients with OA was 16.7% (3/18), with a mean viral load of 29.7 copies/microg of DNA. One out of 18 was positive for B19 (viral load, 61.2 copies/microg of DNA), two for VZV (mean viral load, 14.4 copies/microg of DNA), and none for HHV-6. The prevalence of total viral DNA in the control group was 20% (2/10), with a mean viral load of 13.4 copies/microg of DNA. Both positive results were of B19 parvoviruses. There were no statistically significant differences among patients and controls. This first approach to the viral prevalence in MSCs of bone marrow in OA patients and healthy controls seems to show a very low risk of viral transmission or reactivation in a possible MSCs' transplantation.
Intelligent voltage control strategy for three-phase UPS inverters with output LC filter
NASA Astrophysics Data System (ADS)
Jung, J. W.; Leu, V. Q.; Dang, D. Q.; Do, T. D.; Mwasilu, F.; Choi, H. H.
2015-08-01
This paper presents a supervisory fuzzy neural network control (SFNNC) method for a three-phase inverter of uninterruptible power supplies (UPSs). The proposed voltage controller is comprised of a fuzzy neural network control (FNNC) term and a supervisory control term. The FNNC term is deliberately employed to estimate the uncertain terms, and the supervisory control term is designed based on the sliding mode technique to stabilise the system dynamic errors. To improve the learning capability, the FNNC term incorporates an online parameter training methodology, using the gradient descent method and Lyapunov stability theory. Besides, a linear load current observer that estimates the load currents is used to exclude the load current sensors. The proposed SFNN controller and the observer are robust to the filter inductance variations, and their stability analyses are described in detail. The experimental results obtained on a prototype UPS test bed with a TMS320F28335 DSP are presented to validate the feasibility of the proposed scheme. Verification results demonstrate that the proposed control strategy can achieve smaller steady-state error and lower total harmonic distortion when subjected to nonlinear or unbalanced loads compared to the conventional sliding mode control method.
Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2016-01-01
A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.
Selecting a Control Strategy for Plug and Process Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobato, C.; Sheppy, M.; Brackney, L.
2012-09-01
Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less
Influence of inclination angles on intra- and inter-limb load-sharing during uphill walking.
Hong, Shih-Wun; Leu, Tsai-Hsueh; Li, Jia-Da; Wang, Ting-Ming; Ho, Wei-Ping; Lu, Tung-Wu
2014-01-01
Uphill walking is an inevitable part of daily living, placing more challenges on the locomotor system with greater risk of falls than level walking does. The current study aimed to investigate the effects of inclination angles on the inter-joint and inter-limb load-sharing during uphill walking in terms of total support moment and contributions of individual joint moments to the total support moment. Fifteen young adults walked up walkways with 0°, 5°, 10° and 15° of slope while kinematic and kinetic data were collected and analyzed. With increasing inclination angles, the first peak of the total support moment was increased with unaltered individual joint contributions, suggesting an unaltered inter-joint control pattern in the leading limb to meet the increased demands. The second peak of the total support moment remained unchanged with increasing inclination angles primarily through a compensatory redistribution of the hip and knee moments. During DLS, the leading limb shared the majority of the whole body support moments. The current results reveal basic intra- and inter-limb load-sharing patterns of uphill walking, which will be helpful for a better understanding of the control strategies adopted and for subsequent clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Solar-energy-system performance evaluation, October 1980-August 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, P.E.
The solar site is an Animal Quarantine Center in Upton, New York, using 2484 ft/sup 2/ of flat-plate collectors and 5300 gallons of solar hot water storage located outside and above ground. The system was designed to provide 20% of the annual heating load and 100% of the annual domestic hot water load. The solar system actually provided 5% of the total system load. Many control and mechanical malfunctions contributed to the poor performance. (MHR)
A computer program for simulating salinity loads in streams
Glover, Kent C.
1978-01-01
A FORTRAN IV program that simulates salinity loads in streams is described. Daily values of stream-discharge in cubic feet per second, or stream-discharge and specific conductance in micromhos, are used to estimate daily loads in tons by one of five available methods. The loads are then summarized by computing either total and mean monthly loads or various statistics for each calendar day. Results are output in tabular and, if requested, punch card format. Under selection of appropriate methods for estimating and summarizing daily loads is provided through the coding of program control cards. The program is designed to interface directly with data retrieved from the U.S. Geological Survey WATSTORE Daily Values File. (Woodard-USGS)
Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Goddard, Gerald L.; Horwatich, Judy A.
2006-01-01
Nagawicka Lake is a 986-acre, usually mesotrophic, calcareous lake in southeastern Wisconsin. Because of concern over potential water-quality degradation of the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 2002 to 2006 to describe the water quality and hydrology of the lake; quantify sources of phosphorus, including those associated with urban development; and determine the effects of past and future changes in phosphorus loading on the water quality of the lake. All major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake. The Bark River, near-lake surface inflow, precipitation, and ground water contributed 74, 8, 12, and 6 percent of the inflow, respectively. Water leaves the lake primarily through the Bark River outlet (88 percent) or by evaporation (11 percent). The water quality of Nagawicka Lake has improved dramatically since 1980 as a result of decreasing the historical loading of phosphorus to the lake. Total input of phosphorus to the lake was about 3,000 pounds in monitoring year (MY) 2003 and 6,700 pounds in MY 2004. The largest source of phosphorus entering the lake was the Bark River, which delivered about 56 percent of the total phosphorus input, compared with about 74 percent of the total water input. The next largest contributions were from the urbanized near-lake drainage area, which disproportionately accounted for 37 percent of the total phosphorus input but only about 5 percent of the total water input. Simulations with water-quality models within the Wisconsin Lakes Modeling Suite (WiLMS) indicated the response of Nagawicka Lake to 10 phosphorus-loading scenarios. These scenarios included historical (1970s) and current (base) years (MY 2003-04) for which lake water quality and loading were known, six scenarios with percentage increases or decreases in phosphorus loading from controllable sources relative to the base years 2003-04, and two scenarios corresponding to specific management actions. Because of the lake's calcareous character, the average simulated summer concentration of total phosphorus for Nagawicka Lake was about 2 times that measured in the lake. The models likely over-predict because they do not account for coprecipitation of phosphorus and dissolved organic matter with calcite, negligible release of phosphorus from the deep sediments, and external phosphorus loading with abnormally high amounts of nonavailable phosphorus. After adjusting the simulated results for the overestimation of the models, a 50-percent reduction in phosphorus loading resulted in an average predicted phosphorus concentration of 0.008 milligrams per liter (mg/L) (a decrease of 46 percent). With a 50-percent increase in phosphorus loading, the average predicted concentration was 0.020 mg/L (an increase of 45 percent). With the changes in land use under the assumed future full development conditions, the average summer total phosphorus concentration should remain similar to that measured in MY 2003-04 (approximately 0.014 mg/L). However, if stormwater and nonpoint controls are added to achieve a 50-percent reduction in loading from the urbanized near-lake drainage area, the average summer total phosphorus concentration should decrease from the present conditions (MY 2003-04) to 0.011 mg/L. Slightly more than a 25-percent reduction in phosphorus loading from that measured in MY 2003-04 would be required for the lake to be classified as oligotrophic.
Frank, Andrew A.
1984-01-01
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.
NASA Astrophysics Data System (ADS)
Hakim, Lukmanul; Kubokawa, Junji; Yorino, Naoto; Zoka, Yoshifumi; Sasaki, Yutaka
Advancements have been made towards inclusion of both static and dynamic security into transfer capability calculation. However, to the authors' knowledge, work on considering corrective controls into the calculation has not been reported yet. Therefore, we propose a Total Transfer Capability (TTC) assessment considering transient stability corrective controls. The method is based on the Newton interior point method for nonlinear programming and transfer capability is approached as a maximization of power transfer with both static and transient stability constraints are incorporated into our Transient Stability Constrained Optimal Power Flow (TSCOPF) formulation. An interconnected power system is simulated to be subjected to a severe unbalanced 3-phase 4-line to ground fault and following the fault, generator and load are shed in a pre-defined sequence to mimic actual corrective controls. In a deregulated electricity market, both generator companies and large load customers are encouraged to actively participate in maintaining power system stability as corrective controls upon agreement of compensation for being shed following a disturbance. Implementation of this proposal on the actual power system operation should be carried out through combining it with the existing transient stabilization controller system. Utilization of these corrective controls results in increasing TTC as suggested in our numerical simulation. As Lagrange multipliers can also describe sensitivity of both inequality and equality constraints to the objective function, then selection of which generator or load to be shed can be carried out on the basis of values of Lagrange multipliers of its respective generator's rotor angle stability and active power balance equation. Hence, the proposal in this paper can be utilized by system operator to assess the maximum TTC for specific loads and network conditions.
Integration of Large-Scale Optimization and Game Theory for Sustainable Water Quality Management
NASA Astrophysics Data System (ADS)
Tsao, J.; Li, J.; Chou, C.; Tung, C.
2009-12-01
Sustainable water quality management requires total mass control in pollutant discharge based on both the principles of not exceeding assimilative capacity in a river and equity among generations. The stream assimilative capacity is the carrying capacity of a river for the maximum waste load without violating the water quality standard and the spirit of total mass control is to optimize the waste load allocation in subregions. For the goal of sustainable watershed development, this study will use large-scale optimization theory to optimize the profit, and find the marginal values of loadings as reference of the fair price and then the best way to get the equilibrium by water quality trading for the whole of watershed will be found. On the other hand, game theory plays an important role to maximize both individual and entire profits. This study proves the water quality trading market is available in some situation, and also makes the whole participants get a better outcome.
Zhang, Zhao; Fukushima, Takehiko; Onda, Yuichi; Mizugaki, Shigeru; Gomi, Takashi; Kosugi, Ken'ichirou; Hiramatsu, Shinya; Kitahara, Hikaru; Kuraji, Koichiro; Terajima, Tomomi; Matsushige, Kazuo; Tao, Fulu
2008-02-01
Forest areas have been identified as important sources of nonpoint pollution in Japan. The managers must estimate stormwater quality and quantities from forested watersheds to develop effective management strategies. Therefore, stormwater runoff loads and concentrations of 10 constituents (total suspended solids, dissolved organic carbon, PO(4)-P, dissolved total phosphorus, total phosphorus, NH(4)-N, NO(2)-N, NO(3)-N, dissolved total nitrogen, and total nitrogen) for 72 events across five regions (Aichi, Kochi, Mie, Nagano, and Tokyo) were characterised. Most loads were significantly and positively correlated with stormwater variables (total event rainfall, event duration, and rainfall intensity), but most discharge-weighted event concentrations (DWECs) showed negative correlations with rainfall intensity. Mean water quality concentration during baseflow was correlated significantly with storm concentrations (r=0.41-0.77). Although all pollutant load equations showed high coefficients of determination (R(2)=0.55-0.80), no models predicted well pollutant concentrations, except those for the three N constituents (R(2)=0.59-0.67). Linear regressions to estimate stormwater concentrations and loads were greatly improved by regional grouping. The lower prediction capability of the concentration models for Mie, compared with the other four regions, indicated that other watershed or storm characteristics should be included in the prediction models. Significant differences among regions were found more frequently in concentrations than in loads for all constituents. Since baseflow conditions implied available pollutant sources for stormwater, the similar spatial characteristics of pollutant concentrations between baseflow and stormflow conditions were an important control for stormwater quality.
Brennan, R B; Clifford, E; Devroedt, C; Morrison, L; Healy, M G
2017-03-01
Landfill leachate is the result of water percolating through waste deposits that have undergone aerobic and anaerobic microbial decomposition. In recent years, increasingly stringent wastewater discharge requirements have raised questions regarding the efficacy of co-treatment of leachate in municipal wastewater treatment plants (WWTPs). This study aimed to (1) examine the co-treatment of leachate with a 5-day biochemical oxygen demand (BOD 5 ): chemical oxygen demand (COD) ratio less than or slightly greater than 0.26 (intermediate age leachate) in municipal WWTPs (2) quantify the maximum hydraulic and mass (expressed as mass nitrogen or COD) loading of landfill leachate (as a percentage of the total influent loading rate) above which the performance of a WWTP may be inhibited, and (3) quantify the impact of a range of hydraulic loading rates (HLRs) of young and intermediate age leachate, loaded on a volumetric basis at 0 (study control), 2, 4 and 10% (volume landfill leachate influent as a percentage of influent municipal wastewater), on the effluent ammonium concentrations. The leachate loading regimes examined were found to be appropriate for effective treatment of intermediate age landfill leachate in the WWTPs examined, but co-treatment may not be suitable in WWTPs with low ammonium-nitrogen (NH 4 -N) and total nitrogen (TN) emission limit values (ELVs). In addition, intermediate leachate, loaded at volumetric rates of up to 4% or 50% of total WWTP NH 4 -N loading, did not significantly inhibit the nitrification processes, while young leachate, loaded at volumetric rates greater of than 2% (equivalent to 90% of total WWTP NH 4 -N loading), resulted in a significant decrease in nitrification. The results show that current hydraulic loading-based acceptance criteria recommendations should be considered in the context of leachate NH 4 -N composition. The results also indicate that co-treatment of old leachate in municipal WWTPs may represent the most sustainable solution for ongoing leachate treatment in the cases examined. Copyright © 2016 Elsevier Ltd. All rights reserved.
Changes in Predictive Task Switching with Age and with Cognitive Load.
Levy-Tzedek, Shelly
2017-01-01
Predictive control of movement is more efficient than feedback-based control, and is an important skill in everyday life. We tested whether the ability to predictively control movements of the upper arm is affected by age and by cognitive load. A total of 63 participants were tested in two experiments. In both experiments participants were seated, and controlled a cursor on a computer screen by flexing and extending their dominant arm. In Experiment 1, 20 young adults and 20 older adults were asked to continuously change the frequency of their horizontal arm movements, with the goal of inducing an abrupt switch between discrete movements (at low frequencies) and rhythmic movements (at high frequencies). We tested whether that change was performed based on a feed-forward (predictive) or on a feedback (reactive) control. In Experiment 2, 23 young adults performed the same task, while being exposed to a cognitive load half of the time via a serial subtraction task. We found that both aging and cognitive load diminished, on average, the ability of participants to predictively control their movements. Five older adults and one young adult under a cognitive load were not able to perform the switch between rhythmic and discrete movement (or vice versa). In Experiment 1, 40% of the older participants were able to predictively control their movements, compared with 70% in the young group. In Experiment 2, 48% of the participants were able to predictively control their movements with a cognitively loading task, compared with 70% in the no-load condition. The ability to predictively change a motor plan in anticipation of upcoming changes may be an important component in performing everyday functions, such as safe driving and avoiding falls.
Structural load control during construction
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.
1991-01-01
In the absence of gravitational pull, the major design considerations for large space structures are stiffness for controllability, and transient dynamic loadings (as opposed to the traditional static load associated with earth-based structures). Because of the absence of gravitational loading, space structures can be designed to be significantly lighter than their counterparts on Earth. For example, the Space Shuttle manipulator arm is capable of moving and positioning a 60,000 lb payload, yet weighs less than 1,000 lbs. A recent design for the Space Station which had a total weight of about 500,000 lbs. used a primary loadcarrying keel beam which weighed less than 10,000 lbs. For many large space structures designs it is quite common for the load-carrying structure to have a mass fraction on the order of one or two percent of the total spacecraft mass. This significant weight reduction for large space structures is commonly accompanied by very low natural frequencies. These low frequencies cause an unprecedented level of operational complexity for mission applications which require a high level of positioning and control accuracy. This control problem is currently the subject of considerable research directed towards reducing the flexibility problem. In addition, however, the small mass fraction typically results in structures which are quite unforgiving to inadvertent high loadings. In other words, the structures are 'fragile.' In order to deal with the fragility issue CSC developed a load-limiting concept for space truss structures. This concept is aimed at limiting the levels of load which can occur in a large space structure during the construction process as well as during subsequent operations. Currently, the approach for dealing with large loadings is to make the structure larger. The impact this has on construction is significant. The larger structures are more difficult to package in the launch vehicle, and in fact in some instances the concept must be changed from a deployable truss to an erectable truss to permit packaging. The new load-limiting concept is aimed at permitting the use in large space structures of smaller trusses with a high level of strength robustness, in order to simplify the construction process. To date several analyses conducted on the concept have demonstrated its feasibility, and an experiment is currently being designed to demonstrate its operation.
Ouyang, Ying; Grace, Johnny M; Zipperer, Wayne C; Hatten, Jeff; Dewey, Janet
2018-05-22
Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) in streams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities through absorption of light and complex metals with production of carcinogenic compounds. Although computer models have become increasingly popular in understanding and management of TOC, ROC, and LOC loads in streams, the usefulness of these models hinges on the availability of daily data for model calibration and validation. Unfortunately, these daily data are usually insufficient and/or unavailable for most watersheds due to a variety of reasons, such as budget and time constraints. A simple approach was developed here to calculate daily loads of TOC, ROC, and LOC in streams based on their seasonal loads. We concluded that the predictions from our approach adequately match field measurements based on statistical comparisons between model calculations and field measurements. Our approach demonstrates that an increase in stream discharge results in increased stream TOC, ROC, and LOC concentrations and loads, although high peak discharge did not necessarily result in high peaks of TOC, ROC, and LOC concentrations and loads. The approach developed herein is a useful tool to convert seasonal loads of TOC, ROC, and LOC into daily loads in the absence of measured daily load data.
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-03-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-05-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant ( p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
NASA Technical Reports Server (NTRS)
Amtmann, E.; Kimura, T.; Oyama, J.; Doden, E.; Potulski, M.
1979-01-01
At the age of 30 days female Sprague-Dawley rats were placed on a 3.66 m radius centrifuge and subsequently exposed almost continuously for 810 days to either 2.76 or 4.15 G. An age-matched control group of rats was raised near the centrifuge facility at earth gravity. Three further control groups of rats were obtained from the animal colony and sacrificed at the age of 34, 72 and 102 days. A total of 16 variables were simultaneously factor analyzed by maximum-likelihood extraction routine and the factor loadings presented after-rotation to simple structure by a varimax rotation routine. The variables include the G-load, age, body mass, femoral length and cross-sectional area, inner and outer radii, density and strength at the mid-length of the femur, dry weight of gluteus medius, semimenbranosus and triceps surae muscles. Factor analyses on A) all controls, B) all controls and the 2.76 G group, and C) all controls and centrifuged animals, produced highly similar loading structures of three common factors which accounted for 74%, 68% and 68%. respectively, of the total variance. The 3 factors were interpreted as: 1. An age and size factor which stimulates the growth in length and diameter and increases the density and strength of the femur. This factor is positively correlated with G-load but is also active in the control animals living at earth gravity. 2. A growth inhibition factor which acts on body size, femoral length and on both the outer and inner radius at mid-length of the femur. This factor is intensified by centrifugation.
Maidatsi, P; Gorgias, N; Zaralidou, A; Ourailoglou, V; Giala, M
1998-09-01
Prolonged nerve conduction blockade has been proposed to result from the summed effects of charged and neutral local anaesthetics. Thirty-seven patients were randomly allocated to receive intravenous patient-controlled analgesia alone or combined with intercostal blockade (T7-T11) with a mixture of 0.45% bupivacaine and 0.6% phenol for post-cholecystectomy analgesia. Adequacy of pain relief was measured by patient scores on a 10-cm visual analogue scale and by dose-demand ratio, amounts of loading dose and total consumption of morphine and also the duration of patient-controlled analgesia in each group. No differences were found between groups in post-operative scores, dose-demand ratios and loading doses of morphine. However, in the combined treatment group, a significantly lower total consumption of morphine (P < 0.05), associated with a shorter duration of patient-controlled analgesia (P < 0.02) and a decreased mean number of unsuccessful demands (P < 0.001) were recorded. Intercostal blockade with bupivacaine-phenol supplements intravenous patient-controlled analgesia for post-cholecystectomy pain relief.
Total pollution effect of urban surface runoff.
Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue
2009-01-01
For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.
Vahtrik, Doris; Gapeyeva, Helena; Ereline, Jaan; Pääsuke, Mati
2014-01-01
The aim of the present study was to evaluate an isometric maximal voluntary contraction (MVC) force of the leg extensor muscles and its relationship with knee joint loading during gait prior and after total knee arthroplasty (TKA). Custom-made dynamometer was used to assess an isometric MVC force of the leg extensor muscles and 3-D motion analysis system was used to evaluate the knee joint loading during gait in 13 female patients (aged 49-68 years) with knee osteoarthritis. Patients were evaluated one day before, and three and six months following TKA in the operated and non-operated leg. Six months after TKA, MVC force of the leg extensor muscles for the operated leg did not differ significantly as compared to the preoperative level, whereas it remained significantly lower for the non-operated leg and controls. The knee flexion moment and the knee joint power during mid stance of gait was improved six months after TKA, remaining significantly lowered compared with controls. Negative moderate correlation between leg extensor muscles strength and knee joint loading for the operated leg during mid stance was noted three months after TKA. The correlation analysis indicates that due to weak leg extensor muscles, an excessive load is applied to knee joint during mid stance of gait in patients, whereas in healthy subjects stronger knee-surrounding muscles provide stronger knee joint loading during gait. III (correlational study). Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, Aiquan; Li, Keqiang; Ding, Dongsheng; Li, Yan; Liang, Shengkang; Li, Yanbin; Su, Ying; Wang, Xiulin
2015-12-01
The equal percent removal (EPR) method, in which pollutant reduction ratio was set as the same in all administrative regions, failed to satisfy the requirement for water quality improvement in the Bohai Sea. Such requirement was imposed by the developed Coastal Pollution Total Load Control Management. The total maximum allocated load (TMAL) of nitrogen pollutants in the sea-sink source regions (SSRs) around the Bohai Rim, which is the maximum pollutant load of every outlet under the limitation of water quality criteria, was estimated by optimization-simulation method (OSM) combined with loop approximation calculation. In OSM, water quality is simulated using a water quality model and pollutant load is calculated with a programming model. The effect of changes in pollutant loads on TMAL was discussed. Results showed that the TMAL of nitrogen pollutants in 34 SSRs was 1.49×105 ton/year. The highest TMAL was observed in summer, whereas the lowest in winter. TMAL was also higher in the Bohai Strait and central Bohai Sea and lower in the inner area of the Liaodong Bay, Bohai Bay and Laizhou Bay. In loop approximation calculation, the TMAL obtained was considered satisfactory for water quality criteria as fluctuation of concentration response matrix with pollutant loads was eliminated. Results of numerical experiment further showed that water quality improved faster and were more evident under TMAL input than that when using the EPR method
Frank, A.A.
1984-07-10
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine. 4 figs.
NASA Astrophysics Data System (ADS)
Selbig, W.
2016-12-01
Organic detritus can be major sources of nutrients and organic carbon in urban stormwater, especially in areas with dense overhead tree canopy. In order to meet impending regulation to reduce nutrient loads, many cities will require information on structural and non-structural stormwater control measures that target organic detritus. Most cities already conduct some level of leaf collection and existing street cleaning programs; however, few studies have quantified their water-quality benefits. The U.S Geological Survey measured the water-quality benefits of a municipal leaf collection program coupled with street cleaning in Madison, WI, USA during the months of October through November of 2014 and 2015. The calibration phase of the study (2014) characterized nutrient and organic carbon concentrations and loads in runoff from two paired basins without leaf collection or street cleaning. During the treatment phase (2015), leaf collection and street cleaning was done in the test basin by city personnel on a weekly basis. Additionally, prior to each precipitation event, USGS personnel removed as much organic debris from the street surface as reasonably possible. The control remained without street cleaning or leaf collection for the entire monitoring period. During the fall, leaf collection and street cleaning was able to remove the increased amount of organic debris from the curb and street surface which resulted in statistically significant (p<0.05) reductions in loads of phosphorus, nitrogen and organic carbon. Total and dissolved phosphorus loads were reduced by 84 and 83 percent, respectively. Similarly, total and dissolved organic carbon was reduced by 81 and 86 percent, and total and dissolved nitrogen was reduced by 74 and 71 percent, respectively. In the control basin, 60 percent of the annual phosphorus load occurred in fall (winter excluded), the majority of which was dissolved as orthophosphorus, compared to only 16 percent in the test basin. While the leaf collection practices adopted during this study may surpass those used by most municipal programs, results from this study suggest a significant reduction of nutrient and organic carbon loads in urban stormwater is feasible when leaves and other organic detritus are removed from streets prior to precipitation events.
Niu, Xun; Latash, Mark L.; Zatsiorsky, Vladimir M.
2010-01-01
We studied adjustments of digit forces to changes in the friction. The subjects held a handle statically in a three-digit grasp. The friction under each digit was either high or low, resulting in eight three-element friction sets (such grasps were coined the grasps with complex friction pattern). The total load was also manipulated. It was found that digit forces were adjusted not only to the supported load and local friction, but also to friction at other digits (synergic effects). When friction under a digit was low, its tangential force decreased and the normal force increased (local effects). The synergic effects were directed to maintain the equilibrium of the handle. The relation between the individual digit forces and loads agreed with the triple-product model: fin=ki(2)ki(1)L, where fin is normal force of digit i, L is the load (newtons), ki(1) is a dimensionless coefficient representing sharing the total tangential force among the digits (Σki(1)=1.0), and ki(2) is a coefficient representing the relation between the tangential and normal forces of digit i (the overall friction equivalent, OFE). At each friction set, the central controller selected the grasping template—a three-element array of ki(2)ki(1) products—and then scaled the template with the load magnitude. PMID:17493928
Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John
2014-04-11
This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons.
47 CFR 90.631 - Trunked systems loading, construction and authorization requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., the total number of mobile units and control stations operating in the wide-area system shall be counted with respect to the total number of base station frequencies assigned to the system. (h) Regional... fractionally over the number of base station facilities with which it communicates regularly. [47 FR 41032...
Optimal load scheduling in commercial and residential microgrids
NASA Astrophysics Data System (ADS)
Ganji Tanha, Mohammad Mahdi
Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436
NASA Astrophysics Data System (ADS)
Legeay, Pierre-Louis; Moatar, Florentina; Gascuel-Odoux, Chantal; Gruau, Gérard
2015-04-01
In intensive agricultural regions with important livestock farming, long-term land application of Phosphorus (P) both as chemical fertilizer and animal wastes, have resulted in elevated P contents in soils. Since we know that high P concentrations in rivers is of major concern, few studies have been done at to assess the spatiotemporal variability of P loads in rivers and apportionment of point and nonpoint source in total loads. Here we focus on Brittany (Western France) where even though P is a great issue in terms of human and drinking water safety (cyano-toxins), environmental protection and economic costs for Brittany with regards to the periodic proliferations of cyanobacteria that occur every year in this region, no regional-scale systematic study has been carried out so far. We selected a set of small rivers (stream order 3-5) with homogeneous agriculture and granitic catchment. By gathering data from three water quality monitoring networks, covering more than 100 measurements stations, we provide a regional-scale quantification of the spatiotemporal variability of dissolved P (DP) and total P (TP) interannual loads from 1992 to 2012. Build on mean P load in low flows and statistical significance tests, we developed a new indicator, called 'low flow P load' (LFP-load), which allows us to determine the importance of domestic and industrial P sources in total P load and to assess their spatiotemporal variability compared to agricultural sources. The calculation and the map representation of DP and TP interannual load variations allow identification of the greatest and lowest P contributory catchments over the study period and the way P loads of Brittany rivers have evolved through time. Both mean DP and TP loads have been divided by more than two over the last 20 years. Mean LFDP-load decreased by more than 60% and mean LFTP-load by more than 45% on average over the same period showing that this marked temporal decrease in total load is largely due to the decrease of domestic and industrial P effluents. A global shift in P inputs apportionment to freshwaters thus occurred in Brittany since 20 years as agricultural nonpoint sources now contribute a greater portion of inputs showing the efficiency of the recent control of point sources by enhancement of water treatment plant and removal of phosphates in detergents. The spatialized P loads provided by this study could give a basis for a better understanding of the factors that drives the P transfers in Brittany soils and hotspots of P emissions while the LFP-load indicator can be a tool to assess effects of point-source P mitigation plans.
Woods, Paul F.
1982-01-01
Limnological data collected at Lake Koocanusa were used to investigate the relationship of nutrient loadings, primary productivity, and trophic state of the reservoir during 1972-80. The reservoir, on the Kootenai River, was impounded by Libby Dam on March 21, 1972. Manipulation of the 7.16-cubic-kilometer reservoir for flood control, its primary function, created large fluctuations in reservoir volume and produced annual lake-filling times that ranged from 0.14 to 0.66 year. Loadings of nitrogen and phosphorus prior to and following impoundment of Lake Koocanusa were found to be large enough to predict eutrophic conditions. Beginning in 1976, total phosphorus loadings, but not total nitrogen loadings, were substantially reduced following improvements in waste-water treatment at a fertilizer plant located upstream from the reservoir. The closure of Libby Dam substantially reduced loadings of nitrogen and phosphorus downstream from Lake Koocanusa. On the average, the reservoir retained 63 percent of its influent loading of total phosphorus and 25 percent of its influent loading of total nitrogen. Daily areal and volumetric primary productivity varied widely in each year at four sampled limnological stations. During the 9 years studied, daily areal primary productivity, in milligrams of carbon fixed per square meter, ranged from 0.4 to 420.0; the mean of the 313 sampled days was 128.5. Annual areal primary productivity ranged from 23.2 to 38.5 grams of carbon fixed per square meter and thereby categorized Lake Koocanusa as oligotrophic. The relationship of annual areal primary productivity and 12 selected environmental variables was determined by multiple regression analysis. One of the models that was derived used two variables-annual euphotic zone depth and annual areal phosphorus loading-and accounted for 62.0 percent of the variation in annual areal primary productivity. The distribution of chlorophyll a within the water column indicated that, on the average, more than one-half of the phytoplankton in the reservoir was beneath the euphotic zone. These results support the hypothesis that the reservoir's weak thermal structure had allowed circulation of phytoplankton out of the euphotic zone. The trophic state of Lake Koocanusa was categorized as eutrophic when based on the relationship of the nutrient loadings and the reservoir's ratio of mean depth to hydraulic-residence time. This result conflicted with the oligotrophic ranking the reservoir received based on its areal primary productivity. The discrepancy in trophic state was attributed mainly to the failure of nutrient loading models to adequately account for physical processes within reservoirs. Part of the nutrient loading that entered Lake Koocanusa was unavailable to phytoplankton because the nutrients were carried beneath the euphotic zone by large volumes of interflow and underflow. Another part of the nutrient loading was adsorbed to suspended sediment and removed from the water column. Thus, phytoplankton primary productivity was controlled not only by nutrients, but also by other limno logical processes.
Five-DOF innovative linear MagLev slider to account for pitch, tilt and load uncertainty
NASA Astrophysics Data System (ADS)
Kao, Yi-Ming; Tsai, Nan-Chyuan; Chiu, Hsin-Lin
2017-02-01
This paper is focused at position deviation regulation upon a slider by Fuzzy Sliding Mode Control (FSMC). Five Degrees Of Freedom (DOF) of position deviation are required to be regulated except for the direction (i.e., X-axis) in which the slider moves forward and backward. Totally 8 sets of Magnetic Actuators (MAs) and an Electro-Pneumatic Transducer (EPT) are employed to drive the slider carrying loads under the commands of FSMC. EPT is applied to adjust the pressure of compressed air to counterbalance the weight of slider itself. At first, the system dynamic model of slider, including load uncertainty and load position uncertainty, is established. Intensive computer simulations are undertaken to verify the validity of proposed control strategy. Finally, a prototype of realistic slider position deviation regulation system is successfully built up. According to the experiments by cooperation of pneumatic and magnetic control, the actual linear position deviations of slider can be regulated within ±8 μm and angular position deviations within ±1 mini-degrees. From the viewpoint of energy consumption, the applied currents to 8 sets of MAs are all below 1.2 A. To sum up, the closed-loop levitation system by cooperation of pneumatic and magnetic control is capable to account for load uncertainty and uncertainty of the standing position of load to be carried.
Solid state remote power controllers for 120 VDC power systems
NASA Technical Reports Server (NTRS)
Sundberg, G. R.; Baker, D. E.
1975-01-01
Solid state remote power controllers can be applied to any dc power system up to 120 Vdc and distribute power up to 3.6 kW per hour. Devices have demonstrated total electrical efficiencies of 98.5 percent to 99.0 percent at rated load currents.
Importance of diffuse pollution control in the Patzcuaro Lake Basin in Mexico.
Carro, Marco Mijangos; Dávila, Jorge Izurieta; Balandra, Antonieta Gómez; López, Rubén Hernández; Delgadillo, Rubén Huerto; Chávez, Javier Sánchez; Inclán, Luís Bravo
2008-01-01
In the catchment area of the Lake Patzcuaro in Central Mexico (933 km2) the apportionments of erosion, sediment, nutrients and pathogen coming from thirteen micro basins were estimated with the purpose of identifying critical areas in which best management practices need to be implemented in order to reduce their contribution to the lake pollution and eutrophication. The ArcView Generalized Watershed Loading Functions model (AV-GWLF) was applied to estimate the loads and sources of nutrients. The main results show that the total annual contribution of nitrogen from point sources were 491 tons and from diffuse pollution 2,065 tons, whereas phosphorus loads where 116 and 236 tons, respectively during a thirty year simulation period. Micro basins with predominant agricultural and animal farm land use (56% of the total area) accounts for a high percentage of nitrogen load 33% and phosphorus 52%. On the other hand, Patzcuaro and Quiroga micro basins which comprise approximately 10% of the total catchment area and are the most populated and visited towns by tourist 686,000 people every year, both contributes with 10.1% of the total nitrogen load and 3.2% of phosphorus. In terms of point sources of nitrogen and phosphorus the last towns contribute with 23.5% and 26.6% respectively. Under this situation the adoption of best management practices are an imperative task since the sedimentation and pollution in the lake has increased dramatically in the last twenty years. Copyright (c) IWA Publishing 2008.
Design and test of a pumped two-phase mounting plate. [for spacecraft thermal control systems
NASA Technical Reports Server (NTRS)
Grote, M. G.; Swanson, T. D.
1985-01-01
The design, fabrication, and testing of the full-scale development unit of a pumped two-phase mounting plate (TPMP) used in advanced two-phase spacecraft thermal control systems are described. The mounting plate is tested with R-11 in the evaporator mode for total heat loads of over 3000 watts and local heat fluxes over 4 W/sq cm, and in the condenser mode with condenser loads from 60 to 400 watts and inlet qualities from 8 to 94 percent. The calculated heat-transfer coefficients are between 0.66 and 1.0 W/sq cm/C and are nearly independent of the flow rate and heat load except at very low heat loads. It is shown that the TPMP can be run with inlet conditions down to 22 C subcooling without any significant gradients in the plate and that it performs well with nonuniform heat fluxes.
NASA Technical Reports Server (NTRS)
Ahrens, S. T.
1984-01-01
The voltages of two Eveready No. 528 batteries, one the test battery, the other the control battery, were simultaneously recorded as they were discharged across 30 omega loads using a dual chart recorder. The test battery was initially put in a freezer at -15 + or - 3 C. After its voltage had fallen to .6 V, it was brought back out into the room at 22 + or - 3 C. A second run was made with 60 omega loads. Assuming a 3.0 V cut-off, the total energy output of the test battery at -15 C was 26 WHr 30 omega and 35 WHr 60 omega, and the corresponding numbers for the control battery at 22 C were 91 WHr and 100 WHr. When the test battery was subsequently allowed to warm up, the voltage rose above 4 V and the total energy output rose to 80 WHr 30 omega and 82 WHR 60 omega.
Replication of CLU, CR1, and PICALM associations with alzheimer disease.
Carrasquillo, Minerva M; Belbin, Olivia; Hunter, Talisha A; Ma, Li; Bisceglio, Gina D; Zou, Fanggeng; Crook, Julia E; Pankratz, V Shane; Dickson, Dennis W; Graff-Radford, Neill R; Petersen, Ronald C; Morgan, Kevin; Younkin, Steven G
2010-08-01
To test for replication of the association between variants in the CLU, CR1, and PICALM genes with Alzheimer disease. Follow-up case-control association study. The Mayo Clinics at Jacksonville, Florida, and Rochester, Minnesota. Community-based patients of European descent with late-onset Alzheimer disease (LOAD) and controls without dementia who were seen at the Mayo clinics, and autopsy-confirmed cases and controls whose pathology was evaluated at the Mayo Clinic in Jacksonville. Additional samples were obtained from the National Cell Repository for Alzheimer Disease (NCRAD). A total of 1829 LOAD cases and 2576 controls were analyzed. The most significant single-nucleotide polymorphisms in CLU (rs11136000), CR1 (rs3818361), and PICALM (rs3851179) were tested for allelic association with LOAD. Main Outcome Measure Clinical or pathology-confirmed diagnosis of LOAD. Odds ratios for CLU, CR1, and PICALM were 0.82, 1.15, and 0.80, respectively, comparable in direction and magnitude with those originally reported. P values were 8.6 x 10(-5), .014, and 1.3 x 10(-5), respectively; they remain significant even after Bonferroni correction for the 3 single-nucleotide polymorphisms tested. These results show near-perfect replication and provide the first additional evidence that CLU, CR1, and PICALM are associated with the risk of LOAD.
Tao, Mei-Ting; Xie, Ya-Ping; Liu, Shu-Ping; Chen, Hao-Feng; Huang, Han; Chen, Min; Zhong, Li-Li
2017-06-01
To investigate the expression of IFN-λ1 in respiratory epithelial cells of children with respiratory syncytial virus (RSV) infection and its relationship with RSV load. The nasopharyngeal swabs were collected from the children who were hospitalized with respiratory tract infection from June 2015 to June 2016. A direct immunofluorescence assay was used to detect the antigens of seven common respiratory viruses (including RSV) in the nasopharyngeal swabs. A total of 120 children who were only RSV positive were selected as the RSV infection group. A total of 50 children who had negative results in the detection of all viral antigens were selected as the healthy control group. Fluorescence quantitative real-time PCR was used to determine the RSV load and the expression of IFN-λ1 mRNA in the nasopharyngeal swabs of children in the two groups. The expression of IFN-λ1 in the RSV infection group was significantly higher than that in the healthy control group (P<0.05). The expression of IFN-λ1 was positively correlated with RSV load (r=0.56, P<0.05). RSV can induce the expression of IFN-λ1 in respiratory epithelial cells, suggesting that IFN-λ1 may play an important role in anti-RSV infection.
Heat Control via Torque Control in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Venable, Richard; Colligan, Kevin; Knapp, Alan
2004-01-01
In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).
Zhang, Rufang; Yang, Deyu; Zhou, Chanjuan; Cheng, Ke; Liu, Zhao; Chen, Liang; Fang, Liang; Xie, Peng
2012-08-15
Western blot analysis is a commonly used technique for determining specific protein levels in clinical samples. For normalization of protein levels in Western blot, a suitable loading control is required. On account of its relatively high and constant expression, β-actin has been widely employed in Western blot of cell cultures and tissue extracts. However, β-actin's presence in human plasma and this protein's putative role as a plasma-based loading control for Western blot analysis remain unknown. In this study, an enzyme-linked immunosorbent assay was used to determine the concentration of β-actin in human plasma, which is 6.29±0.54 ng/ml. In addition, the linearity of β-actin immunostaining and loaded protein amount was evaluated by Western blot, and a fine linearity (R²=0.974±0.012) was observed. Furthermore, the expression of plasma β-actin in major depressive disorder subjects and healthy controls was compared. The data revealed no statistically significant difference between these two groups. Moreover, the total coefficient of variation for β-actin expression in the two groups was 9.2±1.2%. These findings demonstrate that β-actin is present in human plasma and may possibly be used as a suitable loading control for plasma-based Western blot analysis in major depressive disorder. Copyright © 2012 Elsevier Inc. All rights reserved.
Donato, Mary M.
2006-01-01
Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow differences in the two regression models, 1999-2001 and 1999-2004. Flow-weighted concentrations (FWCs) calculated from the estimated loads for 1999-2004 were examined to aid interpretation of metal load estimates, which were influenced by large spatial and temporal variations in streamflow. FWCs of total cadmium ranged from 0.04 micrograms per liter (?g/L) at Enaville to 14 ?g/L at Ninemile Creek. Total lead FWCs were lowest at Long Lake (1.3 ?g/L) and highest at Ninemile Creek (120 ?g/L). Elevated total lead FWCs at Harrison confirmed that the high total lead loads at this station were not simply due to higher streamflow. Conversely, relatively low total lead loads combined with high total lead FWCs at Ninemile and Canyon Creeks reflected low streamflow but high concentrations of total lead. Very low total lead FWCs (1.3 to 2.7 ?g/L) at the stations downstream of Coeur d'Alene Lake are a result both of deposition of lead-laden sediments in the lake and dilution by additional streamflow. Total zinc FWCs also demonstrated the effect of streamflow on load calculations, and highlighted source areas for zinc in the basin. Total zinc FWCs at Canyon and Ninemile Creeks, 1,600 ?g/L and 2,200 ?g/L, respectively, were by far the highest in the basin but contributed among the lowest total zinc loads due to their relatively low streamflow. Total zinc FWCs ranged from 38 to 67 ?g/L at stations downstream of Coeur d'Alene Lake, but total zinc load estimates at these stations were relatively high because of high mean streamflow compared to other stations in the basin. Long-term regression models for 1991 to 2003 or 2004 were developed and annual trace-metal loads and FWCs were estimated for Pinehurst, Enaville, Harrison, and Post Falls to better understand the variability of metal loading with time. Long-term load estimates are similar to the results for 1999-2004 in terms of spatial distribution of metal loads throughout the basin. LOADEST results for 1991-2004 indicated that statistically significant downward temporal trends for dissolved and total cadmium, dissolved zinc, and total lead were occurring at Pinehurst, Enaville, Harrison, and Post Falls. Additionally, data for Enaville and Post Falls showed significant downward trends for dissolved lead and total zinc loads; Harrison total zinc loads also decreased with time. The Mann-Kendall trend test results agreed with the LOADEST trend results in most cases, but gave contradictory results for total zinc at Pinehurst and at Post Falls. Long- and short-term load and flow-weighted concentration estimates yielded valuable information about metal storage and transport processes, and demonstrated that water quality data are a great aid in understanding these processes.
Schiffer, D.M.
1994-01-01
Nutrient-rich water enters Lake Beauclair and other lakes downstream from Lake Apopka in the Ocklawaha River chain of lakes in central Florida. Two sources of the nutrient-rich water are Lake Apopka outflow and drainage from farming operations adjacent to the Apopka-Beauclair Canal. Two flow and water- quality monitoring sites were established to measure nutrient and dissolved-solids loads at the outflow from lake Apopka and at a control structure on the Apopka-Beauclair Canal downstream from farming activities. Samples were collected biweekly for analysis of nutrients and monthly for analysis of major ions for 4 years. Most of the nutrient load transported through the lock and dam on the Apopka-Beauclair Canal was transported during periods of high discharge. In April 1987, when discharges were as high as 589 cubic feet per second, loads transported through the lock and dam accounted for 59 percent of the ammonia-plus- organic nitrogen load, 61 percent of the total nitrogen load, and 59 percent of the phosphorus load transported during the 1987 water year. Constituent concentrations in annual bottom sediment samples from the canal indicated that most of the constituent load is not being transported down- stream. An alternative approach was derived for determining the relative constituent load from farm input along the canal: Load computations using this approach indicated that, with the exception of phosphorus, nutrient and dissolved-solids loads due to farm activity along the canal account for 10 percent or less of the total load at the Apopka-Beauclair canal lock and dam. (USGS)
Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting.
Eaton, Samantha L; Roche, Sarah L; Llavero Hurtado, Maica; Oldknow, Karla J; Farquharson, Colin; Gillingwater, Thomas H; Wishart, Thomas M
2013-01-01
Western blotting has been a key technique for determining the relative expression of proteins within complex biological samples since the first publications in 1979. Recent developments in sensitive fluorescent labels, with truly quantifiable linear ranges and greater limits of detection, have allowed biologists to probe tissue specific pathways and processes with higher resolution than ever before. However, the application of quantitative Western blotting (QWB) to a range of healthy tissues and those from degenerative models has highlighted a problem with significant consequences for quantitative protein analysis: how can researchers conduct comparative expression analyses when many of the commonly used reference proteins (e.g. loading controls) are differentially expressed? Here we demonstrate that common controls, including actin and tubulin, are differentially expressed in tissues from a wide range of animal models of neurodegeneration. We highlight the prevalence of such alterations through examination of published "-omics" data, and demonstrate similar responses in sensitive QWB experiments. For example, QWB analysis of spinal cord from a murine model of Spinal Muscular Atrophy using an Odyssey scanner revealed that beta-actin expression was decreased by 19.3±2% compared to healthy littermate controls. Thus, normalising QWB data to β-actin in these circumstances could result in 'skewing' of all data by ∼20%. We further demonstrate that differential expression of commonly used loading controls was not restricted to the nervous system, but was also detectable across multiple tissues, including bone, fat and internal organs. Moreover, expression of these "control" proteins was not consistent between different portions of the same tissue, highlighting the importance of careful and consistent tissue sampling for QWB experiments. Finally, having illustrated the problem of selecting appropriate single protein loading controls, we demonstrate that normalisation using total protein analysis on samples run in parallel with stains such as Coomassie blue provides a more robust approach.
Environmental impact of irrigation in la violada district (Spain): I. Salt export patterns.
Isidoro, D; Quílez, D; Aragüés, R
2006-01-01
Salt loading in irrigation return flows contributes to the salinization of the receiving water bodies, particularly when originated in salt-affected areas as frequently found in the middle Ebro River basin (Spain). We determined the salt loading in La Violada Gully from the total dissolved solids (TDS) and flows (Q) during the 1995 to 1998 hydrological years. Since this gully collects flows from various sources, an end-member mixing analysis (EMMA) was performed to quantify the drainage flow from La Violada Irrigation District (VID). Three flow components were identified in La Violada Gully: drainage waters from VID (Qd); tail-waters from irrigation ditches, spill-over, and seepage from the Monegros Canal (Qo); and ground water inflows (Qg) originating in the dryland watershed. Gypsum in the soils of VID was the main source for salts in La Violada Gully (flow-weighted mean TDS=1720 mg L-1, dominated by sulfate and calcium). The contribution of Qg to the total gully flow during the 1996 irrigation season was low (6.5% of the total flow). The 1995 to 1998 annual salt load average in La Violada Gully was 78 628 Mg, 71% of which was exported during the irrigation season. The 1995 to 1998 irrigation season salt load average in Qd was 43 015 Mg (77% of the total load). Thus, irrigated agriculture in VID was the main source of salt loading in this gully, with a yield of 11.1 Mg of salts per hectare of irrigated land for the irrigation season. Efficient irrigation systems and irrigation management practices that reduce Qd are key factors for controlling off-site salt pollution of these gypsum-rich irrigated areas.
NASA Technical Reports Server (NTRS)
Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.
1982-01-01
A ground-simulation experiment was conducted to investigate the influence and interaction of flight-control system, fight-director display, and crew-loading situation on helicopter flying qualities during terminal area operations in instrument conditions. The experiment was conducted on the Flight Simulator for Advanced Aircraft at Ames Research Center. Six levels of control complexity, ranging from angular rate damping to velocity augmented longitudinal and vertical axes, were implemented on a representative helicopter model. The six levels of augmentation were examined with display variations consisting of raw elevation and azimuth data only, and of raw data plus one-, two-, and three-cue flight directors. Crew-loading situations simulated for the control-display combinations were dual-pilot operation (representative auxiliary tasks of navigation, communications, and decision-making). Four pilots performed a total of 150 evaluations of combinations of these parameters for a representative microwave landing system (MLS) approach task.
Analysis of pollen load based on color, physicochemical composition and botanical source.
Modro, Anna F H; Silva, Izabel C; Luz, Cynthia F P; Message, Dejair
2009-06-01
Pollen load samples from 10 hives of Apis mellifera (L.) were analyzed based on their physicochemical composition and botanical source, considering color as a parameter for quality control. In seven samples it was possible to establish the occurrence of more than 80% of a single pollen type, characterizing them as unifloral but with protein content variation. One of the samples was exclusively composed of saprophytic fungi (Cladosporium sp.). Comparing the mean results of the fungi loads with those of the nutritional components of pollen load, the former presented higher protein, mineral matter and dry matter and lower organic matter, ethereal extract and total carbohydrate values. The monochromatic samples met the physicochemical specifications regulating pollen load quality. The results showed that homogeneous coloration of the pollen load was not found to be a good indication of unifloral pollen, confirming the importance of physicochemical analysis and melissopalynological analysis for characterization of the quality of commercial pollen load.
NASA Technical Reports Server (NTRS)
Caplin, R. S.; Royer, E. R.
1978-01-01
Attempts are made to provide a total design of a Microbial Load Monitor (MLM) system flight engineering model. Activities include assembly and testing of Sample Receiving and Card Loading Devices (SRCLDs), operator related software, and testing of biological samples in the MLM. Progress was made in assembling SRCLDs with minimal leaks and which operate reliably in the Sample Loading System. Seven operator commands are used to control various aspects of the MLM such as calibrating and reading the incubating reading head, setting the clock and reading time, and status of Card. Testing of the instrument, both in hardware and biologically, was performed. Hardware testing concentrated on SRCLDs. Biological testing covered 66 clinical and seeded samples. Tentative thresholds were set and media performance listed.
Real time PI-backstepping induction machine drive with efficiency optimization.
Farhani, Fethi; Ben Regaya, Chiheb; Zaafouri, Abderrahmen; Chaari, Abdelkader
2017-09-01
This paper describes a robust and efficient speed control of a three phase induction machine (IM) subjected to load disturbances. First, a Multiple-Input Multiple-Output (MIMO) PI-Backstepping controller is proposed for a robust and highly accurate tracking of the mechanical speed and rotor flux. Asymptotic stability of the control scheme is proven by Lyapunov Stability Theory. Second, an active online optimization algorithm is used to optimize the efficiency of the drive system. The efficiency improvement approach consists of adjusting the rotor flux with respect to the load torque in order to minimize total losses in the IM. A dSPACE DS1104 R&D board is used to implement the proposed solution. The experimental results released on 3kW squirrel cage IM, show that the reference speed as well as the rotor flux are rapidly achieved with a fast transient response and without overshoot. A good load disturbances rejection response and IM parameters variation are fairly handled. The improvement of drive system efficiency reaches up to 180% at light load. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
2007-04-01
subjective self-ratings of perceived workload, the National Aeronautics and Space Administration ( NASA )-Task Load Index ( TLX ) was used. The NASA TLX ...Staveland, L. E. Development of a NASA - TLX (Task Load Index): Results of Empirical and Theoretical Research. In Human Mental Workload, edited by P.A...system? Please complete the following SHORT surveys (nine questions total) for the missions that you performed today. 19 NASA TLX
NASA Technical Reports Server (NTRS)
1982-01-01
Primary and automatic flight controls are combined for a total flight control reliability and maintenance cost data base using information from two previous reports and additional cost data gathered from a major airline. A comparison of the current B-747 flight control system effects on reliability and operating cost with that of a B-747 designed for an active control wing load alleviation system is provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... Total Maximum Daily Load: Instrument, Pre-Test, and Implementation AGENCY: Environmental Protection..., Pre-test, and Implementation'' (EPA ICR No. 2456.01, OMB Control No. 2010-NEW) to the Office of...
Load application for the contact mechanics analysis and wear prediction of total knee replacement.
Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin
2017-05-01
Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.
A model of optimal voluntary muscular control.
FitzHugh, R
1977-07-19
In the absence of detailed knowledge of how the CNS controls a muscle through its motor fibers, a reasonable hypothesis is that of optimal control. This hypothesis is studied using a simplified mathematical model of a single muscle, based on A.V. Hill's equations, with series elastic element omitted, and with the motor signal represented by a single input variable. Two cost functions were used. The first was total energy expended by the muscle (work plus heat). If the load is a constant force, with no inertia, Hill's optimal velocity of shortening results. If the load includes a mass, analysis by optimal control theory shows that the motor signal to the muscle consists of three phases: (1) maximal stimulation to accelerate the mass to the optimal velocity as quickly as possible, (2) an intermediate level of stimulation to hold the velocity at its optimal value, once reached, and (3) zero stimulation, to permit the mass to slow down, as quickly as possible, to zero velocity at the specified distance shortened. If the latter distance is too small, or the mass too large, the optimal velocity is not reached, and phase (2) is absent. For lengthening, there is no optimal velocity; there are only two phases, zero stimulation followed by maximal stimulation. The second cost function was total time. The optimal control for shortening consists of only phases (1) and (3) above, and is identical to the minimal energy control whenever phase (2) is absent from the latter. Generalization of this model to include viscous loads and a series elastic element are discussed.
Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006
Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.
2008-01-01
Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.
Edwards, Ann L; Dawson, Michael R; Hebert, Jacqueline S; Sherstan, Craig; Sutton, Richard S; Chan, K Ming; Pilarski, Patrick M
2016-10-01
Myoelectric prostheses currently used by amputees can be difficult to control. Machine learning, and in particular learned predictions about user intent, could help to reduce the time and cognitive load required by amputees while operating their prosthetic device. The goal of this study was to compare two switching-based methods of controlling a myoelectric arm: non-adaptive (or conventional) control and adaptive control (involving real-time prediction learning). Case series study. We compared non-adaptive and adaptive control in two different experiments. In the first, one amputee and one non-amputee subject controlled a robotic arm to perform a simple task; in the second, three able-bodied subjects controlled a robotic arm to perform a more complex task. For both tasks, we calculated the mean time and total number of switches between robotic arm functions over three trials. Adaptive control significantly decreased the number of switches and total switching time for both tasks compared with the conventional control method. Real-time prediction learning was successfully used to improve the control interface of a myoelectric robotic arm during uninterrupted use by an amputee subject and able-bodied subjects. Adaptive control using real-time prediction learning has the potential to help decrease both the time and the cognitive load required by amputees in real-world functional situations when using myoelectric prostheses. © The International Society for Prosthetics and Orthotics 2015.
NASA Astrophysics Data System (ADS)
Vanouni, Maziar
The notion of demand-side participation in power systems operation and control is on the verge of realization because of the advancement in the required technologies an tools like communications, smart meters, sensor networks, large data management techniques, large scale optimization method, etc. Therefore, demand-response (DR) programs can be one of the prosperous solutions to accommodate part of the increasing demand for load balancing services which is brought about by the high penetration of intermittent renewable energies in power systems. This dissertation studies different aspects of the DR programs that utilized the thermostatically controlled loads (TCLs) to provide load balancing services. The importance of TCLs among the other loads lie on their flexibility in power consumption pattern while the customer/end-user comfort is not (or minimally) impacted. Chapter 2 discussed a previously presented direct load control (DLC) to control the power consumption of aggregated TCLs. The DLC method performs a power tracking control and based on central approach where a central controller broadcasts the control command to the dispersed TCLs to toggle them on/off. The central controller receives measurement feedback from the TCLs once per couple of minutes to run a successful forecast process. The performance evaluation criteria to evaluate the load balancing service provided by the TCLs are presented. The results are discussed under different scenarios and situation. The numerical results show the proper performance of the DLC method. This DLC method is used as the control method in all the studies in this dissertation. Chapter 3 presents performance improvements for the original method in Chapter 2 by communicating two more pieces of information called forecast parameters (FPs). Communicating improves the forecast process in the DLC and hence, both performance accuracy and the amount of tear-and-wear imposed on the TCLs. Chapter 4 formulates a stochastic optimization model for a load aggregator (LA) to participate in the performance-based regulation markets (PBRM). PBRMs are the recently developed and practiced regulation market structure recommended by Federal Energy Regulatory Commission (FERC) in 2011. In PBRMs, regulation resources are paid based on both regulation capacity bids and the regulation performance including the provided mileage and the performance accuracy. In order to develop the income from the PBRM, the convention of California Independent System Operator (CAISO) is used. In the presented optimization model, the amount of tear-and-wear imposed on the TCLs are confined to prevent abrupt switching of TCLs. In Chapter 5, a two-stage reward allocation mechanism is developed for a LA recruiting TCLs for regulation service provision. The mechanism helps the LA to distribute the total reward (earned from regulation service provision) among the TCLs according to their contribution in the whole provided service. In the first stage, TCLs are prioritized based on their service provision capability. In order to do so, an index called SPCI is presented to quantify TCLs capability/flexibility and therefore, prioritize them. After prioritization TCLs a priority list is constructed in the first stage. In the second stage, a reward curve is constructed representing the functionality of the possible total reward with respect to the number top TCLs in the priority list. Then, the allocated reward to individual TCLs is calculated by applying the incremental method on the constructed reward curve. This presented reward allocation mechanism is based on the definition of maximum service capacity (MSC) for a control group including TCLs. MSC is defined and its calculation method is presented before discussing the two stages of the reward allocation mechanism. The numerical results proves the suitability of the proposed prioritization method as it is observed the TCLs with higher rankings can contribute more to the total reward in comparison to the TCLs with lower rankings in the priority list.
Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalsi, Karanjit; Zhang, Wei; Lian, Jianming
2013-10-30
With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system atmore » an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for implementing real load control programs. The promise of autonomous, Grid Friendly™ response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly™ Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.« less
Sonntag, W.H.; McPherson, B.F.
1984-01-01
Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)
Fatigue minimising power reference control of a de-rated wind farm
NASA Astrophysics Data System (ADS)
Jensen, T. N.; Knudsen, T.; Bak, T.
2016-09-01
Modern wind farms (cluster of wind turbines) can be required to control the total power output to meet a set-point, and would then profit by minimising the structural loads and thereby the cost of energy. In this paper, we propose a new control strategy for a derated wind farm with the objective of maintaining a desired reference power production for the wind farm, while minimising the sum of fatigues on the wind turbines in steady-state. The controller outputs a vector of power references for the individual turbines. It exploits the positive correlation between fatigue and added turbulence to minimise fatigue indirectly by minimising the added turbulence. Simulated results for a wind farm with three turbines demonstrate the efficacy of the proposed solution by assessing the damage equivalent loads.
NASA Astrophysics Data System (ADS)
Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.
2017-12-01
In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.
Patto, R J; Russo, E K; Borges, D R; Neves, M M
1993-09-01
Chronic alcohol consumers may have, as judged by functional criteria, exocrine as well as endocrine pancreatic dysfunction, the latter represented by a decreased insulin response to an oral glucose load. To investigate whether this decreased insulin response was due to an ethanol-induced beta-cell dysfunction or to an ethanol-induced dysfunction of the enteroinsular axis, we determined glucose, insulin, and C-peptide plasma concentrations following an oral and an intravenous glucose load in 16 healthy volunteer nonalcohol consumers and in 10 chronic alcohol consumers. In each group, total integrated response for glucose did not significantly change whether glucose was given orally or intravenously, indicating isoglycemic glucose loads. The total integrated response values for insulin in the alcoholic group following both glucose loads as well as C-peptide plasma concentrations were significantly lower than in the control group. Moreover, in both groups the insulin TIR values following the oral glucose load were significantly greater than the values obtained following the intravenous glucose load, indicating an incretin effect. These results indicate that the decreased insulin response observed in alcoholics was not caused by a dysfunction of the enteroinsular axis because it also occurred following an intravenous glucose load, but by an ethanol-induced beta-cell dysfunction because C-peptide and insulin were proportionally decreased in this group.
Wiśniewski, Jacek R; Mann, Matthias
2016-07-01
Proteomics and other protein-based analysis methods such as Western blotting all face the challenge of discriminating changes in the levels of proteins of interest from inadvertent changes in the amount loaded for analysis. Mass-spectrometry-based proteomics can now estimate the relative and absolute amounts of thousands of proteins across diverse biological systems. We reasoned that this new technology could prove useful for selection of very stably expressed proteins that could serve as better loading controls than those traditionally employed. Large-scale proteomic analyses of SDS lysates of cultured cells and tissues revealed deglycase DJ-1 as the protein with the lowest variability in abundance among different cell types in human, mouse, and amphibian cells. The protein constitutes 0.069 ± 0.017% of total cellular protein and occurs at a specific concentration of 34.6 ± 8.7 pmol/mg of total protein. Since DJ-1 is ubiquitous and therefore easily detectable with several peptides, it can be helpful in normalization of proteomic data sets. In addition, DJ-1 appears to be an advantageous loading control for Western blot that is superior to those used commonly used, allowing comparisons between tissues and cells originating from evolutionarily distant vertebrate species. Notably, this is not possible by the detection and quantitation of housekeeping proteins, which are often used in the Western blot technique. The approach introduced here can be applied to select the most appropriate loading controls for MS-based proteomics or Western blotting in any biological system.
Dredging in Sediments Containing Munitions and Explosives of Concern (MEC)
2008-08-01
bucket jaws are closed in order to “grab” a load of sediment. The loaded bucket is hoisted to the surface and side dumped into a trans- portation...digitally entering a percentage of total power (0 to 100 percent). The dredge’s hydraulic functions for the pump and hoist were controlled by solenoids...Cheryl Pollock Coastal and Hydraulics Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199
NASA Astrophysics Data System (ADS)
Ji, Dongmei; Ren, Jianxing; Zhang, Lai-Chang
2016-11-01
A novel creep-fatigue life prediction model was deduced based on an expression of the strain energy density in this study. In order to obtain the expression of the strain energy density, the load-controlled creep-fatigue (CF) tests of P92 steel at 873 K were carried out. Cyclic strain of P92 steel under CF load was divided into elastic strain, applying and unloading plastic strain, creep strain, and anelastic strain. Analysis of cyclic strain indicates that the damage process of P92 steel under CF load consists of three stages, similar to pure creep. According to the characteristics of the strains above, an expression was defined to describe the strain energy density for each cycle. The strain energy density at stable stage is inversely proportional to the total strain energy density dissipated by P92 steel. However, the total strain energy densities under different test conditions are proportional to the fatigue life. Therefore, the expression of the strain energy density at stable stage was chosen to predict the fatigue life. The CF experimental data on P92 steel were employed to verify the rationality of the novel model. The model obtained from the load-controlled CF test of P92 steel with short holding time could predict the fatigue life of P92 steel with long holding time.
Zhang, H X
2008-01-01
An innovative approach for total maximum daily load (TMDL) allocation and implementation is the watershed-based pollutant trading. Given the inherent scientific uncertainty for the tradeoffs between point and nonpoint sources, setting of trading ratios can be a contentious issue and was already listed as an obstacle by several pollutant trading programs. One of the fundamental reasons that a trading ratio is often set higher (e.g. greater than 2) is to allow for uncertainty in the level of control needed to attain water quality standards, and to provide a buffer in case traded reductions are less effective than expected. However, most of the available studies did not provide an approach to explicitly address the determination of trading ratio. Uncertainty analysis has rarely been linked to determination of trading ratio.This paper presents a practical methodology in estimating "equivalent trading ratio (ETR)" and links uncertainty analysis with trading ratio determination from TMDL allocation process. Determination of ETR can provide a preliminary evaluation of "tradeoffs" between various combination of point and nonpoint source control strategies on ambient water quality improvement. A greater portion of NPS load reduction in overall TMDL load reduction generally correlates with greater uncertainty and thus requires greater trading ratio. The rigorous quantification of trading ratio will enhance the scientific basis and thus public perception for more informed decision in overall watershed-based pollutant trading program. (c) IWA Publishing 2008.
NASA Astrophysics Data System (ADS)
Moore, R. B.; Robinson, K. W.; Simcox, A. C.; Johnston, C. M.
2002-05-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEWIPCC), is currently preparing a water-quality model, called SPARROW, to assist in the regional total maximum daily load (TMDL) studies in New England. A model is required to provide estimates of nutrient loads and confidence intervals at unmonitored stream reaches. SPARROW (Spatially Referenced Regressions on Watershed Attributes) is a spatially detailed, statistical model that uses regression equations to relate total phosphorus and nitrogen (nutrient) stream loads to pollution sources and watershed characteristics. These statistical relations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW model is based on a hydrologic network of 42,000 stream reaches and associated watersheds. Point source data are derived from USEPA's Permit Compliance System (PCS). Information about nonpoint sources is derived from data such as fertilizer use, livestock wastes, and atmospheric deposition. Watershed characteristics include land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. Preliminary SPARROW results are expected in Spring 2002. The New England SPARROW model is proposed for use in the TMDL determination for nutrients in the Connecticut River Basin, upstream of Connecticut. The model will be used to estimate nitrogen loads from each of the upstream states to Long Island Sound. It will provide estimates and confidence intervals of phosphorus and nitrogen loads, area-weighted yields of nutrients by watershed, sources of nutrients, and the downstream movement of nutrients. This information will be used to (1) understand ranges in nutrient levels in surface waters, (2) identify the environmental factors that affect nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.
McKee, Lester J; Gilbreath, Alicia N
2015-08-01
Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 μg/m(2)/year. Total selenium ranged between non-detect and 2.9 μg/L and, on average, the total load (0.027 μg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 μg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during low flow conditions. This dataset fills an important local data gap for highly urban watersheds of San Francisco Bay. The field and interpretative methods, the uniqueness of the analyte list, and resulting information have general applicability for managing pollutant concentrations and loads in urban watersheds in other parts of the world and may have particularly useful application in more arid climates.
EPA Office of Water (OW): Impaired Waters with TMDLs NHDPlus Indexed Dataset
The Total Maximum Daily Load (TMDL) Tracking System contains information on waters that are Not Supporting their designated uses. These waters are listed by the state as impaired under Section 303(d) of the Clean Water Act. The status of TMDLs are also tracked. TMDLs are pollution control measures that reduce the discharge of pollutants into impaired waters. A TMDL or Total Maximum Daily Load is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and an allocation of that amount to the pollutant's sources. What is a total maximum daily load (TMDL)? Water quality standards are set by States, Territories, and Tribes. They identify the uses for each waterbody, for example, drinking water supply, contact recreation (swimming), and aquatic life support (fishing), and the scientific criteria to support that use. A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. The calculation must include a margin of safety to ensure that the waterbody can be used for the purposes the state has designated. The calculation must also account for seasonal variation in water quality. The Clean Water Act, section 303, establishes the water quality standards and TMDL programs.
Duffy, Frank H; Als, Heidelise
2012-06-26
The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz). Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks.
Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice
Govey, Peter M.; Zhang, Yue; Donahue, Henry J.
2016-01-01
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104
Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.
Govey, Peter M; Zhang, Yue; Donahue, Henry J
2016-01-01
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.
Keyak, J H; Sigurdsson, S; Karlsdottir, G S; Oskarsdottir, D; Sigmarsdottir, A; Kornak, J; Harris, T B; Sigurdsson, G; Jonsson, B Y; Siggeirsdottir, K; Eiriksdottir, G; Gudnason, V; Lang, T F
2013-11-01
Proximal femoral (hip) strength computed by subject-specific CT scan-based finite element (FE) models has been explored as an improved measure for identifying subjects at risk of hip fracture. However, to our knowledge, no published study has reported the effect of loading condition on the association between incident hip fracture and hip strength. In the present study, we performed a nested age- and sex-matched case-control study in the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort. Baseline (pre-fracture) quantitative CT (QCT) scans of 5500 older male and female subjects were obtained. During 4-7years follow-up, 51 men and 77 women sustained hip fractures. Ninety-seven men and 152 women were randomly selected as controls from a pool of age- and sex-matched subjects. From the QCT data, FE models employing nonlinear material properties computed FE-strength of the left hip of each subject in loading from a fall onto the posterolateral (FPL), posterior (FP) and lateral (FL) aspects of the greater trochanter (patent pending). For comparison, FE strength in stance loading (FStance) and total femur areal bone mineral density (aBMD) were also computed. For all loading conditions, the reductions in strength associated with fracture in men were more than twice those in women (p≤0.01). For fall loading specifically, posterolateral loading in men and posterior loading in women were most strongly associated with incident hip fracture. After adjusting for aBMD, the association between FP and fracture in women fell short of statistical significance (p=0.08), indicating that FE strength provides little advantage over aBMD for identifying female hip fracture subjects. However, in men, after controlling for aBMD, FPL was 424N (11%) less in subjects with fractures than in controls (p=0.003). Thus, in men, FE models of posterolateral loading include information about incident hip fracture beyond that in aBMD. © 2013.
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.
1978-01-01
A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.
Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping
2017-11-03
Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.
Control factors and scale analysis of annual river water, sediments and carbon transport in China.
Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu
2016-05-11
Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m(-2)·a(-1)) to medium spatial scale basins (258 g·m(-2)·a(-1)), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.
Analysis of sediment production from two small semiarid basins in Wyoming
Rankl, J.G.
1987-01-01
Data were collected at two small, semiarid basins in Wyoming to determine the relation between rainfall, runoff, and sediment production. The basins were Dugout Creek tributary and Saint Marys Ditch tributary. Sufficient rainfall and runoff data were collected at Dugout Creek tributary to determine the source of sediment and the dominant sediment production processes. Because runoff from only one storm occurred in Saint Marys Ditch tributary, emphasis of the study was placed on the analysis of data collected at Dugout Creek tributary. At Dugout Creek tributary, detailed measurements were made to establish the source of sediment. To determine the quantity of material removed from headcuts during the study, two headcuts were surveyed. Aerial photographs were used to define movement of all headcuts. The total quantity of sediment removed from all headcuts between September 26, 1982, and September 26, 1983, was estimated to be 1,220 tons, or 15%-25% of the estimated total sediment load passing the streamflow-gaging station. A soil plot was used to sample upland erosion. A rainfall and runoff modeling system was used to evaluate the interaction between the physical processes which control sediment production. The greatest change in computed sediment load was caused by changing the parameter values for equations used to compute the detachment of sediment particles by rainfall and overland flow resulted in very small changes in computed sediment load. The upland areas were the primary source of sediment. A relationship was developed between the peak of storm runoff and the total sediment load for that storm runoff. The sediment concentration used to compute the total sediment load for the storm runoff was determined from sediment samples collected by two automatic pumping samplers. The coefficient of variation of the relationship is 34% with a 0.99 correlation coefficient. (Author 's abstract)
Improved Speed Control System for the 87,000 HP Wind Tunnel Drive
NASA Technical Reports Server (NTRS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
Improved speed control system for the 87,000 HP wind tunnel drive
NASA Astrophysics Data System (ADS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
New Tool to Control and Monitor Weighted Vest Training Load for Sprinting and Jumping in Soccer.
Carlos-Vivas, Jorge; Freitas, Tomás T; Cuesta, Miguel; Perez-Gomez, Jorge; De Hoyo, Moisés; Alcaraz, Pedro E
2018-04-26
Carlos-Vivas, J, Freitas, TT, Cuesta, M, Perez-Gomez, J, De Hoyo, M, and Alcaraz, PE. New tool to control and monitor weighted vest training load for sprinting and jumping in soccer. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to develop 2 regression equations that accurately describe the relationship between weighted vest loads and performance indicators in sprinting (i.e., maximum velocity, Vmax) and jumping (i.e., maximum height, Hmax). Also, this study aimed to investigate the effects of increasing the load on spatio-temporal variables and power development in soccer players and to determine the "optimal load" for sprinting and jumping. Twenty-five semiprofessional soccer players performed the sprint test, whereas a total of 46 completed the vertical jump test. Two different regression equations were developed for calculating the load for each exercise. The following equations were obtained: % body mass (BM) = -2.0762·%Vmax + 207.99 for the sprint and % BM = -0.7156·%Hmax + 71.588 for the vertical jump. For both sprinting and jumping, when the load increased, Vmax and Hmax decreased. The "optimal load" for resisted training using weighted vest was unclear for sprinting and close to BM for vertical jump. This study presents a new tool to individualize the training load for resisted sprinting and jumping using weighted vest in soccer players and to develop the whole force-velocity spectrum according to the objectives of the different periods of the season.
Simulation of conservation practices using the APEX model
USDA-ARS?s Scientific Manuscript database
Information on agricultural Best Management Practices (BMPs) and their effectiveness in controlling agricultural non-point source pollution is crucial in developing Clean Water Act programs such as the Total Maximum Daily Loads for impaired watersheds. A modeling study was conducted to evaluate var...
Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95
Litke, D.W.
1996-01-01
The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to
Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality
Litke, David W.
1999-01-01
Historical information on phosphorus loadings to the environment and the effect on water quality are summarized in this report, which was produced as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. Phosphorus is a water-quality constituent of concern because it is often the limiting nutrient responsible for accelerated eutrophication in water bodies. Phosphorus inputs to the environment have increased since 1950 as the use of phosphate fertilizer, manure, and phosphate laundry detergent increased; however, the manufacture of phosphate detergent for household laundry was ended voluntarily in about 1994 after many States had established phosphate detergent bans. Total phosphorus concentrations in raw wastewater effluent contained about 3 milligrams per liter of total phosphorus during the 1940's, increased to about 11 milligrams per liter at the height of phosphate detergent use (1970), and have currently declined to about 5 milligrams per liter. However, in some cases, tertiary wastewater treatment still is needed to effectively improve water quality of streams. Downward trends in phosphorus concentrations since 1970 have been identified in many streams, but median total phosphorus concentrations still exceed the recommended limit of 0.1 milligram per liter across much of the Nation. Data from the NAWQA Program are representative of a variety of phosphorus-control measures, and, therefore, may be used to evaluate the effects of various control strategies. Current areas of concern include: evaluation of the effects of increased manure loadings of phosphorus on soil phosphorus and, subsequently, on ground water and subsurface runoff; determination of point-source and nonpoint-source components of phosphorus loads by geographic modeling and hydrologic separation techniques; and development of methods or indices to evaluate nutrient impairment in streams and rivers to serve as a basis for developing phosphorus criteria or standards.
Vu, Huong Thi Thu; Yoshida, Lay Myint; Suzuki, Motoi; Nguyen, Hien Anh Thi; Nguyen, Cat Dinh Lien; Nguyen, Ai Thi Thuy; Oishi, Kengo; Yamamoto, Takeshi; Watanabe, Kiwao; Vu, Thiem Dinh
2011-01-01
The interplay between nasopharyngeal bacterial carriage, viral coinfection, and lower respiratory tract infections (LRTIs) is poorly understood. We explored this association in Vietnamese children aged less than 5 years. A hospital-based case-control study of pediatric LRTIs was conducted in Nha Trang, Vietnam. A total of 550 hospitalized children (274 radiologically confirmed pneumonia [RCP] and 276 other LRTIs) were enrolled and 350 healthy controls were randomly selected from the community. Polymerase chain reaction-based methods were used to measure bacterial loads of Streptococcus pneumoniae (SP), Haemophilus influenzae, and Moraxella catarrhalis and to detect 13 respiratory viruses and bacterial serotypes in nasopharyngeal samples of study participants. The median nasopharyngeal bacterial load of SP was substantially higher in children with RCP compared with healthy controls or children with other LRTIs (P < 0.001). SP load was 15-fold higher in pneumonia children with viral coinfection compared with those children without viral coinfection (1.4 x 10⁷/mL vs. 9.1 x 10⁵/mL; P 0.0001). SP load was over 200-fold higher in serotypeable SP compared with nontypeable SP (2.5 x 10⁶/mL vs. 1 x 10⁴/mL; P < 0.0001). These associations were independent of potential confounders in multiple regression models. No clear association was found between nasopharyngeal load of Haemophilus influenzae or Moraxella catarrhalis and viral coinfection in either RCP or other LRTIs groups. An increased load of SP in the nasopharynx was associated with RCP, viral coinfection, and presence of pneumococcal capsule.
Corsi, Steven R.; Horwatich, Judy A.; Rutter, Troy D.; Bannerman, Roger T.
2013-01-01
Hydrologic and water-quality data were collected at Bower Creek during the periods before best-management practices (BMPs), and after BMPs were installed for evaluation of water-quality improvements. The monitoring was done between 1990 and 2009 with the pre-BMP period ending in July 1994 and the post-BMP period beginning in October 2006. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Water-quality evaluations included base-flow concentrations and storm loads for total suspended solids, total phosphorus, and ammonia nitrogen. The only reductions detected between the base-flow samples of the pre- and post-BMP periods were in median concentrations of total phosphorus from base-flow samples, but not for total suspended solids or dissolved ammonia nitrogen. Differences in storm loads for the three water-quality constituents monitored were not observed during the study period.
Development of a Knowledge-Based System Approach for Decision Making in Construction Projects
1992-05-01
a generic model for an administrative facility and medical facility with predefined fixed building systems based on Air Force criteria and past...MAINTENANCE HANGAR (MEDIUM BAY) CORROSION CONTROL HANGAR (HIGH BAY) FUEL SYSTEM MAINTENANCE HANGAR (MEDIUM BAY) MEDICAL MODEL 82 Table 5-1--continued...BUILDING SUPPORT MEDICAL LOGISTICS MEDICAL TOTAL 85 Table 5-2--continued MISSILE ASSEMBLY AND MAINTENANCE BUILDING TOTAL MISSILE LOADING AND UNLOADING
Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm.
Gosau, Martin; Hahnel, Sebastian; Schwarz, Frank; Gerlach, Till; Reichert, Torsten E; Bürgers, Ralf
2010-08-01
The aim of this human in vivo pilot study was to evaluate the efficacy of six antimicrobial agents on the surface decontamination of an oral biofilm attached to titanium implants. For in vivo biofilm formation, we fixed titanium specimens to individual removable acrylic upper jaw splints (14 specimens in every splint), which were worn by four volunteers overnight for 12 h. The specimens were then treated with different antimicrobial agents for 1 min (Sodium hypochlorite, Hydrogen peroxide 3%, Chlorhexidingluconate 0.2%, Plax, Listerine, citric acid 40%). Afterwards, we quantified the total bacterial load and the viability of adhering bacteria by live or dead cell labelling in combination with fluorescence microscopy. The total bacterial load on the titanium surfaces was significantly higher after incubation in the control solution phosphate-buffered saline (PBS) than after disinfection in sodium hypochlorite, hydrogen peroxide, chlorhexidine, Plax, Listerine, and citric acid. Furthermore, a significantly lower ratio between dead and total adhering bacteria (bactericidal effect) was found after incubation in control PBS, Plax mouth rinse, and citric acid than after incubation in sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine. All tested antiseptics seem to be able to reduce the total amount of microorganisms accumulating on titanium surfaces. Furthermore, sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine showed a significant bactericidal effect against adhering bacteria.
Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-05-28
Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.
2004-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total phosphorus model include discharges for municipal wastewater-treatment facilities and pulp and paper facilities, developed land area, agricultural area, and forested area. For total phosphorus, loss rates were significant for reservoirs with surface areas of 10 square kilometers or less, and in streams with flows less than or equal to 2.83 cubic meters per second. Applications of SPARROW for evaluating nutrient loading in New England waters include estimates of the spatial distributions of total nitrogen and phosphorus yields, sources of the nutrients, and the potential for delivery of those yields to receiving waters. This information can be used to (1) predict ranges in nutrient levels in surface waters, (2) identify the environmental variables that are statistically significant predictors of nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.
Bone Graft Substitute Provides Metaphyseal Fixation for a Stemless Humeral Implant.
Kim, Myung-Sun; Kovacevic, David; Milks, Ryan A; Jun, Bong-Jae; Rodriguez, Eric; DeLozier, Katherine R; Derwin, Kathleen A; Iannotti, Joseph P
2015-07-01
Stemless humeral fixation has become an alternative to traditional total shoulder arthroplasty, but metaphyseal fixation may be compromised by the quality of the trabecular bone that diminishes with age and disease, and augmentation of the fixation may be desirable. The authors hypothesized that a bone graft substitute (BGS) could achieve initial fixation comparable to polymethylmethacrylate (PMMA) bone cement. Fifteen fresh-frozen human male humerii were randomly implanted using a stemless humeral prosthesis, and metaphyseal fixation was augmented with either high-viscosity PMMA bone cement (PMMA group) or a magnesium-based injectable BGS (OsteoCrete; Bone Solutions Inc, Dallas, Texas) (OC group). Both groups were compared with a control group with no augmentation. Initial stiffness, failure load, failure displacement, failure cycle, and total work were compared among groups. The PMMA and OC groups showed markedly higher failure loads, failure displacements, and failure cycles than the control group (P<.01). There were no statistically significant differences in initial stiffness, failure load, failure displacement, failure cycle, or total work between the PMMA and OC groups. The biomechanical properties of magnesium-based BGS fixation compared favorably with PMMA bone cement in the fixation of stemless humeral prostheses and may provide sufficient initial fixation for this clinical application. Future work will investigate the long-term remodeling characteristics and bone quality at the prosthetic-bone interface in an in vivo model to evaluate the clinical efficacy of this approach. Copyright 2015, SLACK Incorporated.
Risch, Martin R.
2005-01-01
Data from this study have implications for a Total Maximum Daily Load (TMDL) for mercury in the Grand Calumet River/Indiana Harbor Canal. Comparisons of data from this study with historical data do not show substantial changes in the distribution of mercury in the study area from 1994 through 2002. Treated municipal effluent had larger mercury concentrations than industrial effluent and presents a potential for larger mercury loads that could be controlled to achieve a TMDL, based on concentration. Mercury in ground-water discharge may be difficult to control to achieve a TMDL because of its diffuse and widespread distribution.
Soltani, Maryam; Kerachian, Reza
2018-04-15
In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scala, Rudy; Cucchi, Alessandro; Ghensi, Paolo; Vartolo, Francesco
2012-01-01
The purpose of this controlled prospective study was to compare the satisfaction of patients rehabilitated with an immediately loaded implant-supported prosthesis and patients rehabilitated with a conventional denture in the mandible. Selected mandibular partially or totally edentulous patients were included in this prospective study. Patients' mandibles were completely rehabilitated with immediately loaded implants supporting a screw-retained full-arch prosthesis (test group) or with a conventional denture (control group). The Satisfaction Profile (SAT-P), which investigates a number of psychologic aspects related to the function and esthetics of the stomatognathic apparatus, was administered to each patient 1 month before and 3 months after provisional prosthetic rehabilitation. The questionnaire comprised four different SAT-P items: quality of eating, eating behavior, mood, and self-confidence. A visual analog scale was used to elicit patient responses. SAT-P item scores were analyzed statistically by means of the Student t test and the chi-square test (or the Mann-Whitney nonparametric test), with P < .05 considered significant. Forty-one patients were consecutively treated with 205 immediately loaded implants supporting a screw-retained full-arch prosthesis (test group); 38 patients were consecutively treated with a conventional denture (control group). Statistically significant differences were observed between the test and control groups for all four SAT-P items. The test group reported greater satisfaction for all items versus the control group. In both groups, the differences between pre- and postrehabilitation values were statistically significant. Each patient was satisfied with their treatment outcomes, but patients who received an implant-supported prosthesis were more satisfied than the patients who received a conventional denture. The results suggest that a screw-retained full-arch prosthesis on immediately loaded implants is a predictable means of enhancing patient satisfaction.
Examining HIV Viral Load in a Matched Cohort of HIV Positive Individuals With and Without Psoriasis.
Wu, Jashin J; Gilbert, Kathleen E; Batech, Michael; Manalo, Iviensan F; Towner, William J; Raposo, Rui André Saraiva; Nixon, Douglas F; Liao, Wilson
2017-04-01
BACKGROUND: HIV-associated psoriasis is well-documented. Genetic, cellular, and cytokine profiles have been used as evidence to suggest psoriasis activates antiviral pathways. There has been a lack of epidemiologic evidence investigating whether psoriasis patients have lower HIV viral counts compared to non-psoriasis patients.
OBJECTIVE: Compare the viral load set point of HIV positive patients with and without psoriasis.
METHODS: A retrospective matched cohort study of HIV positive patients with and without psoriasis using the Kaiser Permanente Southern California Health Plan database.
RESULTS: We identified 101 HIV-positive psoriasis cases; 19 met inclusion criteria and were matched with 3-5 control patients; 94 total patients were analyzed. The mean age was 41.4 (12.07) years and 83% were male. Overall, the median log of the viral load of cases was slightly higher than controls (4.3 vs 4.2; P less than 0.01).
CONCLUSIONS: The serum viral load set point of patients with HIV and psoriasis was slightly higher than the viral load set point of HIV patients without psoriasis.
J Drugs Dermatol. 2017;16(4):372-377.
.Suzuki, Chika
2016-01-30
Tokyo Bay, Ise Bay, and the Seto Inland Sea are the total pollutant load control target areas in Japan. A significant correlation between the incidence of red tides and water quality has been observed in the Seto Inland Sea (Honjo, 1991). However, while red tides also occur in Ise Bay and Tokyo Bay, similar correlations have not been observed. Hence, it is necessary to understand what factors cause red tides to effectively manage these semi-closed systems. This study aims to investigate the relationship between the dynamics of the Red Tide Index and nitrogen regulation as well as phosphorus regulation, even in Ise Bay where, unlike Tokyo Bay, there are few observation items, by selecting a suitable objective variable. The introduction of a new technique that uses the Red Tide Index has revealed a possibility that the total pollution load control has influenced the dynamics of red tide blooms in Ise Bay. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ontiveros-Valencia, Aura; Zhou, Chen; Ilhan, Zehra Esra; de Saint Cyr, Louis Cornette; Krajmalnik-Brown, Rosa; Rittmann, Bruce E
2017-11-15
Molecular microbiology tools (i.e., 16S rDNA gene sequencing) were employed to elucidate changes in the microbial community structure according to the total electron acceptor loading (controlled by influent flow rate and/or medium composition) in a H 2 -based membrane biofilm reactor evaluated for removal of hexavalent uranium. Once nitrate, sulfate, and dissolved oxygen were replaced by U(VI) and bicarbonate and the total acceptor loading was lowered, slow-growing bacteria capable of reducing U(VI) to U(IV) dominated in the biofilm community: Replacing denitrifying bacteria Rhodocyclales and Burkholderiales were spore-producing Clostridiales and Natranaerobiales. Though potentially competing for electrons with U(VI) reducers, homo-acetogens helped attain steady U(VI) reduction, while methanogenesis inhibited U(VI) reduction. U(VI) reduction was reinstated through suppression of methanogenesis by addition of bromoethanesulfonate or by competition from SRB when sulfate was re-introduced. Predictive metagenome analysis further points out community changes in response to alterations in the electron-acceptor loading: Sporulation and homo-acetogenesis were critical factors for strengthening stable microbial U(VI) reduction. This study documents that sporulation was important to long-term U(VI) reduction, whether or not microorganisms that carry out U(VI) reduction mediated by cytochrome c 3 , such as SRB and ferric-iron-reducers, were inhibited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seidler, Andreas; Bolm-Audorff, Ulrich; Abolmaali, Nasreddin; Elsner, Gine
2008-01-01
Objectives To examine the dose-response relationship between cumulative exposure to kneeling and squatting as well as to lifting and carrying of loads and symptomatic knee osteoarthritis (OA) in a population-based case-control study. Methods In five orthopedic clinics and five practices we recruited 295 male patients aged 25 to 70 with radiographically confirmed knee osteoarthritis associated with chronic complaints. A total of 327 male control subjects were recruited. Data were gathered in a structured personal interview. To calculate cumulative exposure, the self-reported duration of kneeling and squatting as well as the duration of lifting and carrying of loads were summed up over the entire working life. Results The results of our study support a dose-response relationship between kneeling/squatting and symptomatic knee osteoarthritis. For a cumulative exposure to kneeling and squatting > 10.800 hours, the risk of having radiographically confirmed knee osteoarthritis as measured by the odds ratio (adjusted for age, region, weight, jogging/athletics, and lifting or carrying of loads) is 2.4 (95% CI 1.1–5.0) compared to unexposed subjects. Lifting and carrying of loads is significantly associated with knee osteoarthritis independent of kneeling or similar activities. Conclusion As the knee osteoarthritis risk is strongly elevated in occupations that involve both kneeling/squatting and heavy lifting/carrying, preventive efforts should particularly focus on these "high-risk occupations". PMID:18625053
Real-Time Load-Side Control of Electric Power Systems
NASA Astrophysics Data System (ADS)
Zhao, Changhong
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Drake, Jennifer; Bradford, Andrea; Van Seters, Tim
2014-06-15
This study examined the spring, summer and fall water quality performance of three partial-infiltration permeable pavement (PP) systems and a conventional asphalt pavement in Ontario. The study, conducted between 2010 and 2012, compared the water quality of effluent from two Interlocking Permeable Concrete Pavements (AquaPave(®) and Eco-Optiloc(®)) and a Hydromedia(®) Pervious Concrete pavement with runoff from an Asphalt control pavement. The usage of permeable pavements can mitigate the impact of urbanization on receiving surface water systems through quantity control and stormwater treatment. The PP systems provided excellent stormwater treatment for petroleum hydrocarbons, total suspended solids, metals (copper, iron, manganese and zinc) and nutrients (total-nitrogen and total-phosphorus) by reducing event mean concentrations (EMC) as well as total pollutant loadings. The PPs significantly reduced the concentration and loading of ammonia (NH4(+)+NH3), nitrite (NO2(-)) and organic-nitrogen (Org-N) but increased the concentration and loading of nitrate (NO3(-)). The PP systems had mixed performances for the treatment of phosphate (PO4(3-)). The PP systems increased the concentration of sodium (Na) and chloride (Cl) but EMCs remained well below recommended levels for drinking water quality. Relative to the observed runoff, winter road salt was released more slowly from the PP systems resulting in elevated spring and early-summer Cl and Na concentrations in effluent. PP materials were found to introduce dissolved solids into the infiltrating stormwater. The release of these pollutants was verified by additional laboratory scale testing of the individual pavement and aggregate materials at the University of Guelph. Pollutant concentrations were greatest during the first few months after construction and declined rapidly over the course of the study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease
NASA Astrophysics Data System (ADS)
2014-01-01
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease.
Cruchaga, Carlos; Karch, Celeste M; Jin, Sheng Chih; Benitez, Bruno A; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John; Bertelsen, Sarah; Jeng, Amanda T; Cooper, Breanna; Skorupa, Tara; Carrell, David; Levitch, Denise; Hsu, Simon; Choi, Jiyoon; Ryten, Mina; Sassi, Celeste; Bras, Jose; Gibbs, Raphael J; Hernandez, Dena G; Lupton, Michelle K; Powell, John; Forabosco, Paola; Ridge, Perry G; Corcoran, Christopher D; Tschanz, JoAnn T; Norton, Maria C; Munger, Ronald G; Schmutz, Cameron; Leary, Maegan; Demirci, F Yesim; Bamne, Mikhil N; Wang, Xingbin; Lopez, Oscar L; Ganguli, Mary; Medway, Christopher; Turton, James; Lord, Jenny; Braae, Anne; Barber, Imelda; Brown, Kristelle; Pastor, Pau; Lorenzo-Betancor, Oswaldo; Brkanac, Zoran; Scott, Erick; Topol, Eric; Morgan, Kevin; Rogaeva, Ekaterina; Singleton, Andy; Hardy, John; Kamboh, M Ilyas; George-Hyslop, Peter St; Cairns, Nigel; Morris, John C; Kauwe, John S K; Goate, Alison M
2014-01-23
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Spivey, Benjamin James
2011-07-01
Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.
Wang, Zhe; Lv, Haoliang; Zhou, Xiaojun; Chen, Zhaomeng; Yang, Yong
2018-06-21
Dual-motor Electric Drive Tracked Vehicles (DDTVs) have attracted increasing attention due to their high transmission efficiency and economical fuel consumption. A test bench for the development and validation of new DDTV technologies is necessary and urgent. How to load the vehicle on a DDTV test bench exactly the same as on a real road is a crucial issue when designing the bench. This paper proposes a novel dynamic load emulation method to address this problem. The method adopts dual dynamometers to simulate both the road load and the inertia load that are imposed on the dual independent drive systems. The vehicle’s total inertia equivalent to the drive wheels is calculated with separate consideration of vehicle body, tracks and road wheels to obtain a more accurate inertia load. A speed tracking control strategy with feedforward compensation is implemented to control the dual dynamometers, so as to make the real-time dynamic load emulation possible. Additionally, a MATLAB/Simulink model of the test bench is built based on a dynamics analysis of the platform. Experiments are finally carried out on this test bench under different test conditions. The outcomes show that the proposed load emulation method is effective, and has good robustness and adaptability to complex driving conditions. Besides, the accuracy of the established test bench model is also demonstrated by comparing the results obtained from the simulation model and experiments.
Equilibrium paths of an imperfect plate with respect to its aspect ratio
NASA Astrophysics Data System (ADS)
Psotny, Martin
2017-07-01
The stability analysis of a rectangular plate loaded in compression is presented, a specialized code based on FEM has been created. Special finite element with 48 degrees of freedom has been used for analysis. The nonlinear finite element method equations are derived from the variational principle of minimum of total potential energy. To trace the complete nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used, load versus displacement control was changed during the calculation process. The peculiarities of the effects of the initial imperfections on the load-deflection paths are investigated with respect to aspect ratio of the plate. Special attention is paid to the influence of imperfections on the post-critical buckling mode.
Ryberg, Karen R.
2017-01-01
Attribution of the causes of trends in nutrient loading is often limited to correlation, qualitative reasoning, or references to the work of others. This paper represents efforts to improve causal attribution of water-quality changes. The Red River of the North basin provides a regional test case because of international interest in the reduction of total phosphorus loads and the availability of long-term total phosphorus data and ancillary geospatial data with the potential to explain changes in water quality over time. The objectives of the study are to investigate structural equation modeling methods for application to water-quality problems and to test causal hypotheses related to the drivers of total phosphorus loads over the period 1970 to 2012. Multiple working hypotheses that explain total phosphorus loads and methods for estimating missing ancillary data were developed, and water-quality related challenges to structural equation modeling (including skewed data and scaling issues) were addressed. The model indicates that increased precipitation in season 1 (November–February) or season 2 (March–June) would increase total phosphorus loads in the basin. The effect of agricultural practices on total phosphorus loads was significant, although the effect is about one-third of the effect of season 1 precipitation. The structural equation model representing loads at six sites in the basin shows that climate and agricultural practices explain almost 60% of the annual total phosphorus load in the Red River of the North basin. The modeling process and the unexplained variance highlight the need for better ancillary long-term data for causal assessments.
Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia
Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao
2014-01-01
Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.
Nonlinear Analysis of an Unstable Bench Press Bar Path and Muscle Activation.
Lawrence, Michael A; Leib, Daniel J; Ostrowski, Stephanie J; Carlson, Lara A
2017-05-01
Lawrence, MA, Leib, DJ, Ostrowski, SJ, and Carlson, LA. Nonlinear analysis of an unstable bench press bar path and muscle activation. J Strength Cond Res 31(5): 1206-1211, 2017-Unstable resistance exercises are typically performed to improve the ability of stabilizing muscles to maintain joint integrity under a load. The purpose of this study was to examine the effects of an unstable load (as provided by a flexible barbell and a load suspended by elastic bands) on the bar path, the primary musculature, and stabilizing musculature while bench pressing using nonlinear analyses. Fifteen resistance-trained men (age 24.2 ± 2.7 years, mass 84.1 ± 12.0 kg, height 1.77 ± 0.05 m, 9.9 ± 3.4 years of lifting experience, and bench press 1 repetition maximum (RM) 107.5 ± 25.9 kg) volunteered for this study. Subjects pressed 2 sets of 5 repetitions in both stable (total load 75% 1RM) and unstable (total load 60% 1RM) conditions using a standard barbell and a flexible Earthquake bar, respectively. Surface electromyography was used to detect muscle activity of primary movers (pectoralis major, anterior deltoid, and triceps) and bar stabilizing musculature (latissimus dorsi, middle and posterior deltoid, biceps brachii, and upper trapezius). During the unstable condition, the bar moved in more ways and was less predictable in the mediolateral and anteroposterior directions. However, the muscle activation patterns of all muscles were more constrained with the unstable barbell. These findings suggest that the unstable condition was more challenging to control, but subjects controlled the instability by contracting their muscles in a more stable pattern or "staying tight" throughout the exercise.
Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John
2014-01-01
Simple Summary Transport is an inevitable process in the modern, multi-site swine industry. Pigs do not have efficient physiological means (such as sweating) to cool themselves. Therefore, being transported in hot weather can cause heat stress and even death. Sprinkling the pigs and/or bedding may facilitate cooling, thereby improving well-being and survivability of pigs arriving at the plant. Abstract This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons. PMID:26480035
Effect of variable body mass on plantar foot pressure and off-loading device efficacy.
Pirozzi, Kelly; McGuire, James; Meyr, Andrew J
2014-01-01
An increasing body of evidence has implicated obesity as having a negative effect on the development, treatment, and outcome of lower extremity pathologic entities, including diabetic foot disease. The objective of the present study was to increase the body of knowledge with respect to the effects of obesity on foot function. Specifically, we attempted to (1) describe the relationship between an increasing body mass index (BMI) on plantar foot pressures during gait, and (2) evaluate the efficacy of commonly prescribed off-loading devices with an increasing BMI. A repeated measures design was used to compare the peak plantar foot pressures under multiple test conditions, with the volunteers acting as their own controls. The primary outcome measure was the mean peak plantar pressure in the heel, midfoot, forefoot, and first metatarsal, and the 2 variables were modification of patient weight (from "normal" BMI to "overweight," "obese," and "morbidly obese") and footwear (from an athletic sneaker to a surgical shoe, controlled ankle motion walker, and total contact cast). Statistically significant increases in the peak plantar pressures were observed with increasing volunteer BMI weight class, regardless of the off-loading device used. The present investigation has provided unique and specific data with respect to the changes that occur in the peak plantar pressures with variable BMIs across different anatomic levels and with commonly used off-loading devices. From our results, we have concluded that although the plantar pressures increase with increasing weight, it appears that at least some reduction in pressure can be achieved with an off-loading device, most effectively with the total contact cast, regardless of the patient's BMI. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Mullaney, John R.; Schwarz, Gregory E.
2013-01-01
The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year during water years 1999–2009. Total annual loads from the monitored basins represent 63 to 74 percent of the total load. Computed annual nitrogen loads from four stations near the Massachusetts border with Connecticut represent 52 to 54 percent of the total nitrogen load during water years 2008–9, the only years with data for all the border sites. During the latter part of the 1999–2009 study period, total nitrogen loads to Long Island Sound from the study area appeared to increase slightly. The apparent increase in loads may be due to higher than normal streamflows, which consequently increased nonpoint nitrogen loads during the study, offsetting major reductions of nitrogen from wastewater-treatment facilities. Nitrogen loads from wastewater treatment facilities declined as much as 2.3 million pounds per year in areas of Connecticut upstream from the monitoring stations and as much as 5.8 million pounds per year in unmonitored areas downstream in coastal and central Connecticut.
Faure, A M; Fischer, K; Dawson-Hughes, B; Egli, A; Bischoff-Ferrari, H A
2017-12-01
Diet-related mild metabolic acidosis may play a role in the development of sarcopenia. We investigated the relationship between dietary acid load and total lean body mass in male and female seniors age ≥ 60 years. We found that a more alkaline diet was associated with a higher %TLM only among senior women. The aim of this study was to determine if dietary acid load is associated with total lean body mass in male and female seniors age ≥ 60 years. We investigated 243 seniors (mean age 70.3 ± 6.3; 53% women) age ≥ 60 years who participated in the baseline assessment of a clinical trial on vitamin D treatment and rehabilitation after unilateral knee replacement due to severe knee osteoarthritis. The potential renal acid load (PRAL) was assessed based on individual nutrient intakes derived from a food frequency questionnaire. Body composition including percentage of total lean body mass (%TLM) was determined using dual-energy X-ray absorptiometry. Cross-sectional analyses were performed for men and women separately using multivariable regression models controlling for age, physical activity, smoking status, protein intake (g/kg BW per day), energy intake (kcal), and serum 25-hydroxyvitamin D concentration. We included a pre-defined subgroup analysis by protein intake (< 1 g/kg BW day, > 1 g/kg BW day) and by age group (< 70 years, ≥ 70 years). Adjusted %TLM decreased significantly across PRAL quartiles only among women (P trend = 0.004). Moreover, in subgroup analysis, the negative association between the PRAL and %TLM was most pronounced among women with low protein intake (< 1 g/kg BW per day) and age below 70 years (P = 0.002). Among men, there was no association between the PRAL and %TLM. The association between dietary acid load and %TLM seems to be gender-specific, with a negative impact on total lean mass only among senior women. Therefore, an alkaline diet may be beneficial for preserving total lean mass in senior women, especially in those with low protein intake.
Stormwater quality processes for three land-use areas in Broward County, Florida
Mattraw, H.C.; Miller, Robert A.
1981-01-01
Systematic collection and chemical analysis of stormwater runoff samples from three small urban areas in Broward County, Florida, were obtained between 1974 and 1977. Thirty or more runoff-constituent loads were computed for each of the homogeneous land-use areas. The areas sampled were single family residential, highway, and a commercial shopping center. Rainfall , runoff, and nutrient and metal analyses were stored in a data-management system. The data-management system permitted computation of loads, publication of basic-data reports and the interface of environmental and load information with a comprehensive statistical analysis system. Seven regression models relating water quality loads to characteristics of peak discharge, antecedent conditions, season, storm duration and rainfall intensity were constructed for each of the three sites. Total water-quality loads were computed for the collection period by summing loads for individual storms. Loads for unsampled storms were estimated by using regression models and records of storm precipitation. Loadings, pounds per day per acre of hydraulically effective impervious area, were computed for the three land-use types. Total nitrogen, total phosphorus, and total residue loadings were highest in the residential area. Chemical oxygen demand and total lead loadings were highest in the commercial area. Loadings of atmospheric fallout on each watershed were estimated by bulk precipitation samples collected at the highway and commercial site. (USGS)
Danz, Mari E.; Corsi, Steven R.; Graczyk, David J.; Bannerman, Roger T.
2010-01-01
Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area Ecoregion, the Northern Lakes and Forests Ecoregion, the North Central Hardwoods Ecoregion, and the Southeastern Wisconsin Till Plains Ecoregion. The Northern Lakes and Forests and the North Central Hardwoods Ecoregions were combined into one region for analysis due to a lack of sufficient data in each region. Urban watersheds, all located in the Southeastern Wisconsin Till Plains, were analyzed separately from rural watersheds as the Rural Southeastern Wisconsin Till Plains region and the Urban Southeastern Wisconsin Till Plains region. Results provide information on the distribution of loadings and streamflow between base flow and stormflow, the timing of loadings and streamflow throughout the year, and information regarding the number of days in which the majority of the annual loading is transported. The average contribution to annual solids loading from stormflow periods for the Driftless Area Ecoregion was 84 percent, the Northern Lakes and Forests/North Central Hardwoods region was 71 percent, the Rural Southeastern Wisconsin Till Plains region was 70 percent, and the Urban Southeastern Wisconsin Till Plains region was 90 percent. The average contributions to annual total phosphorus loading from stormflow periods were 72, 49, 61, and 76 percent for each of the respective regions. The average contributions to annual streamflow from stormflow periods are 20, 23, 31, and 50 percent for each of the respective regions. In all regions, the most substantial loading contributions for solids were in the late winter (February through March), spring (April through May), and early summer (June through July), with fall (October through November) and early winter (December through January) contributing the smallest loadings. The Northern Lakes and Forests/North Central Hardwoods region had some substantial loading in September. There was a similar pattern for total phosphorus loading in all regions, with the pattern somewhat less pronounced in urban watersheds. As with the loading results, average monthly streamflow values were greatest in late winter, spring, and early summer, with the lowest values typically in fall and early winter. Loading contributions were greater from stormflow than from base flow in all instances, except total phosphorus in the Northern Lakes and Forests/North Central Hardwoods region, which had equal or greater base-flow contribution for several months. Base flow constituted a greater percentage of the total streamflow than stormflow in all rural watersheds for all regions. Only a few storms each year dominated the annual loading totals for solids and total phosphorus. When daily loading values were ranked for the year, all regions reached 50 percent of the annual solids loading in the 5 highest loading days and nearly 50 percent of the annual total phosphorus loading in the 14 highest loading days.
Muthuswamy, P P; Lopez-Majano, V; Ranginwala, M; Trainor, W D
1987-09-01
The relationship between the level of serum angiotensin converting enzyme (SACE) and the total body granuloma load in patients with sarcoidosis was studied in two groups using SACE levels and total body gallium67 scans. The study group consisted of 22 patients with SACE levels greater than or equal to 100 U/ml (EH-SACE group) and the control group consisted of 24 patients consecutively diagnosed to have sarcoidosis in a one year period with SACE level of less than 80 U/ml. The average number of organs involved in the EH-SACE group was 3.9 +/- 1 compared to 2.3 +/- 1 in the control group (p less than 0.0001). The incidence of extra pulmonary organ involvement in the EH-SACE group was 2.2 +/- 1 organs compared to 1.0 + 0.8 in the control group (p less than 0.0002). The SACE level was correlated with the number of organs involved for all patients with sarcoidosis (r = .55; p less than .0001). Following corticosteroid therapy for 39 +/- 41 weeks the SACE dropped to 64 +/- 45 units in the EH-SACE group. But it took only 13 +/- 10 weeks to normalize the SACE level to 27 +/- 9 units in the control group. The EH-SACE group patients were followed for 114 +/- 64 weeks and 73% of them still have active sarcoidosis requiring repeated cycles of corticosteroid therapy, while after 42 +/- 23 weeks of follow up only 10% of patients from the control group were still on therapy.(ABSTRACT TRUNCATED AT 250 WORDS)
2012-01-01
Background The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Methods Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Results Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz). Conclusions Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks. PMID:22730909
Buoyancy-corrected gravimetric analysis of lightly loaded filters.
Rasmussen, Pat E; Gardner, H David; Niu, Jianjun
2010-09-01
Numerous sources of uncertainty are associated with the gravimetric analysis of lightly loaded air filter samples (< 100 microg). The purpose of the study presented here is to investigate the effectiveness and limitations of air buoyancy corrections over experimentally adjusted conditions of temperature (21-25 degrees C) and relative humidity (RH) (16-60% RH). Conditioning (24 hr) and weighing were performed inside the Archimedes M3 environmentally controlled chamber. The measurements were performed using 20 size-fractionated samples of resuspended house dust loaded onto Teflo (PTFE) filters using a Micro-Orifice Uniform Deposit Impactor representing a wide range of mass loading (7.2-3130 microg) and cut sizes (0.056-9.9 microm). By maintaining tight controls on humidity (within 0.5% RH of control setting) throughout pre- and postweighing at each stepwise increase in RH, it was possible to quantify error due to water absorption: 45% of the total mass change due to water absorption occurred between 16 and 50% RH, and 55% occurred between 50 and 60% RH. The buoyancy corrections ranged from -3.5 to +5.8 microg in magnitude and improved relative standard deviation (RSD) from 21.3% (uncorrected) to 5.6% (corrected) for a 7.2 microg sample. It is recommended that protocols for weighing low-mass particle samples (e.g., nanoparticle samples) should include buoyancy corrections and tight temperature/humidity controls. In some cases, conditioning times longer than 24 hr may be warranted.
Munshi, M N; Stone, A; Fink, L; Fonseca, V
1996-01-01
In the setting of an outpatient diabetic clinic, we determined whether macrovascular disease in patients with diabetes mellitus is associated with hyperhomocysteinemia (elevated plasma homocysteine [H(e)] concentrations) following a methionine load. Methionine-load tests were performed in 18 healthy controls, 11 diabetics without vascular disease (five insulin-dependent [IDDM] and six non-insulin-dependent [NIDDM]); and 17 diabetics with vascular disease (five IDDM and 12 NIDDM). All subjects were male, and there was no significant difference in mean age among the three groups. We measured plasma H(e) concentrations before and 2, 4, 6, 8, and 24 hours after an oral methionine load. Hyperhomocysteinemia (peak plasma H(e) concentration > control mean +/- 2 SD) occurred with significantly greater frequency (seven of 18, 39%) in patients with NIDDM as compared with age-matched controls (7%), being more common in those with macrovascular disease (five of 12, 41%). The area under the curve (AUC) over 24 hours, reflecting the total period of exposure to H(e), was also elevated with greater frequency in patients with NIDDM and macrovascular disease (33%) as compared with controls (0%). We conclude that hyperhomocysteinemia is associated with macrovascular disease in a significant proportion of patients with NIDDM. Further investigation of this association may determine whether hyperhomocysteinemia contributes to the increased frequency and accelerated clinical course of vascular disease in patients with diabetes mellitus.
Limitations of subjective cognitive load measures in simulation-based procedural training.
Naismith, Laura M; Cheung, Jeffrey J H; Ringsted, Charlotte; Cavalcanti, Rodrigo B
2015-08-01
The effective implementation of cognitive load theory (CLT) to optimise the instructional design of simulation-based training requires sensitive and reliable measures of cognitive load. This mixed-methods study assessed relationships between commonly used measures of total cognitive load and the extent to which these measures reflected participants' experiences of cognitive load in simulation-based procedural skills training. Two groups of medical residents (n = 38) completed three questionnaires after participating in simulation-based procedural skills training sessions: the Paas Cognitive Load Scale; the NASA Task Load Index (TLX), and a cognitive load component (CLC) questionnaire we developed to assess total cognitive load as the sum of intrinsic load (how complex the task is), extraneous load (how the task is presented) and germane load (how the learner processes the task for learning). We calculated Pearson's correlation coefficients to assess agreement among these instruments. Group interviews explored residents' perceptions about how the simulation sessions contributed to their total cognitive load. Interviews were audio-recorded, transcribed and subjected to qualitative content analysis. Total cognitive load scores differed significantly according to the instrument used to assess them. In particular, there was poor agreement between the Paas Scale and the TLX. Quantitative and qualitative findings supported intrinsic cognitive load as synonymous with mental effort (Paas Scale), mental demand (TLX) and task difficulty and complexity (CLC questionnaire). Additional qualitative themes relating to extraneous and germane cognitive loads were not reflected in any of the questionnaires. The Paas Scale, TLX and CLC questionnaire appear to be interchangeable as measures of intrinsic cognitive load, but not of total cognitive load. A more complete understanding of the sources of extraneous and germane cognitive loads in simulation-based training contexts is necessary to determine how best to measure and assess their effects on learning and performance outcomes. © 2015 John Wiley & Sons Ltd.
Zimmerman, Marc J.; Savoie, Jennifer G.
2013-01-01
Wastewater discharges to the Assabet River contribute substantial amounts of phosphorus, which support accumulations of nuisance aquatic plants that are most evident in the river’s impounded reaches during the growing season. To restore the Assabet River’s water quality and aesthetics, the U.S. Environmental Protection Agency required the major wastewater-treatment plants in the drainage basin to reduce the amount of phosphorus discharged to the river by 2012. From October 2008 to December 2010, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection and in support of the requirements of the Total Maximum Daily Load for Phosphorus, collected weekly flow-proportional, composite samples for analysis of concentrations of total phosphorus and orthophosphorus upstream and downstream from each of the Assabet River’s two largest impoundments: Hudson and Ben Smith. The purpose of this monitoring effort was to evaluate conditions in the river before enhanced treatment-plant technologies had effected reductions in phosphorus loads, thereby defining baseline conditions for comparison with conditions following the mandated load reductions. The locations of sampling sites with respect to the impoundments enabled examination of the impoundments’ effects on phosphorus sequestration and on the transformation of phosphorus between particulate and dissolved forms. The study evaluated the differences between loads upstream and downstream from the impoundments throughout the sampling period and compared differences during two seasonal periods of relevance to aquatic plants: April 1 through October 31, the growing season, and November 1 through March 31, the nongrowing season, when existing permit limits allowed average monthly wastewater-treatment-plant-effluent concentrations of 0.75 milligram per liter (growing season) or 1.0 milligram per liter (nongrowing season) for total phosphorus. At the four sampling sites during the growing season, median weekly total phosphorus loads ranged from 110 to 190 kilograms (kg) and median weekly orthophosphorus loads ranged from 17 to 41 kg. During the nongrowing season, median weekly total phosphorus loads ranged from 240 to 280 kg and median weekly orthophosphorus loads ranged from 56 to 66 kg. During periods of low and moderate streamflow, estimated loads of total phosphorus upstream from the Hudson impoundment generally exceeded those downstream during the same sampling periods throughout the study; orthophosphorus loads downstream from the impoundment were typically larger than those upstream. When storm runoff substantially increased the streamflow, loads of total phosphorus and orthophosphorus both tended to be larger downstream than upstream. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads were generally larger downstream than upstream during low and moderate streamflow, but the differences were not as pronounced as they were at the Hudson impoundment. High flows were also associated with substantially larger total phosphorus and orthophosphorus loads downstream than those entering the impoundment from upstream. In comparing periods of growing- and nongrowing-season loads, the same patterns of loads entering and leaving were observed at both impoundments. That is, at the Hudson impoundment, total phosphorus loads entering the impoundment were greater than those leaving it, and orthophosphorus loads leaving the impoundment were greater than those entering it. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads leaving the impoundment were greater than those entering it. However, the loads were greater during the nongrowing seasons than during the growing seasons, and the net differences between upstream and downstream loads were about the same. The results indicate that some of the particulate fraction of the total phosphorus loads is sequestered in the Hudson impoundment, where particulate phosphorus probably undergoes some physical and biogeochemical transformations to the dissolved form orthophosphorus. The orthophosphorus may be taken up by aquatic plants or transported out of the impoundments. The results for the Ben Smith impoundment are less clear and suggest net export of total phosphorus and orthophosphorus. Differences between results from the two impoundments may be attributable in part to differences in their sizes, morphology, unmonitored tributaries, riparian land use, and processes within the impoundments that have not been quantified for this study.
Chen, Dingjiang; Lu, Jun; Wang, Hailong; Shen, Yena; Kimberley, Mark O
2010-02-01
Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China. Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically. Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads. Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52.5-71.2%, respectively, of total input TN and TP loads in the ChangLe River. Monthly riverine retention ratios were 3.5-88.7% for TN and 20.5-92.6% for TP. Hydrophyte growth and coverage on the river bed is the main cause for seasonal variation in riverine nutrient retention capacity. The total input TN and TP loads were the best indicators of RNRL and RPRL, respectively. High riverine nutrient retention capacity during summer due to hydrophytic growth is favorable to the avoidance of algal bloom in both river systems and coastal water in southeast China. Policies should be developed to strictly control nutrient applications on agricultural lands. Strategies for promoting hydrophyte growth in rivers are desirable for water quality management.
Nutrient loading to Lewisville Lake, north-central Texas, 1984-87
Gain, W.S.; Baldys, Stanley
1995-01-01
The estimated long-term (1974-89 water years) average annual total nitrogen load (excluding loads from sewage-treatment plants in ungaged areas) is 11,800 pounds per day. The estimated long-term (1974 89 water years) average annual total phosphorus load (excluding loads from sewage-treatment plants in ungaged areas) is 1,100 pounds per day.
Energy Management Policies in Distributed Residential Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Sisi; Sun, Jingtao
2016-01-01
In this paper, we study energy management problems in communities with several neighborhood-level Residential Energy Systems (RESs). We consider control problems from both community level and residential level to handle external changes such as restriction on peak demand and restriction on the total demand from the electricity grid. We propose three policies to handle the problems at community level. Based on the collected data from RESs such as predicted energy load, the community controller analyzes the policies, distribute the results to the RES, and each RES can then control and schedule its own energy load based on different coordination functions.more » We utilize a framework to integrate both policy analysis and coordination of functions. With the use of our approach, we show that the policies are useful to resolve the challenges of energy management under external changes.« less
Mullaney, John R.
2016-03-29
Total nitrogen loads at 14 water-quality monitoring stations were calculated by using discrete measurements of total nitrogen and continuous streamflow data for the period 2005–13 (water years 2006–13). Total nitrogen loads were calculated by using the LOADEST computer program.Overall, for water years 2006–13, streamflow in Connecticut was generally above normal. Total nitrogen yields ranged from 1,160 to 23,330 pounds per square mile per year. Total nitrogen loads from the French River at North Grosvenordale and the Still River at Brookfield Center, Connecticut, declined noticeably during the study period. An analysis of the bias in estimated loads indicated unbiased results at all but one station, indicating generally good fit for the LOADEST models.
NASA Technical Reports Server (NTRS)
Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)
1991-01-01
A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.
Buck, Stephanie D.
2014-01-01
The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.
Vestibular control of standing balance is enhanced with increased cognitive load.
McGeehan, Michael A; Woollacott, Marjorie H; Dalton, Brian H
2017-04-01
When cognitive load is elevated during a motor task, cortical inhibition and reaction time are increased; yet, standing balance control is often unchanged. This disconnect is likely explained by compensatory mechanisms within the balance system such as increased sensitivity of the vestibulomotor pathway. This study aimed to determine the effects of increased cognitive load on the vestibular control of standing balance. Participants stood blindfolded on a force plate with their head facing left and arms relaxed at their sides for two trials while exposed to continuous electrical vestibular stimulation (EVS). Participants either stood quietly or executed a cognitive task (double-digit arithmetic). Surface electromyography (EMG) and anterior-posterior ground-body forces (APF) were measured in order to evaluate vestibular-evoked balance responses in the frequency (coherence and gain) and time (cumulant density) domains. Total distance traveled for anterior-posterior center of pressure (COP) was assessed as a metric of balance variability. Despite similar distances traveled for COP, EVS-medial gastrocnemius (MG) EMG and EVS-APF coherence and EVS-TA EMG and EVS-MG EMG gain were elevated for multiple frequencies when standing with increased cognitive load. For the time domain, medium-latency peak amplitudes increased by 13-54% for EVS-APF and EVS-EMG relationships with the cognitive task compared to without. Peak short-latency amplitudes were unchanged. These results indicate that reliance on vestibular control of balance is enhanced when cognitive load is elevated. This augmented neural strategy may act to supplement divided cortical processing resources within the balance system and compensate for the acute neuromuscular modifications associated with increased cognitive demand.
Ulivelli, Monica; Priora, Raffaella; Di Giuseppe, Danila; Coppo, Lucia; Summa, Domenico; Margaritis, Antonios; Frosali, Simona; Bartalini, Sabina; Martini, Giuseppe; Cerase, Alfonso; Di Simplicio, Paolo
2016-06-01
The toxicity risk of hyperhomocysteinemia is prevented through thiol drug administration which reduces plasma total homocysteine (tHcy) concentrations by activating thiol exchange reactions. Assuming that cysteine (Cys) is a homocysteinemia regulator, the hypothesis was verified in healthy and pathological individuals after the methionine loading test (MLT). The plasma variations of redox species of Cys, Hcy, cysteinylglycine, glutathione and albumin (reduced, HS-ALB, and at mixed disulfide, XSS-ALB) were compared in patients with cerebral small vessels disease (CSVD) (n = 11), multiple sclerosis (MS) (n = 12) and healthy controls (n = 11) at 2-4-6 h after MLT. In MLT-treated subjects, the activation of thiol exchange reactions provoked significant changes over time in redox species concentrations of Cys, Hcy, and albumin. Significant differences between controls and pathological groups were also observed. In non-methionine-treated subjects, total Cys concentrations, tHcy and thiol-protein mixed disulfides (CSS-ALB, HSS-ALB) of CSVD patients were higher than controls. After MLT, all groups displayed significant cystine (CSSC) increases and CSS-ALB decreases, that in pathological groups were significantly higher than controls. These data would confirm the Cys regulatory role on the homocysteinemia; they also explain that the Cys-Hcy mixed disulfide excretion is an important point of hyperhomocysteinemia control. Moreover, in all groups after MLT, significant increases in albumin concentrations, named total albumin (tALB) and measured as sum of HS-ALB (spectrophometric), and XSS-ALB (assayed at HPLC) were observed. tALB increases, more pronounced in healthy than in the pathological subjects, could indicate alterations of albumin equilibria between plasma and other extracellular spaces, whose toxicological consequences deserve further studies.
Water quality functions of riparian forest buffers in Chesapeake bay watersheds
Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; Staver, K.W.; Lucas, W.; Todd, A.H.
1997-01-01
Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater sediment in surface runoff and total N in born surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment sustainability, and management are also discussed.
NASA Astrophysics Data System (ADS)
Avci, Mesut
A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.
Huang, Jing; Fang, Yu-Jing; Xu, Ming; Luo, Hong; Zhang, Nai-Qi; Huang, Wu-Qing; Pan, Zhi-Zhong; Chen, Yu-Ming; Zhang, Cai-Xia
2018-04-01
A carbohydrate-rich diet results in hyperglycaemia and hyperinsulinaemia; it may further induce the carcinogenesis of colorectal cancer. However, epidemiological evidence among Chinese population is quite limited. The aim of this study was to investigate total carbohydrate, non-fibre carbohydrate, total fibre, starch, dietary glycaemic index (GI) and glycaemic load (GL) in relation to colorectal cancer risk in Chinese population. A case-control study was conducted from July 2010 to April 2017, recruiting 1944 eligible colorectal cancer cases and 2027 age (5-year interval) and sex frequency-matched controls. Dietary information was collected by using a validated FFQ. The OR and 95 % CI of colorectal cancer risk were assessed by multivariable logistic regression models. There was no clear association between total carbohydrate intake and colorectal cancer risk. The adjusted OR was 0·85 (95 % CI 0·70, 1·03, P trend=0·08) comparing the highest with the lowest quartile. Total fibre was related to a 53 % reduction in colorectal cancer risk (adjusted ORquartile 4 v. 1 0·47; 95 % CI 0·39, 0·58). However, dietary GI was positively associated with colorectal cancer risk, with an adjusted ORquartile 4 v. 1 of 3·10 (95 % CI 2·51, 3·85). No significant association was found between the intakes of non-fibre carbohydrate, starch and dietary GL and colorectal cancer risk. This study indicated that dietary GI was positively associated with colorectal cancer risk, but no evidence supported that total carbohydrate, non-fibre carbohydrate, starch or high dietary GL intake were related to an increased risk of colorectal cancer in a Chinese population.
VOLTTRON-Based System for Providing Ancillary Services with Residential Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin
2016-07-01
Ancillary services entail controlled modulation of building equipment to maintain a stable balance of generation and load in the power system. Ancillary services include frequency regulation and contingency reserves, whose acting time ranges from several seconds to several minutes. Many pilot studies have been implemented to use industrial loads to provide ancillary services, and some have explored services from commercial building loads or electric vehicle charging loads. Residential loads, such as space conditioning and water heating, represent a largely untapped resource for providing ancillary services. The residential building sector accounts for a significant fraction of the total electricity use inmore » the United States. Many loads in residential buildings are flexible and could potentially be curtailed or shifted at the request of the grid. However, there are many barriers that prevent residential loads being widely used for ancillary services. One of the major technical barriers is the lack of communication capabilities between end-use devices and the grid. End-use devices need to be able to receive the automatic generation control (AGC) signal from the grid operator and supply certain types of telemetry to verify response. With the advance of consumer electronics, communication-enabled, or 'connected,' residential equipment has emerged to overcome the communication barrier. However, these end-use devices have introduced a new interoperability challenge due to the existence of numerous standards and communication protocols among different end devices. In this paper, we present a VOLTTRON-based system that overcomes these technical challenges and provides ancillary services with residential loads. VOLTTRON is an open-source control and sensing platform for building energy management, facilitating interoperability solutions for end devices. We have developed drivers to communicate and control different types of end devices through standard-based interfaces, manufacturer-provided application programming interfaces, and proprietary communication interfaces. We document the ability to manage nine appliances, using four different standards or proprietary communication methods. A hardware-in-the-loop test was performed in a laboratory environment where the loads of a laboratory home and a large number of simulated homes are controlled by an aggregator. Upon receipt of an AGC signal, the VOLTTRON home energy management system (HEMS) of the laboratory home adjusts the end-device controls based on the comfort criteria set by the end users and sends telemetry to the aggregator to verify response. The aggregator then sends the AGC signal to other simulated homes in attempts to match the utility request as closely as possible. Frequency regulation is generally considered a higher value service than other ancillary services but it is also more challenging due to the constraint of short response time. A frequency regulation use case has been implemented with the regulation signals sent every 10 seconds. Experimental results indicate that the VOLTTRON-controlled residential loads are able to be controlled with sufficient fidelity to enable an aggregator to meet frequency regulation requirements. Future work is warranted, such as understanding the impact of this type of control on equipment life, and market requirements needed to open up residential loads to ancillary service aggregators.« less
Shaw, Andrew D; Raghunathan, Karthik; Peyerl, Fred W; Munson, Sibyl H; Paluszkiewicz, Scott M; Schermer, Carol R
2014-12-01
Recent data suggest that both elevated serum chloride levels and volume overload may be harmful during fluid resuscitation. The purpose of this study was to examine the relationship between the intravenous chloride load and in-hospital mortality among patients with systemic inflammatory response syndrome (SIRS), with and without adjustment for the crystalloid volume administered. We conducted a retrospective analysis of 109,836 patients ≥ 18 years old that met criteria for SIRS and received fluid resuscitation with crystalloids. We examined the association between changes in serum chloride concentration, the administered chloride load and fluid volume, and the 'volume-adjusted chloride load' and in-hospital mortality. In general, increases in the serum chloride concentration were associated with increased mortality. Mortality was lowest (3.7%) among patients with minimal increases in serum chloride concentration (0-10 mmol/L) and when the total administered chloride load was low (3.5% among patients receiving 100-200 mmol; P < 0.05 versus patients receiving ≥ 500 mmol). After controlling for crystalloid fluid volume, mortality was lowest (2.6%) when the volume-adjusted chloride load was 105-115 mmol/L. With adjustment for severity of illness, the odds of mortality increased (1.094, 95% CI 1.062, 1.127) with increasing volume-adjusted chloride load (≥ 105 mmol/L). Among patients with SIRS, a fluid resuscitation strategy employing lower chloride loads was associated with lower in-hospital mortality. This association was independent of the total fluid volume administered and remained significant after adjustment for severity of illness, supporting the hypothesis that crystalloids with lower chloride content may be preferable for managing patients with SIRS.
Evidence for the Importance of Atmospheric Nitrogen Deposition to Eutrophic Lake Dianchi, China
NASA Astrophysics Data System (ADS)
Zhan, X.; Bo, Y.; Zhou, F.; Liu, X.; Paerl, H. W.; Shen, J.; Wang, R.; Li, F. R.; Tao, S.; Yanjun, D.; Tang, X.
2017-12-01
Elevated atmospheric nitrogen (N) deposition has significantly influenced aquatic ecosystems, especially with regard to their N budgets and phytoplankton growth potentials. Compared to a considerable number of studies on oligotrophic lakes and oceanic waters, little evidence for the importance of N deposition has been generated for eutrophic lakes, even though emphasis has been placed on reducing external N inputs to control eutrophication in these lakes. Our high-resolution observations of atmospheric depositions and riverine inputs of biologically reactive N species into eutrophic Lake Dianchi (the sixth largest freshwater lake in China) shed new light onto the contribution of N deposition to total N loads. Annual N deposition accounted for 15.7% to 16.6% of total N loads under variable precipitation conditions, 2-fold higher than previous estimates (7.6%) for the Lake Dianchi. The proportion of N deposition to total N loads further increased to 27-48% in May and June when toxic blooms of the ubiquitous non-N2 fixing cyanobacteria Microcystis spp. are initiated and proliferate. Our observations reveal that reduced N (59%) contributes a greater amount than oxidized N to total N deposition, reaching 56-83% from late spring to summer. Progress toward mitigating eutrophication in Lake Dianchi and other bloom-impacted eutrophic lakes will be difficult without reductions in ammonia emissions and subsequent N deposition.
Skoffer, Birgit; Dalgas, Ulrik; Maribo, Thomas; Søballe, Kjeld; Mechlenburg, Inger
2017-11-09
Preoperative progressive resistance training (PRT) is controversial in patients scheduled for total knee arthroplasty (TKA), because of the concern that it may exacerbate knee joint pain and effusion. To examine whether preoperative PRT initiated 5 weeks prior to TKA would exacerbate pain and knee effusion, and would allow a progressively increased training load throughout the training period that would subsequently increase muscle strength. Secondary analyses from a randomized controlled trial. University Hospital and a Regional Hospital. A total of 30 patients who were scheduled for TKA due to osteoarthritis and assigned as the intervention group. Patients underwent unilateral PRT (3 sessions per week). Exercise loading was 12 repetitions maximum (RM) with progression toward 8 RM. The training program consisted of 6 exercises performed unilaterally. Before and after each training session, knee joint pain was rated on an 11-point scale, effusion was assessed by measuring the knee joint circumference, and training load was recorded. The first and last training sessions were initiated by 1 RM testing of unilateral leg press, unilateral knee extension, and unilateral knee flexion. The median pain change score from before to after each training session was 0 at all training sessions. The average increase in knee joint effusion across the 12 training sessions was a mean 0.16 cm ± 0.23 cm. No consistent increase in knee joint effusion after training sessions during the training period was found (P = .21). Training load generally increased, and maximal muscle strength improved as follows: unilateral leg press: 18% ± 30% (P = .03); unilateral knee extension: 81% ± 156% (P < .001); and unilateral knee flexion: 53% ± 57% (P < .001). PRT of the affected leg initiated shortly before TKA does not exacerbate knee joint pain and effusion, despite a substantial progression in loading and increased muscle strength. Concerns for side effects such as pain and effusion after PRT seem unfounded. To be determined. Copyright © 2017. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Kaszubowski, M.; Raney, J. P.
1986-01-01
A study was conducted to determine the dynamic effects of firing the orbiter primary reaction control jets during assembly of protoflight space station structure. Maximum longeron compressive load was calculated as a function of jet pulse time length, number of jet pulses, and total torque imposed by the reaction control jets. The study shows that it is possible to fire selected jets to achieve a pitch maneuver without causing failure of the attached structure.
NASA Astrophysics Data System (ADS)
Georgoulias, A. K.; Balis, D.; Koukouli, M. E.; Meleti, C.; Bais, A.; Zerefos, C.
We present characteristics of the sulfur dioxide (SO 2) loading over Thessaloniki, Greece, and seven other selected sites around the world using SO 2 total column measurements from Brewer spectrophotometers together with satellite estimates of the Version 8 TOMS Sulfur Dioxide Index (SOI) over the same locations, retrieved from Nimbus 7 TOMS (1979-1993), Earth Probe TOMS (1996-2003) and OMI/Aura (2004-2006). Traditionally, the SOI has been used to quantify the SO 2 quantities emitted during great volcanic eruptions. Here, we investigate whether the SOI can give an indication of the total SO 2 load for areas and periods away from eruptive volcanic activity by studying its relative changes as a correlative measure to the SO 2 total column. We examined time series from Thessaloniki and another seven urban and non-urban stations, five in the European Union (Arosa, De Bilt, Hohenpeissenberg, Madrid, Rome) and two in India (Kodaikanal, New Delhi). Based on the Brewer data, Thessaloniki shows high SO 2 total columns for a European Union city but values are still low if compared to highly affected regions like those in India. For the time period 1983-2006 the SO 2 levels above Thessaloniki have generally decreased with a rate of 0.028 Dobson Units (DU) per annum, presumably due to the European Union's strict sulfur control policies. The seasonal variability of the SO 2 total column exhibits a double peak structure with two maxima, one during winter and the second during summer. The winter peak can be attributed to central heating while the summer peak is due to synoptic transport from sources west of the city and sources in the north of Greece. A moderate correlation was found between the seasonal levels of Brewer total SO 2 and SOI for Thessaloniki, Greece ( R = 0.710-0.763) and Madrid, Spain ( R = 0.691) which shows that under specific conditions the SOI might act as an indicator of the SO 2 total load.
Dow, Geoffrey S; Liu, Jun; Lin, Gina; Hetzell, Brian; Thieling, Sarah; McCarthy, William F; Tang, Douglas; Smith, Bryan
2015-11-26
Tafenoquine is a long half-life primaquine analog being developed for malaria prophylaxis. The US Army recently performed a unified analysis of efficacy in preparation for a regulatory submission, utilizing legacy data from three placebo-controlled studies conducted in the late 1990s and early 2000s. The subjects were residents of Africa who were naturally exposed to Plasmodium falciparum for 12-26 weeks. The prophylactic efficacy of tafenoquine and mefloquine (included in some studies as a comparator) was calculated using incidence density among subjects who had completed the three-day loading doses of study drug, had at least one maintenance dose and had at least one blood smear assessed during the prophylactic period. The three placebo-controlled studies were analysed separately and then in two pooled analyses: one for tafenoquine versus placebo (three studies) and one for tafenoquine and mefloquine versus placebo (two studies). The pooled protective efficacy (PE) of a tafenoquine regimen with three daily loading doses plus weekly maintenance at 200-mg for 10 weeks or longer (referred to as 200-mg weekly hereafter) relative to placebo in three placebo-controlled studies was 93.1 % [95 % confidence interval (CI) 89.1-95.6 %; total N = 492]. The pooled PEs of regimens of tafenoquine 200-mg weekly and mefloquine 250-mg weekly relative to placebo in two placebo-controlled studies (total N = 519) were 93.5 % (95 % CI 88.6-96.2 %) and 94.5 % (95 % CI 88.7-97.3 %), respectively. Three daily loading plus weekly maintenance doses of 50- and 100-mg, but not 25-mg, exhibited similar PEs. The PEs of tafenoquine regimens of a three-day loading dose at 400-mg with and without follow-up weekly maintenance doses at 400-mg were 93.7 % (95 % CI 85.4-97.3 %) and 81.0 % (95 % CI 66.8-89.1 %), respectively. Tafenoquine provided the same level of prophylactic efficacy as mefloquine in residents of Africa. These data support the prophylactic efficacy of tafenoquine and mefloquine that has already been demonstrated in the intended malaria naive population.
Gastroesophageal Reflux is Not Associated with Dental Erosion in Children
Wild, Yvette K.; Heyman, Melvin B.; Vittinghoff, Eric; Dalal, Deepal H.; Wojcicki, Janet M.; Clark, Ann L.; Rechmann, Beate; Rechmann, Peter
2011-01-01
Background & Aims Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. Methods We performed a cross-sectional study of 59 children (ages 9–17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, nor was the gastroenterologist aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans and Lactobacilli. Results Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion, by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Conclusions Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. PMID:21820389
Gastroesophageal reflux is not associated with dental erosion in children.
Wild, Yvette K; Heyman, Melvin B; Vittinghoff, Eric; Dalal, Deepal H; Wojcicki, Janet M; Clark, Ann L; Rechmann, Beate; Rechmann, Peter
2011-11-01
Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. We performed a cross-sectional study of 59 children (ages, 9-17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, and the gastroenterologist was not aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans, and Lactobacilli. Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Eckley, Chris S; Branfireun, Brian
2009-08-01
This research focuses on mercury (Hg) mobilization in stormwater runoff from an urban roadway. The objectives were to determine: how the transport of surface-derived Hg changes during an event hydrograph; the influence of antecedent dry days on the runoff Hg load; the relationship between total suspended sediments (TSS) and Hg transport, and; the fate of new Hg input in rain and its relative importance to the runoff Hg load. Simulated rain events were used to control variables to elucidate transport processes and a Hg stable isotope was used to trace the fate of Hg inputs in rain. The results showed that Hg concentrations were highest at the beginning of the hydrograph and were predominantly particulate bound (HgP). On average, almost 50% of the total Hg load was transported during the first minutes of runoff, underscoring the importance of the initial runoff on load calculations. Hg accumulated on the road surface during dry periods resulting in the Hg runoff load increasing with antecedent dry days. The Hg concentrations in runoff were significantly correlated with TSS concentrations (mean r(2)=0.94+/-0.09). The results from the isotope experiments showed that the new Hg inputs quickly become associated with the surface particles and that the majority of Hg in runoff is derived from non-event surface-derived sources.
Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.
2016-01-01
Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.
García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory
2016-07-05
Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.
Multi-load Groups Coordinated Load Control Strategy Considering Power Network Constraints
NASA Astrophysics Data System (ADS)
Liu, Meng; Zhao, Binchao; Wang, Jun; Zhang, Guohui; Wang, Xin
2017-05-01
Loads with energy storage property can actively participate in power balance for power systems, this paper takes air conditioner as a controllable load example, proposing a multi-load groups coordinated load control strategy considering power network constraints. Firstly, two load control modes considering recovery of load diversity are designed, blocking power oscillation of aggregated air conditioners. As the same time, air conditioner temperature setpoint recovery control strategy is presented to avoid power recovery peak. Considering inherent characteristics of two load control modes, an coordinated load control mode is designed by combining the both. Basing on this, a multi-load groups coordinated load control strategy is proposed. During the implementing of load control, power network constraints should be satisfied. An indice which can reflect the security of power system operating is defined. By minimizing its value through optimization, the change of air conditioning loads’ aggregated power on each load bus can be calculated. Simulations are conducted on an air conditioners group and New England 10-generator 39-bus system, verifying the effectiveness of the proposed multi-load groups coordinated load control strategy considering power network constraints.
Characterisation of diesel particulate emission from engines using commercial diesel and biofuels
NASA Astrophysics Data System (ADS)
Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.
2016-06-01
In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.
High-power converters for space applications
NASA Technical Reports Server (NTRS)
Park, J. N.; Cooper, Randy
1991-01-01
Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.
NASA Astrophysics Data System (ADS)
Allison, M. A.; Biedenharn, D. S.; Dahl, T. A.; Kleiss, B.; Little, C. D.
2017-12-01
Annual suspended sediment loads and water discharges were calculated in the Mississippi River mainstem channel, and at the most downstream gaging station for major tributaries, from below the Missouri confluence near St. Louis, MO to Belle Chasse, LA, as well as down the Atchafalaya distributary for water years 1990 to 2013. The purpose of the present study was to assess changes in the Mississippi River sediment budget over the past half century, and to examine the continuing role that anthropogenic (e.g., dams, river control works, soil conservation practices) and natural (e.g., rainfall and denudation rates) factors have in controlling these changes. Sixteen of the 17 measured Mississippi River tributaries decreased in total suspended sediment load) from 1970-1978 to 1990-2013. The largest decreases occurred in the 2nd (Ohio River, 41% of 1970-1978) and 4th (Arkansas River, 45% of 1970-1978) largest water sources to the Mississippi. The Missouri River remains the largest Mississippi River tributary in terms of average annual suspended sediment flux; its relative contribution increased from 38% to 51% of the total flux from the 17 measured tributaries, even as its total suspended flux declined by 13%. Averaged over the period of study (WY 1990-2013), water flux increased by 468% and sediment flux increased by 37,418% downstream from the Gavin's Point Dam to the confluence with the Mississippi. Possible reasons for this disproportional increase in suspended sediment load downstream include sediment-rich contributions from 2nd order rivers below the dams and channel incision. Suggested station improvements to the system include improved monitoring of the Upper Mississippi and Arkansas River tributaries, establishing additional mainstem stations in the reach between Thebes, IL and Arkansas City, AR, and standardization of laboratory and field methodologies to eliminate a major source of station-to-station and time-series variability in the sediment budgeting.
Evaluation of Nonpoint-Source Contamination, Wisconsin: Selected Topics for Water Year 1995
Owens, D.W.; Corsi, Steven R.; Rappold, K.F.
1997-01-01
The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP's) for controlling nonpoint-source contamination in eight rural and four urban watersheds. This report, the fourth in an annual series of reports, presents a summary of the data collected for the program by the U.S. Geological Survey and the results of several detailed analyses of the data. To complement assessments of water quality, a land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track nonpoint sources of contamination in each watershed and to document implementation of BMP's that were designed to cause changes in the water quality of streams. Each year, updated information is gathered, mapped, and stored in a geographic-information-system data base. Summaries of land-use, BMP implementation, and water-quality data collected during water years 1989-95 are presented. Storm loads, snowmelt-period loads, and annual loads of suspended sediment and total phosphorus are summarized for eight rural sites. Storm-load data for suspended solids, total phosphorus, total recoverable lead, copper, zinc, and cadmium are summarized for four urban sites. Quality-assurance and quality-control (QA/QC) samples were collected at the eight rural sites to evaluate inorganic sample contamination and at one urban site to evaluate sample-collection and filtration techniques for polycyclic aromatic hydrocarbons (PAR's). Some suspended solids and fecal coliform contamination was detected at the rural sites. Corrective actions will be taken to address this contamination. Evaluation of PAR sample-collection techniques did not uncover any deficiencies, but the small amount of data collected was not sufficient to draw any definite conclusions. Evaluation of PAR filtration techniques indicate that water-sample filtration with O.7-um glass-fiber filters in an aluminum filter unit does not result in significant loss of PAR.
Schein, Aso; Correa, Aps; Casali, Karina Rabello; Schaan, Beatriz D
2016-01-20
Physical exercise reduces glucose levels and glucose variability in patients with type 2 diabetes. Acute inspiratory muscle exercise has been shown to reduce these parameters in a small group of patients with type 2 diabetes, but these results have yet to be confirmed in a well-designed study. The aim of this study is to investigate the effect of acute inspiratory muscle exercise on glucose levels, glucose variability, and cardiovascular autonomic function in patients with type 2 diabetes. This study will use a randomized clinical trial crossover design. A total of 14 subjects will be recruited and randomly allocated to two groups to perform acute inspiratory muscle loading at 2 % of maximal inspiratory pressure (PImax, placebo load) or 60 % of PImax (experimental load). Inspiratory muscle training could be a novel exercise modality to be used to decrease glucose levels and glucose variability. ClinicalTrials.gov NCT02292810 .
Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing.
Abdel-Jaber, Sami; Belvedere, Claudio; Leardini, Alberto; Affatato, Saverio
2015-11-05
Knee wear simulators are meant to perform load cycles on knee implants under physiological conditions, matching exactly, if possible, those experienced at the replaced joint during daily living activities. Unfortunately, only conditions of low demanding level walking, specified in ISO-14243, are used conventionally during such tests. A recent study has provided a consistent knee kinematic and load data-set measured during stair climbing in patients implanted with a specific modern total knee prosthesis design. In the present study, wear simulation tests were performed for the first time using this data-set on the same prosthesis design. It was hypothesised that more demanding tasks would result in wear rates that differ from those observed in retrievals. Four prostheses for total knee arthroplasty were tested using a displacement-controlled knee wear simulator for two million cycles at 1.1 Hz, under kinematics and load conditions typical of stair climbing. After simulation, the corresponding damage scars on the bearings were qualified and compared with equivalent explanted prostheses. An average mass loss of 20.2±1.5 mg was found. Scanning digital microscopy revealed similar features, though the explant had a greater variety of damage modes, including a high prevalence of adhesive wear damage and burnishing in the overall articulating surface. This study confirmed that the results from wear simulation machines are strongly affected by kinematics and loads applied during simulations. Based on the present results for the full understanding of the current clinical failure of knee implants, a more comprehensive series of conditions are necessary for equivalent simulations in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Liu, Guopeng; Huang, Sen
Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivationmore » and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate variable generation sources. The flexible loads can successfully track a power dispatch signal from the coordinator, while having little impact on the quality of service to the end-users.« less
Perez, Richard
2005-05-03
A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.
Analyses and tests of the B-1 aircraft structural mode control system
NASA Technical Reports Server (NTRS)
Wykes, J. H.; Byar, T. R.; Macmiller, C. J.; Greek, D. C.
1980-01-01
Analyses and flight tests of the B-1 structural mode control system (SMCS) are presented. Improvements in the total dynamic response of a flexible aircraft and the benefits to ride qualities, handling qualities, crew efficiency, and reduced dynamic loads on the primary structures, were investigated. The effectiveness and the performance of the SMCS, which uses small aerodynamic surfaces at the vehicle nose to provide damping to the structural modes, were evaluated.
Oba, Shino; Nanri, Akiko; Kurotani, Kayo; Goto, Atsushi; Kato, Masayuki; Mizoue, Tetsuya; Noda, Mitsuhiko; Inoue, Manami; Tsugane, Shoichiro
2013-12-27
Japanese diets contain a relatively high amount of carbohydrates, and its high dietary glycemic index and glycemic load may raise the risk of diabetes in the Japanese population. The current study evaluated the associations between the dietary glycemic index, glycemic load, and the risk of type 2 diabetes in a population based cohort in Japan. We observed 27,769 men and 36,864 women (45-75 y) who participated in the second survey of the Japan Public Health Center-based Prospective Study. The dietary glycemic index and glycemic load were estimated using a food-frequency questionnaire. The development of diabetes was reported in a questionnaire administered five years later, and the associations were analyzed using logistic regression after controlling for age, area, total energy intake, smoking status, family history of diabetes, physical activity, hypertension, BMI, alcohol intake, magnesium, calcium, dietary fiber and coffee intake, and occupation. The dietary glycemic load was positively associated with the risk of diabetes among women: the multivariable-adjusted odds ratio comparing the highest vs. the lowest quartile was 1.52 (95% CI, 1.13-2.04; P-trend = 0.01). The association was implied to be stronger among women with BMI < 25 than the women with BMI ≥ 25. The dietary glycemic index was positively associated with the risk of diabetes among men with a high intake of total fat: the multivariable-adjusted odds ratio comparing the highest vs. the lowest quartile was 1.46 (95% CI, 0.94-2.28; P-trend = 0.04). Among women with a high total fat intake, those in the first and second quartiles of the dietary glycemic index had a significant reduced risk of diabetes, compared with those in the first quartile who had a lower total fat level (multivariable-adjusted odds ratio = 0.59 with 95% CI, 0.37-0.94, and odds ratio = 0.63 with 95% CI, 0.40-0.998 respectively). The population-based cohort study in Japan indicated that diets with a high dietary glycemic load increase the risk of type 2 diabetes among women. Total fat intake may modify the association between the dietary glycemic index and the risk of type 2 diabetes among men and women.
Monitor-based evaluation of pollutant load from urban stormwater runoff in Beijing.
Liu, Y; Che, W; Li, J
2005-01-01
As a major pollutant source to urban receiving waters, the non-point source pollution from urban runoff needs to be well studied and effectively controlled. Based on monitoring data from urban runoff pollutant sources, this article describes a systematic estimation of total pollutant loads from the urban areas of Beijing. A numerical model was developed to quantify main pollutant loads of urban runoff in Beijing. A sub-procedure is involved in this method, in which the flush process influences both the quantity and quality of stormwater runoff. A statistics-based method was applied in computing the annual pollutant load as an output of the runoff. The proportions of pollutant from point-source and non-point sources were compared. This provides a scientific basis for proper environmental input assessment of urban stormwater pollution to receiving waters, improvement of infrastructure performance, implementation of urban stormwater management, and utilization of stormwater.
NASA Technical Reports Server (NTRS)
Croom, D. R.
1971-01-01
A free-flight test program to determine the deployment characteristics of all-flexible parawings was conducted. Both single-keel and twin-keel parawings having a wing area of 4000 square feet with a five-stage reefing system were tested by use of a bomb-type instrumented test vehicle. Several twin-keel-parawing tests were also made by using an instrumented controllable sled-type test vehicle. The systems were launched from either a C-130 or a C-119 carrier airplane, and a programer parachute was used to bring the test vehicle to a proper dynamic pressure and near-vertical flight path prior to deployment of the parawing system. The free-flight deployment loads data are presented in the form of time histories of individual suspension-line loads and total loads.
Lombardo, Giorgio; Corrocher, Giovanni; Pighi, Jacopo; Mascellaro, Anna; Marincola, Mauro; Nocini, Per Francesco
2016-06-01
The purpose of this study was to evaluate the esthetic outcome of single-tooth locking taper connection implants placed in the anterior maxilla following a postextractive nonfunctional loading protocol. This preliminary clinical study involving 16 patients evaluated the results of 21 implants placed in areas with high esthetic value. For each implant the pink esthetic score, white esthetic score, cumulative survival rate, and health status of peri-implant tissues were evaluated. The cumulative survival rate was 100% 2 years after prosthetic loading, and the mean total pink esthetic score/white esthetic score was 16.9 ± 1.14 on a maximum value of 20. There was excellent plaque control in all patients, and inflammation indices were within the norm. Within the limits of this study, this immediate nonfunctional loading protocol seems to be a successful procedure esthetically and for the maintenance of peri-implant soft tissues.
Plug-Load Control and Behavioral Change Research in GSA Office Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, I.; Cutler, D.; Sheppy, M.
2012-10-01
The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-loadmore » energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.« less
2014-01-01
Background Over the years, there has been a strong consensus in dentistry that at least two implants are required to retain a complete mandibular denture. It has been shown in several clinical trials that one single median implant can retain a mandibular overdenture sufficiently well for up to 5 years without implant failures, when delayed loading was used. However, other trials have reported conflicting results with in part considerable failure rates when immediate loading was applied. Therefore it is the purpose of the current randomized clinical trial to test the hypothesis that immediate loading of a single mandibular midline implant with an overdenture will result in a comparable clinical outcome as using the standard protocol of delayed loading. Methods/design This prospective nine-center randomized controlled clinical trial is still ongoing. The final patient will complete the trial in 2016. In total, 180 edentulous patients between 60 and 89 years with sufficient complete dentures will receive one median implant in the edentulous mandible, which will retain the existing complete denture using a ball attachment. Loading of the median implant is either immediately after implant placement (experimental group) or delayed by 3 months of submerged healing at second-stage surgery (control group). Follow-up of patients will be performed for 24 months after implant loading. The primary outcome measure is non-inferiority of implant success rate of the experimental group compared to the control group. The secondary outcome measures encompass clinical, technical and subjective variables. The study was funded by the Deutsche Forschungsgemeinschaft (German research foundation, KE 477/8-1). Discussion This multi-center clinical trial will give information on the ability of a single median implant to retain a complete mandibular denture when immediately loaded. If viable, this treatment option will strongly improve everyday dental practice. Trial registration The trial has been registered at Deutsches Register Klinischer Studien (German register of clinical trials) under DRKS-ID: DRKS00003730 since 23 August 2012. (http://www.germanctr.de). PMID:24884848
40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... regulated materials are loaded, and samples shall be collected using integrated sampling or grab samples... material concentration and percent reduction may be measured as either total organic regulated material or... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e...
40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... regulated materials are loaded, and samples shall be collected using integrated sampling or grab samples... material concentration and percent reduction may be measured as either total organic regulated material or... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e...
40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... regulated materials are loaded, and samples shall be collected using integrated sampling or grab samples... material concentration and percent reduction may be measured as either total organic regulated material or... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e...
This technical report provides a description of the field project design, quality control, the sampling protocols and analysis methodology used, and standard operating procedures for the South Fork Broad River Watershed (SFBR) Total Maximum Daily Load (TMDL) project. This watersh...
Perez, Richard
2003-04-01
A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The expected peak loading of the variable load can be dynamically determined within a defined time interval with reference to variations in the variable load.
Deng, Yuqin; Wang, Yan; Ding, Xiaoqian; Tang, Yi-Yuan
2015-02-11
The aim of the present study was to examine electrophysiological and behavioral changes caused by different memory loads in a task-switching paradigm. A total of 31 healthy individuals were subjected to a task, in which the stimulus-response reversal paradigm was combined with the task-switching paradigm. The event-related potentials were recorded and the N2 component, an index of conflict processing, was measured. In addition, the neural sources of N2 were further analyzed by standardized low-resolution brain electromagnetic tomography. The event-related potential results showed that high memory load triggered a higher N2 mean amplitude. Moreover, the standardized low-resolution brain electromagnetic tomography data showed that high memory load caused an increase in current densities at the anterior cingulate cortex and the prefrontal cortex in the task-switching paradigm. In summary, our findings provide electrophysiological evidence to interpret possible influences of memory loads on conflict monitoring and modulation during the task switching. These results imply that the working memory load overrules the influence of task-switching performance on the intensification of cognitive control.
Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp
2013-01-01
Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.
DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp
2013-01-01
Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects. PMID:24037068
Goodson, Christopher C; Schwartz, Gregory; Amrhein, Christopher
2006-01-01
External loading of phosphorus (P) from agricultural surface discharge (tailwater) is the main cause of excessive algae growth and the eutrophication of the Salton Sea, California. Continuous polyacrylamide (PAM) applications to agricultural irrigation water inflows were evaluated as a means of reducing sediment and P in tailwater. Zero (control) and 1 mg L(-1) PAM (PAM1) treatments were compared at 17 Imperial Valley field sites. Five and 10 mg L(-1) PAM treatments (PAM5, PAM10) were conducted at one site. The particulate phosphorus (Pp) fraction was determined as the difference between total phosphorus (Pt) and the soluble phosphorus (Ps) fraction. We observed 73, 82, and 98% turbidity reduction with PAM1, PAM5, and PAM10 treatments. Although eight field sites had control tailwater sediment concentrations above the New River total maximum daily loads (TMDL), all but one were made compliant during their paired PAM1 treatments. While PAM1 and PAM10 reduced tail water Pp by 31 and 78%, none of the treatments tested reduced Ps. This may have been caused by high irrigation water Na concentrations which would reduce Ca adsorption and Ca-phosphate bridging on the PAM. The PAM1 treatments resulted in <0.5 mg L(-1) drain water polyacrylamide concentrations 1.6 km downstream of PAM addition, while PAM5 and PAM10 treatments produced > 2 mg L(-1) drain water polyacrylamide concentrations. We concluded that, although PAM practically eliminates Imperial Valley tailwater sediment loads, it does not effectively reduce tailwater Ps, the P fraction most responsible for the eutrophication of the Salton Sea.
Antiretroviral treatment, viral load of mothers & perinatal HIV transmission in Mumbai, India
Ahir, Swati P.; Chavan, V.; Kerkar, S.; Samant-Mavani, P.; Nanavati, R.; Mehta, P.R.; Mania-Pramanik, J.
2013-01-01
Background & objectives: Mother-to-child transmission (MTCT) is the most significant route of HIV transmission in children below the age of 15 yr. In India, perinatal HIV transmission, even after treatment, accounts for 5.4 per cent of HIV cases. The present study was conducted to evaluate the efficacy of anti-retro viral therapy (ART) or prophylactic treatment (PT) to control maternal viral load in HIV positive women, and its effect on vertical HIV transmission to their infants. Methods: A total of 58 HIV positive women were enrolled at the time of delivery and their plasma samples were obtained within 24 h of delivery for estimation of viral load. Viral load analysis was completed in 38 women. Infants received single dose nevirapine within 2 h of birth and zidovudine for 6 wk. At the end of 18 month follow up, HIV positive or negative status was available in 28 infants. Results: Results revealed undetectable levels of viral load in 58.3 per cent of women with ART compared to 30.7 per cent of women with PT. No women on ART had viral load more than 10,000 copies/ml, whereas seven (26.9%, P=0.07) women receiving PT had this viral load. Median CD4 count of women on PT (483 cells/μl) was high compared to the women on ART (289 cells/ μl). At the end of 18 months follow up, only two children were HIV positive, whose mothers were on PT. One had in utero transmission; infection detected within 48 h of delivery, while the other child was infected post partum as HIV was detected at six months follow up. Interpretation & conclusions: Women who received a single dose of nevirapine during delivery had higher levels of viral load than women on ART. Combination drug therapy for pregnant women is now a standard of care in most of the western countries; use of nevirapine monotherapy at the time of delivery in our settings is not effective in controlling viral load. This highlights initiation of ART in pregnant women to control their viral load and thus to inhibit mother to child HIV transmission. PMID:24056596
The use of synthetic ligaments in the design of an enhanced stability total knee joint replacement.
Stokes, Michael D; Greene, Brendan C; Pietrykowski, Luke W; Gambon, Taylor M; Bales, Caroline E; DesJardins, John D
2018-03-01
Current total knee replacement designs work to address clinically desired knee stability and range of motion through a balance of retained anatomy and added implant geometry. However, simplified implant geometries such as bearing surfaces, posts, and cams are often used to replace complex ligamentous constraints that are sacrificed during most total knee replacement procedures. This article evaluates a novel total knee replacement design that incorporates synthetic ligaments to enhance the stability of the total knee replacement system. It was hypothesized that by incorporating artificial cruciate ligaments into a total knee replacement design at specific locations and lengths, the stability of the total knee replacement could be significantly altered while maintaining active ranges of motion. The ligament attachment mechanisms used in the design were evaluated using a tensile test, and determined to have a safety factor of three with respect to expected ligamentous loading in vivo. Following initial computational modeling of possible ligament orientations, a physical prototype was constructed to verify the function of the design by performing anterior/posterior drawer tests under physiologic load. Synthetic ligament configurations were found to increase total knee replacement stability up to 94% compared to the no-ligament case, while maintaining total knee replacement flexion range of motion between 0° and 120°, indicating that a total knee replacement that incorporates synthetic ligaments with calibrated location and lengths should be able to significantly enhance and control the kinematic performance of a total knee replacement system.
Watershed Effects on Streamflow Quantity and Quality in Six Watersheds of Gwinnett County, Georgia
Landers, Mark N.; Ankcorn, Paul D.; McFadden, Keith W.
2007-01-01
Watershed management is critical for the protection and enhancement of streams that provide multiple benefits for Gwinnett County, Georgia, and downstream communities. Successful watershed management requires an understanding of how stream quality is affected by watershed characteristics. The influence of watershed characteristics on stream quality is complex, particularly for the nonpoint sources of pollutants that affect urban watersheds. The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources (formerly known as Public Utilities), established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. Between 1996 and 2003, more than 10,000 analyses were made for more than 430 water-quality samples. Continuous-flow and water-quality data have been collected since 1998. Loads have been computed for selected constituents from 1998 to 2003. Changing stream hydrology is a primary driver for many other water-quality and aquatic habitat effects. Primary factors affecting stream hydrology (after watershed size and climate) within Gwinnett County are watershed slope and land uses. For the six study watersheds in Gwinnett County, watershedwide imperviousness up to 12 percent does not have a well-defined influence on stream hydrology, whereas two watersheds with 21- and 35-percent impervious area are clearly impacted. In the stream corridor, however, imperviousness from 1.6 to 4.4 percent appears to affect baseflow and stormflow for all six watersheds. Relations of concentrations to discharge are used to develop regression models to compute constituent loads using the USGS LOAD ESTimator model. A unique method developed in this study is used to calibrate the model using separate baseflow and stormflow sample datasets. The method reduced model error and provided estimates of the load associated with the baseflow and stormflow parts of the hydrograph. Annual load of total suspended sediment is a performance criterion in Gwinnett County's Watershed Protection Plan. Median concentrations of total suspended solids in stormflow range from 30 to 180 times greater than in baseflow. This increase in total suspended solids concentration with increasing discharge has a multiplied effect on total suspended solids load, 97 to 99 percent of which is transported during stormflow. Annual total suspended solids load is highly dependent on annual precipitation; between 1998 and 2003 load for the wettest year was up to 28 times greater than for the driest year. Average annual total suspended solids yield from 1998-2003 in the six watersheds increased with high-density and transportation/utility land uses, and generally decreased with low-density residential, estate/park, and undeveloped land uses. Watershed characteristics also were related to annual loads of total phosphorus, dissolved phosphorus, total nitrogen, total dissolved solids, biochemical oxygen demand, and total zinc, as well as stream alkalinity. Flow-adjusted total suspended solids, total phosphorus, and total zinc stormflow concentrations between 1996 and 2003 have a seasonal pattern in five of the six watersheds. Flow-adjusted concentrations typically peak during late summer, between July and August. The seasonal pattern is stronger for more developed watersheds and may be related to seasonal land-disturbance activities and/or to seasonal rainfall intensity, both of which increase in summer. Adjusting for seasonality in the computation of constituent load caused the standard error of annual total suspended solids load to improve by an average of 11 percent, and increased computed summer total suspended solids loads by an average of 45 percent and decreased winter total suspended solids loads by an average of 40 percent. Total annual loads changed by less than 5 percent on the average. Graphical and statistical analyses do not indicate a time tre
Response of tibialis anterior tendon to a chronic exposure of stretch-shortening cycles: age effects
Ensey, James S; Hollander, Melinda S; Wu, John Z; Kashon, Michael L; Baker, Brent B; Cutlip, Robert G
2009-01-01
Background The purpose of the current study was to investigate the effects of aging on tendon response to repetitive exposures of stretch-shortening cycles (SSC's). Methods The left hind limb from young (3 mo, N = 4) and old (30 mo, N = 9) male Fisher 344 × Brown Norway rats were exposed to 80 maximal SSCs (60 deg/s, 50 deg range of motion) 3x/week for 4.5 weeks in vivo. After the last exposure, tendons from the tibialis anterior muscle were isolated, stored at -80°C, and then tested using a micro-mechanical testing machine. Deformation of each tendon was evaluated using both relative grip-to-grip displacements and reference marks via a video system. Results At failure, the young control tendons had higher strain magnitude than the young exposed (p < 0.01) and the old control tendons (p < .0001). Total load at inflection was affected by age only (p < 0.01). Old exposed and control tendons exhibited significantly higher loads at the inflection point than their young counterparts (p < 0.05 for both comparisons). At failure, the old exposed tendons carried higher loads than the young exposed tendons (p < 0.05). Stiffness was affected by age only at failure where the old tendons exhibited higher stiffness in both exposed and control tendons than their young counterparts (p < 0.05 and p < 0.01, respectively). Conclusion The chronic protocol enhanced the elastic stiffness of young tendon and the loads in both the young and old tendons. The old exposed tendons were found to exhibit higher load capacity than their younger counterparts, which differed from our initial hypothesis. PMID:19563638
Hulin, Billy T; Gabbett, Tim J; Johnston, Rich D; Jenkins, David G
2018-03-15
Determine: 1) how change of direction (COD) workloads influence PlayerLoad variables when controlling total distance covered, and 2) relationships among collision workloads and PlayerLoad variables during rugby league match-play. Participants completed 3 protocols (crossover design) consisting of 10 repetitions of a 60 m effort in 15 s. The difference between each protocol was the COD demands required to complete 1 repetition; no COD (SL), 1 x 180º COD (1COD), or 3 x 180º COD (3COD). During rugby league matches, relationships among collision workloads, tri-axial PlayerLoad (PLVM), anterior-posterior + medio-lateral PlayerLoad (PL2D), and PLVM accumulated at locomotor velocities below 2 m.sec -1 (i.e. PLSLOW) were examined using Pearson correlations (r) with coefficients of determination (R 2 ). Comparing 3COD to SL drills: PLVM.min -1 (d = 1.50 ± 0.49, large, likelihood = 100%, almost certainly), PL2D.min -1 (d = 1.38 ± 0.53, large, likelihood = 100%, almost certainly), and PLSLOW.min -1 (d = 1.69 ± 0.40, large, likelihood = 100%, almost certainly) were greater. Collisions.min -1 demonstrated a distinct (i.e. R 2 <0.50) relationship from PLVM.min -1 (R 2 = 0.30, r = 0.55), and PL2D.min -1 (R 2 = 0.37, r = 0.61). Total distance.min 1 demonstrated a very large relationship with PLVM.min -1 (R 2 = 0.62, r = 0.79), and PL2D.min -1 (R 2 = 0.57, r = 0.76). PlayerLoad variables demonstrate: 1) large increases as COD demands intensify, 2) separate relationships from collision workloads, and 3) moderate to very large relationships with total distance during match-play. PlayerLoad variables should be used with caution to measure collision workloads in team sport.
San, Vibol; Spoann, Vin; Schmidt, Johannes
2018-02-15
Approximately 56% out of the total 1302 Cambodian firms are operated in the Capital city of Cambodia. The necessary information on industrial pollution to set strategies, priorities and action plans on environmental protection issues is absent in Cambodia. In the absence of this data, effective environmental protection cannot be implemented. The objective of this study is to estimate industrial pollution load by employing the Industrial Pollution Projection System, a rapid environmental management tool for assessment of pollution load, to produce a scientific rational basis for preparing future policy direction to reduce industrial pollution in Phnom Penh city. Factory data between 1994 and 2014 obtained from the Ministry of Industry and Handicraft of Cambodia were used in our study. Due to the high number of employees, the total environmental load generated in Phnom Penh city was estimated to be 476,981Mg in 2014. Phnom Penh city generated 189,109Mg of VOC, 165,411Mg of toxic chemicals to air, 38,523Mg of toxic chemicals to land, and 28,968Mg of SO 2 in 2014. The results of the estimation show that the Textiles and Apparel sector was the highest generators of toxic chemicals into land and air, and toxic metals into land, air and water, while the Basic Metal sector was the greatest contributor of toxic chemicals to water. The Textiles and Apparel sector alone emitted 436,016Mg of total pollution load. The results indicate that the Dangkao and Meanchey districts were the greatest emitters of all pollutants in Phnom Penh. The results suggest that reduction in industrial pollution could be achieved by focusing on the most polluting sectors and areas. Adopting waste minimization strategies, which include cleaner production processes, will not only reduce the cost of controlling pollution, it will also make manufacturing more efficient thereby increasing profits while reducing pollution load in the long run. Copyright © 2017 Elsevier B.V. All rights reserved.
Scott, C E H; Eaton, M J; Nutton, R W; Wade, F A; Pankaj, P; Evans, S L
2013-10-01
As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves ('hits') produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint.
Long-Term Resolution of Viral Breakthrough after Changing HIV Viral Load Assay.
Obeid, Karam M; Sural, Preethi; Szpunar, Susan; Johnson, Leonard B
2011-01-01
Viral load (VL) measurement assays differ in their sensitivity with polymerase chain reaction assays (PCR) being more sensitive than branched DNA (bDNA) assays. We evaluated virologic outcomes of patients and physicians' response to increased VL after a switch from bDNA to PCR assay. Retrospective, case-control study on 65 HIV+ patients receiving highly active antiretroviral therapy (HAART). Cases included patients with undetectable VL by bDNA that became detectable after the switch; controls were patients that remained undetectable. Records were reviewed up to 1 year after the switch. A total of 58.5% patients had detectable VL after the switch. Repeat VL testing and resistance testing were ordered in 15.4% and 23.1% of these patients, respectively. By 1 year, VL was undetectable in 82.8% of cases and 92% of controls (P = .30), without change in HAART. Transient viremia after changing VL assay reflects the different sensitivity of these assays with no impact on patients' outcomes compared to controls.
Turner, R.E.; Rabalais, N.N.; Alexander, Richard B.; McIsaac, G.; Howarth, R.W.
2007-01-01
We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.
Han, Zhiying; Chen, Shixia; Lin, Xiaochang; Yu, Hongjun; Duan, Li'an; Ye, Zhangying; Jia, Yanbo; Zhu, Songming; Liu, Dezhao
2018-01-02
To identify the performance of step-fed submerged membrane sequencing batch reactor (SMSBR) treating swine biogas digestion slurry and to explore the correlation between microbial metabolites and membrane fouling within this novel reactor, a lab-scale step-fed SMSBR was operated under nitrogen loading rate of 0.026, 0.052 and 0.062 g NH 4 + -N (gVSS·d) -1 . Results show that the total removal efficiencies for NH 4 + -N, total nitrogen and chemical oxygen demand in the reactor (>94%, >89% and >97%, respectively) were high during the whole experiment. However, the cycle removal efficiency of NH 4 + -N decreased significantly when the nitrogen loading rate was increased to 0.062 g NH 4 + -N (gVSS·d) -1 . The total removal efficiency of total phosphorus in the step-fed SMSBR was generally higher than 75%, though large fluctuations were observed during the experiments. In addition, the concentrations of microbial metabolites, i.e., soluble microbial products (SMP) and extracellular polymeric substances (EPS) from activated sludge increased as nitrogen loading rate increased, both showing quadratic equation correlations with viscosity of the mixed liquid in the step-fed SMSBR (both R 2 > 0.90). EPS content was higher than SMP content, while protein (PN) was detected as the main component in both SMP and EPS. EPS PN was found to be well correlated with transmembrane pressure, membrane flux and the total membrane fouling resistance. Furthermore, the three-dimensional excitation-emission matrix fluorescence spectroscopy results suggested the tryptophan-like protein as one of the main contributors to the membrane fouling. Overall, this study showed that the step-fed SMSBR could be used to treat swine digestion slurry at nitrogen loading rate of 0.052 g NH 4 + -N (gVSS·d) -1 , and the control strategy of membrane fouling should be developed based on reducing the tryptophan-like PN in EPS.
Living with a large reduction in permited loading by using a hydrograph-controlled release scheme
Conrads, P.A.; Martello, W.P.; Sullins, N.R.
2003-01-01
The Total Maximum Daily Load (TMDL) for ammonia and biochemical oxygen demand for the Pee Dee, Waccamaw, and Atlantic Intracoastal Waterway system near Myrtle Beach, South Carolina, mandated a 60-percent reduction in point-source loading. For waters with a naturally low background dissolved-oxygen concentrations, South Carolina anti-degradation rules in the water-quality regulations allows a permitted discharger a reduction of dissolved oxygen of 0.1 milligrams per liter (mg/L). This is known as the "0.1 rule." Permitted dischargers within this region of the State operate under the "0.1 rule" and cannot cause a cumulative impact greater than 0.1 mg/L on dissolved-oxygen concentrations. For municipal water-reclamation facilities to serve the rapidly growing resort and retirement community near Myrtle Beach, a variable loading scheme was developed to allow dischargers to utilize increased assimilative capacity during higher streamflow conditions while still meeting the requirements of a recently established TMDL. As part of the TMDL development, an extensive real-time data-collection network was established in the lower Waccamaw and Pee Dee River watershed where continuous measurements of streamflow, water level, dissolved oxygen, temperature, and specific conductance are collected. In addition, the dynamic BRANCH/BLTM models were calibrated and validated to simulate the water quality and tidal dynamics of the system. The assimilative capacities for various streamflows were also analyzed. The variable-loading scheme established total loadings for three streamflow levels. Model simulations show the results from the additional loading to be less than a 0.1 mg/L reduction in dissolved oxygen. As part of the loading scheme, the real-time network was redesigned to monitor streamflow entering the study area and water-quality conditions in the location of dissolved-oxygen "sags." The study reveals how one group of permit holders used a variable-loading scheme to implement restrictive permit limits without experiencing prohibitive capital expenditures or initiating a lengthy appeals process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teshima, Teruki; Numasaki, Hodaka; Shibuya, Hitoshi
2008-09-01
Purpose: To evaluate the structure of radiation oncology in Japan in terms of equipment, personnel, patient load, and geographic distribution to identify and improve any deficiencies. Methods and Materials: A questionnaire-based national structure survey was conducted between March 2006 and February 2007 by the Japanese Society of Therapeutic Radiology and Oncology. These data were analyzed in terms of the institutional stratification of the Patterns of Care Study. Results: The total numbers of new cancer patients and total cancer patients (new and repeat) treated with radiotherapy in 2005 were estimated at approximately 162,000 and 198,000, respectively. In actual use were 765more » linear accelerators, 11 telecobalt machines, 48 GammaKnife machines, 64 {sup 60}Co remote-controlled after-loading systems, and 119 {sup 192}Ir remote-controlled after-loading systems. The linear accelerator systems used dual-energy function in 498 systems (65%), three-dimensional conformal radiotherapy in 462 (60%), and intensity-modulated radiotherapy in 170 (22%). There were 426 Japanese Society of Therapeutic Radiology and Oncology-certified radiation oncologists, 774 full-time equivalent radiation oncologists, 117 medical physicists, and 1,635 radiation therapists. Geographically, a significant variation was found in the use of radiotherapy, from 0.9 to 2.1 patients/1,000 population. The annual patient load/FTE radiation oncologist was 247, exceeding the Blue Book guidelines level. Patterns of Care Study stratification can clearly discriminate the maturity of structures according to their academic nature and caseload. Conclusions: The Japanese structure has clearly improved during the past 15 years in terms of equipment and its use, although the shortage of manpower and variations in maturity disclosed by this Patterns of Care Study stratification remain problematic. These constitute the targets for nationwide improvement in quality assurance and quality control.« less
Runner, Michael S.; Turnipseed, D. Phil; Coupe, Richard H.
2002-01-01
Increased nutrient loading to the Gulf of Mexico from off-continent flux has been identified as contributing to the increase in the areal extent of the low dissolved-oxygen zone that develops annually off the Louisiana and Texas coast. The proximity of the Yazoo River Basin in northwestern Mississippi to the Gulf of Mexico, and the intensive agricultural activities in the basin have led to speculation that the Yazoo River Basin contributes a disproportionate amount of nitrogen and phosphorus to the Mississippi River and ultimately to the Gulf of Mexico. An empirical measurement of the flux of nitrogen and phosphorus from the Yazoo Basin has not been possible due to the hydrology of the lower Yazoo River Basin. Streamflow for the Yazoo River below Steele Bayou is affected by backwater from the Mississippi River. Flow at the gage is non-uniform and varying, with bi-directional and reverse flows possible. Streamflow was computed by using remote sensing and acoustic and conventional discharge and velocity measurement techniques. Streamflow from the Yazoo River for the 1996-2000 period accounted for 2.8 percent of the flow of the Mississippi River for the same period. Water samples from the Yazoo River were collected from February 1996 through December 2000 and were analyzed for total nitrogen, nitrate, total phosphorus, and orthophosphorus as part of the U.S. Geological Survey National Water-Quality Assessment Program. These data were used to compute annual loads of nitrogen and phosphorus discharged from the Yazoo River for the period 1996-2000. Annual loads of nitrogen and phosphorus were calculated by two methods. The first method used multivariate regression and the second method multiplied the mean annual concentration by the total annual flow. Load estimates based on the product of the mean annual concentration and the total annual flow were within the 95 percent confidence interval for the load calculated by multivariate regression in 10 of 20 cases. The Yazoo River loads, compared to average annual loads in the Mississippi River, indicated that the Yazoo River was contributing 1.4 percent of the total nitrogen load, 0.7 percent of the nitrate load, 3.4 percent of the total phosphorus load, and 1.6 percent of the orthophosphorus load during 1996 - 2000. The total nitrogen, nitrate, and orthophosphorus loads in the Yazoo River Basin were less than expected, whereas the total phosphorus load was slightly higher than expected based on discharge.
Vanden Bogaerde, Leonardo; Sennerby, Lars
2016-01-01
Background. Hydrophilic and moderately rough implant surfaces have been proposed to enhance the osseointegration response. Aim. The aim of this study was to compare early changes of stability for two implants with identical macrodesign but with different surface topographies. Materials and Methods. In 11 patients, a total of 22 implants (11 bimodal (minimally rough, control) and 11 proactive (moderately rough and hydrophilic, test), Neoss Ltd., Harrogate, UK) were immediately placed into fresh extraction sockets and immediately loaded. The peak insertion torque (IT) was measured in Ncm at placement. Resonance Frequency Analysis (RFA) measurements were made at baseline and 2, 4, 6, and 12 weeks after surgery. Results. The two implant types showed similar IT and RFA values at placement (NS). A dip of RFA values after 2 weeks followed by an increase was observed, where the test implant showed a less pronounced decrease and a more rapid recovery than the control implant. The test implants were significantly more stable than the control ones after 12 weeks. Conclusions. The results from the present study indicated that the hydrophilic and rougher test implant was more resistant to immediate loading and showed a significantly higher stability than the smoother control implant after 12 weeks. PMID:27042180
Load controller and method to enhance effective capacity of a photovoltaic power supply
Perez, Richard
2000-01-01
A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The renewable supply may comprise, for example, a photovoltaic power supply or a wind-based power supply.
Novel method to control antenna currents based on theory of characteristic modes
NASA Astrophysics Data System (ADS)
Elghannai, Ezdeen Ahmed
Characteristic Mode Theory is one of the very few numerical methods that provide a great deal of physical insight because it allows us to determine the natural modes of the radiating structure. The key feature of these modes is that the total induced antenna current, input impedance/admittance and radiation pattern can be expressed as a linear weighted combination of individual modes. Using this decomposition method, it is possible to study the behavior of the individual modes, understand them and therefore control the antennas behavior; in other words, control the currents induced on the antenna structure. This dissertation advances the topic of antenna design by carefully controlling the antenna currents over the desired frequency band to achieve the desired performance specifications for a set of constraints. Here, a systematic method based on the Theory of Characteristic Modes (CM) and lumped reactive loading to achieve the goal of current control is developed. The lumped reactive loads are determined based on the desired behavior of the antenna currents. This technique can also be used to impedance match the antenna to the source/generator connected to it. The technique is much more general than the traditional impedance matching. Generally, the reactive loads that properly control the currents exhibit a combination of Foster and non-Foster behavior. The former can be implemented with lumped passive reactive components, while the latter can be implemented with lumped non-Foster circuits (NFC). The concept of current control is applied to design antennas with a wide band (impedance/pattern) behavior using reactive loads. We successfully applied this novel technique to design multi band and wide band antennas for wireless applications. The technique was developed to match the antenna to resistive and/or complex source impedance and control the radiation pattern at these frequency bands, considering size and volume constraints. A wide band patch antenna was achieved using the developed technique. In addition, the technique was applied to multi band wire less Universal Serial Bus (USB) dongle antenna that serves for WLAN IEEE 802.11 a/b/g/n band applications and Radio Frequency Identification (RFID) tag antenna for 915MHz band applications with superior performance compared to previous published results. This dissertation also discusses the total Q of an antenna from the CM standpoint. A new expression as well as additional physical information about each mode's individual contribution to the total antenna Q are provided. Finally, the theory is used to an analyze the antenna in both radiation and/or scattering modes. In the antenna scattering mode, the field scattered by an antenna contains a component that is the short circuit scattered field, and a second component that is proportional to the radiation field. In this dissertation, an analytical study of this phenomena from the CM standpoint is performed aiming to shed some light on antenna scattering phenomenon where additional physical insight is obtained and thus used to reach desire results.
Wellbeing perception and the impact on external training output among elite soccer players.
Malone, Shane; Owen, Adam; Newton, Matt; Mendes, Bruno; Tiernan, Leo; Hughes, Brian; Collins, Kieran
2018-01-01
The objective of the investigation was to observe the impact of player wellbeing on the training output of elite soccer players. Prospective cohort design. Forty-eight soccer players (age: 25.3±3.1years; height: 183±7cm; mass: 72±7kg) were involved in this single season observational study across two teams. Each morning, pre-training, players completed customised perceived wellbeing questionnaires. Global positioning technology devices were used to measure external load (total distance, total high-speed running distance, high speed running, player load, player load slow, maximal velocity, maximal velocity exposures). Players reported ratings of perceived exertion using the modified Borg CR-10 scale. Integrated training load ratios were also analysed for total distance:RPE, total high speed distance:RPE player load:RPE and player load slow:RPE respectively. Mixed-effect linear models revealed significant effects of wellbeing Z-score on external and integrated training load measures. A wellbeing Z-score of -1 corresponded to a -18±2m (-3.5±1.1%), 4±1m (-4.9±2.1%,) 0.9±0.1kmh -1 (-3.1±2.1%), 1±1 (-4.6±2.9%), 25±3AU (-4.9±3.1%) and 11±0.5AU (-8.9±2.9%) reduction in total high speed distance, high speed distance, maximal velocity, maximal velocity exposures, player load and player load slow respectively. A reduction in wellbeing impacted external:internal training load ratios and resulted in -0.49±0.12mmin -1 , -1.20±0.08mmin -1 ,-0.02±0.01AUmin -1 in total distance:RPE, total high speed distance:RPE and player load slow:RPE respectively. The results suggest that systematic monitoring of player wellbeing within soccer cohorts can provide coaches with information about the training output that can be expected from individual players during a training session. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Estimation of particulate nutrient load using turbidity meter.
Yamamoto, K; Suetsugi, T
2006-01-01
The "Nutrient Load Hysteresis Coefficient" was proposed to evaluate the hysteresis of the nutrient loads to flow rate quantitatively. This could classify the runoff patterns of nutrient load into 15 patterns. Linear relationships between the turbidity and the concentrations of particulate nutrients were observed. It was clarified that the linearity was caused by the influence of the particle size on turbidity output and accumulation of nutrients on smaller particles (diameter < 23 microm). The L-Q-Turb method, which is a new method for the estimation of runoff loads of nutrients using a regression curve between the turbidity and the concentrations of particulate nutrients, was developed. This method could raise the precision of the estimation of nutrient loads even if they had strong hysteresis to flow rate. For example, as for the runoff load of total phosphorus load on flood events in a total of eight cases, the averaged error of estimation of total phosphorus load by the L-Q-Turb method was 11%, whereas the averaged estimation error by the regression curve between flow rate and nutrient load was 28%.
Mullaney, John R.; Martin, Joseph W.; Morrison, Jonathan
2018-03-20
The daily and annual loads of nitrate plus nitrite and total nitrogen for the Connecticut River at Middle Haddam, Connecticut, were determined for water years 2009 to 2014. The analysis was done with a combination of methods, which included a predefined rating curve method for nitrate plus nitrite and total nitrogen for water years 2009 to 2011 and a custom rating curve method that included sensor measurements of nitrate plus nitrite nitrogen concentration and turbidity along with mean daily flow to determine total nitrogen loads for water years 2011 to 2014. Instantaneous concentrations of total nitrogen were estimated through the use of a regression model based on sensor measurements at 15-minute intervals of nitrate plus nitrite nitrogen and turbidity for water years 2011 to 2014.Annual total nitrogen loads at the Connecticut River at Middle Haddam ranged from 12,900 to 19,200 metric tons, of which about 42 to 49 percent was in the form of nitrate plus nitrite. The mean 95-percent prediction intervals on daily total nitrogen load estimates were smaller from the custom model, which used sensor data, than those calculated by the predefined model.Annual total nitrogen load estimates at the Connecticut River at Middle Haddam were compared with the upstream load estimates at the Connecticut River at Thompsonville, Conn. Annual gains in total nitrogen loads between the two stations ranged from 3,430 to 6,660 metric tons. These increases between the two stations were attributed to the effects of increased urbanization and to combined annual discharges of 1,540 to 2,090 metric tons of nitrogen from 24 wastewater treatment facilities in the drainage area between the two stations. The contribution of total nitrogen from wastewater discharge between the two stations had declined substantially before the beginning of this study and accounted for from 31 to 52 percent of the gain in nitrogen load between the Thompsonville and Middle Haddam sites.
Vanaclocha, Pilar; Papacek, Dan; Verdú, Maria Jesús; Urbaneja, Alberto
2014-01-01
Abstract The augmentative releases of mass-reared Aphytis spp. (Hymenoptera: Aphelinidae) parasitoids are widely used against armored scales. The nutritional status and the initial egg load of Aphytis spp. females are key to their success as biological control agents. For these reasons, this work focuses on the study of providing a protein feed to Aphytis lingnanensis (Compere) and A. melinus DeBach to improve the egg load before their release. The addition of protein to a honey diet during the first 2 d after the adult parasitoid emergence increased the initial egg load in both species of parasitoids by more than five eggs. Furthermore, the addition of protein increased the total number of eggs laid by A. lingnanensis on oleander scale, Aspidiotus nerii Bouché (Hemiptera: Diaspididae). In contrast, this effect was not observed on A. melinus probably because A. nerii is considered a suboptimal host for this parasitoid. The host-feeding activities of the two Aphytis species were differentially affected by the addition of protein to their diets. These results may have direct implications for augmentative biological control programs, especially during transportation from insectaries to the field, a period of time when parasitoids are deprived of hosts. PMID:25502042
Influence of Cattle Trails on Runoff Quantity and Quality.
Miller, Jim J; Curtis, Tony; Chanasyk, David S; Willms, Walter D
2017-03-01
Cattle trails in grazed pastures close to rivers may adversely affect surface water quality of the adjacent river by directing runoff to it. The objective of this 3-yr study (2013-2015) in southern Alberta, Canada, was to determine if cattle trails significantly increased the risk of runoff and contaminants (sediment, nutrients) compared with the adjacent grazed pasture (control). A portable rainfall simulator was used to generate artificial rainfall (140 mm h) and runoff. The runoff properties measured were time to runoff and initial abstraction (infiltration), total runoff depth and average runoff rates, as well as concentrations and mass loads of sediment, N, and P fractions. Cattle trails significantly ( ≤ 0.10) decreased time to runoff and initial abstraction (26-32%) in the 2 yr measured and increased total runoff depth, runoff coefficients, and average runoff rates (21-51%) in 2 of 3 yr. Concentrations of sediment, N, and P fractions in runoff were not significantly greater for cattle trails than for control areas. However, mass loads of total suspended solids (57-85% increase), NH-N (31-90%), and dissolved reactive P (DRP) (30-92%) were significantly greater because of increased runoff volumes. Overall, runoff quantity and loads of sediment, NH-N, and DRP were greater for cattle trails compared with the adjacent grazed pasture, and hydrologic connection with cattle-access sites on the riverbank suggests that this could adversely affect water quality in the adjacent river. Extrapolation of the study results should be tempered by the specific conditions represented by this rainfall simulation study. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Cuthbertson, Brian H; Campbell, Marion K; Stott, Stephen A; Elders, Andrew; Hernández, Rodolfo; Boyers, Dwayne; Norrie, John; Kinsella, John; Brittenden, Julie; Cook, Jonathan; Rae, Daniela; Cotton, Seonaidh C; Alcorn, David; Addison, Jennifer; Grant, Adrian
2011-01-01
Fluid strategies may impact on patient outcomes in major elective surgery. We aimed to study the effectiveness and cost-effectiveness of pre-operative fluid loading in high-risk surgical patients undergoing major elective surgery. This was a pragmatic, non-blinded, multi-centre, randomised, controlled trial. We sought to recruit 128 consecutive high-risk surgical patients undergoing major abdominal surgery. The patients underwent pre-operative fluid loading with 25 ml/kg of Ringer's solution in the six hours before surgery. The control group had no pre-operative fluid loading. The primary outcome was the number of hospital days after surgery with cost-effectiveness as a secondary outcome. A total of 111 patients were recruited within the study time frame in agreement with the funder. The median pre-operative fluid loading volume was 1,875 ml (IQR 1,375 to 2,025) in the fluid group compared to 0 (IQR 0 to 0) in controls with days in hospital after surgery 12.2 (SD 11.5) days compared to 17.4 (SD 20.0) and an adjusted mean difference of 5.5 days (median 2.2 days; 95% CI -0.44 to 11.44; P = 0.07). There was a reduction in adverse events in the fluid intervention group (P = 0.048) and no increase in fluid based complications. The intervention was less costly and more effective (adjusted average cost saving: £2,047; adjusted average gain in benefit: 0.0431 quality adjusted life year (QALY)) and has a high probability of being cost-effective. Pre-operative intravenous fluid loading leads to a non-significant reduction in hospital length of stay after high-risk major surgery and is likely to be cost-effective. Confirmatory work is required to determine whether these effects are reproducible, and to confirm whether this simple intervention could allow more cost-effective delivery of care. Prospective Clinical Trials, ISRCTN32188676.
2011-01-01
Introduction Fluid strategies may impact on patient outcomes in major elective surgery. We aimed to study the effectiveness and cost-effectiveness of pre-operative fluid loading in high-risk surgical patients undergoing major elective surgery. Methods This was a pragmatic, non-blinded, multi-centre, randomised, controlled trial. We sought to recruit 128 consecutive high-risk surgical patients undergoing major abdominal surgery. The patients underwent pre-operative fluid loading with 25 ml/kg of Ringer's solution in the six hours before surgery. The control group had no pre-operative fluid loading. The primary outcome was the number of hospital days after surgery with cost-effectiveness as a secondary outcome. Results A total of 111 patients were recruited within the study time frame in agreement with the funder. The median pre-operative fluid loading volume was 1,875 ml (IQR 1,375 to 2,025) in the fluid group compared to 0 (IQR 0 to 0) in controls with days in hospital after surgery 12.2 (SD 11.5) days compared to 17.4 (SD 20.0) and an adjusted mean difference of 5.5 days (median 2.2 days; 95% CI -0.44 to 11.44; P = 0.07). There was a reduction in adverse events in the fluid intervention group (P = 0.048) and no increase in fluid based complications. The intervention was less costly and more effective (adjusted average cost saving: £2,047; adjusted average gain in benefit: 0.0431 quality adjusted life year (QALY)) and has a high probability of being cost-effective. Conclusions Pre-operative intravenous fluid loading leads to a non-significant reduction in hospital length of stay after high-risk major surgery and is likely to be cost-effective. Confirmatory work is required to determine whether these effects are reproducible, and to confirm whether this simple intervention could allow more cost-effective delivery of care. Trial registration Prospective Clinical Trials, ISRCTN32188676 PMID:22177541
Deacon, Jeffrey R.; Smith, Thor E.; Johnston, Craig M.; Moore, Richard B.; Blake, Laura J.; Weidman, Rebecca M.
2006-01-01
A study of total nitrogen concentrations and loads was conducted from December 2002 to September 2005 at 13 river sites in the upper Connecticut River Basin. Ten sites were selected to represent contributions of nitrogen from forested, agricultural, and urban land. Three sites were distributed spatially on the main stem of the Connecticut River to assess the cumulative total nitrogen loads. To further improve the understanding of the sources and concentrations and loads of total nitrogen in the upper Connecticut River Basin, ambient surface water-quality sampling was supplemented with sampling of effluent from 19 municipal and paper mill wastewater-treatment facilities. Mean concentrations of total nitrogen ranged from 0.19 to 2.8 milligrams per liter (mg/L) at river sampling sites. Instantaneous mean loads of total nitrogen ranged from 162 to 58,300 pounds per day (lb/d). Estimated mean annual loads of total nitrogen ranged from 49,100 to 21.6 million pounds per year (lb/yr) with about 30 to 55 percent of the loads being transported during the spring. The estimated mean annual yields of total nitrogen ranged from 1,190 to 7,300 pounds per square mile per year (lb/mi2)/yr. Mean concentrations of total nitrogen ranged from 4.4 to 30 mg/L at wastewater-treatment sampling sites. Instantaneous mean loads of total nitrogen from municipal wastewater-treatment facilities ranged from 36 to 1,780 lb/d. Instantaneous mean loads of total nitrogen from paper mill wastewater-treatment facilities ranged from 96 to 160 lb/d. The median concentration of total nitrogen was 0.24 mg/L at forested sites, 0.48 mg/L at agricultural sites, 0.54 mg/L at urban sites, 0.48 mg/L at main-stem sites, and 14 mg/L at wastewater-treatment sites. Concentrations of total nitrogen at forested sites were significantly less than at all other site types (p0.05) but were significantly greater (p<0.05) than at forested sites and significantly less than concentrations at wastewater-treatment sites (p<0.05). Total nitrogen concentrations at wastewater-treatment sites were significantly different from all other site types (p<0.05). Annual yields of total nitrogen ranged from 732 to 1,920 (lb/mi2)/yr at forested sites; 1,550 to 2,980 (lb/mi2)/yr at agricultural sites; 1,280 to 1,860 (lb/mi2)/yr at urban sites that were not directly affected by wastewater effluent; 7,090 to 7,770 (lb/mi2)/yr at an urban site directly affected by wastewater effluent; and 1,300 to 2,390 (lb/mi2)/yr at main-stem sites. In this study, the mean annual load and yield of total nitrogen at the Connecticut River at Wells River, VT, was estimated at 4.47 million lb/yr and 1,690 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen at the Connecticut River at North Walpole, NH, was estimated at 9.60 million lb/yr and 1,750 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen leaving the upper Connecticut River Basin, as estimated at the Connecticut River at Thompsonville, CT, was 21.6 million lb/yr and 2,230 (lb/mi2)/yr, respectively.
Estimation of phosphorus flux in rivers during flooding.
Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang
2013-07-01
Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in rivers during flooding should be monitored to evaluate the loading of phosphorus more precisely. The results show that monitoring and controlling phosphorus transport during flooding can help prevent the eutrophication of a reservoir.
Nutrient concentrations and loads in the northeastern United States - Status and trends, 1975-2003
Trench, Elaine C. Todd; Moore, Richard B.; Ahearn, Elizabeth A.; Mullaney, John R.; Hickman, R. Edward; Schwarz, Gregory E.
2012-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) began regional studies in 2003 to synthesize information on nutrient concentrations, trends, stream loads, and sources. In the northeastern United States, a study area that extends from Maine to central Virginia, nutrient data were evaluated for 130 USGS water-quality monitoring stations. Nutrient data were analyzed for trends in flow-adjusted concentrations, modeled instream (non-flow-adjusted) concentrations, and stream loads for 32 stations with 22 to 29 years of water-quality and daily mean streamflow record during 1975-2003 (termed the long-term period), and for 46 stations during 1993-2003 (termed the recent period), by using a coupled statistical model of streamflow and water quality developed by the USGS. Recent trends in flow-adjusted concentrations of one or more nutrients also were analyzed for 90 stations by using Tobit regression. Annual stream nutrient loads were estimated, and annual nutrient yields were calculated, for 47 stations for the long-term and recent periods, and for 37 additional stations that did not have a complete streamflow and water-quality record for 1993-2003. Nutrient yield information was incorporated for 9 drainage basins evaluated in a national NAWQA study, for a total of 93 stations evaluated for nutrient yields. Long-term downward trends in flow-adjusted concentrations of total nitrogen and total phosphorus (18 and 19 of 32 stations, respectively) indicate regional improvements in nutrient-related water-quality conditions. Most of the recent trends detected for total phosphorus were upward (17 of 83 stations), indicating possible reversals to the long-term improvements. Concentrations of nutrients in many streams persist at levels that are likely to affect aquatic habitat adversely and promote freshwater or coastal eutrophication. Recent trends for modeled instream concentrations, and modeled reference concentrations, were evaluated relative to ecoregion-based nutrient criteria proposed by the U.S. Environmental Protection Agency. Instream concentrations of total nitrogen and total phosphorus persist at levels higher than proposed criteria at more than one-third and about one-half, respectively, of the 46 stations analyzed. Long-term trends in nutrient loads were primarily downward, with downward trends in total nitrogen and total phosphorus loads detected at 12 and 17 of 32 stations, respectively. Upward trends were rare, with one upward trend for total nitrogen loads and none for total phosphorus. Trends in loads of nitrite-plus-nitrate nitrogen included 7 upward and 8 downward trends among 32 stations. Downward trends in loads of ammonia nitrogen and total Kjeldahl nitrogen were detected at all six stations evaluated. Long-term downward trends detected in four of the five largest drainage basins evaluated include: total nitrogen loads for the Connecticut, Delaware, and James Rivers; total Kjeldahl nitrogen and ammonia nitrogen loads for the Susquehanna River; ammonia nitrogen and nitrite-plus-nitrate nitrogen loads for the James River; and total phosphorus loads for the Connecticut and Delaware Rivers. No trends in load were detected for the Potomac River. Nutrient yields were evaluated relative to the extent of land development in 93 drainage basins. The undeveloped land-use category included forested drainage basins with undeveloped land ranging from 75 to 100 percent of basin area. Median total nitrogen yields for the 27 undeveloped drainage basins evaluated, including 9 basins evaluated in a national NAWQA study, ranged from 290 to 4,800 pounds per square mile per year (lb/mi2/yr). Total nitrogen yields even in the most pristine drainage basins may be elevated relative to natural conditions, because of high rates of atmospheric deposition of nitrogen in parts of the northeastern United States. Median total phosphorus yields ranged from 12 to 330 lb/mi2/yr for the 26 undeveloped basins evaluated. The undeveloped category includes some large drainage basins with point-source discharges and small percentages of developed land; in these basins, streamflow from undeveloped headwater areas dilutes streamflow in more urbanized reaches, and dampens but does not eliminate the point-source "signal" of higher nutrient loads. Median total nitrogen yields generally do not exceed 1,700 lb/mi2/yr, and median total phosphorus yields generally do not exceed 100 lb/mi2/yr, in the drainage basins that are least affected by human land-use and waste-disposal practices. Agricultural and urban land use has increased nutrient yields substantially relative to undeveloped drainage basins. Median total nitrogen yields for 24 agricultural basins ranged from 1,700 to 26,000 lb/mi2/yr, and median total phosphorus yields ranged from 94 to 1,000 lb/mi2/yr. The maximum estimated total nitrogen and total phosphorus yields, 32,000 and 16,000 lb/mi2/yr, respectively, for all stations in the region were in small (less than 50 square miles (mi2)) agricultural drainage basins. Median total nitrogen yields ranged from 1,400 to 17,000 lb/mi2/yr in 26 urbanized drainage basins, and median total phosphorus yields ranged from 43 to 1,900 lb/mi2/yr. Urbanized drainage basins with the highest nutrient yields are generally small (less than 300 mi2) and are drained by streams that receive major point-source discharges. Instream nutrient loads were evaluated relative to loads from point-source discharges in four drainage basins: the Quinebaug River Basin in Connecticut, Massachusetts, and Rhode Island; the Raritan River Basin in New Jersey; the Patuxent River Basin in Maryland; and the James River Basin in Virginia. Long-term downward trends in nutrient loads, coupled with similar trends in flow-adjusted nutrient concentrations, indicate long-term reductions in the delivery of most nutrients to these streams. However, the absence of recent downward trends in load for most nutrients, coupled with instream concentrations that exceed proposed nutrient criteria in several of these waste-receiving streams, indicates that challenges remain in reducing delivery of nutrients to streams from point sources. During dry years, the total nutrient load from point sources in some of the drainage basins approached or equaled the nutrient load transported by the stream.
Suman, Swapnil; Sinha, Alok; Tarafdar, Abhrajyoti
2016-03-01
Present study was carried out to assess and understand potential health risk and to examine the impact of vehicular traffic on the contamination status of urban traffic soils in Dhanbad City with respect to polycyclic aromatic hydrocarbons (PAHs). Eight urban traffic sites and two control/rural site surface soils were analyzed and the contents of 13 priority PAHs was determined. Total PAH concentration at traffic sites ranged from 1.019 μg g(-1) to 10.856 μg g(-1) with an average value of 3.488 μg g(-1). At control/rural site, average concentration of total PAHs was found to be 0.640 μg g(-1). PAH pattern was dominated by four- and five-ring PAHs (contributing >50% to the total PAHs) at all the eight traffic sites. On the other hand, rural soil showed a predominance of low molecular weight three-ring PAHs (contributing >30% to the total PAHs). Indeno[123-cd]pyrene/benz[ghi]perylene (IP/BgP) ratio indicated that PAH load at the traffic sites is predominated by the gasoline-driven vehicles. The ratio of Ant/(Ant+Phe) varied from 0.03 to 0.44, averaging 0.10; Fla/(Fla+Pyr) from 0.39 to 0.954, averaging 0.52; BaA/(BaA+Chry) from 0.156 to 0.60, averaging 0.44; and IP/(IP+BgP) from 0.176 to 0.811, averaging 0.286. The results indicated that vehicular emission was the major source for PAHs contamination with moderate effect of coal combustion and biomass combustion. Carcinogenic potency of PAH load in traffic soil was nearly 6.15 times higher as compared to the control/rural soil. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Min-Ji; Han, Chang-Wan; Min, Kyoung-Youn; Cho, Chae-Yoon; Lee, Chae-Won; Ogawa, Yoshiko; Mori, Etsuro; Kohzuki, Masahiro
2016-01-01
Aims This study aimed to investigate the effect of 6-month physical exercise with a multicomponent cognitive program (MCP) on the cognitive function of older adults with moderate to severe Alzheimer's disease (AD). Methods We included 33 participants with AD in a 6-month randomized controlled trial. The intervention group participated in physical exercise and received a MCP. The control group received only the MCP. Before and after the intervention, cognitive outcomes were assessed using the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog), Mini-Mental State Examination, and the Clock Drawing Test. Physical performance was evaluated by exercise time, the number of pedal rotation, total load, grip strength, and the Berg Balance Scale (BBS). Results In all cognitive measures, there were no significant improvements between the two groups after 6 months in the baseline value-adjusted primary analysis. However, the ADAS-cog score was significantly lower between the two groups in secondary analysis adjusted for baseline value, age, sex, and education years. All physical outcomes were significantly higher in the intervention group except for total load compared with baseline measurements. Conclusion This study indicates that it is possible to improve cognitive function in older adults with moderate to severe AD through 6-month physical exercise with a multicomponent cognitive intervention. PMID:27403134
Savoie, Jennifer G.; DeSimone, Leslie A.; Mullaney, John R.; Zimmerman, Marc J.; Waldron, Marcus C.
2016-10-24
Treated effluent discharged from municipal wastewater-treatment plants to the Assabet River in central Massachusetts includes phosphorus, which leads to increased growth of nuisance aquatic plants that decrease the river’s water quality and aesthetics in impounded reaches during the growing season. To improve the river’s water quality and aesthetics, the U.S. Environmental Protection Agency approved a total maximum daily load for phosphorus in 2004 that directed the wastewater-treatment plants to reduce the amount of total phosphorus discharged to the river by 2012. The permitted total phosphorus monthly average of 0.75 milligrams per liter during the aquatic plant growing season (April 1 through October 31) was reduced by the total maximum daily load to a target of 0.1 milligrams per liter by 2012, and the nongrowing-season limit was unchanged at 1.0 milligrams per liter.From October 2008 through April 2014, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, measured streamflow and collected weekly flow-proportional, composite samples of water from the Assabet River for analysis of concentrations of total phosphorus and orthophosphate. Streamflow and concentration data were used to estimate total phosphorus and orthophosphate loads in the river. The purpose of this monitoring effort was to evaluate phosphorus concentrations and loads in the river before, during, and after the wastewater-treatment-plant upgrades and to assess the effects of seasonal differences in permitted discharges. The locations of water-quality-monitoring stations, with respect to the Hudson and Ben Smith impoundments, enabled examination of effects of phosphorus entering and leaving the impoundments.Annual median concentrations of total phosphorus in wastewater-treatment plants were reduced by more than 80 percent with the plant upgrades. Measured instream annual median concentrations of total phosphorus in the Assabet River decreased by about 38 to 50 percent at three of the four monitoring stations following the wastewater-treatment-plant upgrades. At the station farthest upstream, the median total phosphorus concentration remained unchanged throughout the study; this may be attributed to the site location and potential resuspension of particulate organic matter during periods of increased streamflow. Annual median loads from the wastewater-treatment plants were reduced by up to 91 percent following the upgrades, instream annual median total phosphorus loads at the three downstream stations decreased by 71 to 76 percent, and instream orthophosphate loads at the three downstream stations decreased by 79 to 87 percent.Seasonal fluctuations (growing versus nongrowing) of total phosphorus and orthophosphate were observed instream before the upgrades. However, after the upgrades, fluctuations in phosphorus released from the treatment plants were slight and seasonal changes were typically not observed instream.Annual loads entering and leaving the two impoundments were inconclusive in determining whether the impoundments were sources or sinks of total phosphorus during the study. Total phosphorus loads entering the Hudson impoundment were consistently greater than those leaving; however, there was uncertainty about the loads at the monitoring station upstream from this impoundment. At the Ben Smith impoundment, total phosphorus and orthophosphate loads downstream were slightly greater than those upstream from the impoundment, but the differences may reflect additions from tributaries and overland runoff.Estimated instream total phosphorus concentrations and loads indicated that the decreases in total phosphorus in wastewater-treatment-plant discharges were accompanied by reductions measured in the Assabet River. A statistical analysis which incorporates the effect of varying flow conditions demonstrated significant reductions in total phosphorus concentrations after the wastewater-treatment-plant upgrades at three of the four instream monitoring stations. No significant change was observed at the most upstream location, the Assabet River at Port Street at Hudson, Massachusetts (station number 01096835), which may have been affected by flow-related resuspension of particulate phosphorus.
Spörri, Jörg; Kröll, Josef; Fasel, Benedikt; Aminian, Kamiar; Müller, Erich
2018-01-01
Background: In alpine ski racing, typical loading patterns of the back include a combined occurrence of spinal bending, torsion, and high peak loads. These factors are known to be associated with high spinal disc loading and have been suggested to be attributable to different types of spine deterioration. However, little is known about the effect of standing height (ie, the distance between the bottom of the running surface of the ski and the ski boot sole) on the aforementioned back loading patterns. Purpose: To investigate the effect of reduced standing height on the skier’s overall trunk kinematics and the acting ground-reaction forces in giant slalom (GS) from an overuse injury prevention perspective. Study Design: Controlled laboratory study. Methods: Seven European Cup–level athletes skied a total of 224 GS turns with 2 different pairs of skis varying in standing height. Their overall trunk movement (frontal bending, lateral bending, and torsion angles) was measured based on 2 inertial measurement units located at the sacrum and sternum. Pressure insoles were used to determine the total ground-reaction force. Results: During the turn phase in which the greatest spinal disc loading is expected to occur, significantly lower total ground-reaction forces were observed for skis with a decreased standing height. Simultaneously, the skier’s overall trunk movement (ie, frontal bending, lateral bending, and torsion angles) remained unwaveringly high. Conclusion: Standing height is a reasonable measure to reduce the skier’s overall back loading in GS. Yet, when compared with the effects achievable by increased gate offsets in slalom, for instance, the preventative benefits of decreased standing height seem to be rather small. Clinical Relevance: To reduce the magnitude of overall back loading in GS and to prevent overuse injuries of the back, decreasing standing height might be an efficient approach. Nevertheless, the clinical relevance of the current findings, as well as the effectiveness of the measure “reduced standing height,” must be verified by epidemiological studies before its preventative potential can be judged as conclusive. PMID:29344540
Ugwuanyi, J Obeta; Harvey, L M; McNeil, B
2005-04-01
Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality.
D-propranolol attenuates lysosomal iron accumulation and oxidative injury in endothelial cells.
Mak, I Tong; Chmielinska, Joanna J; Nedelec, Lucie; Torres, Armida; Weglicki, William B
2006-05-01
The influence of selected beta-receptor blockers on iron overload and oxidative stress in endothelial cells (ECs) was assessed. Confluent bovine ECs were loaded with iron dextran (15 muM) for 24 h and then exposed to dihydroxyfumarate (DHF), a source of reactive oxygen species, for up to 2 h. Intracellular oxidant formation, monitored by fluorescence of 2',7'-dichlorofluorescin (DCF; 30 microM), increased and peaked at 30 min; total glutathione decreased by 52 +/- 5% (p < 0.01) at 60 min. When the ECs were pretreated 30 min before iron loading with 1.25 to 10 microM d-propranolol, glutathione losses were attenuated 15 to 80%, with EC(50) = 3.1 microM. d-Propranolol partially inhibited the DCF intensity increase, but atenolol up to 10 microM was ineffective. At 2 h, caspase 3 activity was elevated 3.2 +/- 0.3-fold (p < 0.01) in the iron-loaded and DHF-treated ECs, and cell survival, determined 24 h later, decreased 47 +/- 6% (p < 0.01). Ten micromoles of d-propranolol suppressed the caspase 3 activation by 63% (p < 0.05) and preserved cell survival back to 88% of control (p < 0.01). In separate experiments, 24-h iron loading resulted in a 3.6 +/- 0.8-fold increase in total EC iron determined by atomic absorption spectroscopy; d-propranolol at 5 microM reduced this increase to 1.5 +/- 0.4-fold (p < 0.01) of controls. Microscopic observation by Perls' staining revealed that the excessive iron accumulated in vesicular endosomal/lysosomal structures, which were substantially diminished by d-propranolol. We previously showed that propranolol could readily concentrate into the lysosomes and raise the intralysosomal pH; it is suggested that the lysosomotropic properties of d-propranolol retarded the EC iron accumulation and thereby conferred the protective effects against iron load-mediated cytotoxicity.
Brill, Simon E; Law, Martin; El-Emir, Ethaar; Allinson, James P; James, Phillip; Maddox, Victoria; Donaldson, Gavin C; McHugh, Timothy D; Cookson, William O; Moffatt, Miriam F; Nazareth, Irwin; Hurst, John R; Calverley, Peter M A; Sweeting, Michael J; Wedzicha, Jadwiga A
2015-01-01
Background Long-term antibiotic therapy is used to prevent exacerbations of COPD but there is uncertainty over whether this reduces airway bacteria. The optimum antibiotic choice remains unknown. We conducted an exploratory trial in stable patients with COPD comparing three antibiotic regimens against placebo. Methods This was a single-centre, single-blind, randomised placebo-controlled trial. Patients aged ≥45 years with COPD, FEV1<80% predicted and chronic productive cough were randomised to receive either moxifloxacin 400 mg daily for 5 days every 4 weeks, doxycycline 100 mg/day, azithromycin 250 mg 3 times a week or one placebo tablet daily for 13 weeks. The primary outcome was the change in total cultured bacterial load in sputum from baseline; secondary outcomes included bacterial load by 16S quantitative PCR (qPCR), sputum inflammation and antibiotic resistance. Results 99 patients were randomised; 86 completed follow-up, were able to expectorate sputum and were analysed. After adjustment, there was a non-significant reduction in bacterial load of 0.42 log10 cfu/mL (95% CI −0.08 to 0.91, p=0.10) with moxifloxacin, 0.11 (−0.33 to 0.55, p=0.62) with doxycycline and 0.08 (−0.38 to 0.54, p=0.73) with azithromycin from placebo, respectively. There were also no significant changes in bacterial load measured by 16S qPCR or in airway inflammation. More treatment-related adverse events occurred with moxifloxacin. Of note, mean inhibitory concentrations of cultured isolates increased by at least three times over placebo in all treatment arms. Conclusions Total airway bacterial load did not decrease significantly after 3 months of antibiotic therapy. Large increases in antibiotic resistance were seen in all treatment groups and this has important implications for future studies. Trial registration number clinicaltrials.gov (NCT01398072). PMID:26179246
Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun
2014-09-15
Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Records, R.; Fassnacht, S. R.; Arabi, M.; Duffy, W. G.
2014-12-01
Elevated total phosphorus (P) loading into Upper Klamath Lake, southern Oregon, United States has caused hypereutrophic conditions impacting endangered lake fish species. Increases in P loading have been attributed to land use changes, such as timber harvest and wetland drainage. The contribution of P to Upper Klamath Lake has been estimated from each major tributary, yet little research has explored what land use or other variables have most influence on P loading within the tributaries. In addition, previous work has shown a range of potential hydroclimatic shifts by the 2040s, with potential to alter P loading mechanisms. In this study, we use statistical methods including principle component analysis and multiple linear regression to determine what hydroclimatic and landscape variables best explain flow-weighted P concentration in the Sprague River, one of three main tributaries to Upper Klamath Lake. Identification of key variables affecting P loading has direct implications for management decisions in the Upper Klamath River Basin. Increases in P loading related to sediment loading are due to bank and upslope erosion. The former is more prevalent in areas of historic channel alteration and cattle grazing, while the latter is more dominant in areas of heavy timber harvesting and more precipitation as rain.
Applying the SWAT hydrologic model on a watershed containing forested karst.
Devendra M. Amatya; Amy E. Edwards
2009-01-01
The US Forest Service Center for Forested Wetlands Research is working on a South Carolina Department of Health and Environmental Control (SC DHEC)'s Section 319 Grant Program funded Total Maximum Daily Load (TMDL) project for the watershed of Chapel Branch Creek (CBC) draining to Lake Marion in Santee, South Carolina (Fig. 1)....
Langland, Michael J.; Hainly, Robert A.
1997-01-01
The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.
NASA Astrophysics Data System (ADS)
Saleh, D.; Domagalski, J. L.
2012-12-01
Sources and factors affecting the transport of total nitrogen are being evaluated for a study area that covers most of California and some areas in Oregon and Nevada, by using the SPARROW model (SPAtially Referenced Regression On Watershed attributes) developed by the U.S. Geological Survey. Mass loads of total nitrogen calculated for monitoring sites at stream gauging stations are regressed against land-use factors affecting nitrogen transport, including fertilizer use, recharge, atmospheric deposition, stream characteristics, and other factors to understand how total nitrogen is transported under average conditions. SPARROW models have been used successfully in other parts of the country to understand how nutrients are transported, and how management strategies can be formulated, such as with Total Maximum Daily Load (TMDL) assessments. Fertilizer use, atmospheric deposition, and climatic data were obtained for 2002, and loads for that year were calculated for monitored streams and point sources (mostly from wastewater treatment plants). The stream loads were calculated by using the adjusted maximum likelihood estimation method (AMLE). River discharge and nitrogen concentrations were de-trended in these calculations in order eliminate the effect of temporal changes on stream load. Effluent discharge information as well as total nitrogen concentrations from point sources were obtained from USEPA databases and from facility records. The model indicates that atmospheric deposition and fertilizer use account for a large percentage of the total nitrogen load in many of the larger watersheds throughout the study area. Point sources, on the other hand, are generally localized around large cities, are considered insignificant sources, and account for a small percentage of the total nitrogen loads throughout the study area.
Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia
2016-01-01
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.
OPTIMIZATION ON MATERIAL FLOW OF NON-METALIC MINERAL MATERIALS TOWARDS SUSTAINABLE SOCIETY
NASA Astrophysics Data System (ADS)
Sakamoto, Kouji; Nakayama, Hirofumi; Shimaoka, Takayuki; Hasegawa, Ryoji; Osako, Masahiro
Since non-metarilc mineral waste such as concrete mass, asphalt concrete mass, sand, slag and coal ash occupies 36% of total amount of waste generation and 26% of total amount of final disposal, it has significant influence on material flow of our country. Although the amount of non-metaril mineral wastes produced is expected to increase in the near future, demand of their application for recycled construction materials will decrease due to the reduction of public construction works and less use of materials in construction. The aim is to reduce environmental load caused by recycling and disposal of non metallic mineral materials, this study was conducted to evaluate the measurement for the reduction of environmental load like landfill amount and CO2 emission amount by controlling material flow of non metallic mineral materials in the year 2030 by linear programming.
Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan
2016-11-01
Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.
NASA Astrophysics Data System (ADS)
Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan
2016-11-01
Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.
Aggregate Load Controllers and Associated Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.
Aggregate load controllers and associated methods are described. According to one aspect, a method of operating an aggregate load controller includes using an aggregate load controller having an initial state, applying a stimulus to a plurality of thermostatic controllers which are configured to control a plurality of respective thermostatic loads which receive electrical energy from an electrical utility to operate in a plurality of different operational modes, accessing data regarding a response of the thermostatic loads as a result of the applied stimulus, using the data regarding the response, determining a value of at least one design parameter of themore » aggregate load controller, and using the determined value of the at least one design parameter, configuring the aggregate load controller to control amounts of the electrical energy which are utilized by the thermostatic loads.« less
Wise, Daniel R.; Johnson, Henry M.
2013-01-01
The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.
Barbaro, Jeffrey R.; Sorenson, Jason R.
2013-01-01
Rapid development, population growth, and the changes in land and water use accompanying development are placing increasing stress on water resources in the Taunton River Basin. An assessment by the Massachusetts Department of Environmental Protection determined that a number of tributary streams to the Taunton River are impaired for a variety of beneficial uses because of nutrient enrichment. Most of the impaired reaches are in the Matfield River drainage area in the vicinity of the City of Brockton. In addition to impairments of stream reaches in the basin, discharge of nutrient-rich water from the Taunton River contributes to eutrophication of Mount Hope and Narragansett Bays. To assess water quality and loading in the impaired tributary stream reaches in the basin, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection compiled existing water-quality data from previous studies for the period 1997-2006, developed and calibrated a Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model to simulate streamflow in areas of the basin that contain the impaired reaches for the same time period, and collected additional streamflow and water-quality data from sites on the Matfield and Taunton Rivers in 2008. A majority of the waterquality samples used in the study were collected between 1999 and 2006. Overall, the concentration, yield, and load data presented in this report represent water-quality conditions in the basin for the period 1997-2008. Water-quality data from 52 unique sites were used in the study. Most of the samples from previous studies were collected between June and September under dry weather conditions. Simulated or measured daily mean streamflow and water-quality data were used to estimate constituent yields and loads in the impaired tributary stream reaches and the main stem of the Taunton River and to develop yield-duration plots for reaches with sufficient water-quality data. Total phosphorus concentrations in the impaired-reach areas ranged from 0.0046 to 0.91 milligrams per liter (mg/L) in individual samples (number of samples (n)=331), with a median of 0.090 mg/L; total nitrogen concentrations ranged from 0.34 to 14 mg/L in individual samples (n=139), with a median of 1.35 mg/L; and total suspended solids concentrations ranged from 2/d) for total phosphorus and 100 lb/mi2/d for total nitrogen in these reaches. In most of the impaired reaches not affected by the Brockton Advanced Water Reclamation Facility outfall, yields were lower than in reaches downstream from the outfall, and the difference between measured and threshold yields was fairly uniform over a wide range of flows, suggesting that multiple processes contribute to nonpoint loading in these reaches. The Northeast and Mid-Atlantic SPAtially-Referenced Regression On Watershed (SPARROW) models for total phosphorus and total nitrogen also were used to estimate annual nutrient loads in the impaired tributary stream reaches and main stem of the Taunton River and predict the distribution of these loads among point and diffuse sources in reach drainage areas. SPARROW is a regional, statistical model that relates nutrient loads in streams to upstream sources and land-use characteristics and can be used to make predictions for streams that do not have nutrient-load data. The model predicts mean annual loads based on longterm streamflow and water-quality data and nutrient source conditions for the year 2002. Predicted mean annual nutrient loads from the SPARROW models were consistent with the measured yield and load data from sampling sites in the basin. For conditions in 2002, the Brockton Advanced Water Reclamation Facility outfall accounted for over 75 percent of the total nitrogen load and over 93 percent of the total phosphorus load in the Salisbury Plain and Matfield Rivers downstream from the outfall. Municipal point sources also accounted for most of the load in the main stem of the Taunton River. Multiple municipal wastewater discharges in the basin accounted for about 76 and 46 percent of the delivered loads of total phosphorus and total nitrogen, respectively, to Mount Hope Bay. For similarly sized watersheds, total delivered loads were lower in watersheds without point sources compared to those with point sources, and sources associated with developed land accounted for most of the delivered phosphorus and nitrogen loads to the impaired reaches. The concentration, yield, and load data evaluated in this study may not be representative of current (2012) point-source loading in the basin; in particular, most of the water-quality data used in the study (1999-2006) were collected prior to completion of upgrades to the Brockton Advanced Water Reclamation Facility that reduced total phosphorus and nitrogen concentrations in treated effluent. Effluent concentration data indicate that, for a given flow rate, effluent loads of total phosphorus and total nitrogen declined by about 80 and 30 percent, respectively, between the late 1990s and 2008 in response to plant upgrades. Consequently, current (2012) water-quality conditions in the impaired reaches downstream from the facility likely have improved compared to conditions described in the report.
Huntington, Jena M.; Savard, Charles S.
2015-09-30
During this study, total annual sediment loads ranged from 355 tons per year in 2010 to 1,768 tons per year in 2011 and were significantly lower than the previous study (water years 2004–07). Bedload represented between 29 and 38 percent of total sediment load in water years 2010–12, and between 72 and 90 percent of the total sediment load in water years 2004–07, which indicates a decrease in bedload between study periods. Annual suspended-sediment loads in water years 2010–12 indicated no significant change from water years 2004–07. Mean daily discharge was significantly lower in water years 2010–12 than in waters years 2004–07 and may be the reason for the decrease in bedload that resulted in a lower total sediment load.
Kurth, Ann E; Spielberg, Freya; Cleland, Charles M; Lambdin, Barrot; Bangsberg, David R; Frick, Pamela A; Severynen, Anneleen O; Clausen, Marc; Norman, Robert G; Lockhart, David; Simoni, Jane M; Holmes, King K
2014-04-15
Evaluate a computerized intervention supporting antiretroviral therapy (ART) adherence and HIV transmission prevention. Longitudinal randomized controlled trial. An academic HIV clinic and a community-based organization in Seattle. In a total of 240 HIV-positive adults on ART, 209 completed 9-month follow-up (87% retention). Randomization to computerized counseling or assessment only, 4 sessions over 9 months. HIV-1 viral suppression, and self-reported ART adherence and transmission risks, compared using generalized estimating equations. Overall, intervention participants had reduced viral load: mean 0.17 log10 decline, versus 0.13 increase in controls, P = 0.053, and significant difference in ART adherence baseline to 9 months (P = 0.046). Their sexual transmission risk behaviors decreased (odds ratio = 0.55, P = 0.020), a reduction not seen among controls (odds ratio = 1.1, P = 0.664), and a significant difference in change (P = 0.040). Intervention effect was driven by those most in need; among those with detectable virus at baseline (>30 copies/mL, n = 89), intervention effect was mean 0.60 log10 viral load decline versus 0.15 increase in controls, P = 0.034. ART adherence at the final follow-up was 13 points higher among intervention participants versus controls, P = 0.038. Computerized counseling is promising for integrated ART adherence and safer sex, especially for individuals with problems in these areas. This is the first intervention to report improved ART adherence, viral suppression, and reduced secondary sexual transmission risk behavior.
NASA Astrophysics Data System (ADS)
Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.
2011-12-01
There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (<200ha) watersheds had uniform land cover (medium density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly lower. Nonlinearities in cross-storm rainfall-nutrient loading relationships for the wash and retention basin watersheds suggest that these systems may become supply limited during large rain events. Results show that characteristics of the hydrologic network such as hydrologic connectivity mediate terrestrial-aquatic linkages. Specifically, we see that increased hydrologic connectivity, as in the piped watershed, actually decreases the predictive power of storm size with regard to nutrient export, whereas nutrient loads from poorly connected watersheds are strongly predicted by storm size.
Function of the medial meniscus in force transmission and stability.
Walker, Peter S; Arno, Sally; Bell, Christopher; Salvadore, Gaia; Borukhov, Ilya; Oh, Cheongeun
2015-06-01
We studied the combined role of the medial meniscus in distributing load and providing stability. Ten normal knees were loaded in combinations of compressive and shear loading as the knee was flexed over a full range. A digital camera tracked the motion, from which femoral-tibial contacts were determined by computer modelling. Load transmission was determined from the Tekscan for the anterior horn, central body, posterior horn, and the uncovered cartilage in the centre of the meniscus. For the three types of loading; compression only, compression and anterior shear, compression and posterior shear; between 40% and 80% of the total load was transmitted through the meniscus. The overall average was 58%, the remaining 42% being transmitted through the uncovered cartilage. The anterior horn was loaded only up to 30 degrees flexion, but played a role in controlling anterior femoral displacement. The central body was loaded 10-20% which would provide some restraint to medial femoral subluxation. Overall the posterior horn carried the highest percentage of the shear load, especially after 30 degrees flexion when a posterior shear force was applied, where the meniscus was estimated to carry 50% of the shear force. This study added new insights into meniscal function during weight bearing conditions, particularly its role in early flexion, and in transmitting shear forces. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Bodson, Marc
2012-01-01
Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-07
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-21
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.
2016-12-22
Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at the two study sites, particularly in using turbidity to compute suspended-sediment concentrations in the Williamson River. This proof-of-concept effort for computing total phosphorus concentrations using turbidity at the Williamson and Wood River sites also has shown that with additional samples over a wide range of flow regimes, high-temporal-resolution total phosphorus loads can be estimated on a daily, monthly, and annual basis, along with uncertainties for total phosphorus and suspended-sediment concentrations computed using regression models. Sediment-corrected backscatter at the Wood River has potential for estimating suspended-sediment loads from the Wood River Valley as well, with additional analysis of the variable streamflow measured at that site. Suspended-sediment and total phosphorus loads with a high level of temporal resolution will be useful to water managers, restoration practitioners, and scientists in the Upper Klamath Basin working toward the common goal of decreasing nutrient and sediment loads in Upper Klamath Lake.
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
Development of a miniaturized hour-glass shaped fatigue specimen
NASA Astrophysics Data System (ADS)
Miwa, Y.; Jitsukawa, S.; Hishinuma, A.
1998-10-01
Diametral strain-controlled push-pull fatigue tests with zero mean strain were carried out with miniaturized hour-glass shaped specimens of an austenitic stainless steel in solution annealed condition at room temperature. The specimens had a diameter of 1.25 mm at the minimum cross section and a total length of 25.4 mm. The number of cycles to failure ( Nf) was equal to or slightly greater than that obtained with standard size specimens. Nf was also revealed to be rather insensitive to the specimen load axis offset, indicating that the requirement of the specimen alignment to the load axis was not very severe for the miniaturized specimen.
Cavanagh, Peter R; Rice, Andrea J; Novotny, Sara C; Genc, Kerim O; Englehaupt, Ricki K; Owings, Tammy M; Comstock, Bryan; Cardoso, Tamre; Ilaslan, Hakan; Smith, Scott M; Licata, Angelo A
2016-12-01
The dose-response effects of exercise in reduced gravity on musculoskeletal health have not been well documented. It is not known whether or not individualized exercise prescriptions can be effective in preventing the substantial loss in bone mineral density and muscle function that have been observed in space flight and in bed rest. In this study, typical daily loads to the lower extremities were quantified in free-living subjects who were then randomly assigned to control or exercise groups. Subjects were confined to 6-degree head-down bed rest for 84 days. The exercise group performed individually prescribed 1 g loaded locomotor exercise to replace their free-living daily load. Eleven subjects (5 exercise, 6 control) completed the protocol. Volumetric bone mineral density results from quantitative computed tomography demonstrated that control subjects lost significant amounts of bone in the intertrochanteric and total hip regions ( p < 0.0125), whereas the exercise group showed no significant change from baseline in any region ( p > 0.0125). Pre-and post-bed rest muscle volumes were calculated from analysis of magnetic resonance imaging data. The exercise group retained a larger percentage of their total quadriceps and gastrocnemius muscle volume (- 7.2% ± 5.9, - 13.8% ± 6.1, respectively) than their control counterparts (- 23.3% ± 5.9, - 33.0 ± 8.2, respectively; p < 0.01). Both groups significantly lost strength in several measured activities ( p < 0.05). The declines in peak torque during repeated exertions of knee flexion and knee extension were significantly less in the exercise group than in the control group ( p < 0.05) but work done was not significantly different between groups ( p > 0.05). The decline in VO 2max was 17% ± 18 in exercising subjects ( p < 0.05) and 31% ± 13 in control subjects ( p = 0.003; difference between groups was not significant p = 0.26). Changes in blood and urine measures showed trends but no significant differences between groups ( p > 0.05). In summary, the decline in a number of important measures of musculoskeletal and cardiovascular health was attenuated but not eliminated by a subject-specific program of locomotor exercise designed to replace daily load accumulated during free living. We conclude that single daily bouts of exposure to locomotor exercise can play a role in a countermeasures program during bed rest, and perhaps space flight, but are not sufficient in their own right to ensure musculoskeletal or cardiovascular health.
Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud
2017-06-01
The increasing food waste production calls for developing efficient technologies for its treatment. Anaerobic processes provide an effective waste valorization. The influence of the initial substrate load on the performance of batch dry anaerobic co-digestion reactors treating food waste and cardboard was investigated. The load was varied by modifying the substrate to inoculum ratio (S/X), the total solids content and the co-digestion proportions. The results showed that the S/X was a crucial parameter. Within the tested values (0.25, 1 and 4gVS·gVS -1 ), only the reactors working at 0.25 produced methane. Methanosarcina was the main archaea, indicating its importance for efficient methanogenesis. Acidogenic fermentation was predominant at higher S/X, producing hydrogen and other metabolites. Higher substrate conversions (≤48%) and hydrogen yields (≤62mL·gVS -1 ) were achieved at low loads. This study suggests that different value-added compounds can be produced in dry conditions, with the initial substrate load as easy-to-control operational parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-05-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids
NASA Astrophysics Data System (ADS)
Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.
2017-11-01
Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.
Estimation of nonpoint source loadings of phosphorus for lakes in the Puget Sound region, Washington
Gilliom, Robert J.
1983-01-01
Control of eutrophication of lakes in watersheds undergoing development is facilitated by estimates of the amounts of phosphorus (P) that reach the lakes from areas under various types of land use. Using a mass-balance model, the author calculated P loadings from present-day P concentrations measured in lake water and from other easily measured physical characteristics in a total of 28 lakes in drainage basins that contain only forest and residential land. The loadings from background sources (forest-land drainage and bulk precipitation) to each of the lakes were estimated by methods developed in a previous study. Differences between estimated present-day P loadings and loadings from background sources were attributed to changes in land use. The mean increase in annual P yield resulting from conversion of forest to residential land use was 7 kilograms per square kilometer, not including septic tank system contributions. Calculated loadings from septic systems were found to correlate best with the number of near-shore dwellings around each lake in 1940. The regression equation expressing this relationship explained 36 percent of the sample variance. There was no significant correlation between estimated septic tank system P loadings and number of dwellings present in 1960 or 1970. The evidence indicates that older systems might contribute more phosphorus to lakes than newer systems, and that there may be substantial time lags between septic system installation and significant impacts on lake-water P concentrations. For lakes in basins that contain agricultural land, the P loading attributable to agriculture can be calculated as the difference between the estimated total loading and the sum of estimated loadings from nonagricultural sources. A comprehensive system for evaluating errors in all loading estimates is presented. The empirical relationships developed allow preliminary approximations of the cumulative impact development has had on P loading and the amounts of P loading from generalized land-use categories for Puget Sound lowland lakes. In addition, the sensitivity of a lake to increased loading can be evaluated using the mass-balance model. The data required are presently available for most lakes. Estimates of P loading are useful in developing water-quality goals, setting priorities for lake studies, and designing studies of individual lakes. The suitability of a method for management of individual lakes will often be limited by relatively high levels of uncertainty, especially if the method is used to evaluate relatively small increases in P loading.
Plummer, E L; Garland, S M; Bradshaw, C S; Law, M G; Vodstrcil, L A; Hocking, J S; Fairley, C K; Tabrizi, S N
2017-02-01
We investigated the utility of quantitative PCR assays for diagnosis of bacterial vaginosis and found that while the best model utilized bacterial copy number adjusted for total bacterial load (sensitivity=98%, specificity=93%, AUC=0.95[95%CI=0.93,0.97]), adjusting for total bacterial or human cell load did not consistently increase the diagnostic performance of the assays. Copyright © 2017 Elsevier B.V. All rights reserved.
Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras
NASA Astrophysics Data System (ADS)
Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin
2017-04-01
Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.
Li, Lin; Lian, Jing; Han, Yunping; Liu, Junxin
2012-05-01
Biofiltration for volatile organic compound control in waste gas streams is best operated at steady contaminant loadings. To provide long-term stable operation of a biofilter under adverse contaminant feeding conditions, an integrated bioreactor system with a gas separation membrane module installed after a biofilter was proposed for styrene treatment. Styrene was treated effectively, with average styrene effluent concentrations maintained at less than 50 mg m(-3) and a total removal efficiency of over 96% achieved when the biofiltration column faced fluctuating loads. The maximum elimination capacity of the integrated bioreactor system was 93.8 g m(-3)h(-1), which was higher than that obtained with the biofiltration column alone. The combination of these two processes (microbial and chemical) led to more efficient elimination of styrene and buffering of the fluctuating loads. The factors on gas membrane separation, microbial characteristics in the integrated bioreactor and membrane fouling were also investigated in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hubbell, David Wellington; Matejka, Donald Quintin
1959-01-01
An investigation of fluvial sediments of the Middle Loup River at Dunning, Nebr., was begun in 1946 and expanded in 1949 to provide information on sediment transportation. Construction of an artificial turbulence flume at which the total sediment discharge of the Middle Loup River at Dunning, Nebr., could be measured with suspended-sediment sampling equipment was completed in 1949. Since that time. measurements have been made at the turbulence flume and at several selected sections in a reach upstream and downstream from the flume. The Middle Loup River upstream from Dunning traverses the sandhills region of north-central Nebraska and has a drainage area of approximately 1,760 square miles. The sandhills are underlain by the Ogallala formation of Tertiary age and are mantled by loess and dune sand. The topography is characterized by northwest-trending sand dunes, which are stabilized by grass cover. The valley floor upstream from Dunning is generally about half a mile wide, is about 80 feet lower than the uplands, and is composed of sand that was mostly stream deposited. The channel is defined by low banks. Bank erosion is prevalent and is the source of most of the sediment load. The flow originates mostly from ground-water accretion and varies between about 200 and 600 cfs (cubic feet per second). Measured suspended-sediment loads vary from about 200 to 2,000 tons per day, of which about 20 percent is finer than 0.062 millimeter and 100 percent is finer than 0.50 millimeter. Total sediment discharges vary from about 500 to 3,500 tons per day, of which about 10 percent is finer than 0.062 millimeter, about 90 percent is finer than 0.50 millimeter, and about 98 percent is finer than 2.0 millimeters. The measured suspended-sediment discharge in the reach near Dunning averages about one-half of the total sediment discharge as measured at the turbulence flume. This report contains information collected during the period October 1, 1948, to September 30, 1952. The information includes sediment discharges; particle-size analyses of total load, of measured suspended sediment, and of bed material; water discharges and other hydraulic data for the turbulence flume and the selected sections. Sediment discharges have been computed with several different formulas, and insofar as possible, each computed load has been compared with data from the turbulence flume. Sediment discharges computed with the Einstein procedure did not agree well, in general, with comparable measured loads. However, a satisfactory representative cross section for the reach could not be determined with the cross sections that were selected for this investigation. If the computed cross section was narrower and deeper than a representative cross section for the reach, computed loads were high; and if the computed cross section was wider and shallower than a representative cross section for the reach, computed loads were low. Total sediment discharges computed with the modified Einstein procedure compared very well with the loads of individual size ranges and the measured total loads at the turbulence flume. Sediment discharges computed with the Straub equation averaged about twice the measured total sediment discharge at the turbulence flume. Bed-load discharges computed with the Kalinske equation were of about the right magnitude; however, high computed loads were associated with low total loads, low unmeasured loads, and low concentrations of measured suspended sediment coarser than 0.125 millimeter. Bed-load discharges computed with the Schoklitsch equation seemed somewhat high; about one-third of the computed loads were slightly higher than comparable unmeasured loads. Although, in general, high computed discharges with the Schoklitsch equation were associated with high measured total loads, high unmeasured loads, and high concentrations of measured suspended sediment coarser than 0.125 millimeter, the trend was not consistent. Bed-load discharges computed
NASA Astrophysics Data System (ADS)
Gao, Yang; Zhu, Bo; Wang, Tao; Wang, Yafeng
2012-02-01
SummaryBioavailable phosphorus (P) losses due to agriculture activity in a purple soil watershed in the Sichuan Basin of Southwestern China were monitored to define the hydrological controls of P transport. Our results indicate that the proportion of P that was transported in particulate form increased in the rainy season, and that the mass of total bioavailable P (BAP) loads exhibited seasonal fluctuations, wherein the majority (over 90%) was observed to have been exported between June and September. The proportion of bioavailable dissolved P (BDP) in the BAP discharge budget in the watershed varied between 11% and 15% during the monitoring period. The bioavailable particulate P (BPP) and BDP concentrations of stream water under rainstorm events increased by over 40% in comparison to their annual mean concentrations, and the annual BAP load was primarily dominated by the loads that occurred during rainstorm events in the study year. BAP concentration in groundwater significantly fluctuated with the seasons, and the ratio of total BAP in groundwater to that in surface water gradually increased during the rainy season. Thus, the impact of agriculture on the water quality of this watershed becomes clearly evident.
Gulati, Shelly; Stubblefield, Ashley A; Hanlon, Jeremy S; Spier, Chelsea L; Stringfellow, William T
2014-03-01
Measuring the discharge of diffuse pollution from agricultural watersheds presents unique challenges. Flows in agricultural watersheds, particularly in Mediterranean climates, can be predominately irrigation runoff and exhibit large diurnal fluctuation in both volume and concentration. Flow and pollutant concentrations in these smaller watersheds dominated by human activity do not conform to a normal distribution and it is not clear if parametric methods are appropriate or accurate for load calculations. The objective of this study was to compare the accuracy of five load estimation methods to calculate pollutant loads from agricultural watersheds. Calculation of loads using results from discrete (grab) samples was compared with the true-load computed using in situ continuous monitoring measurements. A new method is introduced that uses a non-parametric measure of central tendency (the median) to calculate loads (median-load). The median-load method was compared to more commonly used parametric estimation methods which rely on using the mean as a measure of central tendency (mean-load and daily-load), a method that utilizes the total flow volume (volume-load), and a method that uses measure of flow at the time of sampling (instantaneous-load). Using measurements from ten watersheds in the San Joaquin Valley of California, the average percent error compared to the true-load for total dissolved solids (TDS) was 7.3% for the median-load, 6.9% for the mean-load, 6.9% for the volume-load, 16.9% for the instantaneous-load, and 18.7% for the daily-load methods of calculation. The results of this study show that parametric methods are surprisingly accurate, even for data that have starkly non-normal distributions and are highly skewed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cope, Caleb C.; Becker, Mark F.; Andrews, William J.; DeHay, Kelli
2008-01-01
Picher mining district is an abandoned lead and zinc mining area located in Ottawa County, northeastern Oklahoma. During the first half of the 20th century, the area was a primary producer of lead and zinc in the United States. Large accumulations of mine tailings, locally referred to as chat, produce leachate containing cadmium, iron, lead, and zinc that enter drainages within the mining area. Metals also seep to local ground water and streams from unplugged shafts, vent holes, seeps, and abandoned mine dewatering wells. Streamflow measurements were made and water-quality samples were collected and analyzed from two locations in Picher mining district from August 16 to August 29 following a rain event beginning on August 14, 2005, to determine likely concentrations and loads of metals from tailings and mine outflows in the part of Picher mining district near Tar Creek. Locations selected for sampling included a tailings pile with an adjacent mill pond, referred to as the Western location, and a segment of Tar Creek from above the confluence with Lytle Creek to below Douthat bridge, referred to as Tar Creek Study Segment. Measured streamflow was less than 0.01 cubic foot per second at the Western location, with streamflow only being measurable at that site on August 16, 2005. Measured streamflows ranged from <0.01 to 2.62 cubic feet per second at Tar Creek Study Segment. One water-quality sample was collected from runoff at the Western location. Total metals concentrations in that sample were 95.3 micrograms per liter cadmium, 182 micrograms per liter iron, 170 micrograms per liter lead, 1,760 micrograms per liter zinc. Total mean metals concentrations in 29 water-quality samples collected from Tar Creek Study Segment from August 16-29, 2005, were 21.8 micrograms per liter cadmium, 7,924 micrograms per liter iron, 7.68 micrograms per liter lead, and 14,548 micrograms per liter zinc. No metals loading values were calculated for the Western location. Metals loading to Tar Creek Study Segment were calculated based on instantaneous streamflow and metals concentrations. Total metals loading to Tar Creek from chat leachate ranged from 0.062 to 0.212 pound per day of cadmium, <0.001 to 0.814 pound per day of iron, 0.003 to 0.036 pound per day of lead, and 10.6 to 47.9 pounds per day of zinc. Metals loading to Tar Creek Study Segment from chat leachate and mine outflow was determined by subtracting values at appropriate upstream and downstream stations. Four sources of calculated metal loads are from Tar Creek and Lytle Creek entering the study segment, from chat pile leachate, and from old Lytle Creek mine outflow. Less than 1 percent of total and dissolved iron loading came from chat leachate, while about 99 percent of total iron loading came from mine outflow. Total and dissolved lead loading percentages from chat leachate were greater than total and dissolved lead loading percentages from mine outflow. About 19 percent of total zinc loading came from chat leachate, about 29 percent of total zinc loading came from mine outflow, and about 52 percent of total zinc loading came from Lytle Creek.
Sorenson, Jason R.; Granato, Gregory E.; Smith, Kirk P.
2018-01-10
Flow-proportional composite water samples were collected in water years 2013 and 2014 by the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, from the Blackstone River at Millville, Massachusetts (U.S. Geological Survey station 01111230), about 0.5 mile from the border with Rhode Island. Samples were collected in order to better understand the dynamics of selected nutrient and metal constituents, assist with planning, guide activities to meet water-quality goals, and provide real-time water-quality information to the public. An automated system collected the samples at 14-day intervals to determine total and dissolved nitrogen and phosphorus concentrations, to provide accurate monthly nutrient concentration data, and to calculate monthly load estimates. Concentrations of dissolved trace metals and total aluminum were determined from 4-day composite water samples that were collected twice monthly by the automated system. Results from 4-day composites provide stakeholders with information to evaluate trace metals on the basis of chronic 4-day exposure criteria for aquatic life, and the potential to use the biotic ligand model to evaluate copper concentrations. Nutrient, trace metal, suspended sediment, dissolved organic carbon, and chlorophyll a concentrations were determined from discrete samples collected at the Millville station and from across the stream transect at the upstream railroad bridge, and these concentrations served as a means to evaluate the representativeness of the Millville point location.Analytical results from samples collected with the automated flow-proportional sampling system provided the means to calculate monthly and annual loading data. Total nitrogen and total phosphorus loads in water year (WY) 2013 were about 447,000 and 36,000 kilograms (kg), respectively. In WY 2014, annual loads of total nitrogen and total phosphorus were about 342,000 and 21,000 kg, respectively. Total nitrogen and total phosphorus loads from WYs 2013 and 2014 were about 56 and 65 percent lower than those reported for WYs 2008 and 2009. The higher loads in 2008 and 2009 may be explained by the higher than average flows in WY 2009 and by facility upgrades made by wastewater treatment facilities in the basin.Median loads were determined from composite samples collected with the automated system between October 2012 and October 2014. Median dissolved cadmium and chromium 4-day loads were 0.55 and 0.84 kg, respectively. Dissolved copper and total lead median 4-day loads were 8.02 and 1.42 kg, respectively. The dissolved nickel median 4-day load was 5.45 kg, and the dissolved zinc median 4-day load was 36 kg. Median total aluminum 4-day loads were about 197 kg.Spearman’s rank correlation analyses were used with discrete sample concentrations and continuous records of temperature, specific conductance, turbidity, and chlorophyll a to identify correlations between variables that could be used to develop regression equations for estimating real-time concentrations of constituents. Correlation coefficients were generated for flow, precipitation, antecedent precipitation, physical parameters, and chemical constituents. A 95-percent confidence limit for each value of Spearman’s rho was calculated, and multiple linear regression analysis using ordinary least squares regression techniques was used to develop regression equations for concentrations of total phosphorus, total nitrogen, suspended sediment concentration, total copper, and total aluminum. Although the correlations are based on the limited amount of data collected as part of this study, the potential to monitor water-quality changes in real time may be of value to resource managers and decision makers.
From the track to the ocean: Using flow control to improve marine bio-logging tags for cetaceans
Fiore, Giovani; Anderson, Erik; Garborg, C. Spencer; Murray, Mark; Johnson, Mark; Moore, Michael J.; Howle, Laurens
2017-01-01
Bio-logging tags are an important tool for the study of cetaceans, but superficial tags inevitably increase hydrodynamic loading. Substantial forces can be generated by tags on fast-swimming animals, potentially affecting behavior and energetics or promoting early tag removal. Streamlined forms have been used to reduce loading, but these designs can accelerate flow over the top of the tag. This non-axisymmetric flow results in large lift forces (normal to the animal) that become the dominant force component at high speeds. In order to reduce lift and minimize total hydrodynamic loading this work presents a new tag design (Model A) that incorporates a hydrodynamic body, a channel to reduce fluid speed differences above and below the housing and wing to redirect flow to counter lift. Additionally, three derivatives of the Model A design were used to examine the contribution of individual flow control features to overall performance. Hydrodynamic loadings of four models were compared using computational fluid dynamics (CFD). The Model A design eliminated all lift force and generated up to ~30 N of downward force in simulated 6 m/s aligned flow. The simulations were validated using particle image velocimetry (PIV) to experimentally characterize the flow around the tag design. The results of these experiments confirm the trends predicted by the simulations and demonstrate the potential benefit of flow control elements for the reduction of tag induced forces on the animal. PMID:28196148
Load control system. [for space shuttle external tank ground tests
NASA Technical Reports Server (NTRS)
Grosse, J. C.
1977-01-01
The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.
Yang, Xiaoying; Warren, Rachel; He, Yi; Ye, Jinyin; Li, Qiaoling; Wang, Guoqing
2018-02-15
It is increasingly recognized that climate change could affect the quality of water through complex natural and anthropogenic mechanisms. Previous studies on climate change and water quality have mostly focused on assessing its impact on pollutant loads from agricultural runoff. A sub-daily SWAT model was developed to simulate the discharge, transport, and transformation of nitrogen from all known anthropogenic sources including industries, municipal sewage treatment plants, concentrated and scattered feedlot operations, rural households, and crop production in the Upper Huai River Basin. This is a highly polluted basin with total nitrogen (TN) concentrations frequently exceeding Class V of the Chinese Surface Water Quality Standard (GB3838-2002). Climate change projections produced by 16 Global Circulation Models (GCMs) under the RCP 4.5 and RCP 8.5 scenarios in the mid (2040-2060) and late (2070-2090) century were used to drive the SWAT model to evaluate the impacts of climate change on both the TN loads and the effectiveness of three water pollution control measures (reducing fertilizer use, constructing vegetative filter strips, and improving septic tank performance) in the basin. SWAT simulation results have indicated that climate change is likely to cause an increase in both monthly average and extreme TN loads in February, May, and November. The projected impact of climate change on TN loads in August is more varied between GCMs. In addition, climate change is projected to have a negative impact on the effectiveness of septic tanks in reducing TN loads, while its impacts on the other two measures are more uncertain. Despite the uncertainty, reducing fertilizer use remains the most effective measure for reducing TN loads under different climate change scenarios. Meanwhile, improving septic tank performance is relatively more effective in reducing annual TN loads, while constructing vegetative filter strips is more effective in reducing annual maximum monthly TN loads. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jawitz, J. W.
2011-12-01
What are the relative contributions of climatic variability, land management, and local geomorphology in determining the temporal dynamics of streamflow and the export of solutes from watersheds to receiving water bodies? A simple analytical framework is introduced for characterizing the temporal inequality of stream discharge and solute export from catchments using Lorenz diagrams and the associated Gini coefficient. These descriptors are used to illustrate a broad range of observed flow variability with a synthesis of multi-decadal flow data from 22 rivers in Florida. The analytical framework is extended to comprehensively link variability in flows and loads to climatically-driven inputs in terms of these inequality-based metrics. Further, based on a synthesis of data from the basins of the Baltic Sea, the Mississippi River, the Kissimmee River and other tributaries to Lake Okeechobee, FL, it is shown that inter-annual variations in exported loads for geogenic constituents, and for total N and total P, are dominantly controlled by discharge. Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. Multi-decadal phosphorus load data from 4 of the primary tributaries to Lake Okeechobee and sodium and nitrate load data from 9 of the Hubbard Brook, NH long-term study site catchments are used to examine the relation between inequality of climatic inputs, river flows and catchment loads. The intra-annual loads to Lake Okeechobee are shown to be highly unequal, such that 90% of annual load is delivered in as little as 15% of the time. Analytic expressions are developed for measures of inequality in terms of parameters of the lognormal distribution under general conditions that include intermittency. In cases where climatic variability is high compared to that of concentrations (chemostatic conditions), such as for P in the Lake Okeechobee basin and Na in Hubbard Brook, the temporal inequality of rainfall and flow are strong surrogates for load inequality. However, in cases where variability of concentrations is high compared to that of flows (chemodynamic conditions), such as for nitrate in the Hubbard Brook catchments, load inequality is greater than rainfall or flow inequality. The measured degree of correspondence between climatic, flow, and load inequality for these data sets are shown to be well described using the general inequality framework introduced here. Important implications are that (1) variations in hydro-climatic or anthropogenic forcing can be used to robustly predict inter-annual variations in flows and loads, (2) water quality problems in receiving inland and coastal waters may persist until the accumulated storages of nutrients have been substantially depleted, and (3) remedial measures designed to intercept or capture exported flows and loads must be designed with consideration of the intra-annual inequality.
Identification and Reconfigurable Control of Impaired Multi-Rotor Drones
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Bencomo, Alfredo
2016-01-01
The paper presents an algorithm for control and safe landing of impaired multi-rotor drones when one or more motors fail simultaneously or in any sequence. It includes three main components: an identification block, a reconfigurable control block, and a decisions making block. The identification block monitors each motor load characteristics and the current drawn, based on which the failures are detected. The control block generates the required total thrust and three axis torques for the altitude, horizontal position and/or orientation control of the drone based on the time scale separation and nonlinear dynamic inversion. The horizontal displacement is controlled by modulating the roll and pitch angles. The decision making algorithm maps the total thrust and three torques into the individual motor thrusts based on the information provided by the identification block. The drone continues the mission execution as long as the number of functioning motors provide controllability of it. Otherwise, the controller is switched to the safe mode, which gives up the yaw control, commands a safe landing spot and descent rate while maintaining the horizontal attitude.
Bermúdez-de-Alvear, Rosa M; Gálvez-Ruiz, Pablo; Martínez-Arquero, A Ginés; Rando-Márquez, Sara; Fernández-Contreras, Elena
2018-06-11
This study aimed to analyze the psychometric properties of the Spanish version of the Voice Activity and Participation Profile (SVAPP) questionnaire. A randomized, cross-sectional sampling strategy with controls was used. Two samples with a total of 169 participants were analyzed, specifically 61 men (mean age 37.02) and 108 women (mean age 37.78). Of these participants, 112 were patients and 57 were controls. The instrument was submitted to reliability (internal consistency and corrected item-total correlations) and reproducibility analyses. Validation assessment was based on the construct validity, convergent validity, discriminant validity, and concurrent validity. The global internal consistency was excellent (Cronbach's α = 0.976), corrected item-total correlations were satisfactory and ranged 0.63-0.89, and factor loadings were above 0.50. The different subscales showed good internal consistency (alpha coefficients ranged 0.830-0.956) and test-retest values were consistently associated. The exploratory factor analysis evidenced a strongly defined five factors internal structure, with factors loadings ranging 0.51-0.86. Convergent validity demonstrated that all subscales and scores were very strongly correlated (Pearson r above 0.735) and significantly associated. The discriminant validity analysis showed that SVAPP had good specificity to distinguish dysphonic from healthy voice subjects. Concurrent validity with Voice Handicap Index Spanish version (SVHI) showed very strong correlations between total scores, and between SVHI total score and SVAPP Daily and Social Communication subscales; correlations between both tests subscales were strong; only between SVAPP Work and SVHI Physical sections correlations were moderate. The findings of the present study demonstrated evidence for the SVAPP questionnaire reliability and validity, and provided insightful implications of voice disorders on Spanish patients' quality of life. However, further investigations are required. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
SLS Trade Study 0058: Day of Launch (DOL) Wind Biasing
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Duffin, Paul; Hill, Ashley; Beck, Roger; Dukeman, Greg
2014-01-01
SLS heritage hardware and legacy designs have shown load exceedances at several locations during Design Analysis Cycles (DAC): MPCV Z bending moments; ICPS Electro-Mechanical Actuator (EMA) loads; Core Stage loads just downstream of Booster forward interface. SLS Buffet Loads Mitigation Task Team (BLMTT) tasked to study issue. Identified low frequency buffet load responses are a function of the vehicle's total angle of attack (AlphaTotal). SLS DOL Wind Biasing Trade team to analyze DOL wind biasing methods to limit maximum AlphaTotal in the M0.8 - 2.0 altitude region for EM-1 and EM-2 missions through investigating: Trajectory design process; Wind wavelength filtering options; Launch availability; DOL process to achieve shorter processing/uplink timeline. Trade Team consisted of personnel supporting SLS, MPCV, GSDO programs.
Proitsi, Petroula; Lupton, Michelle K; Velayudhan, Latha; Newhouse, Stephen; Fogh, Isabella; Tsolaki, Magda; Daniilidou, Makrina; Pritchard, Megan; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Vellas, Bruno; Williams, Julie; Stewart, Robert; Sham, Pak; Lovestone, Simon; Powell, John F
2014-09-01
Although altered lipid metabolism has been extensively implicated in the pathogenesis of Alzheimer disease (AD) through cell biological, epidemiological, and genetic studies, the molecular mechanisms linking cholesterol and AD pathology are still not well understood and contradictory results have been reported. We have used a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset AD (LOAD) and test the hypothesis that genetically raised lipid levels increase the risk of LOAD. We included 3,914 patients with LOAD, 1,675 older individuals without LOAD, and 4,989 individuals from the general population from six genome wide studies drawn from a white population (total n=10,578). We constructed weighted genotype risk scores (GRSs) for four blood lipid phenotypes (high-density lipoprotein cholesterol [HDL-c], low-density lipoprotein cholesterol [LDL-c], triglycerides, and total cholesterol) using well-established SNPs in 157 loci for blood lipids reported by Willer and colleagues (2013). Both full GRSs using all SNPs associated with each trait at p<5×10-8 and trait specific scores using SNPs associated exclusively with each trait at p<5 × 10-8 were developed. We used logistic regression to investigate whether the GRSs were associated with LOAD in each study and results were combined together by meta-analysis. We found no association between any of the full GRSs and LOAD (meta-analysis results: odds ratio [OR]=1.005, 95% CI 0.82-1.24, p = 0.962 per 1 unit increase in HDL-c; OR=0.901, 95% CI 0.65-1.25, p=0.530 per 1 unit increase in LDL-c; OR=1.104, 95% CI 0.89-1.37, p=0.362 per 1 unit increase in triglycerides; and OR=0.954, 95% CI 0.76-1.21, p=0.688 per 1 unit increase in total cholesterol). Results for the trait specific scores were similar; however, the trait specific scores explained much smaller phenotypic variance. Genetic predisposition to increased blood cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk. The observed epidemiological associations between abnormal lipid levels and LOAD risk could therefore be attributed to the result of biological pleiotropy or could be secondary to LOAD. Limitations of this study include the small proportion of lipid variance explained by the GRS, biases in case-control ascertainment, and the limitations implicit to Mendelian randomization studies. Future studies should focus on larger LOAD datasets with longitudinal sampled peripheral lipid measures and other markers of lipid metabolism, which have been shown to be altered in LOAD. Please see later in the article for the Editors' Summary.
Compression and flexural strength of bone cement mixed with blood.
Tan, J H; Koh, B Th; Ramruttun, A K; Wang, W
2016-08-01
To assess the compression and flexural strength of bone cement mixed with 0 ml, 1 ml, or 2 ml of blood. High viscosity polymethyl methacrylate (PMMA) loaded with or without gentamicin was used. Blood was collected from total knee arthroplasty patients. In the same operating room, one pack of cement each was mixed with 0 ml (control), 1 ml, or 2 ml of blood for 1 minute during the dough phase. The dough was extruded into cylindrical and rectangular moulds for 20 minutes of setting, and then cured in phosphate buffered saline at 37±1ºC for 7 days. The samples were visually inspected for fractures and areas of weakness, and then scanned using microcomputed tomography. 48 gentamicin-loaded and 59 non-gentamicin-loaded samples mixed with 0 ml (control), 1 ml, or 2 ml of blood were randomised for flexural and compression strength testing; each group had at least 6 samples. In samples loaded with or without gentamicin, the flexural and compressive strength was highest in controls, followed by samples mixed with 1 ml or 2 ml of blood. In samples mixed with 2 ml of blood, the flexural strength fell below the standard of 50 MPa. In samples mixed with 2 ml of blood and all gentamicin-loaded samples, the compressive strength fell below the standard of 70 MPa. Microcomputed tomography revealed areas of voids and pores indicating the presence of laminations and partitions within. The biomechanical strength of PMMA contaminated with blood may decrease. Precautions such as saline lavage, pack drying the bone, change of gloves, and prompt insertion of the implant should be taken to prevent blood from contaminating bone cement.
de Toledo, Joelly Mahnic; Loss, Jefferson Fagundes; Janssen, Thomas W; van der Scheer, Jan W; Alta, Tjarco D; Willems, W Jaap; Veeger, DirkJan H E J
2012-10-01
Following shoulder arthroplasty, any well-planned rehabilitation program should include muscle strengthening. However, it is not always clear how different external loads influence shoulder kinematics in patients with shoulder prostheses. The objective of this study was to describe shoulder kinematics and determine the contribution of the scapulothoracic joint to total shoulder motion of patients with total and reverse shoulder arthroplasties and of healthy individuals during rehabilitation exercises (anteflexion and elevation in the scapular plane) using different loading conditions (without external load, 1 kg and elastic resistance). Shoulder motions were measured using an electromagnetic tracking device. A force transducer was used to record force signals during loaded conditions using elastic resistance. Statistical comparisons were made using a three-way repeated-measures analysis of variance with a Bonferroni post hoc testing. The scapula contributed more to movement of the arm in subjects with prostheses compared to healthy subjects. The same applies for loaded conditions (1 kg and elastic resistance) relative to unloaded tasks. For scapular internal rotation, upward rotation and posterior tilt no significant differences among groups were found during both exercises. Glenohumeral elevation angles during anteflexion were significantly higher in the total shoulder arthroplasty group compared to the reverse shoulder arthroplasty group. Differences in contribution of the scapula to total shoulder motion between patients with different types of arthroplasties were not significant. However, compared to healthy subjects, they were. Furthermore, scapular kinematics of patients with shoulder arthroplasty was influenced by implementation of external loads, but not by the type of load. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Qian; Ball, William P.; Moyer, Douglas
2016-01-01
The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with that of forested land under all hydrological conditions. Overall, this work has informed understanding with respect to four major factors affecting constituent export (i.e., source input, reservoir modulation, streamflow, and land use) and demonstrated the value of long-term river monitoring.
Guimarães, T; Lopes, G; Pinto, M; Silva, E; Miranda, C; Correia, M J; Damásio, L; Thompson, G; Rocha, A
2015-01-15
Freezability of equine semen may be influenced by microorganism population of semen. The objective of this study was to verify the effect of single-layer density gradient centrifugation (SLC) of fresh semen before cryopreservation on semen's microbial load (ML) and sperm cells kinetics after freezing-thawing. For that, one ejaculate was collected from 20 healthy stallions and split into control (C) samples (cryopreserved without previous SLC) and SLC samples (subjected to SLC). Semen cryopreservation was performed according to the same protocol in both groups. Microbial load of each microorganism species and total microbial load (TML) expressed in colony-forming units (CFU/mL) as well as frozen-thawed sperm kinetics were assessed in both groups. Additional analysis of the TML was performed, subdividing the frozen-thawed samples in "suitable" (total motility ≥ 30%) and "unsuitable" (total motility < 30%) semen for freezing programs, and comparing the C and SLC groups within these subpopulations. After thawing, SLC samples had less (P < 0.05) TML (88.65 × 10(2) ± 83.8 × 10(2) CFU/mL) than C samples (155.69 × 10(2) ± 48.85 × 10(2) CFU/mL), mainly due to a reduction of Enterococcus spp. and Bacillus spp. A relationship between post-thaw motility and SLC effect on ML was noted, as only in samples with more than 30% total motility was ML reduced (P < 0.05) by SLC (from 51.33 × 10(2) ± 33.26 × 10(2) CFU/mL to 26.68 × 10(2) ± 12.39 × 10(2) CFU/mL in "suitable" frozen-thawed semen vs. 240.90 × 10(2) ± 498.20 × 10(2) to 139.30 × 10(2) ± 290.30 × 10(2) CFU/mL in "unsuitable" frozen-thawed semen). The effect of SLC on kinetics of frozen-thawed sperm cells was negligible. Copyright © 2015 Elsevier Inc. All rights reserved.
Kapoor, C S; Bamniya, B R; Kapoor, K
2013-09-01
Plants can be used as both passive biomonitors and biomitigators in urban and industrial environments to indicate the environmental quality and to ameliorate pollution level in a locality. Many studies reveal that plants are negatively affected by the ambient levels of air pollutants. The present study was conducted to evaluate the impact of air pollution on comparative basis with reference to changes in photosynthetic pigments, plant height, leaves, as well as, biochemical parameters of plants of different sites around Udaipur city receiving varying levels of pollution load. The investigated tree species Dalbergia sissoo Roxb. (Family: Fabaceae) exhibited a reduction in various physiological and biochemical growth parameters that correspond with air pollution levels at different sites. The tree species growing in polluted and control areas were compared with respect to foliar dust load, leaf area, and chlorophyll and total carbohydrate and total protein concentration in the leaves. Our studies suggest that D. sissoo Roxb. can successfully be grown in an area for monitoring air pollution, where it is mild and droughts are common. It will prove as an ideal tree species to control pollution effectively beside acting as a shade tree and being a source of food for birds and animals. By plantation of D. sissoo Roxb., mitigative measure at the polluted sites to control generation of particulate matter and the air quality required can be ensured. Our results also confirm that industrial and vehicular air pollution level in Udaipur city is shifting beyond limits.
Load balance in total knee arthroplasty: an in vitro analysis.
El-Hawary, Ron; Roth, Sandra E; King, Graham J W; Chess, David G; Johnson, James A
2006-09-01
One of the goals of total knee arthroplasty (TKA) is to balance the loads between the compartments of the knee. An instrumented load cell that measures compartment loads in real time is utilized to evaluate conventional, qualitative methods of achieving this balance. TKA was performed on 10 cadaveric knees. Prior to and after load balancing, compartment forces were measured at flexion angles of 0-90 degrees. Knees were randomly assigned into one of two groups, based upon whether or not the surgeons could visualize the load cell's output during balancing. Prior to attempting load balance, there were significant differences between the medial and lateral compartment loads for all knees (p < 0.05). After attempting balance with the aid of the load cell, there was equal load balance at all angles studied. Without the aid of the load cell, balance was not consistently achieved at every angle. Conventional load balancing techniques in TKA are not perfect. Copyright 2006 John Wiley & Sons, Ltd.
Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power
NASA Technical Reports Server (NTRS)
Soeder, James F.; Button, Robert M.
1999-01-01
A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak power point through various load transients, including sunlight discharge transients when the total load exceeded the maximum solar array output power.
Effect of long-term application of biosolids for land reclamation on surface water chemistry.
Tian, G; Granato, T C; Pietz, R I; Carlson, C R; Abedin, Z
2006-01-01
Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in surface water. Application of biosolids did not increase the concentrations of Cd and Hg in surface water. The elevation of Cu in surface water with biosolids application only occurred in some years of the first decade, when land-applied sludges contained high concentrations of trace metals, including Cu. In fact, following the promulgation of 40 CFR Part 503, the concentrations of all three metals fell below the method detection level (MDL) in surface water for nearly all samplings. Nitrate in the surface water tends to be higher in spring, and ammonium, total P, and total Hg in summer and fall. Mean nitrate, ammonium, and total phosphorus concentrations were found to be greater in creeks than reservoirs. The results indicate that application of biosolids for land reclamation at high loading rates from 1972 to 2002, with adequate runoff and soil erosion control, had only a minor impact on surface water quality.
Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer
2018-01-01
Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.
Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.
2011-01-01
The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year. The Pacolet River had a mean annual total nitrogen load of 99,780 kilograms per year and yield of 1.82 kilograms per hectare per year. Mean annual total phosphorus loads of 2,576; 9,404; and 11,710 kilograms per year and yields of 0.180, 0.313, and 0.213 kilograms per hectare per year were estimated at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. Annually, the intervening subbasin of the Pacolet River contributed negligible amounts of total nitrogen and total phosphorus loads, and large losses of dissolved nitrate plus nitrite and orthophosphate loads were determined for the subbasin. Biological (algal) uptake in the two reservoirs in this intervening area was considered the likely explanation for the loss of these constituents. Estimated mean annual suspended-sediment loads were 21,190,000; 9,895,000; and 6,547,000 kilograms per year at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. In the intervening Pacolet River subbasin, computed annual suspended-sediment loads were consistently negative, indicating large percentage losses in annual suspended-sediment load. Sedimentation processes in the two reservoirs are the most likely explanations for these apparent losses. At all sites, the winter season tended to have the highest estimated seasonal dissolved orthophosphate and dissolved nitrate plus nitrite fluxes, and the summer and fall seasons tended to have the lowest fluxes. The reverse pattern, however, was observed in the intervening drainage area in the Pacolet River where the lowest fluxes of dissolved orthophosphate and nitrate plus nitrite occurred during the winter and spring seasons and the highest occurred during the summer and fall seasons. Synoptic samples were collected during a high-flow event in August 2009 at eight sites that represented shoreline and minor tributary drainages. The South Pacolet River site was identified as contributing greater than 80 percent of the cumulative nutrient and sediment l
Richards, Rodney J.; Linard, Joshua I.; Hobza, Christopher M.
2014-01-01
The lower Gunnison River Basin of the Colorado River Basin has elevated salinity and selenium levels. The Colorado River Basin Salinity Control Act of June 24, 1974 (Public Law 93–320, amended by Public Law 98–569), authorized investigation of the Lower Gunnison Basin Unit Salinity Control Project by the U.S. Department of the Interior. The Bureau of Reclamation (Reclamation) and the Natural Resources Conservation Service are responsible for assessing and implementing measures to reduce salinity and selenium loading in the Colorado River Basin. Cost-sharing programs help farmers, ranchers, and canal companies improve the efficiency of water delivery systems and irrigation practices. The delivery systems (irrigation canals) have been identified as potential sources of seepage, which can contribute to salinity loading. Reclamation wants to identify seepage from irrigation systems in order to maximize the effectiveness of the various salinity-control methods, such as polyacrylamide lining and piping of irrigation canals programs. The U.S. Geological Survey, in cooperation with Reclamation, developed a study to characterize the salinity and selenium loading of seven subbasins in the Smith Fork Creek region and identify where control efforts can be maximized to reduce salinity and selenium loading. Total salinity loads ranged from 27.9±19.1 tons per year (t/yr) to 87,500±80,500 t/yr. The four natural subbasins—BkKm, RCG1, RCG2, and SF1—had total salinity loads of 27.9±19.1 t/yr, 371±248 t/yr, 2,180±1,590 t/yr, and 4,200±2,720 t/yr, respectively. The agriculturally influenced sites had salinity loads that ranged from 7,580±6,900 t/yr to 87,500±80,500 t/yr. Salinity loads for the subbasins AL1, B1, CK1, SF2, and SF3 were 7,580±6,900 t/yr; 28,300±26,700 t/yr; 48,700±36,100 t/yr; 87,500±80,900 t/yr; and 52,200±31,800 t/yr, respectively. The agricultural salinity load was separated into three components: tail water, deep percolation, and canal seepage. Annual tail-water salinity loads ranged from 48.0 to 2,750 tons in the Smith Fork Creek region. The largest tail-water salinity load was in subbasin SF3, and the lowest salinity load from tail water was in subbasin R1. The remaining four agricultural subbasins—AL1, B1, CK1, and SF2—had tail-water loads of 285 t/yr, 180 t/yr, 333 t/yr, and 1,700 t/yr, respectively. The deep percolation component of the agricultural salinity load ranged from 3,300 t/yr in subbasin AL1 to 51,800 t/yr in subbasin SF2. Subbasins R1, B1, CK1, and SF3 had deep percolation salinity loads of 4,940 t/yr, 15,200 t/yr, 21,200 t/yr, and 23,600 t/yr, respectively. The canal seepage component of the agricultural salinity load ranged from 1,100 t/yr in subbasin AL1 to 15,300 t/yr in subbasin CK1. Subbasins B1, R1, SF2, and SF3 had canal seepage salinity loads of 6,610 t/yr, 3,890 t/yr, 9,430 t/yr, and 12,100 t/yr, respectively. Four natural subbasins—RCG1, RCG2, SF1, and BkKm—were used to calculate natural salinity yields for the remaining subbasins. The appropriate salinity yield was applied to the corresponding number of acres and resulted in a natural salinity load for each subbasin. The annual salinity yields for the Dakota Sandstone and Burro Canyon Formation, Mancos Shale, and crystalline geologies are 0.217 tons per acre (t/acre), 0.113 t/acre, and 0.151 t/acre, respectively. Three of the four natural subbasins had little to no selenium load based on the measured data and calculated selenium loads. Subbasins RCG1 and RCG2 had surface-water selenium loads of 0.106±0.024 pounds (lb) and 0.00 lb, respectively. Subbasin BkKm did not have an estimated surface-water selenium load because of the lack of any water-quality samples during the study period. The subbasin designated by site CK1 had the highest selenium load with 135±38.7 lb, and the next highest subbasins in decreasing order are B1, SF3, AL1, SF1, and R1 with selenium loads of 69.6±28.4 lb, 56.5±23.8 lb, 30.5±16.6 lb, 26.8±6.95 lb, and 15.6±27.7 lb, respectively.
NASA Technical Reports Server (NTRS)
Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.
1978-01-01
The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.
Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne
2018-01-05
Lake St. Croix is a naturally impounded, riverine lake that makes up the last 40 kilometers of the St. Croix River. Substantial land-use changes during the past 150 years, including increased agriculture and urban development, have reduced Lake St. Croix water-quality and increased nutrient loads delivered to Lake St. Croix. A recent (2012–13) total maximum daily load phosphorus-reduction plan set the goal to reduce total phosphorus loads to Lake St. Croix by 20 percent by 2020 and reduce Lake St. Croix algal bloom frequencies. The U.S. Geological Survey, in cooperation with the National Park Service, developed a two-dimensional, carbon-based, laterally averaged, hydrodynamic and water-quality model, CE–QUAL–W2, that addresses the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of water temperature, oxygen, and chlorophyll a. Distribution is evaluated in the context of habitat for lake sturgeon, including a combination of temperature and dissolved oxygen conditions termed oxy-thermal habitat.The Lake St. Croix CE–QUAL–W2 model successfully reproduced temperature and dissolved oxygen in the lake longitudinally (from upstream to downstream), vertically, and temporally over the seasons. The simulated water temperature profiles closely matched the measured water temperature profiles throughout the year, including the prediction of thermocline transition depths (often within 1 meter), the absolute temperature of the thermocline transitions (often within 1.0 degree Celsius), and profiles without a strong thermocline transition. Simulated dissolved oxygen profiles matched the trajectories of the measured dissolved oxygen concentrations at multiple depths over time, and the simulated concentrations matched the depth and slope of the measured concentrations.Additionally, trends in the measured water-quality data were captured by the model simulation, gaining some potential insights into the underlying mechanisms of critical Lake St. Croix metabolic processes. The CE–QUAL–W2 model tracked nitrate plus nitrite, total nitrogen, and total phosphorus throughout the year. Inflow nutrient contributions (loads), largely dominated by upstream St. Croix River loads, were the most important controls on Lake St. Croix water quality. Close to 60 percent of total phosphorus to the lake was from phosphorus derived from organic matter, and about 89 percent of phosphorus to Lake St. Croix was delivered by St. Croix River inflows. The Lake St. Croix CE–QUAL–W2 model offered potential mechanisms for the effect of external and internal loadings on the biotic response regarding the modeled algal community types of diatoms, green algae, and blue-green algae. The model also suggested the seasonal dominance of blue-green algae in all four pools of the lake.A sensitivity analysis was completed to test the total maximum daily load phosphorus-reduction scenario responses of total phosphorus and chlorophyll a. The modeling indicates that phosphorus reductions would result in similar Lake St. Croix reduced concentrations, although chlorophyll a concentrations did not decrease in the same proportional amounts as the total phosphorus concentrations had decreased. The smaller than expected reduction in algal growth rates highlighted that although inflow phosphorus loads are important, other constituents also can affect the algal response of the lake, such as changes in light penetration and the breakdown of organic matter releasing nutrients.The available habitat suitable for lake sturgeon was evaluated using the modeling results to determine the total volume of good-growth habitat, optimal growth habitat, and lethal temperature habitat. Overall, with the calibrated model, the fish habitat volume in general contained a large proportion of good-growth habitat and a sustained period of optimal growth habitat in the summer. Only brief periods of lethal oxy-thermal habitat were present in Lake St. Croix during the model simulation.
Response and adaptation of Beagle dogs to hypergravity
NASA Technical Reports Server (NTRS)
Oyama, J.
1975-01-01
Eight male Beagle dogs, five months old, were centrifuged continuously for three months at progressively increasing loads. Heart rate and deep body temperature were monitored continuously by implant biotelemetry. Initially, centrifuged dogs showed transient decreases in heart rate and body temperature along with changes in their diurnal rhythm patterns. Compared with normal gravity controls, exposed dogs showed a slower growth rate and a reduced amount of body fat. Blood protein, total lipids, cholesterol, calcium, packed cell volume, red blood cell count, and hemoglobin were also decreased significantly. Absolute weights of the leg bones of centrifuged dogs were significantly greater than controls. Photon absorptiometry revealed significant density increases in selective regions of the femur and humerus of centrifuged dogs. In spite of the various changes noted, results from this and other studies affirm the view that dogs can tolerate and adapt to sustained loads as high as 2.5 g without serious impairment of their body structure and function.
Application-Controlled Demand Paging for Out-of-Core Visualization
NASA Technical Reports Server (NTRS)
Cox, Michael; Ellsworth, David; Kutler, Paul (Technical Monitor)
1997-01-01
In the area of scientific visualization, input data sets are often very large. In visualization of Computational Fluid Dynamics (CFD) in particular, input data sets today can surpass 100 Gbytes, and are expected to scale with the ability of supercomputers to generate them. Some visualization tools already partition large data sets into segments, and load appropriate segments as they are needed. However, this does not remove the problem for two reasons: 1) there are data sets for which even the individual segments are too large for the largest graphics workstations, 2) many practitioners do not have access to workstations with the memory capacity required to load even a segment, especially since the state-of-the-art visualization tools tend to be developed by researchers with much more powerful machines. When the size of the data that must be accessed is larger than the size of memory, some form of virtual memory is simply required. This may be by segmentation, paging, or by paged segments. In this paper we demonstrate that complete reliance on operating system virtual memory for out-of-core visualization leads to poor performance. We then describe a paged segment system that we have implemented, and explore the principles of memory management that can be employed by the application for out-of-core visualization. We show that application control over some of these can significantly improve performance. We show that sparse traversal can be exploited by loading only those data actually required. We show also that application control over data loading can be exploited by 1) loading data from alternative storage format (in particular 3-dimensional data stored in sub-cubes), 2) controlling the page size. Both of these techniques effectively reduce the total memory required by visualization at run-time. We also describe experiments we have done on remote out-of-core visualization (when pages are read by demand from remote disk) whose results are promising.
Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.
1995-01-01
The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to isolate contamination in the sample bottle, the automatic sampler and splitter, and the filtration system. Significant contamination caused excessive concentrations of dissolved chloride, alkalinity, and biochemical oxygen demand. The level of contamination may be large enough to affect data for water samples in which these analytes are present at low concentration. Further investigation is being done to determine the source of contamination and take measures to minimize its effect on the sampling. A preliminary regression analysis was done for the rural sites using data collected during water years 1989-93. Loads of suspended solids and total phosphorus in stormflow were regressed against various precipitation-related measures. The results indicate that, for most sites, changes in constituent load on the order of 40 to 50 percent could be detected with a statistical test. For two sites, the change would have to be 60 to 70 percent to be detected. A detailed comparison of snowmelt runoff and rainfall stormflow in urban and rural areas was done using data collected during water years 1985-93. For the rural sites where statistically significant differences were found between constituent loads in snowmelt and storm runoff, the loads of suspended solids and total phosphorus in snowmelt runoff were greater than those in storm runoff. For the urban sites where statistically significant differences were found between snowmelt and storm runoff, the loads of suspended solids and total phosphorus in storm runoff were greater than those in snowmelt runoff. The importance of including snowmelt runoff in designing and analyzing the effects of BMP's on streamwater quality, particularly in rural areas, is emphasized by these results.
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.
1999-01-01
The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.
Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting
NASA Technical Reports Server (NTRS)
Perry, J. L.
2017-01-01
Achieving acceptable cabin air quality must balance competing elements during spacecraft design, assembly, ground processing, and flight operations. Among the elements that contribute to the trace chemical contaminant load and, therefore, the cabin air quality aboard crewed spacecraft are the vehicle configuration, crew size and activities, mission duration and objectives, materials selection, and vehicle manufacturing and preflight ground processing methods. Trace chemical contaminants produced from pervasive sources such as equipment offgassing, human metabolism, and cleaning fluids during preflight ground processing present challenges to maintaining acceptable cabin air quality. To address these challenges, both passive and active contamination control techniques are used during a spacecraft's design, manufacturing, preflight preparation, and operational phases. Passive contamination control methods seek to minimize the equipment offgassing load by selecting materials, manufacturing processes, preflight preparation processes, and in-flight operations that have low chemical offgassing characteristics. Passive methods can be employed across the spacecraft's entire life cycle from conceptual design through flight operations. However, because the passive contamination control techniques cannot fully eliminate the contaminant load, active contamination control equipment must be deployed aboard the spacecraft to purify and revitalize the cabin atmosphere during in-flight operations. Verifying that the passive contamination control techniques have successfully maintained the total trace contaminant load within the active contamination control equipment's capabilities occurs late in the preflight preparation stages. This verification consists of subjecting the spacecraft to an offgassing test to determine the trace contaminant load. This load is then assessed versus the active contamination control equipment's capabilities via trace contaminant control (TCC) engineering analysis. During the International Space Station's (ISS's) on-orbit assembly and outfitting, a series of engineering analyses were conducted to evaluate how effective the passive TCC methods were relative to providing adequate operational margin for the active TCC equipment's capabilities aboard the ISS. These analyses were based on habitable module and cargo vehicle offgassing test results. The offgassing test for a fully assembled module or cargo vehicle is an important preflight spacecraft evaluation method that has been used successfully during all crewed spacecraft programs to provide insight into how effectively the passive contamination control methods limit the equipment offgassing component of the overall trace contaminant generation load. The progression of TCC assessments beginning in 1998 with the ISS's first habitable element launch and continuing through the final pressurized element's arrival in 2010 are presented. Early cargo vehicle flight assessments between 2008 and 2011 are also presented as well as a discussion on predictive methods for assessing cargo via a purely analytical technique. The technical approach for TCC employed during this 13-year period successfully maintained the cabin atmospheric quality within specified parameters during the technically challenging ISS assembly and outfitting stages. The following narrative provides details on the important role of spacecraft offgassing testing, trace contaminant performance requirements, and flight rules for achieving the ultimate result-a cabin environment that enables people to live and work safely in space.
Ebbert, James C.; Embrey, Sandra S.; Kelley, Janet A.
2003-01-01
Spatial and temporal variations in concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River Basin were assessed using data collected during 1999?2000 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Samples were collected at 34 sites located throughout the Basin in August 1999 using a Lagrangian sampling design, and also were collected weekly and monthly from May 1999 through January 2000 at three of the sites. Nutrient and sediment data collected at various time intervals from 1973 through 2001 by the USGS, Bureau of Reclamation, Washington State Department of Ecology, and Roza-Sunnyside Board of Joint Control were used to assess trends in concentrations. During irrigation season (mid-March to mid-October), concentrations of suspended sediment and nutrients in the Yakima River increase as relatively pristine water from the forested headwaters moves downstream and mixes with discharges from streams, agricultural drains, and wastewater treatment plants. Concentrations of nutrients also depend partly on the proportions of mixing between river water and discharges: in years of ample water supply in headwater reservoirs, more water is released during irrigation season and there is more dilution of nutrients discharged to the river downstream. For example, streamflow from river mile (RM) 103.7 to RM 72 in August 1999 exceeded streamflow in July 1988 by a factor of almost 2.5, but loads of total nitrogen and phosphorus discharged to the reach from streams, drains, and wastewater treatment plants were only 1.2 and 1.1 times larger. In years of ample water supply, canal water, which is diverted from either the Yakima or Naches River, makes up more of the flow in drains and streams carrying agricultural return flows. The canal water dilutes nutrients (especially nitrate) transported to the drains and streams in runoff from fields and in discharges from subsurface field drains and the shallow ground-water system. The average concentration of total nitrogen in drains and streams discharging to the Yakima River from RM 103.7 to RM 72 in August 1999 was 2.63 mg/L, and in July 1988 was 3.16 mg/L; average concentrations of total phosphorus were 0.20 and 0.26 mg/L. After irrigation season, streamflow in agricultural drains decreases because irrigation water is no longer diverted from the Yakima and Naches Rivers. As a result, concentrations of total nitrogen in drains increase because nitrate, which constitutes much of total nitrogen, continues to enter the drains from subsurface drains and shallow ground water. Concentrations of total phosphorus and suspended sediment often decrease, because they are transported to the drains in runoff of irrigation water from fields. In Granger Drain, concentrations of total nitrogen ranged from 2-4 mg/L during irrigation season and increased to about 6 mg/L after irrigation season, and concentrations of total phosphorus, as high as 1 mg/L, decreased to about 0.2 mg/L. In calendar year 1999, Moxee Drain transported an average of 28,000 lb/d (pounds per day) of suspended sediment, 380 lb/d of total nitrogen, and 46 lb/d of total phosphorus to the Yakima River. These loads were about half the average loads transported by Granger Drain during the same period. Average streamflows were similar for the two drains, so the difference in loads was due to differences in constituent concentrations: those in Moxee Drain were about 40-60 percent less than those in Granger Drain. Loads of suspended sediment and total phosphorus in Moxee and Granger Drains were nearly four times higher during irrigation season than during the non-irrigation season because with increased flow during irrigation season, concentrations of suspended sediment and total phosphorus are usually higher. Loads of nitrate in the drains were about the same in both seasons because nitrate concentrations are higher during the non-irrigation season.
Systems and methods for providing power to a load based upon a control strategy
Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M
2013-12-24
Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.
Water-quality assessment of Steiner Branch basin, Lafayette County, Wisconsin
Field, Stephen J.; Lidwin, R.A.
1982-01-01
Most of the nutrient load of the stream was transported during runoff: total organic nitrogen, 80 percent; ammonia nitrogen, 80 percent; total phosphorus, 84 percent; and total orthophosphorus, 77 percent. Transport of nitrite plus nitrate nitrogen and total nitrogen occurred primarily during baseflow conditions, with 75 and 56 percent, respectively, of the total load for the study period being transported during these conditions. The time distribution of total phosphorus, total orthophosphorus, ammonia nitrogen, and total organic nitrogen transport was very similar to suspended-sediment transport in Steiner Branch.
Lietz, A.C.
2002-01-01
The acoustic Doppler current profiler (ADCP) and acoustic Doppler velocity meter (ADVM) were used to estimate constituent concentrations and loads at a sampling site along the Hendry-Collier County boundary in southwestern Florida. The sampling site is strategically placed within a highly managed canal system that exhibits low and rapidly changing water conditions. With the ADCP and ADVM, flow can be gaged more accurately rather than by conventional field-data collection methods. An ADVM velocity rating relates measured velocity determined by the ADCP (dependent variable) with the ADVM velocity (independent variable) by means of regression analysis techniques. The coefficient of determination (R2) for this rating is 0.99 at the sampling site. Concentrations and loads of total phosphorus, total Kjeldahl nitrogen, and total nitrogen (dependent variables) were related to instantaneous discharge, acoustic backscatter, stage, or water temperature (independent variables) recorded at the time of sampling. Only positive discharges were used for this analysis. Discharges less than 100 cubic feet per second generally are considered inaccurate (probably as a result of acoustic ray bending and vertical temperature gradients in the water column). Of the concentration models, only total phosphorus was statistically significant at the 95-percent confidence level (p-value less than 0.05). Total phosphorus had an adjusted R2 of 0.93, indicating most of the variation in the concentration can be explained by the discharge. All of the load models for total phosphorus, total Kjeldahl nitrogen, and total nitrogen were statistically significant. Most of the variation in load can be explained by the discharge as reflected in the adjusted R2 for total phosphorus (0.98), total Kjeldahl nitrogen (0.99), and total nitrogen (0.99).
Syed, Atiq U.; Jodoin, Richard S.
2006-01-01
The Lake St. Clair Regional Monitoring Project partners planned a 3-year assessment study of the surface water in the Lake St. Clair drainage basins in Michigan. This study included water-quality monitoring and analysis, collection of discrete (grab) and automatic water-quality samples, monitoring of bacteria, and the creation of a database to store all relevant data collected from past and future field-data-collection programs. In cooperation with the Lake St. Clair Monitoring Project, the U.S. Geological Survey assessed nonpoint-source loads of nutrients and total suspended solids in the Black, Belle, and Pine River basins. The principal tool for the assessment study was the USEPA’s PLOAD model, a simplified GIS-based numerical program that generates gross estimates of pollutant loads. In this study, annual loads were computed for each watershed using the USEPA’s Simple Method, which is based on scientific studies showing a correlation between different land-use types and loading rates. The two land-use data sets used in the study (representing 1992 and 2001) show a maximum of 0.02-percent change in any of the 15 land use categories between the two timeframes. This small change in land use is reflected in the PLOAD results of the study area between the two time periods. PLOAD model results for the 2001 land-use data include total-nitrogen loads from the Black, Belle, and Pine River basins of approximately 495,599 lb/yr, 156,561 lb/yr, and 121,212 lb/yr, respectively; total-phosphorus loads of 80,777 lb/yr, 25,493 lb/yr, and 19,655 lb/yr, respectively; and total-suspended-solids loads of 5,613,282 lb/yr, 1,831,045 lb/yr, and 1,480,352 lb/yr, respectively. The subbasins in the Black, Belle, and Pine River basin with comparatively high loads are characterized by comparatively high percentages of industrial, commercial, transportation, or residential land use. The results from the PLOAD model provide useful information about the approximate average annual loading rates from the three study basins. In particular, the results identify subbasins with comparatively high loading rates per square mile. This could aid water-resources managers and planners in evaluation of the effectiveness of public expenditures for water-quality improvements, assessment of progress towards achieving established water-quality goals, and planning of preventive actions.
Ziaee, Amir; Afaghi, Ahmad; Sarreshtehdari, Majied
2011-12-29
Different carbohydrate diets have been administrated to diabetic patients to evaluate the glycemic response, while Poor-controlled diabetes is increasing world wide. To investigate the role of an alternative carbohydrate diet on glycemic control, we explored the effect of a low glycemic load (Low GL)-high fat diet on glycemic response and also glycated hemoglobin (HbA1c) of poor-controlled diabetes patients. Hundred poorly-controlled diabetes patients, HbA1c > 8, age 52.8 ± 4.5 y, were administrated a low GL diet , GL = 67 (Energy 1800 kcal; total fat 36%; fat derived from olive oil and nuts 15%; carbohydrate 42%; protein 22%) for 10 weeks. Patients did their routine life style program during intervention. Fasting blood glucose and HbA1c before and after intervention with significant reduction were: 169 ± 17, 141 ± 12; 8.85% (73 mmol/mol) ± 0.22%, and 7.81% (62 mmol/mol) ± 0.27%; respectively (P < 0.001). Mean fasting blood glucose reduced by 28.1 ± 12.5 and HbA1c by 1.1% (11 mmol/mol) ± 0.3% (P=0.001). There was positive moderate correlation between HbA1c concentration before intervention and FBS reduction after intervention (P < 0.001, at 0.01 level, R =0.52), and strong positive correlation between FBS before intervention and FBS reduction (P < 0.001, at 0.01 level, R = 0.70). This study demonstrated that our alternative low glycemic load diet can be effective in glycemic control.
Urban storm-runoff modelling; Madison, Wisconsin
Grant, R. Stephen; Goddard, Gerald
1979-01-01
A brief inconclusive evaluation of the water-quality subroutines of the model was made. Close agreement was noted between observed and simulated loads for nitrates, organic nitrogen, total phosphate, and total solids. Ammonia nitrogen and orthophosphate computed by the model ranged 7 to 11 times greater than the observed loads. Observed loads are doubtful because of the sparsity of water-quality data.
NASA Astrophysics Data System (ADS)
Glendell, M.; Brazier, R. E.
2012-04-01
The fluvial export of total organic carbon (particulate and dissolved) plays an important role in the transportation of organic carbon from terrestrial to aquatic ecosystems, with implications for the understanding of the global carbon cycle and calculations of regional carbon budgets. The terrestrial biosphere contains large amounts of stored carbon in the soil and vegetation, thus a small change in the terrestrial carbon pool may have significant implications for atmospheric CO2 concentrations. Since the onset of agriculture, human activities have accelerated soil erosion rates 10- to 100- fold above all estimated natural background levels, especially in the uplands and at lower latitudes, whilst increasing DOC concentrations over the past decades have been reported in rivers across Western Europe and North America, raising concerns about potential destabilisation of the terrestrial soil carbon pool. The increased input of fine sediment and organic carbon into aquatic environments is also an important factor in stream water quality, being responsible for direct ecological effects as well as transport of a range of contaminants. Many factors, such as topography, hydrological regime and vegetation are known to influence the fluvial export of carbon from catchments. However, most work to date has focused on DOC losses from either forested or peaty catchments, with only limited studies examining the controls and rates of TOC (dissolved and particulate) fluxes from agricultural catchments, particularly during flood events. This research aims to: • Quantify the fluxes of total suspended sediment, total dissolved and total particulate carbon in two adjacent catchments with contrasting land-uses and • Examine the controlling factors of total fluvial carbon fluxes in a semi-natural and agricultural catchment in order to assess the impact of agricultural land-use on fluvial carbon export. The two contrasting study catchments (the Aller and Horner), in south-west England, cover 50km2 and comprise a lower lying agricultural sub-catchment and an upland sub-catchment with extensive native woodland and heather moorland. 24 months of monitoring characterised the water quality status in both catchments, including TSS, POC and DOC in both baseflow and stormflow conditions. Results indicate that the agricultural catchment exports higher TSS and TOC concentrations, instantaneous loads and total loads on a storm-by-storm basis, though these exports are short-lived as the catchment is hydrologically very responsive. The upland/woodland catchment displays more attenuated behaviour, with longer response times and longer duration events. In addition to flux data, geospatial sampling at >200 locations across each catchment characterised the carbon and nitrogen content and bulk density of the soils across four land-use categories. Analysis of these data suggests a strong relationship between TSS and TOC loads during stormflow and the spatial distribution of contributing source areas of soil with high carbon content, erodibility and land-use controls such as soil compaction within the two study catchments.
Danz, Mari E.; Corsi, Steven; Brooks, Wesley R.; Bannerman, Roger T.
2013-01-01
Understanding the response of total suspended solids (TSS) and total phosphorus (TP) to influential weather and watershed variables is critical in the development of sediment and nutrient reduction plans. In this study, rainfall and snowmelt event loadings of TSS and TP were analyzed for eight agricultural watersheds in Wisconsin, with areas ranging from 14 to 110 km2 and having four to twelve years of data available. The data showed that a small number of rainfall and snowmelt runoff events accounted for the majority of total event loading. The largest 10% of the loading events for each watershed accounted for 73–97% of the total TSS load and 64–88% of the total TP load. More than half of the total annual TSS load was transported during a single event for each watershed at least one of the monitored years. Rainfall and snowmelt events were both influential contributors of TSS and TP loading. TSS loading contributions were greater from rainfall events at five watersheds, from snowmelt events at two watersheds, and nearly equal at one watershed. The TP loading contributions were greater from rainfall events at three watersheds, from snowmelt events at two watersheds and nearly equal at three watersheds. Stepwise multivariate regression models for TSS and TP event loadings were developed separately for rainfall and snowmelt runoff events for each individual watershed and for all watersheds combined by using a suite of precipitation, melt, temperature, seasonality, and watershed characteristics as predictors. All individual models and the combined model for rainfall events resulted in two common predictors as most influential for TSS and TP. These included rainfall depth and the antecedent baseflow. Using these two predictors alone resulted in an R2 greater than 0.7 in all but three individual models and 0.61 or greater for all individual models. The combined model yielded an R2 of 0.66 for TSS and 0.59 for TP. Neither the individual nor the combined models were substantially improved by using additional predictors. Snowmelt event models were statistically significant for individual and combined watershed models, but the model fits were not all as good as those for rainfall events (R2 between 0.19 and 0.87). Predictor selection varied from watershed to watershed, and the common variables that were selected were not always selected in the same order. Influential variables were commonly direct measures of moisture in the watershed such as snowmelt, rainfall + snowmelt, and antecedent baseflow, or measures of potential snowmelt volume in the watershed such as air temperature.
Central FPGA-based destination and load control in the LHCb MHz event readout
NASA Astrophysics Data System (ADS)
Jacobsson, R.
2012-10-01
The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.
NASA Astrophysics Data System (ADS)
Lemke, Adam J.; O'Toole, Alexander W.; Phillips, Richard S.; Eisenbraun, Eric T.
2014-06-01
The effect of ionomer content on the oxygen kinetics in fuel cells and metal-oxide batteries was investigated by varying ionomer loading with constant loadings of a silver nanowire catalyst. Silver nanowire inks were produced in which commercially available anionomer solution constituted 10, 25, 40, 50, and 75% of the total ink volume. Constant loadings of Ag nanowire catalyst were then deposited onto glassy carbon electrodes by varying the amount of ink deposited. These were then used in rotating disc electrode (RDE) experiments using a 0.1 M KOH electrolyte solution. From these experiments, using ORR polarization curves and Koutecky-Levich analysis, it was found that not only did the anionomer loading affect the total activity (given a constant Ag nanowire loading) but, that the anionomer content also had an impact upon the apparent kinetic limited current as well as whether the ORR proceeded through the 2e- or 4e- pathway. Although the total activity declined with very high anionomer loadings, the ORR appeared to proceed more through the 4e- pathway with increased anionomer content.
[The links between learning load and well-being of high school seniors].
Petrauskiene, Ausra; Matuleviciūte, Deimante
2007-01-01
To evaluate the links between learning overload and psychoemotional well-being of 12th grade students. In April 2006, an anonymous survey of 184 high school seniors was conducted in six secondary schools and one gymnasium of Kaunas. The total learning load of students was too high and made up 54.79+/-0.98 hours on average. The learning load of 61.4% of children was too high; girls mentioned this problem two times more often than boys did. Students suffered from psychoemotional problems: about half of them felt stress at school; every fifth fell asleep with difficulties. Students whose total learning load was too high (more than 48 hours per week) felt stress, tiredness, stomach or abdominal, head or back pains, vertigo or weakness significantly more often in comparison with those who had normal learning load. The total learning load of the majority of investigated high school seniors was too high. The psychoemotional well-being of 12th graders was unsatisfactory; girls complained about worse well-being than boys more frequently, they used medicine more frequently in comparison to the students whose learning load was normal.
Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu
2015-01-01
An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.
The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.
2017-12-01
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are decreasing salinity in groundwater transported to streams.
Exploring the role of flood transience in coarse bed load sediment transport
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Singer, M. B.; Hill, K. M.; Paola, C.
2015-12-01
The rate of bed load transport under steady flow is known to vary both spatially and temporally due to various hydrologic and granular phenomena. Grain size distributions and riverbed properties (packing, imbrication, etc.) are known to affect flux for a particular value of applied flow stress, while hydrology is mainly assumed to control the magnitude of the applied bed stress above the threshold for bed material entrainment. The prediction of bed load sediment transport in field settings is further complicated by the inherent transience in flood hydrology, but little is known about how such flood transience influences bed load flux over a range of applied bed stress. Here we investigate the role of flood transience for gravel bed load transport through controlled laboratory experiments in a 28 m long 0.5 meter wide flume. We explore transient flow as the combination of unsteady and intermittent flow, where unsteady flow varies in magnitude over a given duration, and intermittent flow is characterized by turning the flow on and off. We systematically vary these details of flood hydrographs from one experiment to the next, and monitor the bed load as it varies with water discharge in real time by measuring sediment flux and tracking particles. We find that even with a narrow unimodal grain size distribution and constant sediment supply we observe hysteresis in bed load flux, different thresholds for entrainment and distrainment for the rising and falling limbs of a flood, and a threshold of entrainment that can vary one flood hydrograph to the next. Despite these complex phenomena we find that the total bed load transported for each flood plots along a linear trend with the integrated excess stress, consistent with prior field results. These results suggest that while the effects of transient flow and the shape of the hydrograph are measurable, they are second-order compared to the integrated excess stress.
Wise, Daniel R.; Rinella, Frank A.; Rinella, Joseph F.; Fuhrer, Greg J.; Embrey, Sandra S.; Clark, Gregory M.; Schwarz, Gregory E.; Sobieszczyk, Steven
2007-01-01
This study focused on three areas that might be of interest to water-quality managers in the Pacific Northwest: (1) annual loads of total nitrogen (TN), total phosphorus (TP) and suspended sediment (SS) transported through the Columbia River and Puget Sound Basins, (2) annual yields of TN, TP, and SS relative to differences in landscape and climatic conditions between subbasin catchments (drainage basins), and (3) trends in TN, TP, and SS concentrations and loads in comparison to changes in landscape and climatic conditions in the catchments. During water year 2000, an average streamflow year in the Pacific Northwest, the Columbia River discharged about 570,000 pounds per day of TN, about 55,000 pounds per day of TP, and about 14,000 tons per day of SS to the Pacific Ocean. The Snake, Yakima, Deschutes, and Willamette Rivers contributed most of the load discharged to the Columbia River. Point-source nutrient loads to the catchments (almost exclusively from municipal wastewater treatment plants) generally were a small percentage of the total in-stream nutrient loads; however, in some reaches of the Spokane, Boise, Walla Walla, and Willamette River Basins, point sources were responsible for much of the annual in-stream nutrient load. Point-source nutrient loads generally were a small percentage of the total catchment nutrient loads compared to nonpoint sources, except for a few catchments where point-source loads comprised as much as 30 percent of the TN load and as much as 80 percent of the TP load. The annual TN and TP loads from point sources discharging directly to the Puget Sound were about equal to the annual loads from eight major tributaries. Yields of TN, TP, and SS generally were greater in catchments west of the Cascade Range. A multiple linear regression analysis showed that TN yields were significantly (p < 0.05) and positively related to precipitation, atmospheric nitrogen load, fertilizer and manure load, and point-source load, and were negatively related to average slope. TP yields were significantly related positively to precipitation, and point-source load and SS yields were significantly related positively to precipitation. Forty-eight percent of the available monitoring sites for TN had significant trends in concentration (2 increasing, 19 decreasing), 32 percent of the available sites for TP had significant trends in concentration (7 increasing, 9 decreasing), and 40 percent of the available sites for SS had significant trends in concentration (4 increasing, 15 decreasing). The trends in load followed a similar pattern, but with fewer sites showing significant trends. The results from this study indicate that inputs from nonpoint sources of nutrients probably have decreased over time in many of the catchments. Despite the generally small contribution of point-source nutrient loads, they still may have been partially responsible for the significant decreasing trends for nutrients at sites where the total point-source nutrient loads to the catchments equaled a substantial proportion of the in-stream load.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...
NASA Astrophysics Data System (ADS)
Fakhraei, Habibollah; Driscoll, Charles T.; Selvendiran, Pranesh; DePinto, Joseph V.; Bloomfield, Jay; Quinn, Scott; Rowell, H. Chandler
2014-10-01
Acidic deposition has impaired acid-sensitive surface waters in the Adirondack region of New York by decreasing pH and acid neutralizing capacity (ANC). In spite of air quality programs over past decades, 128 lakes in the Adirondacks were classified as “impaired” under Section 303(d) of the Clean Water Act in 2010 due to elevated acidity. The biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric sulfur (S) and nitrogen (N) deposition to changes in lake water chemistry. The model was calibrated and confirmed using observed soil and lake water chemistry data and then was applied to calculate the maximum atmospheric deposition that the impaired lakes can receive while still achieving ANC targets. Two targets of ANC were used to characterize the recovery of acid-impaired lakes: 11 and 20 μeq L-1. Of the 128 acid-impaired lakes, 97 currently have ANC values below the target value of 20 μeq L-1 and 83 are below 11 μeq L-1. This study indicates that a moderate control scenario (i.e., 60% decrease from the current atmospheric S load) is projected to recover the ANC of lakes at a mean rate of 0.18 and 0.05 μeq L-1 yr-1 during the periods 2022-2050 and 2050-2200, respectively. The total maximum daily load (TMDL) of acidity corresponding to this moderate control scenario was estimated to be 7.9 meq S m-2 yr-1 which includes a 10% margin of safety.
Mechanical properties and failure behavior of unidirectional porous ceramics
NASA Astrophysics Data System (ADS)
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.
2016-04-01
We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.
Mechanical properties and failure behavior of unidirectional porous ceramics.
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J
2016-04-14
We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.
Power processing methodology. [computerized design of spacecraft electric power systems
NASA Technical Reports Server (NTRS)
Fegley, K. A.; Hansen, I. G.; Hayden, J. H.
1974-01-01
Discussion of the interim results of a program to investigate the feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems. The object of the total program is to develop a flexible engineering tool which will allow the power processor designer to effectively and rapidly assess and analyze the tradeoffs available by providing, in one comprehensive program, a mathematical model, an analysis of expected performance, simulation, and a comparative evaluation with alternative designs. This requires an understanding of electrical power source characteristics and the effects of load control, protection, and total system interaction.
The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement.
Gutowski, C J; Zmistowski, B M; Clyde, C T; Parvizi, J
2014-01-01
The rate of peri-prosthetic infection following total joint replacement continues to rise, and attempts to curb this trend have included the use of antibiotic-loaded bone cement at the time of primary surgery. We have investigated the clinical- and cost-effectiveness of the use of antibiotic-loaded cement for primary total knee replacement (TKR) by comparing the rate of infection in 3048 TKRs performed without loaded cement over a three-year period versus the incidence of infection after 4830 TKRs performed with tobramycin-loaded cement over a later period of time of a similar duration. In order to adjust for confounding factors, the rate of infection in 3347 and 4702 uncemented total hip replacements (THR) performed during the same time periods, respectively, was also examined. There were no significant differences in the characteristics of the patients in the different cohorts. The absolute rate of infection increased when antibiotic-loaded cement was used in TKR. However, this rate of increase was less than the rate of increase in infection following uncemented THR during the same period. If the rise in the rate of infection observed in THR were extrapolated to the TKR cohort, 18 additional cases of infection would have been expected to occur in the cohort receiving antibiotic-loaded cement, compared with the number observed. Depending on the type of antibiotic-loaded cement that is used, its cost in all primary TKRs ranges between USD $2112.72 and USD $112 606.67 per case of infection that is prevented.
Temporal and spatial trends in nutrient and sediment loading to Lake Tahoe, California-Nevada, USA
Coats, Robert; Lewis, Jack; Alvarez, Nancy L.; Arneson, Patricia
2016-01-01
Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream-discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use-land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long-term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.
Qu, Xingda; Nussbaum, Maury A
2009-01-01
The purpose of this study was to identify the effects of external loads on balance control during upright stance, and to examine the ability of a new balance control model to predict these effects. External loads were applied to 12 young, healthy participants, and effects on balance control were characterized by center-of-pressure (COP) based measures. Several loading conditions were studied, involving combinations of load mass (10% and 20% of individual body mass) and height (at or 15% of stature above the whole-body COM). A balance control model based on an optimal control strategy was used to predict COP time series. It was assumed that a given individual would adopt the same neural optimal control mechanisms, identified in a no-load condition, under diverse external loading conditions. With the application of external loads, COP mean velocity in the anterior-posterior direction and RMS distance in the medial-lateral direction increased 8.1% and 10.4%, respectively. Predicted COP mean velocity and RMS distance in the anterior-posterior direction also increased with external loading, by 11.1% and 2.9%, respectively. Both experimental COP data and model-based predictions provided the same general conclusion, that application of larger external loads and loads more superior to the whole body center of mass lead to less effective postural control and perhaps a greater risk of loss of balance or falls. Thus, it can be concluded that the assumption about consistency in control mechanisms was partially supported, and it is the mechanical changes induced by external loads that primarily affect balance control.
Wang, Chih-Wei; Bains, Aman; Sinton, David; Moffitt, Matthew G
2013-07-02
We investigate the loading efficiencies of two chemically distinct hydrophobic fluorescent probes, pyrene and naphthalene, for self-assembly and loading of polystyrene-block-poly(acrylic acid) (PS-b-PAA) micelles in gas-liquid segmented microfluidic reactors under different chemical and flow conditions. On-chip loading efficiencies are compared to values obtained via off-chip dropwise water addition to a solution of copolymer and probe. On-chip, probe loading efficiencies depend strongly on the chemical probe, initial solvent, water content, and flow rate. For pyrene and naphthalene probes, maximum on-chip loading efficiencies of 73 ± 6% and 11 ± 3%, respectively, are obtained, in both cases using the more polar solvent (DMF), an intermediate water content (2 wt % above critical), and a low flow rate (∼5 μL/min); these values are compared to 81 ± 6% and 48 ± 2%, respectively, for off-chip loading. On-chip loading shows a significant improvement over the off-chip process where shear-induced formation of smaller micelles enables increased encapsulation of probe. As well, we show that on-chip loading allows off-chip release kinetics to be controlled via flow rate: compared to vehicles produced at ∼5 μL/min, pyrene release kinetics from vehicles produced at ∼50 μL/min showed a longer initial period of burst release, followed by slow release over a longer total period. These results demonstrate the necessity to match probes, solvents, and running conditions to achieve effective loading, which is essential information for further developing these on-chip platforms for manufacturing drug delivery formulations.
Validating pollutant load estimates from highways and roads.
DOT National Transportation Integrated Search
2015-12-31
Rain and snowmelt that runs off of roadways carries pollutants. Pollutant event mean concentrations have been developed for various land uses to calculate annual pollutant loads. These were developed for total suspended solids, total phosphorus, and ...
Rotenberg, Lúcia; Portela, Luciana Fernandes; Banks, Bahby; Griep, Rosane Harter; Fischer, Frida Marina; Landsbergis, Paul
2008-09-01
The association between working hours and work ability was examined in a cross-sectional study of male (N=156) and female (N=1092) nurses in three public hospitals. Working hours were considered in terms of their professional and domestic hours per week and their combined impact; total work load. Logistic regression analysis showed a significant association between total work load and inadequate work ability index (WAI) for females only. Females reported a higher proportion of inadequate WAI, fewer professional work hours but longer domestic work hours. There were no significant differences in total work load by gender. The combination of professional and domestic work hours in females seemed to best explain their lower work ability. The findings suggest that investigations into female well-being need to consider their total work load. Our male sample may have lacked sufficient power to detect a relationship between working hours and work ability.
NASA Astrophysics Data System (ADS)
Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.
2017-12-01
The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period, despite the detection of significantly higher DOC and TDN concentrations. Examination of seasonal stream water, DOC and TDN export dynamics revealed the relative magnitudes of EAB-induced impacts were not evenly distributed throughout the year, and these differences have distinct seasonal implications for downstream waterbodies.
Sexton, Jonathan D; Tanner, Benjamin D; Maxwell, Sheri L; Gerba, Charles P
2011-10-01
Recent scientific literature suggests that portable steam vapor systems are capable of rapid, chemical-free surface disinfection in controlled laboratory studies. This study evaluated the efficacy of a portable steam vapor system in a hospital setting. The study was carried out in 8 occupied rooms of a long-term care wing of a hospital. Six surfaces per room were swabbed before and after steam treatment and analyzed for heterotrophic plate count (HPC), total coliforms, methicillin-intermediate and -resistant Staphylococcus aureus (MISA and MRSA), and Clostridium difficile. The steam vapor device consistently reduced total microbial and pathogen loads on hospital surfaces, to below detection in most instances. Treatment reduced the presence of total coliforms on surfaces from 83% (40/48) to 13% (6/48). Treatment reduced presumptive MISA (12/48) and MRSA (3/48) to below detection after cleaning, except for 1 posttreatment isolation of MISA (1/48). A single C difficile colony was isolated from a door push panel before treatment, but no C difficile was detected after treatment. The steam vapor system reduced bacterial levels by >90% and reduced pathogen levels on most surfaces to below the detection limit. The steam vapor system provides a means to reduce levels of microorganisms on hospital surfaces without the drawbacks associated with chemicals, and may decrease the risk of cross-contamination. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Reale, Reid; Slater, Gary; Cox, Gregory R; Dunican, Ian C; Burke, Louise M
2018-05-03
Novel methods of acute weight loss practiced by combat sport athletes include "water loading," the consumption of large fluid volumes for several days prior to restriction. We examined claims that this technique increases total body water losses, while also assessing the risk of hyponatremia. Male athletes were separated into control (n = 10) and water loading (n = 11) groups and fed a standardized energy-matched diet for 6 days. Days 1-3 fluid intake was 40 and 100 ml/kg for control and water loading groups, respectively, with both groups consuming 15 ml/kg on Day 4 and following the same rehydration protocol on Days 5 and 6. We tracked body mass (BM), urine sodium, urine specific gravity and volume, training-related sweat losses and blood concentrations of renal hormones, and urea and electrolytes throughout. Physical performance was assessed preintervention and postintervention. Following fluid restriction, there were substantial differences between groups in the ratio of fluid input/output (39%, p < .01, effect size = 1.2) and BM loss (0.6% BM, p = .02, effect size = 0.82). Changes in urine specific gravity, urea and electrolytes, and renal hormones occurred over time (p < .05), with an interaction of time and intervention on blood sodium, potassium, chloride, urea, creatinine, urine specific gravity, and vasopressin (p < .05). Measurements of urea and electrolyte remained within reference ranges, and no differences in physical performance were detected over time or between groups. Water loading appears to be a safe and effective method of acute BM loss under the conditions of this study. Vasopressin-regulated changes in aquaporin channels may potentially partially explain the mechanism of increased body water loss with water loading.
14 CFR 23.395 - Control system loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Loads § 23.395 Control system loads. (a) Each flight control system and its supporting structure must be... at the appropriate control grips or pads as they would in flight, and to react at the attachments of... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Control system loads. 23.395 Section 23.395...
NASA Astrophysics Data System (ADS)
Restrepo López, Juan Camilo; Orejarena R, Andrés F.; Torregroza, Ana Carolina
2017-12-01
Monthly averaged suspended sediment load data from seven rivers in northern Colombia (Caribbean alluvial plain) draining into the Caribbean Sea were analyzed to quantify magnitudes, estimate long-term trends, and evaluate variability patterns of suspended sediment load. Collectively these rivers deliver an average of around 146.3 × 106 t yr-1 of suspended sediments to the Colombian Caribbean coast. The largest sediment supply is provided by the Magdalena River, with a mean suspended sediment load of 142.6 × 106 t yr-1, or 38% of the total fluvial discharge estimated for the whole Caribbean littoral zone. Between 2000 and 2010, the annual suspended sediment load of these rivers increased by as much as 36%. Wavelet spectral analyses identified periods of intense variability between 1987-1990 and 1994-2002, where major oscillation processes appeared simultaneously. The semi-annual, annual and quasi-decadal bands are the main factors controlling suspended sediment load variability in fluvial systems, whereas the quasi-biennial and interannual bands constitute second-order sources of variability. The climatic and oceanographic drivers of the oscillations identified through wavelet spectral analyses define a signal of medium-long-term variability for the suspended sediment load, while the physiographic and environmental characteristics of the basins determine their ability to magnify, attenuate or modify this signal.
Behaviour of wrapped cold-formed steel columns under different loading conditions
NASA Astrophysics Data System (ADS)
Baabu, B. Hari; Sreenath, S.
2017-07-01
The use of Cold Formed Steel (CFS) sections as structural members is widely accepted because of its light nature. However, the load carrying capacity of these sections will be less compared to hot rolled sections. This study is meant to analyze the possibility of strengthening cold formed members by wrapping it with Glass Fiber Reinforced Polymer (GFRP) laminates. Light gauge steel columns of cross sectional dimensions 100mm x 50mm x 3.15mm were taken for this study. The effective length of the section is about 750mm. A total of 8 specimens including the control specimen is tested under axial and eccentric loading. The columns were tested keeping both ends hinged. For both loading cases the buckling behaviour, ultimate load carrying capacity and load-deflection characteristics of the CFS columns were analyzed. The GFRP laminates were wrapped on columns in three different ways such that wrapping the outer surface of web and flange throughout the length of specimen, wrapping the outer surface of web alone throughout the length of specimen and wrapping the outer surface of web and flange for the upper half length of the specimen where the buckling is expected. For both loading cases, the results indicated that the column with wrapping at the outer surface of web and flange throughout the length of specimen provides better strength for it.
A model of free-living gait: A factor analysis in Parkinson's disease.
Morris, Rosie; Hickey, Aodhán; Del Din, Silvia; Godfrey, Alan; Lord, Sue; Rochester, Lynn
2017-02-01
Gait is a marker of global health, cognition and falls risk. Gait is complex, comprised of multiple characteristics sensitive to survival, age and pathology. Due to covariance amongst characteristics, conceptual gait models have been established to reduce redundancy and aid interpretation. Previous models have been derived from laboratory gait assessments which are costly in equipment and time. Body-worn monitors (BWM) allow for free-living, low-cost and continuous gait measurement and produce similar covariant gait characteristics. A BWM gait model from both controlled and free-living measurement has not yet been established, limiting utility. 103 control and 67 PD participants completed a controlled laboratory assessment; walking for two minutes around a circuit wearing a BWM. 89 control and 58 PD participants were assessed in free-living, completing normal activities for 7 days wearing a BWM. Fourteen gait characteristics were derived from the BWM, selected according to a previous model. Principle component analysis derived factor loadings of gait characteristics. Four gait domains were derived for both groups and conditions; pace, rhythm, variability and asymmetry. Domains totalled 84.84% and 88.43% of variance for controlled and 90.00% and 93.03% of variance in free-living environments for control and PD participants respectively. Gait characteristic loading was unambiguous for all characteristics apart from gait variability which demonstrated cross-loading for both groups and environments. The model was highly congruent with the original model. The conceptual gait models remained stable using a BWM in controlled and free-living environments. The model became more discrete supporting utility of the gait model for free-living gait. Copyright © 2016 Elsevier B.V. All rights reserved.
Gantner, Pierre; Mélard, Adeline; Damond, Florence; Delaugerre, Constance; Dina, Julia; Gueudin, Marie; Maillard, Anne; Sauné, Karine; Rodallec, Audrey; Tuaillon, Edouard; Plantier, Jean-Christophe; Rouzioux, Christine; Avettand-Fenoel, Véronique
2017-11-01
Viral reservoirs represent an important barrier to HIV cure. Accurate markers of HIV reservoirs are needed to develop multicenter studies. The aim of this multicenter quality control (QC) was to evaluate the inter-laboratory reproducibility of total HIV-1-DNA quantification. Ten laboratories of the ANRS-AC11 working group participated by quantifying HIV-DNA with a real-time qPCR assay (Biocentric) in four samples (QCMD). Good reproducibility was found between laboratories (standard deviation ≤ 0.2 log 10 copies/10 6 PBMC) for the three positive QC that were correctly classified by each laboratory (QC1
Westenbroek, Stephen M.
2010-01-01
The Lake Michigan Mass Balance Project (LMMBP) measured and modeled the concentrations of environmentally persistent contaminants in air, river and lake water, sediment, and fish and bird tissues in and around Lake Michigan for an 18-month period spanning 1994-95. Tributary loads were calculated as part of the LMMBP. The work described in this report was designed to provide updated concentration data and load estimates for 5 nutrients, total mercury, and total polychlorinated biphenyl (PCB) at 5 of the original 11 LMMBP sampling sites. Samples were collected at five Lake Michigan tributary monitoring sites during 2005 and 2006. Annual loads calculated for the 2005-6 sampling period are as much as 50 percent lower relative to the 1994-95 time period. Differences between the loads calculated for the two time periods are likely related to a combination of (1) biases introduced by a reduced level of sampling effort, (2) differences in hydrological characteristics, and (3) actual environmental change. Estimated annual total mercury loads during 2005-6 ranged from 51 kilograms per year (kg/yr) in the Fox River to 2.2 kg/yr in the Indiana Harbor and Ship Canal. Estimated annual total PCB loads during 2005-6 ranged from 132 kg/yr in the Fox River to 6.2 kg/yr in the Grand River.
Equitable fund allocation, an economical approach for sustainable waste load allocation.
Ashtiani, Elham Feizi; Niksokhan, Mohammad Hossein; Jamshidi, Shervin
2015-08-01
This research aims to study a novel approach for waste load allocation (WLA) to meet environmental, economical, and equity objectives, simultaneously. For this purpose, based on a simulation-optimization model developed for Haraz River in north of Iran, the waste loads are allocated according to discharge permit market. The non-dominated solutions are initially achieved through multiobjective particle swarm optimization (MOPSO). Here, the violation of environmental standards based on dissolved oxygen (DO) versus biochemical oxidation demand (BOD) removal costs is minimized to find economical total maximum daily loads (TMDLs). This can save 41% in total abatement costs in comparison with the conventional command and control policy. The BOD discharge permit market then increases the revenues to 45%. This framework ensures that the environmental limits are fulfilled but the inequity index is rather high (about 4.65). For instance, the discharge permit buyer may not be satisfied about the equity of WLA. Consequently, it is recommended that a third party or institution should be in charge of reallocating the funds. It means that the polluters which gain benefits by unfair discharges should pay taxes (or funds) to compensate the losses of other polluters. This intends to reduce the costs below the required values of the lowest inequity index condition. These compensations of equitable fund allocation (EFA) may help to reduce the dissatisfactions and develop WLA policies. It is concluded that EFA in integration with water quality trading (WQT) is a promising approach to meet the objectives.
Wang, Man-Ying; Salem, George J
2004-06-01
The relations among the reaction forces engendered during an upper-extremity dynamic impact-loading exercise (DILE) program and bone mineral density adaptations (DeltaBMD) in the radius were investigated in 24 healthy premenopausal women (mean age = 29 +/- 6 years). Subjects performed DILE 36 cycles/day, 3 days/week for 24 weeks. The exercised arm was allocated randomly to either the dominant or the nondominant limb. In addition, subjects were assigned randomly into either damped or nondamped treatment arms to examine the effects of both higher- and lower-magnitude loading prescriptions. Measurements including anthropometrics, self-reported physical activity levels, hand-grip strength, radial BMD (DEXA, Hologic QDR1500, MA) at the ultradistal radius (UD), distal 1/3 radius (DR), and total distal radius (TOTAL), and exercise-related loading characteristics (impact load, loading rate, and impulse) were recorded at baseline and at 6 months. Simple linear regression models were used to fit the regional BMD changes to the reaction force, changes in hand-grip strength (DeltaGRIP), and changes in body weight (DeltaBW). Findings demonstrated that the damping condition utilized during DILE influenced the relations between loading events and BMD changes. Specifically, none of the reaction-force characteristics significantly predicted changes in BMD in participants performing DILE using the damped condition, whereas, in the nondamped condition, impact load accounted for 58% of the variance in BMD change at DR and 66% of the variance in BMD change at TOTAL. Thresholds of 345 and 285 N of impact force to promote BMD increases at DR and TOTAL, respectively, were obtained from the regression models in the nondamped group. Impulse was also an independent predictor of BMD changes at TOTAL, accounting for 56% of the variance. Neither DeltaGRIP nor DeltaBW significantly predicted DeltaBMD at any radial site. These findings, in young adult women, parallel previous reports identifying significant, regionally specific relations among external loading events and BMD changes in both animal and human models.
Asiimwe, Stephen B; Fatch, Robin; Patts, Gregory; Winter, Michael; Lloyd-Travaglini, Christine; Emenyonu, Nneka; Muyindike, Winnie; Kekibiina, Allen; Blokhina, Elena; Gnatienko, Natalia; Kruptisky, Evgeny; Cheng, Debbie M; Samet, Jeffrey H; Hahn, Judith A
2017-11-01
In HIV-infected drinkers, alcohol types more likely to cause inflammation could plausibly increase the risk of HIV disease progression. We therefore assessed the association between alcohol type and plasma HIV RNA level (HIV viral load) among HIV-infected drinkers not on antiretroviral therapy (ART) in Russia and Uganda. We analyzed the data of participants from cohorts in Russia and Uganda and assessed their HIV viral load at enrollment by the alcohol type predominantly consumed. We defined predominant alcohol type as the alcohol type contributing >50% of total alcohol consumption in the 1 month (Russia) or 3 months (Uganda) prior to enrollment. Using multiple linear regression, we compared log 10 HIV viral load by predominant alcohol type, controlling for age, gender, socioeconomic status, total number of standard drinks, frequency of drinking ≥6 drinks/occasion, and in Russia, history of injection drug use. Most participants (99.2% of 261 in Russia and 98.9% of 352 in Uganda) predominantly drank one alcohol type. In Russia, we did not find evidence for differences in viral load levels between drinkers of fortified wine (n = 5) or hard liquor (n = 49), compared to drinkers of beer/low-ethanol-content cocktails (n = 163); however, wine/high-ethanol-content cocktail drinkers (n = 42) had higher mean log 10 viral load than beer/low-ethanol-content cocktail drinkers (β = 0.38, 95% CI 0.07-0.69; p = 0.02). In Uganda, we did not find evidence for differences in viral load levels between drinkers of locally-brewed beer (n = 41), commercially-distilled spirits (n = 38), or locally-distilled spirits (n = 43), compared to drinkers of commercially-made beer (n = 218); however, wine drinkers (n = 8) had lower mean log 10 HIV viral load (β = -0.65, 95% CI -1.36 to 0.07, p = 0.08), although this did not reach statistical significance. Among HIV-infected drinkers not yet on ART in Russia and Uganda, we observed an association between the alcohol type predominantly consumed and the HIV viral load level in the Russia sample. These exploratory results suggest that, in addition to total number of drinks and drinking patterns, alcohol type might be a dimension of alcohol use that merits examination in studies of HIV and alcohol related outcomes.
Pérez-Pérez, T; Pereda-Reyes, I; Pozzi, E; Oliva-Merencio, D; Zaiat, M
2018-01-01
This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.
Loewenstein, David A; Greig, Maria T; Curiel, Rosie; Rodriguez, Rosemarie; Wicklund, Meredith; Barker, Warren W; Hidalgo, Jacqueline; Rosado, Marian; Duara, Ranjan
2015-12-01
To evaluate the relationship between susceptibility to proactive semantic interference (PSI) and retroactive semantic interference (RSI) and brain amyloid load in non-demented elders. 27 participants (11 cognitively normal [CN] with subjective memory complaints, 8 CN without memory complaints, and 8 with mild cognitive impairment [MCI]) underwent complete neurological and neuropsychological evaluations. Participants also received the Semantic Interference Test (SIT) and AV-45 amyloid PET imaging. High levels of association were present between total amyloid load, regional amyloid levels, and the PSI measure (in the entire sample and a subsample excluding MCI subjects). RSI and other memory measures showed much weaker associations or no associations with total and regional amyloid load. No associations between amyloid levels and non-memory performance were observed. In non-demented individuals, vulnerability to PSI was highly associated with total and regional beta-amyloid load and may be an early cognitive marker of brain pathology. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.
Morey-Holton, E R; Globus, R K
1998-05-01
A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in the response to gravitational loading. The hindlimb unloading model provides a unique opportunity to evaluate in detail the physiological and cellular mechanisms of the skeletal response to weightbearing loads, and has proven to be an effective model for space flight.
Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight
NASA Technical Reports Server (NTRS)
Morey-Holton, E. R.; Globus, R. K.
1998-01-01
A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in the response to gravitational loading. The hindlimb unloading model provides a unique opportunity to evaluate in detail the physiological and cellular mechanisms of the skeletal response to weightbearing loads, and has proven to be an effective model for space flight.
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2010-01-01
The ground reaction force during the concentric (raising) portion of the squat exercise was compared to that of isoinertial loading (free weights) for three pneumatically controlled resistance methods: constant resistance, cam force profile, and proportional force control based on velocity. Constant force control showed lower ground reaction forces than isoinertial loading throughout the range of motion (ROM). The cam force profile exhibited slightly greater ground reaction forces than isoinertial loading at 10 and 40% ROM with fifty-percent greater loading at 70% ROM. The proportional force control consistently elicited greater ground reaction force than isoinertial loading, which progressively ranged from twenty to forty percent increase over isoinertial loading except for being approximately equal at 85% ROM. Based on these preliminary results, the proportional control shows the most promise for providing loading that is comparable in magnitude to isoinertial loading. This technology could optimize resistance exercise for sport-specific training or as a countermeasure to atrophy during spaceflight.
Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Saad, David A.
2010-01-01
Minocqua and Kawaguesaga Lakes are 1,318- and 690-acre interconnected lakes in the popular recreation area of north-central Wisconsin. The lakes are the lower end of a complex chain of lakes in Oneida and Vilas Counties, Wis. There is concern that increased stormwater runoff from rapidly growing residential/commercial developments and impervious surfaces from the urbanized areas of the Town of Minocqua and Woodruff, as well as increased effluent from septic systems around their heavily developed shoreline has increased nutrient loading to the lakes. Maintaining the quality of the lakes to sustain the tourist-based economy of the towns and the area was a concern raised by the Minocqua/Kawaguesaga Lakes Protection Association. Following several small studies, a detailed study during 2006 and 2007 was done by the U.S. Geological Survey, in cooperation with the Minocqua/Kawaguesaga Lakes Protection Association through the Town of Minocqua to describe the hydrology and water quality of the lakes, quantify the sources of phosphorus including those associated with urban development and to better understand the present and future effects of phosphorus loading on the water quality of the lakes. The water quality of Minocqua and Kawaguesaga Lakes appears to have improved since 1963, when a new sewage-treatment plant was constructed and its discharge was bypassed around the lakes, resulting in a decrease in phosphorus loading to the lakes. Since the mid-1980s, the water quality of the lakes has changed little in response to fluctuations in phosphorus loading from the watershed. From 1986 to 2009, summer average concentrations of near-surface total phosphorus in the main East Basin of Minocqua Lake fluctuated from 0.009 mg/L to 0.027 mg/L but generally remained less than 0.022 mg/L, indicating that the lake is mesotrophic. Phosphorus concentrations from 1988 through 1996, however, were lower than the long-term average, possibly the result of an extended drought in the area. Water-quality data for Kawaguesaga Lake had a similar pattern to that of Minocqua Lake. Summer average chlorophyll a concentrations and Secchi depths also indicate that the lakes generally are mesotrophic but occasionally borderline eutrophic, with no long-term trends. During the study, major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lakes for monitoring years (MY) 2006 and 2007. During these years, the Minocqua Thoroughfare contributed about 38 percent of the total inflow to the lakes, and Tomahawk Thoroughfare contributed 34 percent; near-lake inflow, precipitation, and groundwater contributed about 1, 16, and 11 percent of the total inflow, respectively. Water leaves the lakes primarily through the Tomahawk River outlet (83 percent) or by evaporation (14 percent), with minor outflow to groundwater. Total input of phosphorus to both lakes was about 3,440 pounds in MY 2006 and 2,200 pounds in MY 2007. The largest sources of phosphorus entering the lakes were the Minocqua and Tomahawk Thoroughfares, which delivered about 39 and 26 percent of the total, respectively. The near-lake drainage area, containing most of the urban and residential developments, disproportionately accounted for about 12 percent of the total phosphorus input but only about 1 percent of the total water input (estimated with WinSLAMM). The next largest contributions were from septic systems and precipitation, each contributing about 10 percent, whereas groundwater delivered about 4 percent of the total phosphorus input. Empirical lake water-quality models within BATHTUB were used to simulate the response of Minocqua and Kawaguesaga Lakes to 19 phosphorus-loading scenarios. These scenarios included the current base years (2006?07) for which lake water quality and loading were known, nine general increases or decreases in phosphorus loading from controllable external sources (inputs from the tributa
Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model
Granato, Gregory; Jones, Susan Cheung
2017-01-01
The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.
Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee.
Lee, Stephen J; Aadalen, Kirk J; Malaviya, Prasanna; Lorenz, Eric P; Hayden, Jennifer K; Farr, Jack; Kang, Richard W; Cole, Brian J
2006-08-01
There is no consensus regarding the extent of meniscectomy leading to deleterious effects on tibiofemoral contact mechanics. The meniscus aids in optimizing tibiofemoral contact mechanics, increasing contact area, and decreasing contact stress. Controlled laboratory study. Twelve fresh-frozen human cadaveric knees each underwent 15 separate testing conditions-5 serial 20-mm posterior medial meniscectomy conditions (intact, 50% radial width, 75% radial width, segmental, and total meniscectomy) at 3 flexion angles (0 degrees , 30 degrees , and 60 degrees )-under an 1800-N axial load. Tekscan sensors were used to measure total force and medial force, contact area, mean contact stress, and peak contact stress. All posterior medial meniscectomy conditions resulted in significantly decreased contact areas and increased mean and peak contact stresses compared with the intact state (P < .05). The changes in contact mechanics after segmental and total posterior medial meniscectomies were not statistically different (P > .05). Incremental changes in contact area and mean contact stress increased as more peripheral portions of the medial meniscus were removed, whereas peak contact stresses exhibited similar incremental changes throughout all meniscectomy conditions. The meniscus is a crucial load-bearing structure, optimizing contact area and minimizing contact stress. Loss of hoop tension (ie, segmental meniscectomy) is equivalent to total meniscectomy in load-bearing terms. The peripheral portion of the medial meniscus provides a greater contribution to increasing contact areas and decreasing mean contact stresses than does the central portion, whereas peak contact stresses increase proportionally to the amount of meniscus removed. Because the degree of meniscectomy leading to clinically significant outcomes is unknown, a prudent strategy is to preserve the greatest amount of meniscus possible.
Empirical comparison of heuristic load distribution in point-to-point multicomputer networks
NASA Technical Reports Server (NTRS)
Grunwald, Dirk C.; Nazief, Bobby A. A.; Reed, Daniel A.
1990-01-01
The study compared several load placement algorithms using instrumented programs and synthetic program models. Salient characteristics of these program traces (total computation time, total number of messages sent, and average message time) span two orders of magnitude. Load distribution algorithms determine the initial placement for processes, a precursor to the more general problem of load redistribution. It is found that desirable workload distribution strategies will place new processes globally, rather than locally, to spread processes rapidly, but that local information should be used to refine global placement.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... withdrawal of nine final Total Maximum Daily Loads (TMDLs) for Chloride, Sulfate, and Total Dissolved Solids... 08040202-006 Bayou de L'Outre.... Chloride, Sulfate, TDS. 08040202-007 Bayou de L'Outre.... Chloride, Sulfate, TDS. 08040202-008 Bayou de L'Outre.... Chloride, Sulfate, TDS. The 2008 Arkansas Clean Water Act...
Brandauer, B; Timmann, D; Häusler, A; Hermsdörfer, J
2010-02-01
Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of movement-induced torques. To study the effects of disturbed torque control on feedforward grip-force control, two self-generated load conditions with different demands on torque control-one with movement-induced and the other with isometrically generated load changes-were directly compared in patients with cerebellar degeneration. Furthermore the cerebellum is thought to be more involved in grip-force adjustment to self-generated loads than to externally generated loads. Consequently, an additional condition with externally generated loads was introduced to further test this hypothesis. Analysis of 23 patients with degenerative cerebellar damage revealed clear impairments in predictive feedforward mechanisms in the control of both self-generated load types. Besides feedforward control, the cerebellar damage also affected more reactive responses when the externally generated load destabilized the grip, although this impairment may vary with the type of load as suggested by control experiments. The present findings provide further support that the cerebellum plays a major role in predictive control mechanisms. However, this impact of the cerebellum does not strongly depend on the nature of the load and the specific internal forward model. Contributions to reactive (grip force) control are not negligible, but seem to be dependent on the physical characteristics of an externally generated load.
Report #2007-P-00036, September 19, 2007. EPA does not have comprehensive information on the outcomes of the Total Maximum Daily Load (TMDL) program nationwide, nor national data on TMDL implementation activities.
Use of herd information for predicting Salmonella status in pig herds.
Baptista, F M; Alban, L; Nielsen, L R; Domingos, I; Pomba, C; Almeida, V
2010-11-01
Salmonella surveillance-and-control programs in pigs are highly resource demanding, so alternative cost-effective approaches are desirable. The aim of this study was to develop and evaluate a tool for predicting the Salmonella test status in pig herds based on herd information collected from 108 industrial farrow-to-finish pig herds in Portugal. A questionnaire including known risk factors for Salmonella was used. A factor analysis model was developed to identify relevant factors that were then tested for association with Salmonella status. Three factors were identified and labelled: general biosecurity (factor 1), herd size (factor 2) and sanitary gap implementation (factor 3). Based on the loadings in factor 1 and factor 3, herds were classified according to their biosecurity practices. In total, 59% of the herds had a good level of biosecurity (interpreted as a loading below zero in factor 1) and 37% of the farms had good biosecurity and implemented sanitary gap (loading below zero in factor 1 and loading above zero in factor 3). This implied that they, among other things, implemented preventive measures for visitors and workers entering the herd, controlled biological vectors, had hygiene procedures in place, water quality assessment, and sanitary gap in the fattening and growing sections. In total, 50 herds were tested for Salmonella. Logistic regression analysis showed that factor 1 was significantly associated with Salmonella test status (P = 0.04). Herds with poor biosecurity had a higher probability of testing Salmonella positive compared with herds with good biosecurity. This study shows the potential for using herd information to classify herds according to their Salmonella status in the absence of good testing options. The method might be used as a potentially cost-effective tool for future development of risk-based approaches to surveillance, targeting interventions to high-risk herds or differentiating sampling strategies in herds with different levels of infection. © 2010 Blackwell Verlag GmbH.
A 400-kWe high-efficiency steam turbine for industrial cogeneration
NASA Technical Reports Server (NTRS)
Leibowitz, H. M.
1982-01-01
An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.
Belval, D.L.; Campbell, J.P.; Woodside, M.D.
1994-01-01
This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality-- Division of Intergovernmental Coordination to monitor and estimate loads of selected nutrients and suspended solids discharged to Chesapeake Bay from two major tributaries in Virginia. From July 1988 through June 1990, monitoring consisted of collecting depth-integrated, cross-sectional samples from the James and Rappahannock Rivers during storm- flow conditions and at scheduled intervals. Water- quality constituents that were monitored included total suspended solids (residue, total at 105 degrees Celsius), dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen (ammonia plus organic), total nitrogen, total phosphorus, dissolved orthopohosphorus, total organic carbon, and dissolved silica. Daily mean load estimates of each constituent were computed by month, using a seven-parameter log-linear-regression model that uses variables of time, discharge, and seasonality. Water-quality data and constituent- load estimates are included in the report in tabular and graphic form. The data and load estimates provided in this report will be used to calibrate the computer modeling efforts of the Chesapeake Bay region, evaluate the water quality of the Bay and the major effects on the water quality, and assess the results of best-management practices in Virginia.
Apollo experience report: Command and service module environmental control system
NASA Technical Reports Server (NTRS)
Samonski, F. H., Jr.; Tucker, E. M.
1972-01-01
A comprehensive review is presented of the design philosophy of the Apollo environmental control system together with the development history of the total system and of selected components within the system. In particular, discussions are presented relative to the development history and to the problems associated with the equipment cooling coldplates, the evaporator and its electronic control system, and the space radiator system used for rejection of the spacecraft thermal loads. Apollo flight experience and operational difficulties associated with the spacecraft water system and the waste management system are discussed in detail to provide definition of the problem and the corrective action taken when applicable.
Citraturic response to oral citric acid load
NASA Technical Reports Server (NTRS)
Sakhaee, K.; Alpern, R.; Poindexter, J.; Pak, C. Y.
1992-01-01
It is possible that some orally administered citrate may appear in urine by escaping oxidation in vivo. To determine whether this mechanism contributes to the citraturic response to potassium citrate, we measured serum and urinary citrate for 4 hours after a single oral load of citric acid (40 mEq.) in 6 normal subjects. Since citric acid does not alter acid-base balance, the effect of absorbed citrate could be isolated from that of alkali load. Serum citrate concentration increased significantly (p less than 0.05) 30 minutes after a single oral dose of citric acid and remained significantly elevated for 3 hours after citric acid load. Commensurate with this change, urinary citrate excretion peaked at 2 hours and gradually decreased during the next 2 hours after citric acid load. In contrast, serum and urinary citrate remained unaltered following the control load (no drug). Differences of the citratemic and citraturic effects between phases were significant (p less than 0.05) at 2 and 3 hours. Urinary pH, carbon dioxide pressure, bicarbonate, total carbon dioxide and ammonium did not change at any time after citric acid load, and did not differ between the 2 phases. No significant difference was noted in serum electrolytes, arterialized venous pH and carbon dioxide pressure at any time after citric acid load and between the 2 phases. Thus, the citraturic and citratemic effects of oral citric acid are largely accountable by provision of absorbed citrate, which has escaped in vivo degradation.
Smart Energy Management of Multiple Full Cell Powered Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOhammad S. Alam
2007-04-23
In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. Themore » goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.« less
Evaluation of nutrient retention in vegetated filter strips using the SWAT model.
Elçi, Alper
2017-11-01
Nutrient fluxes in stream basins need to be controlled to achieve good water quality status. In stream basins with intensive agricultural activities, nutrients predominantly come from diffuse sources. Therefore, best management practices (BMPs) are increasingly implemented to reduce nutrient input to streams. The objective of this study is to evaluate the impact of vegetated filter strip (VFS) application as an agricultural BMP. For this purpose, SWAT is chosen, a semi-distributed water quality assessment model that works at the watershed scale, and applied on the Nif stream basin, a small-sized basin in Western Turkey. The model is calibrated with an automated procedure against measured monthly discharge data. Nutrient loads for each sub-basin are estimated considering basin-wide data on chemical fertilizer and manure usage, population data for septic tank effluents and information about the land cover. Nutrient loads for 19 sub-basins are predicted on an annual basis. Average total nitrogen and total phosphorus loads are estimated as 47.85 t/yr and 13.36 t/yr for the entire basin. Results show that VFS application in one sub-basin offers limited retention of nutrients and that a selection of 20-m filter width is most effective from a cost-benefit perspective.
Jung, Kwang-Wook; Yoon, Choon-G; Jang, Jae-Ho; Kong, Dong-Soo
2008-01-01
Effective watershed management often demands qualitative and quantitative predictions of the effect of future management activities as arguments for policy makers and administration. The BASINS geographic information system was developed to compute total maximum daily loads, which are helpful to establish hydrological process and water quality modeling system. In this paper the BASINS toolkit HSPF model is applied in 20,271 km(2) large watershed of the Han River Basin is used for applicability of HSPF and BMPs scenarios. For proper evaluation of watershed and stream water quality, comprehensive estimation methods are necessary to assess large amounts of point source and nonpoint-source (NPS) pollution based on the total watershed area. In this study, The Hydrological Simulation Program-FORTRAN (HSPF) was estimated to simulate watershed pollutant loads containing dam operation and applied BMPs scenarios for control NPS pollution. The 8-day monitoring data (about three years) were used in the calibration and verification processes. Model performance was in the range of "very good" and "good" based on percent difference. The water-quality simulation results were encouraging for this large sizable watershed with dam operation practice and mixed land uses; HSPF proved adequate, and its application is recommended to simulate watershed processes and BMPs evaluation. IWA Publishing 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Science Applications, Inc., has designed a photovoltaic power system for the Oklahoma Center for Science and Arts in Oklahoma City. The system, with a basic rating of 250 kW, is enhanced to a summer peak output of 350 kW through the use of augmentation glass mirror reflectors which are arranged to maximize summer output and to match the summer output to the summer load. The baseline system consists of 3780 photovoltaic collector modules, utilizing polycrystalline silicon cells, and companion mirror reflectors arranged in modular fashion on the roof of the Center. Total system output is more than 450 MWh, ofmore » which over 420 MWh is used on-site to displace about 65 percent of the current on site load, or about 43 percent of the projected (1981) load. Another 30 MWh is returned to the utility under a buyback agreement. The total amount of energy displaced per year is approximately 850 barrels of oil, or Btu equivalent. The entire system is fully automatic, and is designed for safety and ease in maintenance and repair. It is equipped with the appropriate controls, a power monitoring system, a weather station, and other sensors for acquisition of experimental data.« less
Darter, Benjamin J; Sinitski, Kirill; Wilken, Jason M
2016-10-01
Elevated vacuum suspension systems use a pump to draw air from the socket with the intent of reducing bone-socket motion as compared to passive suction systems. However, it remains unknown if elevated vacuum suspension systems decrease limb displacement uniformly during transitions from unloaded to full-body-weight support. To compare limb-socket motion between elevated vacuum and passive suction suspension sockets using a controlled loading paradigm. Comparative analysis. Persons with transtibial amputation were assessed while wearing either an elevated vacuum or passive suction suspension socket. Digital video fluoroscopy was used to measure axial bone-socket motion while the limb was loaded in 20% body-weight increments. An analysis of variance model was used to compare between suspension types. Total axial displacement (0%-100% body weight) was significantly lower using the elevated vacuum (vacuum: 1.3 cm, passive suction: 1.8 cm; p < 0.0001). Total displacement decreased primarily due to decreased motion during initial loading (0%-20%; p < 0.0001). Other body-weight intervals were not significantly different between systems. Elevated vacuum suspension reduced axial limb-socket motion by maintaining position of the limb within the socket during unloaded conditions. Elevated vacuum provided no meaningful improvement in limb-socket motion past initial loading. Excessive bone-socket motion contributes to poor residual limb health. Our results suggest elevated vacuum suspensions can reduce this axial displacement. Visual assessment of the images suggests that this occurs through the reduction or elimination of the air pocket between the liner and socket wall while the limb is unloaded. © The International Society for Prosthetics and Orthotics 2015.
Identification of pollutant sources in a rapidly developing urban river catchment in China
NASA Astrophysics Data System (ADS)
Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi
2016-04-01
Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.
Proitsi, Petroula; Lupton, Michelle K.; Velayudhan, Latha; Newhouse, Stephen; Fogh, Isabella; Tsolaki, Magda; Daniilidou, Makrina; Pritchard, Megan; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Vellas, Bruno; Williams, Julie; Stewart, Robert; Sham, Pak; Lovestone, Simon; Powell, John F.
2014-01-01
Background Although altered lipid metabolism has been extensively implicated in the pathogenesis of Alzheimer disease (AD) through cell biological, epidemiological, and genetic studies, the molecular mechanisms linking cholesterol and AD pathology are still not well understood and contradictory results have been reported. We have used a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset AD (LOAD) and test the hypothesis that genetically raised lipid levels increase the risk of LOAD. Methods and Findings We included 3,914 patients with LOAD, 1,675 older individuals without LOAD, and 4,989 individuals from the general population from six genome wide studies drawn from a white population (total n = 10,578). We constructed weighted genotype risk scores (GRSs) for four blood lipid phenotypes (high-density lipoprotein cholesterol [HDL-c], low-density lipoprotein cholesterol [LDL-c], triglycerides, and total cholesterol) using well-established SNPs in 157 loci for blood lipids reported by Willer and colleagues (2013). Both full GRSs using all SNPs associated with each trait at p<5×10−8 and trait specific scores using SNPs associated exclusively with each trait at p<5×10−8 were developed. We used logistic regression to investigate whether the GRSs were associated with LOAD in each study and results were combined together by meta-analysis. We found no association between any of the full GRSs and LOAD (meta-analysis results: odds ratio [OR] = 1.005, 95% CI 0.82–1.24, p = 0.962 per 1 unit increase in HDL-c; OR = 0.901, 95% CI 0.65–1.25, p = 0.530 per 1 unit increase in LDL-c; OR = 1.104, 95% CI 0.89–1.37, p = 0.362 per 1 unit increase in triglycerides; and OR = 0.954, 95% CI 0.76–1.21, p = 0.688 per 1 unit increase in total cholesterol). Results for the trait specific scores were similar; however, the trait specific scores explained much smaller phenotypic variance. Conclusions Genetic predisposition to increased blood cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk. The observed epidemiological associations between abnormal lipid levels and LOAD risk could therefore be attributed to the result of biological pleiotropy or could be secondary to LOAD. Limitations of this study include the small proportion of lipid variance explained by the GRS, biases in case-control ascertainment, and the limitations implicit to Mendelian randomization studies. Future studies should focus on larger LOAD datasets with longitudinal sampled peripheral lipid measures and other markers of lipid metabolism, which have been shown to be altered in LOAD. Please see later in the article for the Editors' Summary PMID:25226301
Strategies for Optimizing Strength, Power, and Muscle Hypertrophy in Women.
1997-09-01
the injury risks and inefficiencies of other methods for the more sophisticated assessment of human muscular strength and power. To provide...an environment of total safety. Limiting catches prevent injury through falling or loss of control of the loaded bar and a specially designed...J., Rodman, K.W., and Sebolt, D.R. The effect of endurance running on training adaptations in women participating in a weightlifting program. J
Prosperi, Mattia C F; Mackie, Nicola; Di Giambenedetto, Simona; Zazzi, Maurizio; Camacho, Ricardo; Fanti, Iuri; Torti, Carlo; Sönnerborg, Anders; Kaiser, Rolf; Codoñer, Francisco M; Van Laethem, Kristel; Bansi, Loveleen; van de Vijver, David A M C; Geretti, Anna Maria; De Luca, Andrea
2011-08-01
Guidelines indicate a plasma HIV-1 RNA load of 500-1000 copies/mL as the minimal threshold for antiretroviral drug resistance testing. Resistance testing at lower viral load levels may be useful to guide timely treatment switches, although data on the clinical utility of this remain limited. We report here the influence of viral load levels on the probability of detecting drug resistance mutations (DRMs) and other mutations by routine genotypic testing in a large multicentre European cohort, with a focus on tests performed at a viral load <1000 copies/mL. A total of 16 511 HIV-1 reverse transcriptase and protease sequences from 11 492 treatment-experienced patients were identified, and linked to clinical data on viral load, CD4 T cell counts and antiretroviral treatment history. Test results from 3162 treatment-naive patients served as controls. Multivariable analysis was employed to identify predictors of reverse transcriptase and protease DRMs. Overall, 2500/16 511 (15.14%) test results were obtained at a viral load <1000 copies/mL. Individuals with viral load levels of 1000-10000 copies/mL showed the highest probability of drug resistance to any drug class. Independently from other measurable confounders, treatment-experienced patients showed a trend for DRMs and other mutations to decrease at viral load levels <500 copies/mL. Genotypic testing at low viral load may identify emerging antiretroviral drug resistance at an early stage, and thus might be successfully employed in guiding prompt management strategies that may reduce the accumulation of resistance and cross-resistance, viral adaptive changes, and larger viral load increases.
Watershed safety and quality control by safety threshold method
NASA Astrophysics Data System (ADS)
Da-Wei Tsai, David; Mengjung Chou, Caroline; Ramaraj, Rameshprabu; Liu, Wen-Cheng; Honglay Chen, Paris
2014-05-01
Taiwan was warned as one of the most dangerous countries by IPCC and the World Bank. In such an exceptional and perilous island, we would like to launch the strategic research of land-use management on the catastrophe prevention and environmental protection. This study used the watershed management by "Safety Threshold Method" to restore and to prevent the disasters and pollution on island. For the deluge prevention, this study applied the restoration strategy to reduce total runoff which was equilibrium to 59.4% of the infiltration each year. For the sediment management, safety threshold management could reduce the sediment below the equilibrium of the natural sediment cycle. In the water quality issues, the best strategies exhibited the significant total load reductions of 10% in carbon (BOD5), 15% in nitrogen (nitrate) and 9% in phosphorus (TP). We found out the water quality could meet the BOD target by the 50% peak reduction with management. All the simulations demonstrated the safety threshold method was helpful to control the loadings within the safe range of disasters and environmental quality. Moreover, from the historical data of whole island, the past deforestation policy and the mistake economic projects were the prime culprits. Consequently, this study showed a practical method to manage both the disasters and pollution in a watershed scale by the land-use management.
Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid.
Mali, Kailas K; Dhawale, Shashikant C; Dias, Remeth J
2017-12-01
The objective of this study was to synthesize and characterize citric acid crosslinked carboxymethyl tamarind gum (CMTG) hydrogels films. The hydrogel films were characterized by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, solid state 13 C-nuclear magnetic resonance ( 13 C NMR) spectroscopy and differential scanning calorimeter (DSC). The prepared hydrogel films were evaluated for the carboxyl content and swelling ratio. The model drug moxifloxacin hydrochloride was loaded into hydrogels films and drug release was studied at pH 7.4. The hemolysis assay was used to study the biocompatibility of hydrogel films. The results of ATR-FTIR, solid state 13 C NMR and DSC confirmed the formation of ester crosslinks between citric acid and CMTG. The total carboxyl content of hydrogel film was found to be decreased when amount of CMTG was increased. The swelling of hydrogel film was found to be decreased with increase in curing temperature and time. CMTG hydrogel films showed high drug loading with non-Fickian release mechanism suggesting controlled release of drug. The hydrogel films were found to be biocompatible. It can be concluded that the citric acid can be used for the preparation of CMTG hydrogel films. Further, CMTG hydrogel film can be used potentially for controlled release of drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Xing; Meng, Xiaodong; Tsui, Chi-Ying; Ki, Wing-Hung
2015-12-01
Wireless power transfer using reconfigurable resonant regulating (R(3)) rectification suffers from limited range in accommodating varying coupling and loading conditions. A primary-assisted regulation principle is proposed to mitigate these limitations, of which the amplitude of the rectifier input voltage on the secondary side is regulated by accordingly adjusting the voltage amplitude Veq on the primary side. A novel current-sensing method and calibration scheme track Veq on the primary side. A ramp generator simultaneously provides three clock signals for different modules. Both the primary equalizer and the R(3) rectifier are implemented as custom integrated circuits fabricated in a 0.35 μm CMOS process, with the global control implemented in FPGA. Measurements show that with the primary equalizer, the workable coupling and loading ranges are extended by 250% at 120 mW load and 300% at 1.2 cm coil distance compared to the same system without the primary equalizer. A maximum rectifier efficiency of 92.5% and a total system efficiency of 62.4% are demonstrated.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1987-01-01
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1984-06-05
A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Determination of Orbiter and Carrier Aerodynamic Coefficients from Load Cell Measurements
NASA Technical Reports Server (NTRS)
Glenn, G. M.
1976-01-01
A method of determining orbiter and carrier total aerodynamic coefficients from load cell measurements is required to support the inert and the captive active flights of the ALT program. A set of equations expressing the orbiter and carrier total aerodynamic coefficients in terms of the load cell measurements, the sensed dynamics of the Boeing 747 (carrier) aircraft, and the relative geometry of the orbiter/carrier is derived.
The effects of running cadence manipulation on plantar loading in healthy runners.
Wellenkotter, J; Kernozek, T W; Meardon, S; Suchomel, T
2014-08-01
Our purpose was to evaluate effects of cadence manipulation on plantar loading during running. Participants (n=38) ran on a treadmill at their preferred speed in 3 conditions: preferred, 5% increased, and 5% decreased while measured using in-shoe sensors. Data (contact time [CT], peak force [PF], force time integral [FTI], pressure time integral [PTI] and peak pressure [PP]) were recorded for 30 right footfalls. Multivariate analysis was performed to detect differences in loading between cadences in the total foot and 4 plantar regions. Differences in plantar loading occurred between cadence conditions. Total foot CT and PF were lower with a faster cadence, but no total foot PP differences were observed. Faster cadence reduced CT, pressure and force variables in both the heel and metatarsal regions. Increasing cadence did not elevate metatarsal loads; rather, total foot and all regions were reduced when healthy runners increased their cadence. If a 5% increase in cadence from preferred were maintained over each mile run the impulse at the heel would be reduced by an estimated 565 body weights*s (BW*s) and the metatarsals 140-170 BW*s per mile run despite the increased steps taken. Increasing cadence may benefit overuse injuries associated with elevated plantar loading. © Georg Thieme Verlag KG Stuttgart · New York.
Effect of DEM mesh size on AnnAGNPS simulation and slope correction.
Wang, Xiaoyan; Lin, Q
2011-08-01
The objective of this paper is to study the impact of the mesh size of the digital elevation model (DEM) on terrain attributes within an Annualized AGricultural NonPoint Source pollution (AnnAGNPS) Model simulation at watershed scale and provide a correction of slope gradient for low resolution DEMs. The effect of different grid sizes of DEMs on terrain attributes was examined by comparing eight DEMs (30, 40, 50, 60, 70, 80, 90, and 100 m). The accuracy of the AnnAGNPS stimulation on runoff, sediments, and nutrient loads is evaluated. The results are as follows: (1) Rnoff does not vary much with decrease of DEM resolution whereas soil erosion and total nitrogen (TN) load change prominently. There is little effect on runoff simulation of AnnAGNPS modeling by the amended slope using an adjusted 50 m DEM. (2) A decrease of sediment yield and TN load is observed with an increase of DEM mesh size from 30 to 60 m; a slight decrease of sediment and TN load with the DEM mesh size bigger than 60 m. There is similar trend for total phosphorus (TP) variation, but with less range of variation, the simulation of sediment, TN, and TP increase, in which sediment increase up to 1.75 times compared to the model using unadjusted 50 m DEM. In all, the amended simulation still has a large difference relative to the results using 30 m DEM. AnnAGNPS is less reliable for sediment loading prediction in a small hilly watershed. (3) Resolution of DEM has significant impact on slope gradient. The average, minimum, maximum of slope from the various DEMs reduced obviously with the decrease of DEM precision. For the grade of 0∼15°, the slopes at lower resolution DEM are generally bigger than those at higher resolution DEM. But for the grade bigger than 15°, the slopes at lower resolution DEM are generally smaller than those at higher resolution DEM. So it is necessary to adjust the slope with a fitting equation. A cubic model is used for correction of slope gradient from lower resolution to that from higher resolution. Results for Dage watershed showed that fine meshes are desired to avoid large underestimates of sediment and total nitrogen loads and moderate underestimates of total phosphorus loads even with the slopes for the 50 m DEM adjusted to be more similar to the slopes from the 30 m DEM. Decreasing the mesh size beyond this threshold does not substantially affect the computed runoff flux but generated prediction errors for nitrogen and sediment yields. So the appropriate DEM will control error and make simulation at acceptable level.
Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake
Craft, James A.; Stanford, Jack A.
2015-01-01
We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass. PMID:25802810
Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake.
Ellis, Bonnie K; Craft, James A; Stanford, Jack A
2015-01-01
We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass.
Loads of nitrate, phosphorus, and total suspended solids from Indiana watersheds
Bunch, Aubrey R.
2016-01-01
Transport of excess nutrients and total suspended solids (TSS) such as sediment by freshwater systems has led to degradation of aquatic ecosystems around the world. Nutrient and TSS loads from Midwestern states to the Mississippi River are a major contributor to the Gulf of Mexico Hypoxic Zone, an area of very low dissolved oxygen concentration in the Gulf of Mexico. To better understand Indiana’s contribution of nutrients and TSS to the Mississippi River, annual loads of nitrate plus nitrite as nitrogen, total phosphorus, and TSS were calculated for nine selected watersheds in Indiana using the load estimation model, S-LOADEST. Discrete water-quality samples collected monthly by the Indiana Department of Environmental Management’s Fixed Stations Monitoring Program from 2000–2010 and concurrent discharge data from the U. S. Geological Survey streamflow gages were used to create load models. Annual nutrient and TSS loads varied across Indiana by watershed and hydrologic condition. Understanding the loads from large river sites in Indiana is important for assessing contributions of nutrients and TSS to the Mississippi River Basin and in determining the effectiveness of best management practices in the state. Additionally, evaluation of loads from smaller upstream watersheds is important to characterize improvements at the local level and to identify priorities for reduction.
Holt, Jacquelyn A; Macias, Brandon R; Schneider, Suzanne M; Watenpaugh, Donald E; Lee, Stuart M C; Chang, Douglas G; Hargens, Alan R
2016-05-15
Microgravity-induced lumbar paraspinal muscle deconditioning may contribute to back pain commonly experienced by astronauts and may increase the risk of postflight injury. We hypothesized that a combined resistive and aerobic exercise countermeasure protocol that included spinal loading would mitigate lumbar paraspinal muscle deconditioning during 60 days of bed rest in women. Sixteen women underwent 60-day, 6° head-down-tilt bed rest (BR) and were randomized into control and exercise groups. During bed rest the control group performed no exercise. The exercise group performed supine treadmill exercise within lower body negative pressure (LBNP) for 3-4 days/wk and flywheel resistive exercise for 2-3 days/wk. Paraspinal muscle cross-sectional area (CSA) was measured using a lumbar spine MRI sequence before and after BR. In addition, isokinetic spinal flexion and extension strengths were measured before and after BR. Data are presented as means ± SD. Total lumbar paraspinal muscle CSA decreased significantly more in controls (10.9 ± 3.4%) than in exercisers (4.3 ± 3.4%; P < 0.05). The erector spinae was the primary contributor (76%) to total lumbar paraspinal muscle loss. Moreover, exercise attenuated isokinetic spinal extension loss (-4.3 ± 4.5%), compared with controls (-16.6 ± 11.2%; P < 0.05). In conclusion, LBNP treadmill and flywheel resistive exercises during simulated microgravity mitigate decrements in lumbar paraspinal muscle structure and spine function. Therefore spaceflight exercise countermeasures that attempt to reproduce spinal loads experienced on Earth may mitigate spinal deconditioning during long-duration space travel.
2012-01-01
Background This study aimed to examine the effects of intermittent and continuous swimming training on muscle protein metabolism in neonatal alloxan-administered rats. Methods Wistar rats were used and divided into six groups: sedentary alloxan (SA), sedentary control (SC), continuous trained alloxan (CA), intermittent trained alloxan (IA), continuous trained control (CC) and intermittent trained control (IC). Alloxan (250 mg/kg body weight) was injected into newborn rats at 6 days of age. The continuous training protocol consisted of 12 weeks of swimming training in individual cylinder tanks while supporting a load that was 5% of body weight; uninterrupted swimming for 1 h/day, five days a week. The intermittent training protocol consisted of 12 weeks of swimming training in individual cylinder tanks while supporting a load that was 15% of body weight; 30 s of activity interrupted by 30 s of rest for a total of 20 min/day, five days a week. Results At 28 days, the alloxan animals displayed higher glycemia after glucose overload than the control animals. No differences in insulinemia among the groups were detected. At 120 days, no differences in serum albumin and total protein among the groups were observed. Compared to the other groups, DNA concentrations were higher in the alloxan animals that were subjected to continuous training, whereas the DNA/protein ratio was higher in the alloxan animals that were subjected to intermittent training. Conclusion It was concluded that continuous and intermittent training sessions were effective in altering muscle growth by hyperplasia and hypertrophy, respectively, in alloxan-administered animals. PMID:22309804
Ficklscherer, Andreas; Wegener, Bernd; Niethammer, Thomas; Pietschmann, Matthias F; Müller, Peter E; Jansson, Volkmar; Trouillier, Hans-Heinrich
2013-03-01
Recent literature has shown a persistently high rate of aseptic loosening of the tibial component in total ankle prostheses. We analyzed the interface between the tibial bone and tibial component with a thermoelastic stress analysis to demonstrate load transmission onto the distal tibia. In this regard, we used two established ankle prostheses, which were implanted in two human cadaveric and in two third-generation composite tibia bones (Sawbones®, Sweden). Subsequently, the bones were attached to a hydropulser and a sinusoidal load of 700 N was applied. Both prostheses had an inhomogeneous load transmission onto the distal tibia. Instead of distributing load equally to the subarticular bone, forces were focused around the bolting stem, accumulating as stress maxima with forces up to 90 MPa. Furthermore, we were able to demonstrate load transmission into the metaphysis of the bone. As demonstrated in this study, anchoring systems with stems used in all established total ankle prostheses lead to an inhomogeneous load transmission onto the distal tibia, and furthermore, to a distribution of load into the weaker metaphyseal bone. For these reasons, we favor a prosthetic design with minimal bone resection and without any stem or stem-like anchoring system, which facilitates a homogeneous load transmission onto the distal tibia. Thermoelastic stress analysis proved to be a fast and easy-to-perform method to visualize load transmission.
Algaddafi, Ali; Altuwayjiri, Saud A; Ahmed, Oday A; Daho, Ibrahim
2017-01-01
Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances.
Altuwayjiri, Saud A.; Ahmed, Oday A.; Daho, Ibrahim
2017-01-01
Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances. PMID:28540362
Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.
He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan
2009-01-01
Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.
NASA Astrophysics Data System (ADS)
Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.
2005-12-01
The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.
Nondimensional parameter for conformal grinding: combining machine and process parameters
NASA Astrophysics Data System (ADS)
Funkenbusch, Paul D.; Takahashi, Toshio; Gracewski, Sheryl M.; Ruckman, Jeffrey L.
1999-11-01
Conformal grinding of optical materials with CNC (Computer Numerical Control) machining equipment can be used to achieve precise control over complex part configurations. However complications can arise due to the need to fabricate complex geometrical shapes at reasonable production rates. For example high machine stiffness is essential, but the need to grind 'inside' small or highly concave surfaces may require use of tooling with less than ideal stiffness characteristics. If grinding generates loads sufficient for significant tool deflection, the programmed removal depth will not be achieved. Moreover since grinding load is a function of the volumetric removal rate the amount of load deflection can vary with location on the part, potentially producing complex figure errors. In addition to machine/tool stiffness and removal rate, load generation is a function of the process parameters. For example by reducing the feed rate of the tool into the part, both the load and resultant deflection/removal error can be decreased. However this must be balanced against the need for part through put. In this paper a simple model which permits combination of machine stiffness and process parameters into a single non-dimensional parameter is adapted for a conformal grinding geometry. Errors in removal can be minimized by maintaining this parameter above a critical value. Moreover, since the value of this parameter depends on the local part geometry, it can be used to optimize process settings during grinding. For example it may be used to guide adjustment of the feed rate as a function of location on the part to eliminate figure errors while minimizing the total grinding time required.
Kaczka, David W; Lutchen, Kenneth R
2004-04-01
The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.
14 CFR 27.681 - Limit load static tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.681 Limit load... which— (1) The direction of the test loads produces the most severe loading in the control system; and... requirements for control system joints subject to angular motion. ...
Choi, Seong Wook; Nam, Kyoung Won; Lim, Ki Moo; Shim, Eun Bo; Won, Yong Soon; Woo, Heung Myong; Kwak, Ho Hyun; Noh, Mi Ryoung; Kim, In Young; Park, Sung Min
2014-04-03
When using a pulsatile left ventricular assist device (LVAD), it is important to reduce the cardiac load variations of the native heart because severe cardiac load variations can induce ventricular arrhythmia. In this study, we investigated the effect of counter-pulsation control of the LVAD on the reduction of cardiac load variation. A ventricular electrocardiogram-based counter-pulsation control algorithm for a LVAD was implemented, and the effects of counter-pulsation control of the LVAD on the reduction of the working load variations of the left ventricle were determined in three animal experiments. Deviations of the working load of the left ventricle were reduced by 51.3%, 67.9%, and 71.5% in each case, and the beat-to-beat variation rates in the working load were reduced by 84.8%, 82.7%, and 88.2% in each ease after counter-pulsation control. There were 3 to 12 premature ventricle contractions (PVCs) before counter-pulsation control, but no PVCs were observed during counter-pulsation control. Counter-pulsation control of the pulsatile LVAD can reduce severe cardiac load variations, but the average working load is not markedly affected by application of counter-pulsation control because it is also influenced by temporary cardiac outflow variations. We believe that counter-pulsation control of the LVAD can improve the long-term safety of heart failure patients equipped with LVADs.
Langland, Michael; Blomquist, Joel; Moyer, Douglas; Hyer, Kenneth
2012-01-01
The U.S. Geological Survey (USGS) updates information on loads of, and trends in, nutrients and sediment annually to help the Chesapeake Bay Program (CBP) investigators assess progress toward improving water-quality conditions in the Chesapeake Bay and its watershed. CBP scientists and managers have worked since 1983 to improve water quality in the bay. In 2010, the U.S. Environmental Protection Agency (USEPA) established a Total Maximum Daily Load (TMDL) for the Chesapeake Bay. The TMDL specifies nutrient and sediment load allocations that need to be achieved in the watershed to improve dissolved oxygen, water-clarity, and chlorophyll conditions in the bay. The USEPA, USGS, and state and local jurisdictions in the watershed operate a CBP nontidal water-quality monitoring network and associated database that are used to update load and trend information to help assess progress toward reducing nutrient and sediment inputs to the bay. Data collected from the CBP nontidal network were used to estimate loads and trends for two time periods: a long-term period (1985-2010) at 31 "primary" sites (with storm sampling) and a 10-year period (2001-10) at 33 primary sites and 16 "secondary" sites (without storm sampling). In addition, loads at 64 primary sites were estimated for the period 2006 to 2010. Results indicate improving flow-adjusted trends for nitrogen and phosphorus for 1985 to 2010 at most of the sites in the network. For nitrogen, 21 of the 31 sites showed downward (improving) trends, whereas 2 sites showed upward (degrading) trends, and 8 sites showed no trends. The results for phosphorus were similar: 22 sites showed improving trends, 4 sites showed degrading trends, and 5 sites indicated no trends. For sediment, no trend was found at 40 percent of the sites, with 10 sites showing improving trends and 8 sites showing degrading trends. The USGS, working with CBP partners, developed a new water-quality indicator that combines the results of the 10-year trend analysis with results from a greater number of sites (64 primary sites) where loads and yields of total nitrogen and phosphorus and sediment could be calculated. The new indicator shows fewer significant trends for the 10-year time period than for the long-term time period (1985-2010). For 2001-10, total nitrogen trends were downward (improving) at 14 sites and upward (degrading) at 2 sites; no trend was found at 17 sites. For total phosphorus, 12 sites showed improving trends, 4 sites showed degrading trends, and 17 sites showed no trend. For total sediment, most sites (21) did not exhibit a significant trend; 3 sites showed improving trends, and 10 sites showed degrading trends. Few significant trends were seen at the 16 secondary sites: improving trends for total nitrogen at 4 sites, improving trends for total phosphorus at 2 sites, and a degrading trend for sediment at 1 site. Total streamflow to the Chesapeake Bay was 20 percent higher in 2010 than in 2009 and is considered to be within the normal range of flow, whereas annual streamflow at 28 sites was greater in 2010 than in 2009. No trends in daily streamflow were detected at the 31 long-term sites. Combined loads for the farthest downstream nontidal monitoring sites (called "River Input Monitoring sites") increased 33 percent for total nitrogen, 120 percent for total phosphorus, and 330 percent for total sediment from 2009 to 2010. The large increase in phosphorus and sediment loads in 2010 was caused in large part by two large storm events that occurred during the spring in the Potomac River Basin. Yields (load per watershed area) of total nitrogen in the Chesapeake Bay watershed decreased from north to south (New York to Virginia). No spatial patterns were discernible for total phosphorus or sediment.
Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J
2015-06-01
Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating conditions. During specific idle engine operation without EGR and adjusted fueling conditions, brown carbon can be formed in significant amounts, requiring careful management tactics. Control technologies for particulate matter are very effective for light-absorbing carbon, reducing black carbon emissions to near zero for modern engines equipped with a DPF. Efforts to control atmospheric brown carbon need to focus on other sources other than modern diesel engines, such as biomass burning.
Assessment of spill flow emissions on the basis of measured precipitation and waste water data
NASA Astrophysics Data System (ADS)
Hochedlinger, Martin; Gruber, Günter; Kainz, Harald
2005-09-01
Combined sewer overflows (CSOs) are substantial contributors to the total emissions into surface water bodies. The emitted pollution results from dry-weather waste water loads, surface runoff pollution and from the remobilisation of sewer deposits and sewer slime during storm events. One possibility to estimate overflow loads is a calculation with load quantification models. Input data for these models are pollution concentrations, e.g. Total Chemical Oxygen Demand (COD tot), Total Suspended Solids (TSS) or Soluble Chemical Oxygen Demand (COD sol), rainfall series and flow measurements for model calibration and validation. It is important for the result of overflow loads to model with reliable input data, otherwise this inevitably leads to bad results. In this paper the correction of precipitation measurements and the sewer online-measurements are presented to satisfy the load quantification model requirements already described. The main focus is on tipping bucket gauge measurements and their corrections. The results evidence the importance of their corrections due the effects on load quantification modelling and show the difference between corrected and not corrected data of storm events with high rain intensities.
Parametric analysis of parameters for electrical-load forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael
1997-04-01
Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.
Combined wind turbine fatigue and ultimate load reduction by individual blade control
NASA Astrophysics Data System (ADS)
Han, Y.; Leithead, W. E.
2014-06-01
If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.
A digital prediction algorithm for a single-phase boost PFC
NASA Astrophysics Data System (ADS)
Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi
2012-12-01
A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.
NASA Technical Reports Server (NTRS)
Coulbert, C. D.
1978-01-01
A method for predicting the probable course of fire development in an enclosure is presented. This fire modeling approach uses a graphic plot of five fire development constraints, the relative energy release criteria (RERC), to bound the heat release rates in an enclosure as a function of time. The five RERC are flame spread rate, fuel surface area, ventilation, enclosure volume, and total fuel load. They may be calculated versus time based on the specified or empirical conditions describing the specific enclosure, the fuel type and load, and the ventilation. The calculation of these five criteria, using the common basis of energy release rates versus time, provides a unifying framework for the utilization of available experimental data from all phases of fire development. The plot of these criteria reveals the probable fire development envelope and indicates which fire constraint will be controlling during a criteria time period. Examples of RERC application to fire characterization and control and to hazard analysis are presented along with recommendations for the further development of the concept.
An evaluation of methods for estimating decadal stream loads
NASA Astrophysics Data System (ADS)
Lee, Casey J.; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.
2016-11-01
Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen - lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale's ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.
An evaluation of methods for estimating decadal stream loads
Lee, Casey; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.
2016-01-01
Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen – lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale’s ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
.... Some of the initial eighteen piles will be removed and re-driven as part of lateral load and tension tests. A total of eleven piles will be installed to perform lateral load and tension load tests. All... substrate. Additionally, three lateral load and two tension load tests will be performed. The lateral load...
Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.
1994-01-01
A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.
Sung, Yun-Hee; Kim, Chang-Ju; Yu, Byong-Kyu; Kim, Kyeong-Mi
2013-01-01
We investigated whether a hippotherapy simulator has influence on symmetric body weight bearing during gait in patients with stroke. Stroke patients were divided into a control group (n = 10) that received conventional rehabilitation for 60 min/day, 5 times/week for 4 weeks and an experimental group (n = 10) that used a hippotherapy simulator for 15 min/day, 5 times/week for 4 weeks after conventional rehabilitation for 45 min/day. Temporospatial gait assessed using OptoGait and trunk muscles (abdominis and erector spinae on affected side) activity evaluated using surface electromyography during sit-to-stand and gait. Prior to starting the experiment, pre-testing was performed. At the end of the 4-week intervention, we performed post-testing. Activation of the erector spinae in the experimental group was significantly increased compared to that in the control group (p < 0.01), whereas activation of the rectus abdominis decreased during sit-to-stand. Of the gait parameters, load response, single support, total double support, and pre-swing showed significant changes in the experimental group with a hippotherapy simulator compared to control group (p < 0.05). Moreover, activation of the erector spinae and rectus abdominis in gait correlate with changes of gait parameters including load response, single support, total double support, and pre-swing in experimental group. These findings suggest that use of a hippotherapy simulator to patients with stroke can improve asymmetric weight bearing by influencing trunk muscles.
de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente
2008-12-16
Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.
Skylight energy performance and design optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arasteh, D.; Johnson, R.; Selkowitz, S.
1984-02-01
Proper skylight utilization can significantly lower energy requirements and peak electrical loads for space conditioning and lighting in commercial buildings. In this study we systematically explore the energy effects of skylight systems in a prototypical office building and examine the savings from daylighting. The DOE-2.1B energy analysis computer program with its newly incorporated daylighting algorithms was used to generate more than 2000 parametric simulations for seven US climates. The parameters varied include skylight-to-roof ratio, shading coefficient, visible transmittance, skylight well light loss, electric lighting power density, roof heat transfer coefficient, and type of electric lighting control. For specific climates wemore » identify roof/skylight characteristics that minimize total energy or peak electrical load requirements.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... Administrator and any other person. Controlled loading rack, for the purposes of § 63.420, means a loading rack... heat air pollutants to combustion temperatures. Uncontrolled loading rack means a loading rack used to load gasoline cargo tanks that is not a controlled loading rack. Vapor-tight gasoline cargo tank means...
Ockerman, Darwin J.; McNamara, Kenna C.
2003-01-01
The U.S. Geological Survey developed watershed models (Hydrological Simulation Program—FORTRAN) to simulate streamflow and estimate streamflow constituent loads from five basins that compose the San Antonio River watershed in Bexar County, Texas. Rainfall and streamflow data collected during 1997–2001 were used to calibrate and test the model. The model was configured so that runoff from various land uses and discharges from other sources (such as wastewater recycling facilities) could be accounted for to indicate sources of streamflow. Simulated streamflow volumes were used with land-use-specific, water-quality data to compute streamflow loads of selected constituents from the various streamflow sources.Model simulations for 1997–2001 indicate that inflow from the upper Medina River (originating outside Bexar County) represents about 22 percent of total streamflow. Recycled wastewater discharges account for about 20 percent and base flow (ground-water inflow to streams) about 18 percent. Storm runoff from various land uses represents about 33 percent. Estimates of sources of streamflow constituent loads indicate recycled wastewater as the largest source of dissolved solids and nitrate plus nitrite nitrogen (about 38 and 66 percent, respectively, of the total loads) during 1997–2001. Stormwater runoff from urban land produced about 49 percent of the 1997–2001 total suspended solids load. Stormwater runoff from residential and commercial land (about 23 percent of the land area) produced about 70 percent of the total lead streamflow load during 1997–2001.
Yin, Yunxing; Jiang, Sanyuan; Pers, Charlotta; Yang, Xiaoying; Liu, Qun; Yuan, Jin; Yao, Mingxing; He, Yi; Luo, Xingzhang; Zheng, Zheng
2016-01-01
Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands. PMID:26999184
Executive dysfunctions in migraine with and without aura: what is the role of white matter lesions?
Le Pira, Francesco; Reggio, Ester; Quattrocchi, Graziella; Sanfilippo, Cristina; Maci, Tiziana; Cavallaro, Tiziana; Zappia, Mario
2014-01-01
Executive dysfunctions and white matter lesions on magnetic resonance imaging have been reported in migraine. The aim of this study was to determine whether any correlation between these 2 variables exists. Forty-four subjects affected by migraine with or without aura were compared with 16 healthy subjects. A battery of neuropsychological tests assessing executive functions was administered to all subjects. Number and total volume of white matter lesions were assessed in the whole brain and in the frontal lobe. The performances of both groups of migraineurs, with and without aura, were significantly worse when compared with controls on Boston Scanning Test. Moreover, we found lower performances compared with controls respectively on Frontal Assessment Battery in patients with migraine with aura and on Controlled Oral Word Association Test in patients with migraine without aura. Nineteen patients (43.2%) and one control subject (6.2%) had white matter lesions. We did not find any significant correlation between white matter lesions load and neuropsychological performances. On the basis of our results, white matter lesions load on magnetic resonance imaging do not seem to contribute to neuropsychological performances deficit in migraineurs. © 2013 American Headache Society.
TREM2 is associated with increased risk for Alzheimer's disease in African Americans.
Jin, Sheng Chih; Carrasquillo, Minerva M; Benitez, Bruno A; Skorupa, Tara; Carrell, David; Patel, Dwani; Lincoln, Sarah; Krishnan, Siddharth; Kachadoorian, Michaela; Reitz, Christiane; Mayeux, Richard; Wingo, Thomas S; Lah, James J; Levey, Allan I; Murrell, Jill; Hendrie, Hugh; Foroud, Tatiana; Graff-Radford, Neill R; Goate, Alison M; Cruchaga, Carlos; Ertekin-Taner, Nilüfer
2015-04-10
TREM2 encodes for triggering receptor expressed on myeloid cells 2 and has rare, coding variants that associate with risk for late-onset Alzheimer's disease (LOAD) in Caucasians of European and North-American origin. This study evaluated the role of TREM2 in LOAD risk in African-American (AA) subjects. We performed exonic sequencing and validation in two independent cohorts of >800 subjects. We selected six coding variants (p.R47H, p.R62H, p.D87N, p.E151K, p.W191X, and p.L211P) for case-control analyses in a total of 906 LOAD cases vs. 2,487 controls. We identified significant LOAD risk association with p.L211P (p=0.01, OR=1.27, 95%CI=1.05-1.54) and suggestive association with p.W191X (p=0.08, OR=1.35, 95%CI=0.97-1.87). Conditional analysis suggests that p.L211P, which is in linkage disequilibrium with p.W191X, may be the stronger variant of the two, but does not rule out independent contribution of the latter. TREM2 p.L211P resides within the cytoplasmic domain and p.W191X is a stop-gain mutation within the shorter TREM-2V transcript. The coding variants within the extracellular domain of TREM2 previously shown to confer LOAD risk in Caucasians were extremely rare in our AA cohort and did not associate with LOAD risk. Our findings suggest that TREM2 coding variants also confer LOAD risk in AA, but implicate variants within different regions of the gene than those identified for Caucasian subjects. These results underscore the importance of investigating different ethnic populations for disease risk variant discovery, which may uncover allelic heterogeneity with potentially diverse mechanisms of action.
Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli; Jørgensen, Hans Ri; Jensen, Steen Lund; Rasmussen, Sten; Søgaard, Karen; Juul-Kristensen, Birgit
2015-01-27
Shoulder pain is the third most common musculoskeletal disorder, often affecting people's daily living and work capacity. The most common shoulder disorder is the subacromial impingement syndrome (SIS) which, among other pathophysiological changes, is often characterised by rotator cuff tendinopathy. Exercise is often considered the primary treatment option for rotator cuff tendinopathy, but there is no consensus on which exercise strategy is the most effective. As eccentric and high-load strength training have been shown to have a positive effect on patella and Achilles tendinopathy, the aim of this trial is to compare the efficacy of progressive high-load exercises with traditional low-load exercises in patients with rotator cuff tendinopathy. The current study is a randomised, participant- and assessor-blinded, controlled multicentre trial. A total of 260 patients with rotator cuff tendinopathy will be recruited from three outpatient shoulder departments in Denmark, and randomised to either 12 weeks of progressive high-load strength training or to general low-load exercises. Patients will receive six individually guided exercise sessions with a physiotherapist and perform home-based exercises three times a week. The primary outcome measure will be change from baseline to 12 weeks in the patient-reported outcome Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Previous studies of exercise treatment for SIS have not differentiated between subgroups of SIS and have often had methodological flaws, making it difficult to specifically design target treatment for patients diagnosed with SIS. Therefore, it was considered important to focus on a subgroup such as tendinopathy, with a specific tailored intervention strategy based on evidence from other regions of the body, and to clearly describe the intervention in a methodologically strong study. The trial was registered with Clinicaltrials.gov ( NCT01984203 ) on 31 October 2013.
Tailoring the Employment of Offshore Wind Turbine Support Structure Load Mitigation Controllers
NASA Astrophysics Data System (ADS)
Shrestha, Binita; Kühn, Martin
2016-09-01
The currently available control concepts to mitigate aerodynamic and hydrodynamic induced support structure loads reduce either fore-aft or side-to-side damage under certain operational conditions. The load reduction is achieved together with an increase in loads in other components of the turbine e.g. pitch actuators or drive train, increasing the risk of unscheduled maintenance. The main objective of this paper is to demonstrate a methodology for reduction of support structure damage equivalent loads (DEL) in fore-aft and side-to-side directions using already available control concepts. A multi-objective optimization problem is formulated to minimize the DELs, while limiting the collateral effects of the control algorithms for load reduction. The optimization gives trigger values of sea state condition for the activation or deactivation of certain control concepts. As a result, by accepting the consumption of a small fraction of the load reserve in the design load envelope of other turbine components, a considerable reduction of the support structure loads is facilitated.
Fossum, Kenneth D.; O'Day, Christie M.; Wilson, Barbara J.; Monical, Jim E.
2001-01-01
Stormwater and streamflow in Maricopa County were monitored to (1) describe the physical, chemical, and toxicity characteristics of stormwater from areas having different land uses, (2) describe the physical, chemical, and toxicity characteristics of streamflow from areas that receive urban stormwater, and (3) estimate constituent loads in stormwater. Urban stormwater and streamflow had similar ranges in most constituent concentrations. The mean concentration of dissolved solids in urban stormwater was lower than in streamflow from the Salt River and Indian Bend Wash. Urban stormwater, however, had a greater chemical oxygen demand and higher concentrations of most nutrients. Mean seasonal loads and mean annual loads of 11 constituents and volumes of runoff were estimated for municipalities in the metropolitan Phoenix area, Arizona, by adjusting regional regression equations of loads. This adjustment procedure uses the original regional regression equation and additional explanatory variables that were not included in the original equation. The adjusted equations had standard errors that ranged from 161 to 196 percent. The large standard errors of the prediction result from the large variability of the constituent concentration data used in the regression analysis. Adjustment procedures produced unsatisfactory results for nine of the regressions?suspended solids, dissolved solids, total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, total recoverable zinc, and storm runoff. These equations had no consistent direction of bias and no other additional explanatory variables correlated with the observed loads. A stepwise-multiple regression or a three-variable regression (total storm rainfall, drainage area, and impervious area) and local data were used to develop local regression equations for these nine constituents. These equations had standard errors from 15 to 183 percent.
Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading
Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima
2016-01-01
In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress–strain responses for each cycle, and the hysteresis stress–strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given. PMID:26937465
Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading.
Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima
2016-03-01
In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress-strain responses for each cycle, and the hysteresis stress-strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given.
Muraca, M; Fevery, J; Blanckaert, N
1987-02-01
The pattern of serum bilirubins was determined in serum of humans and rats with unconjugated hyperbilirubinemia due to increased pigment load or defective hepatic conjugation. Bilirubin ester conjugates were present in all serum samples tested and were identified as bilirubin 1-O-acyl glucuronides. In Gilbert's syndrome, the concentration of total conjugates was comparable to the values in healthy control subjects. Because the concentration of unconjugated pigment was increased, the fraction of conjugated relative to total bilirubins was markedly decreased. Sera from patients with Crigler-Najjar disease differed from those with Gilbert's syndrome by the higher unconjugated bilirubin levels and the undetectability of diconjugated bilirubins. A striking finding was that in hemolytic disease, the concentration of both monoconjugates and diconjugates was enhanced in parallel with the increase of unconjugated pigment. Therefore, the fraction of conjugated relative to total bilirubins remained within the normal range. As in Gilbert's syndrome, heterozygote R/APfd-j/+ rats with impaired hepatic bilirubin conjugation exhibit an increased unconjugated bilirubin level in serum, whereas the concentration of total conjugates was comparable to the values in normal rats. In serum of normal rats loaded intraperitoneally with unconjugated bilirubin, both unconjugated and mono- and diconjugated bilirubins were increased in parallel so that the ratio of unconjugated to esterified pigment remained unaffected. Decreased hepatic conjugation or increased bilirubin load was associated with a lower percentage of diconjugates relative to total conjugates both in human and rat serum. The present results are consistent with a compartmental model in which there is bidirectional transfer across the sinusoidal membrane for unconjugated bilirubin as well as for the bilirubin glucuronides. Because typical patterns of serum bilirubins are found in Gilbert's syndrome and patients with hemolytic hyperbilirubinemia, determination of esterified bilirubins in serum is of value to study the pathophysiology and the differential diagnosis of unconjugated hyperbilirubinemia.
NASA Astrophysics Data System (ADS)
Bray, E. N.; Chen, X.; Keller, A. A.
2010-12-01
Non-point source inputs of total nitrogen (TN) and total phosphorus (TP) in rivers are the leading causes of water quality degradation in the United States (Turner and Rabalais, 2003; Broussard and Turner, 2009). Yet it remains a challenge to adequately quantify the relative role and influence of physical hydrological processes versus biogeochemical processes on the attenuation of TN and TP for individual river reaches. A watershed-scale study of instream dynamics and attenuation of TN and TP in northeastern U.S. headwater streams demonstrates that physical and hydrological processes exert greater control over nutrient removal than biogeochemical processes. To explore these interactions under various attenuation scenarios, we developed the watershed-scale model (WARMF) for 97 catchments to simulate watershed processes, hydrology, and diffuse source loads of nutrients. We simulated a hypothetical nutrient release at a rate of 1 kg/d of TN (50% as ammonium and 50% as nitrate) and TP (100% as phosphate) to predict response lengths of downstream catchments. Resulting attenuation factors are presented as the change in mean load at a given location, normalized to the change in the catchment in which the load is applied. Results indicate that for most catchments, the TN and TP load increase is attenuated from the stream within a few tens of kilometers. Fifty percent attenuation occurs across length scales ranging from a few hundreds of meters to kilometers if the load is introduced in the headwaters, indicating the most rapid nutrient removal occurs in the smallest headwater streams but generally decreases with distance downstream. There are some differences in the attenuation factors for TN and TP, although the pattern of attenuation is the same. Sensitivity analyses highlight five hydrological parameters of paramount importance to concentrations of N and P, namely precipitation, evaporation coefficients (magnitude and skewness), soil layer thickness, soil saturated moisture and soil hydraulic conductivity. These model parameters have a significant effect on the concentrations of nutrients, with TN exhibiting greater sensitivity. Further, attenuation results suggest that stream depth, flow regime, and density of agriculture in small headwater streams are potentially important controls to nutrient uptake and removal; i.e. during periods of low flow, dilution is reduced, attenuation length increases, and removal processes may be dominated by settling as opposed to biogeochemistry. Instream attenuation and model results can be used to assess 1) the scale and nature of best management practices which must be adopted to result in nutrient reductions, 2) the downstream distance at which load reductions will be effective, and 3) the hydrological characteristics of the river network which exert considerable influence on attenuation lengths and nutrient removal.
Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance.
Zhang, Zhizhou; Li, Xiaolong
2018-05-11
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement.
Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance
Zhang, Zhizhou; Li, Xiaolong
2018-01-01
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement. PMID:29751610
Work-related lesions of the supraspinatus tendon: a case-control study.
Seidler, Andreas; Bolm-Audorff, Ulrich; Petereit-Haack, Gabriela; Ball, Elke; Klupp, Magdalena; Krauss, Noëlle; Elsner, Gine
2011-04-01
To examine the dose-response relationship between cumulative duration of work with highly elevated arms (work above shoulder level) as well as of manual material handling and ruptures of the supraspinatus tendon in a population-based case-control study. In 14 radiologic practices, we recruited 483 male patients aged 25-65 with radiographically confirmed partial (n = 385) or total (n = 98) supraspinatus tears associated with shoulder pain. A total of 300 male control subjects were recruited. Data were gathered in a structured personal interview. To calculate cumulative exposure, the self-reported duration of lifting/carrying of heavy loads (>20 kg) as well as the duration of work with highly elevated arms was added up over the entire working life. The results of our study support a dose-response relationship between cumulative duration of work with highly elevated arms and symptomatic supraspinatus tendon tears. For a cumulative duration of >3,195 h work above shoulder level, the risk of a supraspinatus tendon rupture is elevated to 2.0 (95% CI 1.1-3.5), adjusted for age, region, lifting/carrying of heavy loads, handheld vibration, apparatus gymnastics/shot put/javelin/hammer throwing/wrestling, and tennis. The cumulative duration of carrying/lifting of heavy loads also yields a positive dose-response relation with disease (independent from work above shoulder level and from handheld vibration), with an adjusted odds ratio of 1.8 (95% CI 1.0-3.2) in the highest exposure category (>77 h). We find an increased risk for subjects exposed to handheld vibration with an adjusted OR of 3.2 (95% CI 1.7-5.9) in the highest exposure category (16 years or more in the job with exposure), but a clear dose-response relationship is lacking. This study points to a potential etiologic role of long-term cumulative effects of work with highly elevated arms and heavy lifting/carrying on shoulder tendon disorders.
A free-piston Stirling engine/linear alternator controls and load interaction test facility
NASA Technical Reports Server (NTRS)
Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.
1992-01-01
A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.
Effect of healing time on bone-implant contact of orthodontic micro-implants: a histologic study.
Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed
2014-01-01
Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability.
Effect of Healing Time on Bone-Implant Contact of Orthodontic Micro-Implants: A Histologic Study
Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed
2014-01-01
Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability. PMID:25006463
Mélan, Claudine; Cascino, Nadine
2014-01-01
The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual's perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual's overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work-family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators' alertness and job-performance.
Mélan, Claudine; Cascino, Nadine
2014-01-01
The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual’s perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual’s overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work–family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators’ alertness and job-performance. PMID:25232346
Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.
2014-01-01
Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.
Satellite control of electric power distribution
NASA Technical Reports Server (NTRS)
Bergen, L.
1981-01-01
An L-band frequencies satellite link providing the medium for direct control of electrical loads at individual customer sites from remote central locations is described. All loads supplied under interruptible-service contracts are likely condidates for such control, and they can be cycled or switched off to reduce system loads. For every kW of load eliminated or deferred to off-peak hours, the power company reduces its need for additional generating capacity. In addition, the satellite could switch meter registers so that their readings automatically reflected the time of consumption. The system would perform load-shedding operations during emergencies, disconnecting large blocks of load according to predetermined priorities. Among the distribution operations conducted by the satellite in real time would be: load reconfiguration, voltage regulation, fault isolation, and capacitor and feeder load control.
Assessment of Optimal Flexibility in Ensemble of Frequency Responsive Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Soumya; Hansen, Jacob; Lian, Jianming
2018-04-19
Potential of electrical loads in providing grid ancillary services is often limited due to the uncertainties associated with the load behavior. A knowledge of the expected uncertainties with a load control program would invariably yield to better informed control policies, opening up the possibility of extracting the maximal load control potential without affecting grid operations. In the context of frequency responsive load control, a probabilistic uncertainty analysis framework is presented to quantify the expected error between the target and actual load response, under uncertainties in the load dynamics. A closed-form expression of an optimal demand flexibility, minimizing the expected errormore » in actual and committed flexibility, is provided. Analytical results are validated through Monte Carlo simulations of ensembles of electric water heaters.« less
Load theory of selective attention and cognitive control.
Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W; Viding, Essi
2004-09-01
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings suggest 2 selective attention mechanisms: a perceptual selection mechanism serving to reduce distractor perception in situations of high perceptual load that exhaust perceptual capacity in processing relevant stimuli and a cognitive control mechanism that reduces interference from perceived distractors as long as cognitive control functions are available to maintain current priorities (low cognitive load). This theory resolves the long-standing early versus late selection debate and clarifies the role of cognitive control in selective attention. ((c) 2004 APA, all rights reserved)
The memoranda clarify existing EPA regulatory requirements for, and provide guidance on, establishing wasteload allocations (WLAs) for storm water discharges in total maximum daily loads (TMDLs) approved or established by EPA.
SELECTION OF CANDIDATE EUTROPHICATION MODELS FOR TOTAL MAXIMUM DAILY LOADS ANALYSES
A tiered approach was developed to evaluate candidate eutrophication models to select a common suite of models that could be used for Total Maximum Daily Loads (TMDL) analyses in estuaries, rivers, and lakes/reservoirs. Consideration for linkage to watershed models and ecologica...
Liu, Chen; Wu, Guangxia; Mu, Huanzhen; Yuan, Zonghuan; Tang, Lianyi; Lin, Xiangwei
2008-01-01
In this article, alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin, starch, acrylamide, and acrylic acid). Its practical application effect and environmental safety were studied. The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants. The runoff quantity was decreased by 16.67%-47.00% and the loads of total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were reduced by 17.78%-62.14%, 26.32%-59.91%, 15.25%-47.42%, and 22.18%-52.78%, respectively. The tests on its environmental safety showed that LSAA did no harm the soil. Compared with polyacrylamide (PAM), a dominant product in this field, LSAA exhibited similar effects and cheap cost. Thus, this study not only created a new product for controlling runoff water quality but also offered a beneficial application for industrial paper waste.
Assessment of total bed material equations on selected Malaysia rivers
NASA Astrophysics Data System (ADS)
Saleh, A.; Abustan, I.; Mohd Remy Rozainy, M. A. Z.; Sabtu, N.
2017-10-01
Assessment of total sediment load equations on selected Malaysia rivers was done based on 35 sediment loads and hydraulic data. Four rivers were selected to make this assessment which are Sungai Perak, Sungai Kemaman, Sungai Pergau and Sungai Kurau. These rivers can be divided into three categories based on the river width, with Sungai Perak (300-350m) and Sungai Kemaman (150-200m) can categorised as big rivers, meanwhile, Sungai Pergau (30-45m) and Sungai Kurau (10-11m) can categorised as medium and small river respectively. The total sediment load equations used in this assessment are Ackers-White, Brownlie, Engelund-Hansen, Graf, Molinas-Wu, Karim-Kennedy and Yang. This paper also tested the local total sediment load equations by Ariffin and Sinnakaudan et al. to evaluate capabilities of the equations on different rivers in Malaysia. The graphs of the calculated equations versus measured sediment transport rates were plotted to shows the accuracy of the tested equations.
NASA Astrophysics Data System (ADS)
Mekonnen, M. M.; Hoekstra, A. Y. Y.
2014-12-01
We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.
Load power device, system and method of load control and management employing load identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.
A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.
Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression
NASA Technical Reports Server (NTRS)
Miller, Christopher
2017-01-01
These slide sets describe the OCLA formulation and associated algorithms as a set of new technologies in the first practical application of load limiting flight control utilizing load feedback as a primary control measurement. Slide set one describes Experiment Development and slide set two describes Flight-Test Performance.
Weber, Geraint J; O'Sullivan, Patrick E; Brassley, Paul
2006-01-01
Background Nutrient loadings from its catchment upon The Fleet, a highly valuable coastal lagoon in Southern England, were hindcast for the period AD 1866–2004, using a catchment model, export coefficients, and historical data on land use changes, livestock numbers, and human population. Agriculture was the main nutrient source throughout, other inputs representing minor contributions. Permanent pasture was historically the main land use, with temporary grassland and cereals increasing during the mid-20th century. Sheep, the main 19th century livestock, were replaced by cattle during the 1930s. Results Total nitrogen loadings rose from ca 41 t yr-1 during the late 19th century to 49–54 t yr-1 for the mid-20th, increasing to 98 t yr-1 by 1986. Current values are ca 77 t yr-1. Total phosphorus loads increased from ca 0.75 t yr-1 for the late 19th century to ca 1.6 t yr-1 for the mid-20th, reached ca 2.2 t yr-1 in 1986, and are now ca 1.5 t yr-1. Loadings rose most rapidly between 1946 and 1988, owing to increased use of inorganic fertilisers, and rising sheep and cattle numbers. Livestock were the main nutrient source throughout, but inputs from inorganic fertilisers increased after 1946, peaking in 1986. Sewage treatment works and other sources contribute little nitrogen, but ca 35% of total phosphorus. Abbotsbury Swannery, an ancient Mute Swan community, provides ca 0.5% of total nitrogen, and ca 5% of total phosphorus inputs. Conclusion The Fleet has been grossly overloaded with nitrogen since 1866, climaxing during the 1980s. Total phosphorus inputs lay below 'permissible' limits until the 1980s, exceeding them in inner, less tidal parts of the lagoon, during the 1940s. Loadings on Abbotsbury Bay exceeded 'permissible' limits by the 1860s, becoming 'dangerous' during the mid-20th century. Phosphorus stripping at point sources will not significantly reduce loadings to all parts of the lagoon. Installation of 5 m buffer strips throughout the catchment and shoreline will marginally affect nitrogen loadings, but will reduce phosphorus inputs to the West Fleet below 'permissible' limits. Only a combination of measures will significantly affect Abbotsbury Bay, where, without effluent diversion, loadings will remain beyond 'permissible'. PMID:17196108
Conceptual design studies for large free-flying solar-reflector spacecraft
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Miller, R. K.; Knapp, K. P. W.
1981-01-01
The 1 km diameter reflecting film surface is supported by a lightweight structure which may be automatically deployed after launch in the Space Shuttle. A twin rotor, control moment gyroscope, with deployable rotors, is included as a primary control actuator. The vehicle has a total specific mass of less than 12 g/sq m including allowances for all required subsystems. The structural elements were sized to accommodate the loads of a typical SOLARES type mission where a swam of these free flying satellites is employed to concentrate sunlight on a number of energy conversion stations on the ground.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teshima, Teruki, E-mail: teshima@sahs.med.osaka-u.ac.j; Numasaki, Hodaka; Shibuya, Hitoshi
2010-12-01
Purpose: To evaluate the ongoing structure of radiation oncology in Japan in terms of equipment, personnel, patient load, and geographic distribution to identify and improve any deficiencies. Methods and Materials: A questionnaire-based national structure survey was conducted from March to December 2008 by the Japanese Society of Therapeutic Radiology and Oncology (JASTRO). These data were analyzed in terms of the institutional stratification of the Patterns of Care Study. Results: The total numbers of new cancer patients and total cancer patients (new and repeat) treated with radiation in 2007 were estimated at 181,000 and 218,000, respectively. There were 807 linear accelerator,more » 15 telecobalt, 46 Gamma Knife, 45 {sup 60}Co remote-controlled after-loading, and 123 {sup 192}Ir remote-controlled after-loading systems in actual use. The linear accelerator systems used dual-energy function in 539 units (66.8%), three-dimensional conformal radiation therapy in 555 (68.8%), and intensity-modulated radiation therapy in 235 (29.1%). There were 477 JASTRO-certified radiation oncologists, 826.3 full-time equivalent (FTE) radiation oncologists, 68.4 FTE medical physicists, and 1,634 FTE radiation therapists. The number of interstitial radiotherapy (RT) administrations for prostate, stereotactic body radiotherapy, and intensity-modulated radiation therapy increased significantly. Patterns of Care Study stratification can clearly identify the maturity of structures based on their academic nature and caseload. Geographically, the more JASTRO-certified physicians there were in a given area, the more RT tended to be used for cancer patients. Conclusions: The Japanese structure has clearly improved during the past 17 years in terms of equipment and its use, although a shortage of personnel and variations in maturity disclosed by Patterns of Care Study stratification were still problematic in 2007.« less
Nayeri, Fatemeh; Sheikh, Mahdi; Kalani, Majid; Niknafs, Pedram; Shariat, Mamak; Dalili, Hosein; Dehpour, Ahmad-Reza
2015-05-15
Evaluating the efficacy of the loading and tapering dose of Phenobarbital versus oral Morphine in the management of NAS. This randomized, open-label, controlled trial was conducted on 60 neonates born to illicit drugs dependent mothers at Vali-Asr and Akbar-Abadi hospitals, Tehran, Iran, who exhibited NAS requiring medical therapy. The neonates were randomized to receive either: Oral Morphine Sulfate or a loading dose of Phenobarbital followed by a tapering dose. The duration of treatment required for NAS resolution, the total hospital stay and the requirement for additional second line treatment were compared between the treatment groups. The Mean ± Standard Deviation for the duration of treatment required for the resolution of NAS was 8.5 ± 5 days in the Morphine group and 8.5 ± 4 days in the Phenobarbital group (P = 0.9). The duration of total hospital stay was 12.6 ± 5.6 days in the Morphine group and 12.5 ± 5.3 days in the Phenobarbital group (P = 0.7). 3.3 % in the Morphine group versus 6.6 % in the Phenobarbital group required adjunctive treatment (P = 0.5). There were no significant differences in the duration of treatment, duration of hospital stay, and the requirement for adjunctive treatment, between the neonates with NAS who received Morphine Sulfate and neonates who received a loading and tapering dose of Phenobarbital. This study is registered at the Iranian Registry of Clinical Trials ( www.irct.ir ) which is a Primary Registry in the WHO Registry Network. (Registration Number = IRCT201406239568N8 ).
Neu, C P; Hull, M L
2003-04-01
Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach a steady-state response in normal bovine articular cartilage was 49 for a total cycle duration of 5 seconds, but decreased to 33 and 27 for increasing total cycle durations of 10 and 15 seconds, respectively. Once the steady-state response was achieved, 95% of all displacements were within +/- 7.42 microns of the mean displacement, indicating that the displacement response to the cyclic loads was highly repeatable. With this performance, the MRI-loading apparatus system meets the requirements to create images of articular cartilage from which 3D deformation can be determined.
NASA Astrophysics Data System (ADS)
Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei
2017-03-01
We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.
Rolling Maneuver Load Alleviation using active controls
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Pototzky, Anthony S.
1992-01-01
Rolling Maneuver Load Alleviation (RMLA) has been demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and actuation of the trailing edge inboard control surface pairs to maintain roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of 0.33, .38 and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.
Flow Control Application on a Submerged Inlet Characterized by Three-Component LDV
2010-12-01
boundary layer deficit accounted for less variation in stresses experienced by the compressor blades . These studies demonstrate the effect of geometry on... deficit region provided the best results. The airspeed and inlet velocity simulated takeoff and landing conditions; velocities ranged from Mach 0.1-0.3...uniformity of the total pressure profile at the compressor face prevents fatigue loading of the blades as they rotate.(5) Pressure recovery directly
Role of Stat3 and ErbB2 in Breast Cancer
2012-10-01
also activated by receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR) or platelet -derived growth factor receptor (PDGFR...cells were grown to different densities, up to 5 days post-confluence, as indicated. Detergent cell lysates were probed for Stat3-ptyr705, active Rac...and lysates probed for total cav1, cadherin 11 or tubulin as a loading control. 15 C Figure 7: Cadherin 11 and Rac1 downregulation
Lopes, Charles Ricardo; Aoki, Marcelo Saldanha; Crisp, Alex Harley; de Mattos, Renê Scarpari; Lins, Miguel Alves; da Mota, Gustavo Ribeiro; Schoenfeld, Brad Jon; Marchetti, Paulo Henrique
2017-01-01
Abstract The purpose of this study was to evaluate the impact of moderate-load (10 RM) and low-load (20 RM) resistance training schemes on maximal strength and body composition. Sixteen resistance-trained men were randomly assigned to 1 of 2 groups: a moderate-load group (n = 8) or a low-load group (n = 8). The resistance training schemes consisted of 8 exercises performed 4 times per week for 6 weeks. In order to equate the number of repetitions performed by each group, the moderate load group performed 6 sets of 10 RM, while the low load group performed 3 sets of 20 RM. Between-group differences were evaluated using a 2-way ANOVA and independent t-tests. There was no difference in the weekly total load lifted (sets × reps × kg) between the 2 groups. Both groups equally improved maximal strength and measures of body composition after 6 weeks of resistance training, with no significant between-group differences detected. In conclusion, both moderate-load and low-load resistance training schemes, similar for the total load lifted, induced a similar improvement in maximal strength and body composition in resistance-trained men. PMID:28828088
Hsieh, Hong-Jung; Hu, Chih-Chung; Lu, Tung-Wu; Lu, Hsuan-Lun; Kuo, Mei-Ying; Kuo, Chien-Chung; Hsu, Horng-Chaung
2016-06-07
Robot-based joint-testing systems (RJTS) can be used to perform unconstrained laxity tests, measuring the stiffness of a degree of freedom (DOF) of the joint at a fixed flexion angle while allowing the other DOFs unconstrained movement. Previous studies using the force-position hybrid (FPH) control method proposed by Fujie et al. (J Biomech Eng 115(3):211-7, 1993) focused on anterior/posterior tests. Its convergence and applicability on other clinically relevant DOFs such as valgus/varus have not been demonstrated. The current s1tudy aimed to develop a 6-DOF RJTS using an industrial robot, to propose two new force-position hybrid control methods, and to evaluate the performance of the methods and FPH in controlling the RJTS for anterior/posterior and valgus/varus laxity tests of the knee joint. An RJTS was developed using an industrial 6-DOF robot with a 6-component load-cell attached at the effector. The performances of FPH and two new control methods, namely force-position alternate control (FPA) and force-position hybrid control with force-moment control (FPHFM), for unconstrained anterior/posterior and valgus/varus laxity tests were evaluated and compared with traditional constrained tests (CT) in terms of the number of control iterations, total time and the constraining forces and moments. As opposed to CT, the other three control methods successfully reduced the constraining forces and moments for both anterior/posterior and valgus/varus tests, FPHFM being the best followed in order by FPA and FPH. FPHFM had root-mean-squared constraining forces and moments of less than 2.2 N and 0.09 Nm, respectively at 0° flexion, and 2.3 N and 0.14 Nm at 30° flexion. The corresponding values for FPH were 8.5 N and 0.33 Nm, and 11.5 N and 0.45 Nm, respectively. Given the same control parameters including the compliance matrix, FPHFM and FPA reduced the constraining loads of FPH at the expense of additional control iterations, and thus increased total time, FPA taking about 10 % longer than FPHFM. The FPHFM would be the best choice among the methods considered when longer total time is acceptable in the intended clinical applications. The current results will be useful for selecting a force-position hybrid control method for unconstrained laxity tests using an RJTS.
Zhang, Qian; Ball, William P; Moyer, Douglas L
2016-09-01
The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with that of forested land under all hydrological conditions. Overall, this work has informed understanding with respect to four major factors affecting constituent export (i.e., source input, reservoir modulation, streamflow, and land use) and demonstrated the value of long-term river monitoring. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.
2014-01-01
The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.
Code of Federal Regulations, 2014 CFR
2014-01-01
... for this use only. No-load loss means those losses that are incident to the excitation of the... connected to a rectifier. Reference temperature means 20 °C for no-load loss, 55 °C for load loss of liquid... equipment. Total loss means the sum of the no-load loss and the load loss for a transformer. Transformer...
Optimal Load-Side Control for Frequency Regulation in Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Mallada, Enrique; Low, Steven
Frequency control rebalances supply and demand while maintaining the network state within operational margins. It is implemented using fast ramping reserves that are expensive and wasteful, and which are expected to become increasingly necessary with the current acceleration of renewable penetration. The most promising solution to this problem is the use of demand response, i.e., load participation in frequency control. Yet it is still unclear how to efficiently integrate load participation without introducing instabilities and violating operational constraints. In this paper, we present a comprehensive load-side frequency control mechanism that can maintain the grid within operational constraints. In particular, ourmore » controllers can rebalance supply and demand after disturbances, restore the frequency to its nominal value, and preserve interarea power flows. Furthermore, our controllers are distributed (unlike the currently implemented frequency control), can allocate load updates optimally, and can maintain line flows within thermal limits. We prove that such a distributed load-side control is globally asymptotically stable and robust to unknown load parameters. We illustrate its effectiveness through simulations.« less
Surface-water salinity in the Gunnison River Basin, Colorado, water years 1989 through 2007
Schaffrath, Keelin R.
2012-01-01
Elevated levels of dissolved solids in water (salinity) can result in numerous and costly issues for agricultural, industrial, and municipal water users. The Colorado River Basin Salinity Control Act of 1974 (Public Law 93-320) authorized planning and construction of salinity-control projects in the Colorado River Basin. One of the first projects was the Lower Gunnison Unit, a project to mitigate salinity in the Lower Gunnison and Uncompahgre River Basins. In cooperation with the Bureau of Reclamation (USBR), the U.S. Geological Survey conducted a study to quantify changes in salinity in the Gunnison River Basin. Trends in salinity concentration and load during the period water years (WY) 1989 through 2004 (1989-2004) were determined for 15 selected streamflow-gaging stations in the Gunnison River Basin. Additionally, trends in salinity concentration and load during the period WY1989 through 2007 (1989-2007) were determined for 5 of the 15 sites for which sufficient data were available. Trend results also were used to identify regions in the Lower Gunnison River Basin (downstream from the Gunnison Tunnel) where the largest changes in salinity loads occur. Additional sources of salinity, including residential development (urbanization), changes in land cover, and natural sources, were estimated within the context of the trend results. The trend results and salinity loads estimated from trends testing also were compared to USBR and Natural Resources Conservation Service (NRCS) estimates of off-farm and on-farm salinity reduction from salinity-control projects in the basin. Finally, salinity from six additional sites in basins that are not affected by irrigated agriculture or urbanization was monitored from WY 2008 to 2010 to quantify what portion of salinity may be from nonagricultural or natural sources. In the Upper Gunnison area, which refers to Gunnison River Basin above the site located on the Gunnison River below the Gunnison Tunnel, estimated mean annual salinity load was 110,000 tons during WY 1989-2004. Analysis of both study periods (WY 1989-2004 and WY 1989-2007) showed an initial decrease in salinity load with a minimum in 1997. The net change over either study period was only significant during WY 1989-2007. Salinity load significantly decreased at the Gunnison River near Delta by 179,000 tons during WY 1989-2004. Just downstream, the Uncompahgre River enters the Gunnison River where there also was a highly significant decrease in salinity load of 55,500 tons. The site that is located at the mouth of the study area is the Gunnison River near Grand Junction where the decrease was the largest. Salinity loads decreased by 247,000 tons during WY 1989-2004 at this site though the decrease attenuated by 2007 and the net change was a decrease of 207,000 tons. The trend results presented in this study indicate that the effect of urbanization on salinity loads is difficult to discern from the effects of irrigated agriculture and that natural sources contribute a fraction of the total salinity load for the entire basin. Based on the calculated yields and geology, 23-63 percent of the estimated annual salinity load was from natural sources at the Gunnison River near Grand Junction during WY 1989-2007. The largest changes in salinity load occurred at the Gunnison River near Grand Junction as well as the two sites located in Delta: the Gunnison River at Delta and the Uncompahgre River at Delta. Those three sites, especially the two sites at Delta, were the most affected by irrigated agriculture, which was observed in the estimated mean annual loads. Irrigated acreage, especially acreage underlain by Mancos Shale, is the target of salinity-control projects intended to decrease salinity loads. The NRCS and the USBR have done the majority of salinity control work in the Lower Gunnison area of the Gunnison River Basin, and the focus has been in the Uncompahgre River Basin and in portions of the Lower Gunnison River Basin (downstream from the Gunnison Tunnel). According to the estimates from the USBR and NRCS, salinity-control projects may be responsible for a reduction of 117,300 tons of salinity as of 2004 and 142,000 tons as of 2007 at the Gunnison River near Grand Junction, Colo. (streamflow-gaging station 09152500). USBR and NRCS estimates account for all but 130,000 tons in 2004 and 65,000 tons in 2007 of salinity load reduction. The additional reduction could be a reduction in natural salt loading to the streams because of land-cover changes during the study period. It is possible also that the USBR and NRCS have underestimated changes in salinity loads as a result of the implementation of salinity-control projects.
Wilkison, Donald H.; Armstrong, Daniel J.; Hampton, Sarah A.
2009-01-01
Water-quality and ecological character and trends in the metropolitan Blue River Basin were evaluated from 1998 through 2007 to provide spatial and temporal resolution to factors that affect the quality of water and biota in the basin and provide a basis for assessing the efficacy of long-term combined sewer control and basin management plans. Assessments included measurements of stream discharge, pH, dissolved oxygen, specific conductance, turbidity, nutrients (dissolved and total nitrogen and phosphorus species), fecal-indicator bacteria (Escherichia coli and fecal coliform), suspended sediment, organic wastewater and pharmaceutical compounds, and sources of these compounds as well as the quality of stream biota in the basin. Because of the nature and myriad of factors that affect basin water quality, multiple strategies are needed to decrease constituent loads in streams. Strategies designed to decrease or eliminate combined sewer overflows (CSOs) would substantially reduce the annual loads of nutrients and fecal-indicator bacteria in Brush Creek, but have little effect on Blue River loadings. Nonpoint source reductions to Brush Creek could potentially have an equivalent, if not greater, effect on water quality than would CSO reductions. Nonpoint source reductions could also substantially decrease annual nutrient and bacteria loadings to the Blue River and Indian Creek. Methods designed to decrease nutrient loads originating from Blue River and Indian Creek wastewater treatment plants (WWTPs) could substantially reduce the overall nutrient load in these streams. For the main stem of the Blue River and Indian Creek, primary sources of nutrients were nonpoint source runoff and WWTPs discharges; however, the relative contribution of each source varied depending on how wet or dry the year was and the number of upstream WWTPs. On Brush Creek, approximately two-thirds of the nutrients originated from nonpoint sources and the remainder from CSOs. Nutrient assimilation processes, which reduced total nitrogen loads by approximately 13 percent and total phosphorus loads by double that amount in a 20-kilometer reach of the Blue River during three synoptic base-flow sampling events between August through September 2004 and September 2005, likely are limited to selected periods during any given year and may not substantially reduce annual nutrient loads. Bacteria densities typically increased with increasing urbanization, and bacteria loadings to the Blue River and Indian Creek were almost entirely the result of nonpoint source runoff. WWTPs contributed, on average, less than 1 percent of the bacteria to these reaches, and in areas of the Blue River that had combined sewers, CSOs contributed only minor amounts (less than 2 percent) of the total annual load in 2005. The bulk of the fecal-indicator bacteria load in Brush Creek also originated from nonpoint sources with the remainder from CSOs. From October 2002 through September 2007, estimated daily mean Escherichia coli bacteria density in upper reaches of the Blue River met the State of Missouri secondary contact criterion standard approximately 85 percent of the time. However, in lower Blue River reaches, the same threshold was exceeded approximately 45 percent of the time. The tributary with the greatest number of CSO discharge points, Brush Creek, contributed approximately 10 percent of the bacteria loads to downstream reaches. The tributary Town Fork Creek had median base-flow Escherichia coli densities that were double that of other basin sites and stormflow densities 10 times greater than those in other parts of the basin largely because approximately one-fourth of the runoff in the Town Fork Creek Basin is believed to originate in combined sewers. Genotypic source typing of bacteria indicated that more than half of the bacteria in this tributary originated from human sources with two storms contributing the bulk of all bacteria sourced as human. However, areas outsid
Simulation of upwind maneuvering of a sailing yacht
NASA Astrophysics Data System (ADS)
Harris, Daniel Hartrick
A time domain maneuvering simulation of an IACC class yacht suitable for the analysis of unsteady upwind sailing including tacking is presented. The simulation considers motions in six degrees of freedom. The hydrodynamic and aerodynamic loads are calculated primarily with unsteady potential theory supplemented by empirical viscous models. The hydrodynamic model includes the effects of incident waves. Control of the rudder is provided by a simple rate feedback autopilot which is augmented with open loop additions to mimic human steering. The hydrodynamic models are based on the superposition of force components. These components fall into two groups, those which the yacht will experience in calm water, and those due to incident waves. The calm water loads are further divided into zero Froude number, or "double body" maneuvering loads, hydrostatic loads, gravitational loads, free surface radiation loads, and viscous/residual loads. The maneuvering loads are calculated with an unsteady panel code which treats the instantaneous geometry of the yacht below the undisturbed free surface. The free surface radiation loads are calculated via convolution of impulse response functions derived from seakeeping strip theory. The viscous/residual loads are based upon empirical estimates. The aerodynamic model consists primarily of a database of steady state sail coefficients. These coefficients treat the individual contributions to the total sail force of a number of chordwise strips on both the main and jib. Dynamic effects are modeled by using the instantaneous incident wind velocity and direction as the independent variables for the sail load contribution of each strip. The sail coefficient database was calculated numerically with potential methods and simple empirical viscous corrections. Additional aerodynamic load calculations are made to determine the parasitic contributions of the rig and hull. Validation studies compare the steady sailing hydro and aerodynamic loads, seaway induced motions, added resistance in waves, and tacking performance with trials data and other sources. Reasonable agreement is found in all cases.
Methods for Estimating Annual Wastewater Nutrient Loads in the Southeastern United States
McMahon, Gerard; Tervelt, Larinda; Donehoo, William
2007-01-01
This report describes an approach for estimating annual total nitrogen and total phosphorus loads from point-source dischargers in the southeastern United States. Nutrient load estimates for 2002 were used in the calibration and application of a regional nutrient model, referred to as the SPARROW (SPAtially Referenced Regression On Watershed attributes) watershed model. Loads from dischargers permitted under the National Pollutant Discharge Elimination System were calculated using data from the U.S. Environmental Protection Agency Permit Compliance System database and individual state databases. Site information from both state and U.S. Environmental Protection Agency databases, including latitude and longitude and monitored effluent data, was compiled into a project database. For sites with a complete effluent-monitoring record, effluent-flow and nutrient-concentration data were used to develop estimates of annual point-source nitrogen and phosphorus loads. When flow data were available but nutrient-concentration data were missing or incomplete, typical pollutant-concentration values of total nitrogen and total phosphorus were used to estimate load. In developing typical pollutant-concentration values, the major factors assumed to influence wastewater nutrient-concentration variability were the size of the discharger (the amount of flow), the season during which discharge occurred, and the Standard Industrial Classification code of the discharger. One insight gained from this study is that in order to gain access to flow, concentration, and location data, close communication and collaboration are required with the agencies that collect and manage the data. In addition, the accuracy and usefulness of the load estimates depend on the willingness of the states and the U.S. Environmental Protection Agency to provide guidance and review for at least a subset of the load estimates that may be problematic.
Daniels, Alan H; Paller, David J; Koruprolu, Sarath; Palumbo, Mark A; Crisco, Joseph J
2013-01-01
Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions.
Daniels, Alan H.; Paller, David J.; Koruprolu, Sarath; Palumbo, Mark A.; Crisco, Joseph J.
2013-01-01
Background Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. Methods Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. Results The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). Conclusions Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions. PMID:23451222
Hubbard, L.; Kolpin, D.W.; Kalkhoff, S.J.; Robertson, Dale M.
2011-01-01
A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.
Hubbard, L; Kolpin, D W; Kalkhoff, S J; Robertson, D M
2011-01-01
A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.
Zhang, Ming-Kui; Wang, Yang; Huang, Chao
2011-12-01
By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss of dissolved organic N was related not only to N application rate, but also to soil total N and organic carbon. The runoff loss of NH4(+)-N was mainly related to soil available NH4(+)-N, but not related to N application rate. The runoff losses of total P and particulate P were related to both P application rate and soil available P, while the runoff loss of water dissolved P was less related to P application rate but had relations to soil total P and available P.
Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.
Roinas, Georgios; Mant, Cath; Williams, John B
2014-01-01
Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.
Electrically heated particulate matter filter soot control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima
A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.
NASA Astrophysics Data System (ADS)
Ghenai, C.; Bettayeb, M.
2017-11-01
Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.
Power controller 28Vdc load switching (N. O. SPST). Final report, 31 August 1977-21 January 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMackin, J.B.
1980-01-21
A solid state power controller has been designed in four ratings to switch 28Vdc power to selected loads upon remote command. The four ratings trip out at currents of 10, 5, 2 and 1/2 amps. The design allows for wide variations in load and supply voltage and will not trip out on short load transients of up to 1000% of rated load current. In case of failure of the controller circuitry, an internal fuse protects the load from excessive current. The control current which operates the controller also provides a sensing function so that the state of the controller canmore » be determined remotely. The controllers are designed to operate over a case temperature range of -54 C to 120 C. A quantity of 100 units have been fabricated, tested, and supplied to the Navy.« less
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)
2002-01-01
The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.
Volleyball and Basketball Enhanced Bone Mass in Prepubescent Boys.
Zouch, Mohamed; Chaari, Hamada; Zribi, Anis; Bouajina, Elyès; Vico, Laurence; Alexandre, Christian; Zaouali, Monia; Ben Nasr, Hela; Masmoudi, Liwa; Tabka, Zouhair
2016-01-01
The aim of this study was to examine the effect of volleyball and basketball practice on bone acquisition and to determine which of these 2 high-impact sports is more osteogenic in prepubertal period. We investigated 170 boys (aged 10-12 yr, Tanner stage I): 50 volleyball players (VB), 50 basketball players (BB), and 70 controls. Bone mineral content (BMC, g) and bone area (BA, cm(2)) were measured by dual-energy X-ray absorptiometry at different sites. We found that, both VB and BB have a higher BMC at whole body and most weight-bearing and nonweight-bearing sites than controls, except the BMC in head which was lower in VB and BB than controls. Moreover, only VB exhibited greater BMC in right and left ultra-distal radius than controls. No significant differences were observed between the 3 groups in lumbar spine, femoral neck, and left third D radius BMC. Athletes also exhibited a higher BA in whole body, limbs, lumbar spine, and femoral region than controls. In addition, they have a similar BA in head and left third D radius with controls. The VB exhibited a greater BA in most radius region than controls and a greater femoral neck BA than BB. A significant positive correlation was reported between total lean mass and both BMC and BA in whole body, lumbar spine, total hip, and right whole radius among VB and BB. In summary, we suggest that volleyball and basketball have an osteogenic effect BMC and BA in loaded sites in prepubescent boys. The increased bone mass induced by both volleyball and basketball training in the stressed sites was associated to a decreased skull BMC. Moreover, volleyball practice produces a more sensitive mechanical stress in loaded bones than basketball. This effect seems translated by femoral neck expansion. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan
2015-07-01
Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source composition of TP (38.1 %) is rural life; the maximum contribution rates of TN and TP in Baota district are 36.26 and 39.26 %, respectively. Results may provide data support for NPS pollution prevention and control in the loess hilly and gully region and also provide scientific reference for the protection of ecological environment of the Loess Plateau in northern Shaanxi.
Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.
2011-01-01
We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
14 CFR 23.415 - Ground gust conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and System Loads § 23.415 Ground gust conditions. (a) The control system must be investigated as... control system for ground gust loads is not required by paragraph (a)(2) of this section, but the applicant elects to design a part of the control system of these loads, these loads need only be carried...
López-Rodríguez, Sandra; Fernández de-Las-Peñas, César; Alburquerque-Sendín, Francisco; Rodríguez-Blanco, Cleofás; Palomeque-del-Cerro, Luis
2007-01-01
This study assessed the immediate effects of talocrural joint manipulation on stabilometric and baropodometric outcomes in patients with grade II ankle sprain. Fifty-two field hockey players (35 men and 17 women) between 18 and 40 years old (mean = 22.5 years, SD = 3.6 years) were included in this study. A simple blind, intrapatient, placebo-controlled, and repeated-measures study was carried out. All the patients underwent a baropodometric study performed with a Foot Work force platform (4 times; pre-post placebo group and pre-post intervention group). The sample was subjected to two techniques of manipulative treatment: (a) talocrural joint manipulation and (b) posterior gliding manipulation over the talus. In a second instance, placebo manipulation was applied. Unilateral analysis of variance and multivariate analysis of variance were used for statistical analysis. The results in the intervention group revealed significant differences in the percentage of posterior load on the foot (P = .015) and the percentage of bilateral anterior load (P = .02) before and after the manipulation. The placebo group did not show any change in any of the variables except for area (P = .045). Intergroup comparison revealed statistically significant differences in the increase in percentage of posterior load on the manipulated foot, percentage of bilateral posterior load, percentage of anterior load on the manipulated foot, and percentage of bilateral anterior load (with the exception of the total load on the foot). The application of caudal talocrural joint manipulation, as compared with placebo manipulation, in athletic patients with grade II ankle sprain redistributed the load supports at the level of the foot.
Inaccuracy of a physical strain trainer for the monitoring of partial weight bearing.
Pauser, Johannes; Jendrissek, Andreas; Swoboda, Bernd; Gelse, Kolja; Carl, Hans-Dieter
2011-11-01
To investigate the use of a physical strain trainer for the monitoring of partial weight bearing. Case series with healthy volunteers. Orthopedic clinic. Healthy volunteers (N=10) with no history of foot complaints. Volunteers were taught to limit weight bearing to 10% body weight (BW) and 50% BW, monitored by a physical strain trainer. The parameters peak pressure, maximum force, force-time integral, and pressure-time integral were assessed by dynamic pedobarography when volunteers walked with full BW (condition 1), 50% BW (condition 2), and 10% BW (condition 3). With 10% BW (condition 3), forces with normative gait (condition 1) were statistically significantly reduced under the hindfoot where the physical strain trainer is placed. All pedobarographic parameters were, however, exceeded when the total foot was measured. A limitation to 10% BW with the physical strain trainer (condition 3) was equal to a bisection of peak pressure and maximum force for the total foot with normative gait (condition 1). Halved BW (condition 2) left a remaining mean 82% of peak pressure and mean 59% of maximum force from full BW (condition 1). The concept of controlling partial weight bearing with the hindfoot-addressing device does not represent complete foot loading. Such devices may be preferably applied in cases when the hindfoot in particular must be off-loaded. Other training devices (eg, biofeedback soles) that monitor forces of the total foot have to be used to control partial weight bearing of the lower limb accurately. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Zhanguang; Zhou Xuefei; Zhang Yalei, E-mail: zhangyalei2003@163.com
Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5more » kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.« less
NASA Astrophysics Data System (ADS)
Nizamutdinova, T.; Mukhlynin, N.
2017-06-01
A significant increasing energy efficiency of the full cycle of production, transmission and distribution of electricity in grids should be based on the management of separate consumers of electricity. The existing energy supply systems based on the concept of «smart things» do not allow to identify the technical structure of the electricity consumption in the load nodes from the grid side. It makes solving the tasks of energy efficiency more difficult. To solve this problem, the use of Wavelet transform to create a mathematical tool for monitoring the load composition in the nodes of the distribution grids of 6-10 kV, 0.4 kV is proposed in this paper. The authors have created a unique wavelet based functions for some consumers, based on their current consumption graphs of these power consumers. Possibility of determination of the characteristics of individual consumers of electricity in total nodal charts of load is shown in the test case. In future, creation of a unified technical and informational model of load control will allow to solve the problem of increasing the economic efficiency of not only certain consumers, but also the entire power supply system as a whole.
Laser drive development for the APS Dynamic Compression Sector
NASA Astrophysics Data System (ADS)
Lagrange, Thomas; Swift, Damian; Reed, Bryan; Bernier, Joel; Kumar, Mukul; Hawreliak, James; Eggert, Jon; Dixit, Sham; Collins, Gilbert
2013-06-01
The Dynamic Compression Sector (DCS) at the APS synchrotron offers unprecedented possibilities for x-ray diffraction and scattering measurements in-situ during dynamic loading, including single-shot data collection with x-ray energies high enough (tens of kV) to study high-Z samples in transmission as well as reflection. Dynamic loading induced by laser ablation is an important component of load generation, as the duration, strain rate, and pressure can be controlled via the energy, spot size, and pulse shape. Using radiation hydrodynamics simulations, validated by experiments at several laser facilities, we have investigated the relationship between irradiance history and pressure for ablative loads designed to induce shock and ramp loading in the nanosecond to microsecond range, and including free ablation and also ablation confined by a transparent substrate. We have investigated the effects of lateral release, which constrains the minimum diameter of the focal spot for a given drive duration. In this way, we are able to relate the desired drive conditions to the total laser energy needed, which dictates the laser technologies suitable for a given type of experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Microleakage Evaluation at Implant-Abutment Interface Using Radiotracer Technique
Siadat, Hakimeh; Arshad, Mahnaz; Mahgoli, Hossein-Ali; Fallahi, Babak
2016-01-01
Objectives: Microbial leakage through the implant-abutment (I-A) interface results in bacterial colonization in two-piece implants. The aim of this study was to compare microleakage rates in three types of Replace abutments namely Snappy, GoldAdapt, and customized ceramic using radiotracing. Materials and Methods: Three groups, one for each abutment type, of five implants and one positive and one negative control were considered (a total of 17 regular body implants). A torque of 35 N/cm was applied to the abutments. The samples were immersed in thallium 201 radioisotope solution for 24 hours to let the radiotracers leak through the I-A interface. Then, gamma photons received from the radiotracers were counted using a gamma counter device. In the next phase, cyclic fatigue loading process was applied followed by the same steps of immersion in the radioactive solution and photon counting. Results: Rate of microleakage significantly increased (P≤0.05) in all three types of abutments (i.e. Snappy, GoldAdapt, and ceramic) after cyclic loading. No statistically significant differences were observed between abutment types after cyclic loading. Conclusions: Microleakage significantly increases after cyclic loading in all three Replace abutments (GoldAdapt, Snappy, ceramic). Lowest microleakage before and after cyclic loading was observed in GoldAdapt followed by Snappy and ceramic. PMID:28392814
Nutrient Loading and Algal Response in West Thompson Lake, Thompson, Connecticut, 2003-2005
Morrison, Jonathan; Colombo, Michael J.
2008-01-01
Water quality and nutrient loads were characterized for parts of the Quinebaug River and West Thompson Lake in northeastern Connecticut during 2003 to 2005. The West Thompson Lake watershed is a mainly forested watershed that receives treated municipal wastewater from several point sources in Massachusetts. The lake is a flood-control reservoir formed in 1966 by impoundment of the Quinebaug River. Median concentrations of total phosphorus in two inflow (upstream) and one outflow (downstream) sampling stations on the Quinebaug River were higher than the nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) for rivers and streams in aggregate Ecoregion XIV. In general, concentrations of total phosphorus in West Thompson Lake also were above the nutrient criteria recommended by USEPA for lakes and impoundments in aggregate Ecoregion XIV. The trophic status of West Thompson Lake has changed since 1995 from a hypereutrophic lake to a eutrophic lake; however, the lake still has large algal blooms. These blooms are predominated by blue-green algae, with chlorophyll-a concentrations of more than 30 micrograms per liter and algal cell counts as high as 73,000 cells/mL. Water samples collected during the summer of 2005 identified phosphorus as the primary limiting nutrient early in the season, but algal growth is probably co-limited by phosphorus and nitrogen later in the season. Lake-bottom sediments were collected from several areas throughout the lake and ranged in thickness from less than 1 foot (ft) to more than 3 ft. Concentrations of phosphorus in sediments differed throughout the lake; the highest values were found in the middle of the lake. Concentrations of total phosphorus also increased from an average 1,800 milligrams per kilogram (mg/kg) in the upper layers of sediment to more than 6,000 mg/kg at depth in the sediment. Annual, seasonal, and monthly loads and yields of nutrients were calculated for the three sampling locations on the Quinebaug River to develop a nutrient mass-balance model (budget) for West Thompson Lake. The average annual yields of total phosphorus during 2000 to 2005 were 115 pounds per square mile per year (lb/mi2/yr) at Quinebaug (inflow station), 116 lb/mi2/yr at Red Bridge Road (inflow station), and 97.9 lb/mi2/yr at West Thompson (outflow station). The 18-percent decrease in the average annual yield of total phosphorus between the inflow station at Red Bridge Road and the outlet of West Thompson Lake at West Thompson indicates that a significant part of the phosphorus load is retained in the lake. Annual yields of total phosphorus at Quinebaug have decreased significantly since the 1980s, from 362 lb/mi2/yr (for 1981-1990) to 115 lb/mi2/yr (1996-2005). The annual net export of phosphorus in West Thompson Lake during water years 2000 to 2005 ranged from -36 percent (2005) to 1 percent (2002) of the incoming load. Seasonal mass-balance data for total phosphorus during the summers of 2000 to 2003, when streamflow was at or lower than normal, indicated a net export of phosphorus that ranged from 3.4 percent (2003) to 30.7 percent (2002) of the incoming load. During the summer of 2004, however, streamflows were much higher than normal, and there was a negative export of phosphorus in West Thompson Lake of -3.9 percent. The annual net export of nitrogen in West Thompson Lake during water years 2000 to 2005 ranged from -5 percent (2002) to 4 percent (2001) of the incoming load. No clear pattern was evident to relate total nitrogen export to seasonal variables or runoff. Removal of phosphorus during the summer by wastewater-treatment plants (WWTPs) in Massachusetts reduces the concentration and load of total phosphorus entering West Thompson Lake in the summer; however, the large amount of phosphorus retained in the lake during the other seasons, in addition to the phosphorus stored in the lake-bottom sediments, may become available to fuel algal blooms in the lake
Wireless power charging using point of load controlled high frequency power converters
Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.
2015-10-13
An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.
Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.
Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D
2010-02-01
Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an increase in nitrogen dioxide concentrations at high-load modes.
Jackson, Simon A; Kleitman, Sabina; Aidman, Eugene
2014-01-01
The present study investigated the effects of low cognitive workload and the absence of arousal induced via external physical stimulation (motion) on practice-related improvements in executive (inhibitory) control, short-term memory, metacognitive monitoring and decision making. A total of 70 office workers performed low and moderately engaging passenger tasks in two successive 20-minute simulated drives and repeated a battery of decision making and inhibitory control tests three times—before, between and after these drives. For half the participants, visual simulation was synchronised with (moderately arousing) motion generated through LAnd Motion Platform, with vibration levels corresponding to a well-maintained unsealed road. The other half performed the same simulated drive without motion. Participants' performance significantly improved over the three test blocks, which is indicative of typical practice effects. The magnitude of these improvements was the highest when both motion and moderate cognitive load were present. The same effects declined either in the absence of motion (low arousal) or following a low cognitive workload task, thus suggesting two distinct pathways through which practice-related improvements in cognitive performance may be hampered. Practice, however, degraded certain aspects of metacognitive performance, as participants became less likely to detect incorrect decisions in the decision-making test with each subsequent test block. Implications include consideration of low cognitive load and arousal as factors responsible for performance decline and targets for the development of interventions/strategies in low load/arousal conditions such as autonomous vehicle operations and highway driving.
Theoretical study of hull-rotor aerodynamic interference on semibuoyant vehicles
NASA Technical Reports Server (NTRS)
Spangler, S. B.; Smith, C. A.
1978-01-01
Analytical methods are developed to predict the pressure distribution and overall loads on the hulls of airships which have close coupled, relatively large and/or high disk loading propulsors for attitude control, station keeping, and partial support of total weight as well as provision of thrust in cruise. The methods comprise a surface-singularity, potential-flow model for the hull and lifting surfaces (such as tails) and a rotor model which calculates the velocity induced by the rotor and its wake at points adjacent to the wake. Use of these two models provides an inviscid pressure distribution on the hull with rotor interference. A boundary layer separation prediction method is used to locate separation on the hull, and a wake pressure is imposed on the separated region for purposes of calculating hull loads. Results of calculations are shown to illustrate various cases of rotor-hull interference and comparisons with small scale data are made to evaluate the method.
Code of Federal Regulations, 2014 CFR
2014-01-01
... method or AEDM means, with respect to an electric motor, a method of calculating the total power loss and average full load efficiency. Average full load efficiency means the arithmetic mean of the full load efficiencies of a population of electric motors of duplicate design, where the full load efficiency of each...
14 CFR 133.43 - Structures and design.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Weight and center of gravity— (1) Weight. The total weight of the rotorcraft-load combination must not exceed the total weight approved for the rotorcraft during its type certification. (2) Center of gravity. The location of the center of gravity must, for all loading conditions, be within the range...
14 CFR 133.43 - Structures and design.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Weight and center of gravity— (1) Weight. The total weight of the rotorcraft-load combination must not exceed the total weight approved for the rotorcraft during its type certification. (2) Center of gravity. The location of the center of gravity must, for all loading conditions, be within the range...
14 CFR 133.43 - Structures and design.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Weight and center of gravity— (1) Weight. The total weight of the rotorcraft-load combination must not exceed the total weight approved for the rotorcraft during its type certification. (2) Center of gravity. The location of the center of gravity must, for all loading conditions, be within the range...
14 CFR 133.43 - Structures and design.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Weight and center of gravity— (1) Weight. The total weight of the rotorcraft-load combination must not exceed the total weight approved for the rotorcraft during its type certification. (2) Center of gravity. The location of the center of gravity must, for all loading conditions, be within the range...
Huiliang, Wang; Zening, Wu; Caihong, Hu; Xinzhong, Du
2015-09-01
Nonpoint source (NPS) pollution is considered as the main reason for water quality deterioration; thus, to quantify the NPS loads reliably is the key to implement watershed management practices. In this study, water quality and NPS loads from a watershed with limited data availability were studied in a mountainous area in China. Instantaneous water discharge was measured through the velocity-area method, and samples were taken for water quality analysis in both flood and nonflood days in 2010. The streamflow simulated by Hydrological Simulation Program-Fortran (HSPF) from 1995 to 2013 and a regression model were used to estimate total annual loads of various water quality parameters. The concentrations of total phosphorus (TP) and total nitrogen (TN) were much higher during the flood seasons, but the concentrations of ammonia nitrogen (NH3-N) and nitrate nitrogen (NO3-N) were lower during the flood seasons. Nevertheless, only TP concentration was positively correlated with the flow rate. The fluctuation of annual load from this watershed was significant. Statistical results indicated the significant contribution of pollutant fluxes during flood seasons to annual fluxes. The loads of TP, TN, NH3-N, and NO3-N in the flood seasons were accounted for 58-85, 60-82, 63-88, 64-81% of the total annual loads, respectively. This study presented a new method for estimation of the water and NPS loads in the watershed with limited data availability, which simplified data collection to watershed model and overcame the scale problem of field experiment method.
NASA Astrophysics Data System (ADS)
Xu, Jun
Topic 1. An Optimization-Based Approach for Facility Energy Management with Uncertainties. Effective energy management for facilities is becoming increasingly important in view of the rising energy costs, the government mandate on the reduction of energy consumption, and the human comfort requirements. This part of dissertation presents a daily energy management formulation and the corresponding solution methodology for HVAC systems. The problem is to minimize the energy and demand costs through the control of HVAC units while satisfying human comfort, system dynamics, load limit constraints, and other requirements. The problem is difficult in view of the fact that the system is nonlinear, time-varying, building-dependent, and uncertain; and that the direct control of a large number of HVAC components is difficult. In this work, HVAC setpoints are the control variables developed on top of a Direct Digital Control (DDC) system. A method that combines Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics is developed to predict the system dynamics and uncontrollable load, and to optimize the setpoints. Numerical testing and prototype implementation results show that our method can effectively reduce total costs, manage uncertainties, and shed the load, is computationally efficient. Furthermore, it is significantly better than existing methods. Topic 2. Power Portfolio Optimization in Deregulated Electricity Markets with Risk Management. In a deregulated electric power system, multiple markets of different time scales exist with various power supply instruments. A load serving entity (LSE) has multiple choices from these instruments to meet its load obligations. In view of the large amount of power involved, the complex market structure, risks in such volatile markets, stringent constraints to be satisfied, and the long time horizon, a power portfolio optimization problem is of critical importance but difficulty for an LSE to serve the load, maximize its profit, and manage risks. In this topic, a mid-term power portfolio optimization problem with risk management is presented. Key instruments are considered, risk terms based on semi-variances of spot market transactions are introduced, and penalties on load obligation violations are added to the objective function to improve algorithm convergence and constraint satisfaction. To overcome the inseparability of the resulting problem, a surrogate optimization framework is developed enabling a decomposition and coordination approach. Numerical testing results show that our method effectively provides decisions for various instruments to maximize profit, manage risks, and is computationally efficient.
Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1975-01-01
The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.
Modeling Aircraft Wing Loads from Flight Data Using Neural Networks
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Dibley, Ryan P.
2003-01-01
Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.
Juracek, Kyle E.
2011-01-01
Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.
Vargas-Bello-Pérez, E; Cancino-Padilla, N; Romero, J; Garnsworthy, P C
2016-11-01
Vegetable oils are used to increase energy density of dairy cow diets, although they can provoke changes in rumen bacteria populations and have repercussions on the biohydrogenation process. The aim of this study was to evaluate the effect of two sources of dietary lipids: soybean oil (SO, an unsaturated source) and hydrogenated palm oil (HPO, a saturated source) on bacterial populations and the fatty acid profile of ruminal digesta. Three non-lactating Holstein cows fitted with ruminal cannulae were used in a 3×3 Latin square design with three periods consisting of 21 days. Dietary treatments consisted of a basal diet (Control, no fat supplement) and the basal diet supplemented with SO (2.7% of dry matter (DM)) or HPO (2.7% of DM). Ruminal digesta pH, NH3-N and volatile fatty acids were not affected by dietary treatments. Compared with control and HPO, total bacteria measured as copies of 16S ribosomal DNA/ml by quantitative PCR was decreased (P<0.05) by SO. Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica loads were not affected by dietary treatments. In contrast, compared with control, load of Prevotella bryantii was increased (P<0.05) with HPO diet. Compared with control and SO, HPO decreased (P<0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P<0.05) in ruminal digesta by SO compared with control and HPO. In conclusion, supplementation of SO or HPO do not affect ruminal fermentation parameters, whereas HPO can increase load of ruminal P. bryantii. Also, results observed in our targeted bacteria may have depended on the saturation degree of dietary oils.
Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.
Saxby, David John; Bryant, Adam L; Modenese, Luca; Gerus, Pauline; Killen, Bryce A; Konrath, Jason; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G
2016-11-01
To investigate differences in anterior cruciate ligament-reconstructed (ACLR) and healthy individuals in terms of the magnitude of the tibiofemoral contact forces, as well as the relative muscle and external load contributions to those contact forces, during walking, running, and sidestepping gait tasks. A computational EMG-driven neuromusculoskeletal model was used to estimate the muscle and tibiofemoral contact forces in those with single-bundle combined semitendinosus and gracilis tendon autograft ACLR (n = 104, 29.7 ± 6.5 yr, 78.1 ± 14.4 kg) and healthy controls (n = 60, 27.5 ± 5.4 yr, 67.8 ± 14.0 kg) during walking (1.4 ± 0.2 m·s), running (4.5 ± 0.5 m·s) and sidestepping (3.7 ± 0.6 m·s). Within the computational model, the semitendinosus of ACLR participants was adjusted to account for literature reported strength deficits and morphological changes subsequent to autograft harvesting. ACLR had smaller maximum total and medial tibiofemoral contact forces (~80% of control values, scaled to bodyweight) during the different gait tasks. Compared with controls, ACLR were found to have a smaller maximum knee flexion moment, which explained the smaller tibiofemoral contact forces. Similarly, compared with controls, ACLR had both a smaller maximum knee flexion angle and knee flexion excursion during running and sidestepping, which may have concentrated the articular contact forces to smaller areas within the tibiofemoral joint. Mean relative muscle and external load contributions to the tibiofemoral contact forces were not significantly different between ACLR and controls. ACLR had lower bodyweight-scaled tibiofemoral contact forces during walking, running, and sidestepping, likely due to lower knee flexion moments and straighter knee during the different gait tasks. The relative contributions of muscles and external loads to the contact forces were equivalent between groups.
Developement of watershed and reference loads for a TMDL in Charleston Harbor System, SC.
Silong Lu; Devenra Amatya; Jamie Miller
2005-01-01
It is essential to determine point and non-point source loads and their distribution for development of a dissolved oxygen (DO) Total Maximum Daily Load (TMDL). A series of models were developed to assess sources of oxygen-demand loadings in Charleston Harbor, South Carolina. These oxygen-demand loadings included nutrients and BOD. Stream flow and nutrient...
Intermediate load-center photovoltaic application experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, E. L.
1980-01-01
A total of nine intermediate load-center photovoltaic systems were carried into the construction phase this year. These nine systems range in size from 20 to 225 kW/sub p/ electrical output and total almost 1 MW/sub p/. They are being installed in a diverse set of applications and locations and represent the bulk of the photovoltaic initial system evaluation experiments (ISEE) for the intermediate load-center sector. Each of these experiments are briefly described and the status of the construction phase is given for each project.
Hydrologic data for the Big Spring basin, Clayton County, Iowa, water year 1990
Kalkhoff, Stephen J.; Kuzniar, R.L.; Kolpin, D.; Harvey, C.A.
1992-01-01
During a low-flow seepage study, May 29 and 30,1990, the measured discharge lost by streams in the basin was 8.56 cubic feet per second, the measured dissolved nitrogen load lost was 0.29 ton per day, and the measured atrazine load lost was 0.028 pound per day. The total measured discharge and total dissolved nitrogen load leaving the basin in streams were 3.63 cubic feet per second and about 0.04 ton per day, respectively.
Hydrologic data for the Big Spring basin, Clayton County, Iowa; water year 1989
Kalkhoff, S.J.; Kuzniar, R.L.
1991-01-01
During a baseflow seepage study, August 16 and 17, the measured discharge lost by streams in the basin was 2.82 cubic feet per second, the measured dissolved nitrogen load lost was 80 pounds per day, and the measured atrazine load lost was 0.002 pound per day. The total measured discharge and total dissolved nitrogen load leaving the basin in streams was 0.07 cubic feet per second and less than 20 pounds per day, respectively.
Fatigue evaluation of composite-reinforced, integrally stiffened metal panels
NASA Technical Reports Server (NTRS)
Dumesnil, C. E.
1973-01-01
The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.
Clausen, Brian; Holsgaard-Larsen, Anders; Søndergaard, Jens; Christensen, Robin; Andriacchi, Thomas P; Roos, Ewa M
2014-11-15
Knee osteoarthritis (OA) is a mechanically driven disease, and it is suggested that medial tibiofemoral knee-joint load increases with pharmacologic pain relief, indicating that pharmacologic pain relief may be positively associated with disease progression. Treatment modalities that can both relieve pain and reduce knee-joint load would be preferable. The knee-joint load is influenced by functional alignment of the trunk, pelvis, and lower-limb segments with respect to the knee, as well as the ground-reaction force generated during movement. Neuromuscular exercise can influence knee load and decrease knee pain. It includes exercises to improve balance, muscle activation, functional alignment, and functional knee stability. The primary objective of this randomized controlled trial (RCT) is to investigate the efficacy of a NEuroMuscular EXercise (NEMEX) therapy program, compared with optimized analgesics and antiinflammatory drug use, on the measures of knee-joint load in people with mild to moderate medial tibiofemoral knee osteoarthritis. One hundred men and women with mild to moderate medial knee osteoarthritis will be recruited from general medical practices and randomly allocated (1:1) to one of two 8-week treatments, either (a) NEMEX therapy twice a week or (b) information on the recommended use of analgesics and antiinflammatory drugs (acetaminophen and oral NSAIDs) via a pamphlet and video materials. The primary outcome is change in knee load during walking (the Knee Index, a composite score of the first external peak total reaction moment on the knee joint from all three planes based on 3D movement analysis) after 8 weeks of intervention. Secondary outcomes include changes in the external peak knee-adduction moment and impulse and functional performance measures, in addition to changes in self-reported pain, function, health status, and quality of life. These findings will help determine whether 8 weeks of neuromuscular exercise is superior to optimized use of analgesics and antiinflammatory drugs regarding knee-joint load, pain and physical function in people with mild to moderate knee osteoarthritis. ClinicalTrials.gov Identifier: NCT01638962 (July 3, 2012).
A servo controlled gradient loading triaxial model test system for deep-buried cavern.
Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai
2015-10-01
A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.
Fructose malabsorption in people with and without gout: A case-control study.
Batt, Caitlin; Fanning, Niamh; Drake, Jill; Frampton, Christopher; Gearry, Richard B; Stamp, Lisa K
2017-10-01
Higher fructose intake has been associated with hyperuricaemia and gout. Some individuals malabsorb fructose in the small intestine. The aims of this study were to determine the rate of fructose malabsorption and the effects of gout and fructose malabsorption on serum urate in people with and without gout. A total of 100 people with gout (cases) were age and gender matched with one control without gout. After a low fructose diet, fructose malabsorption was measured using a hydrogen and methane breath test with a 35g fructose load. In a subgroup of 35 cases and 35 controls, serum urate response to the fructose load over 240 minutes was measured. There was no significant difference in the rate of fructose malabsorption between cases and controls (48% vs. 52%; p = 0.67). Cases had a significantly lower mean (SEM) serum urate cumulative incremental concentration from baseline-240 minutes (iAUC 0-240 ) compared to controls 0.97 (0.56) vs. 4.78 (0.55); p < 0.001. C max was significantly lower in cases compared to controls [0.38 (0.003) vs. 0.40 (0.003); p < 0.001]. 95% of cases were receiving allopurinol. There was no significant difference between iAUC 0-240 or C max for malabsorbers compared to normal absorbers irrespective of case-control status. The mean (SEM) increase in serum urate between baseline and 30 minutes was 0.04 (0.004)mmol/l in the controls compared to 0.009 (0.002) in the cases (p < 0.001). The rates of fructose malabsorption are similar in people with and without gout. Allopurinol inhibits the increase in serum urate induced by a fructose load suggesting that people with gout receiving allopurinol may not need to restrict dietary intake of fructose. Copyright © 2017 Elsevier Inc. All rights reserved.
Ryberg, Karen R.
2006-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.
Does adding antibiotics to cement reduce the need for early revision in total knee arthroplasty?
Bohm, Eric; Zhu, Naisu; Gu, Jing; de Guia, Nicole; Linton, Cassandra; Anderson, Tammy; Paton, David; Dunbar, Michael
2014-01-01
There is considerable debate about whether antibiotic-loaded bone cement should be used for fixation of TKAs. While antibiotics offer the theoretical benefit of lowering early revision due to infection, they may weaken the cement and thus increase the likelihood of aseptic loosening, perhaps resulting in a higher revision rate. We (1) compared the frequency of early knee revision arthroplasty in patients treated with antibiotic-loaded or non-antibiotic-loaded cement for initial fixation, (2) determined effects of age, sex, comorbidities, and surgeons' antibiotic-loaded cement usage patterns on revision rate, and (3) compared causes of revision (aseptic or septic) between groups. Our study sample was taken from the Canadian Joint Replacement Registry and Canada's Hospital Morbidity Database and included cemented TKAs performed between April 1, 2003, and March 31, 2008, including 20,016 TKAs inserted with non-antibiotic-loaded cement and 16,665 inserted with antibiotic-loaded cement. Chi-square test was used to compare the frequency of early revisions between groups. Cox regression modeling was used to determine whether revision rate would change by age, sex, comorbidities, or use of antibiotic-loaded cement. Similar Cox regression modeling was used to compare cause of revision between groups. Two-year revision rates were similar between the groups treated with non-antibiotic-loaded cement and antibiotic-loaded cement (1.40% versus 1.51%, p = 0.41). When controlling for age, sex, comorbidities, diabetes, and surgeons' antibiotic-loaded cement usage patterns, the revision risk likewise was similar between groups. Revision rates for infection were similar between groups; however, there were more revisions for aseptic loosening in the group treated with non-antibiotic-loaded cement (p = 0.02). The use of antibiotic-loaded cement in TKAs performed for osteoarthritis has no clinically significant effect on reducing revision within 2 years in patients who received perioperative antibiotics. Longer followup and confirmation of these findings with other national registries are warranted.
Morelli, Moreno; Poitras, Philippe; Grimes, Valentine; Backman, David; Dervin, Geoffrey
2007-04-01
The purpose of this study was to determine what characteristics of fixation devices used in the treatment of osteochondritis dissecans (OCD) contribute to improved stability to resist shear loading. An OCD model was designed using rigid polyurethane foam. Each specimen consisted of two components, an osteochondral fragment and a corresponding defect. A total of 40 specimens were prepared and assigned to one of four groups: control (no extrinsic stabilizer); two 2-mm-diameter Kirschner wires (K-wires), 40 mm in length; one threaded washer and a 28-mm screw; and one threaded washer and a 38 mm screw. Each specimen was mounted onto an Iosipescu shear test fixture and subjected to shear loads at a pseudo-static displacement rate of 0.075 mm/s. All groups demonstrated some stability; controls were significantly less stable than all other groups. The group with the threaded washer and 38-mm screw demonstrated the greatest stability (p < 0.001), and no difference was noted between the K-wire and 28-mm screw groups. These results suggest that, in this OCD model, friction conferred some intrinsic stability to resist loads in shear. However, stability was improved with the use of long implants that compressed the fragments together.