Chan, T. L.; Greenawalt, John W.; Pedersen, Peter L.
1970-01-01
Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol. PMID:4254678
Cartwright, I J; Higgins, J A
1992-01-01
We have developed a method for measurement of apolipoprotein (apo) B-48 and apo B-100 in blood and subcellular fractions of rat liver based on SDS/PAGE followed by quantitative immunoblotting using 125I-Protein A. Standard curves were prepared in each assay using apo B prepared from total rat lipoproteins by extraction with tetramethylurea. Subcellular fractions (rough and smooth endoplasmic reticulum and Golgi fractions) were prepared from rat liver and separated into membrane and cisternal-content fractions. For quantification, membrane fractions were solubilized in Triton X-100, and the apo B was immunoprecipitated before separation by SDS/PAGE and immunoblotting. Content fractions were concentrated by ultrafiltration and separated by SDS/PAGE without immunoprecipitation. Quantification of apo B in subcellular fractions and detection of apo B by immunoblotting yielded consistent results. In all fractions apo B-48 was the major form, accounting for approximately three-quarters of the total apo B. By using marker enzymes as internal standards, it was calculated that all of the apo B was recovered in the endoplasmic reticulum and Golgi fractions, with approximately 80% of each form of apo B in the endoplasmic reticulum. More than 90% of the apo B of the rough- and smooth-endoplasmic-reticulum fractions was membrane-bound, whereas approx. 33 and 15% of the apo B of the cis-enriched Golgi fractions and trans-enriched Golgi fractions respectively were membrane-bound. Images Fig. 1. Fig. 3. Fig. 4. PMID:1637294
Stekhoven, Daniel J; Omasits, Ulrich; Quebatte, Maxime; Dehio, Christoph; Ahrens, Christian H
2014-03-17
Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral inner membrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion. The work presented here describes the first prokaryotic proteome-wide subcellular localization (SCL) dataset for the emerging pathogen B. henselae (Bhen). The study indicates that suitable subcellular fractionation experiments combined with straight-forward computational analysis approaches assessing the proportion of spectral counts observed in different subcellular fractions are powerful for determining the predominant SCL of a large percentage of the experimentally observed proteins. This includes numerous cases where in silico prediction methods do not provide any prediction. Avoiding a treatment with harsh conditions, cytoplasmic proteins tend to co-fractionate with proteins of the inner membrane fraction, indicative of close functional interactions. The spectral count proportion (SCP) of total membrane versus cytoplasmic fractions allowed us to obtain a good indication about the relative proximity of individual protein complex members to the inner membrane. Using principal component analysis and k-nearest neighbor approaches, we were able to extend the percentage of proteins with a predominant experimental localization to over 90% of all expressed proteins and identified a set of at least 74 outer membrane (OM) proteins. In general, OM proteins represent a rich source of candidates for the development of urgently needed new therapeutics in combat of resurgence of infectious disease and multi-drug resistant bacteria. Finally, by comparing the data from two infection biology relevant conditions, we conceptually explore methods to identify and visualize potential candidates that may partially change their SCL in these different conditions. The data are made available to researchers as a SCL compendium for Bhen and as an assistance in further improving in silico SCL prediction algorithms. Copyright © 2014 Elsevier B.V. All rights reserved.
COMPOSITION OF CELLULAR MEMBRANES IN THE PANCREAS OF THE GUINEA PIG
Meldolesi, J.; Jamieson, J. D.; Palade, G. E.
1971-01-01
The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to ∼20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant. PMID:5555573
Zhou, Yanting; Gao, Jing; Zhu, Hongwen; Xu, Jingjing; He, Han; Gu, Lei; Wang, Hui; Chen, Jie; Ma, Danjun; Zhou, Hu; Zheng, Jing
2018-02-20
Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≥ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stekhoven, Daniel J.; Omasits, Ulrich; Quebatte, Maxime
2014-03-01
Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled usmore » to distinguish cytoplasmic, peripheral innermembrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.« less
[Glutamate-binding membrane proteins from human platelets].
Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A
1991-09-01
Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.
Liu, Jie; Li, Jiding; Chen, Quan; Li, Xiaoduan
2018-04-01
Polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) composite membranes were fabricated and subsequently applied in ethanol recovery from an ethanol-water mixture by pervaporation (PV) using fractional condensation. The effects of feed temperature and feed flow velocity on the pervaporative properties of PDMS/PVDF composite membranes were investigated. Scanning electron microscopy (SEM) results showed that PDMS was coated uniformly on the surface of porous PVDF substrate, and the PDMS separation layer was dense with a thickness of 1.7 µm. Additionally, it was found that with increasing feed temperature, the total flux of the composite membrane increased, whereas the separation factor decreased. As the feed flow velocity increased, the total flux and separation factor increased. Besides, the permeate vapor was condensed by a two-stage fractional condenser maintained at different temperatures. The effects of the condensation conditions on fractions of ethanol-water vapor were studied to concentrate ethanol in product. The fractional condensers proved to be an effective way to enhance the separation efficiency. Under the optimum fractional condensation conditions, the second condenser showed a flux of 1,329 g/m 2 h and the separation factor was increased to 17.2. Furthermore, the long-term operation stability was verified, indicating that the PV system incorporating fractional condensation was a promising approach to separate ethanol from the ethanol-water mixture.
Green, Anita A.; Newell, Peter C.
1974-01-01
A procedure for the isolation and separation of three different subfractions of plasma membrane from the cellular slime mould Dictyostelium discoideum is described. The cells were disrupted by freeze-thawing in liquid N2 and plasma membranes were purified by equilibrium centrifugation in a sucrose gradient. The cell surface was labelled with radioactive iodide by using the lactoperoxidase iodination method. Alkaline phosphatase was identified as a plasma-membrane marker by its co-distribution with [125I]iodide. 5′-Nucleotidase, which has been widely described as a plasma-membrane marker enzyme in mammalian tissues, was not localized to any marked extent in D. discoideum plasma membrane. The isolated plasma membranes showed a 24-fold enrichment of alkaline phosphatase specific activity relative to the homogenate and a yield of 50% of the total plasma membranes. Determination of succinate dehydrogenase and NADPH–cytochrome c reductase activities indicated that the preparation contained 2% of the total mitochondria and 3% of the endoplasmic reticulum. When the plasma-membrane preparation was further disrupted in a tight-fitting homogenizer, three plasma-membrane subfractions of different densities were obtained by isopycnic centrifugation. The enrichment of alkaline phosphatase was greatest in the subfraction with the lowest density. This fraction was enriched 36-fold relative to the homogenate and contained 19% of the total alkaline phosphatase activity but only 0.08% of the succinate dehydrogenase activity and 0.34% of the NADPH–cytochrome c reductase activity. Electron microscopy of this fraction showed it to consist of smooth membrane vesicles with no recognizable contaminants. ImagesPLATE 1 PMID:4156170
Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.
Wang, Zhen; Schey, Kevin L
2015-12-01
Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.
Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells
Wang, Zhen; Schey, Kevin L.
2015-01-01
Purpose Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids—key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Methods Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. Results A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. Conclusions These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells. PMID:26747763
Shibuya, Masafumi; Sasaki, Kengo; Tanaka, Yasuhiro; Yasukawa, Masahiro; Takahashi, Tomoki; Kondo, Akihiko; Matsuyama, Hideto
2017-07-01
A membrane process combining nanofiltraion (NF) and forward osmosis (FO) was developed for the sugar concentration with the aim of high bio-ethanol production from the liquid fraction of rice straw. The commercial NF membrane, ESNA3, was more adequate for removal of fermentation inhibitors (such as acetic acid) than the FO membrane, whereas the commercial FO membrane, TFC-ES, was more adequate for concentration of the sugars than the NF membrane. The liquid fraction was subjected to the following process: NF concentration with water addition (NF (+H2O) )→enzymatic hydrolysis→FO concentration. This NF (+H2O) -FO hybrid process generated a total sugar content of 107g·L -1 . Xylose-assimilating S. cerevisiae produced 24g·L -1 ethanol from the liquid fraction that was diluted 1.5-fold and then concentrated by the NF (+H2O) -FO hybrid process. The NF (+H2O) -FO hybrid process has the potential for optimized ethanol production from pretreated lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oshima, Noriko; Morishima-Kawashima, Maho; Yamaguchi, Haruyasu; Yoshimura, Masahiro; Sugihara, Shiro; Khan, Karen; Games, Dora; Schenk, Dale; Ihara, Yasuo
2001-01-01
To learn more about the process of amyloid β-protein (Aβ) deposition in the brain, human prefrontal cortices were fractionated by sucrose density gradient centrifugation, and the Aβ content in each fraction was quantified by a two-site enzyme-linked immunosorbent assay. The fractionation protocol revealed two pools of insoluble Aβ. One corresponded to a low-density membrane domain; the other was primarily composed of extracellular Aβ deposits in those cases in which Aβ accumulated to significant levels. Aβ42 levels in the low-density membrane domain were proportional to the extent of total Aβ42 accumulation, which is known to correlate well with overall amyloid burden. In PDAPP mice that form senile plaques and accumulate Aβ in a similar manner to aging humans, Aβ42 accumulation in the low-density membrane domain also increased as Aβ deposition progressed with aging. These observations indicate that the Aβ42 associated with low-density membrane domains is tightly coupled with the process of extracellular Aβ deposition. PMID:11395399
A Biochemical and Morphological Study of Rat Liver Microsomes
Moulé, Y.; Rouiller, C.; Chauveau, J.
1960-01-01
Microsomes isolated by differential centrifugation from a rat liver homogenate in 0.88 M sucrose solution have been studied from the biochemical and morphological point of view. 1. Under these experimental conditions, the "total microsome" fraction was obtained by centrifuging the cytoplasmic extract free of nuclei and mitochondria, for 3 hours at 145,000 g. Morphologically, the total microsomes consist mainly of "rough-surfaced membranes" and "smooth" ones. 2. The total microsomes have been divided into 2 subfractions so that the 1st microsomal fraction contains the "rough" vesicles (2 hours centrifugation at 40,000 g) while the 2nd microsomal fraction consists essentially of smooth vesicles, free particles, and ferritin (centrifugation of the supernatant at 145,000 g for 3 hours). 3. By the action of 0.4 per cent sodium deoxycholate in 0.88 M sucrose, it was possible to obtain a pellet for each of the 2 fractions which consisted of dense particles, rich in RNA, poor in lipids, and which represented about 50 to 60 percent of the RNA and 10 to 15 per cent of the proteins. The results have been discussed taking into consideration the hypothesis of the presence of RNA in the membranes of microsomal vesicles. PMID:14424705
Failure of Lactoperoxidase to Iodinate Specifically the Plasma Membrane of Cucurbita Tissue Segments
Quail, Peter H.; Browning, Alan
1977-01-01
An attempt has been made to use lactoperoxidase-catalyzed iodination of excised Cucurbita hypocotyl hooks to monitor the distribution of plasma membrane fragments relative to that of phytochrome in particulate fractions from this tissue. Upon fractionation, the iodinated tissue yields a 20,000g pellet which contains 58% of the trichloroacetic acid-precipitable 125I at a specific radioactivity 12 times that of the proteins in the supernatant. On sucrose gradients, the labeled fraction has a mean isopycnic density of 1.15 g · cm−3. The distribution profile is distinct from that of the total particulate protein and does not coincide with either mitochondrial or endoplasmic reticulum markers. These observations satisfy operational criteria commonly accepted in other systems as indices of selective labeling of the cell surface. The sucrose gradient profiles of the phytochrome and 125I in the 20,000g pellets are noncoincident. In the absence of more direct evidence, this is readily interpreted to indicate a lack of association of the pigment with the plasma membrane. Autoradiographic analysis indicates, however, that the 125I is almost exclusively associated with an amorphous film (possibly phloem-exudate protein) overlying the cut cells at the point of prelabeling excision and along the outer physical surface of the hypocotyl cuticle. No evidence of plasma membrane labeling is apparent. The observed membrane-like behavior of the iodinated material upon cell fractionation is attributed to the preferential posthomogenization association of this material with a particular membrane fraction(s). These data indicate that in addition to the well recognized potential for spurious labeling of the internal cytoplasmic proteins of leaky cells, a further source of ambiguity in surface-labeling experiments should be considered. That is, the potential for labeling extracellular proteins of nonplasma membrane origin but with a capacity to become associated with membranes upon homogenization. Images PMID:16659933
Zakharova (Orlova), E I; Mukhin, E I
1994-01-01
Fractions of light and heavy synaptosomes were prepared from associative temporal area of cat brain, which were previously tested behaviorally for ability to solve the generalization, gnostic and abstraction tasks. The synaptic membrane subfractions and synaptoplasma fractions were isolated and the content of the total protein and of the demasked protein sulfhydryl groups (SH groups) was investigated spectrophotometrically. The maximal content of the demasked SH groups was revealed in the upper subfractions (mainly the membranes of cholinergic synapses) and minimal content--in the lower subfractions (mainly noncholinergic synapses). Significantly smaller total protein content in the upper and middle subfractions of light synaptosomes was found, and more demasked SH groups in the membrane-bound proteins of the upper and middle subfractions of light and heavy synaptosomes was found in the cortex area of the "clever" then "silly" cats. Suggestion concerning characteristic for brains of "clever" cats relatively low total quantity of synapses in the area Ep of the cortex and significantly higher proportion of cholinergic ones is discussed.
Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A; Tomàs, Josep
2017-01-01
Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.
Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A.; Tomàs, Josep
2017-01-01
Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release. PMID:28890686
Isaacson, Carl W; Bouchard, Dermont
2010-02-26
A size separation method was developed for aqueous C60 fullerene aggregates (aqu/C60) using asymmetric flow field flow fractionation (AF4) coupled to a dynamic light scattering detector in flow through mode. Surfactants, which are commonly used in AF4, were avoided as they may alter suspension characteristics. Aqu/C60 aggregates generated by sonication in deionized water ranged in size from 80 to 260 nm in hydrodynamic diameter (Dh) as determined by DLS in flow through mode, which was corroborated by analysis of fractions by DLS in batch mode and by TEM. The mass of C60 in each fraction was determined by LC-APPI-MS. Only 5.2+/-6.7% of the total aqu/C60 mass had Dh less than 80 nm, while 58+/-32% of the total aqu/C60 mass had Dh between 80 and 150 nm and 14+/-9.2% of the total aqu/C60 were between 150 and 260 nm in Dh. With the optimal fractionation parameters, 77+/-5.8% of the aqu/C60 mass eluted from the AF4 channel, indicating deposition on the AF4 membrane had occurred during fractionation; use of alternative membranes did not reduce deposition. Channel flow splitting increased detector response although channel split ratios greater than 80% of the channel flow led to decreased detector response. This is the first report on the use of AF4 for fractionating a colloidal suspension of aqu/C60. Published by Elsevier B.V.
Hou, Xiaofang; Wang, Sicen; Hou, Jingjing; He, Langchong
2011-03-01
We describe here an analytical method of A431 cell membrane chromatography (A431/CMC) (CMC, cell membrane chromatography) combined with RPLC for recognition, separation, and identification of target components from traditional Chinese medicines (TCMs) Radix Caulophylli. The A431 cells with high expressed epidermal growth factor receptor (EGFR) were used to prepare the stationary phase in the CMC model. Retention fractions on the A431-CMC model were collected using an automated fraction collection and injection module (FC/I). Each fraction was analyzed by RPLC under the optimized conditions. Gefitinib and erlotinib were used as standard compounds to investigate the suitability and reliability of the A431 cell membrane chromatography-RPLC method prior to screening target component from Radix Caulophylli total alkaloids. The results indicated that caulophine and taspine were the target component acting on the epidermal growth factor receptor. This method could be an efficient way in drug discovery using natural medicinal herbs as a source of novel compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inositol trisphosphate metabolism in carrot (Daucus carota L. ) cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memon, A.R.; Rincon, M.; Boss, W.F.
1989-10-01
The metabolism of exogenously added D-myo-(1-{sup 3}H)inositol 1,4,5-trisphosphate (IP{sub 3}) has been examined in microsomal membrane and soluble fractions of carrot cells grown in suspension culture. When ({sup 3}H)IP{sub 3} was added to a microsomal membrane fraction, ({sup 3}H)IP{sub 2} was the primary metabolite consisting of approximately 83% of the total recovered ({sup 3}H) by electrophoresis. ({sup 3}H)IP was only 6% of the ({sup 3}H) recovered, and 10% of the ({sup 3}H)IP{sub 3} was not further metabolized. In contrast, when ({sup 3}H)IP{sub 3} was added to the soluble fraction, approximately equal amounts of ({sup 3}H)IP{sub 2} and ({sup 3}H)IP weremore » recovered. Ca{sup 2+} (100 micromolar) tended to enhance IP{sub 3} dephosphorylation but inhibited the IP{sub 2} dephosphorylation in the soluble fraction by about 20%. MoO{sub 4}{sup 2{minus}} (1 millimolar) inhibited the dephosphorylation of IP{sub 3} by the microsomal fraction and the dephosphorylation of IP{sub 2} by the soluble fraction. MoO{sub 4}{sup 2{minus}}, however, did not inhibit the dephosphorylation of IP{sub 3} by the soluble fraction. Li{sup +} (10 and 50 millimolar) had no effect on IP{sub 3} metabolism in either the soluble or membrane fraction; however, Li{sup +} (50 millimolar) inhibited IP{sub 2} dephosphorylation in the soluble fraction about 25%.« less
Inhibition of Staphylococcus aureus by crude and fractionated extract from lactic acid bacteria.
Wong, C-B; Khoo, B-Y; Sasidharan, S; Piyawattanametha, W; Kim, S H; Khemthongcharoen, N; Ang, M-Y; Chuah, L-O; Liong, M-T
2015-03-01
Increasing levels of antibiotic resistance by Staphylococcus aureus have posed a need to search for non-antibiotic alternatives. This study aimed to assess the inhibitory effects of crude and fractionated cell-free supernatants (CFS) of locally isolated lactic acid bacteria (LAB) against a clinical strain of S. aureus. A total of 42 LAB strains were isolated and identified from fresh vegetables, fresh fruits and fermented products prior to evaluation of inhibitory activities. CFS of LAB strains exhibiting a stronger inhibitive effect against S. aureus were fractionated into crude protein, polysaccharide and lipid fractions. Crude protein fractions showed greater inhibition against S. aureus compared to polysaccharide and lipid fractions, with a more prevalent effect from Lactobacillus plantarum 8513 and L. plantarum BT8513. Crude protein, polysaccharide and lipid fractions were also characterised with glycine, mannose and oleic acid being detected as the major component of each fraction, respectively. Scanning electron microscopy revealed roughed and wrinkled membrane morphology of S. aureus upon treatment with crude protein fractions of LAB, suggesting an inhibitory effect via the destruction of cellular membrane. This research illustrated the potential application of fractionated extracts from LAB to inhibit S. aureus for use in the food and health industry.
Latent nitrate reductase activity is associated with the plasma membrane of corn roots
NASA Technical Reports Server (NTRS)
Ward, M. R.; Grimes, H. D.; Huffaker, R. C.
1989-01-01
Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.
Profiling the Aspergillus fumigatus Proteome in Response to Caspofungin ▿ †
Cagas, Steven E.; Jain, Mohit Raja; Li, Hong; Perlin, David S.
2011-01-01
The proteomic response of Aspergillus fumigatus to caspofungin was evaluated by gel-free isobaric tagging for relative and absolute quantitation (iTRAQ) as a means to determine potential biomarkers of drug action. A cell fractionation approach yielding 4 subcellular compartment fractions was used to enhance the resolution of proteins for proteomic analysis. Using iTRAQ, a total of 471 unique proteins were identified in soluble and cell wall/plasma membrane fractions at 24 and 48 h of growth in rich media in a wild-type drug-susceptible strain. A total of 122 proteins showed at least a 2-fold change in relative abundance following exposure to caspofungin (CSF) at just below the minimum effective concentration (0.12 μg/ml). The largest changes were seen in the mitochondrial hypoxia response domain protein (AFUA_1G12250), the level of which decreased >16-fold in the secreted fraction, and ChiA1, the level of which decreased 12.1-fold in the cell wall/plasma membrane fraction. The level of the major allergen and cytotoxin AspF1 was also shown to decrease by 12.1-fold upon the addition of drug. A subsequent iTRAQ analysis of an echinocandin-resistant strain (fks1-S678P) was used to validate proteins specific to drug action. A total of 103 proteins in the 2 fractions tested by iTRAQ were differentially expressed in the wild-type susceptible strain but not significantly changed in the resistant strain. Of these potential biomarkers, 11 had levels that changed at least 12-fold. Microarray analysis of the susceptible strain was performed to evaluate the correlation between proteomics and genomics, with a total of 117 genes found to be changing at least 2-fold. Of these, a total of 22 proteins with significant changes identified by iTRAQ also showed significant gene expression level changes by microarray. Overall, these data have the potential to identify biomarkers that assess the relative efficacy of echinocandin drug therapy. PMID:20974863
Dorney, Kevin M; Sizemore, Ioana E P; Alqahtani, Tariq; Adragna, Norma C; Lauf, Peter K
2013-01-01
The quaternary benzo-phenanthridine alkaloid (QBA) chelerythrine (CET) is a pro-apoptotic drug and Na(+)/K(+) pump (NKP) inhibitor in human lens epithelial cells (HLECs). In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm(-1) marker band as a function of CET concentration. SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET(+)) accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect. © 2014 S. Karger AG, Basel.
Oliveira, Fabiana S T; Vieira-Filho, Leucio D; Cabral, Edjair V; Sampaio, Luzia S; Silva, Paulo A; Carvalho, Vera C O; Vieyra, Adalberto; Einicker-Lamas, Marcelo; Lima, Vera L M; Paixão, Ana D O
2013-04-01
It has been demonstrated that reabsorption of Na⁺ in the thick ascending limb is reduced and the ability to concentrate urine can be compromised in undernourished individuals. Alterations in phospholipid and cholesterol content in renal membranes, leading to Na⁺ loss and the inability to concentrate urine, were investigated in undernourished rats. Sixty-day-old male Wistar rats were utilized to evaluate (1) phospholipid and cholesterol content in the membrane fraction of whole kidneys, (2) cholesterol content and the levels of active Na⁺ transporters, (Na⁺ + K⁺)ATPase and Na⁺-ATPase, in basolateral membranes of kidney proximal tubules, and (3) functional indicators of medullary urine concentration. Body weight in the undernourished group was 73 % lower than in control. Undernourishment did not affect the levels of cholesterol in serum or in renal homogenates. However, membranes of whole kidneys revealed 56 and 66 % reduction in the levels of total phospholipids and cholesterol, respectively. Furthermore, cholesterol and (Na⁺ + K⁺)ATPase activity in proximal tubule membranes were reduced by 55 and 68 %, respectively. Oxidative stress remained unaltered in the kidneys of undernourished rats. In contrast, Na⁺-ATPase activity, an enzyme with all regulatory components in membrane, was increased in the proximal tubules of undernourished rats. Free water clearance and fractional Na⁺ excretion were increased by 86 and 24 %, respectively, and urinary osmolal concentration was 21 % lower in undernourished rats than controls. Life-long undernutrition reduces the levels of total phospholipids and cholesterol in membranes of renal tubular cells. This alteration in membrane integrity could diminish (Na⁺ + K⁺)ATPase activity resulting in reduced Na⁺ reabsorption and urinary concentrating ability.
Gervais, M R; Tufts, B L
1998-07-01
The purpose of this study was to examine the subcellular distribution and isoenzyme characteristics of carbonic anhydrase from the gills and respiratory air bladder of bowfin Amia calva, a primitive air-breathing fish. Separation of subcellular fractions by differential centrifugation revealed that the vast majority of carbonic anhydrase from the gills of bowfin originated from the cytoplasmic fraction. Washing of the gill microsomal pellet also indicated that the carbonic anhydrase originally associated with this pellet was largely due to contamination from the cytoplasmic fraction. Experiments with a carbonic anhydrase inhibitor, sulphanilamide, and the plasma carbonic anhydrase inhibitor from this species confirmed that the bowfin gill probably contains only one carbonic anhydrase isoenzyme which had properties resembling those of CA II. In contrast to the situation in the gills, a relatively large percentage (27%) of the total air bladder carbonic anhydrase was associated with the microsomal fraction. Washing of the air bladder microsomal pellet removed little of the carbonic anhydrase activity, indicating that most of the carbonic anhydrase in the microsomal fraction was associated with the membranes. Like the mammalian pulmonary CA IV isoenzyme, microsomal carbonic anhydrase from the bowfin air bladder was less sensitive to the bowfin plasma carbonic anhydrase inhibitor, sodium dodecylsulphate (SDS) and sulphanilamide than was cytoplasmic carbonic anhydrase from the air bladder. Microsomal carbonic anhydrase from the bowfin air bladder also resembled CA IV in that it appears to be anchored to the membrane via a phosphatidylinositol-glycan linkage which could be cleaved by phosphatidylinositol-specific phospholipase C. Taken together, these results suggest that a membrane-bound carbonic anhydrase isoenzyme resembling mammalian CA IV in terms of inhibition characteristics and membrane attachment is present in the air-breathing organ of one of the most primitive air-breathing vertebrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou Ziyang; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092; Chai Xiaoli
2009-01-15
Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH{sub 4}{sup +}, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW < 1 kDa) predominated in the leachate, accounting formore » 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu{sup 2+} was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48 h with leachate in the ratio of 5 g of sample per 50 ml of leachate. Cu{sup 2+} uptake by the raw soil was {approx}4.60 {mu}g/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11 {mu}g/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu{sup 2+}.« less
Weinberg, Seth H.
2015-01-01
Excitable cells and cell membranes are often modeled by the simple yet elegant parallel resistor-capacitor circuit. However, studies have shown that the passive properties of membranes may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage relationship is given by a fractional-order derivative. Fractional-order membrane potential dynamics introduce capacitive memory effects, i.e., dynamics are influenced by a weighted sum of the membrane potential prior history. However, it is not clear to what extent fractional-order dynamics may alter the properties of active excitable cells. In this study, we investigate the spiking properties of the neuronal membrane patch, nerve axon, and neural networks described by the fractional-order Hodgkin-Huxley neuron model. We find that in the membrane patch model, as fractional-order decreases, i.e., a greater influence of membrane potential memory, peak sodium and potassium currents are altered, and spike frequency and amplitude are generally reduced. In the nerve axon, the velocity of spike propagation increases as fractional-order decreases, while in a neural network, electrical activity is more likely to cease for smaller fractional-order. Importantly, we demonstrate that the modulation of the peak ionic currents that occurs for reduced fractional-order alone fails to reproduce many of the key alterations in spiking properties, suggesting that membrane capacitive memory and fractional-order membrane potential dynamics are important and necessary to reproduce neuronal electrical activity. PMID:25970534
Depletion with Cyclodextrin Reveals Two Populations of Cholesterol in Model Lipid Membranes
Litz, Jonathan P.; Thakkar, Niket; Portet, Thomas; Keller, Sarah L.
2016-01-01
Recent results provide evidence that cholesterol is highly accessible for removal from both cell and model membranes above a threshold concentration that varies with membrane composition. Here we measured the rate at which methyl-β-cyclodextrin depletes cholesterol from a supported lipid bilayer as a function of cholesterol mole fraction. We formed supported bilayers from two-component mixtures of cholesterol and a PC (phosphatidylcholine) lipid, and we directly visualized the rate of decrease in area of the bilayers with fluorescence microscopy. Our technique yields the accessibility of cholesterol over a wide range of concentrations (30–66 mol %) for many individual bilayers, enabling fast acquisition of replicate data. We found that the bilayers contain two populations of cholesterol, one with low surface accessibility and the other with high accessibility. A larger fraction of the total membrane cholesterol appears in the more accessible population when the acyl chains of the PC-lipid tails are more unsaturated. Our findings are most consistent with the predictions of the condensed-complex and cholesterol bilayer domain models of cholesterol-phospholipid interactions in lipid membranes. PMID:26840728
Thin stillage fractionation using ultrafiltration: resistance in series model.
Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D
2009-02-01
The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5-10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R(2) > 0.98).
Yanagawa, K; Takeda, H; Matsumiya, T; Takasaki, M
1999-05-01
alpha-Tocopherol (alpha-Toc), a lipophilic phenolic antioxidant that is localized mainly in the biomembrane, protects cells against oxidation-associated cytotoxicity by prevention of membrane lipid peroxidation, maintenance of the redox balance intracellular thiols and stabilization of the membrane structure. We investigated the age-related changes in redox dynamics of alpha-Toc in plasma and erythrocyte membrane of an elderly (66 weeks old) and young group (10 weeks old). Total, alpha-, beta + gamma-, delta-Toc and alpha-tocopherolquinone (alpha-TocQ) in plasma and erythrocyte membrane were determined by high-performance liquid chromatography (HPLC) with a series of multiple coulometric working electrodes (CWE). Rat venous blood sample was divided into plasma and erythrocyte layers by centrifugation, and then erythrocyte membrane sample was prepared according to the method of Dodge et al. under a stream of nitrogen. In plasma, total and alpha-Toc concentrations were increased, and beta + gamma-, delta-Toc and alpha-TocQ concentrations were decreased age-dependently. In the erythrocyte membrane, total, alpha-TocQ concentrations and three fractions of tocopherols decreased age-dependently. Also, a decrease in the alpha-TocQ/alpha-Toc ratio in erythrocyte membrane was observed in the elderly group. These findings suggest that the alpha-Toc uptake in erythrocyte membrane and utilization rate of alpha-Toc in erythrocyte membrane decline age-dependently. This decline may promote membrane lipid peroxidation. alpha-Toc redox dynamics in erythrocyte membrane were useful to investigate the pathophysiology of aging mechanisms related to oxidative stress.
Deguchi, T; Amano, E; Nakane, M
1976-11-01
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.
Purification and fractionation of membranes for proteomic analyses.
Marmagne, Anne; Salvi, Daniel; Rolland, Norbert; Ephritikhine, Geneviève; Joyard, Jacques; Barbier-Brygoo, Hélène
2006-01-01
Proteomics is a very powerful approach to link the information contained in sequenced genomes, such as Arabidopsis, to the functional knowledge provided by studies of plant cell compartments. However, membrane proteomics remains a challenge. One way to bring into view the complex mixture of proteins present in a membrane is to develop proteomic analyses based on (1) the use of highly purified membrane fractions and (2) fractionation of membrane proteins to retrieve as many proteins as possible (from the most to the less hydrophobic ones). To illustrate such strategies, we choose two types of membranes, the plasma membrane and the chloroplast envelope membranes. Both types of membranes can be prepared in a reasonable degree of purity from different types of tissues: the plasma membrane from cultured cells and the chloroplast envelope membrane from whole plants. This article is restricted to the description of methods for the preparation of highly purified and characterized plant membrane fractions and the subsequent fractionation of these membrane proteins according to simple physicochemical criteria (i.e., chloroform/methanol extraction, alkaline or saline treatments) for further analyses using modern proteomic methodologies.
NASA Technical Reports Server (NTRS)
Kristjansson, H.; Hochstein, L. I.
1986-01-01
Membranes prepared by low pressure disruption of cells exhibited no ATPase activity in the absence of Triton X-100, although 43% of the total menadione reductase activity was detected. Trypsin digestion reduced menadione reductase activity by 45% whereas ATPase activity was not affected. Disruption of the membrane fraction at higher pressure solubilized about 45% of the ATPase activity. The soluble activity was still enhanced by Triton X-100, suggesting that the detergent, besides disrupting membrane vesicles, also activated the ATPase. The discrepancy in localization of menadione reductase and ATPase activities raised questions regarding the reliability of using a single marker enzyme as an indicator of vesicle orientation.
Tang, Fang; Hu, Hong-Ying; Sun, Li-Juan; Sun, Ying-Xue; Shi, Na; Crittenden, John C
2016-03-01
Membrane fouling is an important shortcoming limiting the efficiency and wide application of reverse osmosis (RO) technology. In this paper, RO membranes in a full-scale municipal wastewater reclamation plant were autopsied. From the lead to tail position RO membranes in RO system, both of organic and inorganic matters on membranes reduced gradually. The higher ion products in RO concentrate didn't result in more serious inorganic scaling on the last position RO membranes, which was contrast with some other researches. Fe, Ca and Mg were major inorganic elements. Fe had a relatively low concentration in RO influent but the highest content on membranes. However, there was no specific pretreatment in terms of Fe removal. Ca and Mg scaling was controlled by the antiscalants injected. Organic fouling (75.0-84.5% of dry weights) was major problem on RO membranes due to the large amount of dissolved organic matters in secondary effluent as raw water. Hydrophilic acid (HIA, 48.0% of total DOC), hydrophobic acid (HOA, 23.6%) and hydrophobic neutral (HON, 19.0%) fraction was largest among the six fractions in RO influent, while HON (38.2-51.1%) and HOA (22.1-26.1%) tended to accumulate on membranes in higher quantities. Monitoring HON and HOA might help to forecast organic fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Membrane filtration of olive mill wastewater and exploitation of its fractions.
Paraskeva, C A; Papadakis, V G; Kanellopoulou, D G; Koutsoukos, P G; Angelopoulos, K C
2007-04-01
Olive mill wastewater (OMW) produced from small units scattered in rural areas of Southern Europe is a major source of pollution of surface and subsurface water. In the present work, a treatment scheme based on physical separation methods is presented. The investigation was carried out using a pilot-plant unit equipped with ultrafiltration, nanofiltration, and reverse osmosis membranes. Approximately 80% of the total volume of wastewater treated by the membrane units was sufficiently cleaned to meet the standards for irrigation water. The concentrated fractions collected in the treatment concentrates were characterized by high organic load and high content of phenolic compounds. The concentrates were tested in hydroponic systems to examine their toxicity towards undesired herbs. The calculations of the cost of the overall process showed that fixed and operational costs could be recovered from the exploitation of OMW byproducts as water for irrigation and/or as bioherbicides.
Wang, Lili; Zhou, Hu; Li, Zhengjun; Lim, Teck Kwang; Lim, Xin Shan; Lin, Qingsong
2015-11-01
Aquaporins are integral membrane channel proteins found in all kingdoms of life. The Escherichia coli aquaporin Z (AqpZ) has been shown to solely conduct water at high permeability. Functional AqpZ is generally purified from the membrane fraction. However, the quantity of the purified protein is limited. In this study, a new method is developed to achieve high yield of bioactive AqpZ protein. A mild detergent n-dodecyl-β-D-maltopyranoside (DDM) was used to solubilize the over-expressed insoluble AqpZ from inclusion bodies without a refolding process. The recovered AqpZ protein showed high water permeability comparable with AqpZ obtained from the membrane fraction. In this way, the total yield of bioactive AqpZ has been increased greatly, which will facilitate the structural and functional characterization and future applications of AqpZ. Copyright © 2015 Elsevier Inc. All rights reserved.
Analysis of plasma membrane phosphoinositides from fusogenic carrot cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, J.J.; Boss, W.F.
1987-04-01
Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP/sub 2/). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP/sub 2/ and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solventmore » system CHCl/sub 3/:MeOH:15N NH/sub 4/OH:H/sub 2/O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated /sup 32/P/sub i/, (/sup 3/H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ approx. 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids.« less
Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C
2017-11-01
Highly dynamic lipid microdomains (rafts) in the sperm plasma membrane contain several signaling proteins that regulate sperm capacitation. Na/K-ATPase isoforms (testis-specific isoform ATP1A4 and ubiquitous isoform ATP1A1) are abundant in bovine sperm plasma membrane. We previously reported that incubation of bovine sperm with ouabain, a specific Na/K-ATPase ligand, induced tyrosine phosphorylation of several sperm proteins during capacitation. The objective of this study was to investigate the roles of lipid rafts and non-rafts in Na/K-ATPase enzyme activity and signaling during bovine sperm capacitation. Content of ATP1A4 and, to a lesser extent, ATP1A1 was increased in raft and non-raft fractions of capacitated sperm, although non-raft enzyme activities of both isoforms were higher than the corresponding activities in rafts from capacitated sperm. Yet, ATP1A4 was the predominant isoform responsible for total Na/K-ATPase activity in both rafts and non-rafts. A comparative increase in phosphorylation of signaling molecules was observed in both raft (CAV1) and non-raft (EGFR and ERK1/2) membrane fractions during capacitation. Although SRC was phosphorylated in both membrane fractions, the non-raft fraction possessed more of this activated form. We also inferred, by immunoprecipitation, that ATP1A4 interacted with CAV1 and EGFR in the raft fraction, whereas interactions of ATP1A4 with SRC, EGFR, and ERK1/2 occurred in the non-raft fraction of ouabain-capacitated sperm; conversely, ATP1A1 interacted only with CAV1 in both fractions of uncapacitated and capacitated sperm. In conclusion, both raft and non-raft cohorts of Na/K-ATPase isoforms contributed to phosphorylation of signaling molecules during bovine sperm capacitation. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ruebush, Shane S.; Icopini, Gary A.; Brantley, Susan L.; Tien, Ming
2006-01-01
This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite reduction. The Michaelis-Menten Km values of 71 ± 22 m 2/L for hematite and 50 ± 16 m 2/L for goethite were calculated as a function of surface area of the two insoluble minerals. Vmax was determined to be 123 ± 14 and 156 ± 13 nmol Fe(II)/min/mg of TM protein for hematite and goethite, respectively. These values are consistent with in vivo rates of reduction reported in the literature. These observations are consistent with our conclusion that the enzymatic reduction of mineral oxides is an effective probe that will allow elucidation of molecular chemistry of the membrane-mineral interface where electron transfer occurs.
Alexandre, Bruno M; Charro, Nuno; Blonder, Josip; Lopes, Carlos; Azevedo, Pilar; Bugalho de Almeida, António; Chan, King C; Prieto, DaRue A; Issaq, Haleem; Veenstra, Timothy D; Penque, Deborah
2012-12-05
Structural and metabolic alterations in erythrocytes play an important role in the pathophysiology of Chronic Obstructive Pulmonary Disease (COPD). Whether these dysfunctions are related to the modulation of erythrocyte membrane proteins in patients diagnosed with COPD remains to be determined. Herein, a comparative proteomic profiling of the erythrocyte membrane fraction isolated from peripheral blood of smokers diagnosed with COPD and smokers with no COPD was performed using differential (16)O/(18)O stable isotope labeling. A total of 219 proteins were quantified as being significantly differentially expressed within the erythrocyte membrane proteomes of smokers with COPD and healthy smokers. Functional pathway analysis showed that the most enriched biofunctions were related to cell-to-cell signaling and interaction, hematological system development, immune response, oxidative stress and cytoskeleton. Chorein (VPS13A), a cytoskeleton related protein whose defects had been associated with the presence of cell membrane deformation of circulating erythrocytes was found to be down-regulated in the membrane fraction of erythrocytes obtained from COPD patients. Methemoglobin reductase (CYB5R3) was also found to be underexpressed in these cells, suggesting that COPD patients may be at higher risk for developing methemoglobinemia. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.
The Role of Capase-8 in Breast Carcinoma Cells
2006-04-01
and exposed to film. pcDNA3 or pcDNA3-huSNARK-transfected 293T cell extracts (100 #g of protein) were used to determine the phosphorylation of the...proteins (Itoh and Nagata, 1993; Boldin et al, 1995; Chinnaiyan et al, 1995; Siegel et al, 2000). Additional interactions mediated through the N...lanes 5–7) fractions were separated from total cellular membrane extract (lane 1). Following fractionation, association of FADD and caspase-8 with
Özdemır, Kadir
2014-01-01
This study investigates the fractions of natural organic matter (NOM) and trihalomethane (THM) formation after chlorination in samples of raw water and the outputs from ozonation, coagulation-flocculation, and conventional filtration treatment units. All the water samples are passed through various ultrafiltration (UF) membranes. UF membranes with different molecular size ranges based on apparent molecular weight (AMW), such as 1000, 3000, 10,000, and 30,000 Daltons (Da), are commonly used. The NOM fraction with AMW < 1000 Da (1 K) is the dominant fraction within all the fractionated water samples. Its maximum percentage is 85.86% after the filtration process and the minimum percentage is 65.01% in raw water samples. The total THM (TTHM) yield coefficients range from 22.5 to 42 μg-TTHM/mg-DOC in all fractionated samples, which is related to their specific ultraviolet Absorbance (SUVA) levels. As the molecular weight of the fractions decreased, the TTHM yield coefficients increased. The NOM fractions with AMW values less than 1 K had lower SUVA values (<3 L/mg·m) for all treatment stages and also they had higher yield of TTHM per unit of DOC. The NOM fraction with AMW < 1 K for chlorinated raw water samples has the highest yield coefficient (42 μg-TTHM/mg-DOC). PMID:24558323
Zhou, Li; Wei, Chunsheng; Huang, Wei; Bennett, David A; Dickson, Dennis W; Wang, Rui; Wang, Dengshun
2013-01-01
We investigated the subcellular distribution of NEP protein and activity in brains of human individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI) and AD dementia, as well as double transgenic mice and human neuronal cell line treated with Aβ and 4-hydroxy-2-nonenal (HNE). Total cortical neuronal-related NEP was significantly increased in MCI compared to NCI brains. NeuN was decreased in both MCI and AD, consistent with neuronal loss occurring in MCI and AD. Negative relationship between NEP protein and NeuN in MCI brains, and positive correlation between NEP and pan-cadherin in NCI and MCI brains, suggesting the increased NEP expression in NCI and MCI might be due to membrane associated NEP in non-neuronal cells. In subcellular extracts, NEP protein decreased in cytoplasmic fractions in MCI and AD, but increased in membrane fractions, with a significant increase in the membrane/cytoplasmic ratio of NEP protein in AD brains. By contrast, NEP activity was decreased in AD. Similar results were observed in AD-mimic transgenic mice. Studies of SH-SY5Y neuroblastoma showed an up-regulation of NEP protein in the cytoplasmic compartment induced by HNE and Aβ; however, NEP activity decreased in cytoplasmic fractions. Activity of NEP in membrane fractions increased at 48 hours and then significantly decreased after treatment with HNE and Aβ. The cytoplasmic/membrane ratio of NEP protein increased at 24 hours and then decreased in both HNE and Aβ treated cells. Both HNE and Aβ up-regulate NEP expression, but NEP enzyme activity did not show the same increase, possibly indicating immature cytoplasmic NEP is less active than membrane associated NEP. These observations indicate that modulation of NEP protein levels and its subcellular location influence the net proteolytic activity and this complex association might participate in deficiency of Aβ degradation that is associated with amyloid deposition in AD. PMID:24093058
Mechanics of Lipid Bilayer Membranes
NASA Astrophysics Data System (ADS)
Powers, Thomas R.
All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.
Vincent, B; Vincent, J P; Checler, F
1994-04-01
We examined the occurrence of various endopeptidases and exopeptidases and their subcellular partition within soluble and membrane-associated compartments of 15-day-old astrocytes and 4-day-old primary cultured neurons. Peptidases were monitored with chromogenic or fluorimetric substrates and identified by means of specific inhibitors. We assessed the contribution of these peptidases in the catabolism of two related neuropeptides, neurotensin and neuromedin N. Metabolites were separated by HPLC and the identity of the proteolytic activities involved in their formation was established using specific inhibitors. Neuromedin N and neurotensin undergo both quantitative and qualitative differential proteolysis. Initial maximal rates of neuromedin N degradation were higher than those of neurotensin in both cell types. Furthermore, the two peptides were inactivated much more rapidly by the soluble than by the membrane-associated fractions prepared from both cell cultures. Neuromedin N was rapidly broken down by an aminopeptidase M/leucine aminopeptidase attack, leading to the functionally silent Des-Lys1-neuromedin N metabolite. In the astrocytic membrane-associated fraction, neuromedin N underwent an additional minor endoproteolytic cleavage at the Pro3-Tyr4 bond elicited by endopeptidase 24.11, as suggested by the protective effect of its blocking agent phosphoramidon. Unlike neuromedin N, neurotensin totally resisted hydrolysis by aminopeptidases. Primary inactivating cleavages detected in both cell types appeared mainly located at the Arg8-Arg9 and Pro10-Tyr11 bonds, leading to the formations of neurotensin-(1-8) and neurotensin-(1-10) as the major biologically inactive neurotensin catabolites. Endopeptidase 24.15 appeared mainly responsible for neurotensin-(1-8) formation by the soluble fraction of neurons and astrocytes. In contrast, endopeptidase 24.16 was involved in neurotensin-(1-10) formation by both soluble and membrane-associated fractions of the two cell types. An additional cleavage leading to neurotensin-(1-11) formation and ascribed to endopeptidase 24.11 was detected mainly in the membrane-associated fraction from astrocytes. Finally, the secondary processing of neurotensin degradation products indicated that: (a) neurotensin-(1-11) was converted into neurotensin-(1-8) in the membrane fraction prepared from astrocytes; (b) neurotensin-(1-10) was transformed into neurotensin-(1-8) by an unidentified peptidase belonging to the class of metalloenzymes. The significance of distinct quantitative and qualitative catabolic fates of neuromedin N and neurotensin in cultured astrocytes and neurons is discussed.
Serum protein fractionation using supported molecular matrix electrophoresis.
Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko
2013-08-01
Supported molecular matrix electrophoresis (SMME), in which a hydrophilic polymer such as PVA serves as a support within a porous PVDF membrane, was recently developed. This method is similar to cellulose acetate membrane electrophoresis but differs in the compatibility to glycan analysis of the separated bands. In this report, we describe the first instance of the application of SMME to human serum fractionation, and demonstrate the differences with serum fractionation by cellulose acetate membrane electrophoresis. The SMME membrane exhibited almost no EOF during electrophoresis, unlike the cellulose acetate membrane, but afforded comparative results for serum fractionation. The visualization of each fraction was achieved by conventional staining with dye such as Direct Blue-71, and objective quantification was obtained by densitometry after inducing membrane transparency with 1-nonene. Immunostaining was also achieved. Moreover, mass spectrometric analysis of both N-linked and O-linked glycans from the separated bands was demonstrated. Serum fractionation and glycan profiling of each fraction using SMME will enable novel insights into the relationships between various glycosylation profiles and disease states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Isolation and properties of mesosomal membrane fractions from Micrococcus lysodeikticus
Owen, Peter; Freer, John H.
1972-01-01
1. A method is described for the isolation of pure mesosomal membrane fractions from Micrococcus lysodeikticus. 2. Plasmolysis of cells, before wall digestion, was necessary for effective mesosome release. 3. The effect of mild shearing forces, temperature and time upon the release of mesosomal membrane from protoplasts was investigated. 4. The optimum yield of mesosomal membranes from stable protoplasts was achieved at 10mm-Mg2+. 5. Mesosomal membrane vesicle fractions prepared at differing Mg2+ concentrations above 10mm were similar in chemical composition. 6. Comparison of the properties of peripheral and mesosomal membrane fractions revealed major differences in the distribution of protein components, membrane phosphorus, mannose and dehydrogenase activities between the two fractions. 7. Only cytochrome b556 was detected in mesosomal membranes, whereas peripheral membranes contained a full complement of cytochromes. 8. Preliminary investigations suggested the localization of an autolytic enzyme(s) in the mesosomal vesicles. 9. The anatomy of mesosomal and peripheral membrane have been compared by the negative-staining and freeze-fracture technique. 10. The results are discussed in relation to a plausible role for the mesosome. ImagesPLATE 1PLATE 2PLATE 3PLATE 4 PMID:4655825
Sandelius, Anna Stina; Penel, Claude; Auderset, Guy; Brightman, Andrew; Millard, Merle; Morré, D. James
1986-01-01
A procedure is described whereby highly purified fractions of plasma membrane and tonoplast were isolated from hypocotyls of dark-grown soybean (Glycine max L. var Wayne) by the technique of preparative free-flow electrophoresis. Fractions migrating the slowest toward the anode were enriched in thick (10 nanometers) membranes identified as plasma membranes based on ability to bind N-1-naphthylphthalamic acid (NPA), glucan synthetase-II, and K+-stimulated, vanadate-inhibited Mg2+ ATPase, reaction with phosphotungstic acid at low pH on electron microscope sections, and morphological evaluations. Fractions migrating farthest toward the anode (farthest from the point of sample injection) were enriched in membrane vesicles with thick (7-9 nanometers) membranes that did not stain with phosphotungstic acid at low pH, contained a nitrate-inhibited, Cl-stimulated ATPase and had the in situ morphological characteristics of tonoplast including the presence of flocculent contents. These vesicles neither bound NPA nor contained levels of glucan synthetase II above background. Other membranous cell components such as dictyosomes (fucosyltransferase, latent nucleosidediphosphate phosphatase), endoplasmic reticulum vesicles (NADH- and NADPH- cytochrome c reductase), mitochondria (succinate-2(p-indophenyl)-3-p-nitrophenyl)-5-phenyl tetrazolium-reductase and cytochrome oxidase) and plastids (carotenoids and monogalactosyl diglyceride synthetase) were identified on the basis of appropriate marker constituents and, except for plastid thylakoids, had thin (<7 nanometers) membranes. They were located in the fractions intermediate between plasma membrane and tonoplast after free-flow electrophoretic separation and did not contaminate either the plasma membrane or the tonoplast fraction as determined from marker activities. From electron microscope morphometry (using both membrane measurements and staining with phosphotungstic acid at low pH) and analysis of marker enzymes, both plasma membrane and tonoplast fractions were estimated to be about 90% pure. Neither fraction appeared to be contaminated by the other by more than 3%. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 9 PMID:16664771
Enhancement of the natural organic matter removal from drinking water by nanofiltration.
Matilainen, A; Liikanen, R; Nyström, M; Lindqvist, N; Tuhkanen, T
2004-03-01
Finnish surface waters are abundant in natural organic matter. Natural organic matter can be removed from drinking water in a water treatment process by coagulation and filtration. The standard treatment operations are not able to remove the smallest molar mass fraction of organic matter and the intermediate molar mass matter is only partly removed. The removal of residual natural organic matter from drinking water by nanofiltration was evalueted in this study. Three different nanofiltration membranes were compared in filtering six pre-treated surface waters. The total organic carbon content of the feed waters varied from 2.0 to 4.2 mg l(-1). Other water quality parameters measured were conductivity, alkalinity, hardness, UV-absorbance, SUVA, E2/E3 value and molecular size distribution by high-performance size-exclusion chromatography. The natural organic matter removal efficiencies of the membranes were good and varied between 100% and 49%, and between 85% and 47% according to molecular size distribution and total organic carbon measurements, respectively. Removal of different molecular size fractions varied from 100% to 56%, 100% to 54% and 88% to 19%, regarding high molar mass, intermediate molar mass and low molar mass organic matter, respectively. The Desal-5 DL membrane produced the highest natural organic matter removals.
Innocentini, Murilo D M; Rodrigues, Vanessa P; Romano, Roberto C O; Pileggi, Rafael G; Silva, Gracinda M C; Coury, José R
2009-02-15
Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties.
Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi
2016-08-01
Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, J.T.; Cook, H.W.; Spence, M.W.
1985-03-01
To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22 h in the presence of D-(1-/sup 3/H)galactose or (/sup 3/H)GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipid-sialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellularmore » membrane fractions studied was recovered from plasma membrane and only 10-15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous (/sup 3/H)GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid.« less
Warr, G.W.; DeLuca, D.; Anderson, D.P.
1983-01-01
1. Thymic lymphocytes of the rainbow trout, S. gairdneri were disrupted and a plasma membrane containing fraction isolated by differential and buoyant density centrifugation.2. Radioiodine introduced into the membrane by the lactoperoxidase catalyzed reaction and immunoglobulin (identified by radioimmunoassay with monoclonal antibody) both copurified in the plasma membrane fraction.3. Rabbit antibody raised to the plasma membrane fraction showed a strong reaction with trout lymphocytes in immunofluorescence, was mitogenic for trout lymphocytes, and recognized lymphocyte membrane heteroantigens of molecular weight > 70,000 in the thymus and 45,000–95,000 in the head kidney.
Barkla, Bronwyn J
2018-01-01
Free flow zonal electrophoresis (FFZE) is a versatile, reproducible, and potentially high-throughput technique for the separation of plant organelles and membranes by differences in membrane surface charge. It offers considerable benefits over traditional fractionation techniques, such as density gradient centrifugation and two-phase partitioning, as it is relatively fast, sample recovery is high, and the method provides unparalleled sample purity. It has been used to successfully purify chloroplasts and mitochondria from plants but also, to obtain highly pure fractions of plasma membrane, tonoplast, ER, Golgi, and thylakoid membranes. Application of the technique can significantly improve protein coverage in large-scale proteomics studies by decreasing sample complexity. Here, we describe the method for the fractionation of plant cellular membranes from leaves by FFZE.
Devices, systems, and methods for microscale isoelectric fractionation
Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.
2016-08-09
Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
Devices, systems, and methods for microscale isoelectric fractionation
Sommer, Gregory J; Hatch, Anson V; Wang, Ying-Chih; Singh, Anup K
2015-04-14
Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
Radiation effects on bovine taste bud membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shatzman, A.R.; Mossman, K.L.
1982-11-01
In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enrichedmore » fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.« less
Yachi, K; Sugiyama, Y; Sawada, Y; Iga, T; Ikeda, Y; Toda, G; Hanano, M
1989-01-16
The binding of Rose bengal, a model organic anion, to sinusoidal and bile canalicular membrane fractions isolated from rat liver was compared. The fluorescence change of Rose bengal after being bound to liver plasma membranes was utilized for measuring the binding. The dissociation constants (Kd = 0.1-0.12 microM) and the binding capacities (n = 11-15 nmol/mg protein) for Rose bengal are comparable between the two membrane fractions, although the n value for sinusoidal membrane is somewhat larger than that for bile canalicular membrane. The Rose bengal binding to both membrane fractions was inhibited by various organic anions at relatively low concentrations, i.e., the half-inhibition concentrations (IC50) for Indocyanine green, sulfobromophthalein, Bromophenol blue and 1-anilino-8-naphthalene sulfonate were 0.1, 100, 1.5-2.5 and 100 microM, respectively, while taurocholate did not inhibit the Rose bengal binding to either membrane fraction at these low concentration ranges. The type of inhibition of sulfobromophthalein and Indocyanine green for Rose bengal binding is different between the two membrane domains. That is, in sinusoidal and bile canalicular membrane fractions, these organic anions exhibit mixed-type and competitive-type inhibition, respectively. It was suggested that the fluorescence method using Rose bengal may provide a simple method for detecting the specific organic anion binding protein(s) in the liver plasma membrane.
Gabryel, Bozena; Chalimoniuk, Małgorzata; Małecki, Andrzej; Strosznajder, Joanna B
2005-01-01
Brain ischemia affects phosphoinositide metabolism and the level of lipid-derived second messengers. Phosphatidylinositol transfer proteins (PI-PTs) are responsible for the transport of phosphatidylinositol (PI) and other phospholipids through membranes. Isoform of PI-TPs (PI-TPalpha) is an essential component in ensuring substrate supply for phospholipase C (PLC). The current study was conducted to examine potential effect of aniracetam on PI-TPalpha expression and to characterize the PI-TPalpha isoform distribution between membrane and cytosol fractions of astrocytes exposed to simulated ischemia in vitro. After 8 h period of ischemia, the level of PI-TPalpha was significantly higher in cytosol (by about 28%) as well as in membrane fraction (by about 80%) in comparison with control. We have found that aniracetam treatment of astrocytes in normoxia significantly increased the level of PI-TPalpha in membrane fraction with a maximal effect at 0.1 microM concentration of aniracetam (by about 195% of control). In membrane fractions of ischemic cells, aniracetam increased PI-TPalpha expression in a concentration-dependent manner. In ischemic cells, aniracetam (10 microM) has elevated PI-TPalpha expression up to 155% and 428% in cytosolic and membrane fractions in comparison with ischemic untreated cells, respectively. The study has shown that aniracetam significantly activates PI-TPalpha in cell membrane fraction and this effect might be connected with previously described activation of MAP kinase cascade.
NASA Astrophysics Data System (ADS)
Thanh Tran, The; Phan, Van Chi
2010-03-01
In this work, we present results of membrane proteome profiling from mouse liver tissues using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS. Following purification of the membrane fraction, SDS-PAGE was carried out as a useful separation step. After staining, gels with protein bands were cut, reduced, alkylated and trypsin-digested. The peptide mixtures extracted from each gel slice were fractionated by two-dimensional nano liquid chromatography (2DnanoLC) coupled online with tandem mass spectrometry analysis (NanoESI-Q-TOF-MS/MS). The proteins were identified by MASCOT search against a mouse protein database using a peptide and fragment mass tolerance of ±0.5 Da. Protein identification was carried out using a Mowse scoring algorithm with a confidence level of 95% and processed by MSQuant v1.5 software for further validation. In total, 318 verified membrane proteins from mouse liver tissues were identified; 66.67% of them (212 proteins) contained at least one or more transmembrane domains predicted by the SOSUI program and 43 were found to be unique microsome membranes. Furthermore, GRAVY values of membrane proteins varied in the range -1.1276 to 0.9016 and only 31 (9.76%) membrane proteins had positive values. The functions and subcellular locations of the identified proteins were categorized as well, according to universal GO annotations.
Membrane-Mediated Extraction and Biodegradation of Volatile Organic Compounds From Air
2005-01-01
side boundary-layer mass transfer resistance is a significant fraction of the total mass transfer resistance ( Raghunath , 1992). In some cases where...Sci. 59: 53–72. Raghunath , B., and S.–T. Hwang (1992). “Effect of boundary layer mass transfer resistance in the pervaporation of dilute organics
Barnidge, David R; Jelinek, Diane F; Muddiman, David C; Kay, Neil E
2005-01-01
Relative protein expression levels were compared in leukemic B cells from two patients with chronic lymphocytic leukemia (CLL) having either mutated (M-CLL) or unmutated (UM-CLL) immunoglobulin variable heavy chain genes (IgV(H)). Cells were separated into cytosol and membrane protein fractions then labeled with acid-cleavable ICAT reagents (cICAT). Labeled proteins were digested with trypsin then subjected to SCX and affinity chromatography followed by LC-ESI-MS/MS analysis on a linear ion trap mass spectrometer. A total of 9 proteins from the cytosol fraction and 4 from the membrane fraction showed a 3-fold or greater difference between M-CLL and UM-CLL and a subset of these were examined by Western blot where results concurred with cICAT abundance ratios. The abundance of one of the proteins in particular, the mitochondrial membrane protein cytochrome c oxidase subunit COX G was examined in 6 M-CLL and 6 UM-CLL patients using western blot and results showed significantly greater levels (P < 0.001) in M-CLL patients vs UM-CLL patients. These results demonstrate that stable isotope labeling and mass spectrometry can complement 2D gel electrophoresis and gene microarray technologies for identifying putative and perhaps unique prognostic markers in CLL.
Rabani, Vahideh; Montange, Damien; Meneveau, Nicolas; Davani, Siamak
2017-10-11
Ticagrelor is an antiplatelet agent that inhibits platelet activation via P2Y12 antagonism. There are several studies showing that P2Y12 needs lipid rafts to be activated, but there are few data about how ticagrelor impacts lipid raft organization. Therefore, we aimed to investigate how ticagrelor could impact the distribution of cholesterol and consequently alter the organization of lipid rafts on platelet plasma membranes. We identified cholesterol-enriched raft fractions in platelet membranes by quantification of their cholesterol levels. Modifications in cholesterol and protein profiles (Flotillin 1, Flotillin 2, CD36, P2Y1, and P2Y12) were studied in platelets stimulated by ADP, treated by ticagrelor, or both. In ADP-stimulated and ticagrelor-treated groups, we found a decreased level of cholesterol in raft fractions of platelet plasma membrane compared to the control group. In addition, the peak of cholesterol in different experimental groups changed its localization on membrane fractions. In the control group, it was situated on fraction 2, while in ADP-stimulated platelets, it was located in fractions 3 to 5, and in fraction 4 in ticagrelor-treated group. The proteins studied also showed changes in their level of expression and localization in fractions of plasma membrane. Cholesterol levels of plasma membranes have a direct role in the organization of platelet membranes and could be modified by stimulation or drug treatment. Since ticagrelor and ADP both changed lipid composition and protein profile, investigating the lipid and protein composition of platelet membranes is of considerable importance as a focus for further research in anti-platelet management.
An Extended Proteome Map of the Lysosomal Membrane Reveals Novel Potential Transporters*
Chapel, Agnès; Kieffer-Jaquinod, Sylvie; Sagné, Corinne; Verdon, Quentin; Ivaldi, Corinne; Mellal, Mourad; Thirion, Jaqueline; Jadot, Michel; Bruley, Christophe; Garin, Jérôme; Gasnier, Bruno; Journet, Agnès
2013-01-01
Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions. PMID:23436907
2011-01-01
Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work. Conclusions In this study, we utilized LC-MS/MS in combination with blue native PAGE to characterize modular components of multiprotein complexes in BCG membrane fractions. The results demonstrated that the proteomic strategy was a reliable and reproducible tool for analysis of BCG multiprotein complexes. The identification in our study may provide some evidence for further study of BCG protein interaction. PMID:21241518
García, E M; Calvete, J J; Sanz, L; Roca, J; Martínez, E A; Vázquez, J M
2009-04-01
The aim of this study was to evaluate how different protein profiles of seminal plasma (SP) fractions affect sperm functionality in vitro. Ejaculates from three boars were separated into six fractions. The fractions differed from each other in their sperm content, in their total SP protein content, and their spermadhesin PSP-I/PSP-II and heparin-binding protein (HBP) concentrations. Spermatozoa were mainly recovered in fraction 2 (sperm-rich fraction, >1800 x 10(6) spermatozoa/ml), whereas the pre-sperm fraction 1 and the post-sperm fractions 4-6 contained low numbers of spermatozoa (<500 x 10(6)/ml). Except in fraction 2, the total SP protein concentration and the concentration of both, spermadhesin PSP-I/PSP-II and the HBPs increased with fraction order. Distinct time-dependent effects were observed on motility characteristics and membrane integrity of highly diluted boar spermatozoa upon incubation with a 10% dilution of the SP from each fraction. The highest sperm viability was recorded after exposure for 5 h to fraction 2, followed by fractions 1 and 3. The percentages of motile spermatozoa also differed significantly among fractions after 5 h of incubation. Spermatozoa incubated with SP of fractions 1-3 showed the highest percentage motility. We conclude that different SP fractions exert distinct effects on the functionality of highly diluted boar spermatozoa. Fractions 1-3 appear to promote sperm survival, whereas fractions 4-6 seem to be harmful for preserving the physiological functions of highly diluted boar spermatozoa.
Szamel, M; Kaever, V; Resch, K
1987-01-01
Highly purified plasma membranes from calf thymocytes were fractionated by affinity chromatography on Concanavalin A-Sepharose into two subfractions, one eluting freely from the affinity column (MF1) and a second being specifically retained (MF2). SDS-polyacrylamide-gel-electrophoresis revealed different polypeptide patterns of the two plasma membrane subfractions. Polypeptides of apparent molecular weights of 170, 150, 110, 94, 39, and 30 kDa were several-fold enriched in the adherent fraction, MF2. In contrast, several proteins in the 55-65 kDa range were preferentially recovered in the non-adherent fraction. Five Five of the six polypeptides, preferentially recovered in MF2 proved to be glycoproteins, the 39 kDa peptide was non-glycosilated. The differences in the amounts of the polypeptides specifically enriched in the adherent fraction MF2 became even more clear-cut when plasma membranes solubilized with non-ionic detergents (lysolecithin, ET-18-2H, Triton-X-100) were separated by affinity chromatography on Concanavalin A-Sepharose. The non-glycosilated peptide of apparent molecular weight of 39 kDa was recovered together with several glycoproteins in the adherent fraction, MF2, suggesting that not single glycoproteins, but plasma membrane domains were separated by Concanavalin A-Sepharose. Although the glycoproteins of the non-adherent fraction MF1 bound significant amounts of Concanavalin A, the major Concanavalin A binding glycoproteins were recovered in the adherent fraction, MF2. The plasma membrane subfractions showed also different functional properties, the specific activities [Na+ + K+]AT-Pase, Ca2+ ATPase and lysolecithin acyltransferase were several-fold enriched in the adherent fraction, MF2, as compared to MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of thymocytes consisting of a different set of proteins, among others the major Concanavalin A binding glycoproteins with some membrane bound enzymes, probably implicated in the initiation of lymphocyte activation.
Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J
2017-08-01
In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You
2017-03-01
Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lipid composition of thermophilic Geobacillus sp. strain GWE1, isolated from sterilization oven.
Shah, Siddharth P; Jansen, Susan A; Taylor, Leeandrew Jacques-Asa; Chong, Parkson Lee-Gau; Correa-Llantén, Daniela N; Blamey, Jenny M
2014-05-01
GWE1 strain is an example of anthropogenic thermophilic bacterium, recently isolated from dark crusty material from sterilization ovens by Correa-Llantén et al. (Kor. J. Microb. Biotechnol. 2013. 41(3):278-283). Thermostability is likely to arise from the adaptation of macromolecules such as proteins, lipids and nucleic acids. Complex lipid arrangement and/or type in the cell membrane are known to affect thermostability of microorganisms and efforts were made to understand the chemical nature of the polar lipids of membrane. In this work, we extracted total lipids from GWE1 cell membrane, separated them by TLC into various fractions and characterize the lipid structures of certain fractions with analytical tools such as (1)H, (13)C, (31)P and 2D NMR spectroscopy, ATR-FTIR spectroscopy and MS(n) spectrometry. We were able to identify glycerophosphoethanolamine, glycerophosphate, glycerophosphocholine, glycerophosphoglycerol and cardiolipin lipid classes and an unknown glycerophospholipid class with novel MS/MS spectra pattern. We have also noticed the presence of saturated iso-branched fatty acids with NMR spectra in individual lipid classes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Torres, Mariana Andrade; Díaz, Rommy; Boguen, Rodrigo; Martins, Simone Maria Massami Kitamura; Ravagnani, Gisele Mouro; Leal, Diego Feitosa; Oliveira, Melissa de Lima; Muro, Bruno Bracco Donatelli; Parra, Beatriz Martins; Meirelles, Flávio Vieira; Papa, Frederico Ozanan; Dell'Aqua, José Antônio; Alvarenga, Marco Antônio; Moretti, Aníbal de Sant'Anna; Sepúlveda, Néstor; de Andrade, André Furugen Cesar
2016-01-01
Boar semen cryopreservation remains a challenge due to the extension of cold shock damage. Thus, many alternatives have emerged to improve the quality of frozen-thawed boar sperm. Although the use of seminal plasma arising from boar sperm-rich fraction (SP-SRF) has shown good efficacy; however, the majority of actual sperm evaluation techniques include a single or dual sperm parameter analysis, which overrates the real sperm viability. Within this context, this work was performed to introduce a sperm flow cytometry fourfold stain technique for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential. We then used the sperm flow cytometry fourfold stain technique to study the effect of SP-SRF on frozen-thawed boar sperm and further evaluated the effect of this treatment on sperm movement, tyrosine phosphorylation and fertility rate (FR). The sperm fourfold stain technique is accurate (R2 = 0.9356, p > 0.01) for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential (IPIAH cells). Centrifugation pre-cryopreservation was not deleterious (p > 0.05) for any analyzed variables. Addition of SP-SRF after cryopreservation was able to improve total and progressive motility (p < 0.05) when boar semen was cryopreserved without SP-SRF; however, it was not able to decrease tyrosine phosphorylation (p > 0.05) or improve IPIAH cells (p > 0.05). FR was not (p > 0.05) statistically increased by the addition of seminal plasma, though females inseminated with frozen-thawed boar semen plus SP-SRF did perform better than those inseminated with sperm lacking seminal plasma. Thus, we conclude that sperm fourfold stain can be used to simultaneously evaluate plasma and acrosomal membrane integrity and mitochondrial membrane potential, and the addition of SP-SRF at thawed boar semen cryopreserved in absence of SP-SRF improve its total and progressive motility.
Díaz, Rommy; Boguen, Rodrigo; Martins, Simone Maria Massami Kitamura; Ravagnani, Gisele Mouro; Leal, Diego Feitosa; Oliveira, Melissa de Lima; Muro, Bruno Bracco Donatelli; Parra, Beatriz Martins; Meirelles, Flávio Vieira; Papa, Frederico Ozanan; Dell’Aqua, José Antônio; Alvarenga, Marco Antônio; Moretti, Aníbal de Sant’Anna; Sepúlveda, Néstor
2016-01-01
Boar semen cryopreservation remains a challenge due to the extension of cold shock damage. Thus, many alternatives have emerged to improve the quality of frozen-thawed boar sperm. Although the use of seminal plasma arising from boar sperm-rich fraction (SP-SRF) has shown good efficacy; however, the majority of actual sperm evaluation techniques include a single or dual sperm parameter analysis, which overrates the real sperm viability. Within this context, this work was performed to introduce a sperm flow cytometry fourfold stain technique for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential. We then used the sperm flow cytometry fourfold stain technique to study the effect of SP-SRF on frozen-thawed boar sperm and further evaluated the effect of this treatment on sperm movement, tyrosine phosphorylation and fertility rate (FR). The sperm fourfold stain technique is accurate (R2 = 0.9356, p > 0.01) for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential (IPIAH cells). Centrifugation pre-cryopreservation was not deleterious (p > 0.05) for any analyzed variables. Addition of SP-SRF after cryopreservation was able to improve total and progressive motility (p < 0.05) when boar semen was cryopreserved without SP-SRF; however, it was not able to decrease tyrosine phosphorylation (p > 0.05) or improve IPIAH cells (p > 0.05). FR was not (p > 0.05) statistically increased by the addition of seminal plasma, though females inseminated with frozen-thawed boar semen plus SP-SRF did perform better than those inseminated with sperm lacking seminal plasma. Thus, we conclude that sperm fourfold stain can be used to simultaneously evaluate plasma and acrosomal membrane integrity and mitochondrial membrane potential, and the addition of SP-SRF at thawed boar semen cryopreserved in absence of SP-SRF improve its total and progressive motility. PMID:27529819
Functional characterization of Autographa californica multiple nucleopolyhedrovirus gp16 (ac130)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ming; Huang, Cui; Qian, Duo-Duo
2014-09-15
To investigate the function of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp16, multiple gp16-knockout and repair mutants were constructed and characterized. No obvious difference in productivity of budded virus, DNA synthesis, late gene expression and morphogenesis was observed between gp16-knockout and repair viruses, but gp16 deletion resulted in six hours of lengthening in ST{sub 50} to the third instar Spodoptera exigua larvae in bioassays. GP16 was fractionated mainly in the light membrane fraction, by subcellular fractionation. A GP16-EGFP fusion protein was predominantly localized close around the nuclear membrane in infected cells, being coincident with formation of the vesicles associated with themore » nuclear membrane, which hosted nucleocapsids released from the nucleus. These data suggest that gp16 is not required for viral replication, but may be involved in membrane trafficking associated with the envelopment/de-envelopment of budded viruses when they cross over the nuclear membrane and pass through cytoplasm. - Highlights: • gp16 knockout and repair mutants of AcMNPV were constructed and characterized. • AcMNPV gp16 is not essential to virus replication. • Deletion of gp16 resulted in time lengthening to kill S. exigua larvae. • GP16 was localized close around the nuclear membrane of infected cells. • GP16 was fractionated in the light membrane fraction in subcellular fractionation.« less
Darnige, L; Legallais, C; Arvieux, J; Pitiot, O; Vijayalakshmi, M A
1999-09-01
It is of considerable interest to ascertain whether a hollow fiber cartridge containing histidine immobilized on polyethylenevinyl alcohol membrane (His-PEVA) is able to retain specific autoantibodies involved in antiphospholipid syndrome. To this end diluted patient pathogenic plasma containing high levels of anti-beta2-glycoprotein I (anti-beta2GPI) and antiprothrombin antibodies was processed through the functionalized cartridge. The adsorbed material was then eluted under mild conditions and analyzed; an enrichment of the eluted fractions in total IgG and more specifically in IgG2 subclass was observed, compared with the injected sample. Enzyme-linked immunosorbent assay tests showed a higher specific binding of antiprothrombin and anti-beta2GPI in these fractions. This was in accordance with the concomitant higher anticoagulant activity measured on the same fractions. All in vitro results clearly demonstrated the ability of the His-PEVA cartridge to preferentially adsorb these autoantibodies. Hence the functionalized cartridge represents a potential tool for the treatment of antiphospholipid syndrome by selective extracorporeal removal of IgG.
Synthesis of a select group of proteins by Neisseria gonorrhoeae in response to thermal stress.
Woods, M L; Bonfiglioli, R; McGee, Z A; Georgopoulos, C
1990-03-01
We report the thermal conditions that induce the heat shock response in Neisseria gonorrhoeae. Under conditions of thermal stress, Neisseria gonorrhoeae synthesizes heat shock proteins (hsps), which differ quantitatively from conventionally studied gonococcal proteins. Gonococci accelerate the rate of synthesis of the hsps as early as 5 min after the appropriate stimulus is applied, with synthesis continuing for 30 min, as demonstrated by in vivo labeling experiments with L-[35S]methionine. Two of the gonococcal hsps are immunologically cross-reactive with the hsps of Escherichia coli, DnaK and GroEL, as demonstrated by Western blot (immunoblot) analysis. Ten hsps can be identified on two-dimensional autoradiograms of whole gonococci (total protein). Four hsps can be identified on two-dimensional autoradiograms of 1% N-lauroylsarcosine (sodium salt) (Sarkosyl)-insoluble membrane fractions. Two of the hsps from the 1% Sarkosyl-insoluble fraction are found exclusively in this fraction, suggesting that they are membrane proteins. The identification of this group of proteins will facilitate further study of the function of these proteins and provide insight into the possible role of hsps in disease pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, H.D.; Kromhout, J.; Schachter, J.
1981-03-01
Elementary bodies (EB) of Chlamydia trachomatis serotypes C, E, and L2 were extrinsically radioiodinated, and whole-cell lysates of these serotypes were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Autoradiography of the polypeptide profiles identified a major surface protein with an apparent subunit molecular weight of 39,500 that was common to each C. trachomatis serotype. The abilities of nonionic (Triton X-100), dipolar ionic (Zwittergent TM-314), mild (sodium deoxycholate and sodium N-lauroyl sarcosine), and strongly anionic (SDS) detergents to extract this protein from intact EB of the L2 serotype were investigated by SDS-PAGE analysis of the soluble and insoluble fractions obtainedmore » after each detergent treatment. Only SDS readily extracted this protein from intact EB. Sarkosyl treatment selectively solubilized the majority of other EB proteins, leaving the 39,500-dalton protein associated with the Sarkosyl-insoluble fraction. Ultrastructural studies of the Sarkosyl-insoluble EB pellet showed it to consist of empty EB particles possessing an apparently intact outer membrane. No structural evidence for a peptidoglycan-like cell wall was found. Morphologically these chlamydial outer membrane complexes (COMC) resembled intact chlamydial EB outer membranes. The 39,500-dalton outer membrane protein was quantitatively extracted from COMC by treating them with 2% SDS at 60 degrees C. This protein accounted for 61% of the total COMC-associated protein, and its extraction resulted in a concomitant loss of the COMC membrane structure and morphology. The 39,500-dalton major outer membrane protein is a serogroup antigen of C. trachomatis organisms.« less
Gas phase fractionation method using porous ceramic membrane
Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.
1996-01-01
Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.
Rio, Donald C
2015-03-02
In this protocol, an RNA sample, fractionated by gel electrophoresis, is transferred from the gel onto a membrane by capillary transfer. Short-wave UV light is used to fix the transferred RNA to the membrane. The membrane is then pretreated to block nonspecific probe-binding sites, and hybridization of the immobilized RNA to a (32)P-labeled DNA or RNA probe specific for the mRNA of interest is performed. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. Because exposure to UV cross-links the RNA to the membrane, the membrane can be stripped and hybridized with other probes. The procedure is suitable for detecting poly(A)(+)-selected mRNA or mRNA in total cellular RNA if the target transcript is relatively abundant. Using DNA or RNA probes labeled to 1 × 10(8)-10 × 10(8) cpm/µg, it should be possible to detect ∼5 pg of a specific RNA. © 2015 Cold Spring Harbor Laboratory Press.
Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3
Stolz, J.F.; Gugliuzza, T.; Switzer, Blum J.; Oremland, R.; Martinez, Murillo F.
1997-01-01
The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth.
Gradient zone boundary control in salt gradient solar ponds
Hull, John R.
1984-01-01
A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.
Gradient zone-boundary control in salt-gradient solar ponds
Hull, J.R.
1982-09-29
A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.
NASA Technical Reports Server (NTRS)
Ward, M. R.; Tischner, R.; Huffaker, R. C.
1988-01-01
Membrane associated nitrate reductase (NR) was detected in plasma membrane (PM) fractions isolated by aqueous two-phase partitioning from barley (Hordeum vulgare L. var CM 72) roots. The PM associated NR was not removed by washing vesicles with 500 millimolar NaCl and 1 millimolar EDTA and represented up to 4% of the total root NR activity. PM associated NR was stimulated up to 20-fold by Triton X-100 whereas soluble NR was only increased 1.7-fold. The latency was a function of the solubilization of NR from the membrane. NR, solubilized from the PM fraction by Triton X-100 was inactivated by antiserum to Chlorella sorokiniana NR. Anti-NR immunoglobulin G fragments purified from the anti-NR serum inhibited NO3- uptake by more than 90% but had no effect on NO2- uptake. The inhibitory effect was only partially reversible; uptake recovered to 50% of the control after thorough rinsing of roots. Preimmune serum immunoglobulin G fragments inhibited NO3- uptake 36% but the effect was completely reversible by rinsing. Intact NR antiserum had no effect on NO3- uptake. The results present the possibility that NO3- uptake and NO3- reduction in the PM of barley roots may be related.
Ahmed, Farhana; Rahman, Mohammad Sharifur
2016-07-26
Callistemon citrinus (Curtis.) (Family- Myrtaceae) is a popular evergreen shrub in Bangladesh. In the present study, the leaves of this plant have been assessed comprehensively for free radical scavenging, thrombolytic and membrane stabilizing activities. The leaves were collected, powdered and extracted with methanol. The extract was then concentrated and successively fractionated into petroleum ether, carbon tetrachloride, chloroform and aqueous soluble fractions. The extractives were investigated for free radical scavenging, thrombolytic and membrane stabilizing activities. In case of 1,1 diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide radical scavenging assays, the crude methanol extract of the leaves showed the highest free radical scavenging activity among the tested materials including standard ascorbic acid (p = 0.0000). Besides, this extract was also found significantly rich (p = 0.0000) in phenolics and flavonoids compared to other organic fractions. In thrombolytic study, the petroleum ether fraction exhibited significantly stronger thrombolysis (p = 0.024) than other leaf extractives but was weaker than the standard streptokinase. In membrane stabilizing assay, the activity of chloroform fraction was similar to that of standard acetylsalicylic acid (p = 1.000) in hypotonic solution induced hemolysis. However, membrane stabilization activity of this chloroform fraction was found significantly stronger than that of the standard (p = 0.0000) in heat induced hemolysis. This study has revealed the medicinal capabilities of different organic fractions of C. citrinus displaying free radical scavenging, thrombolysis and membrane stabilizing antiinflammatory potentials. Further bioactivity guided isolation is required to obtain pharmacologically secondary metabolites.
Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O
2016-05-18
In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (<1, 1-3, 3-5 and 5-10 kDa). The hydrolysates and their peptide fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes <3 kDa had significantly (p < 0.05) reduced surface hydrophobicity when compared with peptides >3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p < 0.05) when compared to low molecular weight peptide fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p < 0.05) reducing power and ability to chelate metal ions except for the pepsin hydrolysate and its membrane fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders.
Martz, Françoise; Sutinen, Marja-Liisa; Kiviniemi, Sari; Palta, Jiwan P
2006-06-01
It has previously been suggested that plasma membrane ATPase (PM H+-ATPase, EC 3.6.1.3.) is a site of incipient freezing injury because activity increases following cold acclimation and there are published data indicating that activity of PM H+-ATPase is modulated by changes in lipids associated with the enzyme. To test and extend these findings in a tree species, we analyzed PM H+-ATPase activity and the fatty acid (FA) composition of glycerolipids in purified plasma membranes (PMs) prepared by the two-phase partition method from current-year needles of adult red pine (Pinus resinosa Ait.) trees. Freezing tolerance of the needles decreased from -56 degrees C in March to -9 degrees C in May, and increased from -15 degrees C in September to -148 degrees C in January. Specific activity of vanadate-sensitive PM H+-ATPase increased more than two-fold following cold acclimation, despite a concurrent increase in protein concentration. During de-acclimation, decreases in PM H+-ATPase activity and freezing tolerance were accompanied by decreases in the proportions of oleic (18:1) and linoleic (18:2) acids and increases in the proportions of palmitic (16:0) and linolenic (18:3) acids in total glycerolipids extracted from the plasma membrane fraction. This pattern of changes in PM H+-ATPase activity and the 18:1, 18:2 and 18:3 fatty acids was reversed during cold acclimation. In the PM fractions, changes in FA unsaturation, expressed as the double bond index (1 x 18:1 + 2 x 18:2 + 3 x 18:3), were closely correlated with changes in H+-ATPase specific activity (r2 = 0.995). Changes in freezing tolerance were well correlated with DBI (r2 = 0.877) and ATPase specific activity (r2 = 0.833) in the PM fraction. Total ATPase activity in microsomal fractions also closely followed changes in freezing tolerance (r2 = 0.969). We conclude that, as in herbaceous plants, simultaneous seasonal changes in PM H+-ATPase activity and fatty acid composition occur during cold acclimation and de-acclimation in an extremely winter hardy tree species under natural conditions, lending support to the hypothesis that FA-regulated PM H+-ATPase activity is involved in the cellular response underlying cold acclimation and de-acclimation.
Nwachukwu, Ifeanyi D.; Girgih, Abraham T.; Malomo, Sunday A.; Onuh, John O.; Aluko, Rotimi E.
2014-01-01
Thermoase-digested flaxseed protein hydrolysate (FPH) samples and ultrafiltration membrane-separated peptide fractions were initially evaluated for in vitro inhibition of angiotensin I-converting enzyme (ACE) and renin activities. The two most active FPH samples and their corresponding peptide fractions were subsequently tested for in vivo antihypertensive activity in spontaneously hypertensive rats (SHR). The FPH produced with 3% thermoase digestion showed the highest ACE- and renin-inhibitory activities. Whereas membrane ultrafiltration resulted in significant (p < 0.05) increases in ACE inhibition by the <1 and 1–3 kDa peptides, only a marginal improvement in renin-inhibitory activity was observed for virtually all the samples after membrane ultrafiltration. The FPH samples and membrane fractions were also effective in lowering systolic blood pressure (SBP) in SHR with the largest effect occurring after oral administration (200 mg/kg body weight) of the 1–3 kDa peptide fraction of the 2.5% FPH and the 3–5 kDa fraction of the 3% FPH. Such potent SBP-lowering capacity indicates the potential of flaxseed protein-derived bioactive peptides as ingredients for the formulation of antihypertensive functional foods and nutraceuticals. PMID:25302619
Black, M T; Lee, P; Horton, P
1986-09-01
Changes in topography and function of pea (Pisum sativum L.) thylakoid membrane fractions following membrane protein phosphorylation have been studied. After protein phosphorylation the stromal membrane fraction had a higher chlorophyll a/b ratio, an increased content of light-harvesting chlorophyll protein and a higher ratio of chlorophyll to cytochrome f. This indicates that a pool of light-harvesting chlorophyll protein migrates from the photosystem II-enriched grana regions to the photosystem I-enriched stroma lamellae, in agreement with Kyle et al. (1984, Biochim. Biophys. Acta 765, 89-96) and Larsson et al. (1983, Eur. J. Biochem. 136, 25-29). Phosphorylation caused a stimulation in the rate of light-limited photosystem-I electron transfer in the unappressed membrane fraction, indicating that the translocated LHC-II becomes functionally associated with photosystem I.
Zauber, Henrik; Szymanski, Witold; Schulze, Waltraud X
2013-12-01
During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-β-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions.
Zauber, Henrik; Szymanski, Witold; Schulze, Waltraud X.
2013-01-01
During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-β-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions. PMID:24030099
Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao
To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.
Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A
1996-02-01
Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.
The Isolation and Partial Characterization of a Membrane Fraction Containing Phytochrome 12
Marmé, Dieter; Mackenzie, John M.; Boisard, Jean; Briggs, Winslow R.
1974-01-01
If 4-day-old dark-grown zucchini squash seedlings (Cucurbita pepo L. cv. Black Beauty) are exposed briefly to red light, subsequent cell fractionation yields about 40% of the total extractable phytochrome in the far red-absorbing form bound to a particulate fraction. The amount of far red-absorbing phytochrome in the pellet is strongly dependent on the Mg concentration in the extraction medium. The apparent density of the Pfr-containing particles following sedimentation on sucrose gradients corresponds to 15% (w/w) sucrose with 0.1 mm Mg and 40% sucrose with 10 mm Mg. This particulate fraction could be readily separated from mitochondria and other particulate material by taking advantage of these apparent density changes with changes in Mg concentration. Electron microscopy of negatively stained preparations shows that with 1 mm Mg only minute particles are present. These were too small to reveal structural detail with this technique. With 3 mm Mg, separate membranous vesicles between 400 and 600 Ångstroms in diameter appear. At higher Mg concentrations, the vesicles aggregate, causing obvious turbity. The effect of Mg on vesicle formation and aggregation is completely reversible. Above 10 mm Mg, vesicle aggregation persists, but the percentage of bound Pfr decreases. Images PMID:16658871
Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi
2006-12-22
The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with {beta}-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than tomore » intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.« less
Inhibitors removal from bio-oil aqueous fraction for increased ethanol production.
Sukhbaatar, Badamkhand; Li, Qi; Wan, Caixia; Yu, Fei; Hassan, El-Barbary; Steele, Philip
2014-06-01
Utilization of 1,6-anhydro-β-d-glucopyranose (levoglucosan) present (11% w/v) in the water fraction of bio-oil for ethanol production will facilitate improvement in comprehensive utilization of total carbon in biomass. One of the major challenges for conversion of anhydrous sugars from the bio-oil water fraction to bio-ethanol is the presence of inhibitory compounds that slow or impede the microbial fermentation process. Removal of inhibitory compounds was first approached by n-butanol extraction. Optimal ratio of n-butanol and bio-oil water fraction was 1.8:1. Removal of dissolved n-butanol was completed by evaporation. Concentration of sugars in the bio-oil water fraction was performed by membrane filtration and freeze drying. Fermentability of the pyrolytic sugars was tested by fermentation of hydrolyzed sugars with Saccharomyces pastorianus lager yeast. The yield of ethanol produced from pyrolytic sugars in the bio-oil water fraction reached a maximum of 98% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tischner, R.; Ward, M. R.; Huffaker, R. C.
1989-01-01
Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.
Erkan, Hanife Sari; Engin, Guleda Onkal
2017-10-01
The paper mill industry produces high amounts of wastewater and, for this reason, stringent discharge limits are applied for sustainable reclamation and reuse of paper mill industry wastewater in many countries. Submerged membrane bioreactor (sMBR) systems can create new opportunities to eliminate dissolved substances present in paper mill wastewater including. In this study, a sMBR was operated for the treatment of paper mill industry wastewater at 35 h of hydraulic retention time (HRT) and 40 d of sludge retention time (SRT). The chemical oxygen demand (COD), NH 3 -N and total phosphorus (TP) removal efficiencies were found to be 98%, 92.99% and 96.36%. The results demonstrated that sMBR was a suitable treatment for the removal of organic matter and nutrients for treating paper mill wastewater except for the problem of calcium accumulation. During the experimental studies, it was noted that the inorganic fraction of the sludge increased as a result of calcium accumulation in the reactor and increased membrane fouling was observed on the membrane surface due to the calcification problem encountered. The properties of the sludge, such as extracellular polymeric substances (EPS) and soluble microbial products (SMP), relative hydrophobicity, zeta potential and floc size distribution were also monitored. According to the obtained results, the total EPS was found to be 43.93 mg/gMLSS and the average total SMP rejection by the membrane was determined as 66.2%.
Noya, Yoichi; Seki, Koh-Ichi; Asano, Hiroshi; Mai, Yosuke; Horinouchi, Takahiro; Higashi, Tsunehito; Terada, Koji; Hatate, Chizuru; Hoshi, Akimasa; Nepal, Prabha; Horiguchi, Mika; Kuge, Yuji; Miwa, Soichi
2013-12-06
Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0μM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration-dependent cytotoxicity with an EC50 value of 264.0±16.9μM (n=3). The concentrations of acrolein, MVK and CPO in the CSE were 3368±334, 2429±123 and 392.9±31.8μM (n=4), respectively, which were higher than the cytotoxic concentrations. The cytotoxicity of acrolein and MVK consisted of plasma membrane damage and decreased cell viability: the plasma membrane damage was totally prevented by treatment with an inhibitor of PKC or NOX, whereas the decreased cell viability was only partially prevented by these inhibitors. The cytotoxicity of CPO consisted only of decreased cell viability, which was totally resistant to these inhibitors. These results show that acrolein and MVK are responsible for the acute cytotoxicity of the CSE through PKC/NOX-dependent and -independent mechanisms, whereas CPO is responsible for the delayed cytotoxicity of the CSE through a PKC/NOX-independent mechanism. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Isolation of plasma membrane fractions from the intestinal epithelial model T84.
Kaoutzani, P; Parkos, C A; Delp-Archer, C; Madara, J L
1993-05-01
The human intestinal epithelial cell line T84 is widely used as a model for studies of Cl- secretion and crypt cell biology. We report a fractionation approach that permits separation of purified apical and basolateral T84 plasma membrane domains. T84 cellular membranes were isolated by nitrogen cavitation and differential centrifugation from monolayers grown on permeable supports. Membranes were then fractionated by isopycnic sucrose density gradient sedimentation, and fractions were assessed, using enzymatic and Western blot techniques, for apical (alkaline phosphatase) and basolateral (Na(+)-K(+)-ATPase) plasma membrane markers and for cytosolic, lysosomal, Golgi, and mitochondrial markers. Buffer conditions were defined that permitted separation of enriched apical and basolateral markers. The validity of the selected markers for the apical and basolateral domains was verified by selective apical and basolateral surface labeling studies using trace iodinated wheat germ agglutinin or biotinylation. This approach allows for separation of apical and basolateral plasma membranes of T84 cells for biochemical analyses and should thus be of broad utility in studies of this model polarized and transporting epithelium.
Sugino, Ilene K.; Sun, Qian; Springer, Carola; Cheewatrakoolpong, Noounanong; Liu, Tong; Li, Hong; Zarbin, Marco A.
2016-01-01
Purpose To characterize molecular weight fractions of bovine corneal endothelial cell conditioned medium (CM) supporting retinal pigment epithelium (RPE) cell survival on aged and age-related macular degeneration (AMD) Bruch's membrane. Methods CM was subject to size separation using centrifugal filters. Retentate and filtrate fractions were tested for bioactivity by analyzing RPE survival on submacular Bruch's membrane of aged and AMD donor eyes and behavior on collagen I-coated tissue culture wells. Protein and peptide composition of active fractions was determined by mass spectrometry. Results Two bioactive fractions, 3-kDa filtrate and a 10-50–kDa fraction, were necessary for RPE survival on aged and AMD Bruch's membrane. The 3-kDa filtrate, but not the 10-50–kDa fraction, supported RPE growth on collagen 1‐coated tissue culture plates. Mass spectrometry of the 10-50–kDa fraction identified 175 extracellular proteins, including growth factors and extracellular matrix molecules. Transforming growth factor (TGF)β-2 was identified as unique to active CM. Peptides representing 29 unique proteins were identified in the 3-KDa filtrate. Conclusions These results indicate there is a minimum of two bioactive molecules in CM, one found in the 3-kDa filtrate and one in the 10-50–kDa fraction, and that bioactive molecules in both fractions must be present to ensure RPE survival on Bruch's membrane. Mass spectrometry analysis suggested proteins to test in future studies to identify proteins that may contribute to CM bioactivity. Translational Relevance Results of this study are the first steps in development of an adjunct to cell-based therapy to ensure cell transplant survival and functionality in AMD patients. PMID:26933521
Nitrogen and phosphorus removal from tertiary wastewater in an osmotic membrane photobioreactor.
Praveen, Prashant; Loh, Kai-Chee
2016-04-01
An osmotic membrane photobioreactor (OMPBR) was designed and operated for 162days for nitrogen and phosphorus removal from wastewater using Chlorella vulgaris. The removal efficiency for NH4(+)-N, NO3(-)-N and PO4(3-)-P reached as high as 95%, 53% and 89%, whereas the maximum removal rates were 3.41 mg/L-day, 0.20 mg/L-day and 0.8 mg/L-day, respectively. The microalgae exhibited high tendency to aggregate and attached to the bioreactor and membrane surfaces, and total biomass accumulation in the OMPBR was over 5 g/L. Salt accumulation and biofouling had adverse effects on membrane filtration, but the performance could be recovered through periodic backwashing of the membranes. Extracellular polymeric substances characterization indicated higher fraction of polysaccharides as compared to proteins. The biomass in the OMPBR accumulated higher levels of carbohydrates and chlorophyll. These results indicate the suitability of OMPBR in wastewater treatment and in high-density microalgae cultivation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Membrane-association of mRNA decapping factors is independent of stress in budding yeast
Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy
2016-01-01
Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation. PMID:27146487
Membrane-association of mRNA decapping factors is independent of stress in budding yeast.
Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy
2016-05-05
Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less
Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.
Grillitsch, Karlheinz; Tarazona, Pablo; Klug, Lisa; Wriessnegger, Tamara; Zellnig, Günther; Leitner, Erich; Feussner, Ivo; Daum, Günther
2014-07-01
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production. Copyright © 2014 Elsevier B.V. All rights reserved.
Ultrafiltration of thin stillage from conventional and e-mill dry grind processes.
Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D
2011-05-01
We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p < 0.05). Retentate obtained from conventional thin stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.
Fonteh, Alfred N.; Cipolla, Matthew; Chiang, Jiarong; Arakaki, Xianghong; Harrington, Michael G.
2014-01-01
Background Although saturated (SAFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids are important structural components of neuronal membranes and precursors of signaling molecules, knowledge of their metabolism in Alzheimer's disease (AD) is limited. Based on recent discovery that lipids in cerebrospinal fluid (CSF) are distributed in both brain-derived nanoparticles (NP) and supernatant fluid (SF), we hypothesized that fatty acid (FA) abundance and distribution into these compartments is altered in early AD pathology. Methodology and Findings We assayed the FA composition and abundance in CSF fractions from cognitively healthy (CH), mild cognitive impairment (MCI), and AD study participants using gas chromatography - mass spectrometry. In the SF fraction, concentration of docosahexaenoic acid [DHA, (C22:6n-3)] was less in AD compared with CH, while alpha linolenic acid [α-LNA, (C18:3n-3)] was lower in MCI compared with CH. In the NP fraction, levels of SAFAs (C15:0, C16:0) and a MUFA (C15:1) differentiated CH from MCI, while two MUFAs (C15:1, C19:1) and four PUFAs (C20:2n-6, C20:3n-3, C22:4n-6, C22:5n-3) were higher in AD compared with CH. Levels of even-chain free SAFA and total free FA levels were higher in AD, levels of odd-chain free SAFAs, MUFAs, n-3 PUFAs, and total PUFA, were lower in AD compared with CH. Free n-6 PUFA levels were similar in all three groups. Conclusions and Significance FA metabolism is compartmentalized differently in NP versus SF fractions of CSF, and altered FA levels reflect the importance of abnormal metabolism and oxidative pathways in AD. Depleted DHA in CSF fractions in AD is consistent with the importance of n-3 PUFAs in cognitive function, and suggests that disturbed PUFA metabolism contributes to AD pathology. This study of FA levels in CSF fractions from different cognitive stages shows potential AD biomarkers, and provides further insight into cell membrane dysfunctions, including mechanisms leading to amyloid production. PMID:24956173
NASA Astrophysics Data System (ADS)
Methogo, Ruth Menque; Dansette, Patrick M.; Klarskov, Klaus
2007-12-01
A combined approach based on two-dimensional electrophoresis-immuno-blotting and nanoliquid chromatography coupled on-line with electrospray ionization mass spectrometry (nLC-MS/MS) was used to identify proteins modified by a reactive intermediate of tienilic acid (TA). Liver homogenates from rats exposed to TA were fractionated using ultra centrifugation; four fractions were obtained and subjected to 2D electrophoresis. Following transfer to PVDF membranes, modified proteins were visualized after India ink staining, using an anti-serum raised against TA and ECL detection. Immuno-reactive spots were localized on the PVDF membrane by superposition of the ECL image, protein spots of interest were excised, digested on the membrane with trypsin followed by nLC-MS/MS analysis and protein identification. A total of 15 proteins were identified as likely targets modified by a TA reactive metabolite. These include selenium binding protein 2, senescence marker protein SMP-30, adenosine kinase, Acy1 protein, adenosylhomocysteinase, capping protein (actin filament), protein disulfide isomerase, fumarylacetoacetase, arginase chain A, ketohexokinase, proteasome endopeptidase complex, triosephosphate isomerase, superoxide dismutase, dna-type molecular chaperone hsc73 and malate dehydrogenase.
Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R
2009-12-01
A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.
Siqueira, A P; Wallgren, M; Hossain, M S; Johannisson, A; Sanz, L; Calvete, J J; Rodríguez-Martínez, H
2011-04-15
Boar sperm viability post-thaw differs depending on the ejaculate fraction used, with spermatozoa present in the first 10 mL of the sperm-rich fraction (SRF) (portion 1, P1, sperm-peak portion) displaying the best cryosurvival in vitro compared with that of spermatozoa from the rest of the ejaculate (portion 2 of the SRF plus the post-spermatic fraction), even when using simplified freezing routines. This viability apparently relates to the specific profile of seminal plasma in P1 (i.e., glycoprotein and bicarbonate concentrations, and pH). However, spermatozoa from P1 have not been compared with spermatozoa from the rest of the SRF (SRF-P1, usually 30-40 mL of the SRF), which is routinely used for freezing. We compared P1 with SRF-P1 in terms of sperm kinematics (using the QualiSperm™ system), while membrane integrity (SYBR-14/PI), acrosome integrity (FITC PNA/PI), and sperm membrane stability (Annexin-V) were explored using flow cytometry. As well, total protein concentration and the proteomics of the seminal plasma (SP) of both portions of the SRF were studied using two-dimensional electrophoresis (2DE), mass fingerprinting (MALDI-TOF), and collision-induced dissociation tandem mass spectrometry (CID-MS/MS) on selected peptides. The SRF portions were collected weekly from four mature boars (4-5 replicates per boar, sperm concentration: P1, 1.86 ± 0.20; SRF-P1, 1.25 ± 0.14 × 10(9) spz/mL) and processed using a quick freezing method in MiniFlatPacks. Post-thaw sperm motility reached 50%, without differences between SRF portions, but with clear inter-boar variation. Neither plasma membrane nor acrosome integrity differed (ns) between fractions. These results indicate that there are no differences in cryosurvival after quick freezing of boar spermatozoa derived from either of the two SRF portions. While P1 and SRF-P1 clearly differed in relative total protein contents, as expected, they displayed very similar protein profiles as assessed using 2DE and mass spectrometry (tryptic peptide mass fingerprint analysis and CID-MS/MS), indicating a similar emission of epididymal protein content. Copyright © 2011 Elsevier Inc. All rights reserved.
Tice, Kathy R.; Parker, David R.; DeMason, Darleen A.
1992-01-01
Knowledge of the mechanistic basis of differential aluminum (Al) tolerance depends, in part, on an improved ability to quantify Al located in the apoplastic and symplastic compartments of the root apex. Using root tips excised from seedlings of an Al-tolerant wheat cultivar (Triticum aestivum L. cv Yecora Rojo) grown in Al solutions for 2 d, we established an operationally defined apoplastic Al fraction determined with six sequential 30-min washes using 5 mm CaCl2 (pH 4.3). Soluble symplastic Al was eluted by freezing root tips to rupture cell membranes and performing four additional 30-min CaCl2 washes, and a residual fraction was determined via digestion of root tips with HNO3. The three fractions were then determined in Yecora Rojo and a sensitive wheat cultivar (Tyler) grown at 18, 55, or 140 μm total solution Al (AlT). When grown at equal AlT, Tyler contained more Al than Yecora Rojo in all fractions, but both total Al and fractional distribution were similar in the two cultivars grown at AlT levels effecting a 50% reduction in root growth. Residual Al was consistently 50 to 70% of the total, and its location was elucidated by staining root tips with the fluorophore morin and examining them using fluorescence and confocal laser scanning microscopy. Wall-associated Al was only observed in tips prior to any washing, and the residual fraction was manifested as distinct staining of the cytoplasm and nucleus but not of the apoplastic space. Accordingly, the residual fraction was allocated to the symplastic compartment for both cultivars, and recalculated apoplastic Al was consistently approximately 30 to 40% of the total. Distributions of Al in the two cultivars did not support a symplastic detoxification hypothesis, but the role of cytoplasmic exclusion remains unsettled. Images Figure 4 Figure 5 PMID:16652962
Synthesis of a select group of proteins by Neisseria gonorrhoeae in response to thermal stress.
Woods, M L; Bonfiglioli, R; McGee, Z A; Georgopoulos, C
1990-01-01
We report the thermal conditions that induce the heat shock response in Neisseria gonorrhoeae. Under conditions of thermal stress, Neisseria gonorrhoeae synthesizes heat shock proteins (hsps), which differ quantitatively from conventionally studied gonococcal proteins. Gonococci accelerate the rate of synthesis of the hsps as early as 5 min after the appropriate stimulus is applied, with synthesis continuing for 30 min, as demonstrated by in vivo labeling experiments with L-[35S]methionine. Two of the gonococcal hsps are immunologically cross-reactive with the hsps of Escherichia coli, DnaK and GroEL, as demonstrated by Western blot (immunoblot) analysis. Ten hsps can be identified on two-dimensional autoradiograms of whole gonococci (total protein). Four hsps can be identified on two-dimensional autoradiograms of 1% N-lauroylsarcosine (sodium salt) (Sarkosyl)-insoluble membrane fractions. Two of the hsps from the 1% Sarkosyl-insoluble fraction are found exclusively in this fraction, suggesting that they are membrane proteins. The identification of this group of proteins will facilitate further study of the function of these proteins and provide insight into the possible role of hsps in disease pathogenesis. Images PMID:2106493
Piechura, J E; Riefel, R S; Daft, L J
1987-11-01
A membrane vesicle fraction isolated from exponentially growing Aspergillus fumigatus strain Ag 507 cultures was obtained by mechanical disruption of intact Aspergillus cells under specific osmotic conditions followed by a pH fractionation technique. Electron micrographs of the membrane vesicles indicated unit membrane structures free from cell wall material. High glucose-6-phosphatase and low lactate dehydrogenase activities verified the relative purity of the membrane vesicle fraction. Allergic bronchopulmonary aspergillosis (ABPA) patient and normal human sera were incubated with the membrane vesicle fraction followed by colloidal gold tagged rabbit antiserum to human IgG or IgE. Electron micrographs indicated ABPA patient sera possessed specific IgG and IgE antibodies to membranous components. The detergent octyl-beta-D-glucopyranoside was used to extract membrane vesicle components (MC). The enzyme profile of MC compared with cell sap components (CS) showed differences in types of enzymes. Two-dimensional polyacrylamide gel electrophoretic analyses of MC and CS detected components shared as well as unique to each fraction. In crossed immunoelectrophoresis using both rabbit antisera raised to MC and ABPA patient sera, 5 peaks were detected, while analysis of CS using rabbit antisera raised to CS produced 20 major peaks. Immunoelectrophoresis and double immunodiffusion data supported the crossed immunoelectrophoretic data: MC differed from CS. Enzyme-linked immunosorbent assay indicated high specific IgG and IgE antibody levels to MC in ABPA patient sera. Crossed immuno-affinoelectrophoresis with concanavalin A partially characterized the MC, which consist of components which have glycoprotein elements (i.e., containing alpha-D-glucose or alpha-D-mannose).
Association of p60c-src with endosomal membranes in mammalian fibroblasts
1992-01-01
We have examined the subcellular localization of p60c-src in mammalian fibroblasts. Analysis of indirect immunofluorescence by three- dimensional optical sectioning microscopy revealed a granular cytoplasmic staining that co-localized with the microtubule organizing center. Immunofluorescence experiments with antibodies against a number of membrane markers demonstrated a striking co-localization between p60c-src and the cation-dependent mannose-6-phosphate receptor (CI- MPR), a marker that identifies endosomes. Both p60c-src and the CI-MPR were found to cluster at the spindle poles throughout mitosis. In addition, treatment of interphase and mitotic cells with brefeldin A resulted in a clustering of p60c-src and CI-MPR at a peri-centriolar position. Biochemical fractionation of cellular membranes showed that a major proportion of p60c-src co-enriched with endocytic membranes. Treatment of membranes containing HRP to alter their apparent density also altered the density of p60c-src-containing membranes. Similar density shift experiments with total cellular membranes revealed that the majority of membrane-associated p60c-src in the cell is associated with endosomes, while very little is associated with plasma membranes. These results support a role for p60c-src in the regulation of endosomal membranes and protein trafficking. PMID:1378446
Rakruam, Pharkphum; Wattanachira, Suraphong
2014-03-01
This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Gubs'kyî, Iu I; Goriushko, G G; Belenichev, I F; Kovalenko, S I; Litvinova, N V; Marchenko, O M; Kurapova, T M; Babenko, L P; Velychko, O M
2010-01-01
Using biochemical and physicochemical methods of investigation in vivo, the effect of the substance NC-224, N-, S-chinasolone-derivative, on the lipoperoxidation activity in rat liver endoplasmatic reticulum membranes and nuclear chromatin fractions under tetrachloromethane intoxication have been studied. It was shown that NC-224 has pronounced antioxidant activity which is the biochemical basis of the substance membrane- and genome-protective effects and its ability to restore physicochemical properties of the surface and hydrophobic zones of hepatocyte membranes and structural parameter nuclear chromatin fractions in the conditions of chemical liver injury.
Evidence for Avt6 as a vacuolar exporter of acidic amino acids in Saccharomyces cerevisiae cells.
Chahomchuen, Thippayarat; Hondo, Kana; Ohsaki, Mariko; Sekito, Takayuki; Kakinuma, Yoshimi
2009-12-01
Here we examined the significance of Avt6, a vacuolar exporter of glutamate and aspartate suggested by the in vitro membrane vesicle experiment, in vacuolar compartmentalization of amino acids in Saccharomyces cerevisiae cells. Fluorescent microscopic observation of GFP-fused Avt6 revealed it to be exclusively localized to the vacuolar membrane, with the amount of Myc-tagged Avt6 significantly increased under nitrogen starvation. Glutamate uptake by cells was enhanced by deletion of the AVT6 gene, indicating indirect involvement of Avt6 in cellular glutamate accumulation. Differences in acidic amino acid content of both total and vacuolar fractions were insignificant between the parent and avt6Delta cells when cultured in nutrient-rich conditions. However, in nitrogen-starved conditions, the amount of glutamate and aspartate in the vacuolar fraction was notably increased in the avt6Delta cells. Avt6 is thus involved in vacuolar amino acid compartmentalization in S. cerevisiae cells, especially under conditions of nitrogen starvation.
Isolation and characterization of a fraction rich in ambiquitous enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamdar, S.; Wells, G.; Cohen, G.
Mg/sup 2 +/-dependent phosphatidate phosphohydrolase (PPH) and CTP: phosphocholine cytidylyltransferase (PCT) have been recognized as ambiquitous enzymes. A fraction rich in the activities of these enzymes was isolated from rat adipose cytosol (1) by hydrophobic chromatography on butyl agarose and elution with buffer containing 1M NaCl; (2) by incubating cytosol with 1mM spermine at 23/sup 0/C for 30 min and centrifugation at 15,000 RPM for 15 min. This cytosolic fraction represented 5-10% of total protein and 60-90% total PPH and PCT. Such treatment of cytosol resulted in increase in the specific activity of PPH and PCT 8-20 fold. These fractionsmore » lacked lactate dehydrogenase, a cytosol marker and were also devoid of other enzymes involved in lipid synthesis, including glycerophosphate acyltransferase and diacylglycerol acyltransferase. SDS gel electrophoresis of these fractions indicated the presence of 8-10 protein bands. Electron microscopic examination showed the presence of lipid droplets surrounded by proteinaceous material and some vesicular structures. The presence of lipid in these fractions was also confirmed by /sup 32/P incorporation and autoradiography of /sup 32/P labeled lipids. These studies suggest that ambiquitous enzymes may reside in a separate membrane compartment present in the cytosol.« less
O'Brien, J K; Roth, T L; Stoops, M A; Ball, R L; Steinman, K J; Montano, G A; Love, C C; Robeck, T R
2015-01-01
White rhinoceros ejaculates (n=9) collected by electroejaculation from four males were shipped (10°C, 12h) to develop procedures for the production of chilled and frozen-thawed sex-sorted spermatozoa of adequate quality for artificial insemination (AI). Of all electroejaculate fractions, 39.7% (31/78) exhibited high quality post-collection (≥70% total motility and membrane integrity) and of those, 54.8% (17/31) presented reduced in vitro quality after transport and were retrospectively determined to exhibit urine-contamination (≥21.0μg creatinine/ml). Of fractions analyzed for creatinine concentration, 69% (44/64) were classified as urine-contaminated. For high quality non-contaminated fractions, in vitro parameters (motility, velocity, membrane, acrosome and DNA integrity) of chilled non-sorted and sorted spermatozoa were well-maintained at 5°C up to 54h post-collection, whereby >70% of post-transport (non-sorted) or post-sort (sorted) values were retained. By 54h post-collection, some motility parameters were higher (P<0.05) for non-sorted spermatozoa (total motility, rapid velocity, average path velocity) whereas all remaining motion parameters as well as membrane, acrosome and DNA integrity were similar between sperm types. In comparison with a straw method, directional freezing resulted in enhanced (P<0.05) motility and velocity of non-sorted and sorted spermatozoa, with comparable overall post-thaw quality between sperm types. High purity enrichment of X-bearing (89±6%) or Y-bearing (86±3%) spermatozoa was achieved using moderate sorting rates (2540±498X-spermatozoa/s; 1800±557Y-spermatozoa/s). Collective in vitro characteristics of sorted-chilled or sorted-frozen-thawed spermatozoa derived from high quality electroejaculates indicate acceptable fertility potential for use in AI. Copyright © 2014 Elsevier B.V. All rights reserved.
Contreras, G A; O'Boyle, N J; Herdt, T H; Sordillo, L M
2010-06-01
The periparturient period is characterized by sudden changes in metabolic and immune cell functions that predispose dairy cows to increased incidence of disease. Metabolic changes include alterations in the energy balance that lead to increased lipomobilization with consequent elevation of plasma nonesterified fatty acids (NEFA) concentrations. The objective of this study was to establish the influence of lipomobilization on fatty acid profiles within plasma lipid fractions and leukocyte phospholipid composition. Blood samples from 10 dairy cows were collected at 14 and 7 d before due date, at calving, and at 7, 14, and 30 d after calving. Total lipids and lipid fractions were extracted from plasma and peripheral blood mononuclear cells. The degree of lipomobilization was characterized by measurement of plasma NEFA concentrations. The fatty acid profile of plasma NEFA, plasma phospholipids, and leukocyte phospholipids differed from the composition of total lipids in plasma, where linoleic acid was the most common fatty acid. Around parturition and during early lactation, the proportion of palmitic acid significantly increased in the plasma NEFA and phospholipid fractions with a concomitant increase in the phospholipid fatty acid profile of leukocytes. In contrast, the phospholipid fraction of long-chain polyunsaturated fatty acids in leukocytes was diminished during the periparturient period, especially during the first 2 wk following parturition. This study showed that the composition of total plasma lipids does not necessarily reflect the NEFA and phospholipid fractions in periparturient dairy cows. These findings are significant because it is the plasma phospholipid fraction that contributes to fatty acid composition of membrane phospholipids. Increased availability of certain saturated fatty acids in the NEFA phospholipid fractions may contribute to altered leukocyte functions during the periparturient period. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Stable Membrane-Association of mRNAs in Etiolated, Greening and Mature Plastids.
Legen, Julia; Schmitz-Linneweber, Christian
2017-08-31
Chloroplast genes are transcribed as polycistronic precursor RNAs that give rise to a multitude of processing products down to monocistronic forms. Translation of these mRNAs is realized by bacterial type 70S ribosomes. A larger fraction of these ribosomes is attached to chloroplast membranes. This study analyzed transcriptome-wide distribution of plastid mRNAs between soluble and membrane fractions of purified plastids using microarray analyses and validating RNA gel blot hybridizations. To determine the impact of light on mRNA localization, we used etioplasts, greening plastids and mature chloroplasts from Zea mays as a source for membrane and soluble extracts. The results show that the three plastid types display an almost identical distribution of RNAs between the two organellar fractions, which is confirmed by quantitative RNA gel blot analyses. Furthermore, they reveal that different RNAs processed from polycistronic precursors show transcript-autonomous distribution between stroma and membrane fractions. Disruption of ribosomes leads to release of mRNAs from membranes, demonstrating that attachment is likely a direct consequence of translation. We conclude that plastid mRNA distribution is a stable feature of different plastid types, setting up rapid chloroplast translation in any plastid type.
Continuum Approaches to Understanding Ion and Peptide Interactions with the Membrane
Latorraca, Naomi R.; Callenberg, Keith M.; Boyle, Jon P.; Grabe, Michael
2014-01-01
Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts. PMID:24652510
Effect of slaughter age and feeding system on the neutral and polar lipid composition of horse meat.
Belaunzaran, X; Lavín, P; Mantecón, A R; Kramer, J K G; Aldai, N
2018-02-01
This study was undertaken to provide a thorough analysis of the neutral lipid (NL) and polar lipid (PL) fractions of horse meat that included the content and distribution of acyl and alkenyl moieties in foals under different rearing conditions. Two groups of crossbred horses were studied; the first group was selected from suckling foals produced under grazing conditions and slaughtered at 4 months of age (n=8), and the second group was selected from concentrate-finished foals and slaughtered at 12 months of age (n=7). There were significant differences related to the age and feeding practices of foals which affected the intramuscular (IM) fat content and the fatty acid (FA) composition of NL and PL fractions. Samples from suckling foals were leaner and provided the highest content of methylation products from the plasmalogenic lipids, and total and n-3 polyunsaturated fatty acid (PUFA). By contrast, the meat from concentrate-finished foals had a higher IM fat level resulting in a greater accumulation of 16:0 and total monounsaturated FAs in the NL fraction, whereas the muscle PL fraction retained a similar FA composition between both groups. Linolenic acid was preferentially deposited in the NL fraction, but linoleic acid and the long-chain n-3 and n-6 PUFAs were incorporated into the PL fraction where they served as cell membrane constituents and in eicosanoid formation.
MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.M. Whitworth; Liangxiong Li
2002-09-15
This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane withmore » a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.« less
Yu, Wenzheng; Liu, Teng; Crawshaw, John; Liu, Ting; Graham, Nigel
2018-08-01
The fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size. For NF membranes the removal of smaller MW fractions (800 Da-10 kDa) was less than expected from their pore size; however, nearly all of the hydrophobic, humic-type substances could be removed by the hydrophilic NF membranes for all MW distributions (greater than 90%). The results indicated the importance of the charge and hydrophilic nature of the NOM. Thus, the hydrophilic NF membrane could remove the hydrophobic organic matter, but not the hydrophilic substances. Increasing charge effects (more negative zeta potentials) with increasing solution pH were found to enhance organics removal and reduce fouling (flux decline), most likely through greater membrane surface repulsion. Pre-ozonation of the surface water increased the hydrophilic fraction and anionic charge of NOM and altered their size distributions. This resulted in a decreased fouling (less flux decline) for the UF and smaller pore NF, but a slight increase in fouling for the larger pore NF. The differences in the NF behavior are believed to relate to the relative sizes of ozonated organic fractions and the NF pores; a similar size of ozonated organic fractions and the NF pores causes significant membrane fouling. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Santiago Valtierra, Florencia X.; Mateos, Melina V.; Aveldaño, Marta I.; Oresti, Gerardo M.
2017-01-01
Rat spermatogenic cells contain sphingomyelins (SMs) and ceramides (Cers) with very long-chain PUFAs (VLCPUFAs) in nonhydroxylated (n-V) and 2-hydroxylated (h-V) forms. How these atypical species distribute among membrane fractions during differentiation was investigated here using a detergent-free procedure to isolate a small light raft-like low-density fraction and a large heavy fraction, mostly derived from the plasma membrane of spermatocytes, round spermatids, and late spermatids. The light fraction contained cholesterol, glycerophospholipids (GPLs), and SM with the same saturated fatty acids in all three stages. In the heavy fraction, as PUFA increased in the GPL and VLCPUFA in SM from spermatocytes to spermatids, the concentration of cholesterol was also augmented. The heavy fraction had mostly n-V SM in spermatocytes, but accumulated h-V SM and h-V Cer in spermatids. A fraction containing intracellular membranes had less SM and more Cer than the latter, but in both fractions SM and Cer species with h-V increased over species with n-V with differentiation. This accretion of h-V was consistent with the differentiation-dependent expression of fatty acid 2-hydroxylase (Fa2h), as it increased significantly from spermatocytes to spermatids. The non-raft region of the plasma membrane is thus the main target of the dynamic lipid synthesis and remodeling that is involved in germ cell differentiation. PMID:28082410
Aruldass, Claira Arul; Masalamany, Santhana Raj Louis; Venil, Chidambaram Kulandaisamy; Ahmad, Wan Azlina
2018-02-01
Violacein, violet pigment produced by Chromobacterium violaceum, has attracted much attention recently due to its pharmacological properties including antibacterial activity. The present study investigated possible antibacterial mode of action of violacein from C. violaceum UTM5 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains. Violet fraction was obtained by cultivating C. violaceum UTM5 in liquid pineapple waste medium, extracted, and fractionated using ethyl acetate and vacuum liquid chromatography technique. Violacein was quantified as major compound in violet fraction using HPLC analysis. Violet fraction displayed bacteriostatic activity against S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300 with minimum inhibitory concentration (MIC) of 3.9 μg/mL. Fluorescence dyes for membrane damage and scanning electron microscopic analysis confirmed the inhibitory effect by disruption on membrane integrity, morphological alternations, and rupture of the cell membranes of both strains. Transmission electron microscopic analysis showed membrane damage, mesosome formation, and leakage of intracellular constituents of both bacterial strains. Mode of action of violet fraction on the cell membrane integrity of both strains was shown by release of protein, K + , and extracellular adenosine 5'-triphosphate (ATP) with 110.5 μg/mL, 2.34 μg/mL, and 87.24 ng/μL, respectively, at 48 h of incubation. Violet fraction was toxic to human embryonic kidney (HEK293) and human fetal lung fibroblast (IMR90) cell lines with LC 50 value of 0.998 ± 0.058 and 0.387 ± 0.002 μg/mL, respectively. Thus, violet fraction showed a strong antibacterial property by disrupting the membrane integrity of S. aureus and MRSA strains. This is the first report on the possible mode of antibacterial action of violet fraction from C. violaceum UTM5 on S. aureus and MRSA strains.
Zhou, Zhengzhen; Guo, Laodong
2015-06-19
Colloidal retention characteristics, recovery and size distribution of model macromolecules and natural dissolved organic matter (DOM) were systematically examined using an asymmetrical flow field-flow fractionation (AFlFFF) system under various membrane size cutoffs and carrier solutions. Polystyrene sulfonate (PSS) standards with known molecular weights (MW) were used to determine their permeation and recovery rates by membranes with different nominal MW cutoffs (NMWCO) within the AFlFFF system. Based on a ≥90% recovery rate for PSS standards by the AFlFFF system, the actual NMWCOs were determined to be 1.9 kDa for the 0.3 kDa membrane, 2.7 kDa for the 1 kDa membrane, and 33 kDa for the 10 kDa membrane, respectively. After membrane calibration, natural DOM samples were analyzed with the AFlFFF system to determine their colloidal size distribution and the influence from membrane NMWCOs and carrier solutions. Size partitioning of DOM samples showed a predominant colloidal size fraction in the <5 nm or <10 kDa size range, consistent with the size characteristics of humic substances as the main terrestrial DOM component. Recovery of DOM by the AFlFFF system, as determined by UV-absorbance at 254 nm, decreased significantly with increasing membrane NMWCO, from 45% by the 0.3 kDa membrane to 2-3% by the 10 kDa membrane. Since natural DOM is mostly composed of lower MW substances (<10 kDa) and the actual membrane cutoffs are normally larger than their manufacturer ratings, a 0.3 kDa membrane (with an actual NMWCO of 1.9 kDa) is highly recommended for colloidal size characterization of natural DOM. Among the three carrier solutions, borate buffer seemed to provide the highest recovery and optimal separation of DOM. Rigorous calibration with macromolecular standards and optimization of system conditions are a prerequisite for quantifying colloidal size distribution using the flow field-flow fractionation technique. In addition, the coupling of AFlFFF with fluorescence EEMs could provide new insights into DOM heterogeneity in different colloidal size fractions. Copyright © 2015 Elsevier B.V. All rights reserved.
Flow and fouling in membrane filters: Effects of membrane morphology
NASA Astrophysics Data System (ADS)
Sanaei, Pejman; Cummings, Linda J.
2015-11-01
Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.
Proteomic analysis of symbiosome membranes in Cnidaria-dinoflagellate endosymbiosis.
Peng, Shao-En; Wang, Yu-Bao; Wang, Li-Hsueh; Chen, Wan-Nan Uang; Lu, Chi-Yu; Fang, Lee-Shing; Chen, Chii-Shiarng
2010-03-01
Symbiosomes are specific intracellular membrane-bound vacuoles containing microalgae in a mutualistic Cnidaria (host)-dinoflagellate (symbiont) association. The symbiosome membrane is originally derived from host plasma membranes during phagocytosis of the symbiont; however, its molecular components and functions are not clear. In order to investigate the protein components of the symbiosome membranes, homogenous symbiosomes were isolated from the sea anemone Aiptasia pulchella and their purities and membrane intactness examined by Western blot analysis for host contaminants and microscopic analysis using various fluorescent probes, respectively. Pure and intact symbiosomes were then subjected to biotinylation by a cell impermeant agent (Biotin-XX sulfosuccinimidyl ester) to label membrane surface proteins. The biotinylated proteins, both Triton X-100 soluble and insoluble fractions, were subjected to 2-D SDS-PAGE and identified by MS using an LC-nano-ESI-MS/MS. A total of 17 proteins were identified. Based on their different subcellular origins and functional categories, it indicates that symbiosome membranes serve as the interface for interaction between host and symbiont by fulfilling several crucial cellular functions such as those of membrane receptors/cell recognition, cytoskeletal remodeling, ATP synthesis/proton homeostasis, transporters, stress responses/chaperones, and anti-apoptosis. The results of proteomic analysis not only indicate the molecular identity of the symbiosome membrane, but also provide insight into the possible role of symbiosome membranes during the endosymbiotic association.
Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua
2017-07-24
The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.
GOLGI FRACTIONS PREPARED FROM RAT LIVER HOMOGENATES
Ehrenreich, J. H.; Bergeron, J. J. M.; Siekevitz, P.; Palade, G. E.
1973-01-01
In devising a new procedure for the isolation of Golgi fractions from rat liver homogenates, we have taken advantage of the overloading with very low density lipoprotein (VLDL) particles that occurs in the Golgi elements of hepatocytes ∼90 min after ethanol is administered (0.6 g/100 g body weight) by stomach tube to the animals. The VLDLs act as morphological markers as well as density modifiers of these elements. The starting preparation is a total microsomal fraction prepared from liver homogenized (1:5) in 0.25 M sucrose. This fraction is resuspended in 1.15 M sucrose and loaded at the bottom of a discontinuous sucrose density gradient. Centrifugation at ∼13 x 106 g·min yields by flotation three Golgi fractions of density >1.041 and <1.173. The light and intermediate fractions consist essentially of VLDL-loaded Golgi vacuoles and cisternae. Nearly empty, often collapsed, Golgi cisternae are the main component of the heavy fraction. A procedure which subjects the Golgi fractions to hypotonic shock and shearing in a French press at pH 8.5 allows the extraction of the content of the Golgi elements and the subsequent isolation of their membranes by differential centrifugation. PMID:4356571
NASA Technical Reports Server (NTRS)
Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.
1984-01-01
Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.
O'Loughlin, Ian B; Kelly, Phil M; Murray, Brian A; FitzGerald, Richard J; Brodkorb, Andre
2015-03-18
The ferrous (Fe2+) chelating capabilities of WPI hydrolysate fractions produced via cascade membrane filtration were investigated, specifically 1 kDa permeate (P) and 30 kDa retentate (R) fractions. The 1 kDa-P possessed a Fe2+ chelating capability at 1 g L(-1) equivalent to 84.4 μM EDTA (for 30 kDa-R the value was 8.7 μM EDTA). Fourier transformed infrared (FTIR) spectroscopy was utilized to investigate the structural characteristics of hydrolysates and molecular interactions with Fe2+. Solid-phase extraction was employed to enrich for chelating activity; the most potent chelating fraction was enriched in histidine and lysine. The solubility of ferrous sulfate solutions (10 mM) over a range of pH values was significantly (P<0.05) improved in dispersions of hydrolysate fraction solutions (10 g protein L(-1)). Total iron solubility was improved by 72% in the presence of the 1 kDa-P fraction following simulated gastrointestinal digestion (SGID) compared to control FeSO4·7H2O solutions.
[Interaction of surface-active base with fraction of membrane-bound Williams's protons].
Iaguzhinskiĭ, L S; Motovilov, K A; Volkov, E M; Eremeev, S A
2013-01-01
In the process of mitochondrial respiratory H(+)-pumps functioning, the fraction membrane-bound protons (R-protons), which have an excess of free energy is formed. According to R.J. Williams this fraction is included as energy source in the reaction of ATP synthesis. Previously, in our laboratory was found the formation of this fraction was found in the mitochondria and on the outer surface of mitoplast. On the mitoslast model we strictly shown that non-equilibrium R-proton fraction is localized on the surface of the inner mitochondrial membrane. In this paper a surface-active compound--anion of 2,4,6-trichloro-3-pentadecylphenol (TCP-C15) is described, which selectively interacts with the R-protons fraction in mitochondria. A detailed description of the specific interaction of the TCP-C15 with R-protons fraction in mitochondria is presented. Moreover, in this work it was found that phosphate transport system reacts with the R-protons fraction in mitochondria and plays the role of the endogenous volume regulation system of this fraction. The results of experiments are discussed in the terms of a local coupling model of the phosphorylation mechanism.
Characterization of the Membrane-Bound Succinic Dehydrogenase of Micrococcus lysodeikticus
Pollock, Jerry J.; Linder, Regina; Salton, Milton R. J.
1971-01-01
The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 × g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca2+ and Mg2+ exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents. Images PMID:4327510
Characterization of the membrane-bound succinic dehydrogenase of Micrococcus lysodeikticus.
Pollock, J J; Linder, R; Salton, M R
1971-07-01
The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 x g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca(2+) and Mg(2+) exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents.
Spectrophotometric and cytochemical analyses of phosphatase activity in Beta vulgaris L.
Pesacreta, T C; Bennett, A B; Lucas, W J
1986-03-01
Spectrophotometric and cytochemical methods were used to investigate the localization and/or the sensitivity of phosphatase activities in aldehyde-fixed beet leaves and membrane fractions. The nonspecific acid phosphatase substrates, p-nitrophenyl phosphate and beta-glycerol phosphate, each exhibited unique spectrophotometric patterns of hydrolysis as a function of pH. Additionally, beta-glycerol phosphatase activity was primarily present on the tonoplast, whereas p-nitrophenyl phosphatase was present on the plasma membrane. Because of the unique pH response of each enzyme and their different localization, we conclude that they cannot be entirely "nonspecific." The spectrophotometric pattern of ATP hydrolysis differed from that of p-nitrophenol phosphate in that it decreased at pH 5.0-5.5 and was greatly inhibited by 10 mM sodium fluoride; however, both activities were on the plasma membrane. Therefore, we conclude that these activities represent either two enzymes or only one enzyme that differs in its ability to hydrolyze these two substrates. Generally, enzymatically produced lead deposits on the plasma membrane of non-vascular cells were as frequent and large as those on phloem cells; frequently, deposits on sieve element plasma membranes were relatively small. We therefore conclude that there is no evidence for the presence of relatively intense ATPase activity on the plasma membrane of phloem cells in beet leaf, in contrast to other species. Studies with membrane fractions indicated that formaldehyde could completely inhibit the inhibitor-sensitive phosphatase activities in mitochondrial and vacuolar fractions while preserving significant activity in the plasma membrane fraction.
Water uptake, ionic conductivity and swelling properties of anion-exchange membrane
NASA Astrophysics Data System (ADS)
Duan, Qiongjuan; Ge, Shanhai; Wang, Chao-Yang
2013-12-01
Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34.
Mika, Angela; Boenisch, Marike Johanne; Hopff, David; Lüthje, Sabine
2010-01-01
Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2a, pmPOX2b, and pmPOX3) was carried out. Total guaiacol peroxidase activities from soluble and microsomal fractions of maize roots were compared and showed weak changes. By contrast, total plasma membrane and washed plasma membrane peroxidase activities, representing peripheral and integral membrane proteins, revealed strong changes after all of the stresses applied. A proteomic approach using 2D-PAGE analysis showed that pmPOX3 was the most abundant class III peroxidase at plasma membranes of control plants, followed by pmPOX2a >pmPOX2b >pmPOX1. The molecular mass (63 kDa) and the isoelectric point (9.5) of the pmPOX2a monomer were identified for the first time. The protein levels of all four enzymes changed in response to multiple stresses. While pmPOX2b was the only membrane peroxidase down-regulated by wounding, all four enzymes were differentially but strongly stimulated by methyl jasmonate, salicylic acid, and elicitors (Fusarium graminearum and Fusarium culmorum extracts, and chitosan) indicating their function in pathogen defence. Oxidative stress applied as H2O2 treatment up-regulated pmPOX2b >pmPOX2a, while pmPOX3 was down-regulated. Treatment with the phosphatase inhibitor chantharidin resulted in distinct responses. PMID:20032108
Cholesterol depletion modulates detergent resistant fraction of human serotonin(1A) receptors.
Sahu, Santosh Kumar; Saxena, Roopali; Chattopadhyay, Amitabha
2012-11-01
Insolubility of membrane components in non-ionic detergents such as Triton X-100 at low temperature is a widely used biochemical criterion to identify, isolate and characterize membrane domains. In this work, we monitored the detergent insolubility of the serotonin(1A) receptor in CHO cell membranes and its modulation by membrane cholesterol. The serotonin(1A) receptor is an important member of the G-protein coupled receptor family. It is implicated in the generation and modulation of various cognitive, behavioral and developmental functions and serves as a drug target. Our results show that a significant fraction (∼28%) of the serotonin(1A) receptor resides in detergent-resistant membranes (DRMs). Interestingly, the fraction of the serotonin(1A) receptor in DRMs exhibits a reduction upon membrane cholesterol depletion. In addition, we show that contents of DRM markers such as flotillin-1, caveolin-1 and GM₁ are altered in DRMs upon cholesterol depletion. These results assume significance since the function of the serotonin(1A) receptor has previously been shown to be affected by membrane lipids, specifically cholesterol. Our results are relevant in the context of membrane organization of the serotonin(1A) receptor in particular, and G-protein coupled receptors in general.
A 115 kDa calmodulin-binding protein is located in rat liver endosome fractions.
Enrich, C; Bachs, O; Evans, W H
1988-01-01
The distribution of calmodulin-binding polypeptides in various rat liver subcellular fractions was investigated. Plasma-membrane, endosome, Golgi and lysosome fractions were prepared by established procedures. The calmodulin-binding polypeptides present in the subcellular fractions were identified by using an overlay technique after transfer from gels to nitrocellulose sheets. Distinctive populations of calmodulin-binding polypeptides were present in all the fractions examined except lysosomes. A major 115 kDa calmodulin-binding polypeptide of pI 4.3 was located to the endosome subfractions, and it emerges as a candidate endosome-specific protein. Partitioning of endosome fractions between aqueous and Triton X-114 phases indicated that the calmodulin-binding polypeptide was hydrophobic. Major calmodulin-binding polypeptides of 140 and 240 kDa and minor polypeptides of 40-60 kDa were present in plasma membranes. The distribution of calmodulin in the various endosome and plasma-membrane fractions was also analysed, and the results indicated that the amounts were high compared with those in the cytosol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3214436
Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, J.J.; Boss, W.F.
1987-10-01
Fusogenic carrot cells grown in suspension culture were labeled 12 hours with myo-(2-/sup 3/H)inositol. Plasma membranes were isolated from the prelabeled fusogenic carrot cells by both aqueous polymer two-phase partitioning and Renografin density gradients. With both methods, the plasma membrane-enriched fractions, as identified by marker enzymes, were enriched in (/sup 3/H)inositol-labeled phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/). An additional (/sup 3/H)inositol-labeled lipid, lysophosphatidylinositol monophosphate, which migrated between PIP and PIP/sub 2/ on thin layer plates, was found primarily in the plasma membrane-rich fraction of the fusogenic cells. This was in contrast to lysophosphatidylinositol which is found primarily inmore » the lower phase, microsomal/mitchrondrial-rich fraction.« less
Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model
Teka, Wondimu; Marinov, Toma M.; Santamaria, Fidel
2014-01-01
The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation. PMID:24675903
Santarius, K A; Giersch, C
1984-01-01
During freezing of isolated spinach thylakoids in sugar/salt solutions, the two solutes affected membrane survival in opposite ways: membrane damage due to increased electrolyte concentration can be prevented by sugar. Calculation of the final concentrations of NaCl or glucose reached in the residual unfrozen portion of the system revealed that the effects of the solutes on membrane activity can be explained in part by colligative action. In addition, the fraction of the residual liquid in the frozen system contributes to membrane injury. During severe freezing in the presence of very low initial solute concentrations, membrane damage drastically increased with a decrease in the volume of the unfrozen solution. Freezing injury under these conditions is likely to be due to mechanical damage by the ice crystals that occupy a very high fraction of the frozen system. At higher starting concentrations of sugar plus salt, membrane damage increased with an increase in the amount of the residual unfrozen liquid. Thylakoid inactivation at these higher initial solute concentrations can be largely attributed to dilution of the membrane fraction, as freezing damage at a given sugar/salt ratio decreased with increasing the thylakoid concentration in the sample. Moreover, membrane survival in the absence of freezing decreased with lowering the temperature, indicating that the temperature affected membrane damage not only via alterations related to the ice formation. From the data it was evident that damage of thylakoid membranes was determined by various individual factors, such as the amount of ice formed, the final concentrations of solutes and membranes in the residual unfrozen solution, the final volume of this fraction, the temperature and the freezing time. The relative contribution of these factors depended on the experimental conditions, mainly the sugar/salt ratio, the initial solute concentrations, and the freezing temperature. PMID:6478028
Szymanski, Witold G.; Kierszniowska, Sylwia; Schulze, Waltraud X.
2013-01-01
Plasma membrane microdomains are features based on the physical properties of the lipid and sterol environment and have particular roles in signaling processes. Extracting sterol-enriched membrane microdomains from plant cells for proteomic analysis is a difficult task mainly due to multiple preparation steps and sources for contaminations from other cellular compartments. The plasma membrane constitutes only about 5-20% of all the membranes in a plant cell, and therefore isolation of highly purified plasma membrane fraction is challenging. A frequently used method involves aqueous two-phase partitioning in polyethylene glycol and dextran, which yields plasma membrane vesicles with a purity of 95% 1. Sterol-rich membrane microdomains within the plasma membrane are insoluble upon treatment with cold nonionic detergents at alkaline pH. This detergent-resistant membrane fraction can be separated from the bulk plasma membrane by ultracentrifugation in a sucrose gradient 2. Subsequently, proteins can be extracted from the low density band of the sucrose gradient by methanol/chloroform precipitation. Extracted protein will then be trypsin digested, desalted and finally analyzed by LC-MS/MS. Our extraction protocol for sterol-rich microdomains is optimized for the preparation of clean detergent-resistant membrane fractions from Arabidopsis thaliana cell cultures. We use full metabolic labeling of Arabidopsis thaliana suspension cell cultures with K15NO3 as the only nitrogen source for quantitative comparative proteomic studies following biological treatment of interest 3. By mixing equal ratios of labeled and unlabeled cell cultures for joint protein extraction the influence of preparation steps on final quantitative result is kept at a minimum. Also loss of material during extraction will affect both control and treatment samples in the same way, and therefore the ratio of light and heave peptide will remain constant. In the proposed method either labeled or unlabeled cell culture undergoes a biological treatment, while the other serves as control 4. PMID:24121251
Iaea, David B.; Mao, Shu; Lund, Frederik W.; Maxfield, Frederick R.
2017-01-01
Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t1/2 =12–15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC. PMID:28209730
Hu, Shuiwang; Musante, Luca; Tataruch, Dorota; Xu, Xiaomeng; Kretz, Oliver; Henry, Michael; Meleady, Paula; Luo, Haihua; Zou, Hequn; Jiang, Yong; Holthofer, Harry
2018-01-05
Urinary extracellular vesicles (uEVs) have become a promising source for biomarkers accurately reflecting biochemical changes in kidney and urogenital diseases. Characteristically, uEVs are rich in membrane proteins associated with several cellular functions like adhesion, transport, and signaling. Hence, membrane proteins of uEVs should represent an exciting protein class with unique biological properties. In this study, we utilized uEVs to optimize the Triton X-114 detergent partitioning protocol targeted for membrane proteins and proceeded to their subsequent characterization while eliminating effects of Tamm-Horsfall protein, the most abundant interfering protein in urine. This is the first report aiming to enrich and characterize the integral transmembrane proteins present in human urinary vesicles. First, uEVs were enriched using a "hydrostatic filtration dialysis'' appliance, and then the enriched uEVs and lysates were verified by transmission electron microscopy. After using Triton X-114 phase partitioning, we generated an insoluble pellet fraction and aqueous phase (AP) and detergent phase (DP) fractions and analyzed them with LC-MS/MS. Both in- and off-gel protein digestion methods were used to reveal an increased number of membrane proteins of uEVs. After comparing with the identified proteins without phase separation as in our earlier publication, 199 different proteins were detected in DP. Prediction of transmembrane domains (TMDs) from these protein fractions showed that DP had more TMDs than other groups. The analyses of hydrophobicity revealed that the GRAVY score of DP was much higher than those of the other fractions. Furthermore, the analysis of proteins with lipid anchor revealed that DP proteins had more lipid anchors than other fractions. Additionally, KEGG pathway analysis showed that the DP proteins detected participate in endocytosis and signaling, which is consistent with the expected biological functions of membrane proteins. Finally, results of Western blotting confirmed that the membrane protein bands are found in the DP fraction instead of AP. In conclusion, our study validates the use of Triton X-114 phase partitioning protocol on uEVs for a targeted isolation of membrane proteins and to reduce sample complexity. This method successfully facilitates detection of potential biomarkers and druggable targets in uEVs.
Chaplin, David D.; Wedner, H. James; Parker, Charles W.
1979-01-01
Phosphorylation of endogenous proteins in subcellular fractions of human peripheral-blood lymphocytes was studied by one- and two-dimensional polyacrylamide-gel electrophoresis. Studies using extensively purified subcellular fractions indicated that the endogenous phosphorylating activity in the particulate fractions was derived primarily from the plasma membrane. Electrophoresis of 32P-labelled subcellular fractions in two dimensions [O'Farrell (1975) J. Biol. Chem. 250, 4007–4021] provided much greater resolution of the endogenous phosphoproteins than electrophoresis in one dimension, facilitating their excision from gels for quantification of 32P content. More than 100 cytoplasmic and 20 plasma-membrane phosphorylated species were observed. Phosphorylation of more than 10 cytoplasmic proteins was absolutely dependent on cyclic AMP. In the plasma membrane, cyclic AMP-dependent phosphoproteins were observed with mol.wts. of 42000, 42000, 80000 and 90000 and pI values of 6.1, 6.3, 6.25 and 6.5 respectively. Phosphorylation of endogenous cytoplasmic and plasma-membrane proteins was rapid with t½=5–12s at 25°C. Between 40 and 70% of the 32P was recovered as phosphoserine and phosphothreonine when acid hydrolysates of isolated plasma-membrane phosphoproteins were analysed by high-voltage paper electrophoresis. The presence of cyclic AMP-dependent protein kinase and endogenous phosphate-acceptor proteins in the plasma membranes of lymphocytes provides a mechanism by which these cells might respond to plasma-membrane pools of cyclic AMP generated in response to stimulation by mitogens or physiological modulators of lymphocyte function. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4. PMID:228657
Modelling Transcapillary Transport of Fluid and Proteins in Hemodialysis Patients
Pietribiasi, Mauro; Waniewski, Jacek; Załuska, Alicja; Załuska, Wojciech; Lindholm, Bengt
2016-01-01
Background The kinetics of protein transport to and from the vascular compartment play a major role in the determination of fluid balance and plasma refilling during hemodialysis (HD) sessions. In this study we propose a whole-body mathematical model describing water and protein shifts across the capillary membrane during HD and compare its output to clinical data while evaluating the impact of choosing specific values for selected parameters. Methods The model follows a two-compartment structure (vascular and interstitial space) and is based on balance equations of protein mass and water volume in each compartment. The capillary membrane was described according to the three-pore theory. Two transport parameters, the fractional contribution of large pores (αLP) and the total hydraulic conductivity (LpS) of the capillary membrane, were estimated from patient data. Changes in the intensity and direction of individual fluid and solute flows through each part of the transport system were analyzed in relation to the choice of different values of small pores radius and fractional conductivity, lymphatic sensitivity to hydraulic pressure, and steady-state interstitial-to-plasma protein concentration ratio. Results The estimated values of LpS and αLP were respectively 10.0 ± 8.4 mL/min/mmHg (mean ± standard deviation) and 0.062 ± 0.041. The model was able to predict with good accuracy the profiles of plasma volume and serum total protein concentration in most of the patients (average root-mean-square deviation < 2% of the measured value). Conclusions The applied model provides a mechanistic interpretation of fluid transport processes induced by ultrafiltration during HD, using a minimum of tuned parameters and assumptions. The simulated values of individual flows through each kind of pore and lymphatic absorption rate yielded by the model may suggest answers to unsolved questions on the relative impact of these not-measurable quantities on total vascular refilling and fluid balance. PMID:27483369
Membrane-filtered olive mill wastewater: Quality assessment of the dried phenolic-rich fraction
USDA-ARS?s Scientific Manuscript database
A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW a...
Membrane proteins from the cyanobacterium Synechocystis sp. PCC 6803 interacting with thioredoxin.
Mata-Cabana, Alejandro; Florencio, Francisco J; Lindahl, Marika
2007-11-01
Cysteine dithiol/disulphide exchange forms the molecular basis for regulation of a wide variety of enzymatic activities and for transduction of cellular signals. Thus, the search for proteins with reactive, accessible cysteines is expected to contribute to the unravelling of new molecular mechanisms for enzyme regulation and signal transduction. Several methods have been designed for this purpose taking advantage of the interactions between thioredoxins and their protein substrates. Thioredoxins comprise a family of redox-active enzymes, which catalyse reduction of protein disulphides and sulphenic acids. Due to the inherent practical difficulties associated with studies of membrane proteins these have been largely overlooked in the many proteomic studies of thioredoxin-interacting proteins. In the present work, we have developed a procedure to isolate membrane proteins interacting with thioredoxin by binding in situ to a monocysteinic His-tagged thioredoxin added directly to the intact membranes. Following fractionation and solubilisation of the membranes, thioredoxin target proteins were isolated by Ni-affinity chromatography and 2-DE SDS-PAGE under nonreducing/reducing conditions. Applying this method to total membranes, including thylakoid and plasma membranes, from the cyanobacterium Synechocystis sp. PCC 6803 we have identified 50 thioredoxin-interacting proteins. Among the 38 newly identified thioredoxin targets are the ATP-binding subunits of several transporters and members of the AAA-family of ATPases.
Bhattacharya, D; Ghosh, D; Bhattacharya, S; Sarkar, S; Karmakar, P; Koley, H; Gachhui, R
2018-02-01
The present study was undertaken to determine the mechanism of antibacterial activity of a polyphenolic fraction, composed of mainly catechin and isorhamnetin, previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against the enteropathogen Vibrio cholerae N16961. Bacterial growth was found to be seriously impaired by the polyphenolic fraction in a dose-dependent manner. Scanning Electron Microscopy demonstrated morphological alterations in bacterial cells when exposed to the polyphenolic fraction in a concentration-dependent manner. Permeabilization assays confirmed that the fraction disrupted bacterial membrane integrity in both time- and dose-dependent manners, which were proportional to the production of intracellular reactive oxygen species (ROS). Furthermore, each of the polyphenols catechin and isorhamnetin showed the ability to permeate bacterial cell membranes by generating oxidative stress, thereby suggesting their role in the antibacterial potential of Kombucha. Thus, the basic mechanism of antibacterial activity of the Kombucha polyphenolic fraction against V. cholerae involved bacterial membrane permeabilization and morphological changes, which might be due to the generation of intracellular ROS. To the best of our knowledge, this is the first report on the investigation of antibacterial mechanism of Kombucha, which is mostly attributed to its polyphenolic content. The emergence of multidrug-resistant Vibrio cholerae strains has hindered an efficient anti-Vibrio therapy. This study has demonstrated the membrane damage-mediated antibacterial mechanism of Kombucha, a popular fermented beverage of sugared tea, which is mostly attributed to its polyphenolic content. This study also implies the exploitation of Kombucha as a potential new source of bioactive polyphenols against V. cholerae. © 2017 The Society for Applied Microbiology.
The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.
Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J
2016-01-01
Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.
Xu, Huacheng; Guo, Laodong
2017-06-15
Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the <3 kDa fraction in freshwater samples, but these percentages were higher in the seawater sample. Spectroscopic properties of DOM, such as specific ultraviolet absorbance, spectral slope, and biological and humification indices also varied significantly with membrane cutoffs. In addition, different ultrafiltration membranes with the same manufacture-rated cutoff also gave rise to different DOM retention efficiencies and thus different colloidal abundances and size spectra. Thus, the size-dependent DOM properties were related to both sample types and membranes used. Our results here provide not only baseline data for filter pore-size selection when exploring DOM ecological and environmental roles, but also new insights into better understanding the physical definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis.
Marsh, M; Schmid, S; Kern, H; Harms, E; Male, P; Mellman, I; Helenius, A
1987-04-01
Endosomes are prelysosomal organelles that serve as an intracellular site for the sorting, distribution, and processing of receptors, ligands, fluid phase components, and membrane proteins internalized by endocytosis. Whereas the overall functions of endosomes are increasingly understood, little is known about endosome structure, composition, or biogenesis. In this paper, we describe a rapid procedure that permits analytical and preparative isolation of endosomes from a variety of tissue culture cells. The procedure relies on a combination of density gradient centrifugation and free flow electrophoresis. It yields a fraction of highly purified, functionally intact organelles. As markers for endosomes in Chinese hamster ovary cells, we used endocytosed horseradish peroxidase, FITC-conjugated dextran, and [35S]methionine-labeled Semliki Forest virus. Total postnuclear supernatants, crude microsomal pellets, or partially purified Golgi fractions were subjected to free flow electrophoresis. Endosomes and lysosomes migrated together as a single anodally deflected peak separated from most other organelles (plasma membrane, mitochondria, endoplasmic reticulum, and Golgi). The endosomes and lysosomes were then resolved by centrifugation in Percoll density gradients. Endosomes prepared in this way were enriched up to 70-fold relative to the initial homogenate and were still capable of ATP-dependent acidification. By electron microscopy, the isolated organelles were found to consist of electron lucent vacuoles and tubules, many of which could be shown to contain an endocytic tracer (e.g., horseradish peroxidase). SDS PAGE analysis of integral and peripheral membrane proteins (separated from each other by condensation in Triton X-114) revealed a unique and restricted subset of proteins when compared with lysosomes, the unshifted free flow electrophoresis peak, and total cell protein. Altogether, the purification procedure takes 5-6 h and yields amounts of endosomes (150-200 micrograms protein) sufficient for biochemical, immunological, and functional analysis.
NASA Technical Reports Server (NTRS)
Pevzner, L. Z.; Venkov, L.; Cheresharov, L.
1980-01-01
Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.
Effect on the operation properties of DMBR with the addition of GAC
NASA Astrophysics Data System (ADS)
Lin, Jizhi; Zhang, Qian; Hong, Junming
2017-01-01
The membrane bioreactor and dynamic membrane bioreactor were used to examine the effect of granular activated carbon (GAC) on the treatment of synthetic wastewater. After the addition of different volume fractions GAC in the DMBR, the operation parameters, effluent COD, NH4 +-N, NO3 --N, TN concentrations and sludge viscosity of the bioreactor was investigated. The results showed that the addition of GAC could relieve the membrane fouling and improve the removal efficiencies of pollutants in the DMBR. The effluent concentrations of pollutants were linear correlation with the addition of volume fractions of GAC in the bioreactor. The value of R2 of each modulation was almost more than 0.9. The sludge viscosity was almost not affected by the volume fractions of GAC in the bioreactor. The best volume fractions of GAC were 20% in the DMBR.
Antioxidants, mechanisms, and recovery by membrane processes.
Bazinet, Laurent; Doyen, Alain
2017-03-04
Antioxidants molecules have a great interest for bio-food and nutraceutical industries since they play a vital role for their capacity to reduce oxidative processes. Consequently, these molecules, generally present in complex matrices, have to be fractionated and purified to characterize them and to test their antioxidant activity. However, as natural or synthetics antioxidant molecules differ in terms of structural composition and physico-chemical properties, appropriate separation technologies must be selected. Different fractionation technologies are available but the most commonly used are filtration processes. Indeed, these technologies allow fractionation according to molecular size (pressure-driven processes), charge, or both size and charge (electrically driven processes). In this context, and after summarizing the reaction mechanisms of the different classes and nature of antioxidants as well as membrane fractionation technologies, this manuscript presents the specific applications of these membranes processes for the recovery of antioxidant molecules.
Campo, Margherita; Pinelli, Patrizia; Romani, Annalisa
2016-03-01
Sweet Chestnut (Castanea sativa Mill.) wood extracts, rich in Hydrolyzable Tannins (HTs), are traditionally used in the tanning and textile industries, but recent studies suggest additional uses. The aim of this work is the HPLC-DAD-ESI-MS characterization of Sweet Chestnut aqueous extracts and fractions obtained through a membrane separation technology system without using other solvents, and the evaluation of their antioxidant and antiradical activities. Total tannins range between 2.7 and 138.4 mM; gallic acid ranges between 6% and 100%; castalagin and vescalagin range between 0% and 40%. Gallic Acid Equivalents, measured with the Folin-Ciocalteu test, range between 0.067 and 56.99 g/100 g extract weight; ORAC test results for the marketed fractions are 450.4 and 3050 µmol/g Trolox Equivalents/extract weight. EC₅₀ values, measured with the DPPH test, range between 0.444 and 2.399 µM. These results suggest a new ecofriendly and economically sustainable method for obtaining chestnut fractions with differentiated, stable and reproducible chemical compositions. Such fractions can be marketed for innovative uses in several sectors.
Phospholipid composition of the plasma membrane of the green alga, Hydrodictyon africanum.
Bailey, D S; Northcote, D H
1976-01-01
A plasma-membrane fraction was isolated from the alga Hydrodictyon africanum by micro-dissection and its phospholipid components were analysed. Phosphatidylcholine was the major phospholipid of the preparation. Both phosphatidylserine and diphosphatidylglycerol were enriched in the fraction compared with the whole cell, but the relative amount of phosphatidylglycerol present was less than that in the whole cell. Phosphatidylinositol was absent from the plasma-membrane preparation. Images PLATE 1 PLATE 2 PMID:182144
Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V.; Hong, Mei
2016-01-01
Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~4 fold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390
1987-01-01
We have used pulse-chase metabolic radiolabeling with L-[35S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates. Approximate half-times for arrival are in the range of 90-120 min for aminopeptidase N and dipeptidylpeptidase IV whereas only 15-20% of the mature radiolabeled HA 4 associated with the hepatocyte plasma membrane fraction has become apical even after 150 min of chase. Our results suggest a mechanism for hepatocyte plasma membrane biogenesis in vivo in which all integral plasma membrane proteins are shipped first to the basolateral domain, followed by the specific retrieval and transport of apical proteins to the apical domain at distinct rates. PMID:3654750
2005-01-01
Abstract The aim of this study was to evaluate the effect of 3 Brucella ovis subcellular protein fractions: Outer membrane (OMP), inner membrane (IMP), and cytoplasm (CP), on cellular immune response by in vitro production of interleukin (IL)-2, IL-4, and interferon (IFN)-γ. Each fraction was inoculated 3 times into Balb/c mice, primary cultures of mice spleen cells were done, and these were then stimulated with the fractions. Culture supernatants were collected at 24, 48, 72, 96, and 120 h postinoculation. Cytokine concentration was measured by Duoset-enzyme-linked immunosorbent assay (ELISA). The OMP fraction induced highest cellular immune response of 1000 pg/mL of IL-2 at 24 h, which decreased to < 100 pg/mL by 96 h. The IL-2 response for the IMP fraction was low at 24 h, but exceeded that of the OMP fraction at 72, 96, and 120 h. The CP showed a poor IL response. Regarding the IFN-γ production, OMP and IMP induced a high response at 120 h. These results open the possibility for the use of B. ovis outer and inner membrane proteins as a subcellular vaccine. PMID:15745223
Mather, I H; Sullivan, C H; Madara, P J
1982-01-01
A solid-phase immunoassay was used to detect xanthine oxidase in fractions from bovine mammary glands after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. Under these conditions the major proportion of xanthine oxidase in either mammary tissue or mild could be recovered as a protein of mol.wt. 150 000. In mammary tissue approx. 80% of the enzyme was in a soluble form and the remainder was accounted for in either 'mitochondrial' or microsomal fractions after tissue homogenization and fractionation. Affinity chromatography of either detergent-solubilized microsomal membranes or postmicrosomal supernatants on immobilized antibody to xanthine oxidase yielded a single protein that cross-reacted with antibody to the enzyme. In milk presumptive degradation products of the enzyme were detected in minor quantities with mol.wts. of 43 000 in the whey fraction and 90 000 in fat-globule membrane. Only the undegraded enzyme was present in the skim-milk membrane fraction. Xanthine oxidase is therefore synthesized and secreted as a protein with a monomeric mol.wt. of 150 000 and is not subjected to extensive proteolytic degradation during the storage of milk in mammary alveoli. The significance of the results is discussed in relation to the overall protein composition of the membranes of milk-fat globules and skim milk. Images Fig. 1. Fig. 2. Fig. 3. PMID:7046730
Speciation and isotopic exchangeability of nickel in soil solution.
Nolan, Annette L; Ma, Yibing; Lombi, Enzo; McLaughlin, Mike J
2009-01-01
Knowledge of trace metal speciation in soil pore waters is important in addressing metal bioavailability and risk assessment of contaminated soils. In this study, free Ni(2+) activities were determined in pore waters of long-term Ni-contaminated soils using a Donnan dialysis membrane technique. The pore water free Ni(2+) concentration as a percentage of total soluble Ni ranged from 21 to 80% (average 53%), and the average amount of Ni bound to dissolved organic matter estimated by Windermere Humic Aqueous Model VI was < or = 17%. These data indicate that complexed forms of Ni can constitute a significant fraction of total Ni in solution. Windermere Humic Aqueous Model VI provided reasonable estimates of free Ni(2+) fractions in comparison to the measured fractions (R(2) = 0.83 with a slope of 1.0). Also, the isotopically exchangeable pools (E value) of soil Ni were measured by an isotope dilution technique using water extraction, with and without resin purification, and 0.1 mol L(-1) CaCl(2) extraction, and the isotopic exchangeability of Ni species in soil water extracts was investigated. The concentrations of isotopically non-exchangeable Ni in water extracts were <9% of total water soluble Ni concentrations for all soils. The resin E values expressed as a percentage of the total Ni concentrations in soil showed that the labile Ni pool ranged from 0.9 to 32.4% (average 12.4%) of total soil Ni. Therefore the labile Ni pool in these well-equilibrated contaminated soils appears to be relatively small in relation to total Ni concentrations.
Mayhew, Terry M; Lucocq, John M
2008-03-01
In quantitative immunoelectron microscopy, subcellular compartments that are preferentially labelled with colloidal gold particles can be identified by estimating labelling densities (LDs) and relative labelling indices (RLIs). Hitherto, this approach has been limited to compartments which are either surface occupying (membranes) or volume occupying (organelles) but not a mixture of both (membranes and organelles). However, some antigens are known to translocate between membrane and organelle compartments and the problem then arises of expressing gold particle LDs in a consistent manner (e.g., as number per compartment profile area). Here, we present one possible solution to tackle this problem. With this method, each membrane is treated as a volume-occupying compartment and this is achieved by creating an acceptance zone at a fixed distance on each side of membrane images. Gold signal intensity is then expressed as an LD within the membrane profile area so created and this LD can be compared to LDs found in volume-occupying compartments. Acceptance zone width is determined largely by the expected dispersion of gold labelling. In some cases, the zone can be applied to all visible membrane images but there is a potential problem when image loss occurs due to the fact that membranes are not cut orthogonal to their surface but are tilted within the section. The solution presented here is to select a subset of clear images representing orthogonally sectioned membranes (so-called local vertical windows, LVWs). The fraction of membrane images forming LVWs can be estimated in two ways: goniometrically (by determining the angle at which images become unclear) or stereologically (by counting intersections with test lines). The fraction obtained by either method can then be used to calculate a factor correcting for membrane image loss. In turn, this factor is used to estimate the total gold labelling associated with the acceptance zone of the entire (volume-occupying) membrane. However calculated, the LDs over the chosen (membrane and organelle) compartments are used to obtain observed and expected gold particle counts. The observed distribution is determined simply by counting gold particles associated with each compartment. Next, an expected distribution is created by randomly superimposing test points and counting those hitting each compartment. LDs of the chosen compartments are used to calculate RLI and chi-squared values and these serve to identify those compartments in which there is preferential labelling. The methods are illustrated by synthetic and real data.
NASA Astrophysics Data System (ADS)
van der Paal, Jonas; Verheyen, Claudia; Neyts, Erik C.; Bogaerts, Annemie
2017-01-01
In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane.
Sabiu, S; O'Neill, F H; Ashafa, A O T
2016-01-01
This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction's ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms.
Sabiu, S.; O'Neill, F. H.
2016-01-01
This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction's ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms. PMID:27579048
Jeihanipour, Azam; Shen, Junjie; Abbt-Braun, Gudrun; Huber, Stefan A; Mkongo, Godfrey; Schäfer, Andrea I
2018-10-01
The Maji ya Chai River in Northern Tanzania, a fluoride-rich tropical area, shows a seasonal variation of natural organic matter (NOM) and fluoride concentration. Water samples collected monthly during one year from two locations of the River were characterized. High levels of precipitation in the rainy seasons increased the total organic carbon (TOC) concentration to as high as 36 mgC L -1 and diluted the fluoride concentration from a dry season high of 24 mg L -1 to <4 mg L -1 . A black water swamp in the Maji ya Chai River catchment was confirmed as the main source of NOM, fluoride, salinity, and inorganic carbon entering the River in the rainy season. The water samples were filtered by a number of nanofiltration/reverse osmosis (NF/RO) membranes to identify the retention mechanisms and the impact of varying water quality on treatability. While the denser membranes removed fluoride due to size exclusion, for the membranes with bigger pore radius charge repulsion was the dominant mechanism of fluoride retention. Regardless of the seasonal conditions a TOC concentration <2 mgC L -1 was achieved by all membranes at 50% recovery, as NF/RO membranes remove TOC mainly by size exclusion. Two swamp water samples, containing high TOC (79 and 183 mgC L -1 ), were filtered to determine the characteristics of NOM which permeate the NF/RO membranes. Liquid chromatography organic carbon detection (LC-OCD) was used to characterize the fractions in the permeates, consisting of about 1% of the original NOM. The average molecular weight of the permeate humic substances (HS) was more than four times larger than the membrane molecular weight cut-off. This suggests that large HS can permeate the NF/RO membranes through diffusion. Moreover, the relatively high aromaticity of the permeate HS (1.7-5.2 L mg -1 m -1 ) indicated the high content of hydrophobic-aromatic fractions. Copyright © 2018 Elsevier B.V. All rights reserved.
Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly.
Gu, Yibei; Dorin, Rachel M; Wiesner, Ulrich
2013-01-01
A facile method for forming asymmetric organic-inorganic hybrid membranes for selective separation applications is developed. This approach combines co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs) with non-solvent induced phase separation. The method is successfully applied to two distinct molar mass BCPs with different fractions of titanium dioxide (TiO2) NPs. The resulting hybrid membranes exhibit structural asymmetry with a thin nanoporous surface layer on top of a macroporous fingerlike support layer. Key parameters that dictate membrane surface morphology include the fraction of inorganics used and the length of time allowed for surface layer development. The resulting membranes exhibit both good selectivity and high permeability (3200 ± 500 Lm(-2) h(-1) bar(-1)). This fast and straightforward synthesis method for asymmetric hybrid membranes provides a new self-assembly platform upon which multifunctional and high-performance organic-inorganic hybrid membranes can be formed.
Siembida, B; Cornel, P; Krause, S; Zimmermann, B
2010-07-01
The research on fouling reduction and permeability loss in membrane bioreactors (MBRs) was carried out at two MBR pilot plants with synthetic and real wastewater. On the one hand, the effect of mechanical cleaning with an abrasive granular material on the performance of a submerged MBR process was tested. Additionally, scanning electron microscopy (SEM) measurements and integrity tests were conducted to check whether the membrane material was damaged by the granulate.The results indicate that the fouling layer formation was significantly reduced by abrasion using the granular material. This technique allowed a long-term operation of more than 600 days at a flux up to 40 L/(m2 h) without chemical cleaning of the membranes. Moreover, it was demonstrated that the membrane bioreactor (MBR) with granulate could be operated with more than 20% higher flux compared to a conventional MBR operation. SEM images and integrity tests showed that in consequence of abrasive cleaning, the granular material left brush marks on the membrane surface, however, the membrane function was not affected.In a parallel experimental set up, the impact of the operationally defined "truly soluble fraction" <0.04 microm from wastewater and activated sludge on the ultrafiltration membrane fouling characteristics was investigated. It was shown that the permeability loss was caused predominantly by the colloidal fraction >0.04 microm rather than by the dissolved fraction of wastewater and activated sludge.
Picot, Laurent; Ravallec, Rozenn; Fouchereau-Péron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-Derouiniot, Maryse; Guérard, Fabienne; Chabeaud, Aurélie; Legal, Yves; Alvarez, Oscar Martinez; Bergé, Jean-Pascal; Piot, Jean-Marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inez; Bourseau, Patrick
2010-08-30
Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation demonstrates that it is misleading to characterize the fractions obtained by membrane filtration according to the MW cut-off of the membrane only, as is currently done in the literature. Copyright (c) 2010 Society of Chemical Industry.
Comparative lipidomics and proteomics analysis of platelet lipid rafts using different detergents.
Rabani, Vahideh; Davani, Siamak; Gambert-Nicot, Ségolène; Meneveau, Nicolas; Montange, Damien
2016-11-01
Lipid rafts play a pivotal role in physiological functions of platelets. Their isolation using nonionic mild detergents is considered as the gold standard method, but there is no consensual detergent for lipid raft studies. We aimed to investigate which detergent is the most suitable for lipid raft isolation from platelet membrane, based on lipidomics and proteomics analysis. Platelets were obtained from healthy donors. Twelve sucrose fractions were extracted by three different detergents, namely Brij 35, Lubrol WX, and Triton X100, at 0.05% and 1%. After lipidomics analysis and determination of fractions enriched in cholesterol (Ch) and sphingomyelin (SM), proteomics analysis was performed. Lipid rafts were mainly observed in 1-4 fractions, and non-rafts were distributed on 5-12 fractions. Considering the concentration of Ch and SM, Lubrol WX 1% and Triton X100 1% were more suitable detergents as they were able to isolate lipid raft fractions that were more enriched than non-raft fractions. By proteomics analysis, overall, 822 proteins were identified in platelet membrane. Lipid raft fractions isolated with Lubrol WX 0.05% and Triton X100 1% contained mainly plasma membrane proteins. However, only Lubrol WX 0.05 and 1% and Triton X100 1% were able to extract non-denaturing proteins with more than 10 transmembrane domains. Our results suggest that Triton X100 1% is the most suitable detergent for global lipid and protein studies on platelet plasma membrane. However, the detergent should be adapted if investigation of an association between specific proteins and lipid rafts is planned.
Thompson, Ben A V; Sharp, Paul A; Elliott, Ruan; Fairweather-Tait, Susan J
2010-07-28
Many studies show that calcium reduces iron absorption from single meals, but the underlying mechanism is not known. We tested the hypothesis that calcium alters the expression and/or functionality of iron transport proteins. Differentiated Caco-2 cells were treated with ferric ammonium citrate and calcium chloride, and ferritin, DMT-1, and ferroportin were quantified in whole-cell lysate and cell-membrane fractions. Calcium attenuated the iron-induced increase in cell ferritin levels in a dose-dependent manner; a significant decrease was seen at calcium concentrations of 1.25 and 2.5 mM but was only evident after a 16-24 h incubation period. Calcium and iron treatments decreased DMT-1 protein in Caco-2 cell membranes, although total DMT-1 in whole cell lysates was unchanged by either iron or calcium. No change was seen in ferroportin expression. Our data suggest that calcium reduces iron bioavailability by decreasing DMT-1 expression at the apical cell membrane, thereby downregulating iron transport into the cell.
Modulation of hyaluronan synthase activity in cellular membrane fractions.
Vigetti, Davide; Genasetti, Anna; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Bartolini, Barbara; Moretto, Paola; De Luca, Giancarlo; Hascall, Vincent C; Passi, Alberto
2009-10-30
Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1beta, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.
Efficient adhesion-based plasma membrane isolation for cell surface N-glycan analysis.
Mun, Ji-Young; Lee, Kyung Jin; Seo, Hoon; Sung, Min-Sun; Cho, Yee Sook; Lee, Seung-Goo; Kwon, Ohsuk; Oh, Doo-Byoung
2013-08-06
Glycans, which decorate cell surfaces, play crucial roles in various physiological events involving cell surface recognition. Despite the importance of surface glycans, most analyses have been performed using total cells or whole membranes rather than plasma membranes due to difficulties related to isolation. In the present study, we employed an adhesion-based method for plasma membrane isolation to analyze N-glycans on cell surfaces. Cells were attached to polylysine-coated glass plates and then ruptured by hypotonic pressure. After washing to remove intracellular organelles, only a plasma membrane fraction remained attached to the plates, as confirmed by fluorescence imaging using organelle-specific probes. The plate was directly treated with trypsin to digest and detach the glycoproteins from the plasma membrane. From the resulting glycopeptides, N-glycans were released and analyzed using MALDI-TOF mass spectrometry and HPLC. When N-glycan profiles obtained by this method were compared to those by other methods, the amount of high-mannose type glycans mainly contaminated from the endoplasmic reticulum was dramatically reduced, which enabled the efficient detection of complex type glycans present on the cell surface. Moreover, this method was successfully used to analyze the increase of high-mannose glycans on the surface as induced by a mannosidase inhibitor treatment.
Separation of Biologically Active Compounds by Membrane Operations.
Zhu, Xiaoying; Bai, Renbi
2017-01-01
Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The "cold" separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Schmidt-Ullrich, R.; Wallach, D. F. H.; Lightholder, J.
1979-01-01
In order to characterize parasite-induced host cell membrane antigens, the plasma membranes of Plasmodium knowlesi-infected rhesus erythrocytes have been compared with those of normal red cells and purified schizonts by immunochemical and biochemical techniques. Host cell membranes and schizonts were separated by differential centrifugation following nitrogen decompression. Isolated schizonts were further fractionated into several subcellular compartments. Crossed-immune electrophoresis, against monkey anti-schizont serum, of Triton X-100-solubilized material identified 7 P. knowlesi-specific antigens, of which 4 could be detected only in the host cell membranes. These membranes also contained 3 proteins, with relative molecular masses of 55 000, 65 000 and 90 000 and isoelectric points at pH 4.5, 4.5 and 5.2, respectively, which are lacking in normal membranes. Pulse-chase experiments with (14C)-glucosamine showed that these parasite-induced host cell membrane components are glycoproteins. ImagesFig. 1Fig. 2 PMID:120762
Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide.
Usery, Rebecca D; Enoki, Thais A; Wickramasinghe, Sanjula P; Nguyen, V P; Ackerman, David G; Greathouse, Denise V; Koeppe, Roger E; Barrera, Francisco N; Feigenson, Gerald W
2018-05-08
A number of highly curved membranes in vivo, such as epithelial cell microvilli, have the relatively high sphingolipid content associated with "raft-like" composition. Given the much lower bending energy measured for bilayers with "nonraft" low sphingomyelin and low cholesterol content, observing high curvature for presumably more rigid compositions seems counterintuitive. To understand this behavior, we measured membrane rigidity by fluctuation analysis of giant unilamellar vesicles. We found that including a transmembrane helical GWALP peptide increases the membrane bending modulus of the liquid-disordered (Ld) phase. We observed this increase at both low-cholesterol fraction and higher, more physiological cholesterol fraction. We find that simplified, commonly used Ld and liquid-ordered (Lo) phases are not representative of those that coexist. When Ld and Lo phases coexist, GWALP peptide favors the Ld phase with a partition coefficient of 3-10 depending on mixture composition. In model membranes at high cholesterol fractions, Ld phases with GWALP have greater bending moduli than the Lo phase that would coexist. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
ISOLATION OF SMOOTH VESICLES AND FREE RIBOSOMES FROM RAT LIVER MICROSOMES
Chauveau, J.; Moulé, Y.; Rouiller, C.; Schneebeli, J.
1962-01-01
Microsomes, isolated from rat liver homogenate in 0.88 M sucrose, have been fractionated by differential centrifugation. The 2nd microsomal fraction, sedimented between 60 minutes at 105,000 g and 3 hours at 145,000 g, consists mainly of smooth vesicles, free ribosomes, and ferritin. By utilizing the differences in density existing between the membranes and the granular elements it has been possible to separate the smooth membranes from the free ribosomes and ferritin. The procedure is to resuspend the 2nd microsomal fraction in a sucrose solution of 1.21 or 1.25 density and centrifuge it at 145,000 g for 20 or 40 hours. A centripetal migration of membranes and a centrifugal sedimentation of granular elements are obtained. Phospholipids, as well as the enzymatic activities DPNH-cytochrome c reductase, glucose-6-phosphatase and esterase are localized in the membranes. The free ribosomes have been purified by washing. A concentration of 200 µg RNA per mg nitrogen has been reached. RNA is also present in the membranes. These results are discussed in relation to current views on microsomal structure and chemistry. PMID:13878497
ROLE OF THE SARCOPLASMIC RETICULUM IN GLYCOGEN METABOLISM
Wanson, Jean-Claude; Drochmans, Pierre
1972-01-01
Sarcoplasmic vesicles and β-glycogen particles 30–40 mµ in diameter were isolated from perfused rabbit skeletal muscle by the differential precipitation-centrifugation method. This microsomal fraction was subjected to zonal centrifugation on buffered sucrose gradients, in a B XIV Anderson type rotor, for 15 hr at 45,000 rpm in order to separate the two cytoplasmic organelles. Zonal profiles of absorbance at 280 mµ, proteins, glycogen, and enzymatic activities (phosphorylase b kinase, phosphorylase b, and glycogen synthetase) were performed. Whereas the entire synthetase activity was found combined with the glycogen particles, 39% of phosphorylase and 53% of phosphorylase b kinase activities, present in the microsomal fraction, were recovered in the purified vesicular fraction (d = 1.175). This latter fraction consists of vesicles, derived from the sarcoplasmic reticulum, and of small particles 10–20 mµ in diameter attached to the outer surface of the membranes. These particles disappear after α-amylase treatment. Incubation of the sarcovesicular fraction with 14C-labeled glucose-1-phosphate confirms the localization of a polysaccharide synthesis at the level of the membranes. "Flash activation" of phosphorylase b, i.e. Ca "activation" of phosphorylase kinase followed by a conversion of phosphorylase b into a, was demonstrated in the purified sarcovesicular fraction. Moreover, the active enzymatic sites were detected on the membranes by electron microscopy. The presence of binding sites between the membranes of the sarcoplasmic vesicles and a glycogen-enzyme complex suggests that this association plays a role in the glycogenolysis during muscle contraction. PMID:5040859
Liu, Zan; Xu, Bo; Nameta, Masaaki; Zhang, Ying; Magdeldin, Sameh; Yoshida, Yutaka; Yamamoto, Keiko; Fujinaka, Hidehiko; Yaoita, Eishin; Tasaki, Masayuki; Nakagawa, Yuki; Saito, Kazuhide; Takahashi, Kota; Yamamoto, Tadashi
2013-06-01
Vascular endothelial cells (VECs) play crucial roles in physiological and pathologic conditions in tissues and organs. Most of these roles are related to VEC plasma membrane proteins. In the kidney, VECs are closely associated with structures and functions; however, plasma membrane proteins in kidney VECs remain to be fully elucidated. Rat kidneys were perfused with cationic colloidal silica nanoparticles (CCSN) to label the VEC plasma membrane. The CCSN-labeled plasma membrane fraction was collected by gradient ultracentrifugation. The VEC plasma membrane or whole-kidney lysate proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and digested with trypsin in gels for liquid chromatography-tandem mass spectrometry. Enrichment analysis was then performed. The VEC plasma membrane proteins were purified by the CCSN method with high yield (approximately 20 μg from 1 g of rat kidney). By Mascot search, 582 proteins were identified in the VEC plasma membrane fraction, and 1,205 proteins were identified in the kidney lysate. In addition to 16 VEC marker proteins such as integrin beta-1 and intercellular adhesion molecule-2 (ICAM-2), 8 novel proteins such as Deltex 3-like protein and phosphatidylinositol binding clathrin assembly protein (PICALM) were identified. As expected, many key functions of plasma membranes in general and of endothelial cells in particular (i.e., leukocyte adhesion) were significantly overrepresented in the proteome of CCSN-labeled kidney VEC fraction. The CCSN method is a reliable technique for isolation of VEC plasma membrane from the kidney, and proteomic analysis followed by bioinformatics revealed the characteristics of in vivo VECs in the kidney.
A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes.
Fye, Haddy K S; Mrosso, Paul; Bruce, Lesley; Thézénas, Marie-Laëtitia; Davis, Simon; Fischer, Roman; Rwegasira, Gration L; Makani, Julie; Kessler, Benedikt M
2018-01-01
Red blood cell (RBC) physiology is directly linked to many human disorders associated with low tissue oxygen levels or anemia including chronic obstructive pulmonary disease, congenital heart disease, sleep apnea and sickle cell anemia. Parasites such as Plasmodium spp. and phylum Apicomplexa directly target RBCs, and surface molecules within the RBC membrane are critical for pathogen interactions. Proteomics of RBC membrane 'ghost' fractions has therefore been of considerable interest, but protocols described to date are either suboptimal or too extensive to be applicable to a larger set of clinical cohorts. Here, we describe an optimised erythrocyte isolation protocol from blood, tested for various storage conditions and explored using different fractionation conditions for isolating ghost RBC membranes. Liquid chromatography mass spectrometry (LC-MS) analysis on a Q-Exactive Orbitrap instrument was used to profile proteins isolated from the comparative conditions. Data analysis was run on the MASCOT and MaxQuant platforms to assess their scope and diversity. The results obtained demonstrate a robust method for membrane enrichment enabling consistent MS based characterisation of > 900 RBC membrane proteins in single LC-MS/MS analyses. Non-detergent based membrane solubilisation methods using the tissue and supernatant fractions of isolated ghost membranes are shown to offer effective haemoglobin removal as well as diverse recovery including erythrocyte membrane proteins of high and low abundance. The methods described in this manuscript propose a medium to high throughput framework for membrane proteome profiling by LC-MS of potential applicability to larger clinical cohorts in a variety of disease contexts.
Park, Jang-Su; Yaster, Myron; Guan, Xiaowei; Xu, Ji-Tian; Shih, Ming-Hung; Guan, Yun; Raja, Srinivasa N; Tao, Yuan-Xiang
2008-12-30
Spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) mediate acute spinal processing of nociceptive and non-nociceptive information, but whether and how their activation contributes to the central sensitization that underlies persistent inflammatory pain are still unclear. Here, we examined the role of spinal AMPARs in the development and maintenance of complete Freund's adjuvant (CFA)-induced persistent inflammatory pain. Intrathecal application of two selective non-competitive AMPAR antagonists, CFM-2 (25 and 50 microg) and GYKI 52466 (50 microg), significantly attenuated mechanical and thermal hypersensitivities on the ipsilateral hind paw at 2 and 24 h post-CFA injection. Neither CFM-2 nor GYKI 52466 affected the contralateral basal responses to thermal and mechanical stimuli. Locomotor activity was not altered in any of the drug-treated animals. CFA-induced inflammation did not change total expression or distribution of AMPAR subunits GluR1 and GluR2 in dorsal horn but did alter their subcellular distribution. The amount of GluR2 was markedly increased in the crude cytosolic fraction and decreased in the crude membrane fraction from the ipsilateral L4-5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. Conversely, the level of GluR1 was significantly decreased in the crude cytosolic fraction and increased in the crude membrane fraction from the ipsilateral L4-5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. These findings suggest that spinal AMPARs might participate in the central spinal mechanism of persistent inflammatory pain.
Hyslop, P A; Kuhn, C E; Sauerheber, R D
1985-01-01
We examined the effects of the membrane-impermeant amino-group-modifying agent fluorescein isothiocyanate (FITC) on the basal and insulin-stimulated hexose-transport activity of isolated rat adipocytes. Pre-treatment of cells with FITC causes irreversible inhibition of transport measured in subsequently washed cells. Transport activity was inhibited by approx. 50% with 2 mM-FITC in 8 min. The cells respond to insulin, after FITC treatment and removal, and the fold increase in transport above the basal value caused by maximal concentrations of insulin was independent of the concentration of FITC used for pre-treatment over the range 0-2 mM, where basal activity was progressively inhibited. The ability of FITC to modify selectively hexose transporters accessible only to the external milieu was evaluated by two methods. (1) Free intracellular FITC, and the distribution of FITC bound to cellular components, were assessed after dialysis of the homogenate and subcellular fractionation on sucrose gradients by direct spectroscopic measurement of fluorescein. Most (98%) of the FITC was associated with the non-diffusible fractions. Equilibrium sucrose-density-gradient centrifugation of the homogenate demonstrated that the subcellular distribution of the bound FITC correlated with the density distribution of a plasma-membrane marker, but not markers for Golgi, endoplasmic reticulum, mitochondria or protein. Exposing the cellular homogenate, rather than the intact cell preparation, to 2 mM-FITC resulted in a 4-5-fold increase in total bound FITC, and the density-distribution profile more closely resembled the distribution of total protein. (2) Incubation of hexokinase preparations with FITC rapidly and irreversibly inactivates this protein. However, both intracellular hexokinase total activity and its apparent Michaelis constant for glucose were unaffected in FITC-treated intact cells. Further control experiments demonstrated that FITC pre-treatment of cells had no effect on the intracellular ATP concentration or the dose-response curve of insulin stimulation of hexose transport. Since the fold increase of hexose transport induced by insulin is constant over the range of inhibition of surface-labelled hexose transporters, we suggest that insulin-induced insertion of additional transporters into the plasma membrane may not be the major locus of acceleration of hexose transport by the hormone. PMID:3910027
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita-Yoshigaki, Junko; Katsumata, Osamu; Matsuki, Miwako
Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteinsmore » was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.« less
Externally disposed plasma membrane proteins. I. Enzymatic iodination of mouse L cells
1975-01-01
The enzymatic iodination technique has been utilized in a study of the externally disposed membrane proteins of the mouse L cell. Iodination of cells in suspension results in lactoperoxidase-specific iodide incorporation with no loss of cell viability under the conditions employed, less than 3% lipid labeling, and more than 90% of the labeled species identifiable as monoiodotyrosine. 90% of the incorporated label is localized to the cell surface by electron microscope autoradiography, with 5-10% in the centrosphere region and postulated to represent pinocytic vesicles. Sodium dodecylsulfate-polyacrylamide gels of solubilized L-cell proteins reveals five to six labeled peaks ranging from 50,000 to 200,000 daltons. Increased resolution by use of gradient slab gels reveals 15-20 radioactive bands. Over 60% of the label resides in approximately nine polypeptides of 80,000 to 150,000 daltons. Various controls indicate that the labeling pattern reflects endogenous membrane proteins, not serum components. The incorporated 125-I, cholesterol, and one plasma membrane enzyme marker, alkaline phosphodiesterase I, are purified in parallel when plasma membranes are isolated from intact, iodinated L cells. The labeled components present in a plasma membrane-rich fraction from iodinated cells are identical to those of the total cell, with a 10- to 20-fold enrichment in specific activity of each radioactive peak in the membrane. PMID:163833
Biosynthesis of edeine: II. Localization of edeine synthetase within Bacillus brevis Vm4.
Kurylo-Borowska, Z
1975-07-14
Edeine-synthesizing polyenzymes, associated with a complex of sytoplasmic membrane and DNA, were obtained from gently lysed cells of Bacillus brevis Vm4. The polyenzymes-membrane-DNA complex, isolated from dells intensively synthesizing edeines (18--20 h culture) contained edeine B. Edeine B was found to be bound covalently t o the edeine synthetase. The amount of edeine bound to polyenzymes was 0.1--0.3 mumol/mg protein, depending on the age of cells. Detachment of deeine synthetase with a covalently bound edeine B from the membrane-DNA complex was accomplished by a treatment with (NH4)2-SO4 at 45--55% saturation or by DEAE-cellulose column fractionation. In contrast to other components of the complex, the edeine-polyenzymes fragment was not adsorbed to the DEAE-cellulose. Sephadex G-200 column chromatography separated the edeine-polyenzymes complex into 3 fractions. Edeine-polyenzymes complex, obtained from lysozyme-Brij-58-DNAase treated cells, contained edeine B bound to two protein fractions of mol. wt 210 000 and 160 000. Edeine-polyenzymes complex detached from the complex with the membrane and DNA contained edeine B, bound only to protein fraction of mol. wt 210 000. Edeine A was not found in the edeine-polyenzymes complex. No accumulation of free antibiotics within 16--22 h old cells of B. brevis Vm4 was detected. The edeine-polyenzymes complex associated with the DNA-membrane complex has shown no antimicrobial activity. By treating of above with alkali, edeine B of specific activity: 80 units/mjmol was released. The complex of DNA-membrane associated with edeine-polyenzymes complex was able to synthesize DNA, under the conditions described for synthesis, directed by a DNA-membrane complex. Edeine when associated with this complex did not effect the DNA-synthesizing activity.
Bermejo, Marie Kristel; Milenkovic, Marija; Salahpour, Ali; Ramsey, Amy J
2014-09-03
Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.
Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria
Jones, Jefferson J.; Falkinham III, Joseph O.
2003-01-01
Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite green and its reduced, decolorized product were detected in the lipid fraction of M. avium strain A5 cells grown in the presence of malachite green, suggesting that a minor component of resistance could be due to sequestering the dyes in the extensive mycobacterial cell surface lipid. The membrane fraction of M. avium strain A5 had at least a fivefold-higher specific decolorization rate than did the crude extract, suggesting that the decolorization activity is membrane associated. The malachite green-decolorizing activity of the membrane fraction of M. avium strain A5 was abolished by either boiling or proteinase exposure, suggesting that the decolorizing activity was due to a protein. Decolorization activity of membrane fractions was stimulated by ferrous ion and inhibited by dinitrophenol and metyrapone. PMID:12821489
Identification of dynamin as a septin-binding protein.
Maimaitiyiming, Maowulan; Kobayashi, Yuumi; Kumanogoh, Haruko; Nakamura, Shun; Morita, Mitsuhiro; Maekawa, Shohei
2013-02-08
Lipid rafts (detergent-resistant low-density membrane microdomain: DRM) are signal-transducing membrane platforms. In a previous study, we showed maturation-dependent localization of septin in the DRM fraction of rat brain. Mammalian septin is composed with 13-14 isoforms and these isoforms assemble to form rod-shaped hetero-oligomeric complexes. End-to-end polymerization of these complexes results in the formation of higher order structures such as filamentous sheets or bundles of filaments that restrict the fluid-like diffusion of the membrane proteins and lipids. Considering the function of septin as the membrane scaffold, elucidation of the molecular interaction of septin in DRM could be a breakthrough to understand another role of lipid rafts. In order to identify septin-binding proteins in DRM, solubilization and fractionation of septin from DRM was attempted. Several proteins were co-fractionated with septin and LC-MS/MS analysis identified one of these proteins as dynamin and Western blotting using anti-dynamin confirmed this result. Immunoprecipitation of septin11 in a crude supernatant showed co-precipitation of dynamin and dynamin fraction prepared from brain contained several septin isoforms. Within bacterially expressed septin isoforms, septin5 and septin11 bound dynamin but septin9 did not. These results suggest that some septin isoforms participate in the dynamin-related membrane dynamics. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Sieme, H; Katila, T; Klug, E
2004-02-01
This study analyzed effects of different methods and intervals of semen collection on the quantity and quality of fresh, cool-stored, and frozen-thawed sperm and fertility of AI stallions. In Experiment 1, ejaculates were obtained from six stallions (72 ejaculates per stallion) using fractionated versus non-fractionated semen collection techniques. Initial sperm quality of the first three jets of the ejaculate was not different from that of total ejaculates. Centrifugation of sperm-rich fractions before freezing improved post-thaw motility and sperm membrane integrity when compared to non-centrifuged sperm-rich fractions or non-fractionated centrifuged ejaculates (P<0.05). In Experiment 2, semen from four stallions (60-70 ejaculates per stallion) was collected either once daily or two times 1h apart every 48 h. The first ejaculates of double collections had significantly higher sperm concentrations, percentages of progressively motile sperm (PMS) after storage for 24h at 5 degrees C and lower percentages of midpiece alterations than single daily ejaculates. Semen collected once daily showed significantly lower values of live sperm after freezing and thawing than the first ejaculate of two ejaculates collected 1h apart every 48 h. In Experiment 3, semen was collected from 36 stallions (> or =12 ejaculates per stallion) during the non-breeding season and the time to ejaculation and the number of mounts was recorded. When time to ejaculation and the number of mounts increased, volume and total sperm count (TSC) also increased (P<0.05), whereas a decrease was observed in sperm concentration, percentage of PMS after storage for 24 h at 5 degrees C, percentage of membrane-intact sperm in fresh semen (P<0.05) as well as motility and percentage of membrane-intact sperm of frozen-thawed sperm (P<0.05). In Experiment 4, AI data of 71 stallions were retrospectively analyzed for the effect of number of mounts per ejaculation and frequency, time interval of semen collections on pregnancy, and foaling rates (FRs) of mares. Semen volume increased, but sperm concentration and percentage of PMS after 24-h cool-storage decreased with increasing number of mounts on the phantom (P<0.05). A statistically significant inter-relationship was demonstrated between frequency and interval of semen collection and FR. Mares inseminated with stallions from which semen was collected frequently (> or =1 on an average per day) showed significantly higher FRs than mares inseminated with semen from stallions with a daily collection frequency of 0.5-1 or <0.5. FR of mares inseminated with stallions having 0.5-1 days between semen collections was significantly better than FR of mares that were inseminated with stallions having semen collection intervals of 1-1.5 days or >2.5 days.
Strychnine Binding Associated with Glycine Receptors of the Central Nervous System
Young, Anne B.; Snyder, Solomon H.
1973-01-01
[3H]Strychnine binds to synaptic-membrane fractions of the spinal cord in a selective fashion, indicating an interaction with postsynaptic glycine receptors. Displacement of strychnine by glycine and other amino acids parallels their glycine-like neurophysiologic activity. The regional localization of strychnine binding in the central nervous system correlates closely with endogenous glycine concentrations. In subcellular fractionation experiments, strychnine binding is most enhanced in synaptic-membrane fractions. Strychnine binding is saturable, with affinity constants for glycine and strychnine of 10 and 0.03 μM, respectively. PMID:4200724
Isolation of plasma membrane-associated membranes from rat liver.
Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R
2014-02-01
Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.
Yun, Sung Ho; Lee, Sang-Yeop; Choi, Chi-Won; Lee, Hayoung; Ro, Hyun-Joo; Jun, Sangmi; Kwon, Yong Min; Kwon, Kae Kyoung; Kim, Sang-Jin; Kim, Gun-Hwa; Kim, Seung Il
2017-01-01
Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMV Novo ) are spherical in shape, and the average diameter of OMV Novo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMV Novo . Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMV Novo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.
Ferri, Maura; Graen-Heedfeld, Jürgen; Bretz, Karlheinz; Guillon, Fabien; Michelini, Elisa; Calabretta, Maria Maddalena; Lamborghini, Matteo; Gruarin, Nicolò; Roda, Aldo; Kraft, Axel
2017-01-01
Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen. PMID:28125712
Effect of wastewater colloids on membrane removal of antibiotic resistance genes.
Breazeal, Maria V Riquelme; Novak, John T; Vikesland, Peter J; Pruden, Amy
2013-01-01
Recent studies have demonstrated that wastewater treatment plants (WWTPs) significantly alter the magnitude and distribution of antibiotic resistance genes (ARGs) in receiving environments, indicating that wastewater treatment represents an important node for limiting ARG dissemination. This study examined the potential for membrane treatment of microconstituent ARGs and the effect of native wastewater colloids on the extent of their removal. Plasmids containing vanA (vancomycin) and bla(TEM) (β-lactam) ARGs were spiked into three representative WWTP effluents versus a control buffer and tracked by quantitative polymerase chain reaction through a cascade of microfiltration and ultrafiltration steps ranging from 0.45 μm to 1 kDa. Significant removal of ARGs was achieved by membranes of 100 kDa and smaller, and presence of wastewater colloids resulted in enhanced removal by 10 kDa and 1 kDa membranes. ARG removal was observed to correlate significantly with the corresponding protein, polysaccharide, and total organic carbon colloidal fractions. Alumina membranes removed ARGs to a greater extent than polyvinylidene fluoride membranes of the same pore size (0.1 μm), but only in the presence of wastewater material. Control studies confirmed that membrane treatment was the primary mechanism of ARG removal, versus other potential sources of loss. This study suggests that advanced membrane treatment technology is promising for managing public health risks of ARGs in wastewater effluents and that removal may even be enhanced by colloids in real-world wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Szamel, M; Goppelt, M; Resch, K
1985-12-19
Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including gamma-glutamyl transpeptidase, 5'-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.
Elliott, J; Blanchard, S G; Wu, W; Miller, J; Strader, C D; Hartig, P; Moore, H P; Racs, J; Raftery, M A
1980-01-01
A rapid methof for preparation of membrane fractions highly enriched in nicotinic acetylcholine receptor from Torpedo californica electroplax is described. The major step in this purification involves sucrose-density-gradient centrifugation in a reorienting rotor. Further purification of these membranes can be achieved by selective extraction of proteins by use of alkaline pH or by treatment with solutions of lithium di-idosalicylate. The alkali-treated membranes retain functional characteristics of the untreated membranes and in addition contain essentially only the four polypeptides (mol.wts. 40000, 50000, 60000 and 65000) characteristic of the receptor purified by affinity chromatography. Dissolution of the purified membranes or of the alkali-treated purified membranes in sodium cholate solution followed by sucrose-density-gradient centrifugation in the same detergent solution yields solubilized receptor preparations comparable with the most highly purified protein obtained by affinity-chromatographic procedures. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. Fig. 7. PLATE 1 PMID:7387629
Evidence that the platelet plasma membrane does not contain a (Ca2+ + Mg2+)-dependent ATPase.
Steiner, B; Lüscher, E F
1985-09-10
The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin.
Delmonte Corrado, M U; Politi, H; Trielli, F; Angelini, C; Falugi, C
1999-01-01
By histochemical and immunohistochemical methods, the presence of cholinergic-like molecules has previously been demonstrated in Paramecium primaurelia, and their functional role in mating-cell pairing was suggested. In this work, both true acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were electrophoretically investigated, and the presence of molecules immunologically related to BuChE was checked by immunoblotting. The AChE activity, shown in the membrane protein fraction of mating-competent cells and in the cytoplasmic fraction of immature cells, is due to a 260-kDa molecular form, similar to the membrane-bound tetrameric form present in human erythrocytes. This AChE activity does not appear in either the cytoplasmic fraction of mating-competent cells or in the membrane protein fraction of immature cells. No evidence was found for the presence or the activity of BuChE-like molecules. The role of AChE in P. primaurelia developmental cycle is discussed.
Beltzer, J P; Spiess, M
1991-01-01
The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors. Images PMID:1935897
Jégoux, Franck; Goyenvalle, Eric; Cognet, Ronan; Malard, Olivier; Moreau, Francoise; Daculsi, Guy; Aguado, Eric
2009-12-15
The bone tissue engineering models used today are still a long way from any oncologic application as immediate postimplantation irradiation would decrease their osteoinductive potential. The aim of this study was to reconstruct a segmental critical size defect in a weight-bearing bone irradiated after implantation. Six white New Zealand rabbits were immediately implanted with a biomaterial associating resorbable collagen membrane EZ(R) filled and micro-macroporous biphasic calcium phosphate granules (MBCP+(R)). After a daily schedule of radiation delivery, and within 4 weeks, a total autologous bone marrow (BM) graft was injected percutaneously into the center of the implant. All the animals were sacrificed at 16 weeks. Successful osseous colonization was found to have bridged the entire length of the defects. Identical distribution of bone ingrowth and residual ceramics at the different levels of the implant suggests that the BM graft plays an osteoinductive role in the center of the defect. Periosteum-like formation was observed at the periphery, with the collagen membrane most likely playing a role. This model succeeded in bridging a large segmental defect in weight-bearing bone with immediate postimplantation fractionated radiation delivery. This has significant implications for the bone tissue engineering approach to patients with cancer-related bone defects.
Wendler, Sergej; Otto, Andreas; Ortseifen, Vera; Bonn, Florian; Neshat, Armin; Schneiker-Bekel, Susanne; Walter, Frederik; Wolf, Timo; Zemke, Till; Wehmeier, Udo F; Hecker, Michael; Kalinowski, Jörn; Becher, Dörte; Pühler, Alfred
2015-07-01
Acarbose is an α-glucosidase inhibitor produced by Actinoplanes sp. SE50/110 that is medically important due to its application in the treatment of type2 diabetes. In this work, a comprehensive proteome analysis of Actinoplanes sp. SE50/110 was carried out to determine the location of proteins of the acarbose (acb) and the putative pyochelin (pch) biosynthesis gene cluster. Therefore, a comprehensive state-of-the-art proteomics approach combining subcellular fractionation, shotgun proteomics and spectral counting to assess the relative abundance of proteins within fractions was applied. The analysis of four different proteome fractions (cytosolic, enriched membrane, membrane shaving and extracellular fraction) resulted in the identification of 1582 of the 8270 predicted proteins. All 22 Acb-proteins and 21 of the 23 Pch-proteins were detected. Predicted membrane-associated, integral membrane or extracellular proteins of the pch and the acb gene cluster were found among the most abundant proteins in corresponding fractions. Intracellular biosynthetic proteins of both gene clusters were not only detected in the cytosolic, but also in the enriched membrane fraction, indicating that the biosynthesis of acarbose and putative pyochelin metabolites takes place at the inner membrane. Actinoplanes sp. SE50/110 is a natural producer of the α-glucosidase inhibitor acarbose, a bacterial secondary metabolite that is used as a drug for the treatment of type 2 diabetes, a disease which is a global pandemic that currently affects 387 million people and accounts for 11% of worldwide healthcare expenditures (www.idf.org). The work presented here is the first comprehensive investigation of protein localization and abundance in Actinoplanes sp. SE50/110 and provides an extensive source of information for the selection of genes for future mutational analysis and other hypothesis driven experiments. The conclusion that acarbose or pyochelin family siderophores are synthesized at the inner side of the cytoplasmic membrane determined from this work, indicates that studying corresponding intermediates will be challenging. In addition to previous studies on the genome and transcriptome, the work presented here demonstrates that the next omic level, the proteome, is now accessible for detailed physiological analysis of Actinoplanes sp. SE50/110, as well as mutants derived from this and related species. Copyright © 2015 Elsevier B.V. All rights reserved.
Horemans, Tessa; Kerstens, Monique; Clais, Sofie; Struijs, Karin; van den Abbeele, Pieter; Van Assche, Tim; Maes, Louis; Cos, Paul
2012-08-01
The interest in non-antibiotic therapies for Helicobacter pylori infections in man has considerably grown because increasing numbers of antibiotic-resistant strains are being reported. Intervention at the stage of bacterial attachment to the gastric mucosa could be an approach to improve the control/eradication rate of this infection. Fractions of purified milk fat globule membrane glycoproteins were tested in vitro for their cytotoxic and direct antibacterial effect. The anti-adhesive effect on H. pylori was determined first in a cell model using the mucus-producing gastric epithelial cell line NCI-N87 and next in the C57BL/6 mouse model after dosing at 400 mg/kg protein once or twice daily from day -2 to day 4 post-infection. Bacterial loads were determined by using quantitative real-time PCR and the standard plate count method. The milk fat globule membrane fractions did not show in vitro cytotoxicity, and a marginal antibacterial effect was demonstrated for defatted milk fat globule membrane at 256 μg/mL. In the anti-adhesion assay, the results varied from 56.0 ± 5.3% inhibition for 0.3% crude milk fat globule membrane to 79.3 ± 3.5% for defatted milk fat globule membrane. Quite surprisingly, in vivo administration of the same milk fat globule membrane fractions did not confirm the anti-adhesive effects and even caused an increase in bacterial load in the stomach. The promising anti-adhesion in vitro results could not be confirmed in the mouse model, even after the highest attainable exposure. It is concluded that raw or defatted milk fat globule membrane fractions do not have any prophylactic or therapeutic potential against Helicobacter infection. © 2012 Blackwell Publishing Ltd.
Immunogenic Activity of a Ribosomal Fraction Obtained from Mycobacterium tuberculosis
Youmans, Anne S.; Youmans, Guy P.
1965-01-01
Youmans, Anne S. (Northwestern University Medical School, Chicago, Ill.), and Guy P. Youmans. Immunogenic activity of a ribosomal fraction obtained from Mycobacterium tuberculosis. J. Bacteriol. 89:1291–1298. 1965.—The highly immunogenic particulate fraction obtained from mechanically ruptured cells of the H37Ra strain of Mycobacterium tuberculosis was suspended and centrifuged at 20,360 × g. The supernatant liquid from this centrifugation was centrifuged at 56,550 × g to remove the larger particles, and the supernatant liquid from this was centrifuged at 144,000 × g to obtain a ribosomal fraction. The sediments from the first two centrifugations were highly immunogenic, but the ribosomal fraction showed only slight capacity to immunize mice. However, when the ribosomal fraction was mixed with Freund's incomplete adjuvant, the immunogenic activity was equivalent to the particulate fraction from which it was prepared. To test the hypothesis that some membranous substance in the particulate fraction was acting as an adjuvant for the smaller particles in the ribosomal fraction, portions of the particulate fraction were treated separately with each of the membrane-disrupting agents, sodium deoxycholate, sodium lauryl sulfate, and 1 m sodium chloride. The treated materials were then centrifuged at 144,000 × g, and the sediments were tested for immunogenicity both with and without the addition of Freund's incomplete adjuvant. Without the adjuvant, the immunizing activities were very weak or absent; with the adjuvant, they were equivalent to that of the particulate fraction from which they were prepared. Other factors which have been found to damage or destroy membranes, such as freezing and thawing, and heat, also significantly decreased the immunogenic activity of the particulate fraction unless it was incorporated into Freund's incomplete adjuvant. The larger particles which sedimented at 56,550 × g were also treated with sodium lauryl sulfate and sodium chloride. Again, immunogenicity was greatly reduced but was fully restored by use of Freund's incomplete adjuvant. The data suggest, then, that the immunizing component of the particulate fraction is a substance (ribosomal?) which sediments at 144,000 × g, but for maximal immunizing activity a labile, possibly membranous, moiety of the mycobacterial cell, which has the properties of an adjuvant, is required. PMID:14293000
Acebedo, Alvin Resultay; Amor, Evangeline Cancio; Jacinto, Sonia Donaldo
2014-01-01
Voacanga globosa (Blanco), a plant endemic to the Philippines, is traditionally used especially by indigenous people of Bataan in the treatment of ulcers, wounds and tumorous growths. This study aimed to provide scientific evidence to therapeutic properties by determining cytotoxic and pro-apoptotic activity of HPLC fractions from leaves on HCT116 human colon carcinoma and A549 human lung carcinoma cell lines. Ethanolic extraction was performed on V globosa leaves followed by hexane and ethyl acetate partitioning. Silica gel column chromatography and high performance liquid chromatography (HPLC) produced MP1, MP2 and MP3 fractions. Cytotoxic activity of the fractions was determined through MTT assay against the cancer cell lines HCT116 and A549 and the non-cancer AA8 Chinese hamster ovarian cell line. Pro-apoptotic activities of the most active fractions were further assessed through DAPI staining, TUNEL assay and JC-1 mitochondrial membrane potential assay with HCT116 cells. While the MP1 fraction exerted no significant activity against all cell lines tested, MP2 and MP3 fractions demonstrated high toxicity against HCT116 and A549 cells. The MP3 fraction induced formation of apoptotic bodies, condensed DNA and other morphological changes consistent with apoptosis of HCT116 cells and TUNEL assay showed significant increase in DNA fragmentation over time. In these cells, the MP3 fraction also induced mitochondrial membrane destabilization, which is generally associated with the beginning of apoptosis. Phytochemical analysis demonstrated the presence only of saponins and terpenoids in the MP3 fraction. The results indicate that the MP3 fraction exerts cytotoxic activity on HCT116 cells via induction of apoptosis triggered by loss of mitochondrial membrane potential crucial for cell survival.
Gulevskiĭ, A K; Abakumova, E S; Moiseeva, N N; Dolgikh, O L
2008-01-01
Influence of cattle cord blood fraction (below 5 kD) on lipid peroxidation product content and alkaline phosphatase activity-in peripheral blood was studied on the experimental subchronic stomach ulcer model in rats. It has been shown that the fraction administrations normalize thiobarbituric-active product content and alkaline phosphatase activity in blood, which testifies to decreasing inflammatory reaction in the mucous membrane of the stomach. The fraction administrations accelerate the processes of regeneration of the mucous membrane of the stomach up to complete healing of ulcer defects. Cord blood fraction below 5 kD from cattle possesses antiulcer activity which is analogous to the actovegin activity. It has been shown by gel-penetrating chromatography that the pattern of cord blood fraction low molecular substances is different from the actovegin pattern both qualitatively and quantitatively.
Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A
1995-04-01
1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the heterogeneous distribution of membrane proteins in T-tubules is also presented.
The permeability coefficients of mixed matrix membranes of polydimethylsiloxane (PDMS) and silicalite crystal are taken as the sum of the permeability coefficients of membrane components each weighted by their associated mass fraction. The permeability coefficient of a membrane c...
Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V
2006-01-01
Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.
Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong
2015-12-01
Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Taveira, Gabriel B; Mathias, Luciana S; da Motta, Olney V; Machado, Olga L T; Rodrigues, Rosana; Carvalho, André O; Teixeira-Ferreira, André; Perales, Jonas; Vasconcelos, Ilka M; Gomes, Valdirene M
2014-01-01
Plants defend themselves against pathogens with production of antimicrobial peptides (AMPs). Herein we describe the discovery of a new antifungal and antibacterial peptide from fruits of Capsicum annuum that showed similarity to an already well characterized family of plant AMPs, thionins. Other fraction composed of two peptides, in which the major peptide also showed similarity to thionins. Among the obtained fractions, fraction 1, which is composed of a single peptide of 7 kDa, was sequenced by Edman method and its comparative sequence analysis in database (nr) showed similarity to thionin-like peptides. Tests against microorganisms, fraction 1 presented inhibitory activity to the cells of yeast Saccharomyces cerevisiae, Candida albicans, and Candida tropicalis and caused growth reduction to the bacteria species Escherichia coli and Pseudomonas aeruginosa. Fraction 3 caused inhibitory activity only for C. albicans and C. tropicalis. This fraction was composed of two peptides of ∼7 and 10 kDa, and the main protein band correspondent to the 7 kDa peptide, also showed similarity to thionins. This plasma membrane permeabilization assay demonstrates that the peptides present in the fractions 1 and 3 induced changes in the membranes of all yeast strains, leading to their permeabilization. Fraction 1 was capable of inhibiting acidification of the medium of glucose-induced S. cerevisiae cells 78% after an incubation time of 30 min, and opposite result was obtained for C. albicans. Experiments demonstrate that the fraction 1 and 3 were toxic and induced changes in the membranes of all yeast strains, leading to their permeabilization. Copyright © 2013 Wiley Periodicals, Inc.
Wegener, Gerhard; Macho, Claudia; Schlöder, Paul; Kamp, Günter; Ando, Osamu
2010-11-15
Trehalase (EC 3.2.1.28) hydrolyzes the main haemolymph sugar of insects, trehalose, into the essential cellular substrate glucose. Trehalase in locust flight muscle is bound to membranes that appear in the microsomal fraction upon tissue fractionation, but the exact location in vivo has remained elusive. Trehalase has been proposed to be regulated by a novel type of activity control that is based on the reversible transformation of a latent (inactive) form into an overt (active) form. Most trehalase activity from saline-injected controls was membrane-bound (95%) and comprised an overt form (∼25%) and a latent form (75%). Latent trehalase could be assayed only after the integrity of membranes had been destroyed. Trehazolin, a potent tight-binding inhibitor of trehalase, is confined to the extracellular space and has been used as a tool to gather information on the relationship between latent and overt trehalase. Trehazolin was injected into the haemolymph of locusts, and the trehalase activity of the flight muscle was determined at different times over a 30-day period. Total trehalase activity in locust flight muscle was markedly inhibited during the first half of the interval, but reappeared during the second half. Inhibition of the overt form preceded inhibition of the latent form, and the time course suggested a reversible precursor-product relation (cycling) between the two forms. The results support the working hypothesis that trehalase functions as an ectoenzyme, the activity of which is regulated by reversible transformation of latent into overt trehalase.
Electron Transport in Paracoccus Halodenitrificans and the Role of Ubiquinone
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Cronin, S. E.
1983-01-01
The membrane-bound NADH oxidase of Paracoccus halodenitrificans was inhibited by dicoumarol, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), and exposure to ultraviolet light (at 366 nm). When the membranes were extracted with n-pentane, NADH oxidase activity was lost. Partial restoration was achieved by adding the ubiquinone fraction extracted from the membranes. Succinate oxidation was not inhibited by dicoumarol or HQNO but was affected by ultraviolet irradiation or n-pentane extraction. However, the addition of the ubiquinone fraction to the n-pentane-extracted membranes did not restore enzyme activity. These observations suggested the reducing equivalents from succinate entered the respiratory chain on the oxygen side of the HQNO-sensitive site and probably did not proceed through a quinone.
Electron transport in Paracoccus halodenitrificans and the role of Ubiquinone
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Cronin, S. E.
1984-01-01
The membrane-bound NADH oxidase of Paracoccus halodenitrificans was inhibited by dicoumarol, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), and exposure to ultraviolet light (at 366 nm). When the membranes were extracted with n-pentane, NADH oxidase activity was lost. Partial restoration was achieved by adding the ubiquinone fraction extracted from the membranes. Succinate oxidation was not inhibited by dicoumarol or HQNO but was affected by ultraviolet irradiation or n-pentane extraction. However, the addition of the ubiquinone fraction to the n-pentane-extracted membranes did not restore enzyme activity. These observations suggested the reducing equivalents from succinate entered the respiratory chain on the oxygen side of the HQNO-sensitive site and probably did not proceed through a quinone.
Li, Xuhang; Zhang, Huiping; Cheong, Alice; Yueping Chen, Sharon Leu; Elowsky, Christian G; Donowitz, Mark
2004-01-01
The epithelial brush border membrane (BBM) Na+–H+ exchanger 3 (NHE3) is the major transport protein responsible for ileal electroneutral Na+ absorption. We have previously shown that ileal BBM NHE3 activity is rapidly inhibited by carbachol, an agonist that mimics cholinergic activation in digestion. In this study, we investigated the mechanisms involved in this NHE3 inhibition. Carbachol decreased the amount of ileal Na+ absorptive cell BBM NHE3 within 10 min of exposure. Based on OptiPrep gradient centrifugation, carbachol increased the amount of NHE3 in early endosomes and decreased the amount of NHE3 in BBM, consistent with effects on NHE3 trafficking. The decrease in BBM NHE3 occurred in the detergent-soluble BBM fraction with no change in the amount of NHE3 in the BBM detergent-resistant membranes. The size of BBM NHE3 complexes increased in carbachol-exposed ileum, as studied with sucrose gradient centrifugation. The NHE3 complex size increased in the total BBM, but did not change in the detergent-soluble fraction. This suggests that carbachol treatment enhanced the association of proteins with NHE3 complexes specifically in the detergent-resistant fraction of ileal BBM. NHERF2, α-actinin-4 and protein kinase C were among those NHE3-associated proteins because they were more efficiently coimmunoprecipitated from total BBM after carbachol treatment. Moreover, Src was involved in the carbachol-mediated inhibition since: (1) c-Src was rapidly activated in the detergent-resistant membranes by carbachol; and (2) carbachol inhibition of ileal Na+ absorption was completely abolished by the Src family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Moreover, the carbachol-induced increase in the size of NHE3-containing complexes was reversed by PP2. These data demonstrate that regulation of NHE3 activity by carbachol can be achieved at several interrelated levels: (1) the subcellular level, at which NHE3 is rapidly endocytosed from BBM to endocytic vesicles upon treatment with carbachol; (2) multiple BBM pools, in which carbachol selectively decreases the amount of NHE3 in the BBM detergent-soluble fraction but not the detergent-resistant membrane; and (3) the molecular level, at which NHE3 complex-associated proteins can be changed upon carbachol treatment, with carbachol leading to larger BBM NHE3 complexes and increased co-IP of NHERF2 with α-actinin-4 and activated PKC. The study further describes NHE3 presence simultaneously in multiple dynamic BBM pools in which NHE3 distribution and associated proteins are altered as part of carbachol-induced and Src-mediated rapid signal transduction, which decreases the amount of BBM NHE3 and thus inhibits NHE3 activity. PMID:14978207
Waldman, S A; Kuno, T; Kamisaki, Y; Chang, L Y; Gariepy, J; O'Hanley, P; Schoolnik, G; Murad, F
1986-01-01
A novel form of particulate guanylate cyclase tightly coupled by cytoskeletal components to receptors for heat-stable enterotoxin (ST) produced by Escherichia coli can be found in membranes from rat intestinal mucosa. Intestinal particulate guanylate cyclase was resistant to solubilization with detergent alone, with only 30% of the total enzyme activity being extracted with Lubrol-PX. Under similar conditions, 70% of this enzyme was solubilized from rat lung membranes. The addition of high concentrations of sodium chloride to the extraction buffer resulted in greater solubilization of particulate guanylate cyclase from intestinal membranes. Although extraction of intestinal membranes with detergent and salt resulted in greater solubilization of guanylate cyclase, a small fraction of the enzyme activity remained associated with the particulate fraction. This activity was completely resistant to solubilization with a variety of detergents and chaotropes. Particulate guanylate cyclase and the ST receptor solubilized by detergent retained their abilities to produce cyclic GMP and bind ST, respectively. However, ST failed to activate particulate guanylate cyclase in detergent extracts. In contrast, guanylate cyclase resistant to solubilization remained functional and coupled to the ST receptor since enzyme activation by ST was unaffected by various extraction procedures. The possibility that the ST receptor and particulate guanylate cyclase were the same molecule was explored. ST binding and cyclic GMP production were separated by affinity chromatography on GTP-agarose. Similarly, guanylate cyclase migrated as a 300,000-dalton protein, while the ST receptor migrated as a 240,000-dalton protein on gel filtration chromatography. Also, thiol-reactive agents such as cystamine and N-ethylmaleimide inhibited guanylate cyclase activation by ST, with no effect on receptor binding of ST. These data suggest that guanylate cyclase and the ST receptor are independent proteins coupled by cytoskeletal components in membranes of intestinal mucosa. PMID:2867046
1978-01-01
Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome- tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate- sized filaments is discussed. PMID:569157
Drochmans, P; Freudenstein, C; Wanson, J C; Laurent, L; Keenan, T W; Stadler, J; Leloup, R; Franke, W W
1978-11-01
Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome-tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate-sized filaments is discussed.
Ruiz-Baca, Estela; Villagómez-Castro, Julio C; Leal-Morales, Carlos A; Sabanero-López, Myrna; Flores-Carreón, Arturo; López-Romero, Everardo
2005-01-01
A membrane fraction obtained from the filamentous form of Sporothrix schenckii was able to transfer mannose from GDP-Mannose into dolichol phosphate mannose and from this inTermediate into mannoproteins in coupled reactions catalyzed by dolichol phosphate mannose synthase and protein mannosyl transferase(s), respectively. Although the transfer reaction depended on exogenous dolichol monophosphate, membranes failed to use exogenous dolichol phosphate mannose for protein mannosylation to a substantial extent. Over 95% of the sugar was transferred to proteins via dolichol phosphate mannose and the reaction was stimulated several fold by Mg2+ and Mn2+. Incubation of membranes with detergents such as Brij 35 and Lubrol PX released soluble fractions that transferred the sugar from GDP-Mannose mostly into mannoproteins, which were separated by affinity chromatography on Concanavilin A-Sepharose 4B into lectin-reacting and non-reacting fractions. All proteins mannosylated in vitro eluted with the lectin-reacting proteins and analytical electrophoresis of this fraction revealed the presence of at least nine putative mannoproteins with molecular masses in the range of 26-112 kDa. The experimental approach described here can be used to identify and isolate specific glycoproteins mannosylated in vitro in studies of O-glycosylation.
Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y
2016-07-01
Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional cheesemaking processes, but its cost-effectiveness at a large scale remains to be demonstrated. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Horai, Sawako; Furukawa, Tatsuhiko; Ando, Tetsuo; Akiba, Suminori; Takeda, Yasuo; Yamada, Katsushi; Kuno, Katsuji; Abe, Shintaro; Watanabe, Izumi
2008-06-01
In a previous study, we showed that Hg accumulated to high levels in the liver of the Javan mongoose (Herpestes javanicus), a terrestrial mammal that lives on Amamioshima Island, Japan. This suggests a sophisticated mechanism of hepatic Hg detoxication. Assay of the subcellular localization of Hg and the expression of protective enzymes provides important clues for elucidating the mechanism of Hg detoxication. In the present study, the concentrations of 11 elements (Mg, Cr, Mn, Fe, Cu, Zn, Se, Rb, Cd, total Hg [T-Hg] and organic Hg [O-Hg], and Pb) were determined in the liver and in five liver subcellular fractions (plasma membrane, mitochondria, nuclei, microsome, and cytosol) of this species. As the T-Hg level increased, T-Hg markedly distributed to the plasma membrane. The T-Hg levels in all subcellular fractions correlated with Se levels. Although the T-Hg level in the microsomal fraction was relatively low, the ratio of O-Hg to T-Hg was significantly lower in the microsomes than in the other fractions. Significant positive correlations were found between the level of glutathione-S-transferase-pi, a marker of oxidative stress, and the O-Hg and T-Hg levels, but the correlation was better with O-Hg than with T-Hg. Western blot analysis of thioredoxin reductase 2 (TrxR2), a protein involved in protecting cells from mitochondrial oxidative stress, showed that the level of TrxR2 correlated with that of T-Hg. High TrxR2 levels may be one mechanism by which the Javan mongoose attenuates the toxicity of the high Hg levels present in the liver.
Sandoval, Karin E; Farr, Susan A; Banks, William A; Crider, Albert M; Morley, John E; Witt, Ken A
2013-07-03
Soluble amyloid-β peptide (Aβ) oligomers have been hypothesized to be primary mediators of Alzheimer's disease progression. In this regard, reduction of soluble Aβ-oligomers levels within the brain may provide a viable means in which to treat the disease. Somatostatin receptor subtype-4 (SSTR4) agonists have been proposed to reduce Aβ levels in the brain via enhancement of enzymatic degradation. Herein we evaluated the effect of selective SSTR4 agonist NNC 26-9100 on the changes in learning and soluble Aβ42 oligomer brain content with and without co-administration of the M13-metalloproteinase family enzyme-inhibitor phosphoramidon, using the senescence-accelerated mouse prone-8 (SAMP8) model. NNC 26-9100 treatment (0.2 µg i.c.v. in 2 µL) improved learning, which was blocked by phosphoramidon (1 and 10mM, respectively). NNC 26-9100 decreased total soluble Aβ42, an effect which was blocked by phosphoramidon (10mM). Extracellular, intracellular, and membrane fractions were then isolated from cortical tissue and assessed for soluble oligomer alterations. NNC 26-9100 decreased the Aβ42 trimeric (12 kDa) form within the extracellular and intracellular fractions, and produced a band-split effect of the Aβ42 hexameric (25 kDa) form within the extracellular fraction. These effects were also blocked by phosphoramdon (1 and 10mM, respectively). Subsequent evaluation of NNC 26-9100 in APPswe Tg2576 transgenic mice showed a similar learning improvement and corresponding reduction in soluble Aβ42 oligomers within extracellular, intracellular, and membrane fractions. These data support the hypothesis that NNC 26-9100 reduces soluble Aβ42 oligomers and enhances learning through a phosphoramidon-sensitive metalloproteinase-dependent mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.
Hyaluronate-binding proteins of murine brain.
Marks, M S; Chi-Rosso, G; Toole, B P
1990-01-01
The distribution of hyaluronate-binding activity was determined in the soluble and membrane fractions derived from adult mouse brain by sonication in low-ionic-strength buffer. Approximately 60% of the total activity was recovered in the soluble fraction and 33% in membrane fractions. In both cases, the hyaluronate-binding activities were found to be of high affinity (KD = 10(-9) M), specific for hyaluronate, and glycoprotein in nature. Most of the hyaluronate-binding activity from the soluble fraction chromatographed in the void volume of Sepharose CL-4B and CL-6B. Approximately 50% of this activity was highly negatively charged, eluting from diethylaminoethyl (DEAE)-cellulose in 0.5 M NaCl, and contained chondroitin sulfate chains. This latter material also reacted with antibodies raised against cartilage link protein and the core protein of cartilage proteoglycan. Thus, the binding and physical characteristics of this hyaluronate-binding activity are consistent with those of a chondroitin sulfate proteoglycan aggregate similar to that found in cartilage. A 500-fold purification of this proteoglycan-like, hyaluronate-binding material was achieved by wheat germ agglutinin affinity chromatography, molecular sieve chromatography on Sepharose CL-6B, and ion exchange chromatography on DEAE-cellulose. Another class of hyaluronate-binding material (25-50% of that recovered) eluted from DEAE with 0.24 M NaCl; this material had the properties of a complex glycoprotein, did not contain chondroitin sulfate, and did not react with the antibodies against cartilage link protein and proteoglycan. Thus, adult mouse brain contains at least three different forms of hyaluronate-binding macromolecules. Two of these have properties similar to the link protein and proteoglycan of cartilage proteoglycan aggregates; the third is distinguishable from these entities.
Gettel, Douglas L; Sanborn, Jeremy; Patel, Mira A; de Hoog, Hans-Peter; Liedberg, Bo; Nallani, Madhavan; Parikh, Atul N
2014-07-23
Substrate-mediated fusion of small polymersomes, derived from mixtures of lipids and amphiphilic block copolymers, produces hybrid, supported planar bilayers at hydrophilic surfaces, monolayers at hydrophobic surfaces, and binary monolayer/bilayer patterns at amphiphilic surfaces, directly responding to local measures of (and variations in) surface free energy. Despite the large thickness mismatch in their hydrophobic cores, the hybrid membranes do not exhibit microscopic phase separation, reflecting irreversible adsorption and limited lateral reorganization of the polymer component. With increasing fluid-phase lipid fraction, these hybrid, supported membranes undergo a fluidity transition, producing a fully percolating fluid lipid phase beyond a critical area fraction, which matches the percolation threshold for the immobile point obstacles. This then suggests that polymer-lipid hybrid membranes might be useful models for studying obstructed diffusion, such as occurs in lipid membranes containing proteins.
Man, Dariusz; Pisarek, Izabella; Braczkowski, Michał; Pytel, Barbara; Olchawa, Ryszard
2014-06-01
This paper presents the results of research on the influence of two fractions of humic substances (HS): fulvic acids (FA) and humic acids (HA), as a function of concentration, on the liposome membranes formed from egg yolk lecithin (EYL). The concentration of HS in relation to EYL changed from 0% to 10% by weight. The influence of HS on various areas of membranes: interphase water-lipid, in the lipid layer just below the polar part of the membrane and in the middle of the lipid bilayer, was investigated by different spin labels (TEMPO, DOXYL 5, DOXYL 16). The study showed that HA slightly decreased the fluidity of the analyzed membranes on the surface layer, while FA significantly liquidated the center of the lipid bilayer. The strong effect of both fractions of HS on the concentration of free radicals as a function of time was also described.
Van Ommen Kloeke, F; Bryant, R D; Laishley, E J
1995-12-01
A protocol was developed whereby the outer and cytoplasmic membranes of the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) were isolated and partially characterized. The isolated outer membrane fractions from cultures grown under high (100 ppm) and low (5 ppm) Fe2+ conditions were compared by SDS-PAGE electrophoresis, and showed that several protein bands were derepressed under the low iron conditions, most notably at 50 kDa, and 77.5 kDa. Outer membrane isolated from low iron cultured cells was found to contain two proteins, 77.5 kDa and 62.5 kDa in size, that reacted with a heme-specific stain and were referred to as high molecular weight cytochromes. Studies conducted on the low iron isolated outer membrane by a phosphate/mild steel hydrogen evolution system showed that addition of the membrane fraction caused an immediate acceleration in H2 production. A new model for the anaerobic biocorrosion of mild steel is proposed.
Buschiazzo, Jorgelina; Bonini, Ida C; Alonso, Telma S
2008-06-01
The invaginated structure of caveolae seems to provide an optimal environment for hormone binding leading to oocyte meiotic maturation. We conducted a quantitative analysis of lipids and proteins of detergent-free low-density membranes isolated from Bufo arenarum oocytes and we modulated cellular cholesterol to further understand how these domains perform their regulatory functions in the amphibian system. Light membranes derive from the plasma membrane as suggested by the enrichment in the activity of 5'nucleotidase. Lipid analysis by chromatography techniques revealed that this fraction is enriched in phosphatidylserine and cholesterol and that it evidences an important level of sphingomyelin. The finding of a single 21 kDa caveolin in light membranes indicates the presence of caveolae-like structures in B. arenarum oocytes. In support of this finding, c-Src is significantly associated to this fraction. Cholesterol content of oocytes treated with methyl-beta-cyclodextrin (MbetaCD) decreased when compared to control oocytes. Drug treatment inhibited meiotic maturation in a dose-dependent manner and affected the localization of caveolin and c-Src among membrane fractions. Repletion of cholesterol showed a recovery of the ability of MbetaCD-treated oocytes to mature, particularly at the 25 mM concentration in which reversibility was close to the control level. Results highlight the importance of caveolae-like microdomains for maturation signaling in Bufo oocytes.
Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea; ...
2015-06-25
The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, includingmore » membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.« less
Giannone, Richard J; Wurch, Louie L; Podar, Mircea; Hettich, Robert L
2015-08-04
The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. As this interaction is thought to be membrane-associated, involving a myriad of membrane-anchored proteins, proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitans proteins. Using this method, we show that proteins with increased hydrophobic character, including membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. These gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.
The rat red blood cell proteome is altered by priming with 2-butoxyethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palkar, Prajakta S.; Kakhniashvili, David G.; Goodman, Steven R.
2008-08-01
Administration of a low priming dose of 2-butoxyethanol (BE, 500 mg/kg, p.o.) 7 days prior to a larger LD{sub 90} dose (1500 mg BE/kg, p.o.) offers protection against the lethal dose-induced hemolysis and death in female Sprague Dawley rats because of prompt and efficient replacement of red blood cells (RBCs) with new resilient RBCs. The objective of the present work was to analyze the altered proteome of RBCs upon priming with BE in order to identify the potential anti-hemolytic survival proteins induced in the primed rat RBCs (P-RBCs) as opposed to vehicle-treated RBCs (V-RBCs). The RBCs from the two groupsmore » were fractionated into membrane and cytosolic fractions. The cytosolic fractions were further fractionated for proteomic analysis into 3 fractions. The fractions were labeled with Cy3 and Cy5 fluorescent dyes and subjected to 2-dimensional differential gel electrophoresis (DIGE) to analyze the protein profiles. Seven membrane and 8 cytosolic proteins were found to be significantly increased ({>=} 2.5 fold) in P-RBCs as compared to V-RBCs. The identified proteins can be classified into antioxidant, membrane skeleton, protein turnover, lipid raft, and energy metabolism components. Increased levels of the proteins from antioxidant and membrane skeleton groups were confirmed by Western blot analysis. The study provides the first report on protein profiling of rat RBCs as well as on alteration of the proteome upon exposure to a priming dose of hemotoxicant. Further studies are needed to prove the protective role of the identified proteins and will initiate the field of survival/protective/anti-hemolytic proteins in RBCs.« less
2014-01-01
One of the main factors affecting membrane fouling in MBRs is operational conditions. In this study the influence of aeration rate, filtration mode, and SRT on hollow fiber membrane fouling was investigated using a triple fouling layers perspective. The sludge microbial population distribution was also determined by PCR method. Through various applied operational scenarios the optimal conditions were: aeration rate of 15 LPM; relaxation mode with 40s duration and 8 min. interval; and SRT of 30 days. The similarity between SMP variations in triple fouling layers with its corresponding hydraulic resistance confirmed the effect of SMP on membrane fouling. Among three fouling fractions, the upper (rinsed) layer found to have the most effect on membrane fouling which implies the critical role of aeration, but as for multilateral effects of aeration, the optimal aeration rate should be determined more precisely. Relaxation interval was more effective than its duration for fouling control. SRT variations in addition to influencing the amount of SMP, also affect on the structure of these material. At longer SRTs (20, 30 days) a greater percentage of SMP could penetrate into the membrane pores and for shorter SRTs they accumulate more on membrane surface. Results showed that there is a very good correlation between total hydraulic resistance (Log R) and protein to carbohydrate ratio at the rinsed layer (P1/C1). Considering significant effects of aeration and SRT conditions on this ratio (according to data), it is very determinative to apply the optimal aeration and SRT conditions. PMID:25002969
Compañ, Vicente; Tiemblo, Pilar; García, F; García, J M; Guzmán, Julio; Riande, Evaristo
2005-06-01
The oxygen permeability and diffusion coefficients of hydrogel membranes prepared with copolymers of 2-ethoxyethyl methacrylate (EEMA)/2,3-dihydroxypropylmethacrylate (MAG) with mole fraction of the second monomer in the range between 0 and 0.75 are described. Values of the permeability and diffusion coefficients of oxygen are determined by using electrochemical procedures involving the measurement of the steady-state current in membranes prepared by radical polymerization of the monomers. The results obtained for the transport properties were analyzed taking into account the fractional free volumes, the cohesive energy densities and the glass transition temperatures of the hydrogels.
Pratt, R S; Cook, G M
1979-01-01
1. A plasma-membrane fraction prepared from rabbit alveolar macrophages by hyposmotic borate lysis is described. 2. Rabbit lung lavages, containing a glycoprotein inhibitor of phagocytosis, may be fractionated by preparative isoelectric focusing in the presence of Triton X-100. 3. Chemical analysis indicates that the glycoproteins of the lung lavage contain sialic acid, fucose, mannose, galactose, hexosamine and appreciable quantities of glucose. 4. The relationship of macrophage membrane glycoproteins, solubilized with Triton X-100 in the presence of borate, to the lung lavage glycoproteins is demonstrated immunoelectrophoretically. Images PLATE 1 Fig. 1. Fig. 2. PMID:486083
Measuring zinc in biological nanovesicles by multiple analytical approaches.
Piacenza, Francesco; Biesemeier, Antje; Farina, Marco; Piva, Francesco; Jin, Xin; Pavoni, Eleonora; Nisi, Lorenzo; Cardelli, Maurizio; Costarelli, Laura; Giacconi, Robertina; Basso, Andrea; Pierpaoli, Elisa; Provinciali, Mauro; Hwang, James C M; Morini, Antonio; di Donato, Andrea; Malavolta, Marco
2018-07-01
Exosomes are nanovesicles known to mediate intercellular communication. Although it is established that zinc ions can act as intracellular signaling factors, the measurement of zinc in circulating nanovesicles has not yet been attempted. Providing evidence of the existence of this zinc fraction and methods for its measurement might be important to advance our knowledge of zinc status and its relevance in diseases. Exosomes from 0.5 ml of either fresh or frozen human plasma were isolated by differential centrifugation. A morphological and dimensional evaluation at the nanoscale level was performed by atomic force microscopy (AFM) and Transmission Electron Microscopy (TEM). Energy Dispersive X-Ray Microanalysis (EDX) revealed the elemental composition of exosomes and their respective total Zinc content on a quantitative basis. The zinc mole fraction (in at%) was correlated to the phosphorous mole fraction, which is indicative for exosomal membrane material. Both fresh (Zn/P 0.09 ± 0.01) and frozen exosomes (Zn/P 0.08 ± 0.02) had a significant zinc content, which increased up to 1.09 ± 0.12 for frozen exosomes when treated with increasing amounts of zinc (100-500 μM; each p < 0.05). Interestingly, after zinc addition, the Calcium mole fractions decreased accordingly suggesting a possible exchange by zinc. In order to estimate the intra-exosomal labile zinc content, an Imaging Flow Cytometry approach was developed by using the specific membrane permeable zinc-probe Fluozin-3AM. A labile zinc content of 0.59 ± 0.27 nM was calculated but it is likely that the measurement may be affected by purification and isolation conditions. This study suggests that circulating nano-vesicular-zinc can represent a newly discovered zinc fraction in the blood plasma whose functional and biological properties will have to be further investigated in future studies. Copyright © 2018 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea
The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, includingmore » membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.« less
Sund, S E; Axelrod, D
2000-01-01
Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about relevant chemical kinetic rates in vivo. Total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP), an established technique previously demonstrated to measure reversible biomolecular kinetic rates at surfaces in vitro, is extended here to measure reversible biomolecular kinetic rates of actin at the cytofacial (subplasma membrane) surface of living cells. For the first time, spatial imaging (with a charge-coupled device camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging produces both spatial maps of kinetic parameters (off-rates and mobile fractions) and estimates of kinetic correlation distances, cell-wide kinetic gradients, and dependences of kinetic parameters on initial fluorescence intensity. For microinjected rhodamine actin in living cultured smooth muscle (BC3H1) cells, the unbinding rate at or near the cytofacial surface of the plasma membrane (averaged over the entire cell) is measured at 0.032 +/- 0.007 s(-1). The corresponding rate for actin marked by microinjected rhodamine phalloidin is very similar, 0.033 +/- 0.013 s(-1), suggesting that TIR/FRAP is reporting the dynamics of entire filaments or protofilaments. For submembrane fluorescence-marked actin, the intensity, off-rate, and mobile fraction show a positive correlation over a characteristic distance of 1-3 microm and a negative correlation over larger distances greater than approximately 7-14 microm. Furthermore, the kinetic parameters display a statistically significant cell-wide gradient, with the cell having a "fast" and "slow" end with respect to actin kinetics. PMID:10969025
Ganjam, L S; Thornton, W H; Marshall, R T; MacDonald, R S
1997-10-01
The consumption of yogurt has been associated with a reduced incidence of colon cancer in population groups. Bioactive peptides produced during bacterial fermentation may alter the risk of colon cancer via modification of cell proliferation in the colon. Using our previously described cell culture model system, we have isolated a yogurt fraction that decreases cell proliferation. Yogurt was fractionated using 10,000- and 500-Da membrane dialysis. When the yogurt fraction was incubated with IEC-6 or Caco-2 cells, cell division was decreased compared with control treatments, as determined by thymidine incorporation. Cell division was not inhibited in response to a similarly produced milk fraction or in response to solutions of lactic acid. The determination of cell kinetics by flow cytometry revealed a decrease in the number of cells in the initial growth phase in response to the yogurt fraction for the IEC-6 cells, but not the Caco-2 cells. Alpha-Lactalbumin inhibited cell division of both cell lines, but beta-casein did not.
Lacombe, Alison; McGivney, Christine; Tadepalli, Shravani; Sun, Xiaohong; Wu, Vivian C H
2013-06-01
The antimicrobial properties of the American cranberry were studied against Escherichia coli O157:H7, Listeria monocytogenes, and Lactobacillus rhamnosus to determine the effects on growth inhibition, membrane permeability, and injury. Cranberry powder was separated using a C-18 Sep-Pak cartridge into sugars plus organic acids (F1), monomeric phenolics (F2), and anthocyanins plus proanthocyanidins (F3). Fraction 3 was further separated into anthocyanins (F4) and proanthocyanidins (F5) using an LH-20 Sephadex column. Each fraction was diluted in the brain heart infusion (BHI) broth to determine the minimum inhibitory/bactericidal concentrations (MIC/MBC). L. monocytogenes was the most susceptible to cranberry fraction treatment with the lowest MIC/MBC for each treatment, followed by E. coli O157:H7 and L. rhamnosus. Membrane permeability and potential was studied using LIVE/DEAD viability assay and using Bis (1, 3-dibutylbarbituric acid) trimethine oxonol (DiBAC4), respectively. L. rhamnosus demonstrated the highest permeability followed by E. coli O157:H7, and L. monocytogenes. L. rhamnosus demonstrated the highest recovery followed by E. coli O157:H7, and L. monocytogenes. Each cranberry fraction demonstrated membrane hyperpolarization at their native pH, while F2, F3, and F5 demonstrated membrane depolarization at neutral pH. With this knowledge cranberry compounds may be used to prevent maladies and potentially substitute for synthetic preservatives and antibiotics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Artifacts associated with the fractionation of colloids in a freshwater sample were investigated for conventional membrane filtration (0.45 micron cutoff), and two tangential flow ultrafiltration cartridges (0.1 micron cutoff and 3000 MW cutoff). Membrane clogging during conventi...
Saidi, Sami; Ben Amar, Raja
2016-10-01
The enzymatic hydrolysis using Prolyve BS coupled to membrane process (Ultrafiltration (UF) and nanofiltration (NF)) is a means of biotransformation of tuna protein waste to Tuna protein hydrolysate (TPH) with higher added values. This method could be an effective solution for the production of bioactive compounds used in various biotechnological applications and minimizing the pollution problems generated by the seafood processing industries. The amino acid composition, functional and antioxidant properties of produced TPH were evaluated. The results show that the glutamic acid, aspartic acid, glycine, alaline, valine and leucine were the major amino acids detected in the TPH profile. After membrane fractionation process, those major amino acids were concentrated in the NF retentate (NFR). The NFR and NF permeate (NFP) have a higher protein solubility (>95 %) when compared to TPH (80 %). Higher oil and water binding capacity were observed in TPH and higher emulsifying and foam stability was found in UF retentate. The NFP showed the highest DPPH radical scavenging activity (65 %). The NFR contained antioxidant amino acid (30.3 %) showed the highest superoxide radical and reducing power activities. The TPH showed the highest iron chelating activity (75 %) compared to other peptide fractions. The effect of the membrane fractionation on the molecular weight distribution of the peptide and their bioactivities was underlined. We concluded that the TPH is a valuable source of bioactive peptides and their peptide fractions may serve as useful ingredients for application in food industry and formulation of nutritional products.
Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells
Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W.; Wiseman, Paul W.
2015-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. PMID:26153705
Membrane-associated actin from the microvillar membranes of ascites tumor cells
1982-01-01
A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin. PMID:6890066
Membrane-associated actin from the microvillar membranes of ascites tumor cells.
Carraway, K L; Cerra, R F; Jung, G; Carraway, C A
1982-09-01
A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin.
NASA Technical Reports Server (NTRS)
Coplen, T. B.; Hanshaw, B. B.
1973-01-01
Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.
Kakinuma, Naoto; Kiyama, Ryoiti
2009-09-04
Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is associated with heterozygous mutations in the KIF21A gene, including a major (R954W) and a minor (M947T) mutation. Kank1, which regulates actin polymerization, cell migration and neurite outgrowth, interacted with the third and fourth coiled-coil domains of KIF21A protein at its ankyrin-repeat domain. While both KIF21A(R954W) and KIF21A(M947T) enhanced the formation of a heterodimer with the wild type, KIF21A(WT), these mutants also enhanced the interaction with Kank1. Knockdown of KIF21A resulted in Kank1 predominantly occurring in the cytosolic fraction, while KIF21A(WT) slightly enhanced the translocation of Kank1 to the membrane fraction. Moreover, KIF21A(R954W) significantly enhanced the translocation of Kank1 to the membrane fraction. These results suggest that KIF21A regulates the distribution of Kank1 and that KIF21A mutations associated with CFEOM1 enhanced the accumulation of Kank1 in the membrane fraction. This might cause an abrogation of neuronal development in cases of CFEOM1 through over-regulation of actin polymerization by Kank1.
[Properties and localization of Mg- and Ca-ATpase activities in wheat embryo cell nuclei].
Vasil'eva, N A; Belkina, G G; Stepanenko, S Y; Atalykova, F I; Oparin, A I
1978-05-01
The isolated nuclei of wheat embryo possess the ATPase activity. The addition of Mg2+ and Ca2+ significantly increases the activities of nuclear ATPases, whereas Hg2+, Cu2+ and Mn2+ inhibit the activity. The activating effect of Mg2+ is enhanced by an addition of Na and K ions. The activity of wheat embryo nuclear Mg-ATPase is higher than its Ca-ATPase activity; both ATPases also differ in their pH optima. Separation of total nuclear protein according to the solubility of its individual protein components in wheat and strong salt solutions, using the detergents, as well as ammonium sulfate precipitation and dialysis do not result in separation of Mg-activated and Ca-activated ATPases, although their levels of activities and ratios change in the course of fractionation. The Mg- and Ca-ATPase activities of the wheat embryo nuclei were found in the nuclear fraction of albumin, in nonhistone proteins and nuclear membranes. In the albumin nuclear fraction and subfractions of non-histone proteins the higher level of activity is observed in Ca-ATPase, whereas in the nuclei and soluble fractions of residual proteins in Mg-ATPase.
Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C
2000-01-01
The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria. PMID:10816421
Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C
2000-06-01
The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria.
Kang, Dukjin; Oh, Sunok; Ahn, Sung-Min; Lee, Bong-Hee; Moon, Myeong Hee
2008-08-01
Exosomes, small membrane vesicles secreted by a multitude of cell types, are involved in a wide range of physiological roles such as intercellular communication, membrane exchange between cells, and degradation as an alternative to lysosomes. Because of the small size of exosomes (30-100 nm) and the limitations of common separation procedures including ultracentrifugation and flow cytometry, size-based fractionation of exosomes has been challenging. In this study, we used flow field-flow fractionation (FlFFF) to fractionate exosomes according to differences in hydrodynamic diameter. The exosome fractions collected from FlFFF runs were examined by transmission electron microscopy (TEM) to morphologically confirm their identification as exosomes. Exosomal lysates of each fraction were digested and analyzed using nanoflow LC-ESI-MS-MS for protein identification. FIFFF, coupled with mass spectrometry, allows nanoscale size-based fractionation of exosomes and is more applicable to primary cells and stem cells since it requires much less starting material than conventional gel-based separation, in-gel digestion and the MS-MS method.
Low Copy Numbers of DC-SIGN in Cell Membrane Microdomains: Implications for Structure and Function
Liu, Ping; Wang, Xiang; Itano, Michelle S.; Neumann, Aaron K.; de Silva, Aravinda M.; Jacobson, Ken; Thompson, Nancy L.
2014-01-01
Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC-SIGN, a C-type lectin, in membrane microdomains. DC-SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC-SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1μm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3T3 cells contains only 4-8 molecules of DC-SIGN, consistent with our preliminary super-resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (~50nm) pathogen, dengue virus, leading to infection of host cells. PMID:24313910
Ivarie, Robert D.; Pène, Jacques J.
1970-01-01
Linear density gradients of Renografin have resolved two components of bacterial deoxyribonucleic acid (DNA) in sheared lysates. Component 1, at equilibrium density after 5 hr of centrifugation, is enriched for newly synthesized DNA and markers near the origin and terminus of replication. It contains 5% of total cellular protein, 25% of the phospholipids, 30 to 50% of the DNA, 4 to 11% of unstable ribonucleic acid (RNA), RNA polymerase, and low amounts of DNA polymerase. The material is sensitive to Pronase and Sarkosyl. In unsheared lysates, all of the DNA forms a band at this position. Shearing the lysate generates a slow-sedimenting fraction of DNA (component 2) which contains more uniformly labeled than newly synthesized DNA. These observations suggest that replicating DNA and DNA at the origin and possibly the terminus of replication are associated with membrane. The amount of uniformly labeled DNA in component 1 and an estimate of the number of chromosomal fragments suggest that other parts of the chromosome are possibly associated with the membrane. PMID:4992373
Effects of semen preservation on boar spermatozoa head membranes.
Buhr, M M; Canvin, A T; Bailey, J L
1989-08-01
Head plasma membranes were isolated from the sperm-rich fraction of boar semen and from sperm-rich semen that had been subjected to three commercial preservation processes: Extended for fresh insemination (extended), prepared for freezing but not frozen (cooled), and stored frozen for 3-5 weeks (frozen-thawed). Fluorescence polarization was used to determine fluidity of the membranes of all samples for 160 min at 25 degrees C and also for membranes from the sperm-rich and extended semen during cooling and reheating (25 to 5 to 40 degrees C, 0.4 degrees C/min). Head plasma membranes from extended semen were initially more fluid than from other sources (P less than 0.05). Fluidity of head membranes from all sources decreased at 25 degrees C, but the rate of decrease was significantly lower for membranes from cooled and lower again for membranes from frozen-thawed semen. Cooling to 5 degrees C reduced the rate of fluidity change for plasma membranes from the sperm-rich fraction, while heating over 30 degrees C caused a significantly greater decrease. The presence of Ca++ (10 mM) lowered the fluidity of the head plasma membranes from sperm-rich and extended semen over time at 25 degrees C but did not affect the membranes from the cooled or frozen-thawed semen. The change in head plasma membrane fluidity at 25 degrees C may reflect the dynamic nature of spermatozoa membranes prior to fertilization. Extenders, preservation processes and temperature changes have a strong influence on head plasma membrane fluidity and therefore the molecular organization of this membrane.
Gascoyne, Peter R. C.; Shim, Sangjo; Noshari, Jamileh; Becker, Frederick F.; Stemke-Hale, Katherine
2013-01-01
Although dielectrophoresis (DEP) has great potential for addressing clinical cell isolation problems based on cell dielectric differences, a biological basis for predicting the DEP behavior of cells has been lacking. Here, the dielectric properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic (DEP) field-flow fractionation, correlated with the exterior morphologies of the cells during growth, and compared with the dielectric and morphological characteristics of the subpopulations of peripheral blood. In agreement with earlier findings, cell total capacitance varied with both cell size and plasma membrane folding and the dielectric properties of the NCI-60 cell types in suspension reflected the plasma membrane area and volume of the cells at their growth sites. Therefore, the behavior of cells in DEP-based manipulations is largely determined by their exterior morphological characteristics prior to release into suspension. As a consequence, DEP is able to discriminate between cells of similar size having different morphological origins, offering a significant advantage over size-based filtering for isolating circulating tumor cells, for example. The findings provide a framework for anticipating cell dielectric behavior on the basis of structure-function relationships and suggest that DEP should be widely applicable as a surface marker-independent method for sorting cells. PMID:23172680
A Crosslinking Analysis of GAP-43 Interactions with Other Proteins in Differentiated N1E-115 Cells
Ollom, Callise M.; Denny, John B.
2008-01-01
It has been suggested that GAP-43 (growth-associated protein) binds to various proteins in growing neurons as part of its mechanism of action. To test this hypothesis in vivo, differentiated N1E-115 neuroblastoma cells were labeled with [35S]-amino acids and were treated with a cleavable crosslinking reagent. The cells were lysed in detergent and the lysates were centrifuged at 100,000 × g to isolate crosslinked complexes. Following cleavage of the crosslinks and analysis by two-dimensional gel electrophoresis, it was found that the crosslinker increased the level of various proteins, and particularly actin, in this pellet fraction. However, GAP-43 was not present, suggesting that GAP-43 was not extensively crosslinked to proteins of the cytoskeleton and membrane skeleton and did not sediment with them. GAP-43 also did not sediment with the membrane skeleton following nonionic detergent lysis. Calmodulin, but not actin or other proposed interaction partners, co-immunoprecipitated with GAP-43 from the 100,000 × g supernatant following crosslinker addition to cells or cell lysates. Faint spots at 34 kDa and 60 kDa were also present. Additional GAP-43 was recovered from GAP-43 immunoprecipitation supernatants with anti-calmodulin but not with anti-actin. The results suggest that GAP-43 is not present in complexes with actin or other membrane skeletal or cytoskeletal proteins in these cells, but it is nevertheless possible that a small fraction of the total GAP-43 may interact with other proteins. PMID:19325830
Iaea, David B; Mao, Shu; Lund, Frederik W; Maxfield, Frederick R
2017-04-15
Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t 1/2 =12-15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC. © 2017 Iaea et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Extracellular carbonic anhydrase in the dogfish, Squalus acanthias: a role in CO2 excretion.
Gilmour, K M; Perry, S F; Bernier, N J; Henry, R P; Wood, C M
2001-01-01
In Pacific spiny dogfish (Squalus acanthias), plasma CO(2) reactions have access to plasma carbonic anhydrase (CA) and gill membrane-associated CA. The objectives of this study were to characterise the gill membrane-bound CA and investigate whether extracellular CA contributes significantly to CO(2) excretion in dogfish. A subcellular fraction containing membrane-associated CA activity was isolated from dogfish gills and incubated with phosphatidylinositol-specific phospholipase C. This treatment caused significant release of CA activity from its membrane association, a result consistent with identification of the dogfish gill membrane-bound CA as a type IV isozyme. Inhibition constants (K(i)) against acetazolamide and benzolamide were 4.2 and 3.5 nmol L(-1), respectively. Use of a low dose (1.3 mg kg(-1) or 13 micromol L(-1)) of benzolamide to selectively inhibit extracellular CA in vivo caused a significant 30%-60% reduction in the arterial-venous total CO(2) concentration difference, a significant increase in Pco(2) and an acidosis, without affecting blood flow or ventilation. No effect of benzolamide on any measure of CO(2) excretion was detected in rainbow trout (Oncorhynchus mykiss). These results indicate that extracellular CA contributes substantially to CO(2) excretion in the dogfish, an elasmobranch, and confirm that CA is not available to plasma CO(2) reactions in rainbow trout, a teleost.
Water diffusion membranes 3 (pervaporation and heat rejection through composite membranes)
NASA Technical Reports Server (NTRS)
Cabasso, I.
1977-01-01
The problem of waste management in space is discussed for manned space flight. It is shown that such waste can be accounted for in one of four ways: (1) the waste may be dumped into space; (2) it may be accumulated for return to earth; (3) the waste may be separated into two fractions, one fraction (water) to be dumped into space and the remaining portion to be returned to earth; or (4) the waste components may be beneficially reused.
Alamgeer; Uttra, Ambreen Malik; Hasan, Umme Habiba
2017-07-18
The roots and stem bark of Berberis orthobotrys (Berberidaceae) have long been used traditionally to treat joint pain. Though, it has not been pharmacologically assessed for rheumatoid arthritis. The current study explores anti-arthritic activity and phytochemical analysis of aqueous-methanolic extract (30:70) and fractions (ethyl acetate, n-butanol, and aqueous) of Berberis orthobotrys roots. Anti-arthritic potential was evaluated in vitro using protein denaturation (bovine serum albumin and egg albumin) and membrane stabilization methods at 12.5-800 μg/ml concentration and in vivo via turpentine oil, formaldehyde and Complete Freund Adjuvant (CFA) models at 50, 100 and 150 mg/kg doses. Also, in vitro antioxidant ability was appraised by reducing power assay. Moreover, total flavonoid content, Fourier transform infrared spectroscopy and High performance liquid chromatography of n-butanol fraction were performed. The results revealed concentration dependent inhibition of albumin denaturation and notable RBC membrane stabilization, with maximum results obtained at 800 μg/ml. Similarly, plant exhibited dose dependent anti-arthritic effect in turpentine oil and formaldehyde models, with maximum activity observed at 150 mg/kg. The results of CFA model depicted better protection against arthritic lesions and body weight alterations. Also, B.orthobotrys remarkably ameliorated altered hematological parameters, rheumatoid factor and positively modified radiographic and histopathological changes. Additionally, plant exhibited remarkable anti-oxidant activity. Moreover, phytochemical analysis revealed polyphenols and flavonoids. Taken together, these results support traditional use of B.orthobotrys as potent anti-arthritic agent that may be proposed for rheumatoid arthritis treatment.
Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy; Olson, Aaron K.
2014-01-01
Extracorporeal membrane oxygenation (ECMO) is frequently used in infants with postoperative cardiopulmonary failure. ECMO also suppresses circulating triiodothyronine (T3) levels and modifies myocardial metabolism. We assessed the hypothesis that T3 supplementation reverses ECMO-induced metabolic abnormalities in the immature heart. Twenty-two male Yorkshire pigs (age: 25–38 days) with ECMO received [2-13C]lactate, [2,4,6,8-13C4]octanoate (medium-chain fatty acid), and [U-13C]long-chain fatty acids as metabolic tracers either systemically (totally physiological intracoronary concentration) or directly into the coronary artery (high substrate concentration) for the last 60 min of each protocol. NMR analysis of left ventricular tissue determined the fractional contribution of these substrates to the tricarboxylic acid cycle. Fifty percent of the pigs in each group received intravenous T3 supplement (bolus at 0.6 μg/kg and then continuous infusion at 0.2 μg·kg−1·h−1) during ECMO. Under both substrate loading conditions, T3 significantly increased the fractional contribution of lactate with a marginal increase in the fractional contribution of octanoate. Both T3 and high substrate provision increased the myocardial energy status, as indexed by phosphocreatine concentration/ATP concentration. In conclusion, T3 supplementation promoted lactate metabolism to the tricarboxylic acid cycle during ECMO, suggesting that T3 releases the inhibition of pyruvate dehydrogenase. Manipulation of substrate utilization by T3 may be used therapeutically during ECMO to improve the resting energy state and facilitate weaning. PMID:24531815
Kajimoto, Masaki; Priddy, Colleen M O'Kelly; Ledee, Dolena R; Xu, Chun; Isern, Nancy; Olson, Aaron K; Portman, Michael A
2014-04-15
Extracorporeal membrane oxygenation (ECMO) is frequently used in infants with postoperative cardiopulmonary failure. ECMO also suppresses circulating triiodothyronine (T3) levels and modifies myocardial metabolism. We assessed the hypothesis that T3 supplementation reverses ECMO-induced metabolic abnormalities in the immature heart. Twenty-two male Yorkshire pigs (age: 25-38 days) with ECMO received [2-(13)C]lactate, [2,4,6,8-(13)C4]octanoate (medium-chain fatty acid), and [U-(13)C]long-chain fatty acids as metabolic tracers either systemically (totally physiological intracoronary concentration) or directly into the coronary artery (high substrate concentration) for the last 60 min of each protocol. NMR analysis of left ventricular tissue determined the fractional contribution of these substrates to the tricarboxylic acid cycle. Fifty percent of the pigs in each group received intravenous T3 supplement (bolus at 0.6 μg/kg and then continuous infusion at 0.2 μg·kg(-1)·h(-1)) during ECMO. Under both substrate loading conditions, T3 significantly increased the fractional contribution of lactate with a marginal increase in the fractional contribution of octanoate. Both T3 and high substrate provision increased the myocardial energy status, as indexed by phosphocreatine concentration/ATP concentration. In conclusion, T3 supplementation promoted lactate metabolism to the tricarboxylic acid cycle during ECMO, suggesting that T3 releases the inhibition of pyruvate dehydrogenase. Manipulation of substrate utilization by T3 may be used therapeutically during ECMO to improve the resting energy state and facilitate weaning.
NASA Astrophysics Data System (ADS)
Nugraha, Tutun; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi; Maryati, Yati
2017-11-01
Fermentation of spinach (Amaranthus sp) and Broccoli (Brassica oleracea) using Kombucha Culture has been shown to produce biomass that has the potential to become natural sources of folic acid. To produce the materials, following the fermentation, the biomass was filtered using membrane microfiltration (0.15 µm) at a pressure of 40 psia, at room temperature, yielding the concentrate and the permeate fractions. Following this step, freeze drying process was done on the biomass feeds, as well as on the concentrate and permeate fractions. For the freeze drying stage, the samples were frozen, and the condenser was kept at -50°C for 40 hours, while the pressure in the chamber was set at 200 Pa. Freeze drying results showed that the final products, have differences in compositions, as well as differences in the dominat monomers of folates. After water content was driven out, freeze drying increased the concentrations of folic acid in the dried products, and was found to be the highest in the concentrate fractions. Freeze drying has been shown to be capable of protecting the folates from heat and oxidative damages that typicaly occur with other types of drying. The final freeze dried concentrates of fermentation of spinach and broccoli were found to contain folic acid at 2531.88 µg/mL and 1626.94 µg/mL, total solids at 87.23% and 88.65 %, total sugar at 22.66 µg/mL and 25.13 µg/mL, total reducing sugar at 34.46 mg/mL and 15.22 mg/mL, as well as disolved protein concentrations at 0.93 mg/mL and 1.45 mg/mL. Liquid Chromatography Mass Spectometry (LC-MS) identification of the folates in the freeze dried concentrates of fermented spinach and broccoli was done using folic acid and glutamic acid standard solutions as the reference materials. The results showed the presence of folic acid and showed that the dominant monomers of molecules of folates with molecular weights of 441.44 Da. and 441.54 Da. for spinach and broccoli respectively. Moreover, the monomers of glutamic acid were also found at molecular weights of 147.21 Da. and 147.35 Da. for spinach and broccoli respectively. Thus, it has been shown that kombucha fermentation of spinach and broccoli, followed by membrane microfiltration and freeze drying process, could produce dried materials with high concentrations of folates that have the potential to be used as naturally derived sources of folic acid.
Aluminum bioconcentration at the gill surface of juvenile Atlantic salmon in acidic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, K.J.; Campbell, P.G.C.
1993-11-01
Aluminum uptake by Atlantic salmon was examined in the laboratory at pH 4.5, under conditions similar to those found in running waters on the Canadian Precambrian Shield during spring snowmelt. Gill uptake of Al was slow, approaching steady state only after 3 d of exposure. The greatest fraction of gill-associated Al was sorbed not to the gill surface itself, but to the gill mucus. Mucus appears to retard Al transport from solution to the membrane surface, thus delaying the acute biological response of the fish. Strongly associated gill [Al] was never greater than 10% of total gill Al in themore » early stages of the experiment indicated that this Al fraction could eventually exceed 50% of the total gill Al. In contrast to uptake, depuration of Al was extremely rapid; total gill [Al] of fish exposed to Al (pH 4.5) for 2 d decreased by 60% after only 2 h in an Al-free medium. The effect of fluoride complexation on Al bioconcentration was also examined. For equivalent Al[sup 3]+ concentrations, sorption of Al to the gill surface was higher in the presence of fluoride than in its absence, which suggests the formation of mixed ligand [F-Al-L-gill] complexes at the gill surface.« less
Plasma membrane isolation using immobilized concanavalin A magnetic beads.
Lee, Yu-Chen; Srajer Gajdosik, Martina; Josic, Djuro; Lin, Sue-Hwa
2012-01-01
Isolation of highly purified plasma membranes is the key step in constructing the plasma membrane proteome. Traditional plasma membrane isolation method takes advantage of the differential density of organelles. While differential centrifugation methods are sufficient to enrich for plasma membranes, the procedure is lengthy and results in low recovery of the membrane fraction. Importantly, there is significant contamination of the plasma membranes with other organelles. The traditional agarose affinity matrix is suitable for isolating proteins but has limitation in separating organelles due to the density of agarose. Immobilization of affinity ligands to magnetic beads allows separation of affinity matrix from organelles through magnets and could be developed for the isolation of organelles. We have developed a simple method for isolating plasma membranes using lectin concanavalin A (ConA) magnetic beads. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. The ConA magnetic beads are used to bind glycosylated proteins present in the membranes. The bound membranes are solubilized from the magnetic beads with a detergent containing the competing sugar alpha methyl mannoside. In this study, we describe the procedure of isolating rat liver plasma membranes using sucrose density gradient centrifugation as described by Neville. We then further purify the membrane fraction by using ConA magnetic beads. After this purification step, main liver plasma membrane proteins, especially the highly glycosylated ones and proteins containing transmembrane domains could be identified by LC-ESI-MS/MS. While not described here, the magnetic bead method can also be used to isolate plasma membranes from cell lysates. This membrane purification method should expedite the cataloging of plasma membrane proteome.
Bourne, A; Barnes, K; Taylor, B A; Turner, A J; Kenny, A J
1989-01-01
A comprehensive survey of 11 peptidases, all of which are markers for renal microvillar membranes, has been made in membrane fractions prepared from pig choroid plexus. Two fractionation schemes were explored, both depending on a MgCl2-precipitation step, the preferred one having advantages in speed and yield of the activities. The specific activities of the peptidases in the choroid-plexus membranes were, with the exception of carboxypeptidase M, lower than in renal microvillar membranes: those of aminopeptidase N, peptidyl dipeptidase A ('angiotensin-converting enzyme') and gamma-glutamyltransferase were 3-5-fold lower, those of aminopeptidase A and endopeptidase-24.11 were 12-15 fold lower, and those of dipeptidyl peptidase IV and aminopeptidase W were 50-70-fold lower. Carboxypeptidase M had a similar activity in both membranes. Alkaline phosphatase and (Na+ + K+)-activated ATPase were more active in the choroid-plexus membranes. No activity for microsomal dipeptidase, aminopeptidase P and carboxypeptidase P could be detected. Six of the peptidases and (Na+ + K+)-activated ATPase were also studied by immunoperoxidase histochemistry at light- and electron-microscopic levels. Endopeptidase-24.11 and (Na+ + K+)-activated ATPase were uniquely located on the brush border, and the other two peptidases appeared to be much more abundant on the endothelial lining of microvessels. Dipeptidyl peptidase IV and aminopeptidase W were also detected in microvasculature. Pial membranes associated with the brain and spinal cord also stained positively for endopeptidase-24.11, aminopeptidase N and peptidyl dipeptidase A. The immunohistochemical studies indicated the subcellular fractionation did not discriminate between membranes derived from epithelial cells (i.e. microvilli) and those from endothelial cells. The possible significance of these studies in relation to neuropeptide metabolism and the control of cerebrospinal fluid production is discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2655579
Palaiomylitou, M A; Kalimanis, A; Koukkou, A I; Drainas, C; Anastassopoulos, E; Panopoulos, N J; Ekateriniadou, L V; Kyriakidis, D A
1998-08-01
Ice nucleation protein was partially purified from the membrane fraction of E. coli carrying inaZ from Pseudomonas syringae. The ice nucleation protein was totally localized in the bacterial envelope and was extracted by either salt (0.25 M NH4Cl) or the nonionic detergent Tween 20. The extracted protein was partially purified by sequential passage through DEAE-52 cellulose and Sephacryl-S400 columns. The activity of the purified protein was lost after treatment with phospholipase C, and its activity was subsequently restored by addition of the naturally occurring lipid phosphatidylethanolamine. These results suggest that ice nucleation proteins have a requirement for lipids that reconstitute a physiological hydrophobic environment similar to the one existing in vivo, to attain and maintain a structure that enables ice catalysis. Copyright 1998 Academic Press.
Cho, Chi Heung; Jang, Holim; Lee, Migi; Kang, Hee; Heo, Ho Jjn; Kim, Dae-Ok
2017-07-28
The present study was carried out to investigate the antioxidative and neuroprotective effects of sea buckthorn ( Hippophae rhamnoides L.) leaves (SBL) harvested at different times. Reversed-phase high-performance liquid chromatography analysis revealed five major phenolic compounds: ellagic acid, gallic acid, isorhamnetin, kaempferol, and quercetin. SBL harvested in August had the highest total phenolic and flavonoid contents and antioxidant capacity. Treatment of neuronal PC-12 cells with the ethyl acetate fraction of SBL harvested in August increased their viability and membrane integrity and reduced intracellular oxidative stress in a dose-dependent manner. The relative populations of both early and late apoptotic PC-12 cells were decreased by treatment with the SBL ethyl acetate fraction, based on flow cytometry analysis using annexin V-FITC/PI staining. These findings suggest that SBL can serve as a good source of antioxidants and medicinal agents that attenuate oxidative stress.
Repair of Nerve Cell Membrane Damage by Calcium-Dependent, Membrane-Binding Proteins (Revised)
2012-09-01
protein, in model systems can promote a stable repair of broken membranes that could preserve cell viability. Preliminary data obtained using a novel...multilamellar liposomes prepared from bovine brain Folch Fraction I lipids (Sigma-Aldrich) and ion exchange chromatography on Poros Q medium using a Pharmacia...FPLC system [5]. Strategy for establishing the membrane leakage model The strategy employed in these studies was to encapsulate
Wanner, G; Theimer, R R
1978-01-01
Spherosomes (oleosomes) of cotyledons of rape (Brassica napus L.), sunflower (Helianthus annuus L.), and watermelon (Citrullus vulgaris, Schrad.) seedlings are delimited by a "half unit membrane" that appears to be continuous with each of the osmiophilic layers of a tripartite unit membrane forming a handlelike appendix of the spherosomes. Prior to any noticeable utilization of the spherosomal storage fat, ribosomes were found to be attached to these "handles". At later stages appendices of the spherosomes are smooth, showing a diameter of about 22 nm that greatly exceeds the thickness of any other unit membrane profiles identical in structure and diameter osomes appears to be continuous with the thick lipid layer of the handles. In intermediate stages of fat depletion the spherosomal bodies become invaginated with cytoplasmic material. Finally vesicles with cytoplasmic contents surrounded by a membrane with a typically thick lipid layer are left in the cells. Membrane profiles indentical in structure and diameter to the spherosomal appendices were also present in electron micrographs of the lipolytic membrane fraction recovered from sucrose density gradients after centrifugation of a microsomal cell fraction. The ultrastructural observations are taken for evidence that the spherosomal appendices represent the lipase-carrying membranes isolated previously (Theimer and Rosnitschek, 1978). A novel hypothesis for development and utilization of fat-storing spherosomes is also proposed.
Marmagne, Anne; Ferro, Myriam; Meinnel, Thierry; Bruley, Christophe; Kuhn, Lauriane; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève
2007-11-01
The proteomics of plasma membrane has brought to date only scarce and partial information on the actual protein repertoire. In this work, the plant plasma membrane proteome of Arabidopsis thaliana was investigated. A highly purified plasma membrane fraction was washed by NaCl and Na2CO3 salts, and the insoluble fractions were further analyzed by nano-LC-MS/MS. With 446 proteins identified, we hereby describe the largest plasma membrane proteome diversity reported so far. Half of the proteins were predicted to display transmembrane domains and/or to be anchored to the membrane, validating a posteriori the pertinence of the approach. A fine analysis highlighted two main specific and novel features. First, the main functional category is represented by a majority of as yet unreported signaling proteins, including 11% receptor-like kinases. Second, 16% of the identified proteins are predicted to be lipid-modified, specifically involving double lipid linkage through N-terminal myristoylation, S-palmitoylation, C-terminal prenylation, or glycosylphosphatidylinositol anchors. Thus, our approach led for the first time to the identification of a large number of peripheral proteins as part of the plasma membrane and allowed the functionality of the plasma membrane in the cell context to be reconsidered.
Yoo, Jinhee; Park, Kimoon; Yoo, Youngji; Kim, Jongkeun; Yang, Heejin; Shin, Youngjae
2014-01-01
This study was conducted to examine the effects of eggshell membrane hydrolysates (ESMH) on the anti-inflammatory, anti-wrinkle, anti-microbial activity, and moisture-protection for cosmetic use. Whole ESMH (before fractionation), and fraction I (>10 kDa), fraction II (3-10 kDa), and fraction III (<3 kDa) of the hydrolysates were assessed in this experiment. As lipopolysaccharide (LPS) and IFN-γ caused the inflammation on Raw264.7 cell, whole ESMH and fraction I showed to be effective in inhibiting the induction of cell inflammation depending on the concentration, and also showed outstanding effect to suppress the skin inflammation. Fraction I inhibited collagenase and elastase activities to a greater extent than the other fractions, while all fractions had antibiotic effects at concentrations of 10 mg/disc and 20 mg/disc. In addition, it showed the moisture protection effects of skin on the holding amount and losing amount of moisture in upper-inner arm of the human body with a relatively low loss rate in skin, which confirmed that the hydrolyzed fractions of ESM helps to form the superior protective layer of moisture. It was concluded that ESMH fractions with different molecular weights, especially the 10 kDa fraction, have anti-lipopolysaccharide, anti-IFN-γ-induced inflammation, anti- collagenase and elastase activities, and thus can be used as a cosmetic agent to protect skin.
Piechura, J E; Kurup, V P; Daft, L J
1990-01-01
Two fractions exhibiting acid protease activity (AFPI and AFPII) were isolated by extraction of membrane vesicles of Aspergillus fumigatus with Triton X-100. These two fractions produced single bands in both polyacrylamide and sodium dodecyl sulfate polyacrylamide gel electrophoresis and showed apparent molecular weights of 73,000 and 43,000, respectively. Molecular weights determined by gel filtration in the absence and presence of Triton X-100 and sedimentation velocities in analytical ultracentrifugation indicated hydrophobic characteristics, since both fractions readily aggregated and complexed with Triton X-100; both exhibited elevated enzyme activities in the presence of Triton X-100. Carbohydrate content was 93% for AFPI and 85% for AFPII. The enzymatic fractions demonstrated different pH optima in the acid range as well as different temperature stabilities. Both protease fractions cross reacted in double immunodiffusion, while in crossed immunoelectrophoresis both demonstrated five precipitin peaks, each with similar patterns. AFPI demonstrated two additional precipitin peaks in crossed immunoelectrophoresis. As determined by crossed immunoaffinoelectrophoresis, the protease fractions demonstrated galactose and mannose residues. In biotin-avidin enzyme-linked immunosorbent assay both fractions reacted with allergic bronchopulmonary aspergillosis and aspergilloma sera. It can be concluded that two fractions with protease activity of A. fumigatus reported here may be of significance in Aspergillus-induced diseases.
Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel
2011-01-01
Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988
Nersesova, L S; Petrosian, M S; Gazariants, M G; Mkrtchian, Z S; Meliksetian, G O; Pogosian, L G; Akopian, Zh I
2014-01-01
The comparative analysis of the rat liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and purine nucleoside phosphorylase post-radiation activity levels after a total two-hour long single and fractional exposure of the animals to low-intensity 900 MHz frequency electromagnetic field showed that the most sensitive enzymes to the both schedules of radiation are the liver creatine kinase, as well as the blood serum creatine kinase and alkaline phosphatase. According to the comparative analysis of the dynamics of changes in the activity level of the liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase and purine nucleoside phosphorylase, both single and fractional radiation schedules do not affect the permeability of a hepatocyte cell membrane, but rather cause changes in their energetic metabolism. The correlation analysis of the post-radiation activity level changes of the investigated enzymes did not reveal a clear relationship between them. The dynamics of post-radiation changes in the activity of investigated enzyme levels following a single and short-term fractional schedules of radiation did not differ essentially.
Sun, Jianling; Luo, Liqiang
2018-06-22
Studying the accumulation position and forms of heavy metals (HMs) in organisms and cells is helpful to understand the transport process and detoxification mechanism. As typical HMs, lead (Pb) subcellular content, localization, and speciation of corn subcellular fractions were studied by a series of technologies, including transmission electron microscopy, inductively coupled plasma mass spectrometry, and X-ray absorption near edge structure. The results revealed that the electrodense granules of Pb were localized in the cell wall, intercellular space, and plasma membranes. About 71% Pb was localized at the cell wall and soluble fraction. In cell walls, the total amount of pyromorphite and Pb carbonate was about 80% and the remaining was Pb stearate. In the nuclear and chloroplast fraction, which demonstrated significant changes, major speciations were Pb sulfide (72%), basic Pb carbonate (16%), and Pb stearate (12%). Pb is blocked by cell walls as pyromorphite and Pb carbonate sediments and compartmentalized by vacuoles, which both play an inportant role in cell detoxification. Besides, sulfur-containing compounds form inside the cells.
NASA Technical Reports Server (NTRS)
Stuart, C. A.; Wen, G.; Gustafson, W. C.; Thompson, E. A.
2000-01-01
Basal, "insulin-independent" glucose uptake into skeletal muscle is provided by glucose transporters positioned at the plasma membrane. The relative amount of the three glucose transporters expressed in muscle has not been previously quantified. Using a combination of qualitative and quantitative ribonuclease protection assay (RPA) methods, we found in normal human muscle that GLUT1, GLUT3, and GLUT4 mRNA were expressed at 90 +/- 10, 46 +/- 4, and 156 +/- 12 copies/ng RNA, respectively. Muscle was fractionated by DNase digestion and differential sedimentation into membrane fractions enriched in plasma membranes (PM) or low-density microsomes (LDM). GLUT1 and GLUT4 proteins were distributed 57% to 67% in LDM, whereas GLUT3 protein was at least 88% in the PM-enriched fractions. These data suggest that basal glucose uptake into resting human muscle could be provided in part by each of these three isoforms.
DeLorenzo, Robert J.; Walton, Kenneth G.; Curran, Peter F.; Greengard, Paul
1973-01-01
Phosphorylation of a specific protein was decreased in intact toad bladders by exposure to either antidiuretic hormone or monobutyryl cyclic AMP. The decrease in phosphorylation caused by these agents preceded the change in electrical potential difference (an indicator of the rate of sodium ion transport) observed in response to the same compounds. The addition of cyclic AMP to homogenates of toad bladder led to a decrease in phosphorylation of the same, or a similar, protein. In subcellular fractionation studies, the effect of cyclic AMP on the phosphorylation of this protein was observed in those fractions rich in membrane fragments, but not in the nuclear or cell-sap fractions. These and other results are compatible with the possibility that the regulation by vasopressin and cyclic AMP of sodium and/or water transport in toad bladder may be mediated through regulation of the phosphorylation of this specific protein. Images PMID:4351809
Mechanism of degradation of LH-RH and neurotensin by synaptosomal peptidases.
McDermott, J R; Smith, A I; Dodd, P R; Hardy, J A; Edwardson, J A
1983-01-01
The products of degradation of LH-RH and neurotensin by synaptosomes isolated from rat hypothalamus and cortex have been identified. LH-RH is cleaved at Tyr5-Gly6 and Pro9-Gly10 giving rise to LH-RH (1-5), LH-RH (6-10) and LH-RH (1-9). Neurotensin is cleaved at Arg8-Arg9, Pro10-Tyr11 and Ile12-Leu13, giving neurotensin (1-8), neurotensin (1-10), neurotensin (1-12) and neurotensin (9-13) as major products. While most of the peptidase activity is localized in the cytoplasmic fraction, a small but significant proportion is membrane bound. For LH-RH, the specificity of the membrane-bound activity is similar to that in the cytosol fraction; for neurotensin, the membrane fraction preferentially gives rise to the (1-10) and (1-11) peptides. The most potent inhibitors of the LH-RH and neurotensin degrading enzymes in synaptosomes are heavy metal ions (mercury and copper), p-chloromercuribenzoate and 1,10 phenanthroline.
Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.
Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W
2015-07-07
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.
Serpe, M. D.; Nothnagel, E. A.
1996-01-01
Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content. PMID:12226444
Recovery of Anthocyanins Using Membrane Technologies: A Review.
Martín, Julia; Díaz-Montaña, Enrique Jacobo; Asuero, Agustin G
2018-05-04
Anthocyanins are naturally occurring polyphenolic compounds and give many flowers, fruits and vegetable their orange, red, purple and blue colors. Besides their color attributes, anthocyanins have received much attention in recent years due to the growing evidence of their antioxidant capacity and health benefits on humans. However, these compounds usually occur in low concentrations in mixtures of complex matrices, and therefore large-scale harvesting is needed to obtain sufficient amounts for their practical usage. Effective fractionation or separation technologies are therefore essential for the screening and production of these bioactive compounds. In this context, membrane technologies have become popular due to their operational simplicity, the capacity to achieve good simultaneous separation/pre-concentration and matrix reduction with lower temperature and lower operating cost in comparison to other sample preparation methods. Membrane fractionation is based on the molecular or particle sizes (pressure-driven processes), on their charge (electrically driven processes) or are dependent on both size and charge. Other non-pressure-driven membrane processes (osmotic pressure and vapor pressure-driven) have been developed in recent years and employed as alternatives for the separation or fractionation of bioactive compounds at ambient conditions without product deterioration. These technologies are applied either individually or in combination as an integrated membrane system to meet the different requirements for the separation of bioactive compounds. The first section of this review examines the basic principles of membrane processes, including the different types of membranes, their structure, morphology and geometry. The most frequently used techniques are also discussed. Last, the specific application of these technologies for the separation, purification and concentration of phenolic compounds, with special emphasis on anthocyanins, are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.
2011-08-01
The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationshipmore » between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.« less
NASA Astrophysics Data System (ADS)
Yin, Deshun; Qu, Pengfei
2018-02-01
Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.
Hoefel, Daniel; Monis, Paul T.; Grooby, Warwick L.; Andrews, Stuart; Saint, Christopher P.
2005-01-01
Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescein diacetate) was combined with 16S rRNA gene-directed PCR and denaturing gradient gel electrophoresis (DGGE). No active bacteria were detected when water left the water treatment plant (WTP), but 12 km downstream the chloramine residual had diminished and the level of active bacteria in the bulk water had increased to more than 1 × 105 bacteria ml−1. The bacterial diversity in the system was represented by six major DGGE bands for the membrane-intact fraction and 10 major DGGE bands for the esterase-active fraction. PCR targeting of the 16S rRNA gene of chemolithotrophic ammonia-oxidizing bacteria (AOB) and subsequent DGGE and DNA sequence analysis revealed the presence of an active Nitrosospira-related species and Nitrosomonas cryotolerans in the system, but no AOB were detected in the associated WTP. The abundance of active AOB was then determined by quantitative real-time PCR (qPCR) targeting the amoA gene; 3.43 × 103 active AOB ml−1 were detected in the membrane-intact fraction, and 1.40 × 104 active AOB ml−1 were detected in the esterase-active fraction. These values were several orders of magnitude greater than the 2.5 AOB ml−1 detected using a routine liquid most-probable-number assay. Culture-independent techniques described here, in combination with existing chemical indicators, should allow the water industry to obtain more comprehensive data with which to make informed decisions regarding remedial action that may be required either prior to or during an instability event. PMID:16269672
Possible Role of Non-Muscle Alpha-Actinins in Muscle Cell Mechanosensitivity
Ogneva, Irina V.; Biryukov, Nikolay S.; Leinsoo, Toomas A.; Larina, Irina M.
2014-01-01
The main hypothesis suggested that changes in the external mechanical load would lead to different deformations of the submembranous cytoskeleton and, as a result, dissociation of different proteins from its structure (induced by increased/decreased mechanical stress). The study subjects were fibers of the soleus muscle and cardiomyocytes of Wistar rats. Changes in external mechanical conditions were reconstructed by means of antiorthostatic suspension of the animals by their tails for 6, 12, 18, 24 and 72 hours. Transversal stiffness was measured by atomic force microscopy imaging; beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 levels in membranous and cytoplasmic fractions were quantified by Western blot analysis; expression rates of the corresponding genes were studied using RT-PCR. Results: In 6 hours, alpha-actinin 1 and alpha-actinin 4 levels decreased in the membranous fraction of proteins of cardiomyocytes and soleus muscle fibers, respectively, but increased in the cytoplasmic fraction of the abovementioned cells. After 6–12 hours of suspension, the expression rates of beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 were elevated in the soleus muscle fibers, but the alpha-actinin 1 expression rate returned to the reference level in 72 hours. After 18–24 hours, the expression rates of beta-actin and alpha-actinin 4 increased in cardiomyocytes, while the alpha-actinin 1 expression rate decreased in soleus muscle fibers. After 12 hours, the beta- and gamma-actin content dropped in the membranous fraction and increased in the cytoplasmic protein fractions from both cardiomyocytes and soleus muscle fibers. The stiffness of both cell types decreased after the same period of time. Further, during the unloading period the concentration of nonmuscle actin and different isoforms of alpha-actinins increased in the membranous fraction from cardiomyocytes. At the same time, the concentration of the abovementioned proteins decreased in the soleus muscle fibers. PMID:24780915
Kitata, Reta Birhanu; Dimayacyac-Esleta, Baby Rorielyn T.; Choong, Wai-Kok; Tsai, Chia-Feng; Lin, Tai-Du; Tsou, Chih-Chiang; Weng, Shao-Hsing; Chen, Yi-Ju; Yang, Pan-Chyr; Arco, Susan D.; Nesvizhskii, Alexey I.; Sung, Ting-Yi; Chen, Yu-Ju
2016-01-01
Despite significant efforts in the past decade towards complete mapping of the human proteome, 3564 proteins (neXtProt, 09-2014) are still “missing proteins”. Over one-third of these missing proteins are annotated as membrane proteins, owing to their relatively challenging accessibility with standard shotgun proteomics. Using non-small cell lung cancer (NSCLC) as a model study, we aim to mine missing proteins from disease-associated membrane proteome, which may be still largely under-represented. To increase identification coverage, we employed Hp-RP StageTip pre-fractionation of membrane-enriched samples from 11 NSCLC cell lines. Analysis of membrane samples from 20 pairs of tumor and adjacent normal lung tissue were incorporated to include physiologically expressed membrane proteins. Using multiple search engines (X!Tandem, Comet and Mascot) and stringent evaluation of FDR (MAYU and PeptideShaker), we identified 7702 proteins (66% membrane proteins) and 178 missing proteins (74 membrane proteins) with PSM-, peptide-, and protein-level FDR of 1%. Through multiple reaction monitoring (MRM) using synthetic peptides, we provided additional evidences for 8 missing proteins including 7 with transmembrane helix domains (TMH). This study demonstrates that mining missing proteins focused on cancer membrane sub-proteome can greatly contribute to map the whole human proteome. All data were deposited into ProteomeXchange with the identifier PXD002224. PMID:26202522
Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo
2000-01-01
A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.
Dos Santos, Layrana de Azevedo; Taveira, Gabriel Bonan; Ribeiro, Suzanna de Fátima Ferreira; Pereira, Lídia da Silva; Carvalho, André de Oliveira; Rodrigues, Rosana; Oliveira, Antônia Elenir Amâncio; Machado, Olga Lima Tavares; Araújo, Jucélia da Silva; Vasconcelos, Ilka Maria; Gomes, Valdirene Moreira
2017-04-01
Proteins extracted from Capsicum annuum L. fruits were initially subjected to reversed-phase chromatography on HPLC, resulting in eight peptide-rich fractions. All the fractions obtained were tested for their ability to inhibit porcine trypsin and amylase from both human saliva and from larval insect in vitro. All fractions were also tested for their ability to inhibit growth of the phytopathogenic fungi. Several fractions inhibited the activity of human salivary amylase and larval insect amylase, especially fraction Fa5. No fraction tested was found to inhibit trypsin activity, being Fa2 fraction an exception. Interestingly fraction Fa5 also displayed high antimicrobial activity against the species of the Fusarium genus. Fraction Fa5 was found to have two major protein bands of 17 and 6.5 kDa, and these were sequenced by mass spectrometry. Two peptides were obtained from the 6.5-kDa band, which showed similarity to antimicrobial peptides. Fraction Fa5 was also tested for its ability to permeabilize membranes and induce ROS. Fraction Fa5 was able to permeabilize the membranes of all the fungi tested. Fungi belonging to the genus Fusarium also showed an increase in the endogenous production of ROS when treated with this fraction. Antimicrobial peptides were also identified in the fruits from other Capsicum species. Copyright © 2017 Elsevier Inc. All rights reserved.
1987-01-01
The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes. PMID:2447095
Zhao, Wen-Tao; Huang, Xia; Lee, Duu-Jong; He, Miao; Yuan, Yuan
2009-11-01
A laboratory-scale submerged anaerobic-anoxic-oxic membrane bioreactor (A1/A2/O-MBR) system was used to treat real coke wastewater and operated continuously for 160 d with complete sludge retention. Pollutants removal performance of the system was investigated through long-term operation. The characteristics of dissolved organic matters (DOMs) in influent and effluent coke wastewater were analyzed using hydrophilic/hydrophobic fractionation, and further discussed based on fluorescence excitation-emission-matrix (EEM). The results showed that A1/A2/O-MBR system could stably remove 88.0% +/- 1.6% of COD, > 99.9% of volatile phenol, 99.4% +/- 0.2% of turbidity, and 98.3% +/- 1.9% of NH4(+) -N, with individual average effluent concentrations of 249 mg/L +/- 44 mg/L, 0.18 mg/L +/- 0.05 mg/L, 1.0 NTU +/- 0.2 NTU and 4.1 mg/L +/- 4.3 mg/L, respectively; moreover, the maximum TN removal rate also reached 74.9%. During the whole operation period, the MLVSS/MLSS appeared to be constant as 90.2% +/- 1.0% and no inorganic matters accumulation occurred. The observed sludge production (MLVSS/COD) decreased with time and stabilized at 0.035 kg/kg. DOMs in coke wastewater were fractionated as hydrophobic acids (HOA), hydrophobic neutrals (HON), hydrophobic bases (HOB) and hydrophilic substances (HIS); HOA was found to be the most abundant constituent in terms of DOC and color intensity both in influent and effluent, which accounted for 70% and 67% of total DOC, and 75% and 76% of total color intensity, respectively. Humic-like substances were suggested to be the major refractory organic and color-causing compounds coke wastewater effluent according to EEM analysis.
Glycosyltransferases in the Golgi membranes of onion stem
Powell, Janet T.; Brew, Keith
1974-01-01
Cell fractions consisting largely of Golgi membranes were prepared from the meristematic region of the onion. Several enzyme activities were found to be localized in these fractions: inosine diphosphatase, galactosyltransferases and glucosyltransferases. The fractions catalysed the transfer of [14C]galactose from UDP-galactose to endogenous and cell-sap acceptors, to N-acetylglucosamine and to ovalbumin. In the presence of bovine α-lactalbumin, transfer to glucose (lactose synthesis) was catalysed. [14C]Glucose was transferred from UDP-glucose to endogenous and cell-sap acceptors, to cellobiose and to fructose (sucrose synthesis). All these activities were latent, being potentiated by detergents (Triton X-100 or sodium deoxycholate). The characteristics of some of these enzyme activities are described and their biological significance is discussed. ImagesPLATE 1 PMID:4374190
Subcellular Localization of Rice Leaf Aryl Acylamidase Activity 1
Gaynor, John J.; Still, Cecil C.
1983-01-01
The intracellular localization of aryl acylamidase (aryl-acylamide amidohydrolase, EC 3.5.1.13) in rice (Oryza sativa L. var Starbonnet) leaves was investigated. The enzyme hydrolyzes and detoxifies the herbicide propanil (3,4-dichloropropionanilide) thereby accounting for immunity of the rice plant to herbicidal action. Fractionation of mesophyll protoplasts by differential centrifugation yielded the highest specific activity of amidase in the crude mitochondrial fraction. Further separation of density gradients of the silica sol Percoll also indicated that this enzyme was mitochondrial. By the use of biochemical markers, the purified mitochondrial fraction was shown to be substantially free of contamination from nuclei, chloroplasts, golgi, and plasma membranes. Subfractionation of the purified mitochondria suggests that this enzyme is located on the outer membrane. PMID:16662987
Adiponectin is partially associated with exosomes in mouse serum.
Phoonsawat, Worrawalan; Aoki-Yoshida, Ayako; Tsuruta, Takeshi; Sonoyama, Kei
2014-06-06
Exosomes are membrane vesicles 30-120 nm in diameter that are released by many cell types and carry a cargo of proteins, lipids, mRNA, and microRNA. Cultured adipocytes reportedly release exosomes that may play a role in cell-to-cell communication during the development of metabolic diseases. However, the characteristics and function of exosomes released from adipocytes in vivo remain to be elucidated. Clearly, adipocyte-derived exosomes could exist in the circulation and may be associated with adipocyte-specific proteins such as adipocytokines. We isolated exosomes from serum of mice by differential centrifugation and analyzed adiponectin, leptin, and resistin in the exosome fraction. Western blotting detected adiponectin but no leptin and only trace amounts of resistin in the exosome fraction. The adiponectin signal in the exosome fraction was decreased by proteinase K treatment and completely quenched by a combination of proteinase K and Triton X-100. Quantitative ELISA showed that the exosome fraction contains considerable amounts of adiponectin, but not leptin or resistin. The concentration of adiponectin in the serum and the ratio of adiponectin to total protein in the exosome fraction were lower in obese mice than in lean mice. These results suggest that a portion of adiponectin exists as a transmembrane protein in the exosomes in mouse serum. We propose adiponectin as a marker of exosomes released from adipocytes in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.
Owen, Peter; Salton, Milton R. J.
1977-01-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions. Images PMID:144722
Owen, P; Salton, M R
1977-12-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions.
Tao, Dingyin; Sun, Liangliang; Zhu, Guijie; Liang, Yu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2011-01-01
To improve the efficiency of proteome analysis, a strategy with the combination of protein pre-fractionation by preparative microscale solution isoelectric focusing, peptide separation by μRPLC with serially coupled long microcolumn and protein identification by ESI-MS/MS was proposed. By preparative microscale solution isoelectric focusing technique, proteins extracted from whole cell lysates of Escherichia coli were fractionated into five chambers divided by isoelectric membranes, respectively with pH range from 3.0 to 4.6, 4.6 to 5.4, 5.4 to 6.2, 6.2 to 7.0 and 7.0 to 10.0. Compared to the traditional on-gel IFF, the protein recovery could be obviously improved to over 95%. Subsequently, the enriched and fractionated proteins in each chamber were digested, and further separated by a 30-cm long serially coupled RP microcolumn. Through the detection by ESI-MS/MS, about 200 proteins were identified in each fraction, and in total 835 proteins were identified even with one-dimensional μRPLC-MS/MS system. All these results demonstrate that by such a combination strategy, highly efficient proteome analysis could be achieved, not only due to the in-solution protein enrichment and pre-fractionation with improved protein recovery but also owing to the increased separation capacity of serially coupled long μRPLC columns. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zamalloa, Carlos; De Vrieze, Jo; Boon, Nico; Verstraete, Willy
2012-01-01
The biomass of industrially grown Phaeodactylum tricornutum was subjected in a novel way to bio-methanation at 33°C, i.e., in an anaerobic membrane bioreactor (AnMBR) at a hydraulic retention time of 2.5 days, at solid retention times of 20 to 10 days and at loading rates in the range of 2.6-5.9 g biomass-COD L(-1) day(-1) with membrane fluxes ranging from 1 to 0.8 L m(-2) h(-1). The total COD recovered as biogas was in the order of 52%. The input suspension was converted to a clear effluent rich in total ammonium nitrogen (546 mg TAN L(-1)) and phosphate (141 mg PO(4)-P L(-1)) usable as liquid fertilizer. The microbial community richness, dynamics, and organization in the reactor were interpreted using the microbial resource management approach. The AnMBR communities were found to be moderate in species richness and low in dynamics and community organization relative to UASB and conventional CSTR sludges. Quantitative polymerase chain reaction analysis revealed that Methanosaeta sp. was the dominant acetoclastic methanogen species followed by Methanosarcina sp. This work demonstrated that the use of AnMBR for the digestion of algal biomass is possible. The fact that some 50% of the organic matter is not liquefied means that the algal particulates in the digestate constitute a considerable fraction which should be valorized properly, for instance as slow release organic fertilizer. Overall, 1 kg of algae dry matter (DM) could be valorized in the form of biogas ( euro 2.07), N and P in the effluent (euro 0.02) and N and P in the digestate (euro 0.04), thus totaling about euro 2.13 per kilogram algae DM.
A multiphase approach to model ultrafiltration of deformable colloids
NASA Astrophysics Data System (ADS)
Haribabu, Malavika; Dunstan, Dave; Davidson, Malcolm; Harvie, Dalton
2017-11-01
Ultrafiltration (UF) is widely used in the dairy industry to fractionate and concentrate proteins, during the manufacture of milk protein concentrate and cheese. The protein build-up, comprising casein micelles (CM) and whey proteins, at the membrane surface during UF increases the resistance of the membrane system, thereby decreasing the performance of the process unit. CM have a complex structure that hydrodynamically behaves as a hard-sphere when dilute, but deforms beyond the random packing limit, forming a shear-thinning gel. This study employs a mixture model, based on the mixture phase continuity, Navier-Stokes equations, and solids continuity equation, to predict the solid concentration and velocity distribution during UF of CM. Micelle deformation is modelled as a function of volume fraction and dependent on its elastic modulus and particle size. The effect of deformation on gel permeability is implemented via Happel's permeability for hard spheres. Under crossflow conditions, the gel thickness is observed to increase along the membrane length, followed by a decrease towards the end of the membrane, resulting in an increase in flux at the latter section of the membrane. This study demonstrates that the membrane end-effects are important in determining UF performance.
Huergo, Luciano F; Noindorf, Lilian; Gimenes, Camila; Lemgruber, Renato S P; Cordellini, Daniela F; Falarz, Lucas J; Cruz, Leonardo M; Monteiro, Rose A; Pedrosa, Fábio O; Chubatsu, Leda S; Souza, Emanuel M; Steffens, Maria B R
2010-07-01
This study was aimed at describing the spectrum and dynamics of proteins associated with the membrane in the nitrogen-fixing bacterium Herbaspirillum seropedicae according to the availability of fixed nitrogen. Using two-dimensional electrophoresis we identified 79 protein spots representing 45 different proteins in the membrane fraction of H. seropedicae. Quantitative analysis of gel images of membrane extracts indicated two spots with increased levels when cells were grown under nitrogen limitation in comparison with nitrogen sufficiency; these spots were identified as the GlnK protein and as a conserved noncytoplasmic protein of unknown function which was encoded in an operon together with GlnK and AmtB. Comparison of gel images of membrane extracts from cells grown under nitrogen limitation or under the same regime but collected after an ammonium shock revealed two proteins, GlnB and GlnK, with increased levels after the shock. The P(II) proteins were not present in the membrane fraction of an amtB mutant. The results reported here suggest that changes in the cellular localization of P(II) might play a role in the control of nitrogen metabolism in H. seropedicae.
Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.
Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo
2014-01-01
Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.
Effect of amine structure on CO2 capture by polymeric membranes.
Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki
2017-01-01
Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO 2 separation properties over H 2 . However, the CO 2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO 2 determining agent in the current CO 2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO 2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO 2 permeability coefficient of MEA containing membrane was 604 barrer with CO 2 selectivity of 58.5 over H 2 , which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO 2 -selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO 2 separation performance.
Effect of amine structure on CO2 capture by polymeric membranes
Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki
2017-01-01
Abstract Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO2 separation properties over H2. However, the CO2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO2 determining agent in the current CO2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO2 permeability coefficient of MEA containing membrane was 604 barrer with CO2 selectivity of 58.5 over H2, which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO2-selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO2 separation performance. PMID:29383045
Voisine, Richard; Vézina, Louis-P.; Willemot, Claude
1991-01-01
Membrane deterioration differs in aging and senescent tissues. Involvement of free radicals in the process is generally recognized. Little is known about the physiological effects of gamma irradiation on plant tissues. Degradation of microsomal membranes by the action of free radicals, generated in vivo by gamma rays, was investigated. Cauliflower florets (Brassica oleracea L., Botrytis group) were exposed to 2 or 4 kiloGray of gamma radiation. Membrane deterioration was assessed during 8-day storage at 13°C. Some senescence was indicated in nonirradiated controls by a parallel depletion of lipid phosphate and protein. Irradiation caused an immediate increase in tissue electrolyte leakage and a small increase in the free fatty acid content of membranes. In irradiated samples, leakage of electrolytes and the ratios of sterol to phospholipid and of free fatty acid to phospholipid increased with storage. During this period, membrane protein was progressively lost and the lipid phosphate-to-protein ratio increased markedly. Polyunsaturated fatty acids were selectively depleted from the free fatty acid fraction for all treatments, suggesting lipoxygenase activity. No change in lipid saturation was observed in the polar lipid fraction. The results suggest an enzyme-catalyzed senescence-like membrane deterioration, probably induced by chemical deesterification of phospholipids by free radicals generated during irradiation. PMID:16668433
Monitoring and modulating ion traffic in hybrid lipid/polymer vesicles
Paxton, Walter F.; McAninch, Patrick T.; Achyuthan, Komandoor E.; ...
2017-08-01
Controlling the traffic of molecules and ions across membranes is a critical feature in a number of biologically relevant processes and highly desirable for the development of technologies based on membrane materials. In this study, ion transport behavior of hybrid lipid/polymer membranes was studied in the absence and presence of ion transfer agents. A pH-sensitive fluorophore was used to investigate ion (H +/OH -) permeability across hybrid lipid/polymer membranes as a function of the fraction of amphiphilic block copolymer. It was observed that vesicles with intermediate lipid/polymer ratios tend to be surprisingly more permeable to ion transport than the puremore » lipid or pure polymer vesicles. Hybrid vesicle permeability could be further modulated with valinomycin, nigericin, or gramicidin A, which significantly expedite the dissipation of externally-imposed pH gradients by facilitating the transport of the rate-limiting co-ions (e.g. K +) ions across the membrane. For gramicidin A, ion permeability decreased with increasing polymer mole fraction, and the method of introduction of gramicidin A into the membrane played an important role. Finally, strategies to incorporate biofunctional molecules and facilitate their activity in synthetic systems are highly desirable for developing artificial organelles or other synthetic compartmentalized structures requiring control over molecular traffic across biomimetic membranes.« less
Kreutter, D; Matsumoto, T; Peckham, R; Zawalich, K; Wen, W H; Zolock, D T; Rasmussen, H
1983-04-25
The effect of altering the lipid composition of the brush-border membrane on the ability of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) to stimulate calcium transport across the intestinal mucosa was examined by raising chicks on a vitamin D, essential fatty acid-deficient diet (-DEFAD) and measuring calcium absorption from duodenal sacs in situ and calcium uptake into brush-border membrane vesicles in vitro. Administration of 1,25-(OH)2D3 to -DEFAD and to -D control chicks led to the same increase in calcium transport in situ, whereas calcium transport in isolated brush-border membrane vesicles was not stimulated in the EFAD group, but responded normally in the control group. When the incubation temperature was increased to 34 degrees C, brush-border membrane vesicles from 1,25-(OH)2D3-treated essential fatty acid-deficient (+DE-FAD) chicks accumulated calcium at a faster rate than did vesicles from -DEFAD chicks. There was a marked decrease in the linoleic acid content and an increase in the oleic acid content of both the total lipid extract of the brush-border membrane as well as the phosphatidylcholine and phosphatidylethanolamine fractions, which could explain the temperature sensitivity of the in vitro system. When the diet of the EFAD chicks was supplemented with linoleic acid, the rate of calcium uptake into subsequently isolated vesicles from +DE-FAD chicks correlated with the amount of linoleic acid in the brush-border membranes. These results support the concept that the action of 1,25-(OH)2D3 on membrane lipid turnover and structure plays a critically important role in the 1,25-(OH)2D3-mediated cellular transport responses.
Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed
2014-01-01
The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.
Battle, Katrina N; Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Hunsucker, Sally A; Armistead, Paul M; Soper, Steven A
2014-03-21
We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the μSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the μSPE device using computational simulations of different micropillar geometries to guide future device designs.
Lipid composition and sensitivity of Prototheca wickerhamii to membrane-active antimicrobial agents.
Sud, I J; Feingold, D S
1979-01-01
The lipid composition of Prototheca wickerhamii ATCC 16529 is presented and discussed in relation to the unique susceptibility of the organism to drugs of three membrane-active antimicrobial classes: the polyenes, the polymyxins, and the imidazoles. The presence of ergosterol in the neutral lipid fraction of the membrane is likely responsible for the exquisite susceptibility to amphotericin B. The presence of a large quantity of free fatty acids in the membrane appears responsible for imidazole susceptibility. The membrane determinants of polymyxin B susceptibility are less well defined. PMID:518077
Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction.
Sedej, Ivana; Milczarek, Rebecca; Wang, Selina C; Sheng, Runqi; de Jesús Avena-Bustillos, Roberto; Dao, Lan; Takeoka, Gary
2016-04-01
A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also to extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW and compare the techniques in terms of the dried product quality and feasibility of the process. The OMWW from 2 (3-phase and 2-phase) California mills was subjected to a 2-step membrane filtration process using a novel vibratory system. The reverse osmosis retentate (RO-R) is a phenolic-rich coproduct stream, and the reverse osmosis permeate is a near-pure water stream that could be recycled into the milling process. Spray-, freeze-, and infrared-drying were applied to obtain solid material from the RO-R. Drying of the RO-R was made possible only with addition of 10% maltodextrin as a carrier. The total soluble phenolics in dried RO-R were in the range 0.15 to 0.58 mg gallic acid equivalents/g of dry weight for 2-phase RO-R, and 1.38 to 2.17 mg gallic acid equivalents/g of dry weight for the 3-phase RO-R. Spray-dried RO-R from 3-phase OMWW showed remarkable antioxidant activity. Protocatechuic acid, tyrosol, vanillic acid, and p-coumaric acid were quantified in all dried RO-R, whereas 3-hydroxytyrosol was found in 3-phase dried RO-R. This combination of separation and drying technologies helps to add value and shelf-stability to an olive oil by-product and increase environmental sustainability of its production. © 2016 Institute of Food Technologists®
Sprenger, Richard R.; Fontijn, Ruud D.; van Marle, Jan; Pannekoek, Hans; Horrevoets, Anton J. G.
2006-01-01
Lipid rafts and caveolae are biochemically similar, specialized domains of the PM (plasma membrane) that cluster specific proteins. However, they are morphologically distinct, implying different, possibly complementary functions. Two-dimensional gel electrophoresis preceding identification of proteins by MS was used to compare the relative abundance of proteins in DRMs (detergent-resistant membranes) isolated from HUVEC (human umbilical-vein endothelial cells), and caveolae immunopurified from DRM fractions. Various signalling and transport proteins were identified and additional cell-surface biotinylation revealed the majority to be exposed, demonstrating their presence at the PM. In resting endothelial cells, the scaffold of immunoisolated caveolae consists of only few resident proteins, related to structure [CAV1 (caveolin-1), vimentin] and transport (V-ATPase), as well as the GPI (glycosylphosphatidylinositol)-linked, surface-exposed protein CD59. Further quantitative characterization by immunoblotting and confocal microscopy of well-known [eNOS (endothelial nitric oxide synthase) and CAV1], less known [SNAP-23 (23 kDa synaptosome-associated protein) and BASP1 (brain acid soluble protein 1)] and novel [C8ORF2 (chromosome 8 open reading frame 2)] proteins showed different subcellular distributions with none of these proteins being exclusive to either caveolae or DRM. However, the DRM-associated fraction of the novel protein C8ORF2 (∼5% of total protein) associated with immunoseparated caveolae, in contrast with the raft protein SNAP-23. The segregation of caveolae from lipid rafts was visually confirmed in proliferating cells, where CAV1 was spatially separated from eNOS, SNAP-23 and BASP1. These results provide direct evidence for the previously suggested segregation of transport and signalling functions between specialized domains of the endothelial plasma membrane. PMID:16886909
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamunusinghe, Devinka, E-mail: dbamu001@ucr.ed; Hemenway, Cynthia L., E-mail: cindy_hemenway@ncsu.ed; Nelson, Richard S., E-mail: rsnelson@noble.or
Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER atmore » the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.« less
Distinct lipid rafts in subdomains from human placental apical syncytiotrophoblast membranes.
Godoy, Valeria; Riquelme, Gloria
2008-01-01
We report on the characteristics of raft domains in the apical membrane from human placental syncytiotrophoblast (hSTB), an epithelium responsible for maternal-fetal exchange. Previously, we described two isolated fractions of the hSTB apical membrane: a classical microvillous membrane (MVM) and a light microvillous membrane (LMVM). Detergent-resistant microdomains (DRMs) from MVM and LMVM were prepared with Triton X-100 followed by flotation in a sucrose gradient and tested by Western and dot blot with raft markers (placental alkaline phosphatase, lipid ganglioside, annexin 2) and transferrin receptor as a nonraft marker. DRMs from both fractions showed a consistent peak for these markers, except that the DRMs from MVM had no annexin 2 mark. Cholesterol depletion modified the segregation in both groups of DRMs. Our results show two distinguishable lipid raft subsets from MVM and LMVM. Additionally, we found significant differences between MVM and LMVM in cholesterol content and in expression of cytoskeletal proteins. MVM is enriched in ezrin and beta-actin; in contrast, cholesterol and cytokeratin-7 are more abundant in LMVM. These differences may explain the distinct properties of the lipid raft subtypes.
The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Michael A.; Bucks, Michelle A.; O'Regan, Kevin J.
2008-07-05
The molecular mechanisms responsible for the addition of tegument proteins into nascent herpesvirus particles are poorly understood. To better understand the tegumentation process of herpes simplex virus type 1 (HSV-1) virions, we initiated studies that showed the tegument protein pUL46 (VP11/12) has a similar cellular localization to the membrane-associated tegument protein VP22. Using membrane flotation analysis we found that pUL46 associates with membranes in both the presence and absence of other HSV-1 proteins. However, when purified virions were stripped of their envelope, the majority of pUL46 was found to associate with the capsid fraction. This strong affinity of pUL46 formore » capsids was confirmed by an in vitro capsid pull-down assay in which purified pUL46-GST was able to interact specifically with capsids purified from the nuclear fraction of HSV-1 infected cells. These results suggest that pUL46 displays a dynamic interaction between cellular membranes and capsids.« less
Shak, S; Goldstein, I M
1985-09-01
Human polymorphonuclear leukocytes (PMN) not only synthesize and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation. To characterize the enzyme(s) responsible for omega-oxidation of LTB4, human PMN were disrupted by sonication and subjected to differential centrifugation to yield membrane, granule, and cytosol fractions (identified by biochemical markers). LTB4 omega-hydroxylase activity was concentrated (together with NADPH cytochrome c reductase activity) only in the membrane fraction (specific activity increased 10-fold as compared to whole sonicates, 41% recovery). Negligible activity was detected in granule or cytosol fractions. LTB4 omega-hydroxylase activity in isolated PMN membranes was linear with respect to duration of incubation and protein concentration, was maximal at pH 7.4, had a Km for LTB4 of 0.6 microM, and was dependent on oxygen and on reduced pyridine nucleotides (apparent Km for NADPH = 0.5 microM; apparent Km for NADH = 223 microM). The LTB4 omega-hydroxylase was inhibited significantly by carbon monoxide, ferricytochrome c, SKF-525A, and Triton X-100, but was not affected by alpha-naphthoflavone, azide, cyanide, catalase, and superoxide dismutase. Finally, isolated PMN membranes exhibited a carbon monoxide difference spectrum with a peak at 452 nm. Thus, we have partially purified the LTB4 omega-hydroxylase in human PMN and identified the enzyme as a membrane-associated, NADPH-dependent cytochrome P-450.
Churn, S B; DeLorenzo, R J
1998-10-26
gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.
Carver, F M; Shibley, I A; Miles, D S; Pennington, J S; Pennington, S N
1999-10-01
Fetal exposure to ethanol is associated with growth retardation of the developing central nervous system. We have previously described a chick model to study the molecular mechanism of ethanol effects on glucose metabolism in ovo. Total membrane fractions were prepared from day 4, day 5, and day 7 chick embryos exposed in ovo to ethanol or to vehicle. By Western blotting analysis, ethanol exposure caused a mean 7- to 10-fold increase in total GLUT-1 and a 2-fold increase in total GLUT-3. However, glucose uptake by ethanol-treated cells increased by only 10%. Analysis of isolated plasma (PM) and intracellular (IM) membranes from day 5 cranial tissue revealed a mean 25% decrease in GLUT-1 in the PM and a 66% increase in the IM in the ethanol group vs. control. The amount of PM GLUT-3 was unchanged but that of IM GLUT-3 was significantly decreased. The data suggest that GLUT-3 cell surface expression may be resistant to the suppressive effects of ethanol in the developing brain of ethanol-treated embryos. The overall increase in GLUT-1 may reflect a deregulation of the transporter induced by ethanol exposure. The increased IM localization and decreased amount of PM GLUT-1 may be a mechanism used by the ethanol-treated cell to maintain normal glucose uptake despite the overall increased level of the transporter.
Wang, Wei; Putra, Adhytia; Schools, Gary P.; Ma, Baofeng; Chen, Haijun; Kaczmarek, Leonard K.; Barhanin, Jacques; Lesage, Florian; Zhou, Min
2013-01-01
TWIK-1 two-pore domain K+ channels are expressed abundantly in astrocytes. In the present study, we examined the extent to which TWIK-1 contributes to the linear current-voltage (I–V) relationship (passive) K+ membrane conductance, a dominant electrophysiological feature of mature hippocampal astrocytes. Astrocytes from TWIK-1 knockout mice have a more negative resting potential than those from wild type animals and a reduction in both inward rectification and Cs+ permeability. Nevertheless, the overall whole-cell passive conductance is not altered significantly in TWIK-1 knockout astrocytes. The expression of Kir4.1 and TREK-1, two other major astrocytic K+ channels, or of other two-pore K+ channels is not altered in TWIK-1 knockout mice, suggesting that the mild effect of TWIK-1 knockout does not result from compensation by these channels. Fractionation experiments showed that TWIK-1 is primarily localized in intracellular cytoplasmic fractions (55%) and mildly hydrophobic internal compartment fractions (41%), with only 5% in fractions containing plasma membranes. Our study revealed that TWIK-1 proteins are mainly located in the intracellular compartments of hippocampal astrocyte under physiological condition, therefore a minimal contribution of TWIK-1 channels to whole-cell currents is likely attributable to a relatively low level presence of channels in the plasma membrane. PMID:24368895
A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture
Jaquinod, Michel; Villiers, Florent; Kieffer-Jaquinod, Sylvie; Hugouvieux, Véronique; Bruley, Christophe; Garin, Jérôme; Bourguignon, Jacques
2007-01-01
To better understand the mechanisms governing cellular traffic, storage of various metabolites and their ultimate degradation, Arabidopsis thaliana vacuoles proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker α-mannosidase, the enrichment factor of the vacuoles was estimated at approximately 42 fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomic study. Therefore, a proteomic approach was developed in order to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, (iii) a pre-fractionation of proteins by short migration on SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, 2/3 of which copurify with the membrane hydrophobic fraction and 1/3 with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were previously known to be associated with vacuolar activities. The proteins identified are involved in: ion and metabolite transport (26%), stress response (9%), signal transduction (7%), metabolism (6%) or have been described to be involved in typical vacuolar activities, such as protein- and sugar-hydrolysis. The sub-cellular localization of several putative vacuolar proteins was confirmed by transient expression of GFP-fusion constructs. PMID:17151019
Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge
2015-01-01
Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.
Shim, Sangjo; Gascoyne, Peter; Noshari, Jamileh; Stemke Hale, Katherine
2013-01-01
Metastatic disease results from the shedding of cancer cells from a solid primary tumor, their transport through the cardiovascular system as circulating tumor cells (CTCs) and their engraftment and growth at distant sites. Little is known about the properties and fate of tumor cells as they leave their growth site and travel as single cells. We applied analytical dielectrophoretic field-flow fractionation (dFFF) to study the membrane capacitance, density and hydrodynamic properties together with the size and morphology of cultured tumor cells after they were harvested and placed into single cell suspensions. After detachment, the tumor cells exhibited biophysical properties that changed with time through a process of cytoplasmic shedding whereby membrane and cytoplasm were lost. This process appeared to be distinct from the cell death mechanisms of apoptosis, anoikis and necrosis and it may explain why multiple phenotypes are seen among CTCs isolated from patients and among the tumor cells obtained from ascitic fluid of patients. The implications of dynamic biophysical properties and cytoplasmic loss for CTC migration into small blood vessels in the circulatory system, survival and gene expression are discussed. Because the total capacitance of tumor cells remained higher than blood cells even after they had shed cytoplasm, dFFF offers a compelling, antibody-independent technology for isolating viable CTCs from blood even when they are no larger than peripheral blood mononuclear cells. PMID:21691666
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmalzing, G.; Eckard, P.; Kroener, S.P.
1990-01-01
During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by (gamma-32P)ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiographymore » showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from (3H)ouabain bound to the cell surface before maturation could be phosphorylated with inorganic (32P)phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane.« less
Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome.
Marmagne, Anne; Rouet, Marie-Aude; Ferro, Myriam; Rolland, Norbert; Alcon, Carine; Joyard, Jacques; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève
2004-07-01
Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.
Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting
2017-10-13
Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.
Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine
2016-09-01
In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Akinori, E-mail: morita@tokushima-u.ac.jp; Department of Radiological Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509; Tanimoto, Keiji
2014-01-24
Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue ofmore » where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in mitochondria and that this occurs in a DDR-independent manner.« less
Pilar-Cuéllar, F; Vidal, R; Pazos, A
2012-02-01
5-HT(2A) receptor antagonists improve antidepressant responses when added to 5-HT-selective reuptake inhibitors (SSRIs) or tricyclic antidepressants. Here, we have studied the involvement of neuroplasticity pathways and/or the 5-hydroxytryptaminergic system in the antidepressant-like effect of this combined treatment, given subchronically. Expression of brain-derived neurotrophic factor (BDNF) and its receptor (TrkB), 5-bromo-2'-deoxyuridine (BrdU) incorporation, and β-catenin protein expression in different cellular fractions, as well as 5-HT(1A) receptor function were measured in the hippocampus of rats treated with fluoxetine, ketanserin and fluoxetine + ketanserin for 7 days, followed by a forced swimming test (FST) to analyse antidepressant efficacy. mRNA for BDNF was increased in the CA3 field and dentate gyrus of the hippocampus by combined treatment with fluoxetine + ketanserin. Expression of β-catenin was increased in total hippocampal homogenate and in the membrane fraction, but unchanged in the nuclear fraction after combined treatment with fluoxetine + ketanserin. These effects were paralleled by a decreased immobility time in the FST. There were no changes in BrdU incorporation, TrkB expression and 5-HT(1A) receptor function in any of the groups studied. The antidepressant-like effect induced by subchronic co-treatment with a SSRI and a 5-HT(2A) receptor antagonist may mainly be because of modifications in hippocampal neuroplasticity (BDNF and membrane-associated β-catenin), without a significant role for other mechanisms involved in chronic antidepressant response, such as hippocampal neuroproliferation or 5-HT(1A) receptor desensitization in the dorsal raphe nucleus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells
NASA Technical Reports Server (NTRS)
Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.
2000-01-01
This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.
Anderson, C. R.; Davis, R. E.; Bandolin, N. S.; Baptista, A. M.; Tebo, B. M.
2017-01-01
The Columbia River is a major source of dissolved nutrients and trace metals for the west coast of North America. A large proportion of these nutrients are sourced from the Columbia River Estuary where coastal and terrestrial waters mix and resuspend particulate matter within the water column. As estuarine water is discharged off the coast it transports the particulate matter, dissolved nutrients and microorganisms forming nutrient rich and metabolically dynamic plumes. In this study, bacterial manganese oxidation within the plume and estuary was investigated during spring and neap tides. The microbial community proteome was fractionated and assayed for Mn oxidation activity. Proteins from the outer membrane and the loosely bound outer membrane fractions were separated using size exclusion chromatography and Mn(II)-oxidizing eluates were analyzed with tandem mass spectrometry to identify potential Mn oxidase protein targets. Multi-copper oxidase (MCO) and heme-peroxidase enzymes were identified in active fractions. T-RFLP cluster analysis indicates that the organisms oxidizing the most Mn(II) were sourced from the Columbia River estuary and nearshore coastal ocean. These organisms are producing up to 10 fM MnO2 cell−1 day−1. Evidence for the presence of Mn(II)-oxidizing bacterial isolates from the genera Aurantimonas, Rhodobacter, Bacillus, and Shewanella was found in T-RFLP profiles. Q-PCR was used to quantify the gene copies of the heme-peroxidase, Aurantimonas SSU rRNA and total bacterial SSU rRNA gene copies. The probes used suggested that Aurantimonas could only account for 1.7% of heme-peroxidase genes quantified suggesting that peroxidase driven manganese oxidation capabilities are widespread throughout other organisms in this environment. PMID:21418498
Isaac, R E
1987-01-01
The hydrolysis of the insect neuropeptide proctolin (Arg-Tyr-Leu-Pro-Thr) by enzyme preparations from the nervous tissue of the desert locust (Schistocerca gregaria) was investigated. Neural homogenate degraded proctolin (100 microM) at neutral pH by cleavage of the Arg-Tyr and Tyr-Leu bonds to yield Tyr-Leu-Pro-Thr, Arg-Tyr and free tyrosine. Arg-Tyr was detected as a major metabolite when the aminopeptidase inhibitors amastatin and bestatin were present to prevent Arg-Tyr breakdown. Around 50% of the proctolin-degrading activity was isolated in a 30,000 g membrane fraction and was shown to be almost entirely due to aminopeptidase activity. The aminopeptidase had an apparent Km of 23 microM, a pH optimum of 7.0 and was inhibited by 1 mM-EDTA and amastatin [IC50 = 0.3 microM], but was relatively insensitive to bestatin, actinonin and puromycin. Phenylmethanesulphonyl fluoride (1 mM) and p-chloromercuriphenylsulphonic acid (1 mM) had no effect on this enzyme activity. Although the bulk of the Tyr-Leu hydrolytic activity was located in the 30,000 g supernatant, some weak activity was detected in a washed membrane preparation. This peptidase displayed a high affinity for proctolin (Km = 0.35 microM) and optimal activity at around pH 7.0. Synaptosome- and mitochondria-rich fractions were prepared from crude neural membranes. The aminopeptidase activity was concentrated in the synaptic-membrane preparation, whereas activity giving rise to Arg-Tyr was predominantly localized in the mitochondrial fraction. The subcellular localization of the membrane aminopeptidase is consistent with a possible physiological role for this enzyme in the inactivation of synaptically released proctolin. PMID:2889451
Mojarrab, Mahdi; Mehrabi, Mehran; Ahmadi, Farahnaz; Hosseinzadeh, Leila
2016-01-01
Objective(s): This study was designed to indicate whether different fractions from Artemisia biennis hydroethanolic extract could provide cytoprotection against oxidative stress and apoptosis induced by doxorubicin (DOX) in rat pheochromocytoma cell line (PC12). Material and Methods: Cell viability was determined by MTT assay. Also, activation of caspase-3 and superoxide dismutase were evaluated by spectrophotometry. Detection of reactive oxygen species (ROS) and measurement of mitochondrial membrane potential (MMP) were performed by flowcytometry. Results: Treatment of PC12 cells with DOX reduced viability dose dependently. For evaluation of the effect of fractions (A-G) on DOX-induced cytotoxicity, PC12 cells were pretreated for 24 hr with the A. biennis fractions and then cells were treated with DOX. The fractions C and D increased PC12 cells viability significantly compared to DOX treated cells. Moreover, pretreatment with fractions C and D for 24 hr attenuated DOX-mediated apoptosis and the anti-apoptotic action of A. biennis fractions was partially dependent on inhibition of caspase 3 activity and also increasing the mitochondrial membrane potential (MMP). Selected A. biennis fractions also suppressed the generation of ROS and increased superoxide dismutase (SOD) activity. Conclusion: Taken together our observation indicated that subtoxic concentration of aforementioned fractions of A. biennis hydroetanolic extract has protective effect against apoptosis induced by DOX in PC12 cell. The results highlighted that fractions C and D may exert cytoprotective effects through their antioxidant actions. PMID:27403257
Mojarrab, Mahdi; Mehrabi, Mehran; Ahmadi, Farahnaz; Hosseinzadeh, Leila
2016-05-01
This study was designed to indicate whether different fractions from Artemisia biennis hydroethanolic extract could provide cytoprotection against oxidative stress and apoptosis induced by doxorubicin (DOX) in rat pheochromocytoma cell line (PC12). Cell viability was determined by MTT assay. Also, activation of caspase-3 and superoxide dismutase were evaluated by spectrophotometry. Detection of reactive oxygen species (ROS) and measurement of mitochondrial membrane potential (MMP) were performed by flowcytometry. Treatment of PC12 cells with DOX reduced viability dose dependently. For evaluation of the effect of fractions (A-G) on DOX-induced cytotoxicity, PC12 cells were pretreated for 24 hr with the A. biennis fractions and then cells were treated with DOX. The fractions C and D increased PC12 cells viability significantly compared to DOX treated cells. Moreover, pretreatment with fractions C and D for 24 hr attenuated DOX-mediated apoptosis and the anti-apoptotic action of A. biennis fractions was partially dependent on inhibition of caspase 3 activity and also increasing the mitochondrial membrane potential (MMP). Selected A. biennis fractions also suppressed the generation of ROS and increased superoxide dismutase (SOD) activity. Taken together our observation indicated that subtoxic concentration of aforementioned fractions of A. biennis hydroetanolic extract has protective effect against apoptosis induced by DOX in PC12 cell. The results highlighted that fractions C and D may exert cytoprotective effects through their antioxidant actions.
Localization of palmitoylated and activated G protein α-subunit in Dictyostelium discoideum.
Alamer, Sarah; Kageyama, Yusuke; Gundersen, Robert E
2018-06-01
Guanine nucleotide-binding proteins (G proteins) act as molecular switches to regulate many fundamental cellular processes. The lipid modification, palmitoylation, can be considered as a key factor for proper G protein function and plasma membrane localization. In Dictyostelium discoidum, Gα2 is essential for the chemotactic response to cAMP in their developmental life cycle. However, the regulation of Gα2 with respect to palmitoylation, activation and Gβγ association is less clear. In this study, Gα2 is shown to be palmitoylated on Cys-4 by [ 3 H]palmitate labeling. Loss of this palmitoylation site results in redistribution of Gα2 within the cell and poor D. discoideum development. Cellular re-localization is also observed for activated Gα2. In the membrane fraction, Gα2-wt (YFP) is highly enriched in a low-density membrane fraction, which is palmitoylation-dependent. Activated Gα2 monomer and heterotrimer are shifted to two different higher-density fractions. These results broaden our understanding of how G protein localization and function are regulated inside the cells. © 2018 Wiley Periodicals, Inc.
Shimao, M; Ninomiya, K; Kuno, O; Kato, N; Sakazawa, C
1986-01-01
A novel enzyme, pyrroloquinoline quinone (PQQ)-dependent polyvinyl alcohol (PVA) dehydrogenase, was found in and partially purified from the membrane fraction of a PVA-degrading symbiont, Pseudomonas sp. strain VM15C. The enzyme required PQQ for PVA dehydrogenation with phenazine methosulfate, phenazine ethosulfate, and 2,6-dichlorophenolindophenol as electron acceptors and did not show PVA oxidase activity leading to H2O2 formation. The enzyme was active toward low-molecular-weight secondary alcohols rather than primary alcohols. A membrane-bound PVA oxidase was also present in cells of VM15C. Although the purified oxidase showed a substrate specificity similar to that of PQQ-dependent PVA dehydrogenase and about threefold-higher PVA-dehydrogenating activity with phenazine methosulfate or phenazine ethosulfate than PVA oxidase activity with H2O2 formation, it was shown that the enzyme does not contain PQQ as the coenzyme, and PQQ did not affect its activity. Incubation of the membrane fraction of cells with PVA caused a reduction in the cytochrome(s) of the fraction. Images PMID:3513704
Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B
2016-08-01
The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Koike, K; Takayanagi, I
1981-10-01
Effects of papaverine and cyclic AMP on Ca-uptake by the microsomal fraction from rat uterus were studied. Papaverine (3 x 10(-5) M) potentiated Ca-uptake by the microsomal fraction in the presence of potassium oxalate. However, cyclic AMP and MIX (3-isobutyl-1-methylxanthine; 1 mM), a potent phosphodiesterase inhibitor, did not influence Ca-uptake by the microsomal fraction in the presence of potassium oxalate. Cyclic AMP in concentrations of 10(-8) to 10(-4) M did not influence Ca-uptake by the microsomal fraction in the presence of potassium oxalate. In the absence of potassium oxalate, papaverine and Aspaminol (1,1,-diphenyl-3-piperidinobutanol hydrochloride), a nonspecific smooth muscle relaxant, inhibited Ca-uptake by the microsomal fraction and cyclic AMP had no influence on this uptake. These results suggest that papaverine potentiated Ca-uptake by membranes such as sarcoplasmic reticulum, in the presence of potassium oxalate and inhibited Ca-uptake by the plasma membrane-derived vesicles in the absence of potassium oxalate. These results suggest that relaxation of smooth muscle by papaverine is related to a cyclic AMP-independent mechanism as well as to a mechanism mediated via cyclic AMP.
Functional purification of the monocarboxylate transporter of the yeast Candida utilis.
Baltazar, Fátima; Cássio, Fernanda; Leão, Cecília
2006-08-01
Plasma membranes of the yeast, Candida utilis, were solubilized with octyl-beta-D-glucopyranoside and a fraction enriched in the lactate carrier was obtained with DEAE-Sepharose anion-exchange chromatography, after elution with 0.4 M NaCl. The uptake of lactic acid into proteoliposomes, containing the purified protein fraction and cytochrome c oxidase, was dependent on a proton-motive force and the transport specificity was consistent with the one of C. utilis intact cells. Overall, we have obtained a plasma membrane fraction enriched in the lactate carrier of C. utilis in which the transport properties were preserved. Given the similarities between the lactate transport of C. utilis and the one of mammalian cells, this purified system could be further explored to screen for specific lactate inhibitors, with potential therapeutic applications.
Bakhshalian, Neema; Freire, Marcelo; Min, Seiko; Wu, Ivy; Zadeh, Homayoun H
A total of 68 extraction sockets were grafted with anorganic bovine bone mineral and covered by dense polytetrafluoroethylene membrane. Quantitative analysis of three-dimensional microcomputed tomography imaging of core samples retrieved after a mean of 21.0 ± 14.2 weeks revealed 40.1% bone volume fraction (bone volume [BV]/total volume [TV]) and 12% residual graft. Evidence of de novo bone formation was observed in the form of discrete islands of newly formed bone in direct apposition to graft particles, separated from parent bone. Anterior sockets exhibited a significantly higher percentage of residual graft compared to premolar sockets (P = .05). The BV/TV and percentage of residual graft correlated well with histomorphometric analysis of the same sites, but not with implant outcomes.
Trzcinski, Antoine P; Stuckey, David C
2016-03-01
This paper focuses on the treatment of leachate from the organic fraction of municipal solid waste (OFMSW) in a submerged anaerobic membrane bioreactor (SAMBR). Operation of the SAMBR for this type of high strength wastewater was shown to be feasible at 5 days hydraulic retention time (HRT), 10 L min(-1) (LPM) biogas sparging rate and membrane fluxes in the range of 3-7 L m(-2) hr(-1) (LMH). Under these conditions, more than 90% COD removal was achieved during 4 months of operation without chemical cleaning the membrane. When the sparging rate was reduced to 2 LPM, the transmembrane pressure increased dramatically and the bulk soluble COD concentration increased due to a thicker fouling layer, while permeate soluble COD remained constant. Permeate soluble COD concentration increased by 20% when the sparging rate increased to 10 LPM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brockman, Adam H; Oller, Haley R; Moreau, Benoît; Kriksciukaite, Kristina; Bilodeau, Mark T
2015-02-12
Medicinal chemists have been encouraged in recent years to embrace high speed protein binding assays. These methods employ dialysis membranes in 96-well format or spin filters. Membrane-based methods do not separate lipoprotein binding from albumin binding and introduce interference despite membrane binding controls. Ultracentrifugation methods, in contrast, do not introduce interference if density gradients can be avoided and they resolve lipoprotein from albumin. A new generation of compact, fast ultracentrifuges facilitates the rapid and fully informative separation of plasma into albumin, albumin/fatty acid complex, lipoprotein, protein-free, and chylomicron fractions with no need of salt or sugar density gradients. We present a simple and fast ultracentrifuge method here for two platinum compounds and a taxane that otherwise bound irreversibly to dialysis membranes and which exhibited distinctive lipoprotein binding behaviors. This new generation of ultracentrifugation methods underscores a need to further discuss protein binding assessments as they relate to medicinal chemistry efforts.
Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi
2014-01-01
Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851. PMID:24687888
Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi
2014-06-01
Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
In vivo reduction of erythrocyte oxidant stress in a murine model of beta-thalassemia.
de Franceschi, Lucia; Turrini, Franco; Honczarenko, Marek; Ayi, Kojio; Rivera, Alicia; Fleming, Mark D; Law, Terry; Mannu, Franca; Kuypers, Frans A; Bast, Aalt; van der Vijgh, Wim J F; Brugnara, Carlo
2004-11-01
Oxidant damage is an important contributor to the premature destruction of erythrocytes and anemia in thalassemias. To assess the extent of oxidant damage of circulating erythrocytes and the effects of antioxidant therapy on erythrocyte characteristics and anemia, we used a mouse model of human beta-thalassemia intermedia (b1/b2 deletion). Several parameters indicative of oxidant damage were measured at baseline and following administration of the semi-synthetic flavonoid antioxidant, 7-monohydroxyethylrutoside (monoHER), to beta-thalassemic mice at a dose of either 500 mg/kg i.p. once a day (n=6) or 250 mg/kg i.p. twice a day (n=6) for 21 days. Significant erythrocyte oxidant damage at baseline was indicated by: (i) dehydration, reduced cell K content, and up-regulated K-Cl co-transport; (ii) marked membrane externalization of phosphatidylserine; (iii) reduced plasma and membrane content of vitamin E; and (iv) increased membrane bound IgG. MonoHER treatment increased erythrocyte K content, and markedly improved all cellular indicators of oxidant stress and of lipid membrane peroxidation. While anemia did not improve, monoHER therapy reduced reticulocyte counts, improved survival of a fraction of red cells, and reduced ineffective erythropoiesis with decreased total bilirubin, lactate dehydrogenase and plasma iron. Antioxidant therapy reverses several indicators of oxidant damage in vivo. These promising antioxidant effects of monoHER should be investigated further.
Duan, Liang; Song, Yonghui; Yu, Huibin; Xia, Siqing; Hermanowicz, Slawomir W
2014-07-01
In this study, the effect of solids retention times (SRTs) on extracellular polymeric substances (EPS) and soluble microbial products (SMPs) were investigated in a membrane bioreactor (MBR) at SRTs of 10, 5 and 3 days. The results showed that more carbohydrates and proteins were accumulated at short SRT, which can due to the higher biomass activity in the reactor. The molecular weight (MW) distribution analysis suggested that macromolecules (MW>30 kDa) and small molecules (MW<1 kDa) were the dominant fraction of EPS and SMP, respectively. The reactor at shorter SRT had more small molecules and less macromolecules of carbohydrates. The MW distribution of total organic carbon (TOC) suggested that other organic moieties were exuded by microbes into the solution. The shorter SRT had more undefined microbial by-product-like substances and different O − H bonds in hydroxyl functional groups. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Meng; Ren, Jing; Du, Hui; Zhang, Yanmin; Zhang, Jie; Wang, Sicen; He, Langchong
2010-10-15
We have developed an online analytical method that combines A431 cell membrane chromatography (A431/CMC) with high performance liquid chromatography and mass spectrometry (LC/MS) for identifying active components from Radix Caulophylli acting on human EGFR. Retention fractions on A431/CMC model were captured onto an enrichment column and the components were directly analyzed by combining a 10-port column switcher with an LC/MS system for separation and preliminary identification. Using Sorafenib tosylate as a positive control, taspine and caulophine from Radix Caulophylli were identified as the active molecules which could act on the EGFR. This A431/CMC-online-LC/MS method can be applied for screening active components acting on EGFR from traditional Chinese medicines exemplified by Radix Caulophylli and will be of great utility in drug discovery using natural medicinal herbs as a source of novel compounds. Copyright © 2010 Elsevier B.V. All rights reserved.
Smith, A R; Boursnell, M E; Binns, M M; Brown, T D; Inglis, S C
1990-01-01
Nucleotide sequences from the third open reading frame of mRNA D (D3) of infectious bronchitis virus (IBV) were expressed in bacteria as part of a fusion protein with beta-galactosidase. Antiserum raised in rabbits against this fusion protein immunoprecipitated from IBV-infected chick kidney or Vero cells a polypeptide of 12.4K, the size expected for a D3-encoded product. The D3 polypeptide is apparently non-glycosylated, and appears to be associated with the membrane fraction of infected cells, as judged by cell fractionation and immunofluorescence.
Heidebrecht, Hans-Jürgen; Toro-Sierra, José; Kulozik, Ulrich
2018-06-28
The use of bioactive bovine milk immunoglobulins (Ig) has been found to be an alternative treatment for certain human gastrointestinal diseases. Some methodologies have been developed with bovine colostrum. These are considered in laboratory scale and are bound to high cost and limited availability of the raw material. The main challenge remains in obtaining high amounts of active IgG from an available source as mature cow milk by the means of industrial processes. Microfiltration (MF) was chosen as a process variant, which enables a gentle and effective concentration of the Ig fractions (ca. 0.06% in raw milk) while reducing casein and lactose at the same time. Different microfiltration membranes (ceramic standard and gradient), pore sizes (0.14⁻0.8 µm), transmembrane pressures (0.5⁻2.5 bar), and temperatures (10, 50 °C) were investigated. The transmission of immunoglobulin G (IgG) and casein during the filtration of raw skim milk (<0.1% fat) was evaluated during batch filtration using a single channel pilot plant. The transmission levels of IgG (~160 kDa) were measured to be at the same level as the reference major whey protein β-Lg (~18 kDa) at all evaluated pore sizes and process parameters despite the large difference in molecular mass of both fractions. Ceramic gradient membranes with a pore sizes of 0.14 µm showed IgG-transmission rates between 45% to 65% while reducing the casein fraction below 1% in the permeates. Contrary to the expectations, a lower pore size of 0.14 µm yielded fluxes up to 35% higher than 0.2 µm MF membranes. It was found that low transmembrane pressures benefit the Ig transmission. Upscaling the presented results to a continuous MF membrane process offers new possibilities for the production of immunoglobulin enriched supplements with well-known processing equipment for large scale milk protein fractionation.
Ogneva, I V; Maximova, M V; Larina, I M
2014-05-15
The aim of the work was to analyze changes in the organization of the cortical cytoskeleton in fibers of the mouse soleus muscle, tibialis anterior muscle and left ventricular cardiomyocytes after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles did not differ significantly within the study groups compared with the vivarium control group. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes did not differ significantly within all study groups and correlated with the transversal stiffness. A similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues compared with the control levels in the postflight group, with lowered beta-actin gene expression rates in the postflight group. After completion of the space flight, the content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins from the mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this protein were decreased at the time of dissection (it was started after 13 h after landing). At the same time, the content of alpha-actinin-1 decreased in the membranous fraction and increased in the cytoplasmic fraction of proteins from the soleus muscle fibers. Copyright © 2014 the American Physiological Society.
Bhuiyan, Mohammad Iqbal Hossain; Kim, Hyun-Bok; Kim, Seong Yun; Cho, Kyung-Ok
2011-12-01
In this study, cyanidin-3-glucoside (C3G) fraction extracted from the mulberry fruit (Morus alba L.) was investigated for its neuroprotective effects against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Cell membrane damage and mitochondrial function were assessed by LDH release and MTT reduction assays, respectively. A time-course study of OGD-induced cell death of primary cortical neurons at 7 days in vitro (DIV) indicated that neuronal death was OGD duration-dependent. It was also demonstrated that OGD for 3.5 h resulted in approximately 50% cell death, as determined by the LDH release assay. Treatments with mulberry C3G fraction prevented membrane damage and preserved the mitochondrial function of the primary cortical neurons exposed to OGD for 3.5 h in a concentration-dependent manner. Glutamate-induced cell death was more pronounced in DIV-9 and DIV-11 cells than that in DIV-7 neurons, and an application of 50µM glutamate was shown to induce approximately 40% cell death in DIV-9 neurons. Interestingly, treatment with mulberry C3G fraction did not provide a protective effect against glutamate-induced cell death in primary cortical neurons. On the other hand, treatment with mulberry C3G fraction maintained the mitochondrial membrane potential (MMP) in primary cortical neurons exposed to OGD as assessed by the intensity of rhodamine-123 fluorescence. These results therefore suggest that the neuroprotective effects of mulberry C3G fraction are mediated by the maintenance of the MMP and mitochondrial function but not by attenuating glutamate-induced excitotoxicity in rat primary cortical neurons.
Acute hydrodynamic damage induced by SPLITT fractionation and centrifugation in red blood cells.
Urbina, Adriana; Godoy-Silva, Ruben; Hoyos, Mauricio; Camacho, Marcela
2016-05-01
Though blood bank processing traditionally employs centrifugation, new separation techniques may be appealing for large scale processes. Split-flow fractionation (SPLITT) is a family of techniques that separates in absence of labelling and uses very low flow rates and force fields, and is therefore expected to minimize cell damage. However, the hydrodynamic stress and possible consequent damaging effects of SPLITT fractionation have not been yet examined. The aim of this study was to investigate the hydrodynamic damage of SPLITT fractionation to human red blood cells, and to compare these effects with those induced by centrifugation. Peripheral whole blood samples were collected from healthy volunteers. Samples were diluted in a buffered saline solution, and were exposed to SPLITT fractionation (flow rates 1-10 ml/min) or centrifugation (100-1500 g) for 10 min. Cell viability, shape, diameter, mean corpuscular hemoglobin, and membrane potential were measured. Under the operating conditions employed, both SPLITT and centrifugation maintained cell viability above 98%, but resulted in significant sublethal damage, including echinocyte formation, decreased cell diameter, decreased mean corpuscular hemoglobin, and membrane hyperpolarization which was inhibited by EGTA. Wall shear stress and maximum energy dissipation rate showed significant correlation with lethal and sublethal damage. Our data do not support the assumption that SPLITT fractionation induces very low shear stress and is innocuous to cell function. Some changes in SPLITT channel design are suggested to minimize cell damage. Measurement of membrane potential and cell diameter could provide a new, reliable and convenient basis for evaluation of hydrodynamic effects on different cell models, allowing identification of optimal operating conditions on different scales. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhong, Weixia; Dong, Zhifang; Tian, Meng; Cao, Jun; Xu, Tianle; Xu, Lin; Luo, Jianhong
2006-07-24
Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse. Cocaine withdrawal alters the expression of GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in nucleus accumbens or amygdala, but the influence of drug withdrawal on hippocampus is little known. Here, we have examined the expression of GluR1 and GluR2/3 in hippocampal membrane and synaptic fractions following repeated morphine exposure and subsequent withdrawal. Repeated morphine exposure for 12 d increased GluR1 and GluR2/3 in synaptosome but not in membrane fraction. Interestingly, CaMKIIalpha, known to be able to regulate the function of AMPA receptors, was decreased in synaptosome but not in membrane fraction; pCaMKIIalpha, the phosphorylated form of CaMKIIalpha, was increased in both fractions. However, during opiate withdrawal, GluR1 was generally reduced while GluR2/3 was prominently increased in both fractions; pCaMKIIalpha was strongly decreased immediately after withdrawal, but detectably increased in late phase of morphine withdrawal in both fractions. Importantly, the opiate withdrawal-induced increase in GluR2/3 was dependent on the activation of glucocorticoid receptors and NMDA receptors, as it was prevented by the glucocorticoid receptor antagonist RU38486, or intrahippocampal injection of the NMDA receptor antagonist AP-5 or the antagonist to NR2B-containing NMDA receptors, Ro25-6981. These findings indicate that opiate withdrawal induces dynamic expression of GluR1 and GluR2/3 subunits of AMPA receptors in hippocampal synapses, possibly revealing an adaptive process of the hippocampal functions following opiate withdrawal.
Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo
2014-10-01
We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.
Dittmar, Julia; Schlesier, René; Klösgen, Ralf Bernd
2014-02-01
We have studied the membrane transport of the chimeric precursor protein 16/33, which is composed of the Tat(1)-specific transport signal of OEC16 and the Sec passenger protein OEC33, both subunits of the oxygen-evolving system associated with photosystem II. Protein transport experiments performed with isolated pea thylakoids show that the 16/33 chimera is transported in a strictly Tat-dependent manner into the thylakoid vesicles yielding mature OEC33 (mOEC33) in two different topologies. One fraction accumulates in the thylakoid lumen and is thus resistant to externally added protease. A second fraction is arrested during transport in an N-in/C-out topology within the membrane. Chase experiments demonstrate that this membrane-arrested mOEC33 moiety does not represent a translocation intermediate but instead an alternative end product of the transport process. Transport arrest of mOEC33, which is embedded in the membrane with a mildly hydrophobic protein segment, requires more than 26 additional and predominantly hydrophilic residues C-terminal of the membrane-embedded segment. Furthermore, it is stimulated by mutations which potentially affect the conformation of mOEC33 suggesting that at least partial folding of the passenger protein is required for complete membrane translocation. Copyright © 2013 Elsevier B.V. All rights reserved.
Soares, A. F.; Castro e Silva Júnior, O.; Ceneviva, R.; Roselino, J. E.; Zucoloto, S.
1993-01-01
The present study was carried out to investigate the biochemical and morphological changes in the liver after ligation of the hepatic artery (HA) in the presence and in the absence of extrahepatic cholestasis (EHC). The study was conducted on 100 rats divided into four groups of 25 animals each: group 1, sham operation; group 2, hepatic artery ligation (HAL); group 3, bile duct ligation (BDL); and group 4, HAL plus BDL. All animals were sacrificed 7 days after surgery when total bilirubin and fractions, alkaline phosphatase (AP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured in serum and on the inner hepatocyte mitochondrial membrane (IHMM); the incidence of necrosis and the volume fractions of vessels, bile ducts and hepatocytes in the liver were also determined. HAL reduces the relative volumes of bile ducts, with no changes in levels of bilirubin and fractions, AP, ALT, AST and IHMM, but HAL associated with EHC reduces duct proliferation and the liver becomes more vulnerable to necrosis. In conclusion, the normal liver depends on HA flow and this dependence is more evident in the presence of EHC. PMID:8398809
Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takegami, T.; Semler, B.L.; Anderson, C.W.
1983-01-01
The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have alsomore » revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9.« less
Deuterated fatty acids as Raman spectroscopic probes of membrane structure.
Mendelsohn, R; Sunder, S; Bernstein, H J
1976-09-07
Raman spectra are reported for the C-D stretching region of stearic acid-d35 bound in egg lecithin multilayers. The temperature dependence of the spectra shows that the linewidth of the C-D stretching bands is a sensitive and non-perturbative probe of membrane hydrocarbon chain conformation. The utility of this approach for studying lipid conformation in membranes containing a significant fraction of non-lipid component is discussed.
Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis
NASA Technical Reports Server (NTRS)
Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)
2003-01-01
Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.
Solomonia, Revaz O; Apkhazava, David; Nozadze, Maia; Jackson, Antony P; McCabe, Brian J; Horn, Gabriel
2008-06-01
There is strong evidence that a restricted part of the chick forebrain, the IMM (formerly IMHV), stores information acquired through the learning process of visual imprinting. Twenty-four hours after imprinting training, a learning-specific increase in amount of myristoylated, alanine-rich C-kinase substrate (MARCKS) protein is known to occur in the homogenate fraction of IMM. We investigated the two components of this fraction, membrane-bound and cytoplasmic-phosphorylated MARCKS. In IMM, amount of membrane-bound MARCKS, but not of cytoplasmic-phosphorylated MARCKS, increased as chicks learned. No changes were observed for either form of MARCKS in PPN, a control forebrain region. The results indicate that there is a learning-specific increase in membrane-bound, non-phosphorylated MARCKS 24 h after training. This increase might contribute to stabilization of synaptic morphology.
Ehrl, Benno N; Mogusu, Emmanuel O; Kim, Kyoungtea; Hofstetter, Heike; Pedersen, Joel A; Elsner, Martin
2018-06-19
Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) liposomes, the pH-dependent apparent membrane permeation coefficients ( P app ) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from P app (pH 7.0) = 3.7 (±0.3) × 10 -7 m·s -1 to P app (pH 4.1) = 4.2 (±0.1) × 10 -6 m·s -1 . The magnitude of this surprisingly rapid membrane permeation depended on glyphosate speciation and was, at circumneutral pH, in the range of polar, noncharged molecules. These findings point to passive membrane permeation as a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model system were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, 2 orders of magnitude higher than degradation rates of glyphosate. In addition, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect, AKIE carbon , of 1.014 ± 0.003. This value lies in the range typical of non-masked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was not subject to mass transfer limitations and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.
Tannin-rich fraction from pomegranate rind damages membrane of Listeria monocytogenes.
Li, Guanghui; Xu, Yunfeng; Wang, Xin; Zhang, Baigang; Shi, Chao; Zhang, Weisong; Xia, Xiaodong
2014-04-01
Pomegranate rind has been reported to inhibit several foodborne pathogens, and its antimicrobial activity has been attributed mainly to its tannin fraction. This study aimed to investigate the antimicrobial activity of the tannin-rich fraction from pomegranate rind (TFPR) against Listeria monocytogenes and its mechanism of action. The tannin-related components of TFPR were analyzed by high-performance liquid chromatography and liquid chromatography-mass spectrometry, and the minimum inhibitory concentration (MIC) of TFPR was determined using the agar dilution method. Extracellular potassium concentration, the release of cell constituents, intra- and extracellular ATP concentrations, membrane potential, and intracellular pH (pHin) were measured to elucidate a possible antibacterial mechanism. Punicalagin (64.2%, g/g) and ellagic acid (3.1%, g/g) were detected in TFPR, and the MICs of TFPR were determined to be 1.25-5.0 mg/mL for different L. monocytogenes strains. Treatment with TFPR induced a decrease of the intracellular ATP concentration, an increase of the extracellular concentrations of potassium and ATP, and the release of cell constituents. A reduction of pHin and cell membrane hyperpolarization were observed after treatment. Electron microscopic observations showed that the cell membrane structures of L. monocytogenes were apparently impaired by TFPR. It is concluded that TFPR could destroy the integrity of the cell membrane of L. monocytogenes, leading to a loss of cell homeostasis. These findings indicate that TFPR has the potential to be used as a food preservative in order to control L. monocytogenes contamination in food and reduce the risk of listeriosis.
Gerardo, Michael L; Aljohani, Nasser H M; Oatley-Radcliffe, Darren L; Lovitt, Robert W
2015-09-01
The fractionation of nitrogen (as ammonia/ammonium) and phosphorus (as phosphate ions) present in the dairy manure digestate was investigated using a nanofiltration membrane NF270. The filtration and separation efficiencies were correlated to pH across the range 3 < pH < 11. Filtration at pH 11 enabled higher permeate flux of 125-150 LMH at 20 bar, however rejection of ammonia was high at 30-36% and phosphate was 96.4-97.2%. At pH 3 and pH 7, electrostatic charge effects led to higher permeation of ammonium and thus more efficient separation of nitrogen. The rejection of phosphorus was relatively constant at any given pH and determined as 83% at pH 3, 97% at pH 7 and 95% at pH 11. The fractionation of nitrogen and phosphorus from complex aqueous solutions was demonstrated to be highly dependent on the charge of the membrane and ionic speciation. Solutions rich in nitrogen (as ammonia/ammonium) were obtained with almost no phosphorus present (<1 ppm) whilst the purification of the PO4-P was achieved by series of diafiltration (DF) operations which further separated the nitrogen. The separation of nutrients benefited from an advantageous membrane process with potential added value for a wide range of industries. The analysis of the process economics for a membrane based plant illustrates that the recovery of nutrients, particularly NH3-N, may be commercially feasible when compared to manufactured anhydrous NH3. Copyright © 2015 Elsevier Ltd. All rights reserved.
Byrn, R A; Medrek, P; Thomas, P; Jeanloz, R W; Zamcheck, N
1985-07-01
Carcinoembryonic antigen (CEA) is a glycoprotein metabolized primarily by the liver. Subcellular fractions of rat liver were examined for CEA binding activity. Hepatocyte plasma membrane and microsome fractions bound CEA, and this binding shared the calcium requirement, neuraminidase sensitivity, and carbohydrate specificity of the hepatocyte asialoglycoprotein receptor. CEA had previously been shown to react with this galactose-specific receptor, in vivo, only following neuraminidase treatment. Galactose receptor binding of CEA was measured in three different purified CEA preparations. The fraction of CEA capable of binding to excess levels of galactose receptor on membranes varied (46.5%, 40.2%, and 4.7% for CEA-1, -2, and -3, respectively). These CEAs were shown to be 2.3%, 7.9%, and 0.7% as effective, respectively, as asialo-alpha 1-acid glycoprotein in inhibiting the binding of radiolabeled asialo-alpha 1-acid glycoprotein to liver cell membranes. Each of the three CEA preparations showed different clearance kinetics from the circulation of mice. Coinjection of asialo-alpha 1-acid glycoprotein with the CEAs revealed differing inhibition of the clearances. These results show that differences in the carbohydrate components of purified CEA preparations affect their rate of removal from circulation and thus possibly the relationship between CEA production and observed plasma levels in patients. The possible origin of these CEA differences is discussed with their clinical implications.
Gamma-glutamyltransferase fractions in human plasma and bile: characteristic and biogenesis.
Fornaciari, Irene; Fierabracci, Vanna; Corti, Alessandro; Aziz Elawadi, Hassan; Lorenzini, Evelina; Emdin, Michele; Paolicchi, Aldo; Franzini, Maria
2014-01-01
Total plasma gamma-glutamyltransferase (GGT) activity is a sensitive, non-specific marker of liver dysfunction. Four GGT fractions (b-, m-, s-, f-GGT) were described in plasma and their differential specificity in the diagnosis of liver diseases was suggested. Nevertheless fractional GGT properties have not been investigated yet. The aim of this study was to characterize the molecular nature of fractional GGT in both human plasma and bile. Plasma was obtained from healthy volunteers; whereas bile was collected from patients undergoing liver transplantation. Molecular weight (MW), density, distribution by centrifugal sedimentation and sensitivity to both detergent (deoxycholic acid) and protease (papain) were evaluated. A partial purification of b-GGT was obtained by ultracentrifugation. Plasma b-GGT fraction showed a MW of 2000 kDa and a density between 1.063-1.210 g/ml. Detergent converted b-GGT into s-GGT, whereas papain alone did not produce any effect. Plasma m-GGT and s-GGT showed a MW of 1,000 and 200 kDa, and densities between 1.006-1.063 g/ml and 1.063-1.210 g/ml respectively. Both fractions were unaffected by deoxycholic acid, while GGT activity was recovered into f-GGT peak after papain treatment. Plasma f-GGT showed a MW of 70 kDa and a density higher than 1.21 g/ml. We identified only two chromatographic peaks, in bile, showing similar characteristics as plasma b- and f-GGT fractions. These evidences, together with centrifugal sedimentation properties and immunogold electronic microscopy data, indicate that b-GGT is constituted of membrane microvesicles in both bile and plasma, m-GGT and s-GGT might be constituted of bile-acid micelles, while f-GGT represents the free-soluble form of the enzyme.
R Cardoso, Bárbara; Hare, Dominic J; Lind, Monica; McLean, Catriona A; Volitakis, Irene; Laws, Simon M; Masters, Colin L; Bush, Ashley I; Roberts, Blaine R
2017-07-19
The antioxidant activity of selenium, which is mainly conferred by its incorporation into dedicated selenoproteins, has been suggested as a possible neuroprotective approach for mitigating neuronal loss in Alzheimer's disease. However, there is inconsistent information with respect to selenium levels in the Alzheimer's disease brain. We examined the concentration and cellular compartmentalization of selenium in the temporal cortex of Alzheimer's disease and control brain tissue. We found that Alzheimer's disease was associated with decreased selenium concentration in both soluble (i.e., cytosolic) and insoluble (i.e., plaques and tangles) fractions of brain homogenates. The presence of the APOE ε4 allele correlated with lower total selenium levels in the temporal cortex and a higher concentration of soluble selenium. Additionally, we found that age significantly contributed to lower selenium concentrations in the peripheral membrane-bound and vesicular fractions. Our findings suggest a relevant interaction between APOE ε4 and selenium delivery into brain, and show changes in cellular selenium distribution in the Alzheimer's disease brain.
Benito, Itziar; Casañas, Juan José; Montesinos, María Luz
2018-06-19
Several proteomic analyses have been performed on synaptic fractions isolated from cortex or even total brain, resulting in preparations with a high synaptic heterogeneity and complexity. Synaptoneurosomes (SNs) are subcellular membranous elements that contain sealed pre- and post-synaptic components. They are obtained by subcellular fractionation of brain homogenates and serve as a suitable model to study many aspects of the synapse physiology. Here we report the proteomic content of SNs isolated from hippocampus of adult mice, a brain region involved in memory that presents lower synaptic heterogeneity than cortex. Interestingly, in addition to pre- and post-synaptic proteins, we found that proteins involved in RNA binding and translation were overrepresented in our preparation. These results validate the protocol we previously reported for SNs isolation, and, as reported by other authors, highlight the relevance of local synaptic translation for hippocampal physiology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, S.S.
1989-01-01
The author has characterized pertussis toxin-sensitive G proteins in the nervous systems of the gastropod mollusc Aplysia and the cephalopod Loligo using ({sup 32}P)ADP-ribosylation and immunoblotting with G protein specific antisera. As in vertebrates, this class of G protein is associated with membranes and enriched in nervous tissue in Aplysia. Analysis of dissected Aplysia ganglia reveal that it is enriched in neuropil, a region containing most of the central nervous system synapses. Because both Aplysia and Loligo synaptosomes are enriched in pertussis toxin-sensitive G proteins, it is likely that they are found in synaptic terminals. Fractionation of Aplysia synaptosomes intomore » membrane and vesicle fractions reveals that, although the majority of G protein is recovered in the plasma membrane fraction, a small proportion is recovered in the vesicle fraction. He shows that G proteins are on intracellular membranes by ADP-ribosylating extruded axoplasm with pertussis toxin. A plausible explanation for vesicular localization of G protein in axoplasm is that G proteins are transported to terminals on vesicles. He has shown, using ligature experiments with Aplysia connectives and temperature block experiments in the giant axon of Loligo, that G proteins move by anterograde fast axonal transport. Injection of pertussis toxin into the identified Aplysia neuron L10 blocks histamine-induced presynaptic inhibition of transmitter release. This suggests that pertussis toxin sensitive G proteins play a role in modulating transmitter release at synaptic terminals. In the giant synapse of Loligo, he presents preliminary data that demonstrates that the activation of G proteins in the presynaptic terminal results in decreased transmitter release.« less
Ogneva, I. V.; Mirzoev, T. M.; Biryukov, N. S.; Veselova, O. M.; Larina, I. M.
2012-01-01
The goal of the research was to identify the structural and functional characteristics of the rat's left ventricle under antiorthostatic suspension within 1, 3, 7 and 14 days, and subsequent 3 and 7-day reloading after a 14-day suspension. The transversal stiffness of the cardiomyocyte has been determined by the atomic force microscopy, cell respiration—by polarography and proteins content—by Western blotting. Stiffness of the cortical cytoskeleton increases as soon as one day after the suspension and increases up to the 14th day, and starts decreasing during reloading, reaching the control level after 7 days. The stiffness of the contractile apparatus and the intensity of cell respiration also increases. The content of non-muscle isoforms of actin in the cytoplasmic fraction of proteins does not change during the whole experiment, as does not the beta-actin content in the membrane fraction. The content of gamma-actin in the membrane fraction correlates with the change in the transversal stiffness of the cortical cytoskeleton. Increased content of alpha-actinin-1 and alpha-actinin-4 in the membrane fraction of proteins during the suspension is consistent with increased gamma-actin content there. The opposite direction of change of alpha-actinin-1 and alpha-actinin-4 content suggests their involvement into the signal pathways. PMID:23093854
Rosa, A; Piras, A; Nieddu, M; Putzu, D; Cesare Marincola, F; Falchi, A M
2016-09-14
We explored the changes in viability and lipid profile occurring in cancer cells, murine melanoma cells (B16F10 cells) and human cervical carcinoma cells (HeLa cells), when exposed to 24 h-treatments with an n-3 PUFA-rich oil obtained by supercritical extraction with CO2 from Mugil cephalus processed roe (bottarga). The composition of the major lipid classes of bottarga oil was determined by the (13)C NMR technique. Reversed-phase HPLC with DAD/ELSD detection was performed to analyze cells' total fatty acid profile and the levels of phospholipids, total/free cholesterol, triacylglycerols, and cholesteryl esters. Cell-based fluorescent measurements of intracellular membranes and lipid droplets were performed on bottarga oil-treated cells using the Nile red staining technique. The treatments of cancer cells with bottarga oil reduced the viability and affected the fatty acid profile, with a significant n-3 PUFA increase in treated cells. Mullet roe oil uptake modulated the cancer cell lipid composition, inducing a remarkable incorporation of health beneficial n-3 PUFA in the polar and neutral lipid fractions. Bottarga oil treatment influenced the synthesis of intracellular membranes and accumulation of cytoplasmic lipid droplets in cancer cells.
Krieter, Detlef H; Lange, Florian; Lemke, Horst-Dieter; Bonn, Florian; Wanner, Christoph
2018-04-01
Technical problems during clinical lipid apheresis interfere with fractionator performance. Therefore, a large animal model was established to characterize a new plasma fractionation membrane. Four sheep were randomized, controlled, and crossover subjected to double ofiltration lipoprotein apheresis with three specimens of FractioPES R having slightly different HDL sieving coefficients (S K ) (FPESa, 0.30, FPESb, 0.26, and FPESc, 0.22) versus a control fractionator (EVAL). S K and reduction ratios were determined for LDL, HDL, fibrinogen, IgG, and albumin. Compared to EVAL (0.42 ± 0.04 to 0.74 ± 0.08) and FPESa (0.36 ± 0.06 to 0.64 ± 0.04), S K for HDL were lower (P < 0.05) with FPESc (0.30 ± 0.04 to 0.49 ± 0.10). Fibrinogen S K were higher (P < 0.05) with EVAL (0.02 ± 0.01 to 0.40 ± 0.08) compared to FPESb (0.05 ± 0.02 to 0.26 ± 0.34) and FPESc (0.01 ± 0.01 to 0.21 ± 0.16). No further differences were determined. The animal model distinguished between minor differences in fractionation membrane permeability, demonstrating equivalent sieving of FPESa and EVAL and slightly inferior permeability of FPESb and FPESc. © 2018 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.
El-Fawal, Gomaa F; Yassin, Abdelrahman M; El-Deeb, Nehal M
2017-07-01
Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze-thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\\KC\\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.
Controlled transport of latex beads through vertically aligned carbon nanofiber membranes
NASA Astrophysics Data System (ADS)
Zhang, L.; Melechko, A. V.; Merkulov, V. I.; Guillorn, M. A.; Simpson, M. L.; Lowndes, D. H.; Doktycz, M. J.
2002-07-01
Stripes of vertically aligned carbon nanofibers (VACNFs) have been used to form membranes for size selectively controlling the transport of latex beads. Fluidic structures were created in poly(dimethylsiloxane) (PDMS) and interfaced to the VACNF structures for characterization of the membrane pore size. Solutions of fluorescently labeled latex beads were introduced into the PDMS channels and characterized by fluorescence and scanning electron microscopy. Results show that the beads size selectively pass through the nanofiber barriers and the size restriction limit correlates with the interfiber spacing. The results suggest that altering VACNF array density can alter fractionation properties of the membrane. Such membranes may be useful for molecular sorting and for mimicking the properties of natural membranes.
USDA-ARS?s Scientific Manuscript database
Within the protective outer membrane fraction of Anaplasma marginale, several vaccine candidates have emerged, including a family of outer membrane proteins (OMPs) 7-9, which share sequence identity with each other and with the single protein OMP7 in the vaccine strain A. marginale subsp. centrale. ...
Haramoto, Eiji; Katayama, Hiroyuki; Asami, Mari; Akiba, Michihiro
2012-06-01
A novel method, electronegative membrane-vortex (EMV) method, was developed for simultaneous concentration of viruses and protozoa from a single water sample. Viruses and protozoa in a water sample were mixed with a cation solution and adsorbed on an electronegative membrane. Concentrated virus and protozoa samples were obtained as supernatant and pellet fractions, respectively, by vigorous vortex mixing of the membrane and centrifugation of the eluted material. The highest recovery efficiencies of model microbes from river water and tap water by this EMV method were obtained using a mixed cellulose ester membrane with a pore size of 0.45 μm (Millipore) as the electronegative membrane and MgCl(2) as the cation solution. The recovery was 27.7-86.5% for poliovirus, 25.7-68.3% for coliphage Qβ, 28.0-60.0% for Cryptosporidium oocysts, and 35.0-53.0% for Giardia cysts. The EMV method detected successfully indigenous viruses and protozoa in wastewater and river water samples from the Kofu basin, Japan, showing an overall positive rate of 100% (43/43) for human adenovirus, 79% (34/43) for norovirus GI, 65% (28/43) for norovirus GII, 23% (10/43) for Cryptosporidium oocysts, and 60% (26/43) for Giardia cysts. By direct DNA sequencing, a total of four genotypes (AI, AII, B, and G) of Giardia intestinalis were identified in the water samples, indicating that the river water was contaminated with feces from various mammals, including humans. Copyright © 2012 Elsevier B.V. All rights reserved.
An in vitro lung model to assess true shunt fraction by multiple inert gas elimination.
Varadarajan, Balamurugan; Vogt, Andreas; Hartwich, Volker; Vasireddy, Rakesh; Consiglio, Jolanda; Hugi-Mayr, Beate; Eberle, Balthasar
2017-01-01
The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET) has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q) ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I) to construct a novel in vitro lung model (IVLM) for the simulation of predefined V/Q distributions with five gas exchange compartments and (II) to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V) and perfused with human red cell suspension or saline (Q). Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V) was kept constant and reference shunt fractions (IVLM-S) were established by bypassing one or more oxygenators with perfusate flow (Q). The derived shunt fractions (MM-S) were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.
1993-01-01
An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.
Antioxidant and Cytoprotective Activities of Fucus spiralis Seaweed on a Human Cell in Vitro Model.
Pinteus, Susete; Silva, Joana; Alves, Celso; Horta, André; Thomas, Olivier P; Pedrosa, Rui
2017-01-29
Antioxidants play an important role as Reactive Oxygen Species (ROS) chelating agents and, therefore, the screening for potent antioxidants from natural sources as potential protective agents is of great relevance. The main aim of this study was to obtain antioxidant-enriched fractions from the common seaweed Fucus spiralis and evaluate their activity and efficiency in protecting human cells (MCF-7 cells) on an oxidative stress condition induced by H₂O₂. Five fractions, F1-F5, were obtained by reversed-phase vacuum liquid chromatography. F3, F4 and F5 revealed the highest phlorotannin content, also showing the strongest antioxidant effects. The cell death induced by H₂O₂ was reduced by all fractions following the potency order F4 > F2 > F3 > F5 > F1. Only fraction F4 completely inhibited the H₂O₂ effect. To understand the possible mechanisms of action of these fractions, the cellular production of H₂O₂, the mitochondrial membrane potential and the caspase 9 activity were studied. Fractions F3 and F4 presented the highest reduction on H₂O₂ cell production. All fractions decreased both caspase-9 activity and cell membrane depolarization (except F1). Taken all together, the edible F. spiralis reveal that they provide protection against oxidative stress induced by H₂O₂ on the human MCF-7 cellular model, probably acting as upstream blockers of apoptosis.
Sugimoto, Naoko; Iwaki, Tomoko; Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Kawano, Miyuki; Sekito, Takayuki; Takegawa, Kaoru; Kakinuma, Yoshimi
2011-01-01
The fission yeast Schizosaccharomyces pombe has a homolog of the budding yeast Atg22p, which is involved in spore formation (Mukaiyama H. et al., Microbiology, 155, 3816-3826 (2009)). GFP-tagged Atg22p in the fission yeast was localized to the vacuolar membrane. Upon disruption of atg22, the amino acid levels of the cellular fraction as well as the vacuolar fraction decreased. The uptake of several amino acids, such as lysine, histidine, and arginine, was impaired in atg22Δ cells. S. pombe Atg22p plays an important role in the compartmentalization of amino acids.
Delpino, Andrea; Castelli, Mauro
2002-01-01
In human rabdomiosarcoma cells (TE671/RD) chronic exposure to 500 nM thapsigargin (a powerful inhibitor of the endoplasmic reticulum Ca2+-ATPases) resulted in the induction of the stress protein GRP78/BIP. Making use of the surface biotinylation method, followed by the isolation of the GRP78 using ATP-agarose affinity chromatography, it was found that a fraction of the thapsigargin-induced GRP78 is expressed on the cell surface. The presence of GRP78 on the membrane of thapsigargin-treated cells was confirmed by fractionation of cell lysates into a soluble and a membrane fraction, followed by Western blot analysis with an anti-GRP78 antibody. It was also found that conspicuous amounts of GRP78 are present in the culture medium collected from thapsigargin-treated cultures. This extracellular GRP78 originates mostly by an active release from intact cells and does not result solely from the leakage of proteins from dead cells. Moreover, small amounts of circulating, free GRP78 and naturally-occurring anti-GRP78 autoantibodies were detected in the peripheral circulation of healthy human individuals.
Total alkaloid content in various fractions of Tabernaemonata sphaerocarpa Bl. (Jembirit) leaves
NASA Astrophysics Data System (ADS)
Salamah, N.; Ningsih, D. S.
2017-11-01
Tabernaemontana sphaerocarpa Bl. (Jembirit) is one of the Apocynaceae family plants containing alkaloid compound. Traditionally, it is used as an anti-inflammatory medicine. It is found to have a new bisindole alkaloid compound that shows a potent cytotoxic activity in human cancer. This study aimed to know the total alkaloid content in some fractions of ethanolic extract of T. sphaerocarpa Bl. leaf powder was extracted by maceration method in 70% ethanol solvent. Then, the extract was fractionated in a separatory funnel using water, ethyl acetate, and hexane. The total alkaloid content in each fraction was analyzed with visible spectrophotometric methods based on the reaction with Bromocresol Green (BCG). The total alkaloids in water fraction and ethyl acetate fraction were (0.0312±0.0009)% and (0.0281±0.0014)%, respectively. Meanwhile, the total alkaloid content in hexane was not detected. The statistical analysis, performed in SPSS, resulted in a significant difference between the total alkaloids in water fraction and ethyl acetate fraction. The total alkaloid in water fraction of T. sphaerocarpa Bl. was higher than the one in ethyl acetate fraction.
Alvarez-Sala, Andrea; Garcia-Llatas, Guadalupe; Cilla, Antonio; Barberá, Reyes; Sánchez-Siles, Luis Manuel; Lagarda, María Jesús
2016-07-20
Sterol bioaccessibility (BA) of three plant sterol (PS)-enriched milk-based fruit beverages (MFb) with different fat contents (1.1-2.4%), lipid sources (animal or vegetable), and without or with emulsifiers (whey proteins enriched with milk fat globule membrane (MFGM) or soy lecithin) was evaluated after simulated gastrointestinal digestion. The BA of total PS followed the order 31.4% (MFbM containing milk fat and whey proteins enriched with MFGM) = 28.2% (MFbO containing extra virgin olive oil and soy lecithin) > 8.7% (MFb without fat addition). Total and individual PS content in the bioaccessible fractions followed the order MFbM > MFbO > MFb. Consequently, formulation with MFGM is proposed in beverages of this kind to ensure optimum bioavailability of PS. Our results suggest that the BA of PS is influenced by the type and quantity of fat and the emulsifier type involved.
Basilico, Nicoletta; Cortelezzi, Lucia; Serpellini, Chiara; Taramelli, Donatella; Omodeo-Salè, Fausta; Salè, Fausta
2009-02-15
We provide two simple low-cost and low-tech procedures to measure with good precision and accuracy the binding and internalization into human erythrocytes of chloroquine and other aminoquinolines. The methods are based on the high fluorescence of the quinoline ring and are complementary. Method A evaluates residual drugs in the supernatants of treated erythrocytes, whereas method B quantifies the total uptake by whole cells and the fraction bound to the membranes. Drug uptake is dose dependent and related to the number of erythrocytes. These assays could be useful when studying the cell interaction of quinoline-type compounds not available in the radioactive form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bargar, T.A.; Cobb, G.P.
1995-12-31
The relative distribution of coplanar polychlorinated biphenyls (PCBs) between chorioallantoic membranes (CAMS) and eggs was investigated in inviable American alligator (Alligator mississippiensis) and Loggerhead sea turtle (Caretta caretra) eggs. Cam and egg extracts were fractionated by HPLC using a porous graphitic column (PGC) and an in line switching valve to separate coplanar from non-coplanar PCBs. The fractions were collected, concentrated by nitrogen evaporation, and injected on GC-ECD (60M DB-5 capillary column) for quantification. Alligator and Loggerhead sea turtle eggs contain toxicologically significant coplanar PCBs. Mono-ortho substituted PCBs were present with greater frequency relative to non-ortho substituted PCBs in both eggsmore » and CAMS. The presence of coplanar PCBs in eggs appears to be correlated to coplanar PCB presence in CAMS. The chorioallantoic membrane could serve as a biomarker of embryo exposure to coplanar PCBs.« less
Hals, Petter-Arnt; Wang, Xiaoli; Piscitelli, Fabiana; Di Marzo, Vincenzo; Xiao, Yong-Fu
2017-01-21
A commonly used measure to reflect the intake of the long-chain omega-3 fatty acids EPA and DHA is the omega-3 index, defined as the sum of EPA + DHA as % of total fatty acids in erythrocyte membrane. When the omega-3 index changes it follows that the relative fractions of other fatty acids in the membrane are also changed. In the present study, increasing doses of a preparation of omega-3 rich phospholipids extracted from krill oil were administered orally to non-human primates for 12 weeks and the time course of EPA, DHA and 22 other fatty acids in erythrocytes was determined bi-weekly during treatment and for 8 weeks after cessation of treatment. Plasma concentrations of six endocannabinoid-type mediators being downstream metabolites of some fatty acids analyzed in erythrocytes were also determined. Six diabetic, dyslipidemic non-human primates were included, three in a vehicle control group and three being treated with the omega-3 rich phospholipid preparation. The vehicle control and test items were given daily by gavage and the test item doses were 50, 150 and 450 mg phospholipids/kg/day. Each dose level was given for four weeks. Blood was sampled at baseline and thereafter bi-weekly. Fatty acids were determined in erythrocytes by methylation followed by gas-chromatography. Endocannabinoids and endocannabinoid-like mediators were analyzed in plasma by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. The treatment resulted in a dose-related increase in the fraction of EPA and DHA in erythrocyte membranes and a dose-related decrease of other poly-unsaturated fatty acids, in particular omega-6 polyunsaturated fatty acids. Erythrocyte concentrations of saturated fatty acids remained unchanged throughout the experiment. Plasma concentrations of endocannabinoids and endocannabinoid-like mediators changed accordingly as those being downstream arachidonic acid decreased, downstream of the saturated palmitic and oleic acids remained unchanged while a downstream EPA metabolite increased. Increasing the omega-3 index by administering an omega-3 rich phospholipid extracted from krill oil did not alter the ratio of unsaturated vs. saturated fatty acids in the erythrocyte membranes but only the relative concentrations of unsaturated fatty acids, in particular unsaturated omega-6 fatty acids. Concentrations of saturated fatty acids remained unchanged.
Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice.
Heydrick, S J; Jullien, D; Gautier, N; Tanti, J F; Giorgetti, S; Van Obberghen, E; Le Marchand-Brustel, Y
1993-01-01
Activation of phosphatidylinositol-3-kinase (PI3K) is one of the earliest postreceptor events in the insulin signaling pathway. Incubation of soleus muscles from lean mice with 50 nM insulin caused a 3-10-fold increase in antiphosphotyrosine-immunoprecipitable PI3K (antiPTyr-PI3K) activity within 2 min in muscle homogenates as well as both the cytosolic and membrane fractions. Insulin did not affect total PI3K activity. Both the antiPTyr-PI3K stimulation and activation of insulin receptor tyrosine kinase were dependent on hormone concentration. In muscles from obese, insulin-resistant mice, there was a 40-60% decrease in antiPTyr-PI3K activity after 2 min of insulin that was present equally in the cytosolic and membrane fractions. A significant reduction in insulin sensitivity was also observed. The defect appears to result from alterations in both insulin receptor and postreceptor signaling. Starvation of obese mice for 48 h, which is known to reverse insulin resistance, normalized the insulin response of both PI3K and the receptor tyrosine kinase. The results demonstrate that: (a) antiPTyr-PI3K activity is responsive to insulin in mouse skeletal muscle, (b) both the insulin responsiveness and sensitivity of this activity are blunted in insulin-resistant muscles from obese mice, (c) these alterations result from a combination of insulin receptor and postreceptor defects, and (d) starvation restores normal insulin responses. Images PMID:8386184
Reboleiro-Rivas, P; Martín-Pascual, J; Morillo, J A; Juárez-Jiménez, B; Poyatos, J M; Rodelas, B; González-López, J
2016-01-01
Bacteria are key players in biological wastewater treatments (WWTs), thus a firm knowledge of the bacterial population dynamics is crucial to understand environmental/operational factors affecting the efficiency and stability of the biological depuration process. Unfortunately, little is known about the microbial ecology of the advanced biological WWTs combining suspended biomass (SB) and attached biofilms (AB). This study explored in depth the bacterial community structure and population dynamics in each biomass fraction from a pilot-scale moving bed membrane bioreactor (MBMBR) treating municipal sewage, by means of temperature-gradient gel electrophoresis (TGGE) and 454-pyrosequencing. Eight experimental phases were conducted, combining different carrier filling ratios, hydraulic retention times and concentrations of mixed liquor total suspended solids. The bacterial community, dominated by Proteobacteria (20.9-53.8%) and Actinobacteria (20.6-57.6%), was very similar in both biomass fractions and able to maintain its functional stability under all the operating conditions, ensuring a successful and steady depuration process. Multivariate statistical analysis demonstrated that solids concentration, carrier filling ratio, temperature and organic matter concentration in the influent were the significant factors explaining population dynamics. Bacterial diversity increased as carrier filling ratio increased (from 20% to 35%, v/v), and solids concentration was the main factor triggering the shifts of the community structure. These findings provide new insights on the influence of operational parameters on the biology of the innovative MBMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xiao, Z; Devreotes, P N
1997-01-01
Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures. Images PMID:9168471
Xiao, Z; Devreotes, P N
1997-05-01
Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures.
Li, Meng; Yao, Yujian; Zhang, Wen; Zheng, Junfeng; Zhang, Xuan; Wang, Lianjun
2017-08-15
A sulfonated thin-film composite (TFC) nanofiltration membrane was fabricated using 2,2'-benzidinedisulfonic acid (BDSA) and trimesoyl chloride (TMC) on a polyether sulfone substrate by conventional interfacial polymerization. Due to a nascent barrier layer with a loose architecture, the obtained TFC-BDSA-0.2 membrane showed an ultrahigh pure water permeability of 48.1 ± 2.1 L -1 m -2 h -1 bar -1 , and a considerably low NaCl retention ability of <1.8% over a concentration range of 10-100 g L -1 . The membrane, which possesses a negatively charged surface, displayed an excellent rejection of over 99% toward Congo red (CR) and allowed the fast fractionation of high-salinity textile wastewater. The prepared membrane required only 3-fold water addition to accomplish the separation of multiple components, whereas the commercial NF270 (Dow) membrane required 4-fold water addition and almost double the length of time. Furthermore, the TFC-BDSA-0.2 membrane was subsequently tested for the dye concentration process. It maintained a high flux of 8.2 L -1 m -2 h -1 bar -1 and a negligible dye loss, even when the concentration factor reached ∼10. Finally, by using a 20% alcohol solution as a back-washing medium, a flux recovery ratio (FRR) of 95.6% was achieved with TFC-BDSA-0.2, and the CR rejection ability remained the same. These results prove the outstanding antifouling and solvent-resistant properties of the membrane.
Webb, R; Troyan, T; Sherman, D; Sherman, L A
1994-08-01
Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes.
Zhang, Yuanyuan; Ng, Ding-Quan; Lin, Yi-Pin
2012-07-01
Lead and its compounds are toxic and can harm human health, especially the intelligence development in children. Accurate measurement of total lead present in drinking water is crucial in determining the extent of lead contamination and human exposure due to drinking water consumption. The USEPA method for total lead measurement (no. 200.8) is often used to analyze lead levels in drinking water. However, in the presence of high concentration of the tetravalent lead corrosion product PbO(2), the USEPA method was not able to fully recover particulate lead due to incomplete dissolution of PbO(2) particles during strong acid digestion. In this study, a new procedure that integrates membrane separation, iodometric PbO(2) measurement, strong acid digestion and ICP-MS measurement was proposed and evaluated for accurate total lead measurement and quantification of different lead fractions including soluble Pb(2+), particulate Pb(II) carbonate and PbO(2) in drinking water samples. The proposed procedure was evaluated using drinking water reconstituted with spiked Pb(2+), spiked particulate Pb(II) carbonate and in situ formed or spiked PbO(2). Recovery tests showed that the proposed procedure and the USEPA method can achieve 93-112% and 86-103% recoveries respectively for samples containing low PbO(2) concentrations (0.018-0.076 mg Pb per L). For samples containing higher concentrations of PbO(2) (0.089-1.316 mg Pb per L), the USEPA method failed to meet the recovery requirement for total lead (85-115%) while the proposed method can achieve satisfactory recoveries (91-111%) and differentiate the soluble Pb(2+), particulate Pb(II) carbonate and PbO(2).
Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation.
Wang, Hui; Park, Minkyu; Liang, Heng; Wu, Shimin; Lopez, Israel J; Ji, Weikang; Li, Guibai; Snyder, Shane A
2017-11-15
Wastewater reclamation has increasingly become popular to secure potable water supply. Low-pressure membrane processes such as microfiltration (MF) and ultrafiltration (UF) play imperative roles as a barrier of macromolecules for such purpose, but are often limited by membrane fouling. Effluent organic matter (EfOM), including biopolymers and particulates, in secondary wastewater effluents have been known to be major foulants in low-pressure membrane processes. Hence, the primary aim of this study was to investigate the effects of pre-ozonation as a pre-treatment for UF on the membrane fouling caused by EfOM in secondary wastewater effluents for hydrophilic regenerated cellulose (RC) and hydrophobic polyethersulfone (PES) UF membranes. It was found that greater fouling reduction was achieved by pre-ozonation for the hydrophilic RC membrane than the hydrophobic PES membrane at increasing ozone doses. In addition, the physicochemical property changes of EfOM, including biopolymer fractions, by pre-ozonation were systemically investigated. The classical pore blocking model and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theories were employed to scrutinize the fouling alleviation mechanism by pre-ozonation. As a result, the overarching mechanisms of fouling reduction were attributed to the following key reasons: (1) Ozone degraded macromolecules such as biopolymers like proteins and polysaccharides into smaller fractions, thereby increasing free energy of cohesion of EfOM and rendering them more hydrophilic and stable; (2) pre-ozonation augmented the interfacial free energy of adhesion between foulants and the RC/PES membranes, leading to the increase of repulsions and/or the decrease of attractions; and (3) pre-ozonation prolonged the transition from pore blocking to cake filtration that was a dominant fouling mechanism, thereby reducing fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Properties of a membrane-bound triglyceride lipase of rapeseed (Brassica napus L.) cotyledons.
Rosnitschek, I; Theimer, R R
1980-04-01
The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l(-1), with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l(-1) NaCl and on the presence of at least 0.1 mol l(-1) NaCl in the test mixture. Desoxycholate and up to 0.1 mol l(-1) CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.
Griffiths, Genevieve S.; Galileo, Deni S.; Aravindan, Rolands G.; Martin-DeLeon, Patricia A.
2009-01-01
Glycosyl phosphatidylinositol (GPI)-linked proteins, which are involved in post-testicular maturation of sperm and have a role in fertilization, are acquired on the sperm surface from both vesicular and membrane-free soluble fractions of epididymal luminal fluid (LF) and uterine LF. Herein, we investigate the mechanism of uptake of these proteins from the soluble fraction of LFs using sperm adhesion molecule 1 (SPAM1) as a model. Ultracentrifugation and native Western blot analysis of the soluble fraction revealed that SPAM1 is present in low-molecular-weight (monomeric) and high-molecular-weight (oligomeric) complexes. The latter are incapable of transferring SPAM1 and may serve to produce monomers. Monomers are stabilized by hydrophobic interactions with clusterin (CLU), a lipid carrier that is abundantly expressed in LFs. We show that CLU is involved in the transfer of SPAM1 monomers, whose delivery was decreased by anti-CLU antibody under normal and apolipoprotein-enhanced conditions. Coimmunoprecipitation revealed an intimate association of CLU with SPAM1. Both plasma and recombinant CLU had a dose-related effect on transfer efficiency: high concentrations reduced and low concentrations enhanced delivery of SPAM1 to human and mouse sperm membranes, reflecting physiological states in the epididymal tract. We propose a lipid exchange model (akin to the lipid-poor model for cholesterol efflux) for the delivery of GPI-linked proteins to sperm membranes via CLU. Our investigation defines specific conditions for membrane-free GPI-linked protein transfer in vitro and could lead to technology for improving fertility or treating sperm pathology by the addition of relevant GPI-linked proteins critical for successful fertilization in humans and domestic animals. PMID:19357365
Hydrolysis of membrane phospholipids by phospholipases of rat liver lysosomes
Richards, Donald E.; Irvine, Robin F.; Dawson, Rex M. C.
1979-01-01
(1) The hydrolysis of 32P- or myo-[2-3H]inositol-labelled rat liver microsomal phospholipids by rat liver lysosomal enzymes has been studied. (2) The relative rates of hydrolysis of phospholipids at pH4.5 are: sphingomyelin>phosphatidylethanolamine>phosphatidylcholine> phosphatidylinositol. (3) The predominant products of phosphatidylcholine and phosphatidylethanolamine hydrolysis are their corresponding lyso-compounds, indicating a slow rate of total deacylation. (4) Ca2+ inhibits the hydrolysis of all phospholipids, though only appreciably at high (>5mm) concentration. The hydrolysis of sphingomyelin is considerably less sensitive to Ca2+ than that of glycerophospholipids. (5) Analysis of the water-soluble products of phosphatidylinositol hydrolysis (by using myo-[3H]inositol-labelled microsomal fraction as a substrate) produced evidence that more than 95% of the product is phosphoinositol, which was derived by direct cleavage from phosphatidylinositol, rather than by hydrolysis of glycerophosphoinositol. (6) This production of phosphoinositol, allied with negligible lysophosphatidylinositol formation and a detectable accumulation of diacylglycerol, indicates that lysosomes hydrolyse membrane phosphatidylinositol almost exclusively in a phospholipase C-like manner. (7) Comparisons are drawn between the hydrolysis by lysosomal enzymes of membrane substrates and that of pure phospholipid substrates, and also the possible role of phosphatidylinositol-specific lysosomal phospholipase C in cellular phosphatidylinositol catabolism is discussed. PMID:508301
Hagiwara, S; Takahashi, K
1974-04-01
1. Properties of anion permeation through the membrane of skeletal muscle fibres of the stingray, Taeniura lymma, were studied with intracellular recording and polarization techniques.2. The Cl conductance of the resting membrane in the normal stingray saline at pH 7.7 is 8-10 times greater than the K conductance.3. The Cl conductance decreases with decreasing external pH, with an apparent pK of 5.3, whereas the K conductance is independent of pH between 4 and 9.4. The Q(10) of the Cl conductance is about 2.0, compared with a value of 1.2-1.4 for the K conductance.5. The Cl conductance is proportional to the external Cl concentration when observed after the fibre is equilibrated in the test solution.6. The permeability sequence obtained by potential measurement is SCN > NO(3) > Cl = Br > I > ClO(3) and the permeability ratio is independent of the mole fraction of anions.7. The conductance sequence determined by total replacement of the external Cl with other anion species differs from the permeability sequence and the conductance observed for partial replacement deviates significantly from that expected from the independence principle.8. Possible mechanisms of anion permeation are discussed.
Hagiwara, Susumu; Takahashi, Kunitaro
1974-01-01
1. Properties of anion permeation through the membrane of skeletal muscle fibres of the stingray, Taeniura lymma, were studied with intracellular recording and polarization techniques. 2. The Cl conductance of the resting membrane in the normal stingray saline at pH 7·7 is 8-10 times greater than the K conductance. 3. The Cl conductance decreases with decreasing external pH, with an apparent pK of 5·3, whereas the K conductance is independent of pH between 4 and 9. 4. The Q10 of the Cl conductance is about 2·0, compared with a value of 1·2-1·4 for the K conductance. 5. The Cl conductance is proportional to the external Cl concentration when observed after the fibre is equilibrated in the test solution. 6. The permeability sequence obtained by potential measurement is SCN > NO3 > Cl = Br > I > ClO3 and the permeability ratio is independent of the mole fraction of anions. 7. The conductance sequence determined by total replacement of the external Cl with other anion species differs from the permeability sequence and the conductance observed for partial replacement deviates significantly from that expected from the independence principle. 8. Possible mechanisms of anion permeation are discussed. PMID:4838800
Determining the Localization of Carbohydrate Active Enzymes Within Gram-Negative Bacteria.
McLean, Richard; Inglis, G Douglas; Mosimann, Steven C; Uwiera, Richard R E; Abbott, D Wade
2017-01-01
Investigating the subcellular location of secreted proteins is valuable for illuminating their biological function. Although several bioinformatics programs currently exist to predict the destination of a trafficked protein using its signal peptide sequence, these programs have limited accuracy and often require experimental validation. Here, we present a systematic method to fractionate gram-negative cells and characterize the subcellular localization of secreted carbohydrate active enzymes (CAZymes). This method involves four parallel approaches that reveal the relative abundance of protein within the cytoplasm, periplasm, outer membrane, and extracellular environment. Cytoplasmic and periplasmic proteins are fractionated by lysis and osmotic shock, respectively. Outer membrane bound proteins are determined by comparing cells before and after exoproteolytic digestion. Extracellularly secreted proteins are collected from the media and concentrated. These four different fractionations can then be probed for the presence and quantity of target proteins using immunochemical methods such as Western blots and ELISAs, or enzyme activity assays.
The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix.
Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo
2018-02-01
Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and lycopene bioaccessibility were found upon combined and individual pulsed electric fields and heating, except in the following cases: (i) in tissue, a significant decrease in lycopene bioaccessibility upon combined pulsed electric fields and heating and heating only was observed; (ii) in chromoplasts, both β-carotene and lycopene bioaccessibility significantly decreased upon combined pulsed electric fields and heating and pulsed electric fields only. The reduction in carotenoids bioaccessibility was attributed to modification in chromoplasts membrane and carotenoids-protein complexes. Differences in the effects of pulsed electric fields on bioaccessibility among different tomato fractions were related to tomato structure complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouledous, Lionel; Merker, Soren; Neasta, Jeremie
*: Mu opioid (MOP) receptor activation can be functionally modulated by stimulation of Neuropeptide FF 2 (NPFF{sub 2}) G protein-coupled receptors. Fluorescence recovery after photobleaching experiments have shown that activation of the NPFF{sub 2} receptor dramatically reduces the fraction of MOP receptors confined in microdomains of the plasma membrane of SH-SY5Y neuroblastoma cells. The aim of the present work was to assess if the direct observation of receptor compartmentation by fluorescence techniques in living cells could be related to indirect estimation of receptor partitioning in lipid rafts after biochemical fractionation of the cell. Our results show that MOP receptor distributionmore » in lipid rafts is highly dependent upon the method of purification, questioning the interpretation of previous data regarding MOP receptor compartmentation. Moreover, the NPFF analogue 1DMe does not modify the distribution profile of MOP receptors, clearly demonstrating that membrane fractionation data do not correlate with direct measurement of receptor compartmentation in living cells.« less
Tyutereva, Elena V; Evkaikina, Anastasiia I; Ivanova, Alexandra N; Voitsekhovskaja, Olga V
2017-09-01
The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.
Dougan, G; Dowd, G; Kehoe, M
1983-01-01
Escherichia coli K-12 minicells, harboring recombinant plasmids encoding polypeptides involved in the expression of K88ac adhesion pili on the bacterial cell surface, were labeled with [35S]methionine and fractionated by a variety of techniques. A 70,000-dalton polypeptide, the product of the K88ac adhesion cistron adhA, was primarily located in the outer membrane of minicells, although it was less clearly associated with this membrane than the classical outer membrane proteins OmpA and matrix protein. Two polypeptides of molecular weights 26,000 and 17,000 (the products of adhB and adhC, respectively) were located in significant amounts in the periplasmic space. The 29,000-dalton polypeptide was shown to be processed in E. coli minicells. The 23.500-dalton K88ac pilus subunit (the product of adhD) was detected in both inner and outer membrane fractions. E. coli mutants defective in the synthesis of murein lipoprotein or the major outer membrane polypeptide OmpA were found to express normal amounts of K88ac antigen on the cell surface, whereas expression of the K88ac antigen was greatly reduced in perA mutants. The possible functions of the adh cistron products are discussed.
Basic aminopeptidase activity is an emerging biomarker in collagen-induced rheumatoid arthritis.
Mendes, Mariana Trivilin; Murari-do-Nascimento, Stephanie; Torrigo, Isis Rossetti; Alponti, Rafaela Fadoni; Yamasaki, Simone Cristina; Silveira, Paulo Flavio
2011-04-11
The objective of this study was to investigate the catalytic activity of basic aminopeptidase (APB) and its association with periarticular edema and circulating tumor necrosis factor (TNF)-alpha and type II collagen (CII) antibodies (AACII) in a rat model of rheumatoid arthritis (RA) induced by CII (CIA). Edema does not occur in part of CII-treated, even when AACII is higher than in control. TNF-alpha is detectable only in edematous CII-treated. APB in synovial membrane is predominantly a membrane-bound activity also present in soluble form and with higher activity in edematous than in non-edematous CII-treated or control. Synovial fluid and blood plasma have lower APB in non-edematous than in edematous CII-treated or control. In peripheral blood mononuclear cells (PBMCs) the highest levels of APB are found in soluble form in control and in membrane-bound form in non-edematous CII-treated. CII treatment distinguishes two categories of rats: one with arthritic edema, high AACII, detectable TNF-alpha, high soluble and membrane-bound APB in synovial membrane and low APB in the soluble fraction of PBMCs, and another without edema and with high AACII, undetectable TNF-alpha, low APB in the synovial fluid and blood plasma and high APB in the membrane-bound fraction of PBMCs. Data suggest that APB and CIA are strongly related. 2011 Elsevier B.V. All rights reserved.
Weiss, C A; White, E; Huang, H; Ma, H
1997-05-05
Towards the elucidation of the cellular function(s) of GP alpha1, we have characterized its subcellular localization using immunofluorescence and cell fractionation. GP alpha1 is not present in nuclei or chloroplasts. It is a membrane-bound protein, and analysis of isolated endoplasmic and plasma membranes indicates a good correlation between GP alpha1 in both the plasma membrane and the ER compartment. Interestingly, these results may suggest more different functions for GP alpha1: it might be involved in transmission of extracellular signals across the plasma membrane and in the cytoplasm, and/or it may also be involved in regulating some aspects of the ER functions or membrane trafficking between both membranes.
NASA Astrophysics Data System (ADS)
DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.
2016-03-01
In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, R.; Rice, R.H.
1989-01-05
The membrane-bound form of keratinocyte transglutaminase was found to be labeled by addition of (/sup 3/H) acetic, (/sup 3/H)myristic, or (/sup 3/H)palmitic acids to the culture medium of human epidermal cells. Acid methanolysis and high performance liquid chromatography analysis of palmitate-labeled transglutaminase yielded only methyl palmitate. In contrast, analysis of the myristate-labeled protein yielded approximately 40% methyl myristate and 60% methyl palmitate. Incorporation of neither label was significantly affected by cycloheximide inhibition of protein synthesis. The importance of the fatty acid moiety for membrane anchorage was demonstrated in three ways. First, the enzyme was solubilized from the particulate fraction ofmore » cell extracts by treatment with neutral 1 M hydroxylamine, which was sufficient to release the fatty acid label. Second, solubilization of active enzyme from the particulate fraction upon mild trypsin treatment resulted in a reduction in size by approximately 10 kDa and removal of the fatty acid radiolabels. Third, the small fraction of soluble transglutaminase in cell extracts was found almost completely to lack fatty acid labeling. Keratinocyte transglutaminase translated from poly(A+) RNA in a reticulocyte cell-free system was indistinguishable in size from the native enzyme, suggesting anchorage requires only minor post-translational processing. Thus, the data are highly compatible with membrane anchorage by means of fatty acid acylation within 10 kDa of the NH/sub 2/ or COOH terminus.« less
Fractional hereditariness of lipid membranes: Instabilities and linearized evolution.
Deseri, L; Pollaci, P; Zingales, M; Dayal, K
2016-05-01
In this work lipid ordering phase changes arising in planar membrane bilayers is investigated both accounting for elasticity alone and for effective viscoelastic response of such assemblies. The mechanical response of such membranes is studied by minimizing the Gibbs free energy which penalizes perturbations of the changes of areal stretch and their gradients only (Deseri and Zurlo, 2013). As material instabilities arise whenever areal stretches characterizing homogeneous configurations lie inside the spinoidal zone of the free energy density, bifurcations from such configurations are shown to occur as oscillatory perturbations of the in-plane displacement. Experimental observations (Espinosa et al., 2011) show a power-law in-plane viscous behavior of lipid structures allowing for an effective viscoelastic behavior of lipid membranes, which falls in the framework of Fractional Hereditariness. A suitable generalization of the variational principle invoked for the elasticity is applied in this case, and the corresponding Euler-Lagrange equation is found together with a set of boundary and initial conditions. Separation of variables allows for showing how Fractional Hereditariness owes bifurcated modes with a larger number of spatial oscillations than the corresponding elastic analog. Indeed, the available range of areal stresses for material instabilities is found to increase with respect to the purely elastic case. Nevertheless, the time evolution of the perturbations solving the Euler-Lagrange equation above exhibits time-decay and the large number of spatial oscillation slowly relaxes, thereby keeping the features of a long-tail type time-response. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Juan; Fan, Shu-kai
2016-06-01
Various petroleum components possess distinctive migration and toxicity characteristics. Evaluation of contamination levels on the basis of total concentrations of petroleum hydrocarbons in soil and groundwater is limited. Hunpu, a typical wastewater-irrigated area, is located at the southwest of Shenyang City, Liaoning Province, China. In this study, various fractions, exposure pathways, and soil microbial communities were taken into account to make petroleum contamination evaluation more effective and precise in the region. The concentrations and hazard quotients of aliphatic fractions, as the bulk of an oil, verified that the groundwater must not be drunk directly. The total concentrations of aliphatic hydrocarbons (TAHs) for C10-34 were 68.90-199.87 μg g(-1) in soil in Hunpu, which required cleanup according to Oklahoma criteria. However, both health and ecological risks indicated that petroleum contamination in surface soil was not serious. Microbes may use aliphatic fractions as carbon and energy source for their growth, which was indicated by positive correlation between them. TAHsC12-16 posed highest human health risks and had the most significant effect on the soil microbial composition, although its concentration was low in both the groundwater and the soil. Straight-, branched-chain saturated, and cyclopropyl phospholipid fatty acids had more closely positive correlation with TAHsC12-16, which indicated that regulation of bacterial membrane fluidity to toxic petroleum pollutants. This study can also provide the guidelines for assessment and management of petroleum contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kanda, Katsuhiro; Takahashi, Ryosuke; Yoshikado, Takashi; Sugiyama, Yuichi
2018-04-09
This study describes the total disposition profiling of rosuvastatin (RSV) and pitavastatin (PTV) using a single systematic procedure called D-PREX (Disposition Profile Exploration) in sandwich-cultured human hepatocytes (SCHH). The biliary excretion fractions of both statins were clearly observed, which were significantly decreased dependent on the concentration of Ko143, an inhibitor for breast cancer resistance protein (BCRP). Ko143 also decreased the basolateral efflux fraction of RSV, whereas that of PTV was not significantly affected. To understand these phenomena, effects of Ko143 on biliary excretion (BCRP and multidrug resistance-associated protein (MRP) 2) and basolateral efflux (MRP3 and MRP4) transporters were examined using transporter-expressing membrane vesicles. BCRP, MRP3 and MRP4-mediated transport of RSV was observed, and Ko143 inhibited these transporters except MRP3. BCRP and MRP4 also mediated the transport of PTV, but the Ko143-mediated inhibition was only clear for BCRP. These results might explain the Ko143-mediated complete and partial inhibition of the biliary excretion and the basolateral efflux of RSV, respectively, in SCHH. In conclusion, D-PREX with sequential sampling of supernatants prior to cell lysis enables the evaluation of total drug disposition profiles resulting from complex interplays of intracellular pathways, which would provide high-throughput evaluation of drug disposition during drug discovery. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Method for determining virus inactivation during sludge treatment processes.
Traub, F; Spillmann, S K; Wyler, R
1986-01-01
A simple and reliable method is described which allows determination of virus inactivation rates during sludge treatment processes in situ. Bacteriophage f2 was adsorbed onto an electropositive membrane filter which was then sandwiched between two polycarbonate membranes with pores smaller than the virus diameter. The resulting sandwich was fixed in an open filter holder, and several such devices were connected before being exposed in sludge-digesting tanks. The device described prevented uncontrolled virus escape, but allowed direct contact of the various inactivating or stabilizing substances present in the environment tested with the virus adsorbed to the carrier membrane. After exposure to an environment, the surviving fraction of virus was eluted from the inner filter and determined by plaque counting. By using polycarbonate membranes without pores for sandwiching, the influence of temperature alone on virus inactivation could be measured. Thermophilic fermentation at 60 degrees C and at 65 kPa pressure led to a bacteriophage f2 titer reduction of 3.5 log10 units per h, whereas during thermophilic digestion at 54.5 degrees C titers decreased 1.2 log10 units per h. During mesophilic digestion an inactivation rate of only 0.04 log10 units per h was observed. Under these latter conditions, temperature had only a minor effect (19%) on virus inactivation, whereas at 54.5 degrees C during thermophilic digestion heat accounted for 32% of the total inactivation, and during thermophilic fermentation at 60 degrees C temperature and pressure were 100% responsible for virus denaturation. PMID:3532955
Oyeleke, Sabitiu A; Ajayi, Abayomi M; Umukoro, Solomon; Aderibigbe, A O; Ademowo, Olusegun George
2018-08-10
The stem bark of Theobroma cacao L. have been used for the treatment of inflammation, toothache, measles and malaria in ethnomedicine. However, the anti-inflammatory activity of Theobroma cacao stem bark has not been fully elucidated. The anti-inflammatory activity of Theobroma cacao stem bark ethanol extract and its fractions was investigated in this study. The anti-inflammatory effect of ethanol extract of Theobroma cacao stem bark (EETc) and its dichloromethane (DCMF), ethylacetate (EAF) and aqueous (AQF) fractions was investigated in erythrocytes membrane stabilizing assay and carrageenan-induced paw oedema. The anti-inflammatory activity of the EAF and EETc was investigated in carrageenan induced-granuloma air pouch models. The extract and fractions showed significant membrane stabilizing action on rat erythrocytes cell membrane. The oral administration of DCMF, EAF and AQF (250 mg/kg) significantly inhibited paw oedema induced by carrageenan (41.3%, 55.0% and 45.0%, respectively) compared to control group. The EAF (62.5, 125 and 250 mg/kg) and EETc (250 mg/kg) significantly inhibited exudates formation in carrageenan air pouch by (63.8, 71.5, 74.5, 64.3%) at 24 h and by (69.4%, 75.7%, 77.1% and 68.4%) at 72 h respectively. The EETc and EAF significantly reduced neutrophil counts, protein, nitrite, Tumor necrosis factor (TNF-α) and malondialdehyde (MDA) but increased reduced glutathione (GSH) levels compared to control in pouch exudates. The HPLC fingerprint of EAF revealed presence of caffeic acid, rutin, ferulic acid and morin. Ethanol extract of Theobroma cacao and its ethylacetate fraction demonstrated anti-inflammatory activity partly by reducing neutrophil migration and inflammatory mediator production. Copyright © 2018 Elsevier B.V. All rights reserved.
Nonlinear fractional waves at elastic interfaces
NASA Astrophysics Data System (ADS)
Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.
2017-11-01
We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.
Sadavarte, Rahul; Madadkar, Pedram; Filipe, Carlos Dm; Ghosh, Raja
2018-01-15
Monoclonal antibodies undergo various forms of chemical transformation which have been shown to cause loss in efficacy and alteration in pharmacokinetic properties of these molecules. Such modified antibody molecules are known as variants. They also display physical properties such as charge that are different from intact antibody molecules. However, the difference in charge is very subtle and separation based on it is quite challenging. Charge variants are usually separated using ion-exchange column chromatography or isoelectric focusing. In this paper, we report a rapid and scalable method for fractionating monoclonal antibody charge variants, based on the use of cation exchange laterally-fed membrane chromatography (LFMC). Starting with a sample of monoclonal antibody hIgG1-CD4, three well-resolved fractions were obtained using either pH or salt gradient. These fractions were identified as acidic, neutral and basic variants. Each of these fractions contained intact heavy and light chains and so antibody fragmentation had no role in variant generation. The separation was comparable to that using column chromatography but was an order of magnitude faster. Copyright © 2017 Elsevier B.V. All rights reserved.
Hauck, Stefanie M; Dietter, Johannes; Kramer, Roxane L; Hofmaier, Florian; Zipplies, Johanna K; Amann, Barbara; Feuchtinger, Annette; Deeg, Cornelia A; Ueffing, Marius
2010-10-01
Autoimmune uveitis is a blinding disease presenting with autoantibodies against eye-specific proteins as well as autoagressive T cells invading and attacking the immune-privileged target tissue retina. The molecular events enabling T cells to invade and attack the tissue have remained elusive. Changes in membrane protein expression patterns between diseased and healthy stages are especially interesting because initiating events of disease will most likely occur at membranes. Since disease progression is accompanied with a break-down of the blood-retinal barrier, serum-derived proteins mask the potential target tissue-related changes. To overcome this limitation, we used membrane-enriched fractions derived from retinas of the only available spontaneous animal model for the disease equine recurrent uveitis, and compared expression levels by a label-free LC-MSMS-based strategy to healthy control samples. We could readily identify a total of 893 equine proteins with 57% attributed to the Gene Ontology project term "membrane." Of these, 179 proteins were found differentially expressed in equine recurrent uveitis tissue. Pathway enrichment analyses indicated an increase in proteins related to antigen processing and presentation, TNF receptor signaling, integrin cell surface interactions and focal adhesions. Additionally, loss of retina-specific proteins reflecting decrease of vision was observed as well as an increase in Müller glial cell-specific proteins indicating glial reactivity. Selected protein candidates (caveolin 1, integrin alpha 1 and focal adhesion kinase) were validated by immunohistochemistry and tissue staining pattern pointed to a significant increase of these proteins at the level of the outer limiting membrane which is part of the outer blood-retinal barrier. Taken together, the membrane enrichment in combination with LC-MSMS-based label-free quantification greatly increased the sensitivity of the comparative tissue profiling and resulted in detection of novel molecular pathways related to equine recurrent uveitis.
1985-01-01
We have used quantitative electron microscope autoradiography to study uptake and distribution of arachidonate in HSDM1C1 murine fibrosarcoma cells and in EPU-1B, a mutant HSDM1C1 line defective in high affinity arachidonate uptake. Cells were labeled with [3H]arachidonate for 15 min, 40 min, 2 h, or 24 h. Label was found almost exclusively in cellular phospholipids; 92-96% of incorporated radioactivity was retained in cells during fixation and tissue processing. All incorporated radioactivity was found to be associated with cellular membranes. Endoplasmic reticulum (ER) contained the bulk of [3H]arachidonate at all time points in both cell types, while mitochondria, which contain a large portion of cellular membrane, were labeled slowly and to substantially lower specific activity. Plasma membrane (PM) also labeled slowly, achieving a specific activity only one-sixth that of ER at 15 min in HSDM1C1 cells (6% of total label) and one-third of ER in EPU-1B (10% of total label). Nuclear membrane (NM) exhibited the highest specific activity of labeling at 15 min in HSDM1C1 cells (twice that of ER) but was not preferentially labeled in the mutant. Over 24 h, PM label intensity increased to that of ER in both cell lines. However, NM activity diminished in HSDM1C1 cells by 24 h to a small fraction of that in ER. In response to agonists, HSDM1C1 cells release labeled arachidonate for eicosanoid synthesis most readily when they have been labeled for short times. Our results therefore suggest that NM and ER, sites of cyclooxygenase in murine fibroblasts, are probably sources for release of [3H]arachidonate, whereas PM and mitochondria are unlikely to be major sources of eicosanoid precursors. PMID:3926781
Abdallah, Cosette; Valot, Benoit; Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; van Tuinen, Diederik; Renaut, Jenny; Wipf, Daniel; Dumas-Gaudot, Eliane; Recorbet, Ghislaine
2014-08-28
Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting retrieved around one hundred proteins that displayed changes in abundance upon mycorrhizal establishment. The symbiosis-related membrane proteins that were identified mostly function in signaling/membrane trafficking and nutrient uptake regulation. Besides extending the coverage of the root membrane proteome of M. truncatula, new candidates involved in the symbiotic program emerged from the current study, which pointed out a dynamic reorganization of microsomal proteins during the accommodation of AM fungi within cortical cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Jianrong; Shen, Liguo; Zhang, Meijia; Hong, Huachang; He, Yiming; Liao, Bao-Qiang; Lin, Hongjun
2016-02-01
Concept of hydrophobicity always fails to accurately assess the interfacial interaction and membrane fouling, which calls for reliable parameters for this purpose. In this study, effects of contact angle on interfacial interactions related to membrane fouling were investigated based on thermodynamic analysis. It was found that, total interaction energy between sludge foulants and membrane monotonically decreases and increases with water and glycerol contact angle, respectively, indicating that these two parameters can be reliable indicators predicting total interaction energy and membrane fouling. Membrane roughness decreases interaction strength for over 20 times, and effects of membrane roughness on membrane fouling should consider water and glycerol contact angle on membrane. It was revealed existence of a critical water and glycerol contact angle for a given membrane bioreactor. Meanwhile, diiodomethane contact angle has minor effect on the total interaction, and cannot be regarded as an effective indicator assessing interfacial interactions and membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Protein aggregation induced during glass bead lysis of yeast
Papanayotou, Irene; Sun, Beimeng; Roth, Amy F.; Davis, Nicholas G.
2013-01-01
Yeast cell lysates produced by mechanical glass bead disruption are widely used in a variety of applications, including for the analysis of native function, e.g. protein–protein interaction, enzyme assays and membrane fractionations. Below, we report a striking case of protein denaturation and aggregation that is induced by this lysis protocol. Most of this analysis focuses on the type 1 casein kinase Yck2, which normally tethers to the plasma membrane through C-terminal palmitoylation. Surprisingly, when cells are subjected to glass bead disruption, non-palmitoylated, cytosolic forms of the kinase denature and aggregate, while membrane-associated forms, whether attached through their native palmitoyl tethers or through a variety of artificial membrane-tethering sequences, are wholly protected from denaturation and aggregation. A wider look at the yeast proteome finds that, while the majority of proteins resist glass bead-induced aggregation, a significant subset does, in fact, succumb to such denaturation. Thus, yeast researchers should be aware of this potential artifact when embarking on biochemical analyses that employ glass bead lysates to look at native protein function. Finally, we demonstrate an experimental utility for glass bead-induced aggregation, using its fine discrimination of membrane-associated from non-associated Yck2 forms to discern fractional palmitoylation states of Yck2 mutants that are partially defective for palmitoylation. PMID:20641011
Michelin, Adeline; Bittame, Amina; Bordat, Yann; Travier, Laetitia; Mercier, Corinne; Dubremetz, Jean-François; Lebrun, Maryse
2009-02-01
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.
Swadzba, Margarete E; Hauck, Stefanie M; Naim, Hassan Y; Amann, Barbara; Deeg, Cornelia A
2012-01-01
Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology.
Involvement of lipid rafts in adhesion-induced activation of Met and EGFR.
Lu, Ying-Che; Chen, Hong-Chen
2011-10-27
Cell adhesion has been shown to induce activation of certain growth factor receptors in a ligand-independent manner. However, the mechanism for such activation remains obscure. Human epidermal carcinoma A431 cells were used as a model to examine the mechanism for adhesion-induced activation of hepatocyte growth factor receptor Met and epidermal growth factor receptor (EGFR). The cells were suspended and replated on culture dishes under various conditions. The phosphorylation of Met at Y1234/1235 and EGFR at Y1173 were used as indicators for their activation. The distribution of the receptors and lipid rafts on the plasma membrane were visualized by confocal fluorescent microscopy and total internal reflection microscopy. We demonstrate that Met and EGFR are constitutively activated in A431 cells, which confers proliferative and invasive potentials to the cells. The ligand-independent activation of Met and EGFR in A431 cells relies on cell adhesion to a substratum, but is independent of cell spreading, extracellular matrix proteins, and substratum stiffness. This adhesion-induced activation of Met and EGFR cannot be attributed to Src activation, production of reactive oxygen species, and the integrity of the cytoskeleton. In addition, we demonstrate that Met and EGFR are independently activated upon cell adhesion. However, partial depletion of Met and EGFR prevents their activation upon cell adhesion, suggesting that overexpression of the receptors is a prerequisite for their self-activation upon cell adhesion. Although Met and EGFR are largely distributed in 0.04% Triton-insoluble fractions (i.e. raft fraction), their activated forms are detected mainly in 0.04% Triton-soluble fractions (i.e. non-raft fraction). Upon cell adhesion, lipid rafts are accumulated at the cell surface close to the cell-substratum interface, while Met and EGFR are mostly excluded from the membrane enriched by lipid rafts. Our results suggest for the first time that cell adhesion to a substratum may induce a polarized distribution of lipid rafts to the cell-substratum interface, which may allow Met and EGFR to be released from lipid rafts, thus leading to their activation in a ligand-independent manner.
Adam, Rosalyn M; Yang, Wei; Di Vizio, Dolores; Mukhopadhyay, Nishit K; Steen, Hanno
2008-06-05
Cholesterol-rich membrane microdomains known as lipid rafts have been implicated in diverse physiologic processes including lipid transport and signal transduction. Lipid rafts were originally defined as detergent-resistant membranes (DRMs) due to their relative insolubility in cold non-ionic detergents. Recent findings suggest that, although DRMs are not equivalent to lipid rafts, the presence of a given protein within DRMs strongly suggests its potential for raft association in vivo. Therefore, isolation of DRMs represents a useful starting point for biochemical analysis of lipid rafts. The physicochemical properties of DRMs present unique challenges to analysis of their protein composition. Existing methods of isolating DRM-enriched fractions involve flotation of cell extracts in a sucrose density gradient, which, although successful, can be labor intensive, time consuming and results in dilute sucrose-containing fractions with limited utility for direct proteomic analysis. In addition, several studies describing the proteomic characterization of DRMs using this and other approaches have reported the presence of nuclear proteins in such fractions. It is unclear whether these results reflect trafficking of nuclear proteins to DRMs or whether they arise from nuclear contamination during isolation. To address these issues, we have modified a published differential detergent extraction method to enable rapid DRM isolation that minimizes nuclear contamination and yields fractions compatible with mass spectrometry. DRM-enriched fractions isolated using the conventional or modified extraction methods displayed comparable profiles of known DRM-associated proteins, including flotillins, GPI-anchored proteins and heterotrimeric G-protein subunits. Thus, the modified procedure yielded fractions consistent with those isolated by existing methods. However, we observed a marked reduction in the percentage of nuclear proteins identified in DRM fractions isolated with the modified method (15%) compared to DRMs isolated by conventional means (36%). Furthermore, of the 21 nuclear proteins identified exclusively in modified DRM fractions, 16 have been reported to exist in other subcellular sites, with evidence to suggest shuttling of these species between the nucleus and other organelles. We describe a modified DRM isolation procedure that generates DRMs that are largely free of nuclear contamination and that is compatible with downstream proteomic analyses with minimal additional processing. Our findings also imply that identification of nuclear proteins in DRMs is likely to reflect legitimate movement of proteins between compartments, and is not a result of contamination during extraction.
Roubalova, Lenka; Vosahlikova, Miroslava; Brejchova, Jana; Sykora, Jan; Rudajev, Vladimir; Svoboda, Petr
2015-01-01
HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I) fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025-0.05% w/v), Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%), the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH) fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the "wobble in cone" model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye. Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy) is increased; affinity of response (potency) is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between δ-opioid receptors and G proteins.
Reverse-Selective Diffusion in Nanocomposite Membranes
NASA Astrophysics Data System (ADS)
Hill, Reghan J.
2006-06-01
The permeability of certain polymer membranes with impenetrable nanoinclusions increases with the particle volume fraction [T. C. Merkel , Science 296, 519 (2002)SCIEAS0036-807510.1126/science.1069580]. The discovery contradicts qualitative expectations based on Maxwell’s classical theory of conduction or diffusion in composites with homogeneous phases. This Letter presents a theory based on an hypothesis that polymer chains are repelled from the inclusions during membrane casting. The accompanying increase in free volume, and hence solute diffusivity, yields bulk transport properties that are in good agreement with experiments.
Porous Structure Design of Polymeric Membranes for Gas Separation
Zhang, Jinshui; Schott, Jennifer Ann; Mahurin, Shannon Mark; ...
2017-04-04
High-performance polymeric membranes for gas separation are of interest for molecular-level separations in industrial-scale chemical, energy and environmental processes. To overcome the inherent trade-off relationship between permeability and selectivity, the creation of permanent microporosity in polymeric matrices is highly desirable because the porous structures can provide a high fractional free volume to facilitate gas transport through the dense layer. In this feature article, recent developments in the formation of porous polymeric membranes and potential strategies for pore structure design are reviewed.
Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D.
2013-01-01
Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr258 + Ser259 motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation. PMID:23979140
Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D
2013-10-04
Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr(258) + Ser(259) motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation.
Antioxidant and Cytoprotective Activities of Fucus spiralis Seaweed on a Human Cell in Vitro Model
Pinteus, Susete; Silva, Joana; Alves, Celso; Horta, André; Thomas, Olivier P.; Pedrosa, Rui
2017-01-01
Antioxidants play an important role as Reactive Oxygen Species (ROS) chelating agents and, therefore, the screening for potent antioxidants from natural sources as potential protective agents is of great relevance. The main aim of this study was to obtain antioxidant-enriched fractions from the common seaweed Fucus spiralis and evaluate their activity and efficiency in protecting human cells (MCF-7 cells) on an oxidative stress condition induced by H2O2. Five fractions, F1–F5, were obtained by reversed-phase vacuum liquid chromatography. F3, F4 and F5 revealed the highest phlorotannin content, also showing the strongest antioxidant effects. The cell death induced by H2O2 was reduced by all fractions following the potency order F4 > F2 > F3 > F5 > F1. Only fraction F4 completely inhibited the H2O2 effect. To understand the possible mechanisms of action of these fractions, the cellular production of H2O2, the mitochondrial membrane potential and the caspase 9 activity were studied. Fractions F3 and F4 presented the highest reduction on H2O2 cell production. All fractions decreased both caspase-9 activity and cell membrane depolarization (except F1). Taken all together, the edible F. spiralis reveal that they provide protection against oxidative stress induced by H2O2 on the human MCF-7 cellular model, probably acting as upstream blockers of apoptosis. PMID:28146076
Bozhkova, V P; Budayova, M; Kvasnicka, P; Cigankova, N; Chorvat, D
1994-12-01
Regional differences in lateral diffusion rates of fluorescence-labeled proteins have been studied in the plasma membrane of dividing eggs of the loach (Misgurnus fossilis) by fluorescence recovery after photobleaching (FRAP). Apparent animal-vegetal differences in fluorescence intensity, lateral diffusion coefficients, and fractions of mobile proteins have been found, with all these quantities being higher in the animal pole region than in the yolk region. Cyclic changes in protein diffusion coefficients and mobile fractions during the first few cell cycles have also been recorded. Soon after the end of a cleavage, the diffusion coefficient reaches its minimal value and increases rapidly before the next cleavage.
Chemical Tools of Octopus maya during Crab Predation Are Also Active on Conspecifics.
Pech-Puch, Dawrin; Cruz-López, Honorio; Canche-Ek, Cindy; Campos-Espinosa, Gabriela; García, Elpidio; Mascaro, Maite; Rosas, Carlos; Chávez-Velasco, Daniel; Rodríguez-Morales, Sergio
2016-01-01
Octopus maya is a major socio-economic resource from the Yucatán Peninsula in Mexico. In this study we report for the first time the chemical composition of the saliva of O. maya and its effect on natural prey, i.e. the blue crab (Callinectes sapidus), the crown conch snail (Melongena corona bispinosa), as well as conspecifics. Salivary posterior glands were collected from octopus caught by local fishers and extracted with water; this extract paralyzed and predigested crabs when it was injected into the third pereiopod. The water extract was fractionated by membrane ultrafiltration with a molecular weight cut-off of 3 kDa leading to a metabolic phase (>3 kDa) and a neurotoxic fraction (<3 kDa). The neurotoxic fraction injected in the crabs caused paralysis and postural changes. Crabs recovered to their initial condition within two hours, which suggests that the effects of the neurotoxic fraction were reversible. The neurotoxic fraction was also active on O. maya conspecifics, partly paralyzing and sedating them; this suggests that octopus saliva might be used among conspecifics for defense and for reduction of competition. Bioguided separation of the neurotoxic fraction by chromatography led to a paralysis fraction and a relaxing fraction. The paralyzing activity of the saliva was exerted by amino acids, while the relaxing activity was due to the presence of serotonin. Prey-handling studies revealed that O. maya punctures the eye or arthrodial membrane when predating blue crabs and uses the radula to bore through crown conch shells; these differing strategies may help O. maya to reduce the time needed to handle its prey.
Active versus Passive Hard Disks against a Membrane: Mechanical Pressure and Instability.
Junot, G; Briand, G; Ledesma-Alonso, R; Dauchot, O
2017-07-14
We experimentally study the mechanical pressure exerted by a set of respectively passive isotropic and self-propelled polar disks onto two different flexible unidimensional membranes. In the case of the isotropic disks, the mechanical pressure, inferred from the shape of the membrane, is identical for both membranes and follows the equilibrium equation of state for hard disks. On the contrary, for the self-propelled disks, the mechanical pressure strongly depends on the membrane in use and thus is not a state variable. When self-propelled disks are present on both sides of the membrane, we observe an instability of the membrane akin to the one predicted theoretically for active Brownian particles against a soft wall. In that case, the integrated mechanical pressure difference across the membrane cannot be computed from the sole knowledge of the packing fractions on both sides, further evidence of the absence of an equation of state.
Perspective of Membrane Technology in Dairy Industry: A Review
Kumar, Pavan; Sharma, Neelesh; Ranjan, Rajeev; Kumar, Sunil; Bhat, Z. F.; Jeong, Dong Kee
2013-01-01
Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent. PMID:25049918
Analysis of Membrane Protein Topology in the Plant Secretory Pathway.
Guo, Jinya; Miao, Yansong; Cai, Yi
2017-01-01
Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.
Perspective of membrane technology in dairy industry: a review.
Kumar, Pavan; Sharma, Neelesh; Ranjan, Rajeev; Kumar, Sunil; Bhat, Z F; Jeong, Dong Kee
2013-09-01
Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent.
Apparatus for diffusion separation
Nierenberg, William A.; Pontius, Rex B.
1976-08-10
1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.
Arden, Catherine; Harbottle, Andrew; Baltrusch, Simone; Tiedge, Markus; Agius, Loranne
2004-09-01
The association of glucokinase with insulin secretory granules has been shown by cell microscopy techniques. We used MIN6 insulin-secretory cells and organelle fractionation to determine the effects of glucose on the subcellular distribution of glucokinase. After permeabilization with digitonin, 50% of total glucokinase remained bound intracellularly, while 30% was associated with the 13,000g particulate fraction. After density gradient fractionation of the organelles, immunoreactive glucokinase was distributed approximately equally between dense insulin granules and low-density organelles that cofractionate with mitochondria. Although MIN6 cells show glucose-responsive insulin secretion, glucokinase association with the granules and low-density organelles was not affected by glucose. Subfractionation of the insulin granule components by hypotonic lysis followed by sucrose gradient centrifugation showed that glucokinase colocalized with the granule membrane marker phogrin and not with insulin. PFK2 (6-phosphofructo-2-kinase-2/fructose-2,6-bisphosphatase)/FDPase-2, a glucokinase-binding protein, and glyceraldehyde phosphate dehydrogenase, which has been implicated in granule fusion, also colocalized with glucokinase after hypotonic lysis or detergent extaction of the granules. The results suggest that glucokinase is an integral component of the granule and does not translocate during glucose stimulation.
Lipase activities in castor bean endosperm during germinaion. [Ricinus communis; glyoxysomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muto, S.; Beevers, H.
1974-01-01
Two lipases were found in extracts from castor bean (Ricinus communis L.) endosperm. One, with optimal activity at pH 5.0 (acid lipase), was present in dry seeds and displayed high activity during the first 2 days of germination. The second, with an alkaline pH optimum (alkaline lipase), was particularly active during days 3 to 5. When total homogenates of endosperm were fractionated into fat layer, supernatant, and particulate fractions, the acid lipase was recovered in the fat layer, and the alkaline lipase was located primarily in the particulate fraction. Sucrose density gradient centrifugation showed that the alkaline lipase was locatedmore » mainly in glyoxysomes, with some 30 percent of the activity in the endoplasmic reticulum. When glyoxysomes were broken by osmotic shock and exposed to KCl, which solubilizes most of the enzymes, the alkaline lipase remained particulate and was recovered with the glyoxysomal ''ghosts'' at equilibrium density 1.21 g/cm/sup 3/ on the sucrose gradient. Association of the lipase with the glyoxysomal membrane was supported by the responses to detergents and to butanol. The alkaline lipase hydrolyzed only monosubstituted glycerols. The roles of the two lipases in lipid utilization during germination of castor bean are discussed.« less
Cell signalling and phospholipid metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, W.F.
1989-01-01
Our research for the past two years has involved the study of phosphoinositides and their potential role in regulating plant growth and development. Our initial goal was to document the sequence of events involved in inositol phospholipid metabolism in response to external stimuli. Our working hypothesis was that phosphatidylinositol bisphosphate (PIP/sub 2/) was in the plasma membrane of plants cells and would be hydrolyzed by phospholipase C to yield the second messengers inositol triphosphate (IP/sub 3/) and diacyglycerol (DAG) and that IP/sub 3/ would mobilize intracellular calcium as has been shown for animal cells. Our results with both carrot suspensionmore » culture cells and sunflower hypocotyl indicate that this paradigm is not the primary mechanism of signal transduction in these systems. We have observed very rapid, within 5 sec, stimulation of phosphatidylinositol monophosphate (PIP) kinase which resulted in an increase in PIP/sub 2/. However, there was no evidence for activation of phospholipase C. In addition, we have shown that PIP and PIP/sub 2/ can activate the plasma membrane ATPase. The results of these studies are described briefly in the paragraphs below. Inositol phospholipids are localized in distinct membrane fractions. If PIP and PIP/sub 2/ play a role in the transduction of external signals, they should be present in the plasma membrane. We used the fusogenic carrot suspension culture cells as a model system to study the distribution of inositol phospholipids in various membrane fractions and organelles. Cells were labeled 12 to 18 h with myo(2-/sup 3/H) inositol and the membranes were isolated by aqueous two-phase partitioning. The plasma membrane was enriched in PIP and PIP/sub 2/ compared to the intracellular membranes.« less
Yam, Xue Yan; Birago, Cecilia; Fratini, Federica; Di Girolamo, Francesco; Raggi, Carla; Sargiacomo, Massimo; Bachi, Angela; Berry, Laurence; Fall, Gamou; Currà, Chiara; Pizzi, Elisabetta; Breton, Catherine Braun; Ponzi, Marta
2013-01-01
Intracellular pathogens contribute to a significant proportion of infectious diseases worldwide. The successful strategy of evading the immune system by hiding inside host cells is common to all the microorganism classes, which exploit membrane microdomains, enriched in cholesterol and sphingolipids, to invade and colonize the host cell. These assemblies, with distinct biochemical properties, can be isolated by means of flotation in sucrose density gradient centrifugation because they are insoluble in nonionic detergents at low temperature. We analyzed the protein and lipid contents of detergent-resistant membranes from erythrocytes infected by Plasmodium falciparum, the most deadly human malaria parasite. Proteins associated with membrane microdomains of trophic parasite blood stages (trophozoites) include an abundance of chaperones, molecules involved in vesicular trafficking, and enzymes implicated in host hemoglobin degradation. About 60% of the identified proteins contain a predicted localization signal suggesting a role of membrane microdomains in protein sorting/trafficking. To validate our proteomic data, we raised antibodies against six Plasmodium proteins not characterized previously. All the selected candidates were recovered in floating low-density fractions after density gradient centrifugation. The analyzed proteins localized either to internal organelles, such as the mitochondrion and the endoplasmic reticulum, or to exported membrane structures, the parasitophorous vacuole membrane and Maurer's clefts, implicated in targeting parasite proteins to the host erythrocyte cytosol or surface. The relative abundance of cholesterol and phospholipid species varies in gradient fractions containing detergent-resistant membranes, suggesting heterogeneity in the lipid composition of the isolated microdomain population. This study is the first report showing the presence of cholesterol-rich microdomains with distinct properties and subcellular localization in trophic stages of Plasmodium falciparum. PMID:24045696
Moore, Eli K.; Hopmans, Ellen C.; Rijpstra, W. Irene C.; Sánchez-Andrea, Irene; Villanueva, Laura; Wienk, Hans; Schoutsen, Frans; Stams, Alfons J. M.; Sinninghe Damsté, Jaap S.
2015-01-01
Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress response of soil bacteria. PMID:26175720
Membrane fouling control using a rotary disk in a submerged anaerobic membrane sponge bioreactor.
Kim, Jungmin; Shin, Jaewon; Kim, Hyemin; Lee, Jung-Yeol; Yoon, Min-Hyuk; Won, Seyeon; Lee, Byung-Chan; Song, Kyung Guen
2014-11-01
Despite significant research efforts over the last few decades, membrane fouling in anaerobic membrane bioreactors (AnMBRs) remains an unsolved problem that increases the overall operational costs and obstructs the industrial applications. Herein, we developed a method for effectively controlling the membrane fouling in a sponge-submerged AnMBRs using an anaerobic rotary disk MBR (ARMBR). The disk rotation led the effective collision between the sponge and membrane surface; thus successfully enhanced the membrane permeability in the ARMBR. The effect of the disk rotational speed and sponge volume fraction on the membrane permeability and the relationship between the water flow direction and membrane permeability were investigated. The long-term feasibility was tested over 100days of synthetic wastewater treatment. As a result, stable and economical performance was observed without membrane replacement and washing. The proposed integrated rotary disk-supporting media appears to be a feasible and even beneficial option in the AnMBR technology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of SCAP N-glycosylation and Trafficking in Human Cells.
Cheng, Chunming; Guo, Jeffrey Yunhua; Geng, Feng; Wu, Xiaoning; Cheng, Xiang; Li, Qiyue; Guo, Deliang
2016-11-08
Elevated lipogenesis is a common characteristic of cancer and metabolic diseases. Sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription factors controlling the expression of genes important for the synthesis of cholesterol, fatty acids and phospholipids, are frequently upregulated in these diseases. In the process of SREBP nuclear translocation, SREBP-cleavage activating protein (SCAP) plays a central role in the trafficking of SREBP from the endoplasmic reticulum (ER) to the Golgi and in subsequent proteolysis activation. Recently, we uncovered that glucose-mediated N-glycosylation of SCAP is a prerequisite condition for the exit of SCAP/SREBP from the ER and movement to the Golgi. N-glycosylation stabilizes SCAP and directs SCAP/SREBP trafficking. Here, we describe a protocol for the isolation of membrane fractions in human cells and for the preparation of the samples for the detection of SCAP N-glycosylation and total protein by using western blot. We further provide a method to monitor SCAP trafficking by using confocal microscopy. This protocol is appropriate for the investigation of SCAP N-glycosylation and trafficking in mammalian cells.
Remmas, Nikolaos; Melidis, Paraschos; Zerva, Ioanna; Kristoffersen, Jon Bent; Nikolaki, Sofia; Tsiamis, George; Ntougias, Spyridon
2017-08-01
A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH 4 + -N. Exceptionally high β-glucosidase activities (6700-10,100Ug -1 ) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced β-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Infante, Rodney Elwood; Radhakrishnan, Arun
2017-01-01
Cells employ regulated transport mechanisms to ensure that their plasma membranes (PMs) are optimally supplied with cholesterol derived from uptake of low-density lipoproteins (LDL) and synthesis. To date, all inhibitors of cholesterol transport block steps in lysosomes, limiting our understanding of post-lysosomal transport steps. Here, we establish the cholesterol-binding domain 4 of anthrolysin O (ALOD4) as a reversible inhibitor of cholesterol transport from PM to endoplasmic reticulum (ER). Using ALOD4, we: (1) deplete ER cholesterol without altering PM or overall cellular cholesterol levels; (2) demonstrate that LDL-derived cholesterol travels from lysosomes first to PM to meet cholesterol needs, and subsequently from PM to regulatory domains of ER to suppress activation of SREBPs, halting cholesterol uptake and synthesis; and (3) determine that continuous PM-to-ER cholesterol transport allows ER to constantly monitor PM cholesterol levels, and respond rapidly to small declines in cellular cholesterol by activating SREBPs, increasing cholesterol uptake and synthesis. DOI: http://dx.doi.org/10.7554/eLife.25466.001 PMID:28414269
Membrane Transport in Isolated Vesicles from Sugarbeet Taproot 1
Briskin, Donald P.; Thornley, W. Robert; Wyse, Roger E.
1985-01-01
Sealed membrane vesicles were isolated from homogenates of sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI, and dextran gradient centrifugation. Relative to the KI-extracted microsomes, the content of plasma membranes, mitochondrial membranes, and Golgi membranes was much reduced in the final vesicle fraction. A component of ATPase activity that was inhibited by nitrate co-enriched with the capacity of the vesicles to form a steady state pH gradient during the purification procedure. This suggests that the nitrate-sensitive ATPase may be involved in driving H+-transport, and this is consistent with the observation that H+-transport, in the final vesicle fraction was inhibited by nitrate. Proton transport in the sugarbeet vesicles was substrate specific for ATP, insensitive to sodium vanadate and oligomycin but was inhibited by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide. The formation of a pH gradient in the vesicles was enhanced by halide ions in the sequence I− > Br− > Cl− while F− was inhibitory. These stimulatory effects occur from both a direct stimulation of the ATPase by anions and a reduction in the vesicle membrane potential. In the presence of Cl−, alkali cations reduce the pH gradient relative to that observed with bis-tris-propane, possibly by H+/alkali cation exchange. Based upon the properties of the H+-transporting vesicles, it is proposed that they are most likely derived from the tonoplast so that this vesicle preparation would represent a convenient system for studying the mechanism of transport at this membrane boundary. PMID:16664342
Gil, Carles; Dorca-Arévalo, Jonatan; Blasi, Juan
2015-01-01
Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction) and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3)-phosphate and phosphatidylinositol (5)-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.
Carson, S D
1996-04-01
Cultured fibroblasts treated with increasing concentrations of detergents expressed only encrypted levels of tissue factor activity (measured by fX activation in the presence of fVIIa), characteristic of undamaged cells, until each detergent reached a critical concentration at which the cryptic tissue factor activity was manifested. Beyond the narrow ranges of concentrations over which the detergents stimulated tissue factor activity, the detergents were inhibitory. Studies with Triton X-100 and octyl glucoside revealed that manifestation of tissue factor activity coincided with breakdown of the plasma membrane. The magnitude of the increased tissue factor activity differed among detergents, with octyl glucoside giving the largest response. The tissue factor that was active after Triton X-100 treatment remained mostly associated with the insoluble cell residue, whereas the concentration of octyl glucoside which stimulated activity released tissue factor activity into the supernatant. Radiolabeled antibody against human tissue factor was used to show that a small percentage of the total accessible tissue factor remained in the insoluble fraction after treatment with either non-ionic detergent. Chromatographic analysis of lipids extracted from cells treated with detergents and dansyl chloride showed dansyl-reactivity of phosphatidylserine on intact cells, and solubilization of membrane lipids at sublytic concentrations of detergents. These findings reveal that there is a critical level of detergent-induced membrane damage at which tissue factor activity is maximally expressed, in essentially an all-or-none manner. The results are consistent with a major role for phospholipid asymmetry in regulation of tissue factor specific activity, but require either maintenance of asymmetry during sublytic detergent perturbation of the plasma membrane or additional control mechanisms.
Saint-Pol, Agnès; Bauvy, Chantal; Codogno, Patrice; Moore, Stuart E.H.
1997-01-01
Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H–like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[α1-2]Man[α1-2]Man[α1-3][Man α1-6]Man[β14]GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse–chase incubations with d-[2- 3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse–chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3–4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 μM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes. PMID:9008702
Saint-Pol, A; Bauvy, C; Codogno, P; Moore, S E
1997-01-13
Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H-like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[alpha 1-2]Man[alpha 1-2]Man[alpha 1-3][Man alpha 1-6]Man[beta 1-4] GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse-chase incubations with D-[2-3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse-chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3-4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 microM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes.
Launikonis, Bradley S; Stephenson, D George
2002-01-01
The volume of the extracellular compartment (tubular system) within intact muscle fibres from cane toad and rat was measured under various conditions using confocal microscopy. Under physiological conditions at rest, the fractional volume of the tubular system (t-sysVol) was 1.38 ± 0.09 % (n = 17), 1.41 ± 0.09 % (n = 12) and 0.83 ± 0.07 % (n = 12) of the total fibre volume in the twitch fibres from toad iliofibularis muscle, rat extensor digitorum longus muscle and rat soleus muscle, respectively. In toad muscle fibres, the t-sysVol decreased by 30 % when the tubular system was fully depolarized and decreased by 15 % when membrane cholesterol was depleted from the tubular system with methyl-β-cyclodextrin but did not change as the sarcomere length was changed from 1.93 to 3.30 μm. There was also an increase by 30 % and a decrease by 25 % in t-sysVol when toad fibres were equilibrated in solutions that were 2.5-fold hypertonic and 50 % hypotonic, respectively. When the changes in total fibre volume were taken into consideration, the t-sysVol expressed as a percentage of the isotonic fibre volume did actually decrease as tonicity increased, revealing that the tubular system in intact fibres cannot be compressed below 0.9 % of the isotonic fibre volume. The results can be explained in terms of forces acting at the level of the tubular wall. These observations have important physiological implications showing that the tubular system is a dynamic membrane structure capable of changing its volume in response to the membrane potential, cholesterol depletion and osmotic stress but not when the sarcomere length is changed in resting muscle. PMID:11790823
Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.
Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying
2016-07-30
This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.
Integrin-like proteins are localized to plasma membrane fractions, not plastids, in Arabidopsis
NASA Technical Reports Server (NTRS)
Swatzell, L. J.; Edelmann, R. E.; Makaroff, C. A.; Kiss, J. Z.
1999-01-01
Integrins are a large family of integral membrane proteins that function in signal transduction in animal systems. These proteins are conserved in vertebrates, invertebrates, and fungi. Evidence from previous research suggests that integrin-like proteins may be present in plants as well, and that these proteins may function in signal transduction during gravitropism. In past studies, researchers have used monoclonal and polyclonal antibodies to localize beta 1 integrin-like proteins in plants. However, there is a disparity between data collected from these studies, especially since molecular weights obtained from these investigations range from 55-120 kDa for integrin-like proteins. To date, a complete investigation which employs all three basic immunolabeling procedures, immunoblotting, immunofluorescence microscopy, and immunogold labeling, in addition to extensive fractionation and exhaustive controls, has been lacking. In this paper, we demonstrate that use of a polyclonal antibody against the cytoplasmic domain of avian beta 1-integrin can produce potential artifacts in immunolocalization studies. However, these problems can be eliminated through use of starchless mutants or proper specimen preparation prior to electrophoresis. We also show that this antibody, when applied within the described parameters and with careful controls, identifies a large (100 kDa) integrin-like protein that is localized to plasma membrane fractions in Arabidopsis.
Barrientos, Genaro; Llanos, Paola; Hidalgo, Jorge; Bolaños, Pura; Caputo, Carlo; Riquelme, Alexander; Sánchez, Gina; Quest, Andrew F. G.; Hidalgo, Cecilia
2015-01-01
Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation–contraction (E–C) coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum (SR) calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not SR membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX) activity and protein content of NOX2 subunits (p47phox and gp91phox), implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs E–C coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged animals. PMID:25914646
Significant contribution of Archaea to extant biomass in marine subsurface sediments.
Lipp, Julius S; Morono, Yuki; Inagaki, Fumio; Hinrichs, Kai-Uwe
2008-08-21
Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells. Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (ref. 1) and 303 Pg (ref. 3) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem. Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells, are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.
Reese, Kristen L.; Aravindan, Rolands G.; Griffiths, Genevieve S.; Shao, Minghai; Wang, Yipei; Galileo, Deni S.; Atmuri, Vasantha; Triggs-Raine, Barbara L.; Martin-DeLeon, Patricia A.
2010-01-01
The molecular mechanisms underlying sperm penetration of the physical barriers surrounding the oocyte have not been completely delineated. Although neutral-active or “reproductive” hyaluronidases (hyases), exemplified by Sperm Adhesion Molecule 1 (SPAM1), are thought to be responsible for hyaluronan digestion in the egg vestments and for sperm-zona binding, their roles in mouse sperm have been recently questioned. Here we report that acidic “somatic” Hyaluronidase 3 (HYAL3) exists in two isoforms in human (~47 kDa, ~55 kDa) and mouse (~44, ~47kDa) sperm where it resides on the plasma membrane over the head and midpiece. Mouse isoforms are differentially distributed in the soluble (SAP), membrane (MBP), and acrosome-reacted (AR) fraction where they are most abundant. Comparisons of zymography of Hyal3 null and wild-type (WT) AR and MBP fractions show significant HYAL3 activity at pH 3 and 4, and less at 7. At pH 4, a second acid-active hyase band at ~57 kDa is present in the AR fraction. HYAL3 activity was confirmed using immunoprecipitated HYAL3 and spectrophotometry. In total proteins, hyase activity was higher at pH 6 than at 4 where Spam1 nulls had significantly (P<0.01) diminished activity, indicating that murine SPAM1 has acidic activity. Although fully fertile, Hyal3 null sperm showed delayed cumulus penetration and reduced acrosomal exocytosis. HYAL3, similar to SPAM1 with which it shares 74.6% structural similarity, exists in epididymal tissue/fluid from which it is acquired by caudal mouse sperm in vitro. Our results indicate for the first time the concerted activity of both neutral- and acid-active hyaluronidases in sperm. PMID:20586096
Zavaleta, Nelly; Kvistgaard, Anne Staudt; Graverholt, Gitte; Respicio, Graciela; Guija, Henry; Valencia, Norma; Lönnerdal, Bo
2011-11-01
The aim of the present study was to evaluate the efficacy of a milkfat globule membrane (MFGM)-enriched protein fraction in a complementary food, on diarrhea, anemia, and micronutrient status. A randomized, double-blind controlled design to study 550 infants, 6 to 11 months old, who received daily for 6 months a complementary food (40 g/day) with the protein source being either the MFGM protein fraction or skim milk proteins (control). Health and nutritional status of infants were examined monthly in the outpatient clinic; product intake, food patterns, and diarrhea morbidity were assessed by home visits twice per week. Hemoglobin and micronutrient status were measured at 0 and 6 months of intervention. Results are presented as the entire group and as 6 to 8 and 9 to 11 months subgroups. A total of 499 infants completed the study. Global prevalence of diarrhea was 3.84% and 4.37% in the MFGM group and control group, respectively (P < 0.05). Consumption of the MFGM protein fraction reduced episodes of bloody diarrhea (odds ratio 0.54; 95% confidence interval 0.31-0.93, P = 0.025) adjusting for anemia and potable water facilities as covariates. There were no differences between groups in anemia, serum ferritin, zinc, or folate. Addition of an MFGM-enriched protein fraction to complementary food had beneficial effects on diarrhea in infants and may thus help to improve the health of vulnerable populations.
Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H; Witwer, Kenneth W; Théry, Clotilde
2014-01-01
Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.
Zhang, L-Z; Zhang, X-R; Miao, Q-Z; Pei, L-X
2012-08-01
Fresh air ventilation is central to indoor environmental control. Total heat exchangers can be key equipment for energy conservation in ventilation. Membranes have been used for total heat exchangers for more than a decade. Much effort has been spent to achieve water vapor permeability of various membranes; however, relatively little attention has been paid to the selectivity of moisture compared with volatile organic compounds (VOCs) through such membranes. In this investigation, the most commonly used membranes, both hydrophilic and hydrophobic ones, are tested for their permeability for moisture and five VOCs (acetic acid, formaldehyde, acetaldehyde, toluene, and ethane). The selectivity of moisture vs. VOCs in these membranes is then evaluated. With a solution-diffusion model, the solubility and diffusivity of moisture and VOCs in these membranes are calculated. The resulting data could provide some reference for future material selection. Total heat exchangers are important equipment for fresh air ventilation with energy conservation. However, their implications for indoor air quality in terms of volatile organic compound permeation have not been known. The data in this article help us to clarify the impacts on indoor VOC levels of membrane-based heat exchangers. Guidelines for material selection can be obtained for future use total heat exchangers for building ventilation. © 2011 John Wiley & Sons A/S.
USDA-ARS?s Scientific Manuscript database
Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...
Webb, R; Troyan, T; Sherman, D; Sherman, L A
1994-01-01
Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes. Images PMID:8051004
van der Wal, Steffen; de Korne, Clarize M; Sand, Laurens L G; van Willigen, Danny M; Hogendoorn, Pancras C W; Szuhai, Karoly; van Leeuwen, Fijs W B; Buckle, Tessa
2018-06-04
Availability of a receptor for theranostic pre-targeting approaches was assessed using a novel "click" chemistry-based de-activatable fluorescence-quenching concept. Efficacy was evaluated in a cell-based model system that exhibits both membranous (available) and internalized (unavailable) receptor-fractions of the clinically relevant receptor chemokine receptor 4 (CXCR4). Proof of concept was based on a de-activatable tracer consisting out of a CXCR4 specific peptide functionalized with a Cy5 dye comprising a chemo-selective azide handle (N3-Cy5-AcTZ14011). Reaction with a Cy7 quencher dye (Cy7-DBCO) resulted in optically silent Cy7-["click"]-Cy5-AcTZ14011. In situ a >90% FRET-based reduction of signal intensity of N3-Cy5-AcTZ14011 (KD 222.4 ± 25.2 nM) was seen within minutes after quencher addition. In cells, discrimination between the membranous and internalized receptor-fraction could be made through quantitative assessment of quenching/internalization kinetics. As such, using this approach screening of membrane receptors and their applicability in receptor-(pre-)targeted theranostics can become straightforward. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uemura, Tatsuki; Ito, Shingo; Ohta, Yusuke; Tachikawa, Masanori; Wada, Takahito; Terasaki, Tetsuya; Ohtsuki, Sumio
2017-01-01
Cerebral creatine deficiency syndromes (CCDSs) are caused by loss-of-function mutations in creatine transporter (CRT, SLC6A8), which transports creatine at the blood-brain barrier and into neurons of the central nervous system (CNS). This results in low cerebral creatine levels, and patients exhibit mental retardation, poor language skills and epilepsy. We identified a novel human CRT gene missense mutation (c.1681 G>C, G561R) in Japanese CCDSs patients. The purpose of the present study was to evaluate the reduction of creatine transport in G561R-mutant CRT-expressing 293 cells, and to clarify the mechanism of its functional attenuation. G561R-mutant CRT exhibited greatly reduced creatine transport activity compared to wild-type CRT (WT-CRT) when expressed in 293 cells. Also, the mutant protein is localized mainly in intracellular membrane fraction, while WT-CRT is localized in plasma membrane. Western blot analysis revealed a 68 kDa band of WT-CRT protein in plasma membrane fraction, while G561R-mutant CRT protein predominantly showed bands at 55, 110 and 165 kDa in crude membrane fraction. The bands of both WT-CRT and G561R-mutant CRT were shifted to 50 kDa by N-glycosidase treatment. Our results suggest that the functional impairment of G561R-mutant CRT was probably caused by incomplete N-linked glycosylation due to misfolding during protein maturation, leading to oligomer formation and changes of cellular localization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosheverova, Vera V., E-mail: kosheverova_vera@incras.ru; Kamentseva, Rimma S., E-mail: rkamentseva@yandex.ru; St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034
Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time ofmore » slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.« less
Association of Many Regions of the Bacillus subtilis Chromosome with the Cell Membrane
Ivarie, Robert D.; Pène, Jacques J.
1973-01-01
Unsheared lysates of Bacillus subtilis 168T− containing uniformly labeled deoxyribonucleic acid (DNA) were exposed to varying doses of gamma rays to introduce double-strand scissions in the chromosome. From an estimate of the number-average molecular weight and the amount of DNA bound to membrane after irradiation, about 70 to 90 regions of the bacterial chromosome were detected in membrane fractions. Since this number was independent of the molecular weight of the DNA (i.e., the extent of fragmentation of the chromosome), it is thought to represent an upper limit in the number of membrane-binding sites per chromosome. PMID:4196245
Quissell, D O; Deisher, L M
1992-04-01
Rat submandibular and parotid gland exocytosis is primarily controlled by beta-adrenergic receptor stimulation. Although its precise role in the regulation of salivary gland exocytosis is not fully understood, protein phosphorylation, mediated by the activation of cAMP-dependent protein kinase, may be directly involved. Previous studies suggest that analogous 26-kDa integral membrane phosphoproteins may play a direct role in regulating exocytosis. Studies were here undertaken to purify and partially characterize both phosphoproteins. After endogenous phosphorylation with 32P, subcellular fraction and solubilization of the microsomal fraction in n-octyl beta-glucopyranoside, the 26-kDa integral membrane phosphoproteins were purified by high performance liquid chromatography (HPLC), followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electroelution of the proteins. Amino acid analysis indicated a significant number of serine amino acids: N-terminal sequence data demonstrated a high level of homology; and trypsin digestion followed by reversed-phase HPLC indicated the possibility of multiple phosphorylation sites.
Venediktova, N I; Kuznetsov, K V; Gritsenko, E N; Gulidova, G P; Mironova, G D
2012-01-01
Protein fraction able to induce K(+)-selective transport across bilayer lipid membrane was isolated from human blood plasma with the use of the detergent and proteolytic enzyme-free method developed at our laboratory. After addition of the studied sample to the artificial membrane in the presence of 100 mM KCl, a discrete current change was observed. No channel activity was recorded in the presence of calcium and sodium ions. Channel forming activity of fraction was observed only in the presence of K+. Using a threefold gradient of KCl in the presence of studied proteins the potassium-selective potential balanced by voltage of -29 mV was registered. This value is very close to the theoretical Nernst potential in this case. This means that the examined ion channel is cation-selective. According to data obtained with MS-MALDI-TOF/TOF and database NCBI three protein components were identified in isolated researched sample.
NASA Astrophysics Data System (ADS)
Jia, Lihui; Liang, Shuang; Sackett, Kelly; Xie, Li; Ghosh, Ujjayini; Weliky, David P.
2015-04-01
Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein 13CO nuclei and membrane lipid or cholesterol 2H and 31P nuclei. Specific 13CO labeling is used to enable unambiguous assignment and 2H labeling covers a small region of the lipid or cholesterol molecule. The 13CO-31P and 13CO-2H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz 2H π pulses is robust with respect to the 2H quadrupolar anisotropy. The 2H T1's are comparable to the longer dephasing times (τ's) and this leads to exponential rather than sigmoidal REDOR buildups. The 13CO-2H buildups are well-fitted to A × (1 - e-γτ) where A and γ are fitting parameters that are correlated as the fraction of molecules (A) with effective 13CO-2H coupling d = 3γ/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel β sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-α helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the β and α fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell membrane extracts and use of lower temperatures and dynamic nuclear polarization to reduce data acquisition times.
Turrion, María-Belén; Lafuente, Francisco; Aroca, María-José; López, Olga; Mulas, Rafael; Ruipérez, Cesar
2010-07-15
This study was conducted to investigate the long-term effects of fire on soil phosphorus (P) and to determine the efficiency of different procedures in extracting soil P forms. Different P forms were determined: labile forms (Olsen-P, Bray-P, and P extracted by anion exchange membranes: AEM-P); moderately labile inorganic and organic P, obtained by NaOH-EDTA extraction after removing the AEM-P fraction; and total organic and inorganic soil P. (31)P-NMR spectroscopy was used to characterize the structure of alkali-soluble P forms (orthophosphate, monoester, pyrophosphate, and DNA). The studied area was a Pinus pinaster forest located at Arenas de San Pedro (southern Avila, Spain). The soils were Dystric Cambisols over granites. Soil samples were collected at 0-2 cm, 2-5 cm, and 10-15 cm depths, two years after a fire in the burned area and in an adjacent unburned forest area. Fire increased the total N, organic C, total P, and organic and inorganic P content in the surface soil layer. In burned soil, the P extracted by the sequential procedure (AEM and NaOH+EDTA) was about 95% of the total P. Bray extraction revealed a fire-induced increase in the sorption surfaces. Analysis by chemical methods overestimated the organic P fraction in the EDTA-NaOH extract in comparison with the determination by ignition procedure. This overestimation was more important in the burned than unburned soil samples, probably due to humification promoted by burning, which increased P sorption by soil particles. The fire-induced changes on the structure of alkali-soluble P were an increase in orthophosphate-P and a decrease in monoester-P and DNA-P. Copyright 2010 Elsevier B.V. All rights reserved.
Identification of membrane proteome of Paracoccidioides lutzii and its regulation by zinc
de Curcio, Juliana Santana; Silva, Marielle Garcia; Silva Bailão, Mirelle Garcia; Báo, Sônia Nair; Casaletti, Luciana; Bailão, Alexandre Mello; de Almeida Soares, Célia Maria
2017-01-01
Aim: During infection development in the host, Paracoccidioides spp. faces the deprivation of micronutrients, a mechanism called nutritional immunity. This condition induces the remodeling of proteins present in different metabolic pathways. Therefore, we attempted to identify membrane proteins and their regulation by zinc in Paracoccidioides lutzii. Materials & methods: Membranes enriched fraction of yeast cells of P. lutzii were isolated, purified and identified by 2D LC–MS/MS detection and database search. Results & conclusion: Zinc deprivation suppressed the expression of membrane proteins such as glycoproteins, those involved in cell wall synthesis and those related to oxidative phosphorylation. This is the first study describing membrane proteins and the effect of zinc deficiency in their regulation in one member of the genus Paracoccidioides. PMID:29134119
Öjemalm, Karin; Halling, Katrin K.; Nilsson, IngMarie; von Heijne, Gunnar
2013-01-01
Summary α-helical integral membrane proteins critically depend on the correct insertion of their transmembrane α-helices into the lipid bilayer for proper folding, yet a surprisingly large fraction of the transmembrane α-helices in multispanning integral membrane proteins are not sufficiently hydrophobic to insert into the target membrane by themselves. How can such marginally hydrophobic segments nevertheless form transmembrane helices in the folded structure? Here, we show that a transmembrane helix with a strong orientational preference (Ncyt-Clum or Nlum-Ccyt) can both increase and decrease the hydrophobicity threshold for membrane insertion of a neighboring, marginally hydrophobic helix. This effect helps explain the ‘missing hydrophobicity’ in polytopic membrane proteins. PMID:22281052
Mitochondrial lipids in Bufo arenarum full-grown oocytes.
Gili, Valeria; Alonso, Telma S
2004-05-01
Both the content and composition of polar and neutral lipids from the mitochondrial fraction of ovarian full-grown Bufo arenarum oocytes were analysed in the present study. Triacylglycerols (TAG) represent 33% of the total lipids, followed by phosphatidylcholine (PC), free fatty acids (FFA) and phosphatidylethanolamine (PE). Diphosphatidylglycerol (DPG) or cardiolipin, a specific component of the inner mitochondrial membrane, represents about 4% of the total lipid content. Palmitic (16:0) and arachidonic (20:4n6) acids are the most abundant fatty acids in PC and PE, respectively. DPG is enriched in fatty acids with carbon chain lengths of 18, the principal component being linoleic acid. In phosphatidylinositol (PI), 20:4n6 and stearic acid (18:0) represent about 72 mol% of the total acyl group level. The main fatty acids in TAG are linoleic (18:2), oleic (18:1), and palmitic acids. The fatty acid composition of FFA and diacylglycerols (DAG) is similar, 16:0 being the most abundant acyl group. PE is the most unsaturated lipid and sphingomyelin (SM) has the lowest unsaturation index.
Bozhadze, A D; Vachnadze, V Iu; Dzhokhadze, M S; Berashvili, D T; Bakuridze, A Dzh
2013-04-01
In present article was studied the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia. Alkaloids were extracted from medicinal herbal material and separated by liquid extraction, diluents gas and a microfiltration through membrane equipment. The obtained A1, A2, A3 fractions were analyzed by GC/MS method; in all cases separation proceeds by the principle of extraction of the target alkaloids. It was concluded that the A1 is enriched with α and β cryptopins, and protopin, but homochelidonine and chelidonine are in low contents. As accompanying alkaloid is identified dihydrosanguinarine as an artifact; the A2 is enriched with the maximum contents of stylopine and protopin, but the poor contents of chelidonine and homochelidonine; the A3 is enriched with α and β cryptopins and maximum content of chelidonine. Extraction of alkaloids from Chelidonium majus L. proceeds selectively, but depending on a way of separation of the total alkaloids allows varying qualitative and quantitative consistence of the final product.
Protein Composition of Trypanosoma brucei Mitochondrial Membranes
Acestor, Nathalie; Panigrahi, Aswini K.; Ogata, Yuko; Anupama, Atashi; Stuart, Kenneth D.
2010-01-01
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane and matrix; each harboring specific functions and structures. In this study, we used mass spectrometry (LC-MS/MS) to characterize the protein composition of Trypanosoma brucei mitochondrial membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mitochondrial membranes with high confidence, and 106 with moderate to low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mitochondrial membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mitochondrial functions. PMID:19834910
Immunological properties of Micrococcus lysodeikticus membranes.
Fukui, Y; Nachbar, M S; Salton, M R
1971-01-01
Membranes of Micrococcus lysodeikticus possess antigens which are distinct from other cellular components such as cytoplasm, ribosomes, and cell walls. Only a few (two to three) components are found when dissociated membranes are examined by immunodiffusion and immunoelectrophoresis techniques. Membranes treated with 0.3% sodium dodecyl sulfate, 0.3% Triton X-100, trypsin, phospholipase A or C, or by sonic oscillation at pH 9.0, all showed the same pattern (three major bands) when examined against membrane antisera by immunoelectrophoresis. Immunological analysis of fractions isolated by sucrose gradient centrifugation or by polyacrylamide gel electrophoresis suggests that individual components cross-react. Antibodies to adenosine triphosphatase (EC 3.6.1.3) and fast-moving component are not removed by absorption with protoplasts. Removal of antibody to one of the membrane antigens by protoplast absorption indicated a surface location. Glutaraldehyde fixation of protoplasts resulted in the loss of membrane antigens detectable by immunodiffusion.
Duquesnoy, P; Sobrier, M L; Amselem, S; Goossens, M
1991-01-01
Mutations in the growth hormone receptor (GHR) gene can cause growth hormone (GH) resistance. Given the sequence homology between the extracellular domain of the GHR and a soluble GH-binding protein (GH-BP), it is remarkable that GH-BP binding activity is absent from the serum of patients with Laron-type GH insensitivity, a hereditary form of severe dwarfism. We have previously identified a mutation within the extracellular domain of this receptor, replacing phenylalanine by serine at position 96 of the mature protein, in a patient with Laron syndrome. We have now investigated the effect of this Phe----Ser substitution on hormone binding activity by expressing the total human GHR cDNA and mutant form in eukaryotic cells. The wild-type protein expressed was able to bind GH but no plasma membrane binding was detectable on cells transfected with the mutant cDNA; this was also the case of cells transfected with a Phe96----Ala mutant cDNA, suggesting that the lack of binding activity is not due to a posttranslational modification of serine. Examination of the variant proteins in subcellular fractions revealed the presence of specific GH binding activity in the lysosomal fraction, whereas immunofluorescence studies located mutant proteins in the cytosol. Our findings suggest that these mutant GHRs fail to follow the correct intracellular transport pathway and underline the potential importance of this phenylalanine residue, which is conserved among the GH, prolactin, and erythropoietin receptors that belong to the same cytokine receptor superfamily. Images PMID:1719554
Standaert, M L; Bandyopadhyay, G; Zhou, X; Galloway, L; Farese, R V
1996-07-01
Previous studies have provided conflicting findings on whether insulin activates certain, potentially important, phospholipid signaling systems in skeletal muscle preparations. In particular, insulin effects on the hydrolysis of phosphatidylcholine (PC) and subsequent activation of protein kinase C (PKC) have not been apparent in some studies. Presently, we examined insulin effects on phospholipid signaling systems, diacylglycerol (DAG) production, and PKC translocation/activation in L6 myotubes. We found that insulin provoked rapid increases in phospholipase D (PLD)-dependent hydrolysis of PC, as evidenced by increases in choline release and phosphatidylethanol production in cells incubated in the presence of ethanol. In association with PC-PLD activation, Rho, a small G protein that is known to activate PC-PLD activation, translocated from the cytosol to the membrane fraction in response to insulin treatment. PC-PLD activation was also accompanied by increases in total DAG production and increases in the translocation of both PKC enzyme activity and DAG-sensitive PKC-alpha, -beta, -delta, and -epsilon from the cytosol to the membrane fraction. A potential role for PKC or a related protein kinase in insulin action was suggested by the finding that RO 31-8220 inhibited both PKC enzyme activity and insulin-stimulated [3H]2-deoxyglucose uptake. Our findings provide the first evidence that insulin stimulates Rho translocation and activates PC-PLD in L6 skeletal muscle cells. Moreover, this signaling system appears to lead to increases in DAG/PKC signaling, which, along with other related signaling factors, may regulate certain metabolic processes, such as glucose transport, in these cells.
Priddy, Colleen M O'Kelly; Kajimoto, Masaki; Ledee, Dolena R; Bouchard, Bertrand; Isern, Nancy; Olson, Aaron K; Des Rosiers, Christine; Portman, Michael A
2013-02-01
Extracorporeal membrane oxygenation (ECMO) provides essential mechanical circulatory support necessary for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur, which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative metabolism and protein synthesis. We focused on the amino acid leucine and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart 1) the fractional contribution of leucine (FcLeucine) and pyruvate to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and 2) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 h of normal circulation or ECMO) and intracoronary infusion [(13)C(6),(15)N]-L-leucine (3.7 mM) alone or with [2-(13)C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (∼40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining 1) metabolic flexibility indicated by ability to respond to pyruvate and 2) a normal or increased capacity for global protein synthesis.
Isolation of Plant Photosystem II Complexes by Fractional Solubilization
Haniewicz, Patrycja; Floris, Davide; Farci, Domenica; Kirkpatrick, Joanna; Loi, Maria C.; Büchel, Claudia; Bochtler, Matthias; Piano, Dario
2015-01-01
Photosystem II (PSII) occurs in different forms and supercomplexes in thylakoid membranes. Using a transplastomic strain of Nicotiana tabacum histidine tagged on the subunit PsbE, we have previously shown that a mild extraction protocol with β-dodecylmaltoside enriches PSII characteristic of lamellae and grana margins. Here, we characterize residual granal PSII that is not extracted by this first solubilization step. Using affinity purification, we demonstrate that this PSII fraction consists of PSII-LHCII mega- and supercomplexes, PSII dimers, and PSII monomers, which were separated by gel filtration and functionally characterized. Our findings represent an alternative demonstration of different PSII populations in thylakoid membranes, and they make it possible to prepare PSII-LHCII supercomplexes in high yield. PMID:26697050
Zhang, Fang; Ding, Jing; Shen, Nan; Zhang, Yan; Ding, Zhaowei; Dai, Kun; Zeng, Raymond J
2013-12-01
Syngas fermentation is a promising route for resource recovery. Acetate is an important industrial chemical product and also an attractive precursor for liquid biofuels production. This study demonstrated high fraction acetate production from syngas (H₂ and CO₂) in a hollow-fiber membrane biofilm reactor, in which the hydrogen utilizing efficiency reached 100% during the operational period. The maximum concentration of acetate in batch mode was 12.5 g/L, while the acetate concentration in continuous mode with a hydraulic retention time of 9 days was 3.6 ± 0.1 g/L. Since butyrate concentration was rather low and below 0.1 g/L, the acetate fraction was higher than 99% in both batch and continuous modes. Microbial community analysis showed that the biofilm was dominated by Clostridium spp., such as Clostridium ljungdahlii and Clostridium drakei, the percentage of which was 70.5%. This study demonstrates a potential technology for the in situ utilization of syngas and valuable chemical production.
de Brum Vieira, Patrícia; Silva, Nícolas Luiz Feijó; Menezes, Camila Braz; da Silva, Márcia Vanusa; Silva, Denise Brentan; Lopes, Norberto Peporine; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana
2017-01-01
The infection caused by Trichomonas vaginalis is the most common but overlooked non-viral sexually transmitted disease worldwide. Treatment relies on one class of drugs, the 5-nitroimidazoles, but resistance is widespread. New drugs are urgently needed. We reported the effect of crude and purified saponin fractions of Manilkara rufula against Trichomonas vaginalis. The compound responsible for antitrichomonal activity was isolated and identified as an uncommon bidesmosic saponin, Mi-saponin C. This saponin eliminated parasite viability without toxicity against the human vaginal epithelial line (HMVII). In addition, the isolated saponin fraction improved the metronidazole effect against a metronidazole-resistant isolate and dramatically reduced the cytoadherence of T. vaginalis to human cells. Investigation of the mechanism of death showed that the saponin fraction induced the parasite death due to profound membrane damage, inducing a disturbance of intracellular content without nuclear damage. To the best of our knowledge, this is the first report of antitrichomonal activity in the bidesmosic saponins of Manilkara rufula.
Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula
Silva, Nícolas Luiz Feijó; Menezes, Camila Braz; da Silva, Márcia Vanusa; Silva, Denise Brentan; Lopes, Norberto Peporine; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana
2017-01-01
The infection caused by Trichomonas vaginalis is the most common but overlooked non-viral sexually transmitted disease worldwide. Treatment relies on one class of drugs, the 5-nitroimidazoles, but resistance is widespread. New drugs are urgently needed. We reported the effect of crude and purified saponin fractions of Manilkara rufula against Trichomonas vaginalis. The compound responsible for antitrichomonal activity was isolated and identified as an uncommon bidesmosic saponin, Mi-saponin C. This saponin eliminated parasite viability without toxicity against the human vaginal epithelial line (HMVII). In addition, the isolated saponin fraction improved the metronidazole effect against a metronidazole-resistant isolate and dramatically reduced the cytoadherence of T. vaginalis to human cells. Investigation of the mechanism of death showed that the saponin fraction induced the parasite death due to profound membrane damage, inducing a disturbance of intracellular content without nuclear damage. To the best of our knowledge, this is the first report of antitrichomonal activity in the bidesmosic saponins of Manilkara rufula. PMID:29190689
Obraztsov, V V; Selishcheva, A A; Danilov, V S
1975-01-01
The absorption velocity of ferricytochrome c on the surface of liposomes from egg lecithin containing 10% of lauric acid was studied. Liposomes were prepared from lecithin of three fractions which differed by the composition of fatty acids, unsaturation and the lipid interaction decreased at the temperature below T phi pi for lecithin fractions containing larger quantity of saturated fatty acids. An opposite tendency was observed for the temperature above T phi pi. In the phase transition region of lecithin of refractory fraction the local maximum of protein-lipid interaction was observed. Judging by the character of the changes of the values of energy activation, small additions of cholesterol in the membrane loosen the bilayer at the temperature below T phi pi and condense it at above T phi pi. The data obtained are discussed in terms of the effect of the state of molecule hydrophobic part on the velocity of protein-lipid interaction.
Li, Xu; Skillman, Lucy; Li, Dan; Ela, Wendell P
2018-04-15
Transparent exopolymer particles (TEP) and their precursors are gel-like acidic polysaccharide particles. Both TEP precursors and TEP have been identified as causal factors in fouling of desalination and water treatment systems. For comparison between studies, it is important to accurately measure the amount and fouling capacity of both components. However, the accuracy and recovery of the currently used Alcian blue based TEP measurement of different surrogates and different size fractions are not well understood. In this study, we compared Alcian blue based TEP measurements with a total carbohydrate assay method. Three surrogates; xanthan gum, pectin and alginic acid; were evaluated at different salinities. Total carbohydrate concentrations of particulates (>0.4 μm) and their precursors (<0.4 μm, >10 kDa) varied depending on water salinity and method of recovery. As xanthan gum is the most frequently used surrogate in fouling studies, TEP concentration is expressed as xanthan gum equivalents (mg XG eq /L) in this study. At a salinity of 35 mg/L sea salt, total carbohydrate assays showed a much higher particulate TEP fraction for alginic acid (38%) compared to xanthan gum (9%) and pectin (12%). The concentrations of particulate TEP therefore may only represent ∼10% of the total mass; while precursor TEP represents ∼80% of the total TEP. This highlights the importance of reporting both particulate and precursor TEP for membrane biofouling studies. The calculated concentrations of TEP and their precursors in seawater samples are also highly dependent on type of surrogate and resulting calibration factor. A linear correlation between TEP recovery and calibration factor was demonstrated in this study for all three surrogates. The relative importance and accuracy of measurement method, particulate size, surrogate type, and recovery are described in detail in this study. Copyright © 2017. Published by Elsevier Ltd.
Accatino, L; Pizarro, M; Solís, N; Koenig, C S
1995-01-18
This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.
Chemical Tools of Octopus maya during Crab Predation Are Also Active on Conspecifics
Pech-Puch, Dawrin; Cruz-López, Honorio; Canche-Ek, Cindy; Campos-Espinosa, Gabriela; García, Elpidio; Mascaro, Maite; Rosas, Carlos; Chávez-Velasco, Daniel; Rodríguez-Morales, Sergio
2016-01-01
Octopus maya is a major socio-economic resource from the Yucatán Peninsula in Mexico. In this study we report for the first time the chemical composition of the saliva of O. maya and its effect on natural prey, i.e. the blue crab (Callinectes sapidus), the crown conch snail (Melongena corona bispinosa), as well as conspecifics. Salivary posterior glands were collected from octopus caught by local fishers and extracted with water; this extract paralyzed and predigested crabs when it was injected into the third pereiopod. The water extract was fractionated by membrane ultrafiltration with a molecular weight cut-off of 3kDa leading to a metabolic phase (>3kDa) and a neurotoxic fraction (<3kDa). The neurotoxic fraction injected in the crabs caused paralysis and postural changes. Crabs recovered to their initial condition within two hours, which suggests that the effects of the neurotoxic fraction were reversible. The neurotoxic fraction was also active on O. maya conspecifics, partly paralyzing and sedating them; this suggests that octopus saliva might be used among conspecifics for defense and for reduction of competition. Bioguided separation of the neurotoxic fraction by chromatography led to a paralysis fraction and a relaxing fraction. The paralyzing activity of the saliva was exerted by amino acids, while the relaxing activity was due to the presence of serotonin. Prey-handling studies revealed that O. maya punctures the eye or arthrodial membrane when predating blue crabs and uses the radula to bore through crown conch shells; these differing strategies may help O. maya to reduce the time needed to handle its prey. PMID:26895025
Terpenoid Metabolism in Plastids 1
Camara, Bilal; Bardat, Françoise; Seye, Ababacar; D'Harlingue, Alain; Monéger, René
1982-01-01
The synthesis of α-tocopherol from 2,3-dimethylphytylquinol and S-adenosyl-l-methionine was achieved using Capsicum annuum fruit chromoplasts. The enzymes involved in the cyclization (2,3-dimethyl-phytylquinol cyclase) and methylation (S-adenosyl methionine:γ-tocopherol methyl-transferase) are both localized in the chromoplast membrane fraction (envelopes and/or a-chlorophyll lamellae), in contrast to the stroma fraction. PMID:16662717
Vanajothi, Ramar; Srinivasan, Pappu
2015-01-01
Luffa acutangula (Cucurbitaceae) is widely used as a traditional medicine in India and was reported to possess various pharmacological activities including its anti-proliferative effects. In this study, the bioactive compound of ethanolic extract of L. acutangula (LA) was isolated using bioassay-guided approach. Five major fractions were collected and evaluated for their anti-proliferative activity against non-small cell lung cancer cells (NCI-H460). Among the test fractions, the fraction LA/FII effectively decreased the growth of cancer cells with IC50 values of 10 µg/ml concentration. Furthermore, it significantly increased intracellular reactive oxygen species and decreased the mitochondrial membrane potential. The apoptogenic activity of fraction LA/FII was confirmed by cell shrinkage, membrane blebbing and formation of apoptotic bodies. A single bioactive compound was isolated from the active faction, LA/FII and subsequently identified as 1,8 dihydroxy-4-methylanthracene 9,10-dione (compound 1) by comparing its spectral data [Ultraviolet (UV), Infrared (IR), Nuclear magnetic resonance (NMR) and Electrospray Ionization-Mass Spectroscopy (ESI-MS)] with literature values. This is the first report on the isolation of compound 1 from this plant.
Curvature-Mediated Assembly of Janus Nanoparticles on Membrane Vesicles.
Bahrami, Amir Houshang; Weikl, Thomas R
2018-02-14
Besides direct particle-particle interactions, nanoparticles adsorbed to biomembranes experience indirect interactions that are mediated by the membrane curvature arising from particle adsorption. In this Letter, we show that the curvature-mediated interactions of adsorbed Janus particles depend on the initial curvature of the membrane prior to adsorption, that is, on whether the membrane initially bulges toward or away from the particles in our simulations. The curvature-mediated interaction can be strongly attractive for Janus particles adsorbed to the outside of a membrane vesicle, which initially bulges away from the particles. For Janus particles adsorbed to the vesicle inside, in contrast, the curvature-mediated interactions are repulsive. We find that the area fraction of the adhesive Janus particle surface is an important control parameter for the curvature-mediated interaction and assembly of the particles, besides the initial membrane curvature.
Kumar, Vineet; Prasad, Bhagwat; Patilea, Gabriela; Gupta, Anshul; Salphati, Laurent; Evers, Raymond; Hop, Cornelis E C A; Unadkat, Jashvant D
2015-02-01
To predict transporter-mediated drug disposition using physiologically based pharmacokinetic models, one approach is to measure transport activity and relate it to protein expression levels in cell lines (overexpressing the transporter) and then scale these to via in vitro to in vivo extrapolation (IVIVE). This approach makes two major assumptions. First, that the expression of the transporter is predominantly in the plasma membrane. Second, that there is a linear correlation between expression level and activity of the transporter protein. The present study was conducted to test these two assumptions. We evaluated two commercially available kits that claimed to separate plasma membrane from other cell membranes. The Qiagen Qproteome kit yielded very little protein in the fraction purported to be the plasma membrane. The Abcam Phase Separation kit enriched the plasma membrane but did not separate it from other intracellular membranes. For the Abcam method, the expression level of organic anion-transporting polypeptides (OATP) 1B1/2B1 and breast cancer resistance protein (BCRP) proteins in all subcellular fractions isolated from cells or human liver tissue tracked that of Na⁺-K⁺ ATPase. Assuming that Na⁺-K⁺ ATPase is predominantly located in the plasma membrane, these data suggest that the transporters measured are also primarily located in the plasma membrane. Using short hairpin RNA, we created clones of cell lines with varying degrees of OATP1B1 or BCRP expression level. In these clones, transport activity of OATP1B1 or BCRP was highly correlated with protein expression level (r² > 0.9). These data support the use of transporter expression level data and activity data from transporter overexpressing cell lines for IVIVE of transporter-mediated disposition of drugs. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Filter Membrane Effects on Water-Extractable Phosphorus Concentrations from Soil.
Norby, Jessica; Strawn, Daniel; Brooks, Erin
2018-03-01
To accurately assess P concentrations in soil extracts, standard laboratory practices for monitoring P concentrations are needed. Water-extractable P is a common analytical test to determine P availability for leaching from soils, and it is used to determine best management practices. Most P analytical tests require filtration through a filter membrane with 0.45-μm pore size to distinguish between particulate and dissolved P species. However, filter membrane type is rarely specified in method protocols, and many different types of membranes are available. In this study, three common filter membrane materials (polyether sulfone, nylon, and nitrocellulose), all with 0.45-μm pore sizes, were tested for analytical differences in total P concentrations and dissolved reactive P (DRP) concentrations in water extracts from six soils sampled from two regions. Three of the extracts from the six soil samples had different total P concentrations for all three membrane types. The other three soil extracts had significantly different total P results from at least one filter membrane type. Total P concentration differences were as great as 35%. The DRP concentrations in the extracts were dependent on filter type in five of the six soil types. Results from this research show that filter membrane type is an important parameter that affects concentrations of total P and DRP from soil extracts. Thus, membrane type should be specified in soil extraction protocols. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Electrostatics-driven shape transitions in soft shells.
Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica
2014-09-02
Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.
Miura, S; Tanaka, S; Yoshioka, M; Serizawa, H; Tashiro, H; Shiozaki, H; Imaeda, H; Tsuchiya, M
1992-01-01
The effect of total parenteral nutrition on nutrients absorption and glycoprotein changes of brush border membrane was examined in rat small intestine. In total parenteral nutrition rats, a marked decrease in activity of brush border enzymes was observed mainly in the proximal and middle segments of the intestine. Galactose perfusion of jejunal segment showed that hexose absorption was significantly inhibited, while intestinal absorption of glycine or dipeptide, glycylglycine was not significantly affected by total parenteral nutrition treatment. When brush border membrane glycoprotein profile was examined by [3H]-glucosamine or [3H]-fucose incorporation into jejunal loops, significant changes were observed in the glycoprotein pattern of brush border membrane especially in the high molecular weight range over 120 kDa after total parenteral nutrition treatment, suggesting strong dependency of glycoprotein synthesis on luminal substances. Molecular weight of sucrase isomaltase in brush border membrane detected by specific antibody showed no significant difference, however, in total parenteral nutrition and control rats. Also, molecular weight of specific sodium glucose cotransporter of intestinal brush border membrane detected by selective photoaffinity labelling was not altered in total parenteral nutrition rats. It may be that prolonged absence of oral food intake may produce significant biochemical changes in brush border membrane glycoprotein and absorptive capacity of small intestine, but these changes were not observed in all brush border membrane glycoproteins. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1582592
Lakhan, Ram; Said, Hamid M
2017-04-01
Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr 78 Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.
Lakhan, Ram
2017-01-01
Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr78Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway. PMID:28052864
Bulik, Dorota A; Olczak, Mariusz; Lucero, Hector A; Osmond, Barbara C; Robbins, Phillips W; Specht, Charles A
2003-10-01
In Saccharomyces cerevisiae most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in S. cerevisiae is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane.
Murata, Kazuhisa; Hayashi, Ken; Nakamura, Kei-ichiro
2018-01-01
Purpose To reevaluate the effect of internal limiting membrane peeling during vitrectomy on the Müller cell damage, we examined the ultrastructure of the internal limiting membrane by using focused ion beam/scanning electron microscopy (FIB/SEM). Methods A total of 12 internal limiting membranes obtained during surgery in both the macular hole and the idiopathic epiretinal membrane groups were processed for observation by FIB/SEM. Three-dimensional structures of the internal limiting membrane were analyzed. Results The number of cell fragments in the macular hole group was 5.07 ± 1.03 per unit area of internal limiting membrane (100 μm2). The total volume of cell fragments was 3.54 ± 1.24 μm3/100 μm2. In contrast, the number of cell fragments in the epiretinal membrane group was 12.85 ± 3.45/100 μm2, and the total volume of cell fragments was 10.45 ± 2.77 μm3/100 μm2. Data for both values were significantly higher than those observed in the macular hole group (P = 0.0024 and P = 0.0022, respectively, Mann-Whitney U test). No statistical difference was found for the mean volume of the cell fragment between the two groups. Conclusions All of the internal limiting membrane examined in this study showed cell fragments on the retinal surface of the internal limiting membrane. As compared with macular hole, epiretinal membrane exhibited a higher number and total volume of cell fragments, indicating that internal limiting membrane peeling for epiretinal membrane might have a higher risk of causing inner retinal damage. Translational Relevance FIB/SEM was a useful tool for three-dimensional quantitative analysis of the internal limiting membrane. PMID:29423341
Self assembly properties of primitive organic compounds
NASA Technical Reports Server (NTRS)
Deamer, D. W.
1991-01-01
A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic amphiphiles. One possibility is photochemical oxidation of hydrocarbons.
Membrane Composition Tunes the Outer Hair Cell Motor
NASA Astrophysics Data System (ADS)
Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.
2009-02-01
Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.