Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar
2013-07-01
Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.
Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart
2013-01-01
Background Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. Methodology/Principal Findings We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. Conclusions/Significance We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar. PMID:23536759
Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart
2013-01-01
Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0-4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2-13) OTUs0.03 and 7.9 (range 2-16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar.
Zabetakis, Kara M; Niño de Guzmán, Gabriela T; Torrents, Alba; Yarwood, Stephanie
2015-01-01
The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect.
Mullins, C R; Mamedova, L K; Carpenter, A J; Ying, Y; Allen, M S; Yoon, I; Bradford, B J
2013-09-01
The rumen microbial ecosystem is a critical factor that links diets to bovine physiology and productivity; however, information about dietary effects on microbial populations has generally been limited to small numbers of samples and qualitative assessment. To assess whether consistent shifts in microbial populations occur in response to common dietary manipulations in dairy cattle, samples of rumen contents were collected from 2 studies for analysis by quantitative real-time PCR (qPCR). In one study, lactating Holstein cows (n=8) were fed diets in which a nonforage fiber source replaced an increasing proportion of forages and concentrates in a 4×4 Latin square design, and samples of ruminal digesta were collected at 9-h intervals over 3 d at the end of each period. In the second study, lactating Holstein cows (n=15) were fed diets with or without the inclusion of a Saccharomyces cerevisiae fermentation product (SCFP) in a crossover design. In this study, rumen liquid and solid samples were collected during total rumen evacuations before and after feeding in a 42-h period. In total, 146 samples of ruminal digesta were used for microbial DNA isolation and analysis by qPCR. Validated primer sets were used to quantify total bacterial and anaerobic fungal populations as well as 12 well-studied bacterial taxa. The relative abundance of the target populations was similar to those previously reported. No significant treatment effects were observed for any target population. A significant interaction of treatment and dry matter intake was observed, however, for the abundance of Eubacterium ruminantium. Increasing dry matter intake was associated with a quadratic decrease in E. ruminantium populations in control animals but with a quadratic increase in E.ruminantium populations in cows fed SCFP. Analysis of sample time effects revealed that Fibrobacter succinogenes and fungal populations were more abundant postfeeding, whereas Ruminococcus albus tended to be more abundant prefeeding. Seven of the target taxa were more abundant in either the liquid or solid fractions of ruminal digesta. By accounting for the total mass of liquid and solid fractions in the rumen and the relative abundance of total bacteria in each fraction, it was estimated that 92% of total bacteria were found in the solid digesta fraction. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Microbial assessment of cabin air quality on commercial airliners
NASA Technical Reports Server (NTRS)
La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri
2005-01-01
The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.
Koseki, S; Itoh, K
2001-12-01
Effects of storage temperature (1, 5, and 10 degrees C) on growth of microbial populations (total aerobic bacteria, coliform bacteria, Bacillus cereus, and psychrotrophic bacteria) on acidic electrolyzed water (AcEW)-treated fresh-cut lettuce and cabbage were determined. A modified Gompertz function was used to describe the kinetics of microbial growth. Growth data were analyzed using regression analysis to generate "best-fit" modified Gompertz equations, which were subsequently used to calculate lag time, exponential growth rate, and generation time. The data indicated that the growth kinetics of each bacterium were dependent on storage temperature, except at 1 degrees C storage. At 1 degrees C storage, no increases were observed in bacterial populations. Treatment of vegetables with AcEW produced a decrease in initial microbial populations. However, subsequent growth rates were higher than on nontreated vegetables. The recovery time required by the reduced microbial population to reach the initial (treated with tap water [TW]) population was also determined in this study, with the recovery time of the microbial population at 10 degrees C being <3 days. The benefits of reducing the initial microbial populations on fresh-cut vegetables were greatly affected by storage temperature. Results from this study could be used to predict microbial quality of fresh-cut lettuce and cabbage throughout their distribution.
Status of microbial diversity in agroforestry systems in Tamil Nadu, India.
Radhakrishnan, Srinivasan; Varadharajan, Mohan
2016-06-01
Soil is a complex and dynamic biological system. Agroforestry systems are considered to be an alternative land use option to help and prevent soil degradation, improve soil fertility, microbial diversity, and organic matter status. An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The present study deals with the status of microbial diversity in agroforestry systems in Tamil Nadu. Eight soil samples were collected from different fields in agroforestry systems in Cuddalore, Villupuram, Tiruvanamalai, and Erode districts, Tamil Nadu. The number of microorganisms and physico-chemical parameters of soils were quantified. Among different microbial population, the bacterial population was recorded maximum (64%), followed by actinomycetes (23%) and fungi (13%) in different samples screened. It is interesting to note that the microbial population was positively correlated with the physico-chemical properties of different soil samples screened. Total bacterial count had positive correlation with soil organic carbon (C), moisture content, pH, nitrogen (N), and micronutrients such as Iron (Fe), copper (Cu), and zinc (Zn). Similarly, the total actinomycete count also showed positive correlations with bulk density, moisture content, pH, C, N, phosphorus (P), potassium (K), calcium (Ca), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn). It was also noticed that the soil organic matter, vegetation, and soil nutrients altered the microbial community under agroforestry systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In situ determination of the effects of lead and copper on cyanobacterial populations in microcosms.
Burnat, Mireia; Diestra, Elia; Esteve, Isabel; Solé, Antonio
2009-07-10
Biomass has been studied as biomarker to evaluate the effect of heavy metals on microbial communities. Nevertheless, the most important methodological problem when working with natural and artificial microbial mats is the difficulty to evaluate changes produced on microorganism populations that are found in thicknesses of just a few mm depth. Here, we applied for first time a recently published new method based on confocal laser scanning microscopy and image-program analysis to determine in situ the effect of Pb and Cu stress in cyanobacterial populations. The results showed that both in the microcosm polluted by Cu and by Pb, a drastic reduction in total biomass for cyanobacterial and Microcoleus sp. (the dominant filamentous cyanobacterium in microbial mats) was detected within a week. According to the data presented in this report, this biomass inspection has a main advantage: besides total biomass, diversity, individual biomass of each population and their position can be analysed at microscale level. CLSM-IA could be a good method for analyzing changes in microbial biomass as a response to the addition of heavy metals and also to other kind of pollutants.
Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso
2012-11-01
Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (<21.2 h) had no apparent effects on the microbial compositions of samples from most time points. Microbial community analysis revealed that among major core populations, Cyanobacteria, Methylobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae were more abundant in chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (<0.1% of total pyrosequences), which were likely present in source water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine.
Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.
2012-01-01
Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (<21.2 h) had no apparent effects on the microbial compositions of samples from most time points. Microbial community analysis revealed that among major core populations, Cyanobacteria, Methylobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae were more abundant in chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (<0.1% of total pyrosequences), which were likely present in source water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine. PMID:22941076
Microbial growth associated with granular activated carbon in a pilot water treatment facility.
Wilcox, D P; Chang, E; Dickson, K L; Johansson, K R
1983-01-01
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC. PMID:6625567
Treves, D S; Martin, M M
1994-08-01
Antibiotic feeding studies were conducted on the firebrat,Thermobia domestica (Zygentoma, Lepismatidae) to determine if the insect's gut cellulases were of insect or microbial origin. Firebrats were fed diets containing either nystatin, metronidazole, streptomycin, tetracycline, or an antibiotic cocktail consisting of all four antibiotics, and then their gut microbial populations and gut cellulase levels were monitored and compared with the gut microbial populations and gut cellulase levels in firebrats feeding on antibiotic-free diets. Each antibiotic significantly reduced the firebrat's gut micro-flora. Nystatin reduced the firebrat's viable gut fungi by 89%. Tetracycline and the antibiotic cocktail reduced the firebrat's viable gut bacteria by 81% and 67%, respectively, and metronidazole, streptomycin, tetracycline, and the antibiotic cocktail reduced the firebrat's total gut flora by 35%, 32%, 55%, and 64%, respectively. Although antibiotics significantly reduced the firebrat's viable and total gut flora, gut cellulase levels in firebrats fed antibiotics were not significantly different from those in firebrats on an antibiotic-free diet. Furthermore, microbial populations in the firebrat's gut decreased significantly over time, even in firebrats feeding on the antibiotic-free diet, without corresponding decreases in gut cellulase levels. Based on this evidence, we conclude that the gut cellulases of firebrats are of insect origin. This conclusion implies that symbiont-independent cellulose digestion is a primitive trait in insects and that symbiont-mediated cellulose digestion is a derived condition.
Lin, Chao-feng; Chen, Zhan-quan; Xue, Quan-hong; Lai, Hang-xian; Chen, Lai-sheng; Zhang, Deng-shan
2007-01-01
Sanjiangyuan region (the headstream of three rivers) in Qinghai Province of China is the highest and largest inland alpine wetland in the world. The study on the nutrient contents and microbial populations of aeolian sandy soils in this region showed that soil organic matter content increased with the evolution of aeolian sand dunes from un-stabilized to stabilized state, being 5.9 and 3.8 times higher in stabilized sand dune than in mobile and semi-stabilized sand dunes, respectively. Soil nitrogen and phosphorus contents increased in line with the amount of organic matter, while potassium content and pH value varied slightly. The microbial populations changed markedly with the development of vegetation, fixing of mobile sand, and increase of soil nutrients. The quantities of soil bacteria, fungi and actinomycetes were 4.0 and 2.8 times, 19.6 and 6.3 times, and 12.4 and 2.6 times higher in stabilized and semi-stabilized sand dunes than in mobile sand dune, respectively, indicating that soil microbial bio-diversity was increased with the evolution of aeolian sand dunes from mobile to stabilized state. In addition, the quantities of soil microbes were closely correlated with the contents of soil organic matter, total nitrogen, and available nitrogen and phosphorus, but not correlated with soil total phosphorus, total and available potassium, or pH value.
Wang, C; Liu, Q; Guo, G; Huo, W J; Pei, C X; Zhang, S L; Yang, W Z
2018-06-01
The objective of this study was to evaluate the effects of dietary crude protein (CP) levels and 2-methylbutyrate (MB) supplementation on ruminal fermentation, bacterial populations, microbial enzyme activity and urinary excretion of purine derivatives (PD) in Simmental steers. Eight ruminally cannulated Simmental steers, averaging 18 months of age and 465 ± 8.6 kg of body weight (BW), were used in a replicated 4 × 4 Latin square design by a 2 × 2 factorial arrangement. Low protein (98.5 g CP/kg dry matter [LP] or high protein (128.7 g CP/kg dry matter [HP]) diets were fed with MB supplementation (0 g [MB-] or 16.8 g steer -1 day -1 [MB+]). Steers were fed a total mixed ration with dietary corn straw to concentrate ratio of 50:50 (dry matter [DM] basis). The CP × MB interaction was observed for ruminal total VFA, molar proportions of acetate and propionate, acetate to propionate ratio, ammonia-N, effective degradability of neutral detergent fibre (NDF) and CP, microbial enzyme activity, bacterial populations and total PD excretion (p < .05). Ruminal pH decreased (p < .05), but ruminal total VFA concentration increased (p < .05) with increasing dietary CP level or MB supplementation. Acetate molar proportion increased (p = .043) with MB supplementation, but was not affected by dietary CP level. Propionate molar proportion decreased (p < .05) with increasing dietary CP level or MB supplementation. Consequently, acetate-to-propionate ratio increased (p = .001) with MB supplementation, but was not affected by dietary CP level. Ruminal ammonia-N content increased (p = .034) with increasing dietary CP level, but decreased (p = .012) with MB supplementation. The effective degradability of NDF and CP increased (p < .05) with increasing dietary CP level or MB supplementation. Microbial enzyme activity, bacterial populations and total PD excretion also increased (p < .05) with increasing dietary CP level or MB supplementation. The results indicated that ruminal fermentation, nutrient degradability, microbial enzyme activity, ruminal bacterial populations and microbial protein synthesis improved with increasing dietary CP level or MB supplementation in steers. © 2017 Blackwell Verlag GmbH.
Dar, Shabir A.; Kleerebezem, Robbert; Stams, Alfons J. M.; Kuenen, J. Gijs
2008-01-01
The microbial population structure and function of natural anaerobic communities maintained in lab-scale continuously stirred tank reactors at different lactate to sulfate ratios and in the absence of sulfate were analyzed using an integrated approach of molecular techniques and chemical analysis. The population structure, determined by denaturing gradient gel electrophoresis and by the use of oligonucleotide probes, was linked to the functional changes in the reactors. At the influent lactate to sulfate molar ratio of 0.35 mol mol−1, i.e., electron donor limitation, lactate oxidation was mainly carried out by incompletely oxidizing sulfate-reducing bacteria, which formed 80–85% of the total bacterial population. Desulfomicrobium- and Desulfovibrio-like species were the most abundant sulfate-reducing bacteria. Acetogens and methanogenic Archaea were mostly outcompeted, although less than 2% of an acetogenic population could still be observed at this limiting concentration of lactate. In the near absence of sulfate (i.e., at very high lactate/sulfate ratio), acetogens and methanogenic Archaea were the dominant microbial communities. Acetogenic bacteria represented by Dendrosporobacter quercicolus-like species formed more than 70% of the population, while methanogenic bacteria related to uncultured Archaea comprising about 10–15% of the microbial community. At an influent lactate to sulfate molar ratio of 2 mol mol−1, i.e., under sulfate-limiting conditions, a different metabolic route was followed by the mixed anaerobic community. Apparently, lactate was fermented to acetate and propionate, while the majority of sulfidogenesis and methanogenesis were dependent on these fermentation products. This was consistent with the presence of significant levels (40–45% of total bacteria) of D. quercicolus-like heteroacetogens and a corresponding increase of propionate-oxidizing Desulfobulbus-like sulfate-reducing bacteria (20% of the total bacteria). Methanogenic Archaea accounted for 10% of the total microbial community. PMID:18305937
Linking Toluene Degradation with Specific Microbial Populations in Soil
Hanson, Jessica R.; Macalady, Jennifer L.; Harris, David; Scow, Kate M.
1999-01-01
Phospholipid fatty acid (PLFA) analysis of a soil microbial community was coupled with 13C isotope tracer analysis to measure the community’s response to addition of 35 μg of [13C]toluene ml of soil solution−1. After 119 h of incubation with toluene, 96% of the incorporated 13C was detected in only 16 of the total 59 PLFAs (27%) extracted from the soil. Of the total 13C-enriched PLFAs, 85% were identical to the PLFAs contained in a toluene-metabolizing bacterium isolated from the same soil. In contrast, the majority of the soil PLFAs (91%) became labeled when the same soil was incubated with [13C]glucose. Our study showed that coupling 13C tracer analysis with PLFA analysis is an effective technique for distinguishing a specific microbial population involved in metabolism of a labeled substrate in complex environments such as soil. PMID:10583996
NASA Astrophysics Data System (ADS)
Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party
2011-12-01
The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum Proteobacteria) at 8%, and Formosa (phylum Bacteroidetes) at 7%. These lineages support a paradigm suggesting the importance of fermentation in the subsurface. However, this study extends the predicted range for fermentation below the shallow subsurface and into organic carbon limited marine sediments. Other previously characterized subsurface active populations from environments with higher organic carbon concentrations do not show similar levels of reduced diversity or predominance of fermentative populations. This study further emphasizes the spatial variability of microbial populations in the deep subsurface and highlights the need for continued exploration.
Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin
2016-01-01
Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.
Evaluation of microbial dynamics during post-consumption food waste composting.
Awasthi, Sanjeev Kumar; Wong, Jonathan W C; Li, Jiao; Wang, Quan; Zhang, Zengqiang; Kumar, Sunil; Awasthi, Mukesh Kumar
2018-03-01
The objective of present study was to evaluate the efficacy of bacterial consortium to boost the microbial population and enzyme activities during post-consumption food waste (PCFWs) composting. Three treatments of PCFWs mixed with saw dust and 10% zeolite (dry weight basis) was design, where treatments T-2 and T-3 were applied with two distinctive bacterial consortium, respectively, while T-1 was served as control. The results showed that total aerobic proteolytic, amylolytic, cellulolytic, oil degrading and total aerobic bacteria populations were significantly higher in treatment T2 and T3 than T1. Consequently, the selected hydrolytic enzymes were also higher in T2 and T3 than T1, whose apparently gave the interesting information about rate of decomposition and end product stability. Furthermore, T2 and T3 showed significant correlations between the enzymatic activities and microbial population with other physico-chemical parameters. Based on germination assays and CO 2 -C evolution rate, T2 and T3 were considered phytotoxic free and highly stable final compost on day 56. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abbasian, Firouz; Lockington, Robin; Palanisami, Thavamani; Megharaj, Mallavarapu; Naidu, Ravi
2016-01-01
Since crude oil contamination is one of the biggest environmental concerns, its removal from contaminated sites is of interest for both researchers and industries. In situ bioremediation is a promising technique for decreasing or even eliminating crude oil and hydrocarbon contamination. However, since these compounds are potentially toxic for many microorganisms, high loads of contamination can inhibit the microbial community and therefore reduce the removal rate. Therefore, any strategy with the ability to increase the microbial population in such circumstances can be of promise in improving the remediation process. In this study, multiwall carbon nanotubes were employed to support microbial growth in sediments contaminated with crude oil. Following spiking of fresh water sediments with different concentrations of crude oil alone and in a mixture with carbon nanotubes for 30days, the microbial profiles in these sediments were obtained using FLX-pyrosequencing. Next, the ratios of each member of the microbial population in these sediments were compared with those values in the untreated control sediment. This study showed that combination of crude oil and carbon nanotubes can increase the diversity of the total microbial population. Furthermore, these treatments could increase the ratios of several microorganisms that are known to be effective in the degradation of hydrocarbons. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of different sources of physically effective fiber on rumen microbial populations.
Shaw, C N; Kim, M; Eastridge, M L; Yu, Z
2016-03-01
Physically effective fiber is needed by dairy cattle to prevent ruminal acidosis. This study aimed to examine the effects of different sources of physically effective fiber on the populations of fibrolytic bacteria and methanogens. Five ruminally cannulated Holstein cows were each fed five diets differing in physically effective fiber sources over 15 weeks (21 days/period) in a Latin Square design: (1) 44.1% corn silage, (2) 34.0% corn silage plus 11.5% alfalfa hay, (3) 34.0% corn silage plus 5.1% wheat straw, (4) 36.1% corn silage plus 10.1% wheat straw, and (5) 34.0% corn silage plus 5.5% corn stover. The impact of the physically effective fiber sources on total bacteria and archaea were examined using denaturing gradient gel electrophoresis. Specific real-time PCR assays were used to quantify total bacteria, total archaea, the genus Butyrivibrio, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and three uncultured rumen bacteria that were identified from adhering ruminal fractions in a previous study. No significant differences were observed among the different sources of physical effective fiber with respect to the microbial populations quantified. Any of the physically effective fiber sources may be fed to dairy cattle without negative impact on the ruminal microbial community.
Large-scale distribution of microbial and viral populations in the South Atlantic Ocean.
De Corte, Daniele; Sintes, Eva; Yokokawa, Taichi; Lekunberri, Itziar; Herndl, Gerhard J
2016-04-01
Viruses are abundant, diverse and dynamic components of the marine environments and play a significant role in the ocean biogeochemical cycles. To assess potential variations in the relation between viruses and microbes in different geographic regions and depths, viral and microbial abundance and production were determined throughout the water column along a latitudinal transect in the South Atlantic Ocean. Path analysis was used to examine the relationships between several abiotic and biotic parameters and the different microbial and viral populations distinguished by flow cytometry. The depth-integrated contribution of microbial and viral abundance to the total microbial and viral biomass differed significantly among the different provinces. Additionally, the virus-to-microbe ratio increased with depth and decreased laterally towards the more productive regions. Our data revealed that the abundance of phytoplankton and microbes is the main controlling factor of the viral populations in the euphotic and mesopelagic layers, whereas in the bathypelagic realm, viral abundance was only weakly related to the biotic and abiotic variables. The relative contribution of the three viral populations distinguished by flow cytometry showed a clear geographical pattern throughout the water column, suggesting that these populations are composed of distinct taxa able to infect specific hosts. Overall, our data indicate the presence of distinct microbial patterns along the latitudinal transect. This variability is not limited to the euphotic layer but also detectable in the meso- and bathypelagic layers. © 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Effects of simulated acid rain on microbial characteristics in a lateritic red soil.
Xu, Hua-qin; Zhang, Jia-en; Ouyang, Ying; Lin, Ling; Quan, Guo-ming; Zhao, Ben-liang; Yu, Jia-yu
2015-11-01
A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids.
Ducey, T F; Johnson, P R; Shriner, A D; Matheny, T A; Hunt, P G
2013-01-01
Riparian buffer zones are important for both natural and developed ecosystems throughout the world because of their ability to retain nutrients, prevent soil erosion, protect aquatic environments from excessive sedimentation, and filter pollutants. Despite their importance, the microbial community structures of riparian buffer zones remains poorly defined. Our objectives for this study were twofold: first, to characterize the microbial populations found in riparian buffer zone soils; and second, to determine if microbial community structure could be linked to denitrification enzyme activity (DEA). To achieve these objectives, we investigated the microbial populations of a riparian buffer zone located downslope of a pasture irrigated with swine lagoon effluent, utilizing DNA sequencing of the 16S rDNA, DEA, and quantitative PCR (qPCR) of the denitrification genes nirK, nirS, and nosZ. Clone libraries of the 16S rDNA gene were generated from each of twelve sites across the riparian buffer with a total of 986 partial sequences grouped into 654 operational taxonomic units (OTUs). The Proteobacteria were the dominant group (49.8% of all OTUs), with the Acidobacteria also well represented (19.57% of all OTUs). Analysis of qPCR results identified spatial relationships between soil series, site location, and gene abundance, which could be used to infer both incomplete and total DEA rates.
NASA Astrophysics Data System (ADS)
Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia
2014-05-01
Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community development which was soil horizon specific and its effects on soil microbial activity may impact on nutrient cycling.
Lee, Sang-im; Lee, Hyunna; Jablonski, Piotr G.; Choe, Jae Chun
2017-01-01
Urban environments present novel and challenging habitats to wildlife. In addition to well-known difference in abiotic factors between rural and urban environments, the biotic environment, including microbial fauna, may also differ significantly. In this study, we aimed to compare the change in microbial abundance on eggshells during incubation between urban and rural populations of a passerine bird, the Eurasian Magpie (Pica pica), and examine the consequences of any differences in microbial abundances in terms of hatching success and nestling survival. Using real-time PCR, we quantified the abundances of total bacteria, Escherichia coli/Shigella spp., surfactin-producing Bacillus spp. and Candida albicans on the eggshells of magpies. We found that urban magpie eggs harboured greater abundances of E. coli/Shigella spp. and C. albicans before incubation than rural magpie eggs. During incubation, there was an increase in the total bacterial load, but a decrease in C. albicans on urban eggs relative to rural eggs. Rural eggs showed a greater increase in E. coli/Shigella spp. relative to their urban counterpart. Hatching success of the brood was generally lower in urban than rural population. Nestling survival was differentially related with the eggshell microbial abundance between urban and rural populations, which was speculated to be the result of the difference in the strength of the interaction among the microbes. This is the first demonstration that avian clutches in urban and rural populations differ in eggshell microbial abundance, which can be further related to the difference in hatching success and nestling survival in these two types of environments. We suggest that future studies on the eggshell microbes should investigate the interaction among the microbes, because the incubation and/or environmental factors such as urbanization or climate condition can influence the dynamic interactions among the microbes on the eggshells which can further determine the breeding success of the parents. PMID:28953940
Lee, Sang-Im; Lee, Hyunna; Jablonski, Piotr G; Choe, Jae Chun; Husby, Magne
2017-01-01
Urban environments present novel and challenging habitats to wildlife. In addition to well-known difference in abiotic factors between rural and urban environments, the biotic environment, including microbial fauna, may also differ significantly. In this study, we aimed to compare the change in microbial abundance on eggshells during incubation between urban and rural populations of a passerine bird, the Eurasian Magpie (Pica pica), and examine the consequences of any differences in microbial abundances in terms of hatching success and nestling survival. Using real-time PCR, we quantified the abundances of total bacteria, Escherichia coli/Shigella spp., surfactin-producing Bacillus spp. and Candida albicans on the eggshells of magpies. We found that urban magpie eggs harboured greater abundances of E. coli/Shigella spp. and C. albicans before incubation than rural magpie eggs. During incubation, there was an increase in the total bacterial load, but a decrease in C. albicans on urban eggs relative to rural eggs. Rural eggs showed a greater increase in E. coli/Shigella spp. relative to their urban counterpart. Hatching success of the brood was generally lower in urban than rural population. Nestling survival was differentially related with the eggshell microbial abundance between urban and rural populations, which was speculated to be the result of the difference in the strength of the interaction among the microbes. This is the first demonstration that avian clutches in urban and rural populations differ in eggshell microbial abundance, which can be further related to the difference in hatching success and nestling survival in these two types of environments. We suggest that future studies on the eggshell microbes should investigate the interaction among the microbes, because the incubation and/or environmental factors such as urbanization or climate condition can influence the dynamic interactions among the microbes on the eggshells which can further determine the breeding success of the parents.
Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin
2016-01-01
Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73–0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41–95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs. PMID:26761709
Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population
Abdullah, Norhani; Oskoueian, Armin
2013-01-01
This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β-glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation. PMID:24175289
USDA-ARS?s Scientific Manuscript database
This study investigated the effects of ultraviolet-C (UV-C) light applied to both sides of mushrooms on microbial loads and product quality during storage for 21 days at 4 C. Microflora populations, color, antioxidant activity, total phenolics, and ascorbic acid were measured at 1, 7, 14 and 21 days...
Microbial examination of anaerobic sludge adaptation to animal slurry.
Moset, V; Cerisuelo, A; Ferrer, P; Jimenez, A; Bertolini, E; Cambra-López, M
2014-01-01
The objective of this study was to evaluate changes in the microbial population of anaerobic sludge digesters during the adaptation to pig slurry (PS) using quantitative real-time polymerase chain reaction (qPCR) and qualitative scanning electron microscopy (SEM). Additionally, the relationship between microbial parameters and sludge physicochemical composition and methane yield was examined. Results showed that the addition of PS to an unadapted thermophilic anaerobic digester caused an increase in volatile fatty acids (VFA) concentration, a decrease in removal efficiency and CH4 yield. Additionally, increases in total bacteria and total archaea were observed using qPCR. Scanning electron micrographs provided a general overview of the sludge's cell morphology, morphological diversity and degree of organic matter degradation. A change in microbial morphotypes from homogeneous cell morphologies to a higher morphological diversity, similar to that observed in PS, was observed with the addition of PS by SEM. Therefore, the combination of qPCR and SEM allowed expanding the knowledge about the microbial adaptation to animal slurry in thermophilic anaerobic digesters.
The Environment and the Microbial Ecology of Human Skin
McBride, Mollie E.; Duncan, W. Christopher; Knox, J. M.
1977-01-01
Microbial flora of the skin of three human population groups representing different natural environments was examined quantitatively and qualitatively to determine whether environmental differences in temperature and humidity can influence the microbial flora of normal skin. Five anatomical skin sites - hands, back, axillae, groin, and feet - were sampled from 10 subjects working in a high-humidity, high-temperature environment, 10 subjects from a low-temperature, high-humidity environment, and 10 subjects working in a moderate-temperature and low-humidity environment. Bacterial populations were significantly larger from the back, axillae, and feet in individuals from the high-temperature and high-humidity environment as compared to the moderate-temperature, low-humidity environment. High humidity and low temperature had no significant effect on total populations, but this group showed a higher frequency of isolation of fungi, and gram-negative bacteria from the back and feet. Although there was an indication that increase in the environmental humidity could result in an increased frequency of isolation of gram-negative bacteria, there was no evidence that an increase in either temperature or humidity altered the relative proportions of gram-negative bacteria in the predominantly gram-positive microbial flora found on normal skin. It was concluded that, although climatic changes may cause fluctation in microbial populations from certain sites, they are not a major influence on the ecology of the microbial flora of normal skin in the natural environment. The variables introduced by studying individuals in their natural environment and the influence of these on the results are discussed. PMID:16345214
Soil microbial diversity in the vicinity of desert shrubs.
Saul-Tcherkas, Vered; Unc, Adrian; Steinberger, Yosef
2013-04-01
Water and nutrient availability are the major limiting factors of biological activity in arid and semiarid ecosystems. Therefore, perennial plants have developed different ecophysiological adaptations to cope with harsh conditions. The chemical profile of the root exudates varies among plant species and this can induce variability in associated microbial populations. We examined the influence of two shrubs species, Artemisia sieberi and Noaea mucronata, on soil microbial diversity. Soil samples were collected monthly, from December 2006 to November 2007, near canopies of both shrubs (0-10-cm depth). Samples were used for abiotic tests and determination of soil bacterial diversity. No significant differences were found in the abiotic variables (soil moisture, total organic matter, and total soluble nitrogen (TSN)) between soil samples collected from under the two shrubs during the study period. No obvious differences in the Shannon-Weaver index, evenness values, or total phylogenetic distances were found for the soil microbial communities. However, detailed denaturing gradient gel electrophoresis (DGGE) clustering as well as taxonomic diversity analyses indicated clear shifts in the soil microbial community composition. These shifts were governed by seasonal variability in water availability and, significantly, by plant species type.
Phylogenetic perspective and the search for life on earth and elsewhere
NASA Technical Reports Server (NTRS)
Pace, Norman R.
1989-01-01
Any search for microbial life on Mars cannot rely upon cultivation of indigenous organisms. Only a minority of even terrestrial organisms that are observed in mixed, naturally-occurring microbial populations can be cultivated in the laboratory. Consequently, methods are being developed for analyzing the phylogenetic affiliations of the constituents of natural microbial populations without the need for their cultivation. This is more than an exercise in taxonomy, for the extent of phylogenetic relatedness between unknown and known organisms is some measure of the extent of their biochemical commonalities. In one approach, total DNA is isolated from natural microbial populations and 16S rRNA genes are shotgun cloned for rapid sequence determinations and phylogenetic analyses. A second approach employs oligodeoxynucleotide hybridization probes that bind to phylogenetic group-specific sequences in 16S rRNA. Since each actively growing cell contains about 104 ribosomes, the binding of the diagnostic probes to single cells can be visualized by radioactivity or fluorescence. The application of these methods and the use of in situ cultivation techniques is illustrated using submarine hydrothermal vent communities. Recommendations are made regarding planning toward future Mars missions.
NASA Astrophysics Data System (ADS)
Biddle, J.; Leon, Z. R.; McCargar, M.; Drew, J.
2016-12-01
The benthic environments of coral reefs are heavily shaped by physiochemical factors, but also the ecological interactions of the animals and plants in the reef ecosystem. Microbial populations may be shared between the ecosystem of sediments, seagrasses and reef fish, however it is unknown to what degree. We investigated the potential connections between the microbiomes of sediments, seagrass blades and roots (Syringodium isoetifolium), Surgeonfish (A. nigricauda, Acanthurinae sp. unknown, C. striatus) and Parrotfish (C. spinidens) guts in reef areas of Fiji. We contrasted these with sediment samples from the Florida Keys and ocean water microbiomes from the Atlantic, Pacific and Indian Oceans. In general, we see a higher diversity of sediment microbial communities in Fiji compared to the Florida Keys. However, many of the same taxa are shared in these chemically similar environments, whereas the ocean water environments are completely distinct with few overlapping groups. We were able to show connectivity of a core microbiome between seagrass, fish and sediments in Fiji, including identifying a potential environmental reservoir of a surgeonfish symbiont, Epulopiscum. Finally, we show that fish guts have different microbial populations from crop to hindgut, and that microbial populations differ based on food source. The connection of these ecosystems suggest that the total microbiome of these environments may vary as their animal inhabitants shift in a changing ocean.
Cerrillo, Míriam; Viñas, Marc; Bonmatí, August
2017-03-01
Thermophilic anaerobic digestion (AD) of pig slurry coupled to a microbial electrolysis cell (MEC) with a recirculation loop was studied at lab-scale as a strategy to increase AD stability when submitted to organic and nitrogen overloads. The system performance was studied, with the recirculation loop both connected and disconnected, in terms of AD methane production, chemical oxygen demand removal (COD) and volatile fatty acid (VFA) concentrations. Furthermore, the microbial population was quantitatively and qualitatively assessed through DNA and RNA-based qPCR and high throughput sequencing (MiSeq), respectively to identify the RNA-based active microbial populations from the total DNA-based microbial community composition both in the AD and MEC reactors under different operational conditions. Suppression of the recirculation loop reduced the AD COD removal efficiency (from 40% to 22%) and the methane production (from 0.32 to 0.03 m 3 m -3 d -1 ). Restoring the recirculation loop led to a methane production of 0.55 m 3 m -3 d -1 concomitant with maximum MEC COD and ammonium removal efficiencies of 29% and 34%, respectively. Regarding microbial analysis, the composition of the AD and MEC anode populations differed from really active microorganisms. Desulfuromonadaceae was revealed as the most active family in the MEC (18%-19% of the RNA relative abundance), while hydrogenotrophic methanogens (Methanobacteriaceae) dominated the AD biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aceves-Diez, Angel E; Estrada-Castañeda, Kelly J; Castañeda-Sandoval, Laura M
2015-07-01
The aim of this research was to investigate the potential of a nutrient-rich organic waste, namely the cell-free supernatant of Bacillus thuringiensis (BtS) gathered from fermentation, as a biostimulating agent to improve and sustain microbial populations and their enzymatic activities, thereby assisting in the bioremediation of chlorpyrifos-contaminated soil at a high dose (70 mg kg(-1)). Experiments were performed for up to 80 d. Chlorpyrifos degradation and its major metabolic product, 3,5,6-trichloro-2-pyridinol (TCP), were quantified by high-performance liquid chromatography (HPLC); total microbial populations were enumerated by direct counts in specific medium; and fluorescein diacetate (FDA) hydrolysis was measured as an index of soil microbial activity. Throughout the experiment, there was higher chlorpyrifos degradation in soil supplemented with BtS (83.1%) as compared to non-supplemented soil. TCP formation and degradation occurred in all soils, but the greatest degradation (30.34%) was observed in soil supplemented with BtS. The total microbial populations were significantly improved by supplementation with BtS. The application of chlorpyrifos to soil inhibited the enzymatic activity; however, this negative effect was counteracted by BtS, inducing an increase of approximately 16% in FDA hydrolysis. These results demonstrate the potential of B. thuringiensis supernatant as a suitable biostimulation agent for enhancing chlorpyrifos and TCP biodegradation in chlorpyrifos-contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei
2017-02-01
Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p < 0.05) under elevated CO 2 relative to ambient CO 2 ; however, l-asparaginase activity decreased. Addionally, elevated CO 2 alone affected soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p < 0.05) enhanced the removal ratio of Cd and Pb in rhizosphere soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of the microbial population on the flavor of the soft-bodied cheese Torta del Casar.
Ordiales, Elena; Martín, Alberto; Benito, María José; Hernández, Alejandro; Ruiz-Moyano, Santiago; Córdoba, María de Guía
2013-09-01
The purpose of this work was to investigate the influence of the spontaneous microbial population on the flavor of Torta del Casar cheese. A total of 16 batches of cheeses with different microbial qualities were used. Their physicochemical and microbial characteristics were evaluated during ripening and then related with the volatile compounds, taste, and flavor properties of the finished cheeses. Acids were the most abundant volatile compounds, followed by alcohols and carbonyls. The amount of acetic acid and several alcohols were linked to cheeses with higher counts of lactic acid bacteria (LAB), whereas Enterobacteriaceae counts were associated with semivolatile fatty acids. The gram-positive catalase-positive cocci counts were correlated with esters and methyl ketones. Although the role of the LAB in the flavor development of Torta del Casar is the most relevant, other microbial groups are necessary to impart the flavor of the cheese and to minimize the possible off-flavor derived from excessive concentrations of LAB metabolites, such as acetic acid. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Allee effect: the story behind the stabilization or extinction of microbial ecosystem.
Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun
2017-03-01
A population exhibiting Allee effect shows a positive correlation between population fitness and population size or density. Allee effect decides the extinction or conservation of a microbial population and thus appears to be an important criterion in population ecology. The underlying factor of Allee effect that decides the stabilization and extinction of a particular population density is the threshold or the critical density of their abundance. According to Allee, microbial populations exhibit a definite, critical or threshold density, beyond which the population fitness of a particular population increases with the rise in population density and below it, the population fitness goes down with the decrease in population density. In particular, microbial population displays advantageous traits such as biofilm formation, expression of virulence genes, spore formation and many more only at a high population density. It has also been observed that microorganisms exhibiting a lower population density undergo complete extinction from the residual microbial ecosystem. In reference to Allee effect, decrease in population density or size introduces deleterious mutations among the population density through genetic drift. Mutations are carried forward to successive generations resulting in its accumulation among the population density thus reducing its microbial fitness and thereby increasing the risk of extinction of a particular microbial population. However, when the microbial load is high, the chance of genetic drift is less, and through the process of biofilm formation, the cooperation existing among the microbial population increases that increases the microbial fitness. Thus, the high microbial population through the formation of microbial biofilm stabilizes the ecosystem by increasing fitness. Taken together, microbial fitness shows positive correlation with the ecosystem conservation and negative correlation with ecosystem extinction.
Microbial diversity and dynamics during methane production from municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706; Wolfe, Georgia L., E-mail: gwolfe@wisc.edu
2013-10-15
Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing ofmore » 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.« less
Ebrahimi, Mahdi; Rajion, Mohamed Ali; Adeyemi, Kazeem Dauda; Jafari, Saeid; Jahromi, Mohammad Faseleh; Oskoueian, Ehsan; Meng, Goh Yong; Ghaffari, Morteza Hosseini
2017-02-01
Revealing the ruminal fermentation patterns and microbial populations as affected by dietary n-6:n-3 PUFA ratio would be useful for further clarifying the role of the rumen in the lipid metabolism of ruminants. The objective of the present study was to investigate the effects of dietary n-6:n-3 PUFA ratios on fermentation characteristics, fatty acid (FA) profiles, and microbial populations in the rumen of goats. A total of twenty-one goats were randomly assigned to three dietary treatments with different n-6:n-3 PUFA ratios of 2.27:1 (low ratio, LR), 5.01:1 (medium ratio, MR), and 10.38:1 (high ratio, HR). After 100 days of feeding, all goats were slaughtered. Dietary n-6:n-3 PUFA ratios had no effect (P > 0.05) on rumen pH and NH 3 N concentration. Goats fed HR diet had lower (P < 0.05) propionate and total volatile fatty acids and higher (P < 0.05) butyrate compared with those fed the MR and LR diets. The proportion of C18:0 decreased (P < 0.05) as dietary n-6:n-3 PUFA ratios increased. The proportions of C18:1 trans-11, C18:2n-6, cis-9 trans-11 CLA, and C20:4n-6 were greater in the HR goats compared with the MR and LR goats. Lowering dietary n-6:n-3 PUFA ratios enhanced (P < 0.05) the proportion of C18:3n-3 and total n-3 PUFA in the rumen fluid of goats. The populations of R. albus and R. flavefaciens decreased (P < 0.05) as the n-6:n-3 PUFA ratios increased in diet. Diet had no effect (P > 0.05) on the ruminal populations of F. succinogenes, total bacteria, methanogens, total protozoa, Entiodinium, and Holotrich. The population of B. fibrisolvens was lower (P < 0.05) in the LR goats compared with the MR and HR goats. It was concluded that HR would increase the concentration of cis-9 trans-11 CLA and C18:1 trans-11 in the rumen. However, LR whould decrease the B. fibrisolvens population, which is involved in the BH process in the rumen. Further research is needed to evaluate the potential role and contribution of rumen microbiome in the metabolism of FA in the rumen.
Microbial-meiofaunal interrelationships in coastal sediments of the Red Sea.
El-Serehy, Hamed A; Al-Rasheid, Khaled A; Al-Misned, Fahad A; Al-Talasat, Abdul Allah R; Gewik, Mohamed M
2016-05-01
Population density and biomass of bacteria and meiofauna were investigated seasonally in the sediments of the north-western bank of Red Sea. Samples of sediments were collected seasonally from three different stations to determine microphytobenthic biomass (chlorophyll a), protein, lipid, carbohydrate, and total organic matter concentrations. These investigations revealed that microbial components tended to increase their dominancy, whereas sensitive meiofauna were extremely reduced during the entire study period. Thus a very low density of the total meiofauna (with an annual average of 109 ± 26 ind./10 cm(2)) was recorded whilst the benthic microbial population densities exhibited higher values (ranging from 0.31 ± 0.02 × 10(8) to 43.67 ± 18.62 × 10(8)/g dry sediment). These changes in the relative importance analysis of benthic microbial components versus meiofaunal ones seem to be based on the impact of organic matter accumulation on the function and structure of these benthic communities. Proteins, lipids and carbohydrates showed very low concentration values, and the organic matter mostly consisted of carbohydrates, reflecting lower nutritional values for benthic fauna in general and meiofauna in particular. The distribution of microbial and meiofaunal communities seems to be dependent on the quality of the organic matter rather than on its quantity. Total organic matter concentrations varied between 5.8 and 7.6 mg/g, with organic carbon accounting for only 32% of the total organic matter. Chlorophyll a attained very low values, fluctuating between 0.11 and 0.56 μg/g, indicating the oligotrophy of the studied area. The very low concentration of chlorophyll a in the Red Sea sediment suggests that the sedimentary organic matter, heterotrophic bacteria and/or protozoa constitute an alternative resource that is consumed by meiofauna when algae are less abundant. Protozoa, therefore, represent the "missing link in bacteria-meiofauna interaction in the Red Sea marine sediment ecosystem.
Vanwonterghem, Inka; Jensen, Paul D; Rabaey, Korneel; Tyson, Gene W
2016-09-01
Our understanding of the complex interconnected processes performed by microbial communities is hindered by our inability to culture the vast majority of microorganisms. Metagenomics provides a way to bypass this cultivation bottleneck and recent advances in this field now allow us to recover a growing number of genomes representing previously uncultured populations from increasingly complex environments. In this study, a temporal genome-centric metagenomic analysis was performed of lab-scale anaerobic digesters that host complex microbial communities fulfilling a series of interlinked metabolic processes to enable the conversion of cellulose to methane. In total, 101 population genomes that were moderate to near-complete were recovered based primarily on differential coverage binning. These populations span 19 phyla, represent mostly novel species and expand the genomic coverage of several rare phyla. Classification into functional guilds based on their metabolic potential revealed metabolic networks with a high level of functional redundancy as well as niche specialization, and allowed us to identify potential roles such as hydrolytic specialists for several rare, uncultured populations. Genome-centric analyses of complex microbial communities across diverse environments provide the key to understanding the phylogenetic and metabolic diversity of these interactive communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
[Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].
Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei
2015-05-01
Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.
Distribution of microbial physiologic types in an aquifer contaminated by crude oil
Bekins, B.A.; Godsy, E.M.; Warren, E.
1999-01-01
We conducted a plume-scale study of the microbial ecology in the anaerobic portion of an aquifer contaminated by crude-oil compounds. The data provide insight into the patterns of ecological succession, microbial nutrient demands, and the relative importance of free-living versus attached microbial populations. The most probable number (MPN) method was used to characterize the spatial distribution of six physiologic types: aerobes, denitrifiers, iron-reducers, heterotrophic fermenters, sulfate-reducers, and methanogens. Both free-living and attached numbers were determined over a broad cross-section of the aquifer extending horizontally from the source of the plume at a nonaqueous oil body to 66 m downgradient, and vertically from above the water table to the base of the plume below the water table. Point samples from widely spaced locations were combined with three closely spaced vertical profiles to create a map of physiologic zones for a cross-section of the plume. Although some estimates suggest that less than 1% of the subsurface microbial population can be grown in laboratory cultures, the MPN results presented here provide a comprehensive qualitative picture of the microbial ecology at the plume scale. Areas in the plume that are evolving from iron-reducing to methanogenic conditions are clearly delineated and generally occupy 25-50% of the plume thickness. Lower microbial numbers below the water table compared to the unsaturated zone suggest that nutrient limitations may be important in limiting growth in the saturated zone. Finally, the data indicate that an average of 15% of the total population is suspended.
Microbial ecological associations in the surface sediments of Bohai strait
NASA Astrophysics Data System (ADS)
Wang, Bin; Liu, Hongmei; Tang, Haitian; Hu, Xiaoke
2017-09-01
Microbial communities play key roles in the marine ecosystem. Despite a few studies on marine microbial communities in deep straits, ecological associations among microbial communities in the sediments of shallow straits have not been fully investigated. The Bohai Strait in northern China (average depth less than 20 m) separates the Bohai Sea from the Yellow Sea and has organic-rich sediments. In this study, in the summer of 2014, six stations across the strait were selected to explore the taxonomic composition of microbial communities and their ecological associations. The four most abundant classes were Gammaproteobacteria, Deltaproteobacteria, Bacilli and Flavobacteriia. Temperature, total carbon, depth, nitrate, fishery breeding and cold water masses influenced the microbial communities, as suggested by representational difference and composition analyses. Network analysis of microbial associations revealed that key families included Flavobacteriaceae, Pirellulaceae and Piscirickettsiaceae. Our findings suggest that the families with high phylogenetic diversity are key populations in the microbial association network that ensure the stability of microbial ecosystems. Our study contributes to a better understanding of microbial ecology in complex hydrological environments.
Microbial diversity--insights from population genetics.
Mes, Ted H M
2008-01-01
Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.
NASA Astrophysics Data System (ADS)
İşlek, Cemil; Murat Altuner, Ergin; Çeter, Talip; Alpas, Hami
2013-06-01
High hydrostatic pressure is a non-thermal food processing technology that is found to increase the percentage of germination, decrease the germination time and improve the microbial quality of seeds. In this study, pressures of 100-400 MPa for 10 min at 30°C are used to compare the percentage of germination, the microbial quality of seeds, chlorophyll a and b, and total phenolic compounds concentrations in seedlings, and the anatomy-morphology characteristics of garden cress. Enhanced reductions of total aerobic mesophilic bacteria, total and fecal coliforms, and yeast and mould populations in seeds were observed, especially at 300 MPa. In addition, the percentage of germination, chlorophyll content and phenolic compounds concentrations, fresh and dry weights, and hypocotyl lengths of the seedlings are higher than those of all samples, where the percentage of germination is equal to controls but higher than other samples, and radicula length is lower than controls but higher than others.
Samadi, Nasrin; Abadian, Neda; Bakhtiari, Donya; Fazeli, Mohammad Reza; Jamalifar, Hossein
2009-07-01
Efficacy of commercial detergent and disinfectants to eliminate microorganisms associated with fresh vegetables eaten raw in Iran, including radish, parsley, basil, coriander (cilantro), Allium porrum (leek), and peppermint were studied. The raw vegetables were subjected to a triple wash treatment of washing in tap water for mud removal, washing in water containing a detergent (dishwashing liquid) or disinfectant individually, and rinsing in tap water. The population of total mesophilic microbes on the surface of untreated vegetables ranged from 10(5) to 10(6) CFU/g. Washing in tap water or treatment with detergent (333 ppm for 10 min) or benzalkonium chloride (92 ppm for 15 min) reduced the total microbial count, most probable number (MPN) of coliforms, MPN of fecal coliforms, and MPN of fecal streptococci by about 1.2 to 2.3 log. No significant differences in microbial populations were found on vegetables after decontamination with tap water, detergent, or benzalkonium chloride (P > 0.05). Treatments with peracetic acid (100 ppm for 15 min) and hydrogen peroxide (133 ppm for 30 min) reduced the total mesophilic microbial counts by about 2.8 log. The microbial reductions with calcium hypochlorite (300 ppm for 15 min) and combined hydrogen peroxide and silver ion (133 ppm for 30 min) were significantly higher than those obtained after rinsing in tap water or after detergent or benzalkonium chloride wash (P < 0.05). Pretreatment with detergent slightly enhanced the efficacy of all decontamination treatments, but results were not significantly different from those obtained after individual application of disinfectants.
Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land
NASA Astrophysics Data System (ADS)
Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi
2015-04-01
Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.
Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming
2017-02-01
Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hyun, Dong-Wook; Min, Hyun Jin; Kim, Min-Soo; Whon, Tae Woong; Shin, Na-Ri; Kim, Pil Soo; Kim, Hyun Sik; Lee, June Young; Kang, Woorim; Choi, Augustine M K; Yoon, Joo-Heon; Bae, Jin-Woo
2018-04-01
Abnormalities in the human microbiota are associated with the etiology of allergic diseases. Although disease site-specific microbiota may be associated with disease pathophysiology, the role of the nasal microbiota is unclear. We sought to characterize the microbiota of the site of allergic rhinitis, the inferior turbinate, in subjects with allergic rhinitis ( n = 20) and healthy controls ( n = 12) and to examine the relationship of mucosal microbiota with disease occurrence, sensitized allergen number, and allergen-specific and total IgE levels. Microbial dysbiosis correlated significantly with total IgE levels representing combined allergic responses but not with disease occurrence, the number of sensitized allergens, or house dust mite allergen-specific IgE levels. Compared to the populations in individuals with low total IgE levels (group IgE low ), low microbial biodiversity with a high relative abundance of Firmicutes phylum ( Staphylococcus aureus ) and a low relative abundance of Actinobacteria phylum ( Propionibacterium acnes ) was observed in individuals with high total serum IgE levels (group IgE high ). Phylogeny-based microbial functional potential predicted by the 16S rRNA gene indicated an increase in signal transduction-related genes and a decrease in energy metabolism-related genes in group IgE high as shown in the microbial features with atopic and/or inflammatory diseases. Thus, dysbiosis of the inferior turbinate mucosa microbiota, particularly an increase in S. aureus and a decrease in P. acnes , is linked to high total IgE levels in allergic rhinitis, suggesting that inferior turbinate microbiota may be affected by accumulated allergic responses against sensitized allergens and that site-specific microbial alterations play a potential role in disease pathophysiology. Copyright © 2018 American Society for Microbiology.
Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha
2013-08-01
The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.
Microbial diversity and metabolic networks in acid mine drainage habitats
Méndez-García, Celia; Peláez, Ana I.; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V.; Ferrer, Manuel
2015-01-01
Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far. PMID:26074887
Veneman, Jolien B.; Muetzel, Stefan; Hart, Kenton J.; Faulkner, Catherine L.; Moorby, Jon M.; Perdok, Hink B.; Newbold, Charles J.
2015-01-01
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835
Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J
2015-01-01
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.
Lopes, Ana R; Bello, Diana; Prieto-Fernández, Ángeles; Trasar-Cepeda, Carmen; Manaia, Célia M; Nunes, Olga C
2015-08-01
The microbial communities of bulk soil of rice paddy fields under an ancient organic agriculture regimen, consisting on an alfalfa-rice rotation system, were characterized. The drained soil of two adjacent paddies at different stages of the rotation was compared before rice seeding and after harvesting. The relationships among the soil microbial, physicochemical, and biochemical parameters were investigated using multivariate analyses. In the first year of rice cropping, aerobic cultivable heterotrophic populations correlated with lineages of presumably aerobic bacteria (e.g., Sphingobacteriales, Sphingomonadales). In the second year of rice cropping, the total C content correlated with presumable anaerobic bacteria (e.g., Anaerolineae). Independently of the year of rice cropping, before rice seeding, proteolytic activity correlated positively with the cultivable aerobic heterotrophic and ammonifier populations, the soil catabolic profile and with presumable aerobes (e.g., Sphingobacteriales, Rhizobiales) and anaerobes (e.g., Bacteroidales, Anaerolineae). After harvesting, strongest correlations were observed between cultivable diazotrophic populations and bacterial groups described as comprising N2 fixing members (e.g., Chloroflexi-Ellin6529, Betaproteobacteria, Alphaproteobacteria). It was demonstrated that chemical parameters and microbial functions were correlated with variations on the total bacterial community composition and structure occurring during rice cropping. A better understanding of these correlations and of their implications on soil productivity may be valid contributors for sustainable agriculture practices, based on ancient processes.
Distribution of culturable microorganisms in Fennoscandian Shield groundwater.
Haveman, Shelley A; Pedersen, Karsten
2002-02-01
Microbial populations in 16 groundwater samples from six Fennoscandian Shield sites in Finland and Sweden were investigated. The average total cell number was 3.7x10(5) cells ml(-1), and there was no change in the mean of the total cell numbers to a depth of 1390 m. Culture media were designed based on the chemical composition of each groundwater sample and used successfully to culture anaerobic microorganisms from all samples between 65 and 1350 m depth. Between 0.0084 and 14.8% of total cells were cultured from groundwater samples. Sulfate-reducing bacteria, iron-reducing bacteria and heterotrophic acetogenic bacteria were cultured from groundwater sampled at 65-686 m depth in geographically distant sites. Different microbial populations were cultured from deeper, older and more saline groundwater from 863 to 1350 m depth. Principal component analysis of groundwater chemistry data showed that sulfate- and iron-reducing bacteria were not detected in the most saline groundwater. Iron-reducing bacteria and acetogens were cultured from deep groundwater that contained 0.35-3.5 mM sulfate, while methanogens and acetogens were cultured from deep sulfate-depleted groundwater. In one borehole from which autotrophic methanogens were cultured, dissolved inorganic carbon was enriched in (13)C compared to other Fennoscandian Shield groundwater samples, suggesting that autotrophs were active. It can be concluded that a diverse microbial community is present from the surface to over 1300 m depth in the Fennoscandian Shield.
Comparative analysis of fecal microbial communities in cattle and Bactrian camels
Ming, Liang; Yi, Li; Siriguleng; Hasi, Surong; He, Jing; Hai, Le; Wang, Zhaoxia; Guo, Fucheng; Qiao, Xiangyu; Jirimutu
2017-01-01
Bactrian camels may have a unique gastrointestinal (GI) microbiome because of their distinctive digestive systems, unique eating habits and extreme living conditions. However, understanding of the microbial communities in the Bactrian camel GI tract is still limited. In this study, microbial communities were investigated by comparative analyses of 16S rRNA hypervariable region V4 sequences of fecal bacteria sampled from 94 animals in four population groups: Inner Mongolian cattle (IMG-Cattle), Inner Mongolian domestic Bactrian camels (IMG-DBC), Mongolian domestic Bactrian camels (MG-DBC), and Mongolian wild Bactrian camels (MG-WBC). A total of 2,097,985 high-quality reads were obtained and yielded 471,767,607 bases of sequence. Firmicutes was the predominant phylum in the population groups IMG-Cattle, IMG-DBC and MG-WBC, followed (except in the Inner Mongolian cattle) by Verrucomicrobia. Bacteroidetes were abundant in the IMG-DBC and MG-WBC populations. Hierarchical clustered heatmap analysis revealed that the microbial community composition within the three Bactrian camel groups was relatively similar, and somewhat distinct from that in the cattle. A similar result was determined by principal component analysis, in which the camels grouped together. We also found several species-specific differences in microbial communities at the genus level: for example, Desulfovibrio was abundant in the IMG-DBC and MG-WBC groups; Pseudomonas was abundant in the IMG-Cattle group; and Fibrobacter, Coprobacillus, and Paludibacter were scarce in the MG-WBC group. Such differences may be related to different eating habits and living conditions of the cattle and the various camel populations. PMID:28301489
Wang, Yanhong; Li, Ping; Jiang, Zhou; Sinkkonen, Aki; Wang, Shi; Tu, Jin; Wei, Dazhun; Dong, Hailiang; Wang, Yanxin
2016-01-01
Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina MiSeq sequencing approach targeting the V4 region of the 16S rRNA genes. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups) according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and total organic carbon (TOC). Sequencing results revealed that a total of 329–2823 operational taxonomic units (OTUs) were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing arsenic-rich aquifers of Hetao Plain and other high arsenic groundwater aquifers including Bangladesh, West Bengal, and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera, and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate analysis and co-inertia analysis. Other geochemical variables including TOC, NH4+, oxidation-reduction potential, and Fe might also affect the microbial composition. PMID:27999565
Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems
NASA Astrophysics Data System (ADS)
Maslov, Sergei; Sneppen, Kim
2017-01-01
Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.
Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems
Maslov, Sergei; Sneppen, Kim
2017-01-01
Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127
Wu, J H; Liu, W T; Tseng, I C; Cheng, S S
2001-02-01
The microbial composition and spatial distribution in a terephthalate-degrading anaerobic granular sludge system were characterized using molecular techniques. 16S rDNA clone library and sequence analysis revealed that 78.5% of 106 bacterial clones belonged to the delta subclass of the class Proteobacteria; the remaining clones were assigned to the green non-sulfur bacteria (7.5%), Synergistes (0.9%) and unidentified divisions (13.1%). Most of the bacterial clones in the delta-Proteobacteria formed a novel group containing no known bacterial isolates. For the domain Archaea, 81.7% and 18.3% of 72 archaeal clones were affiliated with Methanosaeta and Methanospirillum, respectively. Spatial localization of microbial populations inside granules was determined by transmission electron microscopy and fluorescent in situ hybridization with oligonucleotide probes targeting the novel delta-proteobacterial group, the acetoclastic Methanosaeta, and the hydrogenotrophic Methanospirillum and members of Methanobacteriaceae. The novel group included at least two different populations with identical rod-shape morphology, which made up more than 87% of the total bacterial cells, and were closely associated with methanogenic populations to form a nonlayered granular structure. This novel group was presumed to be the primary bacterial population involved in the terephthalate degradation in the methanogenic granular consortium.
Sekiguchi, Y; Kamagata, Y; Ohashi, A; Harada, H
2002-01-01
The microbial community structure of mesophilic (35 degrees C) and thermophilic (55 degrees C) methanogenic granular sludges was surveyed by using both cultivation-independent molecular approach and conventional cultivation technique in order to address the fundamental questions on the microbial populations, i.e. who are present, where they are located, and what they are doing there. To elucidate the microbial constituents within both sludges, we first constructed 16S ribosomal DNA clone libraries, and partial sequencing of the clones was conducted for phylogenetic analysis. In this experiment, we found a number of unidentifiable clones within the domain Bacteria as well as clones that were closely related with 16S rDNAs of cultured microbes. The unidentifiable clones accounted for approximately 60-70% of the total clones in both mesophilic and thermophilic libraries. 16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was subsequently employed to examine where the uncultured populations were located within sludge granules. Spatial organization of uncultured microbes was visualized in thin-sections of both types of granules using fluorescent oligonucleotide probes, which were designed based on the clone sequences of certain novel clusters. This resulted in the detection of two types of uncultured cells in specific locations inside the granules. Finally, the goal-directed conventional cultivation technique was employed to recover such uncultured anaerobes and uncover their physiology and functions. In this approach, a total of five new species of thermophilic microorganisms were isolated, including several types of syntrophs and a novel sugar-fermenting bacterium. In the previous molecular approaches, all of these isolates were suggested to be significant populations within thermophilic granular sludge, hence obtaining these isolates in pure culture decreased the fraction of unknown clones in the previous thermophilic clone library from 70% to 40%. In conclusion, these approaches successfully revealed biodiversity and spatial organization of microbes of interest in sludge granules, and enlarged the fundamental knowledge of microbial constituents functioning as significant populations in the UASB processes.
Jiang, S Z; Yang, Z B; Yang, W R; Li, Z; Zhang, C Y; Liu, X M; Wan, F C
2015-11-01
The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( < 0.05) than the corresponding values in cattle fed pulverized and extruded wheat. Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( < 0.05) with increased geometric mean particle size (geometric mean diameter) of processed wheat, except for extruded wheat; cattle fed extruded wheat had the lowest concentrations of total VFA and acetate among all treatments. The relative abundance of , , ciliated protozoa, and was lower in cattle fed the pulverized wheat diet than in the other 3 diets ( < 0.05), whereas the relative abundance of was decreased in cattle fed extruded wheat compared with cattle fed crushed and rolled wheat ( < 0.05). No treatment effect was obtained for serum enzyme activity and protein concentration ( > 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.
Molecular Technique to Reduce PCR Bias for Deeper Understanding of Microbial Diversity
NASA Technical Reports Server (NTRS)
Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.
2012-01-01
Current planetary protection policies require that spacecraft targeted to sensitive solar system bodies be assembled and readied for launch in controlled cleanroom environments. A better understanding of the distribution and frequency at which high-risk contaminant microbes are encountered on spacecraft surfaces would significantly aid in assessing the threat of forward contamination. However, despite a growing understanding of the diverse microbial populations present in cleanrooms, less abundant microbial populations are probably not adequately taken into account due to technological limitations. This novel approach encompasses a wide spectrum of microbial species and will represent the true picture of spacecraft cleanroom-associated microbial diversity. All of the current microbial diversity assessment techniques are based on an initial PCR amplification step. However, a number of factors are known to bias PCR amplification and jeopardize the true representation of bacterial diversity. PCR amplification of a minor template appears to be suppressed by the amplification of a more abundant template. It is widely acknowledged among environmental molecular microbiologists that genetic biosignatures identified from an environment only represent the most dominant populations. The technological bottleneck overlooks the presence of the less abundant minority population and may underestimate their role in the ecosystem maintenance. DNA intercalating agents such as propidium monoazide (PMA) covalently bind with DNA molecules upon photolysis using visible light, and make it unavailable for DNA polymerase enzyme during polymerase chain reaction (PCR). Environmental DNA samples will be treated with suboptimum PMA concentration, enough to intercalate with 90 99% of the total DNA. The probability of PMA binding with DNA from abundant bacterial species will be much higher than binding with DNA from less abundant species. This will increase the relative DNA concentration of previously "shadowed" less abundant species available for PCR amplification. These PCR products obtained with and without PMA treatment will then be subjected to downstream diversity analyses such as sequencing and DNA microarray. It is expected that PMA-coupled PCR will amplify the "minority population" and help in understanding microbial diversity spectrum of an environmental sample at a much deeper level. This new protocol aims to overcome the major potential biases faced when analyzing microbial 16S rRNA gene diversity. This study will lead to a technological advancement and a commercial product that will aid microbial ecologists in understanding microbial diversity from various environmental niches. Implementation of this technique may lead to discoveries of novel microbes and their functions in sustenance of the ecosystem.
Diet and fecal steroid profile in a South Asian population with a low colon-cancer rate.
McKeigue, P M; Adelstein, A M; Marmot, M G; Henly, P J; Owen, R W; Hill, M J; Thompson, M H
1989-07-01
South Asian immigrants to England and Wales have low mortality from colon cancer and high mortality from coronary heart disease compared with the general population. In a survey of a predominantly Gujarati population in northwest London, both vegetarians and nonvegetarians had similar total dietary fat intake to the native British population but higher dietary fiber intake. Total fecal bile acid and neutral animal sterol concentrations were lower in South Asians than in a native British comparison group. Sixty-two percent of South Asians excreted detectable quantities of free primary bile acids, which were not present in stools from native British subjects. The ratio of fecal coprostanol to total neutral animal sterols was also lower in South Asians. Low risk of colon cancer in this population may be related to reduced microbial activity in the bowel and low levels of tumor-promoting secondary bile acids.
Kirkpatrick, W D; White, P M; Wolf, D C; Thoma, G J; Reynolds, C M
2008-01-01
Phytoremediation can be a cost-effective and environmentally acceptable method to clean up crude oil-contaminated soils in situ. Our research objective was to determine the effects of nitrogen (N) additions and plant growth on the number of total hydrocarbon (TH)-, alkane-, and polycyclic aromatic hydrocarbon (PAH)-degrading microorganisms in weathered crude oil-contaminated soil. A warm-season grass, sudangrass (Sorghum sudanense (Piper) Stapf), was grown for 7 wk in soil with a total petroleum hydrocarbon (TPH) level of 16.6 g TPH/kg soil. Nitrogen was added based upon TPH-C:added total N (TPH-C:TN) ratios ranging from 44:1 to 11:1. Unvegetated and unamended controls were also evaluated. The TH-, alkane-, and PAH-degrading microbial numbers per gram of dry soil were enumerated from rhizosphere and non-rhizosphere soil for vegetated pots and non-rhizosphere soil populations were enumerated from non-vegetated pots. Total petroleum-degrading microbial numbers were also calculated for each pot. The TH-, alkane-, and PAH-degrading microbial numbers per gram of dry soil in the sudangrass rhizosphere were 3.4, 2.6, and 4.8 times larger, respectively, than those in non-rhizosphere soil across all N rates. The presence of sudangrass resulted in significantly more TH-degrading microorganisms per pot when grown in soil with a TPH-C:TN ratio of 11:1 as compared to the control. Increased plant root growth in a crude oil-contaminated soil and a concomitant increase in petroleum-degrading microbial numbers in the rhizosphere have the potential to enhance phytoremediation.
Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica.
Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G
2016-07-01
Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.
Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica
Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G
2016-01-01
Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature −23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival. PMID:27323892
[Spring water quality assessment regarding the problem of endemic fluorosis].
Leshchenko, D V; Mialo, O A; Beliakova, M B; Beliaeva, E A; Samoukina, A M; Chervinets, Iu V; Ivanova, O V
2013-01-01
A possible variant for reducing the consumption of fluoride by population of Tver region is the use of water with low fluoride content, such as spring water. Assessment of drinking suitability of spring water (the content of physiologically important mineral elements and microbial purity) is relevant to our region. Water samples from 6 spring-water source of Tver region were studied during the year. The content of fluoride and calcium were measured by using an ion-selective electrodes. Microbiological purity tested by the presence of total coliform bacteria, thermotolerant coliform bacteria, coliphages and total microbial numbers. The analysis of some mineral components in spring water of Tver region showed that calcium content was in range 33-88 mg/l, that satisfied the recommended value; fluoride concentration is less then 0.5 mg/l. In all spring water samples total coliforms, thermotolerant coliforms and coliphages were absent. The total microbial number was in standard range, except of two spring-water source in the autumn and summer. The data suppose that spring water of Tver region can be used as a component of diet normalizing the fluoride consumption at risk of dental fluorosis in children.
Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki
2014-01-01
The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576
Wang, Bing; Liu, Huiling; Cai, Chen; Thabit, Mohamed; Wang, Pu; Li, Guomin; Duan, Ziheng
2016-10-01
The dry mycelium fertilizer (DMF) was produced from penicillin fermentation fungi mycelium (PFFM) following an acid-heating pretreatment to degrade the residual penicillin. In this study, it was applied into soil as fertilizer to investigate its effects on soil properties, phytotoxicity, microbial community composition, enzyme activities, and growth of snap bean in greenhouse. As the results show, pH, total nitrogen, total phosphorus, total potassium, and organic matter of soil with DMF treatments were generally higher than CON treatment. In addition, the applied DMF did not cause heavy metal and residual drug pollution of the modified soil. The lowest GI values (<0.3) were recorded at DMF8 (36 kg DMF/plat) on the first days after applying the fertilizer, indicating that severe phytotoxicity appeared in the DMF8-modified soil. Results of microbial population and enzyme activities illustrated that DMF was rapidly decomposed and the decomposition process significantly affected microbial growth and enzyme activities. The DMF-modified soil phytotoxicity decreased at the late fertilization time. DMF1 was considered as the optimum amount of DMF dose based on principal component analysis scores. Plant height and plant yield of snap bean were remarkably enhanced with the optimum DMF dose.
Wenzel, J; Fuentes, L; Cabezas, A; Etchebehere, C
2017-06-01
An important pollutant produced during the cheese making process is cheese whey which is a liquid by-product with high content of organic matter, composed mainly by lactose and proteins. Hydrogen can be produced from cheese whey by dark fermentation but, organic matter is not completely removed producing an effluent rich in volatile fatty acids. Here we demonstrate that this effluent can be further used to produce energy in microbial fuel cells. Moreover, current production was not feasible when using raw cheese whey directly to feed the microbial fuel cell. A maximal power density of 439 mW/m 2 was obtained from the reactor effluent which was 1000 times more than when using raw cheese whey as substrate. 16S rRNA gene amplicon sequencing showed that potential electroactive populations (Geobacter, Pseudomonas and Thauera) were enriched on anodes of MFCs fed with reactor effluent while fermentative populations (Clostridium and Lactobacillus) were predominant on the MFC anode fed directly with raw cheese whey. This result was further demonstrated using culture techniques. A total of 45 strains were isolated belonging to 10 different genera including known electrogenic populations like Geobacter (in MFC with reactor effluent) and known fermentative populations like Lactobacillus (in MFC with cheese whey). Our results show that microbial fuel cells are an attractive technology to gain extra energy from cheese whey as a second stage process during raw cheese whey treatment by dark fermentation process.
Ansari, Mohd Ikram; Malik, Abdul
2010-08-01
Wastewater and soil samples were collected from the industrial area of Ghaziabad City, India from January 2005 to December 2007 and were analyzed for the presence of heavy metals by atomic absorption spectrophotometry. Test samples revealed high levels of Fe, Cr, Cu, Ni, Zn, and Cd as 967.03, 34.63, 27.97, 19.7, 16.70, and 3.20 mg/L of wastewater, respectively. The concentrations of inorganic minerals were higher in the soil samples irrigated with wastewater. Total coliforms were found to be maximum (1,133x10(4) most probable number per 100 mL) during spring and summer followed by winter and postmonsoon in the wastewater samples. The microbial count in soil as well as in wastewater decreases as the metal concentration increases. The concentration 200 microg/mL of nickel and cadmium inhibits majority of the population, while, at some points, it inhibits 100% of the population. The exponential decay model for microbial count at the increasing metal concentrations indicate that asymbiotic N2 fixers were best fitted to the model. In all the seasons, the order of decline in terms of exponential decay of the population of different microbial groups in soil was asymbiotic N2 fixers>actinomycetes>fungi>aerobic heterotrophic bacteria. The different microbial groups that have different values of slope in different seasons indicate that the resistant population of microorganisms was variable with seasons.
Metagenomic Analyses of Drinking Water Receiving Different Disinfection Treatments
A metagenome-based approach was utilized for assessing the taxonomic affiliation and function potential of microbial populations in free chlorine (CHL) and monochloramine (CHM) treated drinking water (DW). A total of 1,024, 242 (averaging 544 bp) and 849, 349 (averaging 554 bp) ...
Kišidayová, Svetlana; Pristaš, Peter; Zimovčáková, Michaela; Blanár Wencelová, Monika; Homol'ová, Lucia; Mihaliková, Katarína; Čobanová, Klaudia; Grešáková, Ľubomíra; Váradyová, Zora
2018-01-01
Little is known about the effects of the high dose and types of manganese supplements on rumen environment at manganese intake level close above the limit of 150 mg/kg of dry feed matter. The effects of high dose of two manganese supplements (organic and inorganic) on rumen microbial ecosystem after four months of treatment of 18 lambs divided into three treatment groups were studied. We examined the enzyme activities (α-amylase, xylanase, and carboxymethyl cellulase), total and differential microscopic counts of rumen ciliates, total microscopic counts of bacteria, and fingerprinting pattern of the eubacterial and ciliates population analyzed by PCR-DGGE. Lambs were fed a basal diet with a basal Mn content (34.3 mg/kg dry matter; control) and supplemented either with inorganic manganous sulfate or organic Mn-chelate hydrate (daily 182.7, 184 mg/kg dry matter of feed, respectively). Basal diet, offered twice daily, consisted of ground barley and hay (268 and 732 g/kg dry matter per animal and day). The rumens of the lambs harbored ciliates of the genera of Entodinium, Epidinium, Diplodinium, Eudiplodinium, Dasytricha, and Isotricha. No significant differences between treatment groups were observed in the total ciliate number, the number of ciliates at the genus level, as well as the total number of bacteria. Organic Mn did decrease the species richness and diversity of the eubacterial population examined by PCR-DGGE. No effects of type of Mn supplement on the enzyme activities were observed. In comparison to the control, α-amylase specific activities were decreased and carboxymethyl-cellulase specific activities were increased by the Mn supplements. Xylanase activities were not influenced. In conclusion, our results suggested that the intake of tested inorganic and organic manganese supplements in excess may affect the specific groups of eubacteria. More studies on intake of Mn supplements at a level close to the limit can reveal if the changes in microbial population impact remarkably the other rumen enzymatic activities.
Pristaš, Peter; Zimovčáková, Michaela; Blanár Wencelová, Monika; Homol'ová, Lucia; Mihaliková, Katarína; Čobanová, Klaudia; Grešáková, Ľubomíra; Váradyová, Zora
2018-01-01
Little is known about the effects of the high dose and types of manganese supplements on rumen environment at manganese intake level close above the limit of 150 mg/kg of dry feed matter. The effects of high dose of two manganese supplements (organic and inorganic) on rumen microbial ecosystem after four months of treatment of 18 lambs divided into three treatment groups were studied. We examined the enzyme activities (α-amylase, xylanase, and carboxymethyl cellulase), total and differential microscopic counts of rumen ciliates, total microscopic counts of bacteria, and fingerprinting pattern of the eubacterial and ciliates population analyzed by PCR-DGGE. Lambs were fed a basal diet with a basal Mn content (34.3 mg/kg dry matter; control) and supplemented either with inorganic manganous sulfate or organic Mn-chelate hydrate (daily 182.7, 184 mg/kg dry matter of feed, respectively). Basal diet, offered twice daily, consisted of ground barley and hay (268 and 732 g/kg dry matter per animal and day). The rumens of the lambs harbored ciliates of the genera of Entodinium, Epidinium, Diplodinium, Eudiplodinium, Dasytricha, and Isotricha. No significant differences between treatment groups were observed in the total ciliate number, the number of ciliates at the genus level, as well as the total number of bacteria. Organic Mn did decrease the species richness and diversity of the eubacterial population examined by PCR-DGGE. No effects of type of Mn supplement on the enzyme activities were observed. In comparison to the control, α-amylase specific activities were decreased and carboxymethyl-cellulase specific activities were increased by the Mn supplements. Xylanase activities were not influenced. In conclusion, our results suggested that the intake of tested inorganic and organic manganese supplements in excess may affect the specific groups of eubacteria. More studies on intake of Mn supplements at a level close to the limit can reveal if the changes in microbial population impact remarkably the other rumen enzymatic activities. PMID:29324899
Cui, Henglin; Yang, Kun; Pagaling, Eulyn
2013-01-01
Recent studies have reported high levels of fecal indicator enterococci in marine beach sand. This study aimed to determine the spatial and temporal variation of enterococcal abundance and to evaluate its relationships with microbial community parameters in Hawaii beach sand and water. Sampling at 23 beaches on the Island of Oahu detected higher levels of enterococci in beach foreshore sand than in beach water on a mass unit basis. Subsequent 8-week consecutive samplings at two selected beaches (Waialae and Kualoa) consistently detected significantly higher levels of enterococci in backshore sand than in foreshore/nearshore sand and beach water. Comparison between the abundance of enterococci and the microbial communities showed that enterococci correlated significantly with total Vibrio in all beach zones but less significantly with total bacterial density and Escherichia coli. Samples from the different zones of Waialae beach were sequenced by 16S rRNA gene pyrosequencing to determine the microbial community structure and diversity. The backshore sand had a significantly more diverse community and contained different major bacterial populations than the other beach zones, which corresponded to the spatial distribution pattern of enterococcal abundance. Taken together, multiple lines of evidence support the possibility of enterococci as autochthonous members of the microbial community in Hawaii beach sand. PMID:23563940
Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.
2016-01-01
Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells had statistically similar microbial communities despite significant changes in environmental parameters between oil fields. Together, this implies that no single microbial population is a reliable indicator of a reservoir's ability to degrade crude oil to methane, and that geochemistry may be a more important indicator for selecting a reservoir suitable for microbial enhancement of natural gas generation.
Sun, H; Wu, Y M; Wang, Y M; Liu, J X; Myung, K H
2014-09-01
An in vitro experiment was conducted to evaluate the effects of Aspergillus oryzae culture (AOC) and 2-hydroxy-4-(methylthio)-butanoic acid (HMB) on rumen fermentation and microbial populations between different roughage sources. Two roughage sources (Chinese wild rye [CWR] vs corn silage [CS]) were assigned in a 2×3 factorial arrangement with HMB (0 or 15 mg) and AOC (0, 3, or 6 mg). Gas production (GP), microbial protein (MCP) and total volatile fatty acid (VFA) were increased in response to addition of HMB and AOC (p<0.01) for the two roughages. The HMB and AOC showed inconsistent effects on ammonia-N with different substrates. For CWR, neither HMB nor AOC had significant effect on molar proportion of individual VFA. For CS, acetate was increased (p = 0.02) and butyrate was decreased (p<0.01) by adding HMB and AOC. Increase of propionate was only occurred with AOC (p<0.01). Populations of protozoa (p≤0.03) and fungi (p≤0.02) of CWR were differently influenced by HMB and AOC. Percentages of F. succinogenes, R. albus, and R. flavefaciens (p<0.01) increased when AOC was added to CWR. For CS, HMB decreased the protozoa population (p = 0.01) and increased the populations of F. succinogenes and R. albus (p≤0.03). Populations of fungi, F. succinogenes (p = 0.02) and R. flavefacien (p = 0.03) were increased by adding AOC. The HMB×AOC interactions were noted in MCP, fungi and R. flavefacien for CWR and GP, ammonia-N, MCP, total VFA, propionate, acetate/propionate (A/P) and R. albus for CS. It is inferred that addition of HMB and AOC could influence rumen fermentation of forages by increasing the number of rumen microbes.
NASA Astrophysics Data System (ADS)
Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Caravaca, Fuensanta; Roldán, Antonio
2016-04-01
Unsuitable land management such as the excessive use of herbicides can lead to a loss of soil fertility and a drastic reduction in the abundance of microbial populations and their functions related to nutrient cycling. Microbial communities are the most sensitive and rapid indicators of perturbations in agroecosystems. A field experiment was performed in an orange-trees orchard (Citrus sinensis) to assess the long-term effect of three different management systems on the soil microbial community biomass, structure and composition (phospholipid fatty acids (PLFAs) total, pattern, and abundance). The three agricultural systems assayed were established 30 years ago: herbicides (Glyphosate (N-(phosphonomethyl)glycine) with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (NPK 15%) (P) and organic farming (chipped pruned branches and weeds, manure from sheep and goats) (O). Nine soil samples were taken from each system. The results showed that the management practices including herbicides and intensive ploughing had similar results on soil microbial properties, while organic fertilization significantly increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared to inorganic fertilization systems; thus, enhancing the sustainability of this agroecosystem under semiarid conditions.
A Comprehensive Assessment of Biologicals Contained Within Commercial Airliner Cabin Air
NASA Technical Reports Server (NTRS)
LaDuc, Myron T.; Osman, Shariff; Dekas, Anne; Stuecker, Tara; Newcombe, Dave; Piceno, Yvette; Fuhrman, J.; Andersen, Gary; Venkateswaran, Kasthuri; Bearman, Greg
2006-01-01
Both culture-based and culture-independent, biomarker-targeted microbial enumeration and identification technologies were employed to estimate total microbial and viral burden and diversity within the cabin air of commercial airliners. Samples from each of twenty flights spanning three commercial carriers were collected via air-impingement. When the total viable microbial population was estimated by assaying relative concentrations of the universal energy carrier ATP, values ranged from below detection limits (BDL) to 4.1 x 106 cells/cubic m of air. The total viable microbial population was extremely low in both of Airline A (approximately 10% samples) and C (approximately 18% samples) compared to the samples collected aboard flights on Airline A and B (approximately 70% samples). When samples were collected as a function of time over the course of flights, a gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in microbial abundance and viability from the initiation of descent through landing. It is concluded in this study that only 10% of the viable microbes of the cabin air were cultivable and suggested a need to employ state-of-the art molecular assay that measures both cultivable and viable-but-non-cultivable microbes. Among the cultivable bacteria, colonies of Acinetobacter sp. were by far the most profuse in Phase I, and Gram-positive bacteria of the genera Staphylococcus and Bacillus were the most abundant during Phase II. The isolation of the human pathogens Acinetobacter johnsonii, A. calcoaceticus, Janibacter melonis, Microbacterium trichotecenolyticum, Massilia timonae, Staphylococcus saprophyticus, Corynebacterium lipophiloflavum is concerning, as these bacteria can cause meningitis, septicemia, and a handful of sometimes fatal diseases and infections. Molecular microbial community analyses exhibited presence of the alpha-, beta-, gamma-, and delta- proteobacteria, as well as Gram-positive bacteria, Fusobacteria, Cyanobacteria, Deinococci, Bacterioidetes, Spirochetes, and Planctomyces in varying abundance. Neisseria meningitidis rDNA sequences were retrieved in great abundance from Airline A followed by Streptococcus oralis/mitis sequences. Pseudomonas synxantha sequences dominated Airline B clone libraries, followed by those of N. meningitidis and S. oralis/mitis. In Phase II, Airline C, sequences representative of more than 113 species, enveloping 12 classes of bacteria, were retrieved. Proteobacterial sequences were retrieved in greatest frequency (58% of all clone sequences), followed in short order by those stemming from Gram-positives bacteria (31% of all clone sequences). As for overall phylogenetic breadth, Gram-positive and alpha-proteobacteria seem to have a higher affinity for international flights, whereas beta-and gamma-proteobacteria are far more common about domestic cabin air parcels in Airline C samples. Ultimately, the majority of microbial species circulating throughout the cabin airs of commercial airliners are commensal, infrequently pathogenic normal flora of the human nasopharynx and respiratory system. Many of these microbes likely originate from the oral and nasal cavities, and lungs of passengers and flight crew and are disseminated unknowingly via routine conversation, coughing, sneezing, and stochastic passing of fomites. The data documented in this study will be useful to generate a baseline microbial population database and can be utilized to develop biosensor instrumentation for monitoring microbial quality of cabin or urban air.
Biswas, Ashraf A; Lee, Sung-Sill; Mamuad, Lovelia L; Kim, Seon-Ho; Choi, Yeon-Jae; Lee, Chanhee; Lee, Kichoon; Bae, Gui-Seck; Lee, Sang-Suk
2018-01-01
This study was conducted to evaluate the effects of feeding supplemental illite to Hanwoo steers on methane (CH 4 ) emission and rumen fermentation parameters. An in vitro ruminal fermentation technique was conducted using a commercial concentrate as substrate and illite was added at different concentrations as treatments: 0%, 0.5%, 1.0%, and 2.0% illite. Total volatile fatty acids (VFA) were different (P < 0.05) at 24 h of incubation where the highest total VFA was observed at 1.0% of illite. Conversely, lowest CH 4 production (P < 0.01) was found at 1.0% of illite. In the in vivo experiment, two diets were provided, without illite and with addition of 1% illite. An automated head chamber (GreenFeed) system was used to measure enteric CH 4 production. Cattle received illite supplemented feed increased (P < 0.05) total VFA concentrations in the rumen compared with those fed control. Feeding illite numerically decreased CH 4 production (g/day) and yield (g/kg dry matter intake). Rumen microbial population analysis indicated that the population of total bacteria, protozoa and methanogens were lower (P < 0.05) for illite compared with the control. Accordingly, overall results suggested that feeding a diet supplemented with 1% illite can have positive effects on feed fermentation in the rumen and enteric CH 4 mitigation in beef cattle. © 2017 Japanese Society of Animal Science.
Niu, Fujun; He, Junxia; Zhang, Gaosen; Liu, Xiaomei; Liu, Wei; Dong, Maoxing; Wu, Fasi; Liu, Yongjun; Ma, Xiaojun; An, Lizhe; Feng, Huyuan
2014-12-01
The effects of enhanced UV-B radiation on abundance, community composition and the total microbial activity of soil bacteria in alpine meadow ecosystem of Qinghai-Tibet Plateau were investigated. Traditional counting and 16S rRNA gene sequencing were used to investigate the culturable bacteria and their composition in soil, meanwhile the total microbial activity was measured by microcalorimetry. The population of soil culturable bacteria was slightly reduced with the enhanced UV-B radiation in both of the two depths, 2.46 × 10(6) CFU/g in upper layer (0-10 cm), 1.44 × 10(6) CFU/g in under layer (10-20 cm), comparing with the control (2.94 × 10(6) CFU/g in upper layer, 1.65 × 10(6) CFU/g in under layer), although the difference was not statistically significant (P > 0.05). However, the bacteria diversity decreased obviously due to enhanced UV-B, the number of species for upper layer was decreased from 20 to 13, and from 16 to 13 for the lower layer. The distribution of species was also quite different between the two layers. Another obvious decrease induced by enhanced UV-B radiation was in the total soil microbial activities, which was represented by the microbial growth rate constant (k) in this study. The results indicated that the culturable bacteria community composition and the total activity of soil microbes have been considerably changed by the enhanced UV-B radiation.
Whitehead, Terence R; Spence, Cheryl; Cotta, Michael A
2013-09-01
Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 % w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage.
Feng, Y.; Stoeckel, D.M.; Van Santen, E.; Walker, R.H.
2002-01-01
The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapacethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.
Pourabedin, Mohsen; Xu, Zhengxin; Baurhoo, Bushansingh; Chevaux, Eric; Zhao, Xin
2014-05-01
There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host's natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets.
Prescreening of microbial populations for the assessment of sequencing potential.
Hanning, Irene B; Ricke, Steven C
2011-01-01
Next-generation sequencing (NGS) is a powerful tool that can be utilized to profile and compare microbial populations. By amplifying a target gene present in all bacteria and subsequently sequencing amplicons, the bacteria genera present in the populations can be identified and compared. In some scenarios, little to no difference may exist among microbial populations being compared in which case a prescreening method would be practical to determine which microbial populations would be suitable for further analysis by NGS. Denaturing density-gradient electrophoresis (DGGE) is relatively cheaper than NGS and the data comparing microbial populations are ready to be viewed immediately after electrophoresis. DGGE follows essentially the same initial methodology as NGS by targeting and amplifying the 16S rRNA gene. However, as opposed to sequencing amplicons, DGGE amplicons are analyzed by electrophoresis. By prescreening microbial populations with DGGE, more efficient use of NGS methods can be accomplished. In this chapter, we outline the protocol for DGGE targeting the same gene (16S rRNA) that would be targeted for NGS to compare and determine differences in microbial populations from a wide range of ecosystems.
Oni, Oluwatobi E.; Schmidt, Frauke; Miyatake, Tetsuro; Kasten, Sabine; Witt, Matthias; Hinrichs, Kai-Uwe; Friedrich, Michael W.
2015-01-01
The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30–530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments. PMID:26635758
Baldrian, Petr; Kolařík, Miroslav; Stursová, Martina; Kopecký, Jan; Valášková, Vendula; Větrovský, Tomáš; Zifčáková, Lucia; Snajdr, Jaroslav; Rídl, Jakub; Vlček, Cestmír; Voříšková, Jana
2012-02-01
Soils of coniferous forest ecosystems are important for the global carbon cycle, and the identification of active microbial decomposers is essential for understanding organic matter transformation in these ecosystems. By the independent analysis of DNA and RNA, whole communities of bacteria and fungi and its active members were compared in topsoil of a Picea abies forest during a period of organic matter decomposition. Fungi quantitatively dominate the microbial community in the litter horizon, while the organic horizon shows comparable amount of fungal and bacterial biomasses. Active microbial populations obtained by RNA analysis exhibit similar diversity as DNA-derived populations, but significantly differ in the composition of microbial taxa. Several highly active taxa, especially fungal ones, show low abundance or even absence in the DNA pool. Bacteria and especially fungi are often distinctly associated with a particular soil horizon. Fungal communities are less even than bacterial ones and show higher relative abundances of dominant species. While dominant bacterial species are distributed across the studied ecosystem, distribution of dominant fungi is often spatially restricted as they are only recovered at some locations. The sequences of cbhI gene encoding for cellobiohydrolase (exocellulase), an essential enzyme for cellulose decomposition, were compared in soil metagenome and metatranscriptome and assigned to their producers. Litter horizon exhibits higher diversity and higher proportion of expressed sequences than organic horizon. Cellulose decomposition is mediated by highly diverse fungal populations largely distinct between soil horizons. The results indicate that low-abundance species make an important contribution to decomposition processes in soils.
Subseafloor Microbial Life in Venting Fluids from the Mid Cayman Rise Hydrothermal System
NASA Astrophysics Data System (ADS)
Huber, J. A.; Reveillaud, J.; Reddington, E.; McDermott, J. M.; Sylva, S. P.; Breier, J. A.; German, C. R.; Seewald, J.
2012-12-01
In hard rock seafloor environments, fluids emanating from hydrothermal vents are one of the best windows into the subseafloor and its resident microbial community. The functional consequences of an extensive population of microbes living in the subseafloor remains unknown, as does our understanding of how these organisms interact with one another and influence the biogeochemistry of the oceans. Here we report the abundance, activity, and diversity of microbes in venting fluids collected from two newly discovered deep-sea hydrothermal vents along the ultra-slow spreading Mid-Cayman Rise (MCR). Fluids for geochemical and microbial analysis were collected from the Von Damm and Piccard vent fields, which are located within 20 km of one another, yet have extremely different thermal, geological, and depth regimes. Geochemical data indicates that both fields are highly enriched in volatiles, in particular hydrogen and methane, important energy sources for and by-products of microbial metabolism. At both sites, total microbial cell counts in the fluids ranged in concentration from 5 x 10 4 to 3 x 10 5 cells ml-1 , with background seawater concentrations of 1-2 x 10 4 cells ml-1 . In addition, distinct cell morphologies and clusters of cells not visible in background seawater were seen, including large filaments and mineral particles colonized by microbial cells. These results indicate local enrichments of microbial communities in the venting fluids, distinct from background populations, and are consistent with previous enumerations of microbial cells in venting fluids. Stable isotope tracing experiments were used to detect utilization of acetate, formate, and dissolve inorganic carbon and generation of methane at 70 °C under anaerobic conditions. At Von Damm, a putatively ultra-mafic hosted site located at ~2200 m with a maximum temperature of 226 °C, stable isotope tracing experiments indicate methanogenesis is occurring in most fluid samples. No activity was detected in Piccard vent fluids, a basalt-hosted black smoker site located at ~4950 m with a maximum temperature of 403 °C. However, hyperthermophilic and thermophilic heterotrophs of the genus Thermococcus were isolated from Piccard vent fluids, but not Von Damm. These obligate anaerobes, growing optimally at 55-90 °C, are ubiquitous at hydrothermal systems and serve as a readily cultivable indicator organism of subseafloor populations. Finally, molecular analysis of vent fluids is on-going and will define the microbial population structure in this novel ecosystem and allow for direct comparisons with other deep-sea and subsurface habitats as part of our continuing efforts to explore the deep microbial biosphere on Earth.
Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W
2014-01-01
Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with increased sequences from Aquificaceae, supports a role for methyltransferase in thermophilic arsenic resistance. Our study highlights microbial contributions to coupled arsenic and sulfur cycling at Champagne Pool, with implications for understanding the evolution of microbial arsenic resistance in sulfidic geothermal systems.
Microbial Survey of Pennsylvania Surface Water Used for Irrigating Produce Crops.
Draper, Audrey D; Doores, Stephanie; Gourama, Hassan; LaBorde, Luke F
2016-06-01
Recent produce-associated foodborne illness outbreaks have been attributed to contaminated irrigation water. This study examined microbial levels in Pennsylvania surface waters used for irrigation, relationships between microbial indicator organisms and water physicochemical characteristics, and the potential use of indicators for predicting the presence of human pathogens. A total of 153 samples taken from surface water sources used for irrigation in southeastern Pennsylvania were collected from 39 farms over a 2-year period. Samples were analyzed for six microbial indicator organisms (aerobic plate count, Enterobacteriaceae, coliform, fecal coliforms, Escherichia coli, and enterococci), two human pathogens (Salmonella and E. coli O157), and seven physical and environmental characteristics (pH, conductivity, turbidity, air and water temperature, and sampling day and 3-day-accumulated precipitation levels). Indicator populations were highly variable and not predicted by water and environmental characteristics. Only five samples were confirmed positive for Salmonella, and no E. coli O157 was detected in any samples. Predictive relationships between microbial indicators and the occurrence of pathogens could therefore not be determined.
NASA Technical Reports Server (NTRS)
Ramirez, Gustavo A; Vaishampayan, Parag A.
2011-01-01
Alpha-diversity studies are of crucial importance to environmental microbiologists. The polymerase chain reaction (PCR) method has been paramount for studies interrogating microbial environmental samples for taxon richness. Phylogenetic studies using this technique are based on the amplification and comparison of the 16S rRNA coding regions. PCR, due disproportionate distribution of microbial species in the environment, increasingly favors the amplification of the most predominant phylotypes with every subsequent reaction cycle. The genetic and chemical complexity of environmental samples are intrinsic factors that exacerbate an inherit bias in PCR-based quantitative and qualitative studies of microbial communities. We report that treatment of a genetically complex total genomic environmental DNA extract with Propidium Monoazide (PMA), a DNA intercalating molecule capable of forming a covalent cross-linkage to organic moieties upon light exposure, disproportionally inactivates predominant phylotypes and results in the exponential amplification of previously shadowed microbial ?-diversity quantified as a 19.5% increase in OUTs reported via phylogenetic screening using PhyloChip.
Microbial populations in contaminant plumes
Haack, S.K.; Bekins, B.A.
2000-01-01
Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.
Effects of Non-Indigenous Oysters on Microbial Diversity and Ecosystem Functioning
Green, Dannielle S.; Boots, Bas; Crowe, Tasman P.
2012-01-01
Invasive ecosystem engineers can physically and chemically alter the receiving environment, thereby affecting biodiversity and ecosystem functioning. The Pacific oyster, Crassostrea gigas, invasive throughout much of the world, can establish dense populations monopolising shorelines and possibly altering ecosystem processes including decomposition and nutrient cycling. The effects of increasing cover of invasive C. gigas on ecosystem processes and associated microbial assemblages in mud-flats were tested experimentally in the field. Pore-water nutrients (NH4 + and total oxidised nitrogen), sediment chlorophyll content, microbial activity, total carbon and nitrogen, and community respiration (CO2 and CH4) were measured to assess changes in ecosystem functioning. Assemblages of bacteria and functionally important microbes, including methanogens, methylotrophs and ammonia-oxidisers were assessed in the oxic and anoxic layers of sediment using terminal restriction length polymorphism of the bacterial 16S rRNA, mxaF, amoA and archaeal mcrA genes respectively. At higher covers (40 and 80%) of oysters there was significantly greater microbial activity, increased chlorophyll content, CO2 (13 fold greater) and CH4 (6 fold greater) emission from the sediment compared to mud-flats without C. gigas. At 10% cover, C. gigas increased the concentration of total oxidised nitrogen and altered the assemblage structure of ammonia-oxidisers and methanogens. Concentrations of pore-water NH4 + were increased by C. gigas regardless of cover. Invasive species can alter ecosystem functioning not only directly, but also indirectly, by affecting microbial communities vital for the maintenance of ecosystem processes, but the nature and magnitude of these effects can be non-linear, depending on invader abundance. PMID:23144762
Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression
Symnaczik, Sarah; Mäder, Paul; De Deyn, Gerlinde; Gattinger, Andreas
2017-01-01
Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental impacts. In this concept an active soil microbiota plays an important role for various soil based ecosystem services such as nutrient cycling, erosion control and pest and disease regulation. Several studies have reported a positive effect of organic farming on soil health and quality including microbial community traits. However, so far no systematic quantification of whether organic farming systems comprise larger and more active soil microbial communities compared to conventional farming systems was performed on a global scale. Therefore, we conducted a meta-analysis on current literature to quantify possible differences in key indicators for soil microbial abundance and activity in organic and conventional cropping systems. All together we integrated data from 56 mainly peer-reviewed papers into our analysis, including 149 pairwise comparisons originating from different climatic zones and experimental duration ranging from 3 to more than 100 years. Overall, we found that organic systems had 32% to 84% greater microbial biomass carbon, microbial biomass nitrogen, total phospholipid fatty-acids, and dehydrogenase, urease and protease activities than conventional systems. Exclusively the metabolic quotient as an indicator for stresses on microbial communities remained unaffected by the farming systems. Categorical subgroup analysis revealed that crop rotation, the inclusion of legumes in the crop rotation and organic inputs are important farming practices affecting soil microbial community size and activity. Furthermore, we show that differences in microbial size and activity between organic and conventional farming systems vary as a function of land use (arable, orchards, and grassland), plant life cycle (annual and perennial) and climatic zone. In summary, this study shows that overall organic farming enhances total microbial abundance and activity in agricultural soils on a global scale. PMID:28700609
NASA Astrophysics Data System (ADS)
Grodnitskaya, I. D.; Trusova, M. Yu.
2009-09-01
Two types of bogs were studied in Tomsk oblast—Maloe Zhukovskoe (an eutrophic peat low-moor bog) and Ozernoe (an oligotrophic peat high-moor bog). The gram-negative forms of Proteobacteria were found to be dominant and amounted to more than 40% of the total population of the microorganisms investigated. In the peat bogs, the population and diversity of the hydrolytic microbial complex, especially of the number of micromycetes, were lower than those in the mineral soils. The changes in the quantitative indices of the total microbiological activity of the bogs were established. The microbial biomass and the intensity of its respiration differed and were also related to the depth of the sampling. In the Zhukovskoe peat low-moor bog, the maximal biomass of heterotrophic microorganisms (154 μg of C/g of peat) was found in the aerobic zone at a depth of 0 to 10 cm. In the Ozernoe bog, the maximal biomass was determined in the zone of anaerobiosis at a depth of 300 cm (1947 μ g of C/g of peat). The molecular-genetic method was used for the determination of the spectrum of the methanogens. Seven unidentified dominant forms were revealed. The species diversity of the methanogens was higher in the oligotrophic high-moor bog than in the eutrophic low-moor bog.
Urbanization and the Microbial Content of the North Saskatchewan River
Coleman, R. N.; Campbell, J. N.; Cook, F. D.; Westlake, D. W. S.
1974-01-01
The effect of urbanization on the microbial content of the North Saskatchewan River was determined by following the changes in the numbers of total bacteria, total eosin methylene blue (EMB) plate count, and Escherichia coli as the river flowed from its glacial source, through parklands, and out into the prairies. Changes in physical parameters such as pH, temperature, salt concentration, and the amount and nature of the suspended material were also determined to evaluate their on the microbial parameters being measured. The level of all three microbial parameters studied slowly increased as the river flowed from its glacial source out into the prairies. The major effect of small hamlets, with or without sewage treatment facilities, appears to be to supply nutrients which supports the growth of the indigenous river flora but not E. coli. In contrast, the effect of a large urban center, with a population of approximately 500,000, which utilizes primary and secondary sewage processes in disposing of sewage, is to provide the nutrients and an inoculum of E. coli which results in a marked increase in the numbers of all three microbial groups studied. The effect of this urban center was still discernible 300 miles downstream. The river was also monitored for the presence of Salmonella sp. Only one positive isolation was achieved during this study, and this isolate was characterized as being Salmonella alachua. PMID:4589145
Tsolcha, Olga N; Tekerlekopoulou, Athanasia G; Akratos, Christos S; Antonopoulou, Georgia; Aggelis, George; Genitsaris, Savvas; Moustaka-Gouni, Maria; Vayenas, Dimitrios V
2018-04-22
A mixed cyanobacterial-mixotrophic algal population, dominated by the filamentous cyanobacterium Leptolyngbya sp. and the microalga Ochromonas (which contributed to the total photosynthetic population with rates of less than 5%), was studied under non-aseptic conditions for its efficiency to remove organic and inorganic compounds from different types of wastes/wastewaters while simultaneously producing lipids. Second cheese whey, poplar sawdust, and grass hydrolysates were used in lab-scale experiments, in photobioreactors that operated under aerobic conditions with different initial nutrient (C, N and P) concentrations. Nutrient removal rates, biomass productivity, and the maximum oil production rates were determined. The highest lipid production was achieved using the biologically treated dairy effluent (up to 14.8% oil in dry biomass corresponding to 124 mg L -1 ) which also led to high nutrient removal rates (up to 94%). Lipids synthesized by the microbial consortium contained high percentages of saturated and mono-unsaturated fatty acids (up to 75% in total lipids) for all the substrates tested, which implies that the produced biomass may be harnessed as a source of biodiesel.
Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng
2016-01-01
Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodopseudomonas palustris)-chemoheterotrophic bacteria to treat volatile fatty acid wastewater. Pollutants removal, biomass production and carotenoids yield in different phases were investigated in together with functional microbial population dynamics. The results indicated that properly decreasing HRT and increasing OLR improved the nutrient removal performance as well as the biomass and carotenoids productions. 85.7% COD, 89.9% TN and 91.8% TP removals were achieved under the optimal HRT of 48h and OLR of 2.51g/L/d. Meanwhile, the highest biomass production and carotenoids yield were 2719.3mg/L and 3.91mg/g-biomass respectively. In addition, HRT and OLR have obvious impacts on PNSB and total bacteria dynamics. Statistical analyses indicated that the COD removal exhibited a positive relationship with OLR, biomass and carotenoids production. PNSB/total bacteria ratio had a positive correlation with the carotenoids yield. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ishii, Shun'ichi; Shimoyama, Takefumi; Hotta, Yasuaki; Watanabe, Kazuya
2008-01-10
Microbial fuel cells (MFCs) are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. A laboratory-scale two-chamber microbial fuel cell (MFC) was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate) became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community.
Ishii, Shun'ichi; Shimoyama, Takefumi; Hotta, Yasuaki; Watanabe, Kazuya
2008-01-01
Background Microbial fuel cells (MFCs) are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. Results A laboratory-scale two-chamber microbial fuel cell (MFC) was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate) became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Conclusion Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community. PMID:18186940
Asanuma, Narito; Yokoyama, Shota; Hino, Tsuneo
2015-04-01
This study investigated the effects of dietary nitrate addition on ruminal fermentation characteristics and microbial populations in goats. The involvement of Selenomonas ruminantium in nitrate and nitrite reduction in the rumen was also examined. As the result of nitrate feeding, the total concentration of ruminal volatile fatty acids decreased, whereas the acetate : propionate ratio and the concentrations of ammonia and lactate increased. Populations of methanogens, protozoa and fungi, as estimated by real-time PCR, were greatly decreased as a result of nitrate inclusion in the diet. There was modest or little impact of nitrate on the populations of prevailing species or genus of bacteria in the rumen, whereas Streptococcus bovis and S. ruminantium significantly increased. Both the activities of nitrate reductase (NaR) and nitrite reductase (NiR) per total mass of ruminal bacteria were increased by nitrate feeding. Quantification of the genes encoding NaR and NiR by real-time PCR with primers specific for S. ruminantium showed that these genes were increased by feeding nitrate, suggesting that the growth of nitrate- and nitrite-reducing S. ruminantium is stimulated by nitrate addition. Thus, S. ruminantium is likely to play a major role in nitrate and nitrite reduction in the rumen. © 2014 Japanese Society of Animal Science.
Microbial composition affects the performance of an artificial Tephritid larval diet.
Rempoulakis, P; Sela Saldinger, S; Nemny-Lavy, E; Pinto, R; Birke, A; Nestel, D
2017-09-20
The present study investigated the patterns of microorganisms in an artificial larval diet during Dacus ciliatus (Diptera; Tephritidae) larval development. Microbial population contents in the diet of total heterotrophic bacteria, yeast and molds, coliform and lactobacilli, and their dynamics during development, were monitored. Initially, the microbial composition in diet trays failing to produce viable pupae and in trays successfully producing pupae and adult flies was characterized. The failing diet trays contained large populations of lactobacilli that increased during larval development, and low populations of coliforms. In contrast, the successful diet showed an increasing population of coliforms and a low, or undetected, population of lactobacilli. To study the hypothesis that lactobacilli affect D. ciliatus larval development, we conducted controlled inoculation experiments in which Lactobacillus plantarum was added into fresh diet at the time of egg seeding. L. plantarum inoculated trays showed no production of D. ciliatus. Control trays without lactobacilli inoculation showed variable results. One tray successfully produced viable pupae and adults, and showed a slight and slow increase in the indigenous populations of lactobacilli. The second tray, however, failed to produce pupae and showed a fast increase of the indigenous lactobacilli to very high levels. Monitored pH trends in L. plantarum-inoculated diet showed a sharp pH decrease during the first 4 days of larval development from 5 to less than 4 units, while successful diet, producing viable D. ciliatus pupae and adults, showed a moderate pH drop during most of the larval development period. The paper discusses the possible ecological interactions between D. ciliatus larvae, the microbial content of the diet and the physical properties of the diet. The discussion also points out at the usefulness of this approach in understanding and managing mass production parameters of tephritid fruit flies industrial diets used for Sterile Insect Technique.
Quality change of apple slices coated with Aloe vera gel during storage.
Song, Hye-Yeon; Jo, Wan-Shin; Song, Nak-Bum; Min, Sea C; Song, Kyung Bin
2013-06-01
Fresh-cut apples are easily susceptible to browning and microbial spoilage. In this study, an edible coating prepared from Aloe vera gel containing antibrowning solution was applied to preserve the quality of fresh-cut apples during storage. Fresh-cut apples were treated with both an Aloe vera gel and an Aloe vera gel containing 0.5% cysteine and then stored at 4 °C for 16 d. The color, firmness, weight loss, soluble solid content, titratable acidity, microbial analysis, and sensory evaluation were analyzed during storage. Fresh-cut apples coated with the Aloe vera gel showed delayed browning and reduced weight loss and softening compared to the control. The Aloe vera gel coating was also effective in reducing the populations of the total aerobic bacteria and yeast and molds. In particular, Aloe vera gel containing 0.5% cysteine was most effective in delaying browning and the reduction of microbial populations among the treatments. These results suggest that an Aloe vera gel coating can be used for maintaining the quality of fresh-cut apples. © 2013 Institute of Food Technologists®
Efiuvwevwere, B J; Atirike, O I
1998-03-01
Cans of three tomato paste brands (two of which are imported and one produced locally) showing defective or normal appearance were purchased from various retail outlets and analysed for microbial composition and pH values. Substantially higher total viable counts were observed in samples from defective cans but the lowest population was found in the local brand. Ratio of mesophilic to thermophilic micro-organisms increased in samples obtained from cans showing visible defects. Anaerobic spore counts were higher than the aerobic population in both normal and defective cans, but the counts varied with the brands. Four dominant bacterial genera (Bacillus, Clostridium, Lactobacillus and Leuconostoc) were isolated from the samples with the greater proportion being spore-formers. Percentage occurrence of Clostridium thermosaccharolyticum was appreciably higher in samples from defective cans while a preponderance of Lactobacillus occurred in samples from normal cans. Of the moulds isolated, Absidia and Aspergillus fumigatus showed a higher percentage in defective cans. pH values higher than the critical safe level of 4.6 were found in cans with visible defects and greater microbial diversity with higher microbial load was more often associated with these samples. Imported brands showed more undesirable microbial quality and pH values, making them potentially hazardous.
Margesin, Rosa; Hämmerle, Marion; Tscherko, Dagmar
2007-02-01
We investigated the influence of three factors-diesel oil concentration [2500, 5000, 10,000, 20,000 mg total petroleum hydrocarbons (TPH) kg(-1) soil], biostimulation (unfertilized, inorganic fertilization with NPK nutrients, or oleophilic fertilization with Inipol EAP22), and incubation time-on hydrocarbon removal, enzyme activity (lipase), and microbial community structure [phospholipid fatty acids (PLFA)] in a laboratory soil bioremediation treatment. Fertilization enhanced TPH removal and lipase activity significantly (P < or = 0.001). The higher the initial contamination, the more marked was the effect of fertilization. Differences between the two fertilizers were not significant (P > 0.05). Microbial communities, as assessed by PLFA patterns, were primarily influenced by the TPH content, followed by fertilization, and the interaction of these two factors, whereas incubation time was of minor importance. This was demonstrated by three-factorial analysis of variance and multidimensional scaling analysis. Low TPH content had no significant effect on soil microbial community, independent of the treatment. High TPH content generally resulted in increased PLFA concentrations, whereby a significant increase in microbial biomass with time was only observed with inorganic fertilization, whereas oleophilic fertilization (Inipol EAP22) tended to inhibit microbial activity and to reduce PLFA contents with time. Among bacteria, PLFA indicative of the Gram-negative population were significantly (P < or = 0.05) increased in soil samples containing high amounts of diesel oil and fertilized with NPK after 21-38 days of incubation at 20 degrees C. The Gram-positive population was not significantly influenced by TPH content or biostimulation treatment.
Microbial diversity in the floral nectar of Linaria vulgaris along an urbanization gradient.
Bartlewicz, Jacek; Lievens, Bart; Honnay, Olivier; Jacquemyn, Hans
2016-03-30
Microbes are common inhabitants of floral nectar and are capable of influencing plant-pollinator interactions. All studies so far investigated microbial communities in floral nectar in plant populations that were located in natural environments, but nothing is known about these communities in nectar of plants inhabiting urban environments. However, at least some microbes are vectored into floral nectar by pollinators, and because urbanization can have a profound impact on pollinator communities and plant-pollinator interactions, it can be expected that it affects nectar microbes as well. To test this hypothesis, we related microbial diversity in floral nectar to the degree of urbanization in the late-flowering plant Linaria vulgaris. Floral nectar was collected from twenty populations along an urbanization gradient and culturable bacteria and yeasts were isolated and identified by partially sequencing the genes coding for small and large ribosome subunits, respectively. A total of seven yeast and 13 bacterial operational taxonomic units (OTUs) were found at 3 and 1% sequence dissimilarity cut-offs, respectively. In agreement with previous studies, Metschnikowia reukaufii and M. gruessi were the main yeast constituents of nectar yeast communities, whereas Acinetobacter nectaris and Rosenbergiella epipactidis were the most frequently found bacterial species. Microbial incidence was high and did not change along the investigated urbanization gradient. However, microbial communities showed a nested subset structure, indicating that species-poor communities were a subset of species-rich communities. The level of urbanization was putatively identified as an important driver of nestedness, suggesting that environmental changes related to urbanization may impact microbial communities in floral nectar of plants growing in urban environments.
Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.
Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun
2017-01-01
Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.
Ravindran, Anita; Yang, Shang-Shyng
2015-08-01
Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.
Wu, Hao; Meng, Qingxiang; Yu, Zhongtang
2015-06-01
The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rice rhizosphere soil and root surface bacterial community response to water management changes
USDA-ARS?s Scientific Manuscript database
Different water management practices could affect microbial populations in the rice rhizosphere. A field-scale study was conducted to evaluate microbial populations in the root plaque and rhizosphere of rice in response to continuous and intermittent flooding conditions. Microbial populations in rhi...
Freshly characterization and storability of mini head lettuces at optimal and abusive temperatures.
Viacava, Gabriela E; Ponce, Alejandra G; Goyeneche, Rosario; Carrozzi, Liliana; Yommi, Alejandra; Roura, Sara I
2016-01-01
Selection of lettuce varieties less sensitive to quality deterioration and more tolerant to abusive temperatures during handling, transportation, and storage is essential to minimize economical and quality losses that affect both producers and consumers. This work was focused on the quality changes of four baby head lettuces (Lactuca sativa L.), two butter (red and green) and two oak-leaf (red and green) types, during storage at 0 ℃ and 10 ℃ for 10 days. Lettuce quality was determined by measuring bioactive content (ascorbic acid, total phenolics), physicochemical (total chlorophyll, browning potential), and microbiological indices. At harvest, red varieties presented lower browning potential and higher bioactive compounds but no differences were observed in microbial populations. During storage, ascorbic acid underwent first order degradation for all varieties, with a degradation rate at 10 ℃ twice faster than at 0 ℃. At 0 ℃, only the red oak-leaf lettuce exhibited chlorophyll degradation, while at 10 ℃ all varieties presented degradation. No changes were observed in total phenolics and browning potential of butter lettuces during storage at both temperatures. Microbial population counts were significant affected by the storage temperature. Red butter baby lettuce presented slightly better bioactive content and microbiological characteristics and then better storability. © The Author(s) 2015.
Ramos, S; Tejido, M L; Martínez, M E; Ranilla, M J; Carro, M D
2009-09-01
Six ruminally and duodenally cannulated sheep were used in a partially replicated 4 x 4 Latin square to evaluate the effects of 4 diets on microbial synthesis, microbial populations, and ruminal digestion. The experimental diets had forage to concentrate ratios (F:C; DM basis) of 70:30 (HF) or 30:70 (HC) with alfalfa hay (A) or grass hay (G) as forage and were designated as HFA, HCA, HFG, and HCG. The concentrate was based on barley, gluten feed, wheat middlings, soybean meal, palmkern meal, wheat, corn, and mineral-vitamin premix in the proportions of 22, 20, 20, 13, 12, 5, 5, and 3%, respectively (as-is basis). Sheep were fed the diets at a daily rate of 56 g/kg of BW(0.75) to minimize feed selection. High-concentrate diets resulted in greater (P < 0.001) total tract apparent OM digestibility compared with HF diets, but no differences were detected in NDF digestibility. Ruminal digestibility of OM, NDF, and ADF was decreased by increasing the proportion of concentrate, but no differences between forages were detected. Compared with sheep fed HF diets, sheep receiving HC diets had less ruminal pH values and acetate proportions, but greater butyrate proportions. No differences among diets were detected in numbers of cellulolytic bacteria, but protozoa numbers were less (P = 0.004) and total bacteria numbers tended (P = 0.08) to be less for HC diets. Carboxymethylcellulase, xylanase, and amylase activities were greater for HC compared with HF diets, with A diets showing greater (P = 0.008) carboxymethylcellulase activities than G diets. Retained N ranged from 28.7 to 37.9% of N intake and was not affected by F:C (P = 0.62) or the type of forage (P = 0.31). Microbial N synthesis and its efficiency was greater (P < 0.001) for HC diets compared with HF diets. The results indicate that concentrates with low cereal content can be included in the diet of sheep up to 70% of the diet without detrimental effects on ruminal activity, microbial synthesis efficiency, and N losses.
Bacteria that Travel: The Quality of Aircraft Water
Handschuh, Harald; Dwyer, Jean O’; Adley, Catherine C.
2015-01-01
The travelling population is increasing globally year on year. International tourist arrival figures reached 1087 million in 2013 and 1133 million in 2014; of which 53% and 54% respectively accounted for air transport. The water on board aircraft is sourced from surface or ground water; piped to a central filling point and distributed to each aircraft by water service vehicles at the home base or at the destination airport. The purpose of this study was to ascertain the microbial, chemical (pH; Total and Free chlorine) and physical (temperature) quality of water from two aircraft, long- and short-haul, as well as from the original water source and the water service vehicle. A total of 154 water samples were collected and analysed. Long-haul flights were found to be significantly poorer in terms of microbial quality than short haul flights (p = 0.015). Furthermore, correlation and regression analysis showed that the water service vehicle was a significant source of increased microbial load in aircraft. Microbial diversity was also demonstrated, with 37 bacterial species identified belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga; using phenotypic and 16S rDNA sequence-based analysis. We present a novel quantified study of aircraft-related potable water supplies. PMID:26529000
Bacteria that Travel: The Quality of Aircraft Water.
Handschuh, Harald; O'Dwyer, Jean; Adley, Catherine C
2015-10-30
The travelling population is increasing globally year on year. International tourist arrival figures reached 1087 million in 2013 and 1133 million in 2014; of which 53% and 54% respectively accounted for air transport. The water on board aircraft is sourced from surface or ground water; piped to a central filling point and distributed to each aircraft by water service vehicles at the home base or at the destination airport. The purpose of this study was to ascertain the microbial, chemical (pH; Total and Free chlorine) and physical (temperature) quality of water from two aircraft, long- and short-haul, as well as from the original water source and the water service vehicle. A total of 154 water samples were collected and analysed. Long-haul flights were found to be significantly poorer in terms of microbial quality than short haul flights (p = 0.015). Furthermore, correlation and regression analysis showed that the water service vehicle was a significant source of increased microbial load in aircraft. Microbial diversity was also demonstrated, with 37 bacterial species identified belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga; using phenotypic and 16S rDNA sequence-based analysis. We present a novel quantified study of aircraft-related potable water supplies.
Trophic structure and microbial activity in a spawning area of Engraulis encrasicolus
NASA Astrophysics Data System (ADS)
Zaccone, R.; Azzaro, M.; Azzaro, F.; Caruso, G.; Caroppo, C.; Decembrini, F.; Diociaiuti, T.; Fonda Umani, S.; Leonardi, M.; Maimone, G.; Monticelli, L. S.; Paranhos, R.; Placenti, F.; Cuttitta, A.; Patti, B.; La Ferla, R.
2018-07-01
The abundance, biomass and size-structure of planktonic populations, and the microbial metabolic processes were studied in the Sicily Channel, one of the most important spawning areas in the Mediterranean for anchovy (Engraulis encrasicolus), a pelagic species of commercial interest. Results showed that prokaryotes contribute for the 83% of total carbon biomass. Microphytoplankton abundances and biomasses were dominated by autotrophic nanoflagellates and dinoflagellates (36 identified species) and contribute 11% of total biomass. The microzooplanktonic biomass showed its maximum at the surface or subsurface and its contribution was low (4%). In agreement with the general oligotrophy of the investigated area, the study highlights the prevalence of pico-sized fractions within the whole phytoplankton biomass expressed as chlorophyll content, suggesting the importance of picophytoplankton in sustaining the microbial food web. At the same time, the levels of microbial hydrolytic activities are related to productive processes recycling the organic matter and releasing nutrients (P and N), indicating also an active functioning of ecosystem at low trophic levels. Autotrophic production exceeded oxidation by respiration; at the same time, the co-variation of prokaryotic activities and eggs distribution with temperature in summer was observed. The results obtained confirmed that the area acted as a nursery for small fish and both autotrophic and heterotrophic processes supported by microorganisms were in synergy.
Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie
2012-08-01
Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.
Potential Role of Gut Microbiota in ALS Pathogenesis and Possible Novel Therapeutic Strategies.
Mazzini, Letizia; Mogna, Luca; De Marchi, Fabiola; Amoruso, Angela; Pane, Marco; Aloisio, Irene; Cionci, Nicole Bozzi; Gaggìa, Francesca; Lucenti, Ausiliatrice; Bersano, Enrica; Cantello, Roberto; Di Gioia, Diana; Mogna, Giovanni
2018-05-18
Recent preclinical studies suggest that dysfunction of gastrointestinal tract may play a role in amyotrophic lateral sclerosis (ALS) pathogenesis through a modification of the gut microbiota brain axis. Our study is the first focused on microbiota analysis in ALS patients. Our aim was to study the main human gut microbial groups and the overall microbial diversity in ALS and healthy subjects. Moreover we have examined the influence of a treatment with a specific bacteriotherapy composed of Lactobacillus strains (Lactobacillus fermentum, Lactobacillus delbrueckii, Lactobacillus plantarum, Lactobacillus salivarius) acting on the gastrointestinal barrier. We enrolled 50 ALS patients and 50 healthy controls, matched for sex, age, and origin. Fecal samples were used for total genomic DNA extraction. Enterobacteria, Bifidobacterium spp., Lactobacillus spp., Clostridium sensu stricto, Escherichia coli and yeast were quantified using quantitative polymerase chain reaction approach. Denaturing gradient gel electrophoresis analyses were performed to investigate total eubacteria and yeasts populations. Patients were randomized to double-blind treatment either with microorganisms or placebo for 6 months and monitored for clinical progression and microbiota composition. The comparison between ALS subjects and healthy group revealed a variation in the intestinal microbial composition with a higher abundance of E. coli and enterobacteria and a low abundance of total yeast in patients. Polymerase chain reaction denaturing gradient gel electrophoresis analysis showed a cluster distinction between the bacterial profiles of ALS patients and the healthy subjects. The complexity of the profiles in both cases may indicate that a real dysbiosis status is not evident in the ALS patients although differences between healthy and patients exist. The effects of the progression of the disease and of the bacteriotherapy on the bacterial and yeast populations are currently in progress. Our preliminary results confirm that there is a difference in the microbiota profile in ALS patients.
Liu, Ru; Gao, Chongyang; Zhao, Yang-Guo; Wang, Aijie; Lu, Shanshan; Wang, Min; Maqbool, Farhana; Huang, Qing
2012-11-01
The single chamber microbial fuel cells (MFCs) were used to treat steroidal drug production wastewater (SPW) and generate electricity simultaneously. The results indicated that the maximum COD removal efficiency reached 82%, total nitrogen and sulfate removal rate approached 62.47% and 26.46%, respectively. The maximum power density and the Coulombic efficiency reached to 22.3Wm(-3) and 30%, respectively. The scanning electron microscope showed that the dominant microbial populations were remarkably different in morphology on the surface of SPW and acetate-fed anodes. PCR-denaturing gradient gel electrophoresis profiles revealed that the microbial community structure fed with different concentrations of SPW presented a gradual succession and unique bacterial sequences were detected on the SPW and acetate-fed anodes. This research demonstrates that MFCs fed with SPW achieved a high efficiency of power density and simultaneous nutrient removal, and the dominant microorganisms on the anode were related to the types and the concentrations of substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Strains, functions, and dynamics in the expanded Human Microbiome Project
Lloyd-Price, Jason; Mahurkar, Anup; Rahnavard, Gholamali; Crabtree, Jonathan; Orvis, Joshua; Hall, A. Brantley; Brady, Arthur; Creasy, Heather H.; McCracken, Carrie; Giglio, Michelle G.; McDonald, Daniel; Franzosa, Eric A.; Knight, Rob; White, Owen; Huttenhower, Curtis
2018-01-01
Summary The characterization of baseline microbial and functional diversity in the human microbiome has enabled studies of microbiome-related disease, microbial population diversity, biogeography, and molecular function. The NIH Human Microbiome Project (HMP) has provided one of the broadest such characterizations to date. Here, we introduce an expanded second phase of the study, abbreviated HMP1-II, comprising 1,631 new metagenomic samples (2,355 total) targeting diverse body sites with multiple time points in 265 individuals. We applied updated profiling and assembly methods to these data to provide new characterizations of microbiome personalization. Strain identification revealed distinct subspecies clades specific to body sites; it also quantified species with phylogenetic diversity under-represented in isolate genomes. Body-wide functional profiling classified pathways into universal, human-enriched, and body site-enriched subsets. Finally, temporal analysis decomposed microbial variation into rapidly variable, moderately variable, and stable subsets. This study furthers our knowledge of baseline human microbial diversity, thus enabling an understanding of personalized microbiome function and dynamics. PMID:28953883
Zhao, X H; Liu, C J; Liu, Y; Li, C Y; Yao, J H
2013-12-01
A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent-soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15-day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia-N and increased the growth of the solid-associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N. © 2012 Blackwell Verlag GmbH.
Kohl, Kevin D; Varner, Johanna; Wilkening, Jennifer L; Dearing, M Denise
2018-03-01
Gut microbial communities provide many physiological functions to their hosts, especially in herbivorous animals. We still lack an understanding of how these microbial communities are structured across hosts in nature, especially within a given host species. Studies on laboratory mice have demonstrated that host genetics can influence microbial community structure, but that diet can overwhelm these genetic effects. We aimed to test these ideas in a natural system, the American pika (Ochotona princeps). First, pikas are high-elevation specialists with significant population structure across various mountain ranges in the USA, allowing us to investigate whether similarities in microbial communities match host genetic differences. Additionally, pikas are herbivorous, with some populations exhibiting remarkable dietary plasticity and consuming high levels of moss, which is exceptionally high in fibre and low in protein. This allows us to investigate adaptations to an herbivorous diet, as well as to the especially challenging diet of moss. Here, we inventoried the microbial communities of pika caecal pellets from various populations using 16S rRNA sequencing to investigate structuring of microbial communities across various populations with different natural diets. Microbial communities varied significantly across populations, and differences in microbial community structure were congruent with genetic differences in host population structure, a pattern known as "phylosymbiosis." Several microbial members (Ruminococcus, Prevotella, Oxalobacter and Coprococcus) were detected across all samples, and thus likely represent a "core microbiome." These genera are known to perform a number of services for herbivorous hosts such as fibre fermentation and the degradation of plant defensive compounds, and thus are likely important for herbivory in pikas. Moreover, pikas that feed on moss harboured microbial communities highly enriched in Melainabacteria. This uncultivable candidate phylum has been proposed to ferment fibre for herbivores, and thus may contribute to the ability of some pika populations to consume high amounts of moss. These findings demonstrate that both host genetics and diet can influence the microbial communities of the American pika. These animals may be novel sources of fibre-degrading microbes. Last, we discuss the implications of population-specific microbial communities for conservation efforts in this species. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
NASA Technical Reports Server (NTRS)
Gauthier, J. J.; Roman, M. C.; Kilgore, B. A.; Huff, T. L.; Obenhuber, D. C.; Terrell, D. W.; Wilson, M. E.; Jackson, N. E.
1991-01-01
NASA/MSFC is developing a physical/chemical treatment system to reclaim wastewater for reuse on Space Station Freedom (SSF). Integrated testing of hygiene and potable water subsystems assessed the capability to reclaim water to SSF specifications. The test was conducted from May through July 1990 with a total of 47 days of system test operation. Water samples were analyzed using standard cultural methods employing membrane filtration and spread plate techniques and epifluorescence microscopy. Fatty acid methyl ester and biochemical profiles were used for microbial identification. Analysis of waste and product water produced by the subsystems demonstrated the effective reduction of viable microbial populations greater than 8.0E + 06 colony forming units (CFU) per 100 mL to an average of 5 CFU/100 mL prior to distribution into storage tanks.
King, S.A.; Behnke, S.; Slack, K.; Krabbenhoft, D.P.; Nordstrom, D. Kirk; Burr, M.D.; Striegl, Robert G.
2006-01-01
Ultra-clean sampling methods and approaches typically used in pristine environments were applied to quantify concentrations of Hg species in water and microbial biomass from hot springs of Yellowstone National Park, features that are geologically enriched with Hg. Microbial populations of chemically-diverse hot springs were also characterized using modern methods in molecular biology as the initial step toward ongoing work linking Hg speciation with microbial processes. Molecular methods (amplification of environmental DNA using 16S rDNA primers, cloning, denatured gradient gel electrophoresis (DGGE) screening of clone libraries, and sequencing of representative clones) were used to examine the dominant members of microbial communities in hot springs. Total Hg (THg), monomethylated Hg (MeHg), pH, temperature, and other parameters influential to Hg speciation and microbial ecology are reported for hot springs water and associated microbial mats. Several hot springs indicate the presence of MeHg in microbial mats with concentrations ranging from 1 to 10 ng g-1 (dry weight). Concentrations of THg in mats ranged from 4.9 to 120,000 ng g-1 (dry weight). Combined data from surveys of geothermal water, lakes, and streams show that aqueous THg concentrations range from l to 600 ng L-1. Species and concentrations of THg in mats and water vary significantly between hot springs, as do the microorganisms found at each site. ?? 2006.
Microbial quality of food available to populations of differing socioeconomic status.
Koro, Marlen E; Anandan, Shivanthi; Quinlan, Jennifer J
2010-05-01
Low SES has been shown to be linked to poorer-quality diets, decreased consumption of fresh produce, and an increased reliance on small retail stores. The objective of this research was to determine if there is a difference in the microbial quality and potential safety of food available to low-SES versus high-SES populations at the retail level. Aerobic plate count (APC); yeast and mold counts (Y & M); and total coliforms were determined in ready-to-eat (RTE) greens, pre-cut watermelon, broccoli, strawberries, cucumbers, milk, and orange juice and compared among products purchased in stores in low- versus those purchased in high-SES neighborhoods between June 2005 and September 2006. APC, fecal coliforms, and E. coli in ground beef and the presence of Salmonella and Campylobacter in chicken were also compared. Results showed higher microbial loads on produce from markets in low-SES areas. Significant differences observed included (1) APC and Y&M in RTE greens, (2) APC and Y&M in strawberries, and (3) YMCs in cucumbers. No difference was detected in the level of pathogens in raw meat and poultry; however, the APC in ground beef available in high-SES markets was significantly higher compared with that found in low-SES markets. The results presented here indicate that populations of low SES may be more likely to experience produce of poorer microbial quality, which may have an impact on both the appeal and potential safety of the produce. 2010 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume.
Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B
2016-02-01
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4-V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1-C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations.
2013-01-01
Background Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. Results Sequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L-1 (4.9 g L-1 total suspended solids, TSS) and 183.6 mg Ag kg -1 (2.9 g kg-1 total solids, TS), respectively]. The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported. Conclusions Silver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic digestion). Transformed AgNPs, at predicted future Ag wastewater concentrations, did not affect nitrification or methanogenesis. Consequently, AgNPs are very unlikely to affect the efficient functioning of wastewater treatment plants. However, AgNPs may negatively affect sub-dominant wastewater microbial communities. PMID:23497481
Companion animals symposium: role of microbes in canine and feline health.
Kil, D Y; Swanson, K S
2011-05-01
Whether in an ocean reef, a landfill, or a gastrointestinal tract (GIT), invisible communities of highly active and adaptable microbes prosper. Over time, mammals have developed a symbiosis with microbes that are important inhabitants not only in the GIT, but also in the mouth, skin, and urogenital tract. In the GIT, the number of commensal microbes exceeds the total number of host cells by at least 10 times. The GIT microbes play a critical role in nutritional, developmental, defensive, and physiologic processes in the host. Recent evidence also suggests a role of GIT microbes in metabolic phenotype and disease risk (e.g., obesity, metabolic syndrome) of the host. Proper balance is a key to maintaining GIT health. Balanced microbial colonization is also important for other body regions such as the oral cavity, the region with the greatest prevalence of disease in dogs and cats. A significant obstruction to studying microbial populations has been the lack of tools to identify and quantify microbial communities accurately and efficiently. Most of the current knowledge of microbial populations has been established by traditional cultivation methods that are not only laborious, time-consuming, and often inaccurate, but also greatly limited in scope. However, recent advances in molecular-based techniques have resulted in a dramatic improvement in studying microbial communities. These DNA-based high-throughput technologies have enabled us to more clearly characterize the identity and metabolic activity of microbes living in the host and their association with health and diseases. Despite this recent progress, however, published data pertaining to microbial communities of dogs and cats are still lacking in comparison with data in humans and other animals. More research is required to provide a more detailed description of the canine and feline microbiome and its role in health and disease.
Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.
2016-08-09
Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.
Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less
The Impact of Population Bottlenecks on Microbial Adaptation
NASA Astrophysics Data System (ADS)
LeClair, Joshua S.; Wahl, Lindi M.
2018-07-01
Population bottlenecks—sudden, severe reductions in population size—are ubiquitous in nature. Because of their critical implications for conservation genetics, the effects of population bottlenecks on the loss of genetic diversity have been well studied. Bottlenecks also have important implications for adaptation, however, and these effects have been addressed more recently, typically in microbial populations. In this short review, we survey both experimental and theoretical work describing the impact of population bottlenecks on microbial adaptation. Focusing on theoretical contributions, we highlight emerging insights and conclude with several open questions of interest in the field.
Francis, A J; Dobbs, S; Nine, B J
1980-01-01
Trench leachate samples collected anoxically from shallow-land, low-level radioactive waste disposal sites were analyzed for total aerobic and anaerobic populations, sulfate reducers, denitrifiers, and methanogens. Among the several aerobic and anaerobic bacteria isolated, only Bacillus sp., Pseudomonas sp., Citrobacter sp., and Clostridium sp. were identified. Mixed bacterial cultures isolated from the trench leachates were able to grow anaerobically in trench leachates, which indicates that the radionuclides and organic chemicals present were not toxic to these bacteria. Changes in concentrations of several of the organic constituents of the waste leachate samples were observed due to anaerobic microbial activity. Growth of a mixed culture of trench-water bacteria in media containing a mixture of radionuclides, 60Co, 85Sr, and 134,137Cs, was not affected at total activity concentrations of 2.6 X 10(2) and 2.7 X 10(3) pCi/ml. PMID:7406490
Bauer, Matthias; Knebel, Johannes; Lechner, Matthias; Pickl, Peter; Frey, Erwin
2017-01-01
Autoinducers are small signaling molecules that mediate intercellular communication in microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating the mechanisms that control autoinducer production is, thus, pertinent to understanding collective microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the isogenic cells in a population might produce autoinducers, whereas others might not. However, the mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the environment, up-regulate their production in this self-shaped environment, and non-producers replicate faster than producers. We show that the coupling between ecological and population dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations, suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory circuits. DOI: http://dx.doi.org/10.7554/eLife.25773.001 PMID:28741470
Blazewicz, Steven J; Schwartz, Egbert; Firestone, Mary K
2014-05-01
The rapid increase in microbial activity that occurs when a dry soil is rewetted has been well documented and is of great interest due to implications of changing precipitation patterns on soil C dynamics. Several studies have shown minor net changes in microbial population diversity or abundance following wet-up, but the gross population dynamics of bacteria and fungi resulting from soil wet-up are virtually unknown. Here we applied DNA stable isotope probing with H218O coupled with quantitative PCR to characterize new growth, survival, and mortality of bacteria and fungi following the rewetting of a seasonally dried California annual grassland soil. Microbial activity, as determined by CO2 production, increased significantly within three hours of wet-up, yet new growth was not detected until after three hours, suggesting a pulse of nongrowth activity immediately following wet-up, likely due to osmo-regulation and resuscitation from dormancy in response to the rapid change in water potential. Total microbial abundance revealed little change throughout the seven-day post-wet incubation, but there was substantial turnover of both bacterial and fungal populations (49% and 52%, respectively). New growth was linear between 24 and 168 hours for both bacteria and fungi, with average growth rates of 2.3 x 10(8) bacterial 16S rRNA gene copies x [g dry mass](-1) x h(-1) and 4.3 x 10(7) fungal ITS copies x [g dry mass](-1) x h(-1). While bacteria and fungi differed in their mortality and survival characteristics during the seven-day incubation, mortality that occurred within the first three hours was similar, with 25% and 27% of bacterial and fungal gene copies disappearing from the pre-wet community, respectively. The rapid disappearance of gene copies indicates that cell death, occurring either during the extreme dry down period (preceding five months) or during the rapid change in water potential due to wet-up, generates a significant pool of available C that likely contributes to the large pulse in CO2 associated with wet-up. A dynamic assemblage of growing and dying organisms controlled the CO2 pulse, but the balance between death and growth resulted in relatively stable total population abundances, even after a profound and sudden change in environment.
Ecology and exploration of the rare biosphere.
Lynch, Michael D J; Neufeld, Josh D
2015-04-01
The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance microbial populations—the 'rare biosphere'—have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.
Xu, Yang; Niu, Lili; Qiu, Jiguo; Zhou, Yuting; Lu, Huijie; Liu, Weiping
2018-05-02
The wide usage of hexachlorocyclohexanes (HCHs) as pesticides has caused soil pollution and adverse health effects through direct contact or bioaccumulation in the food chain. This study quantified major HCH isomers in farmland topsoils across China, and evaluated their correlations with microbial community structure, function, and abiotic variables (e.g., moisture, pH, and temperature). Recalcitrant β-HCH was more abundant than α-, γ-, and δ-HCHs, and α-HCH enantiomeric fractions (EF) were larger than 0.5, indicating preferential degradation of (-)-α-HCH. Sphingomonas was not only a predominant population (especially in samples collected in the south), but also a promising biomarker indicating total- and β-HCH residuals, and EF values of α-HCH. Soil moisture and temperature were among the most influential factors that structured the diversity and function of soil microbial communities. The results suggested that increasing soil moisture (in the range of 5-45%) would benefit the growth of HCH-degrading populations and the enrichment of HCH-degradation related pathways. Revealing the site-specific relationships between topsoil physical, chemical, and microbial properties will benefit the in situ bioremediation of farmlands with relatively low HCH residuals across the world. Copyright © 2018 Elsevier Ltd. All rights reserved.
Truffles decontamination treatment by ionizing radiation
NASA Astrophysics Data System (ADS)
Adamo, M.; Capitani, D.; Mannina, L.; Cristinzio, M.; Ragni, P.; Tata, A.; Coppola, R.
2004-09-01
A research project, funded by the Italian Ministry of Research and the European Union, is in progress aimed to develop processes to enhance, by irradiation, the safety and the wholesomeness of fresh products relevant for Italian food industry. Irradiation was performed on truffles, since the bacterial contamination impairs their trade in foreign countries. The microbial population and the shelf life under refrigeration were studied either on samples untreated or on samples submitted to γ-rays in a 1-2.5 kGy dose range. The effect of the treatment was monitored by UV and NMR techniques. Total microbial population and the shelf life prolongation were investigated. The synergistic effect of the dose, the packaging under vacuum and the storage/irradiation temperature resulted in a direct effect on the microbial load, spoilage and shelf life. After the irradiation, small variations in the intensity of some NMR resonances due to aromatic compounds and other unassigned compounds were observed. As confirmed by UV spectrophotometric data, these phenomena seemed to originate from a small degradation of polyphenols; the induced growth of soluble phenols suggested that the 1.5 kGy dose can be considered as the radiation dose threshold beyond which clear chemical modifications on truffles appear.
Microbial Community Structure and Dynamics of Dark Fire-Cured Tobacco Fermentation▿ †
Di Giacomo, Michele; Paolino, Marianna; Silvestro, Daniele; Vigliotta, Giovanni; Imperi, Francesco; Visca, Paolo; Alifano, Pietro; Parente, Dino
2007-01-01
The Italian Toscano cigar production includes a fermentation step that starts when dark fire-cured tobacco leaves are moistened and mixed with ca. 20% prefermented tobacco to form a 500-kg bulk. The dynamics of the process, lasting ca. 18 days, has never been investigated in detail, and limited information is available on microbiota involved. Here we show that Toscano fermentation is invariably associated with the following: (i) an increase in temperature, pH, and total microbial population; (ii) a decrease in reducing sugars, citric and malic acids, and nitrate content; and (iii) an increase in oxalic acid, nitrite, and tobacco-specific nitrosamine content. The microbial community structure and dynamics were investigated by culture-based and culture-independent approaches, including denaturing gradient gel electrophoresis and single-strand conformational polymorphism. Results demonstrate that fermentation is assisted by a complex microbial community, changing in structure and composition during the process. During the early phase, the moderately acidic and mesophilic environment supports the rapid growth of a yeast population predominated by Debaryomyces hansenii. At this stage, Staphylococcaceae (Jeotgalicoccus and Staphylococcus) and Lactobacillales (Aerococcus, Lactobacillus, and Weissella) are the most commonly detected bacteria. When temperature and pH increase, endospore-forming low-G+C content gram-positive bacilli (Bacillus spp.) become evident. This leads to a further pH increase and promotes growth of moderately halotolerant and alkaliphilic Actinomycetales (Corynebacterium and Yania) during the late phase. To postulate a functional role for individual microbial species assisting the fermentation process, a preliminary physiological and biochemical characterization of representative isolates was performed. PMID:17142368
Hu, Lei; Ade, Lu-ji; Zi, Hong-biao; Wang, Chang-ting
2015-09-01
To explore the dynamic process of restoration succession in degraded alpine meadow that had been disturbed by plateau zokors in the eastern Tibetan Plateau, we examined soil nutrients and microbial functional diversity using conventional laboratory analysis and the Biolog-ECO microplate method. Our study showed that: 1) The zokors disturbance significantly reduced soil organic matter, total nitrogen, available nitrogen and phosphorus contents, but had no significant effects on soil total phosphorus and potassium contents; 2) Soil microbial carbon utilization efficiency, values of Shannon, Pielou and McIntosh indexes increased with alpine meadow restoration years; 3) Principal component analysis (PCA) showed that carbohydrates and amino acids were the main carbon sources for maintaining soil microbial community; 4) Redundancy analysis ( RDA) indicated that soil pH, soil organic matter, total nitrogen, available nitrogen, and total potassium were the main factors influencing the metabolic rate of soil microbial community and microbial functional diversity. In summary, variations in soil microbial functional diversity at different recovery stages reflected the microbial response to aboveground vegetation, soil microbial composition and soil nutrients.
Improved Flotation Technique for Microscopy of In Situ Soil and Sediment Microorganisms
Bone, T. L.; Balkwill, D. L.
1986-01-01
An improved flotation method for microscopy of in situ soil and sediment microorganisms was developed. Microbial cells were released into gellike flotation films that were stripped from soil and sediment aggregates as these aggregates were submerged in 0.5% solutions of polyvinylpyrrolidone. The use of polyvinylpyrrolidone solutions instead of water facilitated the release of films from saturated samples such as aquifer sediments as well as from typical surface soils. In situ microbial morphological characteristics could then be surveyed rapidly by light microscopy of films stained with acridine orange. This method effectively determined the ranges of morphological diversity in a variety of sample types. It also detected microcolonies and other spatial relationships among microbial cells. Only a small fraction (3.4 to 10.1%) of the microflora was released into the flotation films, but plating and direct evaluations by microscopy showed that this fraction was representative of the total population. Images PMID:16347005
NASA Astrophysics Data System (ADS)
Waldrop, M.; Zak, D.; Sinsabaugh, R.
2002-12-01
Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.
Microbial stress-response physiology and its implications for ecosystem function.
Schimel, Joshua; Balser, Teri C; Wallenstein, Matthew
2007-06-01
Microorganisms have a variety of evolutionary adaptations and physiological acclimation mechanisms that allow them to survive and remain active in the face of environmental stress. Physiological responses to stress have costs at the organismal level that can result in altered ecosystem-level C, energy, and nutrient flows. These large-scale impacts result from direct effects on active microbes' physiology and by controlling the composition of the active microbial community. We first consider some general aspects of how microbes experience environmental stresses and how they respond to them. We then discuss the impacts of two important ecosystem-level stressors, drought and freezing, on microbial physiology and community composition. Even when microbial community response to stress is limited, the physiological costs imposed on soil microbes are large enough that they may cause large shifts in the allocation and fate of C and N. For example, for microbes to synthesize the osmolytes they need to survive a single drought episode they may consume up to 5% of total annual net primary production in grassland ecosystems, while acclimating to freezing conditions switches Arctic tundra soils from immobilizing N during the growing season to mineralizing it during the winter. We suggest that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.
Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina
2014-01-01
The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025
Nilsen, Elena B.; Rosenbauer, Robert J.; Fuller, Christopher C.; Jaffe, Bruce E.
2014-01-01
Hydrocarbon contaminants are ubiquitous in urban aquatic ecosystems, and the ability of some microbial strains to degrade certain polycyclic aromatic hydrocarbons (PAHs) is well established. However, detrimental effects of petroleum hydrocarbon contamination on nondegrader microbial populations and photosynthetic organisms have not often been considered. In the current study, fatty acid methyl ester (FAME) biomarkers in the sediment record were used to assess historical impacts of petroleum contamination on microbial and/or algal biomass in South San Francisco Bay, CA, USA. Profiles of saturated, branched, and monounsaturated fatty acids had similar concentrations and patterns downcore. Total PAHs in a sediment core were on average greater than 20× higher above ∼200 cm than below, which corresponds roughly to the year 1900. Isomer ratios were consistent with a predominant petroleum combustion source for PAHs. Several individual PAHs exceeded sediment quality screening values. Negative correlations between petroleum contaminants and microbial and algal biomarkers – along with high trans/cis ratios of unsaturated FA, and principle component analysis of the PAH and fatty acid records – suggest a negative impacts of petroleum contamination, appearing early in the 20th century, on microbial and/or algal ecology at the site.
Liao, C-H
2008-02-01
To investigate the growth of salmonellae on sprouting alfalfa seeds as affected by the inoculum size, microbial load and Pseudomonas fluorescens 2-79. Alfalfa seeds pre-inoculated with < or =10(1)-10(3) CFU g(-1) of salmonellae and with or without Ps. fluorescens 2-79 were sprouted in glass jars and the population of salmonellae were determined daily for up to 6 days. The population of salmonellae on germinating seeds reached the maximum 2-3 days after sprouting when total bacterial count reached the maximum (10(9) CFU g(-1)). The population of salmonellae on sprouting seeds not treated with Ps. fluorescens 2-79 showed a net increase of 3-4 log units. However, the population of salmonellae on alfalfa seeds treated with Ps. fluorescens 2-79 showed a net increase of only 1-2 log units. Disinfection of seeds with calcium hypochlorite enhanced the growth of salmonellae. Treatment of seeds with Ps. fluorescens 2-79 reduced the growth of salmonellae by 2-3 log units. The potential of Ps. fluorescens 2-79 as a biological agent for use in control of salmonellae on sprouting seeds was demonstrated and warrants further investigation.
Evaluation of instant cup noodle, irradiated for immuno-compromised patients
NASA Astrophysics Data System (ADS)
Lee, Ji-Hye; Kim, Jae-Kyung; Park, Jae-Nam; Yoon, Young-Min; Sung, Nak-Yun; Kim, Jae-Hun; Song, Beom-Seok; Yook, Hong-Sun; Kim, Byeong-Keun; Lee, Ju-Woon
2012-08-01
In the present study, initial microbial load of instant cup noodle (ICN) was investigated and gamma irradiation applied to develop immuno-compromised patients food for their safe consumption. The initial microbial population of dried vegetable and meat, and noodle was below the detection limit (1 log CFU/g); however, that of seasoning powder was just above 4 log CFU/g. Moreover, rehydrated-ICN with water at 100 °C still show above 3 log CFU/g of microbial load, which indicates the need for an additional process to control microbial safety of the seasoning powder. The total aerobic bacteria in seasoning powder and rehydrated-ICN could be controlled with 17 kGy gamma irradiation. This result referred 17 kGy gamma irradiation could reach 'practical sterility' of ICN. The overall difference in sensory properties between the non-irradiated and irradiated ICN was insignificant. Thus, gamma irradiation could improve the microbial quality of ICN, and reduce the risk of infection posed by the seasoning powder, without any adverse effects on their sensory quality. These results suggest that gamma-irradiated ICN can be used as a snack food for immuno-compromised patients.
NASA Astrophysics Data System (ADS)
Polyanskaya, L. V.; Sukhanova, N. I.; Chakmazyan, K. V.; Zvyagintsev, D. G.
2014-09-01
In the studied mesodepressions, the total microbial biomass in the gray forest and chernozemic soils decreases by two-three times under the impact of hydrogen flux from the subsoil horizons and soil waterlogging. The biomass decrease is especially pronounced in the lower soil horizons. The population density of bacteria in the soil samples subjected to the impact of hydrogen fluxes and temporary waterlogging decreases by two-three times in the upper horizons and by ten times in the lower horizons in comparison with that in the control samples. These factors also affect the length of fungal mycelium: it decreases by three-four times in the upper horizons and may completely disappear in the lower horizons. The reduction of the microbial biomass can be explained by the fact that hydrogen and waterlogging sharply decrease the soil redox potential, which retards the development of most microbes, except for methanogens and some other specialized groups of microorganisms. The domination of bacteria with diameter ≥0.23 and ≥0.38 μm and the decrease in the total number of bacteria have been found with the use of the cascade filtration method.
Microbial Properties Database Editor Tutorial
A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...
NASA Astrophysics Data System (ADS)
Wu, Hong-Sheng; Chen, Su-Yun; Li, Ji; Liu, Dong-Yang; Zhou, Ji; Xu, Ya; Shang, Xiao-Xia; Wei, Dong-yang; Yu, Lu-ji; Fang, Xiao-hang; Li, Shun-yi; Wang, Ke-ke
2017-06-01
Greenhouse gases (GHGs, particularly carbon dioxide (CO2)) emissions from soil under wheat production are a significant source of agricultural carbon emissions that have not been mitigated effectively. A field experiment and a static incubation study in a lab were conducted to stimulate wheat growth and investigate its potential to reduce CO2 emissions from soil through intercropping with a traditional Chinese medicinal herb called Isatis indigotica. This work was conducted by adding I. indigotica root exudates based on the quantitative real-time PCR (qPCR) analysis of the DNA copy number of the rhizosphere or bulk soil microbial populations. This addition was performed in relation to the CO2 formation by cellulolytic microorganisms (Penicillium oxalicum, fungi and Ruminococcus albus) to elucidate the microbial ecological basis for the molecular mechanism that decreases CO2 emissions from wheat fields using I. indigotica. The results showed that the panicle weight and full grains per panicle measured through intercropping with I. indigotica (NPKWR) increased by 39% and 28.6%, respectively, compared to that of the CK (NPKW). Intercropping with I. indigotica significantly decreased the CO2 emissions from soil under wheat cultivation. Compared with CK, the total CO2 emission flux during the wheat growth period in the I. indigotica (NPKWR) intercropping treatment decreased by 29.26%. The intensity of CO2 emissions per kg of harvested wheat grain declined from 7.53 kg CO2/kg grain in the NPKW (CK) treatment to 5.55 kg CO2/kg grain in the NPKWR treatment. The qPCR analysis showed that the DNA copy number of the microbial populations of cellulolytic microorganisms (P. oxalicum, fungi and R. albus) in the field rhizosphere around I. indigotica or in the bulk soil under laboratory incubation was significantly lower than that of CK. This finding indicated that root exudates from I. indigotica inhibited the activity and number of cellulolytic microbial populations, which led to decreased CO2 emissions, suggesting this plant's potential role in mitigating agricultural GHGs and in supporting agroecology.
NASA Astrophysics Data System (ADS)
Woo, Anthony C.; Brar, Manreetpal S.; Chan, Yuki; Lau, Maggie C. Y.; Leung, Frederick C. C.; Scott, James A.; Vrijmoed, Lilian L. P.; Zawar-Reza, Peyman; Pointing, Stephen B.
2013-08-01
The microbial component of outdoor aerosols was assessed along a gradient of urban development from inner-city to rural in the seasonal-tropical metropolis of Hong Kong. Sampling over a continuous one-year period was conducted, with molecular analyses to characterize bacterial and eukaryal microbial populations, immuno-assays to detect microbially-derived allergens and extensive environmental and meteorological observations. The data revealed bio-aerosol populations were not significantly impacted by the level of urban development as measured by anthropogenic pollutants and human population levels, but instead exhibited a strong seasonal trend related to general climatic variables. We applied back-trajectory analysis to establish sources of air masses and this allowed further explanation of urban bio-aerosols largely in terms of summer-marine and winter-continental origins. We also evaluated bio-aerosols for the potential to detect human health threats. Many samples supported bacterial and fungal phylotypes indicative of known pathogenic taxa, together with common indicators of human presence. The occurrence of allergenic endotoxins and beta-glucans generally tracked trends in microbial populations, with levels known to induce symptoms detected during summer months when microbial loading was higher. This strengthens calls for bio-aerosols to be considered in future risk assessments and surveillance of air quality, along with existing chemical and particulate indices.
Sinha, S. K.; Chaturvedi, V. B.; Singh, Putan; Chaudhary, L. C.; Ghosh, Mayukh; Shivani, Swati
2017-01-01
Aim:: A comparative study was conducted on crossbred cattle and buffaloes to investigate the effect of feeding high and low roughage total mixed ration (TMR) diets on rumen metabolites and enzymatic profiles. Materials and Methods:: Three rumen-fistulated crossbred cattle and buffalo were randomly assigned as per 3×3 switch over design for 21-days. Three TMR diets consisting of concentrate mixture, wheat straw and green maize fodder in the ratios of (T1) 60:20:20, (T2) 40:30:30, and (T3) 20:40:40, respectively, were fed to the animals ad libitum. Rumen liquor samples were collected at 0, 2, 4, 6, and 8 h post feeding for the estimation of rumen biochemical parameters on 2 consecutive days in each trial. Results:: The lactic acid concentration and pH value were comparable in both species and treatments. Feed intake (99.77±2.51 g/kg body weight), ruminal ammonia nitrogen, and total nitrogen were significantly (p<0.05) higher in buffalo and in treatment group fed with high concentrate diet. Production of total volatile fatty acids (VFAs) was non-significant (p>0.05) among treatments and significantly (p<0.05) greater in crossbred cattle than buffaloes. Molar proportions of individual VFAs propionate (C3), propionate:butyrate (C3:C4), and (acetate+butyrate):propionate ([C2+C4]:C3) ratio in both crossbred cattle and buffalo were not affected by high or low roughage diet, but percentage of acetate and butyrate varied significantly (p<0.05) among treatment groups. Activities of microbial enzymes were comparable among species and different treatment groups. A total number of rumen protozoa were significantly (p<0.05) higher in crossbred cattle than buffaloes along with significantly (p<0.05) higher population in animal fed with high concentrate diet (T1). Conclusion:: Rumen microbial population and fermentation depend on constituents of the treatment diet. However, microbial enzyme activity remains similar among species and different treatments. High concentrate diet increases number of rumen protozoa, and the number is higher in crossbred cattle than buffaloes. PMID:28717312
Genetic profiling of the oral microbiota associated with severe early-childhood caries.
Li, Y; Ge, Y; Saxena, D; Caufield, P W
2007-01-01
The determination of the composition of the microbial community in the oral cavity is usually based on cultivation methods; however, nearly half of the bacteria in the saliva and the dental plaque are not cultivable. In this study, we evaluated the difference in oral microbial diversity between children with severe early-childhood caries (S-ECC) and caries-free (CF) controls by means of a cultivation-independent approach called denaturing gradient gel electrophoresis (DGGE). Pooled dental plaque samples were collected from 20 children aged 2 to 8 years. Total microbial genomic DNA was isolated from those subjects, and a portion of the 16S rRNA gene locus was PCR amplified by using universal primers. We observed that the mean species richness of the bacterial population was greater in the CF children (n = 12) (42 +/- 3.7) than in the S-ECC children (n = 8) (35 +/- 4.3); the difference was statistically significant (P = 0.005). The overall diversity of plaque samples as measured by the Shannon index was 3.5 for the S-ECC group and 3.7 for the CF group (P = 0.004). Differences in DGGE profiles were distinguished on the basis of a cluster analysis. Sequence analysis of excised DGGE bands consisted of 2.7 phylotypes, on average. After adjusting for the number of observed bands, we estimated that the S-ECC group exhibited 94.5 total phylotypes and that the CF group exhibited 113.4. These results suggest that the microbial diversity and complexity of the microbial biota in dental plaque are significantly less in S-ECC children than in CF children.
Microbial activity in the profiles of gray forest soil and chernozems
NASA Astrophysics Data System (ADS)
Susyan, E. A.; Rybyanets, D. S.; Ananyeva, N. D.
2006-08-01
Soil samples were taken from the profiles of a gray forest soil (under a forest) and southern chernozems of different textures under meadow vegetation. The microbial biomass (MB) was determined by the method of substrate-induced respiration; the basal respiration (BR) and the population density of microorganisms on nutrient media of different composition were also determined in the samples. The microbial metabolic quotient ( qCO2 = BR/MB) and the portion of microbial carbon (C mic) in C org were calculated. The MB and BR values were shown to decrease down the soil profiles. About 57% of the total MB in the entire soil profile was concentrated in the layer of 0-24 cm of the gray forest soil. The MB in the C horizon of chernozems was approximately two times lower than the MB in the A horizon of these soils. The correlation was found between the MB and the C org ( r = 0.99) and between the MB and the clay content ( r = 0.89) in the profile of the gray forest soil. The C mic/C org ratio in the gray forest soil and in the chernozems comprised 2.3-6.6 and 1.2-9.6%, respectively. The qCO2 value increased with the depth. The microbial community in the lower layers of the gray forest soil was dominated (88-96%) by oligotrophic microorganisms (grown on soil agar); in the upper 5 cm, these microorganisms comprised only 50% of the total amount of microorganisms grown on three media.
Zhu, Xiaobiao; Li, Mengqi; Zheng, Wei; Liu, Rui; Chen, Lujun
2017-03-01
In this study, a lab-scale biological anaerobic/anaerobic/anoxic/membrane bioreactor (A 3 -MBR) was designed to treat wastewater from the ethanol fermentation of food waste, a promising way for the disposal of food waste and reclamation of resources. The 454 pyrosequencing technique was used to investigate the composition of the microbial community in the treatment system. The system yielded a stable effluent concentration of chemical oxygen demand (202±23mg/L), total nitrogen (62.1±7.1mg/L), ammonia (0.3±0.13mg/L) and total phosphorus (8.3±0.9mg/L), and the reactors played different roles in specific pollutant removal. The exploration of the microbial community in the system revealed that: (1) the microbial diversity of anaerobic reactors A 1 and A 2 , in which organic pollutants were massively degraded, was much higher than that in anoxic A 3 and aerobic MBR; (2) although the community composition in each reactor was quite different, bacteria assigned to the classes Clostridia, Bacteroidia, and Synergistia were important and common microorganisms for organic pollutant degradation in the anaerobic units, and bacteria from Alphaproteobacteria and Betaproteobacteria were the dominant microbial population in A 3 and MBR; (3) the taxon identification indicated that Arcobacter in the anaerobic reactors and Thauera in the anoxic reactor were two representative genera in the biological process. Our results proved that the biological A 3 -MBR process is an alternative technique for treating wastewater from food waste. Copyright © 2016. Published by Elsevier B.V.
An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert
Souza, Valeria; Espinosa-Asuar, Laura; Escalante, Ana E.; Eguiarte, Luis E.; Farmer, Jack; Forney, Larry; Lloret, Lourdes; Rodríguez-Martínez, Juan M.; Soberón, Xavier; Dirzo, Rodolfo; Elser, James J.
2006-01-01
The Cuatro Cienegas basin in the Chihuahuan desert is a system of springs, streams, and pools. These ecosystems support >70 endemic species and abundant living stromatolites and other microbial communities, representing a desert oasis of high biodiversity. Here, we combine data from molecular microbiology and geology to document the microbial biodiversity of this unique environment. Ten water samples from locations within the Cuatro Cienegas basin and two neighboring valleys as well as three samples of wet sediments were analyzed. The phylogeny of prokaryotic populations in the samples was determined by characterizing cultured organisms and by PCR amplification and sequencing of 16S rRNA genes from total community DNA. The composition of microbial communities was also assessed by determining profiles of terminal restriction site polymorphisms of 16S rRNA genes in total community DNA. There were 250 different phylotypes among the 350 cultivated strains. Ninety-eight partial 16S rRNA gene sequences were obtained and classified. The clones represented 38 unique phylotypes from ten major lineages of Bacteria and one of Archaea. Unexpectedly, 50% of the phylotypes were most closely related to marine taxa, even though these environments have not been in contact with the ocean for tens of millions of years. Furthermore, terminal restriction site polymorphism profiles and geological data suggest that the aquatic ecosystems of Cuatro Cienegas are hydrologically interconnected with adjacent valleys recently targeted for agricultural intensification. The findings underscore the conservation value of desert aquatic ecosystems and the urgent need for study and preservation of freshwater microbial communities. PMID:16618921
Zoellner, Claire; Venegas, Fabiola; Churey, John J; Dávila-Aviña, Jorge; Grohn, Yrjo T; García, Santos; Heredia, Norma; Worobo, Randy W
2016-12-05
Quality and safety of fresh produce are important to public health and maintaining commerce between Mexico and USA. While preventive practices can reduce risks of contamination and are generally successful, the variable environment of the supply chain of fresh produce can be suitable for introduction or proliferation of pathogenic microorganisms. As routine surveillance of these pathogens is not practical, indicator microorganisms are used to assess the sanitary conditions of production and handling environments. An opportunity exists to use indicators on fresh produce to measure how handling and transport from field to market may affect microbial populations that contribute to their quality or safety. The objective was to quantify indicator microorganisms on tomatoes sampled along the supply chain during the harvest year, in order to observe the levels and changes of populations at different locations. Roma tomatoes (n=475) were taken from the same lots (n=28) at four locations of the postharvest supply chain over five months: at arrival to and departure from the packinghouse in México, at the distribution center in Texas, and at retail in USA. Samples were analyzed individually for four microbial populations: aerobic plate count (APC), total coliforms (TC), generic Escherichia coli, and yeasts and molds (YM). APC population differed (p<0.05) from 1.9±1.1, 1.7±1.1, 2.3±1.1 and 3.5±1.4logCFU/g at postharvest, packing, distribution center and supermarket, respectively. TC populations were <1logCFU/g at postharvest, increased at packing (0.7±1.0logCFU/g), decreased in distribution (0.4±0.8logCFU/g) and increased in supermarkets (1.4±1.5logCFU/g). Generic E. coli was not identified from coliform populations in this supply chain. YM populations remained <1logCFU/g, with the exception of 1.1±1.3logCFU/g at supermarkets and tomatoes were not visibly spoiled. The levels reported from this pilot study demonstrated the dynamics within populations as influenced by time and conditions in one supply chain during a harvest year, while the large variances in some locations indicate opportunities for improvement. Overall, packinghouse and supermarket locations were identified as crucial points to control microbial safety risks. Copyright © 2016 Elsevier B.V. All rights reserved.
Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume
Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B
2016-01-01
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4–V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1–C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations. PMID:26230048
Rivera, Carmen Susana; Venturini, María Eugenia; Marco, Pedro; Oria, Rosa; Blanco, Domingo
2011-10-01
The effects of electron-beam or gamma irradiation (doses of 1.5 kGy and 2.5 kGy of either one) on the microbial populations, respiratory activity and sensory characteristics of Tuber melanosporum packaged under modified atmospheres were monitored immediately after treatment, and subsequently every seven days during 35 days of storage at 4 °C. Treatments with 1.5 and 2.5 kGy reduced the total mesophilic aerobes counts respectively by 4.3 and 5.6 log cfu/g for electron-beam treatment, and by 6.4 and 6.6 log cfu/g for gamma irradiation. Other microbial groups studied (Pseudomonas genus, Enterobacteriaceae family, lactic acid bacteria, mesophilic aerobic spores, molds and yeasts) were not detected after the treatments. A decrease in the respiratory activity was detected in all the irradiated batches, indicating that the carbon dioxide levels were lower and the oxygen levels higher than those of the non-irradiated ones. Two species of yeasts, Candida sake and Candida membranifaciens var. santamariae, survived the irradiation treatments and became the dominant microbial populations with counts of up to 7.0 log cfu/g. The growth of these microorganisms was visible on the surface of irradiated truffles from day 21 onwards, affecting the flavor and the general acceptability of the ascocarps. Moreover, a watery exudate was detected in the treated truffles from the third week onwards, so the application of irradiation treatments in doses equal to or above 1.5 kGy did not preserve the quality characteristics of T. melanosporum truffles beyond 28 days. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Application of Ozone and Chitosan as Microbial Inhibitor Prawn Larvae Rearing
NASA Astrophysics Data System (ADS)
Pringgenies, Delianis; Nur, Muhammad; Angelia, Rosti
2017-02-01
The application of ozon and chitosan solution was found to be effective means in hampering microbial growth since the introduction of ozon can inhibit microbial growth in aquatic environment and the fact that chitosan can act as a coagulant, effectively increasing water quality as prawn breeding medium and increasing the survival rate of prawn larvae. This research aims to measure the efficacy of ozon and chitosan usage in prawn larvae rearing, and to measure the survial rate of prawn larvae during the rearing stage. The study was carried out using experimental method in laboratory, with factorial research design using 3 treatment combinations and 1 control groups. The chitosan dose administered in this research was 25 ml in 25 L of sea water, euating to 10 ppm. The dissolved ozon in this research was measured at the concentration of 8.245 - 13.748 ppm. Weekly measurement of water quality in terms of temperature, pH, salinity, dissolved oxygen and dissolved ozon were carried out throughout the course of the research. Total microbial population in the water was measured by means of Total Plate Count (TPC) methiod in the Institute for Natural Medicines of Diponegoro University. Statistics figure from ”ANOVA” test suggested that the application of ozon and the introduction of chitosan in prawn larvae rearing media gave impact to the microbial population in the media. Results of BNT test showed that there was a significant difference between the measurement results of the 3 treatment combination groups and that of the control group. The highest prawn larvae survival rate was found in the media with combined ozon and chitosan treatment, which was recorded at 100%. The second highest survival rate was recorded in the treatement combination group of ozon and chitosan with 80%, and the lowest survival rate was attributed to the control group with 20% prawn larvae survival rate. It is concluded that treatment combination of 10 ppm chitosan and 8.245 - 13.748 ppm of ozon showed significantly positive results in its application in giant tiger prawn farming media.
NASA Astrophysics Data System (ADS)
Vierheilig, Julia; Reischer, Georg H.; Farnleitner, Andreas H.
2010-05-01
Characterisation of microbial faecal hazards in water is a fundamental aspect for target-orientated water resources management to achieve appropriate water quality for various purposes like water supply or agriculture and thus to minimize related health risks. Nowadays the management of water resources increasingly demands detailed knowledge on the extent and the origin of microbial pollution. Cultivation of standard faecal indicator bacteria, which has been used for over a century to test the microbiological water quality, cannot sufficiently meet these challenges. The abundant intestinal bacterial populations are very promising alternative targets for modern faecal indication systems. Numerous assays for the detection of genetic markers targeting source-specific populations of the phylum Bacteroidetes have been developed in recent years. In some cases markers for total faecal pollution were also proposed in order to relate source-specific marker concentrations to general faecal pollution levels. However, microbial populations in intestinal and non-intestinal systems exhibit a dazzling array of diversity and molecular analysis of microbial faecal pollution has been based on a fragmentary puzzle of very limited sequence information. The aim of this study was to test the available qPCR-based methods detecting genetic Bacteroidetes markers for total faecal pollution in terms of their value and specificity as indicators of faecal pollution. We applied the AllBac (Layton et al., 2006) the BacUni (Kildare et al., 2007) and the Bacteroidetes (Dick and Field, 2004) assays on soil DNA samples. Samples were collected in well characterised karst spring catchments in Austria's Eastern Calcareous Alps. They were at various levels of altitude between 800 and 1800 meters above sea level and from several different habitats (woodland, alpine pastures, krummholz). In addition we tried to choose sampling sites representing a presumptive gradient of faecal pollution levels. For example sites with obvious faecal influence (e.g. right next to a cowpat) were included as well as more pristine sites without faecal influence from large animals (e.g. fenced areas). Surprisingly, results from investigations with the AllBac assay showed concentrations of the total faecal marker in soil in the range of 106 to 109 Marker Equivalents per g of soil, which is equal or only slightly lower than the concentrations of this particular marker in faeces or raw sewage. Preliminary results from the other tested assays seem to confirm that the targeted markers are also highly abundant in soils. In addition, the markers were present in comparable concentrations in soils from pristine locations as well as in soils under the potential influence of faeces giving a strong indication that these methods also target non-intestinal, autochthonous soil populations. In contrast, source-specific markers (ruminant-specific BacR and human-specific BacH, Reischer et al., 2007, 2006) could only be detected in 30 to 50% of the soil samples at concentrations close to the detection limit, which is at least four orders of magnitude lower than in faecal samples of the respective target sources, ruminant animals and humans. The achieved results call the applicability of the proposed qPCR-based assays for total faecal pollution into question. In fact the assays do not seem to be specific for intestinal Bacteroidetes populations at all and the respective marker concentration levels in pristine soils negate their applicability in the investigated areas. This study also emphasizes the need to test the specificity and sensitivity of qPCR-based assays for total faecal pollution on the local level and especially against non-intestinal environmental samples, which might contribute to marker levels in the aquatic compartment. In conclusion there is a strong demand for marker-based detection techniques for total faecal pollution in water quality monitoring and risk assessment but currently none of the tested assays seems to meet the methodical requirements.
Poeschl, Paul W; Crepaz, Valentina; Russmueller, Guenter; Seemann, Rudolf; Hirschl, Alexander M; Ewers, Rolf
2011-09-01
The aims of the present study were to compare microbial populations in patients suffering from deep neck space abscesses caused by primary endodontic infections by sampling the infections with aspiration or swabbing techniques and to determine the susceptibility rates of the isolated bacteria to commonly used antibiotics. A total of 89 patients with deep neck space abscesses caused by primary endodontic infections requiring extraoral incision and drainage under general anesthesia were included. Either aspiration or swabbing was used to sample microbial pus specimens. The culture of the microbial specimens and susceptibility testing were performed following standard procedures. A total of 142 strains were recovered from 76 patients. In 13 patients, no bacteria were found. The predominant bacteria observed were streptococci (36%), staphylococci (13%), Prevotella (8%), and Peptostreptococcus (6%). A statistically significant greater number of obligate anaerobes were found in the aspiration group. The majority of patients presented a mixed aerobic-anaerobic population of bacterial flora (62%). The antibiotic resistance rates for the predominant bacteria were 10% for penicillin G, 9% for amoxicillin, 0% for amoxicillin clavulanate, 24% for clindamycin, and 24% for erythromycin. The results of our study indicated that a greater number of anaerobes were found when sampling using the aspiration technique. Penicillin G and aminopenicillins alone are not always sufficient for the treatment of severe deep neck space abscesses; beta-lactamase inhibitor combinations are more effective. Bacteria showed significant resistant rates to clindamycin. Thus, its single use in penicillin-allergic patients has to be carefully considered. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Chen, Hsi-Jien; Lin, Yi-Zi; Fanjiang, Jen-Mao; Fan, Chihhao
2013-04-01
This study aimed to explore the microbial community variation and treatment ability of a full-scale anoxic-aerobic-anoxic-aerobic (AOAO) process used for optoelectronic wastewater treatment. The sludge samples in the biological treatment units were collected and subsequently subjected to polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis identification and the wastewater components such as BOD5 and NH3-N were evaluated during the processes. The group specific primers selected were targeting at the kingdom Bacteria, the Acidobacterium, the α-proteobacteria, the β-proteobacteria ammonia oxidizers, Actinobacteria and methyllotrophs, and the 16S rDNA clone libraries were established. Ten different clones were obtained using the Bacteria primers and eight different clones were obtained using the β-proteobacteria ammonia oxidizer primers. Over 95 % of BOD5 and 90 % of NH3-N were removed from the system. The microbial community analysis showed that the Janthinobacterium sp. An8 and Nitrosospira sp. were the dominant species throughout the AOAO process. Across the whole clone library, six clones showed closely related to Janthinobacterium sp. and these species seemed to be the dominant species with more than 50 % occupancy of the total population. Nitrosospira sp. was the predominant species within the β-proteobacteria and occupied more than 30 % of the total population in the system. These two strains were the novel species specific to the AOAO process for optoelectronic treatment, and they were found strongly related to the system capability of removing aquatic contaminants by inspecting the wastewater concentration variation across the system.
NASA Astrophysics Data System (ADS)
Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso
2016-09-01
Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations.
Microbial electrosynthetic cells
May, Harold D.; Marshall, Christopher W.; Labelle, Edward V.
2018-01-30
Methods are provided for microbial electrosynthesis of H.sub.2 and organic compounds such as methane and acetate. Method of producing mature electrosynthetic microbial populations by continuous culture is also provided. Microbial populations produced in accordance with the embodiments as shown to efficiently synthesize H.sub.2, methane and acetate in the presence of CO.sub.2 and a voltage potential. The production of biodegradable and renewable plastics from electricity and carbon dioxide is also disclosed.
USDA-ARS?s Scientific Manuscript database
Digestive microbial populations (MP) are key components for sustained healthy broiler production. Specific essential oil (EO) blends and probiotics used as feed additives have shown to promote healthy digestive microbials, resulting in improved poultry production. Two consecutive experiments were ...
The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...
Colla, Tatiana Simonetto; Andreazza, Robson; Bücker, Francielle; de Souza, Marcela Moreira; Tramontini, Letícia; Prado, Gerônimo Rodrigues; Frazzon, Ana Paula Guedes; Camargo, Flávio Anastácio de Oliveira; Bento, Fátima Menezes
2014-02-01
This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.
Soil microbial communities and enzyme activities under various poultry litter application rates.
Acosta-Martínez, V; Harmel, R Daren
2006-01-01
The potential excessive nutrient and/or microbial loading from mismanaged land application of organic fertilizers is forcing changes in animal waste management. Currently, it is not clear to what extent different rates of poultry litter impact soil microbial communities, which control nutrient availability, organic matter quality and quantity, and soil degradation potential. From 2002 to 2004, we investigated the microbial community and several enzyme activities in a Vertisol soil (fine, smectitic, thermic, Udic Haplustert) at 0 to 15 cm as affected by different rates of poultry litter application to pasture (0, 6.7, and 13.4 Mg ha(-1)) and cultivated sites (0, 4.5, 6.7, 9.0, 11.2, and 13.4 Mg ha(-1)) in Texas, USA. No differences in soil pH (average: 7.9), total N (pasture: 2.01-3.53, cultivated: 1.09-1.98 g kg(-1) soil) or organic C (pasture average: 25-26.7, cultivated average: 13.9-16.1 g kg(-1) soil) were observed following the first four years of litter application. Microbial biomass carbon (MBC) and nitrogen (MBN) increased at litter rates greater than 6.7 Mg ha(-1) (pasture: MBC = >863, MBN = >88 mg kg(-1) soil) compared to sites with no applied litter (MBC = 722, MBN = 69 mg kg(-1) soil). Enzyme activities of C (beta-glucosidase, alpha-galactosidase, beta-glucosaminidase) or N cycling (beta-glucosaminidase) were increased at litter rates greater than 6.7 Mg ha(-1). Enzyme activities of P (alkaline phosphatase) and S (arylsulfatase) mineralization showed the same response in pasture, but they were only increased at the highest (9.0, 11.2, and 13.4 Mg ha(-1)) litter application rates in cultivated sites. According to fatty acid methyl ester (FAME) analysis, the pasture soils experienced shifts to higher bacterial populations at litter rates of 6.7 Mg ha(-1), and shifts to higher fungal populations at the highest litter application rates in cultivated sites. While rates greater than 6.7 Mg ha(-1) provided rapid enhancement of the soil microbial populations and enzymatic activities, they result in P application in excess of crop needs. Thus, studies will continue to investigate whether litter application at rates below 6.7 Mg ha(-1), previously recommended to maintain water quality, will result in similar improved soil microbial and biochemical functioning with continued annual litter application.
Thermosonication as a potential quality enhancement technique of apple juice.
Abid, Muhammad; Jabbar, Saqib; Hu, Bing; Hashim, Malik Muhammad; Wu, Tao; Lei, Shicheng; Khan, Muhammad Ammar; Zeng, Xiaoxiong
2014-05-01
Enzymatic browning and microbial growth lead to quality losses in apple products. In the present study, fresh apple juice was thermosonicated using ultrasound in-bath (25 kHz, 30 min, 0.06 W cm(-3)) and ultrasound with-probe sonicator (20 kHz, 5 and 10 min, 0.30 W cm(-3)) at 20, 40 and 60°C for inactivation of enzymes (polyphenolase, peroxidase and pectinmethylesterase) and microflora (total plate count, yeast and mold). Additionally, ascorbic acid, total phenolics, flavonoids, flavonols, pH, titratable acidity, (°)Brix and color values influenced by thermosonication were investigated. The highest inactivation of enzymes was obtained in ultrasound with-probe at 60°C for 10 min, and the microbial population was completely inactivated at 60°C. The retention of ascorbic acid, total phenolics, flavonoids and flavonols were significantly higher in ultrasound with-probe than ultrasound in-bath at 60°C. These results indicated the usefulness of thermosonication for apple juice processing at low temperature, for enhanced inactivation of enzymes and microorganisms. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vaishampayan, Parag
2016-07-01
In compliance with Planetary Protection policy, NASA monitors the total microbial burden of spacecraft and associated environments as a means for minimizing forward contamination. Despite numerous characterizations of microbial populations in spacecraft assembly cleanrooms, understanding the metabolic traits responsible for their persistence and survival remains a significant challenge. The principal objective of this study is to establish functional traits by exploring the entire gene content (metagenome) of the cleanroom microbial community. DNA-based techniques are incapable of distinguishing viable microorganisms from dead microbial cells in samples. Consequently, metagenomic analyses based on total environmental DNA extracts do not render a meaningful understanding of the metabolic and/or functional characteristics of living microorganisms in cleanrooms. A molecular viability marker was applied to samples collected from a cleanroom facility, and subsequent metagenomic sequencing experiments showed considerable differences between the resulting viable-only and total microbiomes. Nevertheless, analyses of sequence abundance suggested that the viable microbiome was influenced by both the human microbiome and the ambient ecosystem external to the facility, which resulted in a complex community profile. Also detected were the first viral signatures ever retrieved from a cleanroom facility: the genomes of human cyclovirus 7078A and Propionibacterium phage P14.4. We also wanted to evaluate if the strict cleaning and decontamination procedures selectively favor survival and growth of hardy microrganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: Dawn, Phoenix, and Mars Science Laboratory. Potential pathogens and their corresponding virulence factors were present in all the samples. Decreased microbial and pathogenic diversity during spacecraft assembly, compared to before and after, indicates that decontamination and preventative measures were effective and well implemented. The findings presented here, as well as the innovative methods that enabled their discovery, promise to have profound implications for the design and interpretation of ongoing and future studies in cleanrooms, indoor environments, and potential future human missions to Mars.
Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations.
Ju, Chao; Xu, Jun; Wu, Xiaohu; Dong, Fengshou; Liu, Xingang; Zheng, Yongquan
2016-01-01
A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg(-1) soil [T1]; 1.2 mg kg(-1) soil [T3]; and 4 mg kg(-1) soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO(-)3-N and NH(+)4-N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH(+)4-N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO(-)3-N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH(+)4-N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO(-)3-N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Luo, Da; Liu, Shun; Shi, Zuo Min; Feng, Qiu Hong; Liu, Qian Li; Zhang, Li; Huang, Quan; He, Jian She
2017-02-01
The effects of four Picea asperata plantations with different ages (50-, 38-, 27- and 20-year-old), in subalpine of western Sichuan, on the characteristics of soil microbial diversity and microbial community structure were studied by the method of phospholipid fatty acid (PLFA) profiles. The results showed that, with the increase of age, the contents of soil organic carbon and total nitrogen gradually improved, while Shannon's diversity index and Pielou's evenness index of soil microorganisms increased at first and then decreased. The amounts of microbial total PLFAs, bacterial PLFAs, fungal PLFAs, actinobacterial PLFAs, and arbuscular mycorrhizal fungal (AMF) PLFAs in soils consistently increased with increasing age. The principal component analysis (PCA) indicated that the soil microbial communities in different plantations were structurally distinct from each other. The first principal component (PC1) and the second principal component (PC2) together accounted for 66.8% of total variation of the soil microbial community structure. The redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil organic carbon, total nitrogen, total potassium, and fine root mass were the key determinants influencing the microbial community structure. Our study suggested that, with the extension of artificialafforestation time, the soil fertility and microbial biomass were enhanced, and the restoration processes of forest ecosystem were stable.
Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting
2016-01-01
This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery. PMID:26925051
Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting
2016-01-01
This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.
Microbial properties database editor tutorial
USDA-ARS?s Scientific Manuscript database
A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbialrelevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pathogens. Physical prop...
Pupin, B; Nahas, E
2014-04-01
Mangroves provide a distinctive ecological environment that differentiates them from other ecosystems. This study deal to evaluate the frequency of microbial groups and the metabolic activities of bacteria and fungi isolated from mangrove, restinga and Atlantic forest soils. Soil samples were collected during the summer and winter at depths of 0-2, 2-5 and 5-10 cm. Except for fungi, the counts of the total, sporulating, Gram-negative, actinomycetes, nitrifying and denitrifying bacteria decreased significantly in the following order: Atlantic forest >mangrove > restinga. The counts of micro-organisms decreased by 11 and 21% from the surface to the 2-5 and 5-10 cm layers, but denitrifying bacteria increased by 44 and 166%, respectively. A larger growth of micro-organisms was verified in the summer compared with the winter, except for actinomycetes and fungi. The average frequency of bacteria isolated from mangrove, restinga and Atlantic forest soils was 95, 77 and 78%, and 93, 90 and 95% for fungi, respectively. Bacteria were amylolytic (33%), producers of acid phosphatase (79%) and solubilizers (18%) of inorganic phosphate. The proportions of fungi were 19, 90 and 27%. The mangrove soil studied had higher chemical characteristics than the Atlantic forest, but the high salinity may have restricted the growth of microbial populations. Estimates of the microbial counts and activities were important to elucidate the differences of mangrove ecosystem from restinga and Atlantic forest. © 2013 The Society for Applied Microbiology.
Megharaj, M; Singleton, I; McClure, N C; Naidu, R
2000-05-01
Petroleum hydrocarbons are widespread environmental pollutants. Although biodegradation of petroleum hydrocarbons has been the subject of numerous investigations, information on their toxicity to microorganisms in soil is limited, with virtually no work conducted on soil algae. We carried out a screening experiment for total petroleum hydrocarbons (TPH) and their toxicity to soil algal populations, microbial biomass, and soil enzymes (dehydrogenase and urease) in a long-term TPH-polluted site with reference to an adjacent unpolluted site. Microbial biomass, soil enzyme activity, and microalgae declined in medium to high-level (5,200-21,430 mg kg(-1) soil) TPH-polluted soils, whereas low-level (<2,120 mg kg(-1) soil) pollution stimulated the algal populations and showed no effect on microbial biomass and enzymes. However, inhibition of all the tested parameters was more severe in soil considered to have medium-level pollution than in soils that were highly polluted. This result could not be explained by chemical analysis alone. Of particular interest was an observed shift in the species composition of algae in polluted soils with elimination of sensitive species in the medium to high polluted soils. Also, an algal growth inhibition test carried out using aqueous eluates prepared from polluted soils supported these results. Given the sensitivity of algae to synthetic pollutants, alteration in the algal species composition can serve as a useful bioindicator of pollution. The results of this experiment suggest that chemical analysis alone is not adequate for toxicological estimations and should be used in conjunction with bioassays. Furthermore, changes in species composition of algae proved to be more sensitive than microbial biomass and soil enzyme activity measurements.
Park, Si Hong; Lee, Sang In; Ricke, Steven C.
2016-01-01
Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer’s yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds. PMID:26992104
Park, Si Hong; Lee, Sang In; Ricke, Steven C
2016-01-01
Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer's yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds.
NASA Astrophysics Data System (ADS)
Sumarsih, S.; Sulistiyanto, B.; Utama, C. S.
2018-02-01
The aim of the research was to evaluate microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp as starter. The completely randomized design was been used on this research with 4 treaments and 3 replications. The treatments were P0 ( Panicum maximum grass silage without addition Lactobacillus sp ), P1 ( Panicum maximum grass silage with 2% addition Lactobacillus sp), P2 (Panicum maximum grass silage with 4% addition Lactobacillus sp) and P3 (Panicum maximum grass silage with 6% addition Lactobacillus sp).The parameters were microbial populations of Panicum maximum grass silage (total lactic acid bacteria, total bacteria, total fungi, and Coliform bacteria. The data obtained were analyzed variance (ANOVA) and further tests performed Duncan’s Multiple Areas. The population of lactic acid bacteria was higher (P<0.05) and the total bacteria, fungi and Coliform were lower (P<0.05) with addition Lactobacillus sp. Microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp was better than no addition Lactobacillus sp.
Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill
Beazley, Melanie J.; Martinez, Robert J.; Rajan, Suja; Powell, Jessica; Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.; Hazen, Terry C.; Van Nostrand, Joy D.; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A.
2012-01-01
Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. PMID:22815990
Chawanakul, Sansanee; Chaiprasert, Pawinee; Towprayoon, Sirintornthep; Tanticharoen, Morakot
2009-01-01
Potential of methane production and trophic microbial activities at rhizospheric soil during rice cv. Supanbunri 1 cultivation were determined by laboratory anaerobic diluents vials. The methane production was higher from rhizospheric than non-rhizospheric soil, with the noticeable peaks during reproductive phase (RP) than vegetative phase (VP). Glucose, ethanol and acetate were the dominant available substrates found in rhizospheric soil during methane production at both phases. The predominance activities of trophic microbial consortium in methanogenesis, namely fermentative bacteria (FB), acetogenic bacteria (AGB), acetate utilizing bacteria (AB) and acetoclastic methanogens (AM) were also determined. At RP, these microbial groups were enhanced in the higher of methane production than VP. This correlates with our finding that methane production was greater at the rhizospheric soil with the noticeable peaks during RP (1,150 +/- 60 nmol g dw(-1) d(-1)) compared with VP (510 +/- 30 nmol g dw(-1) d(-1)). The high number of AM showed the abundant (1.1x10(4) cell g dw(-1)) with its high activity at RP, compared to the less activity with AM number at VP (9.8x10(2) cell g dw(-1)). Levels of AM are low in the total microbial population, being less than 1% of AB. These evidences revealed that the microbial consortium of these two phases were different.
Allen, Jonathan E.; Brown, Trevor S.; Gardner, Shea N.; McLoughlin, Kevin S.; Forsberg, Jonathan A.; Kirkup, Benjamin C.; Chromy, Brett A.; Luciw, Paul A.; Elster, Eric A.
2014-01-01
Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden. PMID:24829242
Kim, Lavane; Pagaling, Eulyn; Zuo, Yi Y.
2014-01-01
The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes. PMID:24141134
USDA-ARS?s Scientific Manuscript database
Tissue browning and microbial growth are the main concerns associated with fresh-cut apples. In this study, effects of sodium chlorite (SC) and calcium propionate (CP), individually and combined, on quality and microbial population of apple slices were investigated. ‘Granny Smith’ apple slices, dipp...
Duda, Scott; Kandiah, Sheena; Stout, Janet E; Baron, Julianne L; Yassin, Mohamed; Fabrizio, Marie; Ferrelli, Juliet; Hariri, Rahman; Wagener, Marilyn M; Goepfert, John; Bond, James; Hannigan, Joseph; Rogers, Denzil
2014-11-01
To evaluate the efficacy of a new monochloramine generation system for control of Legionella in a hospital hot water distribution system. A 495-bed tertiary care hospital in Pittsburgh, Pennsylvania. The hospital has 12 floors covering approximately 78,000 m(2). The hospital hot water system was monitored for a total of 29 months, including a 5-month baseline sampling period prior to installation of the monochloramine system and 24 months of surveillance after system installation (postdisinfection period). Water samples were collected for microbiological analysis (Legionella species, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Acinetobacter species, nitrifying bacteria, heterotrophic plate count [HPC] bacteria, and nontuberculous mycobacteria). Chemical parameters monitored during the investigation included monochloramine, chlorine (free and total), nitrate, nitrite, total ammonia, copper, silver, lead, and pH. A significant reduction in Legionella distal site positivity was observed between the pre- and postdisinfection periods, with positivity decreasing from an average of 53% (baseline) to an average of 9% after monochloramine application (P<0.5]). Although geometric mean HPC concentrations decreased by approximately 2 log colony-forming units per milliliter during monochloramine treatment, we did not observe significant changes in other microbial populations. This is the first evaluation in the United States of a commercially available monochloramine system installed on a hospital hot water system for Legionella disinfection, and it demonstrated a significant reduction in Legionella colonization. Significant increases in microbial populations or other negative effects previously associated with monochloramine use in large municipal cold water systems were not observed.
Elsgaard, L; Petersen, S O; Debosz, K
2001-08-01
Linear alkylbenzene sulfonates (LAS) may occur in sewage sludge that is applied to agricultural soil, in which LAS can be inhibitory to biological activity. As a part of a broader risk assessment of LAS in the terrestrial environment, we tested the short-term effects of aqueous LAS on microbial parameters in a sandy agricultural soil that was incubated for up to 11 d. The assays included 10 microbial soil parameters; ethylene degradation; potential ammonium oxidation; potential dehydrogenase activity; beta-glucosidase activity; iron reduction; the populations of cellulolytic bacteria, fungi and actinomycetes; the basal soil respiration; and the phospholipid fatty acid (PLFA) content. Except for beta-glucosidase activity, basal respiration, and total PLFA content, all soil parameters were sensitive to LAS, with EC10 values in the range of less than 8 to 22 mg/kg dry weight. This probably reflected a similar mode of LAS toxicity, ascribed to cell membrane interactions, and showed that sensitivity to LAS was common for various soil microorganisms. The extracellular beta-glucosidase activity was rather insensitive to LAS (ECI10, 47 mg/kg dry wt), whereas the basal soil respiration was not inhibited even at 793 mg/kg dry weight. This was interpreted as a combined response of inhibited and stimulated compartments of the microbial community. The PLFA content, surprisingly, showed no decrease even at 488 mg/kg. In conclusion, LAS inhibited specific microbial activities, although this could not be deduced from the basal respiration or the total PLFA content. The lowest EC10 values for microbial soil parameters were slightly higher than the predicted no-effect concentrations recently derived for plants and soil fauna (approximately 5 mg/kg dry wt).
Microbial Repopulation Following In Situ STAR Remediation
NASA Astrophysics Data System (ADS)
Gerhard, J.; Overbeeke, G.; Edwards, E.; Lomheim, L.; Grant, G.
2016-12-01
STAR (Self-sustaining Treatment for Active Remediation) is an emerging remediation technology that employs a self-sustaining smouldering reaction to destroy nonaqueous phase liquids (NAPLs) in the subsurface. The reaction front travels outwards from an ignition well at approximately 0.5 per day and subjects the soil to temperatures of 400°C-1000°C. The objectives of this work were to monitor re-saturation of the soil over time and quantify the microbial repopulation of the treated zone. STAR is currently being applied as a full scale, in situ remedy for coal tar beneath a former creosol manufacturing facility in New Jersey, USA. This study analyzed soil cores taken at regular intervals following STAR treatment, allowing time for groundwater to re-infiltrate and for microbial populations to potentially reestablish. Soil and groundwater were analyzed for total number of microorganisms via quantitative Polymerase Chain Reaction (qPCR), as well as microbial diversity via amplicon sequencing. Results demonstrate that microbes rapidly repopulated over a 2 month period to 106 gene copies/g of soil. However, concentrations in the treated zone did not rise above this concentration over 6 months post-STAR, indicating a low carrying capacity of the treated soil. To examine the system in more detail and consider the effects of bio-stimulation, a bench top column study using site soil and artificial groundwater explored the rate at which STAR-treated soil is repopulated with naturally occurring microorganisms in the presence and absence of lactate and a terminal electron acceptor. Results demonstrated that biostimulation did not increase the carrying capacity of the STAR treated sol, but rather shifted the microbial community to reflect the TEA provided, in this case, promoting sulfate reducers. Overall, the work illustrates that microbial populations in STAR treated soil do recover via groundwater infiltration but robust communities will take time to naturally establish.
Liu, Yongzhuo; Zhou, Tong; Crowley, David; Li, Lianqing; Liu, Dawen; Zheng, Jinwei; Yu, Xinyan; Pan, Genxing; Hussain, Qaiser; Zhang, Xuhui; Zheng, Jufeng
2012-01-01
Agricultural soils have been increasingly subject to heavy metal pollution worldwide. However, the impacts on soil microbial community structure and activity of field soils have been not yet well characterized. Topsoil samples were collected from heavy metal polluted (PS) and their background (BGS) fields of rice paddies in four sites across South China in 2009. Changes with metal pollution relative to the BGS in the size and community structure of soil microorganisms were examined with multiple microbiological assays of biomass carbon (MBC) and nitrogen (MBN) measurement, plate counting of culturable colonies and phospholipids fatty acids (PLFAs) analysis along with denaturing gradient gel electrophoresis (DGGE) profile of 16S rRNA and 18S rRNA gene and real-time PCR assay. In addition, a 7-day lab incubation under constantly 25°C was conducted to further track the changes in metabolic activity. While the decrease under metal pollution in MBC and MBN, as well as in culturable population size, total PLFA contents and DGGE band numbers of bacteria were not significantly and consistently seen, a significant reduction was indeed observed under metal pollution in microbial quotient, in culturable fungal population size and in ratio of fungal to bacterial PLFAs consistently across the sites by an extent ranging from 6% to 74%. Moreover, a consistently significant increase in metabolic quotient was observed by up to 68% under pollution across the sites. These observations supported a shift of microbial community with decline in its abundance, decrease in fungal proportion and thus in C utilization efficiency under pollution in the soils. In addition, ratios of microbial quotient, of fungal to bacterial and qCO2 are proved better indicative of heavy metal impacts on microbial community structure and activity. The potential effects of these changes on C cycling and CO2 production in the polluted rice paddies deserve further field studies. PMID:22701725
Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers
Cobaugh, Kelly L.; Schaeffer, Sean M.; DeBruyn, Jennifer M.
2015-01-01
The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession in soil microbial communities during decomposition of human-derived organic matter, provided insight into decomposition processes, and identified putative predictor populations for time since death estimation. PMID:26067226
da Silva, Ligia V Antonia; Prinyawiwatkul, Witoon; King, Joan M; No, Hong Kyoon; Bankston, Joseph D; Ge, Beilei
2008-12-01
The microbial safety and quality of smoked blue catfish (Ictalurus furcatus) steaks treated with antimicrobials and antioxidants were examined during 6-week ambient storage. Five pre-smoking soaking treatments were applied: 25% NaCl and 1% ascorbic acid for 30 min or 1h, 3% sodium lactate with or without 5% rosemary extract for 30 min, and 5% sorbic acid alone for 30 min. After smoking, cooled catfish steaks were packed and analyzed at 0, 2, 4, and 6 weeks of ambient storage. Neither Listeria nor Salmonella was recovered from the smoked catfish steaks. Significant reductions (P<0.05) in total plate counts were observed in all treated samples, with those treated with 3% sodium lactate carrying the lowest microbial load. The rosemary extract-treated samples were the most stable against oxidation. All treated smoked catfish steaks had water activities less than 0.85; however, neither pH nor water activity changed significantly within each treatment group during storage (P> or 0.05). In conclusion, smoking/cooking effectively reduced microbial populations, and the use of antimicrobial agents and antioxidants, particularly 3% sodium lactate, could aid the control of microbial safety during storage, resulting in safe products for up to 6 weeks without refrigeration.
Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska
Kao-Kniffin, J.; Woodcroft, B. J.; Carver, S. M.; ...
2015-12-18
We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the activemore » layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.« less
Ding, Gengzhi; Chang, Ying; Zhao, Liping; Zhou, Zhenming; Ren, Liping; Meng, Qingxiang
2014-01-01
Live yeast (Saccharomyces cerevisiae) constitutes an effective additive for animal production; its probiotic effect may be related to the concentrate-to-forage ratio (CTFR). The objective of this study was to assess the effects of S. cerevisiae (SC) on fiber degradation and rumen microbial populations in steers fed diets with different levels of dietary concentrate. Ten Simmental × Local crossbred steers (450 ± 50 kg BW) were assigned to a control group or an SC group. Both groups were fed the same basal diet but the SC group received SC supplementation (8 × 10(9) cfu/h/d through the ruminal fistula) following a two-period crossover design. Each period consisted of four phases, each of which lasted 17 d: 10 d for dietary adaptation, 6 d for degradation study, and 1 d for rumen sample collection. From the 1(st) to the 4(th) phase, steers were fed in a stepwise fashion with increasing CTFRs, i.e., 30:70, 50:50, 70:30, and 90:10. The kinetics of dry matter and fiber degradation of alfalfa pellets were evaluated; the rumen microbial populations were detected using real-time PCR. The results revealed no significant (P > 0.05) interactions between dietary CTFR and SC for most parameters. Dietary CTFR had a significant effect (P < 0.01) on degradation characteristics of alfalfa pellets and the copies of rumen microorganism; the increasing concentrate level resulted in linear, quadratic or cubic variation trend for these parameters. SC supplementation significantly (P < 0.05) affected dry matter (DM) and neutral detergent fiber (NDF) degradation rates (c DM, c NDF) and NDF effective degradability (EDNDF). Compared with the control group, there was an increasing trend of rumen fungi and protozoa in SC group (P < 0.1); copies of total bacteria in SC group were significantly higher (P < 0.05). Additionally, percentage of Ruminobacter amylophilus was significantly lower (P < 0.05) but percentage of Selenomonas ruminantium was significantly higher (P < 0.05) in the SC group. In a word, dietary CTFR had a significant effect on degradation characteristics of forage and rumen microbial population. S. cerevisiae had positive effects on DM and NDF degradation rate or effective degradability of forage; S. cerevisiae increased rumen total bacteria, fungi, protozoa, and lactate-utilizing bacteria but reduced starch-degrading and lactate-producing bacteria.
Lu, T; Saikaly, P E; Oerther, D B
2007-01-01
A comprehensive, simplified microbial biofilm model was developed to evaluate the impact of bioreactor operating parameters on changes in microbial population abundance. Biofilm simulations were conducted using three special cases: fully penetrated, internal mass transfer resistance and external mass transfer resistance. The results of model simulations showed that for certain operating conditions, competition for growth limiting nutrients generated oscillations in the abundance of planktonic and sessile microbial populations. These oscillations resulted in the violation of the competitive exclusion principle where the number of microbial populations was greater than the number of growth limiting nutrients. However, the operating conditions which impacted microbial community diversity were different for the three special cases. Comparing the results of model simulations for dispersed-growth, biofilms and bioflocs showed that oscillations and microbial community diversity were a function of competition as well as other key features of the ecosystem. The significance of the current study is that it is the first to examine competition as a mechanism for controlling microbial community diversity in biofilm reactors.
Microbial Safety and Shelf Life of UV-C Treated Freshly Squeezed White Grape Juice.
Unluturk, Sevcan; Atilgan, Mehmet R
2015-08-01
The effects of UV-C irradiation on the inactivation of Escherichia coli K-12 (ATCC 25253), a surrogate of E. coli O157:H7, and on the shelf life of freshly squeezed turbid white grape juice (FSWGJ) were investigated. FSWGJ samples were processed at 0.90 mL/s for 32 min by circulating 8 times in an annular flow UV system. The UV exposure time was 244 s per cycle. The population of E. coli K-12 was reduced by 5.34 log cycles after exposure to a total UV dosage of 9.92 J/cm(2) (1.24 J/cm(2) per cycle) at 0.90 mL/s flow rate. The microbial shelf life of UV-C treated FSWGJ was extended up to 14 d at 4 °C. UV exposure was not found to alter pH, total soluble solid, and titratable acidity of juice. There was a significant effect (P < 0.05) on turbidity, absorbance coefficient, color, and ascorbic acid content. Furthermore, all physicochemical properties were altered during refrigerated storage. The microbial shelf life of FSWGJ was doubled after UV-C treatment, whereas the quality of juice was adversely affected similarly observed in the control samples. © 2015 Institute of Food Technologists®
2013-01-01
Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents. The tested cattle-associated markers were shown to be ruminant-associated. The quantitative distributions of marker concentrations in target and nontarget samples proved to be essential for the assessment of assay performance and were used to establish a new metric for quantitative source-specificity. In general, this study demonstrates that stable target populations required for marker-based MST occur around the globe. Ruminant-associated marker concentrations were strongly correlated with total intestinal Bacteroidetes populations and with each other, indicating that the detected ruminant-associated populations seem to be part of the intestinal core microbiome of ruminants worldwide. Consequently tested ruminant-targeted assays appear to be suitable quantitative MST tools beyond the regional level while the targeted human-associated populations seem to be less prevalent and stable, suggesting potential for improvements in human-targeted methods. PMID:23755882
Fisgativa, Henry; Tremier, Anne; Le Roux, Sophie; Bureau, Chrystelle; Dabert, Patrick
2017-03-01
In this study, an extensive characterisation of food waste (FW) was performed with the aim of studying the relation between FW characteristics and FW treatability through an anaerobic digestion process. In addition to the typological composition (paper, meat, fruits, vegetables contents, etc) and the physicochemical characteristics, this study provides an original characterisation of microbial populations present in FW. These intrinsic populations can actively participate to aerobic and anaerobic degradation with the presence of Proteobacteria and Firmicutes species for the bacteria and of Ascomycota phylum for the fungi. However, the characterisation of FW bacterial and fungi community shows to be a challenge because of the biases generated by the non-microbial DNA coming from plant and by the presence of mushrooms in the food. In terms of relations, it was demonstrated that some FW characteristics as the density, the volatile solids and the fibres content vary as a function of the typological composition. No direct relationship was demonstrated between the typological composition and the anaerobic biodegradability. However, the Pearson's matrix results reveal that the anaerobic biodegradation potential of FW was highly related to the total chemical oxygen demand (tCOD), the total solid content (TS), the high weight organic matter molecules soluble in water (SOL W >1.5 kDa) and the C/N ratio content. These relations may help predicting FW behaviour through anaerobic digestion process. Finally, this study also showed that the storage of FW before collection, that could induce pre-biodegradation, seems to impact several biochemical characteristics and could improve the biodegradability of FW. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ivanova, Anastasia A; Wegner, Carl-Eric; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N
2016-10-01
Northern peatlands play a crucial role in the global carbon balance, serving as a persistent sink for atmospheric CO2 and a global carbon store. Their most extensive type, Sphagnum-dominated acidic peatlands, is inhabited by microorganisms with poorly understood degradation capabilities. Here, we applied a combination of barcoded pyrosequencing of SSU rRNA genes and Illumina RNA-Seq of total RNA (metatranscriptomics) to identify microbial populations and enzymes involved in degrading the major components of Sphagnum-derived litter and exoskeletons of peat-inhabiting arthropods: cellulose, xylan, pectin and chitin. Biopolymer addition to peat induced a threefold to fivefold increase in bacterial cell numbers. Functional community profiles of assembled mRNA differed between experimental treatments. In particular, pectin and xylan triggered increased transcript abundance of genes involved in energy metabolism and central carbon metabolism, such as glycolysis and TCA cycle. Concurrently, the substrate-induced activity of bacteria on these two biopolymers stimulated grazing of peat-inhabiting protozoa. Alveolata (ciliates) was the most responsive protozoa group as confirmed by analysis of both SSU rRNA genes and SSU rRNA. A stimulation of alphaproteobacterial methanotrophs on pectin was consistently shown by rRNA and mRNA data. Most likely, their significant enrichment was due to the utilization of methanol released during the degradation of pectin. Analysis of SSU rRNA and total mRNA revealed a specific response of Acidobacteria and Actinobacteria to chitin and pectin, respectively. Relatives of Telmatobacter bradus were most responsive among the Acidobacteria, while the actinobacterial response was primarily affiliated with Frankiales and Propionibacteriales. The expression of a wide repertoire of carbohydrate-active enzymes (CAZymes) corresponded well to the detection of a highly diverse peat-inhabiting microbial community, which is dominated by yet uncultivated bacteria. © 2016 John Wiley & Sons Ltd.
Li, Ling; Renye, John A; Feng, Ling; Zeng, Qingkun; Tang, Yan; Huang, Li; Ren, Daxi; Yang, Pan
2016-09-01
The effect of refrigeration on bacterial communities within raw and pasteurized buffalo milk was studied using high-throughput sequencing. High-quality samples of raw buffalo milk were obtained from 3 dairy farms in the Guangxi province in southern China. Five liters of each milk sample were pasteurized (72°C; 15 s); and both raw and pasteurized milks were stored at refrigeration temperature (1-4°C) for various times with their microbial communities characterized using the Illumina Miseq platform (Novogene, Beijing, China). Results showed that both raw and pasteurized milks contained a diverse microbial population and that the populations changed over time during storage. In raw buffalo milk, Lactococcus and Streptococcus dominated the population within the first 24h; however, when stored for up to 72h the dominant bacteria were members of the Pseudomonas and Acinetobacter genera, totaling more than 60% of the community. In pasteurized buffalo milk, the microbial population shifted from a Lactococcus-dominated community (7d), to one containing more than 84% Paenibacillus by 21d of storage. To increase the shelf-life of buffalo milk and its products, raw milk needs to be refrigerated immediately after milking and throughout transport, and should be monitored for the presence of Paenibacillus. Results from this study suggest pasteurization should be performed within 24h of raw milk collection, when the number of psychrotrophic bacteria are low; however, as Paenibacillus spores are resistant to pasteurization, additional antimicrobial treatments may be required to extend shelf-life. The findings from this study are expected to aid in improving the quality and safety of raw and pasteurized buffalo milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Leichty, Aaron R; Brisson, Dustin
2014-10-01
Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with <6.7-fold amplification of the background. SWGA-treated genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.
Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant.
Keshri, Jitendra; Chen, Yaira; Pinto, Riky; Kroupitski, Yulia; Weinberg, Zwi G; Sela Saldinger, Shlomo
2018-05-01
Microbial population dynamics associated with corn silage, with and without Lactobacillus plantarum treatment, was studied. Whole crop corn was ensiled using laboratory silos and sampled at different times, up to 3 months. The dominant bacteria, before ensiling, were Acinetobacter (38.5%) and Klebsiella (16.3%), while the dominant fungi were Meyerozyma (53.5%) and Candida (27.7%). During ensiling, the microbial population shifted considerably, and Lactobacillus (> 94%) and Candida (> 74%) became the most dominant microbial genera in both treated and untreated silages. Yet, lactic acid content was higher in the treated silage, while the microbial diversity was lower than in the untreated silage. Upon aerobic exposure, spoilage occurred more rapidly in the treated silage, possibly due to the higher abundance of lactic acid-assimilating fungi, such as Candida. Our study is the first to describe microbial population dynamics during whole-crop corn ensiling and the results indicate that microbial diversity may be an indicator of aerobic stability.
Signatures of natural selection and ecological differentiation in microbial genomes.
Shapiro, B Jesse
2014-01-01
We live in a microbial world. Most of the genetic and metabolic diversity that exists on earth - and has existed for billions of years - is microbial. Making sense of this vast diversity is a daunting task, but one that can be approached systematically by analyzing microbial genome sequences. This chapter explores how the evolutionary forces of recombination and selection act to shape microbial genome sequences, leaving signatures that can be detected using comparative genomics and population-genetic tests for selection. I describe the major classes of tests, paying special attention to their relative strengths and weaknesses when applied to microbes. Specifically, I apply a suite of tests for selection to a set of closely-related bacterial genomes with different microhabitat preferences within the marine water column, shedding light on the genomic mechanisms of ecological differentiation in the wild. I will focus on the joint problem of simultaneously inferring the boundaries between microbial populations, and the selective forces operating within and between populations.
NASA Astrophysics Data System (ADS)
Linacre, Lorena; Lara-Lara, Rubén; Camacho-Ibar, Víctor; Herguera, Juan Carlos; Bazán-Guzmán, Carmen; Ferreira-Bartrina, Vicente
2015-12-01
In order to characterize the carbon biomass spatial distribution of autotrophic and heterotrophic picoplankton populations linked to mesoscale dynamics, an investigation over an extensive open-ocean region of the southern Gulf of Mexico (GM) was conducted. Seawater samples from the mixed layer were collected during wintertime (February-March 2013). Picoplankton populations were counted and sorted using flow cytometry analyses. Carbon biomass was assessed based on in situ cell abundances and conversion factors from the literature. Approximately 46% of the total picoplankton biomass was composed of three autotrophic populations (Prochlorococcus, Synechococcus, and pico-eukaryotes), while 54% consisted of heterotrophic bacteria populations. Prochlorococcus spp. was the most abundant pico-primary producer (>80%), and accounted for more than 60% of the total pico-autotrophic biomass. The distribution patterns of picoplankton biomass were strongly associated with the mesoscale dynamics that modulated the hydrographic conditions of the surface mixed layer. The main features of the carbon distribution pattern were: (1) the deepening of picoplankton biomass to layers closer to the nitracline base in anticyclonic eddies; (2) the shoaling of picoplankton biomass in cyclonic eddies, constraining the autoprokaryote biomasses to the upper layers, as well as accumulating the pico-eukaryote biomass in the cold core of the eddies; and (3) the increase of heterotrophic bacteria biomass in frontal regions between counter-paired anticyclonic and cyclonic eddies. Factors related to nutrient preferences and light conditions may as well have contributed to the distribution pattern of the microbial populations. The findings reveal the great influence of the mesoscale dynamics on the distribution of picoplankton populations within the mixed layer. Moreover, the significance of microbial components (especially Prochlorococcus) in the southern GM during winter conditions was revealed, indicating that they may play an important role in the pelagic food web, and that they may have a substantial impact on the carbon cycle in oligotrophic regions.
Effects of dietary cooked navy bean on the fecal microbiome of healthy companion dogs.
Kerr, Katherine R; Forster, Genevieve; Dowd, Scot E; Ryan, Elizabeth P; Swanson, Kelly S
2013-01-01
Cooked bean powders are a promising novel protein and fiber source for dogs, which have demonstrated potential to alter microbial composition and function for chronic disease control and prevention. This study aimed to determine the impact of cooked navy bean powder fed as a staple food ingredient on the fecal microbiome of healthy adult pet dogs. Fecal samples from healthy dogs prior to dietary control and after 4 wk of dietary treatment with macro- and micronutrient matched diets containing either 0 or 25% cooked navy beans (n = 11 and n = 10, respectively) were analyzed by 454-pyrosequencing of the 16S rRNA gene. There were few differences between dogs fed the control and navy bean diets after 4 wk of treatment. These data indicate that there were no major effects of navy bean inclusion on microbial populations. However, significant differences due to dietary intervention onto both research diets were observed (i.e., microbial populations at baseline versus 4 wk of intervention with 0 or 25% navy bean diets). After 4 wk of dietary intervention on either control or navy bean diet, the Phylum Firmicutes was increased and the Phyla Actinobacteria and Fusobacteria were decreased compared to baseline. No negative alterations of microbial populations occurred following cooked navy bean intake in dogs, indicating that bean powders may be a viable protein and fiber source for commercial pet foods. The highly variable microbial populations observed in these healthy adult pet dogs at baseline is one potential reason for the difficulty to detect alterations in microbial populations following dietary changes. Given the potential physiological benefits of bean intake in humans and dogs, further evaluation of the impacts of cooked navy bean intake on fecal microbial populations with higher power or more sensitive methods are warranted.
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; Weber, Peter K; Pett-Ridge, Jennifer; Hettich, Robert L; Pan, Chongle; Mayali, Xavier; Mueller, Ryan S
2017-01-01
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populations did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone. PMID:28800138
Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment
Rajala, Pauliina; Bomberg, Malin
2017-01-01
Microbial communities in deep subsurface environments comprise a large portion of Earth’s biomass, but the microbial activity in these habitats is largely unknown. Here, we studied how microorganisms from two isolated groundwater fractures at 180 and 500 m depths of the Outokumpu Deep Drillhole (Finland) responded to methane or methanol amendment, in the presence or absence of sulfate as an additional electron acceptor. Methane is a plausible intermediate in the deep subsurface carbon cycle, and electron acceptors such as sulfate are critical components for oxidation processes. In fact, the majority of the available carbon in the Outokumpu deep biosphere is present as methane. Methanol is an intermediate of methane oxidation, but may also be produced through degradation of organic matter. The fracture fluid samples were incubated in vitro with methane or methanol in the presence or absence of sulfate as electron acceptor. The metabolic response of microbial communities was measured by staining the microbial cells with fluorescent redox sensitive dye combined with flow cytometry, and DNA or cDNA-derived amplicon sequencing. The microbial community of the fracture zone at the 180 m depth was originally considerably more respiratory active and 10-fold more numerous (105 cells ml-1 at 180 m depth and 104 cells ml-1 at 500 m depth) than the community of the fracture zone at the 500 m. However, the dormant microbial community at the 500 m depth rapidly reactivated their transcription and respiration systems in the presence of methane or methanol, whereas in the shallower fracture zone only a small sub-population was able to utilize the newly available carbon source. In addition, the composition of substrate activated microbial communities differed at both depths from original microbial communities. The results demonstrate that OTUs representing minor groups of the total microbial communities play an important role when microbial communities face changes in environmental conditions. PMID:28367144
Slightly acidic electrolyzed water for reducing airborne microorganisms in a layer breeding house.
Hao, Xiaoxia; Cao, Wei; Li, Baoming; Zhang, Qiang; Wang, Chaoyuan; Ge, Liangpeng
2014-04-01
Reducing airborne microorganisms may potentially improve the environment in layer breeding houses. The effectiveness of slightly acidic electrolyzed water (SAEW; pH 5.29-6.30) in reducing airborne microorganisms was investigated in a commercial layer house in northern China. The building had a tunnel-ventilation system, with an evaporative cooling. The experimental area was divided into five zones along the length of the house, with zone 1 nearest to an evaporative cooling pad and zone 5 nearest to the fans. The air temperature, relative humidity, dust concentration, and microbial population were measured at the sampling points in the five zones during the study period. The SAEW was sprayed by workers in the whole house. A six-stage air microbial sampler was used to measure airborne microbial population. Results showed that the population of airborne bacteria and fungi were sharply reduced by 0.71 x 10(5) and 2.82 x 10(3) colony-forming units (CFU) m(-3) after 30 min exposure to SAEW, respectively. Compared with the benzalkonium chloride (BC) solution and povidone-iodine (PVP-I) solution treatments, the population reductions of airborne fungi treated by SAEW were significantly (P < 0.05) more, even though the three disinfectants can decrease both the airborne bacteria and fungi significantly (P < 0.05) 30 min after spraying. There are no effective methods for reducing airborne microbial levels in tunnel-ventilated layer breeding houses; additionally, there is limited information available on airborne microorganism distribution. This research investigated the spatial distribution of microbial population, and the effectiveness of spraying slightly acidic electrolyzed water in reducing microbial levels. The research revealed that slightly acidic electrolyzed water spray was a potential method for reducing microbial presence in layer houses. The knowledge gained in this research about the microbial population variations in the building may assist producers in managing the bird housing environment and engineers in designing poultry houses.
Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.
Xu, Jianping
2006-06-01
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, T.; Schadt, C.; Zhou, J.
Microarray technology has the unparalleled potential tosimultaneously determine the dynamics and/or activities of most, if notall, of the microbial populations in complex environments such as soilsand sediments. Researchers have developed several types of arrays thatcharacterize the microbial populations in these samples based on theirphylogenetic relatedness or functional genomic content. Several recentstudies have used these microarrays to investigate ecological issues;however, most have only analyzed a limited number of samples withrelatively few experiments utilizing the full high-throughput potentialof microarray analysis. This is due in part to the unique analyticalchallenges that these samples present with regard to sensitivity,specificity, quantitation, and data analysis. Thismore » review discussesspecific applications of microarrays to microbial ecology research alongwith some of the latest studies addressing the difficulties encounteredduring analysis of complex microbial communities within environmentalsamples. With continued development, microarray technology may ultimatelyachieve its potential for comprehensive, high-throughput characterizationof microbial populations in near real-time.« less
Mineralogic control on abundance and diversity of surface-adherent microbial communities
Mauck, Brena S.; Roberts, Jennifer A.
2007-01-01
In this study, we investigated the role of mineral-bound P and Fe in defining microbial abundance and diversity in a carbon-rich groundwater. Field colonization experiments of initially sterile mineral surfaces were combined with community structure characterization of the attached microbial population. Silicate minerals containing varying concentrations of P (∼1000 ppm P) and Fe (∼4 wt % Fe 2 O3), goethite (FeOOH), and apatite [Ca5(PO4)3(OH)] were incubated for 14 months in three biogeochemically distinct zones within a petroleum-contaminated aquifer. Phospholipid fatty acid analysis of incubated mineral surfaces and groundwater was used as a measure of microbial community structure and biomass. Microbial biomass on minerals exhibited distinct trends as a function of mineralogy depending on the environment of incubation. In the carbon-rich, aerobic groundwater attached biomass did not correlate to the P- or Fe- content of the mineral. In the methanogenic groundwater, however, biomass was most abundant on P-containing minerals. Similarly, in the Fe-reducing groundwater a correlation between Fe-content and biomass was observed. The community structure of the mineral-adherent microbial population was compared to the native groundwater community. These two populations were significantly different regardless of mineralogy, suggesting differentiation of the planktonic community through attachment, growth, and death of colonizing cells. Biomarkers specific for dissimilatory Fe-reducing bacteria native to the aquifer were identified only on Fe-containing minerals in the Fe-reducing groundwater. These results demonstrate that the trace nutrient content of minerals affects both the abundance and diversity of surface-adherent microbial communities. This behavior may be a means to access limiting nutrients from the mineral, creating a niche for a particular microbial population. These results suggest that heterogeneity of microbial populations and their associated activities in subsurface environments extend to the microscale and cautions over-interpretation of highly sample-dependent measurements in the context of interpreting field data.
Characterization of Microbial Communities Found in Bioreactor Effluent
NASA Technical Reports Server (NTRS)
Flowe, Candice
2013-01-01
The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.
mRNA-Based Parallel Detection of Active Methanotroph Populations by Use of a Diagnostic Microarray
Bodrossy, Levente; Stralis-Pavese, Nancy; Konrad-Köszler, Marianne; Weilharter, Alexandra; Reichenauer, Thomas G.; Schöfer, David; Sessitsch, Angela
2006-01-01
A method was developed for the mRNA-based application of microbial diagnostic microarrays to detect active microbial populations. DNA- and mRNA-based analyses of environmental samples were compared and confirmed via quantitative PCR. Results indicated that mRNA-based microarray analyses may provide additional information on the composition and functioning of microbial communities. PMID:16461725
16S rRNA analysis of diversity of manure microbial community in dairy farm environment
Miao, Max; Wang, Yi; Settles, Matthew; del Rio, Noelia Silva; Castillo, Alejandro; Souza, Alex; Pereira, Richard
2018-01-01
Dairy farms generate a considerable amount of manure, which is applied in cropland as fertilizer. While the use of manure as fertilizer reduces the application of chemical fertilizers, the main concern with regards to manure application is microbial pollution. Manure is a reservoir of a broad range of microbial populations, including pathogens, which have potential to cause contamination and pose risks to public and animal health. Despite the widespread use of manure fertilizer, the change in microbial diversity of manure under various treatment processes is still not well-understood. We hypothesize that the microbial population of animal waste changes with manure handling used in a farm environment. Consequential microbial risk caused by animal manure may depend on manure handling. In this study, a reconnaissance effort for sampling dairy manure in California Central Valley followed by 16S rRNA analysis of content and diversity was undertaken to understand the microbiome of manure after various handling processes. The microbial community analysis of manure revealed that the population in liquid manure differs from that in solid manure. For instance, the bacteria of genus Sulfuriomonas were unique in liquid samples, while the bacteria of genus Thermos were observed only in solid samples. Bacteria of genus Clostridium were present in both solid and liquid samples. The population among liquid samples was comparable, as was the population among solid samples. These findings suggest that the mode of manure application (i.e., liquid versus solid) could have a potential impact on the microbiome of cropland receiving manure as fertilizers. PMID:29304047
Dagar, S S; Singh, N; Goel, N; Kumar, S; Puniya, A K
2015-01-01
In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.
Allen, J.P.; Atekwana, E.A.; Duris, J.W.; Werkema, D.D.; Rossbach, S.
2007-01-01
The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueousphase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.
Aquatic fulvic acids in microbially based ecosystems: results from two desert lakes in Antarctica
McKnight, Diane M.; Aiken, G.R.; Smith, R.L.
1991-01-01
These lakes receive very limited input of organic material from the surrounding barren desert, but they sustain algal and bacterial populations under permanent ice cover. One lake has an extensive anoxic zone and high salinities; the other is oxic and has low salinities. Despite these differences, fulvic acids from both lakes had similar elemental compositions, carbon distributions, and amino acid contents, indicating that the chemistry of microbially derived fulvic acvids is not strongly influenced by chemical conditions in the water column. Compared to fulvic acids from other natural waters, these fulvic acids have low C:N atomic ratios (19-25) and low contents of aromatic carbons (5-7% of total carbon atoms); they are most similar to marine fulvic acids. -from Authors
Tanaka, Yuichiro; Takahashi, Hajime; Kitazawa, Nao; Kimura, Bon
2010-01-01
A rapid system using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting 16S rDNA is described for microbial population analysis in edible fish samples. The defined terminal restriction fragment database was constructed by collecting 102 strains of bacteria representing 53 genera that are associated with fish. Digestion of these 102 strains with two restriction enzymes, HhaI and MspI, formed 54 pattern groups with discrimination to the genus level. This T-RFLP system produced results comparable to those from a culture-based method in six natural fish samples with a qualitative correspondence of 71.4 to 92.3%. Using the T-RFLP system allowed an estimation of the microbial population within 7 h. Rapid assay of the microbial population is advantageous for food manufacturers and testing laboratories; moreover, the strategy presented here allows adaptation to specific testing applications.
Population density controls on microbial pollution across the Ganga catchment.
Milledge, D G; Gurjar, S K; Bunce, J T; Tare, V; Sinha, R; Carbonneau, P E
2018-01-01
For millions of people worldwide, sewage-polluted surface waters threaten water security, food security and human health. Yet the extent of the problem and its causes are poorly understood. Given rapid widespread global urbanisation, the impact of urban versus rural populations is particularly important but unknown. Exploiting previously unpublished archival data for the Ganga (Ganges) catchment, we find a strong non-linear relationship between upstream population density and microbial pollution, and predict that these river systems would fail faecal coliform standards for irrigation waters available to 79% of the catchment's 500 million inhabitants. Overall, this work shows that microbial pollution is conditioned by the continental-scale network structure of rivers, compounded by the location of cities whose growing populations contribute c. 100 times more microbial pollutants per capita than their rural counterparts. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352
Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.
Sources of Variation in the Gut Microbial Community of Lycaeides melissa Caterpillars.
Chaturvedi, Samridhi; Rego, Alexandre; Lucas, Lauren K; Gompert, Zachariah
2017-09-12
Microbes can mediate insect-plant interactions and have been implicated in major evolutionary transitions to herbivory. Whether microbes also play a role in more modest host shifts or expansions in herbivorous insects is less clear. Here we evaluate the potential for gut microbial communities to constrain or facilitate host plant use in the Melissa blue butterfly (Lycaeides melissa). We conducted a larval rearing experiment where caterpillars from two populations were fed plant tissue from two hosts. We used 16S rRNA sequencing to quantify the relative effects of sample type (frass versus whole caterpillar), diet (plant species), butterfly population and development (caterpillar age) on the composition and diversity of the caterpillar gut microbial communities, and secondly, to test for a relationship between microbial community and larval performance. Gut microbial communities varied over time (that is, with caterpillar age) and differed between frass and whole caterpillar samples. Diet (host plant) and butterfly population had much more limited effects on microbial communities. We found no evidence that gut microbe community composition was associated with caterpillar weight, and thus, our results provide no support for the hypothesis that variation in microbial community affects performance in L. melissa.
Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J.; Wright, Justin R.; Rosenberger, Abigail; McClure, Erin E.; Grube, Alyssa M.; Peterson, Mark P.; Keddache, Mehdi; Mason, Olivia U.; Hazen, Terry C.; Grant, Christopher J.; Lamendella, Regina
2014-01-01
Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA− sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683
Noninvasive methods for dynamic mapping of microbial populations across the landscape
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Sengupta, A.; Troch, P. A.; Volkmann, T. H. M.
2017-12-01
Soil microorganisms drive key ecosystem processes, and yet characterizing their distribution and activity in soil has been notoriously difficult. This is due, in part, to the heterogeneous nature of their response to changing environmental and nutrient conditions across time and space. These dynamics are challenging to constrain in both natural and experimental systems because of sampling difficulty and constraints. For example, soil microbial sampling at the Landscape Evolution Observatory (LEO) infrastructure in Biosphere 2 is limited in efforts to minimize soil disruption to the long term experiment that aims to characterize the interacting biological, hydrological, and geochemical processes driving soil evolution. In this and other systems, new methods are needed to monitor soil microbial communities and their genetic potential over time. In this study, we take advantage of the well-defined boundary conditions on hydrological flow at LEO to develop a new method to nondestructively characterize in situ microbial populations. In our approach, we sample microbes from the seepage flow at the base of each of three replicate LEO hillslopes and use hydrological models to `map back' in situ microbial populations. Over the course of a 3-month periodic rainfall experiment we collected samples from the LEO outflow for DNA and extraction and microbial community composition analysis. These data will be used to describe changes in microbial community composition over the course of the experiment. In addition, we will use hydrological flow models to identify the changing source region of discharge water over the course of periodic rainfall pulses, thereby mapping back microbial populations onto their geographic origin in the slope. These predictions of in situ microbial populations will be ground-truthed against those derived from destructive soil sampling at the beginning and end of the rainfall experiment. Our results will show the suitability of this method for long-term, non-destructive monitoring of the microbial communities that contribute to soil evolution in this large-scale model system. Furthermore, this method may be useful for other study systems with limitations to destructive sampling including other model infrastructures and natural landscapes.
Airborne microbial composition in a high-throughput poultry slaughtering facility.
Liang, Ruiping; Tian, Jijing; She, Ruiping; Meng, Hua; Xiao, Peng; Chang, Lingling
2013-03-01
A high-throughput chicken slaughtering facility in Beijing was systematically investigated for numbers of airborne microorganisms. Samples were assessed for counts of aerobic bacteria, Staphylococcus aureus, total coliforms, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus cereus, and Salmonella. During a 4-month period (September to December 2011), samples were collected for 10 min three times daily (preproduction, production, and postproduction). Samples were collected for three consecutive days of each month with an FA-1 sampler from six sampling sites: receiving-hanging, soaking-scalding and defeathering, evisceration, precooling, subdividing, and packing. Humidity, temperature, wind velocity, and airborne particulates also were recorded at each sampling site and time. The highest counts of microorganisms were recorded in the initial stages of processing, i.e., the receiving-hanging and defeathering areas, with a definite decline toward the evisceration, prechilling, subdividing, and packing areas; the prechilling area had the lowest microbial counts of 2.4 × 10(3) CFU/m(3). Mean total coliforms counts ranged from 8.4 × 10(3) to 140 CFU/m(3). Maximum E. coli counts were 6.1 × 10(3) CFU/m(3) in the soaking-scalding and defeathering area. B. cereus, P. aeruginosa, and S. aureus represented only a small proportion of the microbial population (1,900 to 20 CFU/m(3)). L. monocytogenes and Salmonella were rarely detected in evisceration, precooling, subdividing, and packing areas. Our study identified the levels of bioaerosols that may affect chicken product quality. This finding could be useful for improved control of microbial contamination to ensure product quality.
Zhao, Yang-Guo; Zhang, Yi; She, Zonglian; Shi, Yue; Wang, Min; Gao, Mengchun; Guo, Liang
2017-09-01
Performance of microbial fuel cells (MFCs) was monitored during the influent nutrient change from lactate to glucose/acetate/propionate and then to lactate. Meanwhile, anodic microbial communities were characterized by culture-independent molecular biotechnologies. Results showed MFC performance recovered rapidly when the lactate was replaced by one of its metabolic intermediates acetate, while it needed a longer time to recover if lactate substrate was converted to glucose/propionate or acetate to lactate. Secondary lactate feed enhanced the enrichment of bacterial populations dominating in first lactate feed. Electricity-producing bacteria, Geobacter spp., and beneficial helpers, Anaeromusa spp. and Pseudomonas spp., revived from a low abundance as lactate secondary supply, but microbial communities were hard to achieve former profiles in structure and composition. Hence, microbial community profiles tended to recover when outside environmental condition were restored. Different substrates selected unique functional microbial populations.
Luo, Da; Shi, Zuo-Min; Tang, Jing-Chao; Liu, Shi-Rong; Lu, Li-Hua
2014-09-01
The effects of three plantation stands, Erythrophleumf ordii (EF), Pinus massoniana (PM), and their mixed plantation (MP), on soil microbial biomass and microbial community structure in south subtropical China were studied by the method of phospholipid fatty acids (PLFAs) analysis. The results showed that the amounts of microbial total PLFAs and PLFAs of each microbial group in these three plantation stand soils were significantly higher in dry season than in rainy season. In dry season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and actinomycetes PLFAs were the highest in the PM soil, moderate in the MP soil, and the lowest in the EF soil. But in rainy season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and arbuscular mycorrhizal fungi (AMF) PLFAs in the EF soil were higher than in the MP soil, and were significantly higher than in the PM soil. Principal component analysis (PCA) indicated that the variations in soil microbial community structure composition were affected by both plantation types and seasons. Redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil temperature and moisture, pH, total nitrogen content, and ammonium nitrogen content had significant correlations with PLFA signatures. In addition, the ratio of fungi PLFAs to bacteria PLFAs in the MP soil was the highest among the three stand soils within the whole year, indicating that mixed plantation stands could facilitate the stability of the soil ecosystem.
Moffitt, C.M.; Mobin, S.M.A.
2006-01-01
We describe the resident heterotrophic aerobic microflora of the salmonid posterior intestine before, during, and after the administration of rations with erythromycin in a hatchery raceway environment. We compare the profiles of medicated Chinook salmon Oncorhynchus tshawytscha with those of control fish that were not fed erythromycin. The combined counts of bacteria and yeasts per gram of fish intestine originating from four upstream raceways ranged from 3.0 ?? 102 to 9.6 ?? 105 colony-forming units (CFU) over the study period. Yeasts were commonly identified in the gut, and abundances ranged from 0% to more than 80% of the CFU. Erythromycin therapy decreased the total microbial population and altered the bacterial diversity in the gut during treatment. The intestinal microbial populations in fish medicated with erythromycin increased rapidly after treatment ceased, and by 25 d after treatment the CFU were similar in samples from both medicated and control fish populations. Of 325 isolates from fish selected for biochemical profiles, we identified a total of eight gram-positive and eight gram-negative genera. Bacillus spp. were common throughout sampling and were identified in samples of fish feed. Erythromycin-resistant, gram-positive bacteria were observed throughout the sampling in medicated and control fish. We identified seven gram-positive and two gram-negative genera in 74 selected isolates from control and erythromycin feeds. Our studies suggest that the aerobic microflora of the posterior intestine varies over time, and it is likely that few resistant genera of concern to human health are present.
Willner, Dana L; Hugenholtz, Philip; Yerkovich, Stephanie T; Tan, Maxine E; Daly, Joshua N; Lachner, Nancy; Hopkins, Peter M; Chambers, Daniel C
2013-03-15
Bronchiolitis obliterans syndrome (BOS) is the primary limiting factor for long-term survival after lung transplantation, and has previously been associated with microbial infections. To cross-sectionally and longitudinally characterize microbial communities in allografts from transplant recipients with and without BOS using a culture-independent method based on high-throughput sequencing. Allografts were sampled by bronchoalveolar lavage, and microbial communities were profiled using 16S rRNA gene amplicon pyrosequencing. Community profiles were compared using the weighted Unifrac metric and the relationship between microbial populations, BOS, and other covariates was explored using PERMANOVA and logistic regression. Microbial communities in transplant patients fell into two main groups: those dominated by Pseudomonas or those dominated by Streptococcus and Veillonella, which seem to be mutually exclusive lung microbiomes. Aspergillus culture was also negatively correlated with the Pseudomonas-dominated group. The reestablishment of dominant populations present in patients pretransplant, notably Pseudomonas in individuals with cystic fibrosis, was negatively correlated with BOS. Recolonization of the allograft by Pseudomonas in individuals with cystic fibrosis is not associated with BOS. In general, reestablishment of pretransplant lung populations in the allograft seems to have a protective effect against BOS, whereas de novo acquisition of microbial populations often belonging to the same genera may increase the risk of BOS.
Evaluation of chemical immersion treatments to reduce microbial populations in fresh beef.
Kassem, Ahmed; Meade, Joseph; Gibbons, James; McGill, Kevina; Walsh, Ciara; Lyng, James; Whyte, Paul
2017-11-16
The aim of the current study was to assess the ability of a number of chemicals (acetic Acid (AA), citric acid (CA) lactic acid (LA), sodium decanoate (SD) and trisodium phosphate (TSP)) to reduce microbial populations (total viable count, Campylobacter jejuni, Escherichia coli, Salmonella typhimurium and Listeria monocytogenes) on raw beef using an immersion system. The following concentrations of each chemical were used: 3 & 5% for AA, CA, LA, SD and 10 &12% for TSP. Possible synergistic effects of using combinations of two chemicals sequentially (LA+CA and LA+AA) were also investigated. L*, a* and b* values were measured before and after treatments and ΔE* values were calculated in order to determine any changes in the color of meat due to the use of these chemicals. In general, all chemical treatments resulted in significantly (p<0.05) reduced bacterial counts when compared to untreated controls. The greatest reductions were obtained by using LA3%, SD5%, AA5%, LA5% and SD3% for TVC, C. jejuni, E. coli, S. typhimurium and L. monocytogenes, respectively. However, no significant difference in microbial load was observed between the different concentrations of each chemical used (p>0.05). The application of combinations of chemical immersion treatments (LA3%+AA3% and LA3%+CA3%) did not result in further significant reductions in microbial populations when compared to single chemical treatments (P<0.05). Assessment of color changes in meat following the application of chemical immersion treatments indicated that using AA or CA at either concentration and LA at 5% led to an increase in the ΔE* value of >3 immediately after treatment and after 24h storage. The remaining treatments did not result in significant changes to the color of raw beef. Copyright © 2017 Elsevier B.V. All rights reserved.
Bastida, Felipe; Torres, Irene F; Andrés-Abellán, Manuela; Baldrian, Petr; López-Mondéjar, Rubén; Větrovský, Tomáš; Richnow, Hans H; Starke, Robert; Ondoño, Sara; García, Carlos; López-Serrano, Francisco R; Jehmlich, Nico
2017-10-01
Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change. © 2017 John Wiley & Sons Ltd.
Bento, Fatima M; Camargo, Flávio A O; Okeke, Benedict C; Frankenberger, William T
2005-06-01
Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.
NASA Astrophysics Data System (ADS)
Prakash, Anuradha; Manley, Jacqueline; DeCosta, Suresh; Caporaso, Fred; Foley, Denise
2002-03-01
Diced Roma tomatoes were treated with gamma irradiation and evaluated for changes in microbial, physical, chemical and sensory properties. Dosages for Trial 1 were 0.0, 0.39, 0.56 and 1.82 kGy and in Trial 2, 0.0, 0.50, 1.24 and 3.70 kGy. Irradiation at 3.70 kGy resulted in no aerobic populations through day 12 and significantly fewer colonies through day 15 whereas yeast and mold populations experienced a 2 log reduction through day 12. Color, titratable acidity, and °Brix were not significantly affected by irradiation. Tissue firmness decreased with increasing dose but not with storage time. Treatment with 3.7 kGy decreased firmness by 50% and 20% with 0.5 kGy, however, the reduced firmness induced by 0.50 kGy was undetected by a 9 member trained sensory panel. A significant ( p⩽0.05) inverse correlation between changes in texture and water-soluble pectin (WSP) was determined while total pectin remained relatively constant and oxalate soluble pectin content decreased slightly with irradiation dose. The significant inverse correlation between the loss of firmness and WSP indicates that the changes in WSP play an important role in the tissue softening of tomatoes, This study indicates that irradiation at 0.5 kGy can reduce microbial counts substantially to improve microbial shelf life without adverse effects on sensory qualities.
Gunun, P.; Wanapat, M.; Gunun, N.; Cherdthong, A.; Sirilaophaisan, S.; Kaewwongsa, W.
2016-01-01
Mao seed is a by-product of the wine and juice industry, which could be used in animal nutrition. The current study was designed to determine the effect of supplementation of mao (Antidesma thwaitesianum Muell. Arg.) seed meal (MOSM) containing condensed tannins (CT) on rumen fermentation, nitrogen (N) utilization and microbial protein synthesis in goats. Four crossbred (Thai Native×Anglo Nubian) goats with initial body weight (BW) 20±2 kg were randomly assigned to a 4×4 Latin square design. The four dietary treatments were MOSM supplementation at 0%, 0.8%, 1.6%, and 2.4% of total dry matter (DM) intake, respectively. During the experimental periods, all goats were fed a diet containing roughage to concentrate ratio of 60:40 at 3.0% BW/d and pangola grass hay was used as a roughage source. Results showed that supplementation with MOSM did not affect feed intake, nutrient intakes and apparent nutrient digestibility (p>0.05). In addition, ruminal pH and ammonia nitrogen (NH3-N) were not influenced by MOSM supplementation, whilst blood urea nitrogen was decreased quadraticly (p<0.05) in goats supplemented with MOSM at 2.4% of total DM intake. Propionate was increased linearly with MOSM supplementation, whereas acetate and butyrate were remained the same. Moreover, estimated ruminal methane (CH4) was decreased linearly (p<0.05) when goats were fed with MOSM at 1.6% and 2.4% of total DM intake. Numbers of bacteria and protozoa were similar among treatments (p>0.05). There were linear decreases in urinary N (p<0.01) and total N excretion (p<0.01) by MOSM supplementation. Furthermore, N retention was increased linearly (p<0.05) when goats were fed with MOSM supplementation at 1.6% and 2.4% of total DM intake. Microbial protein synthesis were not significantly different among treatments (p>0.05). From the current study, it can be concluded that supplementation of MOSM at 1.6% to 2.4% of total DM intake can be used to modify ruminal fermentation, especially propionate and N utilization in goats, without affecting the nutrient digestibility, microbial populations and microbial protein synthesis. PMID:26954153
Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang
2015-01-01
This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4(+)) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4(+) content, nitrate content (NH3(-)), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.
Cookson, W R; O'Donnell, A J; Grant, C D; Grierson, P F; Murphy, D V
2008-02-01
We investigated the impacts of forest thinning, prescribed fire, and contour ripping on community level physiological profiles (CLPP) of the soil microbial population in postmining forest rehabilitation. We hypothesized that these management practices would affect CLPP via an influence on the quality and quantity of soil organic matter. The study site was an area of Jarrah (Eucalyptus marginata Donn ex Sm.) forest rehabilitation that had been mined for bauxite 12 years previously. Three replicate plots (20 x 20 m) were established in nontreated forest and in forest thinned from 3,000-8,000 stems ha(-1) to 600-800 stems ha(-1) in April (autumn) of 2003, followed either by a prescribed fire in September (spring) of 2003 or left nonburned. Soil samples were collected in August 2004 from two soil depths (0-5 cm and 5-10 cm) and from within mounds and furrows caused by postmining contour ripping. CLPP were not affected by prescribed fire, although the soil pH and organic carbon (C), total C and total nitrogen (N) contents were greater in burned compared with nonburned plots, and the coarse and fine litter mass lower. However, CLPP were affected by forest thinning, as were fine litter mass, soil C/N ratio, and soil pH, which were all higher in thinned than nonthinned plots. Furrow soil had greater coarse and fine litter mass, and inorganic phosphorous (P), organic P, organic C, total C, total N, ammonium, microbial biomass C contents, but lower soil pH and soil C/N ratio than mound soil. Soil pH, inorganic P, organic P, organic C, total C and N, ammonium, and microbial biomass C contents also decreased with depth, whereas soil C/N ratio increased. Differences in CLPP were largely (94%) associated with the relative utilization of gluconic, malic (greater in nonthinned than thinned soil and mound than furrow soil), L-tartaric, succinic, and uric acids (greater in thinned than nonthinned, mound than furrow, and 5-10 cm than 0-5 cm soil). The relative utilization of amino acids also tended to increase with increasing soil total C and organic C contents but decreased with increasing nitrate content, whereas the opposite was true for carboxylic acids. Only 45% of the variance in CLPP was explained using a multivariate multiple regression model, but soil C and N pools and litter mass were significant predictors of CLPP. Differences in soil textural components between treatments were also correlated with CLPP; likely causes of these differences are discussed. Our results suggest that 1 year after treatment, CLPP from this mined forest ecosystem are resilient to a spring prescribed fire but not forest thinning. We conclude that differences in CLPP are likely to result from complex interactions among soil properties that mediate substrate availability, microbial nutrient demand, and microbial community composition.
Kingston-Smith, Alison H.; Davies, Teri E.; Rees Stevens, Pauline; Mur, Luis A. J.
2013-01-01
The rumen microbiota enable ruminants to degrade complex ligno-cellulosic compounds to produce high quality protein for human consumption. However, enteric fermentation by domestic ruminants generates negative by-products: greenhouse gases (methane) and environmental nitrogen pollution. The current lack of cultured isolates representative of the totality of rumen microbial species creates an information gap about the in vivo function of the rumen microbiota and limits our ability to apply predictive biology for improvement of feed for ruminants. In this work we took a whole ecosystem approach to understanding how the metabolism of the microbial population responds to introduction of its substrate. Fourier Transform Infra Red (FTIR) spectroscopy-based metabolite fingerprinting was used to discriminate differences in the plant-microbial interactome of the rumen when using three forage grass varieties (Lolium perenne L. cv AberDart, AberMagic and Premium) as substrates for microbial colonisation and fermentation. Specific examination of spectral regions associated with fatty acids, amides, sugars and alkanes indicated that although the three forages were apparently similar by traditional nutritional analysis, patterns of metabolite flux within the plant-microbial interactome were distinct and plant genotype dependent. Thus, the utilisation pattern of forage nutrients by the rumen microbiota can be influenced by subtleties determined by forage genotypes. These data suggest that our interactomic approach represents an important means to improve forages and ultimately the livestock environment. PMID:24312434
Evolution in an Afternoon: Rapid Natural Selection and Adaptation of Bacterial Populations
ERIC Educational Resources Information Center
Delpech, Roger
2009-01-01
This paper describes a simple, rapid and low-cost technique for growing bacteria (or other microbes) in an environmental gradient, in order to determine the tolerance of the microbial population to varying concentrations of sodium chloride ions, and suggests how the evolutionary response of a microbial population to the selection pressure of the…
Zhou, Li; Wang, Wei; Huang, Jun; Ding, Yu; Pan, Zhouqiang; Zhao, Ya; Zhang, Renkang; Hu, Bing; Zeng, Xiaoxiong
2016-04-01
The effects of several parameters on the extraction yield of total polyphenols from grape seeds by pressurized liquid extraction were investigated. The highest recovery of total polyphenols occurred at 80 °C within 5 min, and a single extraction allowed a recovery of more than 97% of total polyphenols. Following the purification with macroporous resin, the effects of grape polyphenols (>94.8%) on human intestinal microbiota were monitored over 36 h incubation by fluorescence in situ hybridization, and short-chain fatty acids (SCFAs) were measured by HPLC. The result showed that the grape polyphenols promoted the changes in the relevant microbial populations and shifted the profiles of SCFAs. Fermentation of grape polyphenols resulted in a significant increase in the numbers of Bifidobacterium spp. and Lactobacillus-Enterococcus group and inhibition in the growth of the Clostridium histolyticum group and the Bacteroides-Prevotella group, with no significant effect on the population of total bacteria. The findings suggest that grape polyphenols have potential prebiotic effects on modulating the gut microbiota composition and generating SCFAs that contribute to the improvements of host health.
This patented biological treatment system, called the BioTrol Aqueous Treatment System (BATS)., uses an amended microbial population to achieve biological degradation. The system is considered amended when a specific microorganism is added to the indigenous microbial population ...
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; ...
2017-08-11
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Phylogenetically conserved resource partitioning in the coastal microbial loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, Samuel; Li, Zhou; Chavez, Francisco
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Ramezani, M; Hosseini, S M; Ferrocino, I; Amoozegar, M A; Cocolin, L
2017-09-01
Liqvan (or Lighvan) is a traditional Iranian cheese from the East Azerbaijan province of Iran, which is made of raw ewe's milk without the addition of a starter. The grazing pastures, environmental conditions and the ancient regional production methods allocate a distinctive microbial ecology to this type of cheese, and these factors are consequently associated with the quality of the product. In this study, the microbiota of the milk, curd and cheese has been investigated using culture independent approaches. Denaturing gradient gel electrophoresis (DGGE) of the bacteria, 16S rRNA based high-throughput sequencing and enumeration of the live bacterial community by means of quantitative PCR (qPCR) have been used for this purpose. The results showed that the main bacterial population in the milk belonged to both microbial contaminants and lactic acid bacteria (LAB). However, both of these populations were totally replaced by LAB during ripening. The present survey contributes by describing the microbiota of this ancient cheese in more detail during fermentation and ripening. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Kui; Xia, Hui; Li, Fusheng; Wei, Yongfen; Cui, Guangyu; Fu, Xiaoyong; Chen, Xuemin
2016-07-01
This study aimed to promote vermicomposting performance for recycling fresh fruit and vegetable wastes (FVWs) and to assess microbial population and community of final products. Five fresh FVWs including banana peels, cabbage, lettuce, potato, and watermelon peels were chosen as earthworms' food. The fate test of earthworms showed that 30 g fresh FVWs/day was the optimal loading and the banana peels was harmful for the survival of Eisenia fetida. The followed vermicomposting test revealed lower contents of total carbon and weaker microbial activity in final vermicomposts, relative to those in compared systems without earthworms worked. The leachate from FVWs carried away great amounts of nutrients from reactors. Additionally, different fresh FVWs displayed dissimilar stabilization process. Molecular biological approaches revealed that earthworms could broaden bacterial diversity in their products, with significant greater populations of actinobacteria and ammonia oxidizing bacteria than in control. This study evidences that vermicomposting efficiency differs with the types and loadings of fresh FVWs and vermicomposts are rich in agricultural probiotics.
DeFelice, Nicholas B.; Johnston, Jill E.; Gibson, Jacqueline MacDonald
2016-01-01
Background: Previous analyses have suggested that unregulated private drinking water wells carry a higher risk of exposure to microbial contamination than regulated community water systems. In North Carolina, ~35% of the state’s population relies on private wells, but the health impact associated with widespread reliance on such unregulated drinking water sources is unknown. Objectives: We estimated the total number of emergency department visits for acute gastrointestinal illness (AGI) attributable to microbial contamination in private wells in North Carolina per year, the costs of those visits, and the potential health benefits of extending regulated water service to households currently relying on private wells for their drinking water. Methods: We developed a population intervention model using 2007–2013 data from all 122 North Carolina emergency departments along with microbial contamination data for all 2,120 community water systems and for 16,138 private well water samples collected since 2008. Results: An estimated 29,400 (95% CI: 26,600, 32,200) emergency department visits per year for acute gastrointestinal illness were attributable to microbial contamination in drinking water, constituting approximately 7.3% (95% CI: 6.6, 7.9%) of all AGI-related visits. Of these attributable cases, 99% (29,200; 95% CI: 26,500, 31,900) were associated with private well contamination. The estimated statewide annual cost of emergency department visits attributable to microbiological contamination of drinking water is 40.2 million USD (95% CI: 2.58 million USD, 193 million USD), of which 39.9 million USD (95% CI: 2.56 million USD, 192 million USD) is estimated to arise from private well contamination. An estimated 2,920 (95% CI: 2,650, 3,190) annual emergency department visits could be prevented by extending community water service to 10% of the population currently relying on private wells. Conclusions: This research provides new evidence that extending regulated community water service to populations currently relying on private wells may decrease the population burden of acute gastrointestinal illness. Citation: DeFelice NB, Johnston JE, Gibson JM. 2016. Reducing emergency department visits for acute gastrointestinal illnesses in North Carolina (USA) by extending community water service. Environ Health Perspect 124:1583–1591; http://dx.doi.org/10.1289/EHP160 PMID:27203131
Effects of Dietary Cooked Navy Bean on the Fecal Microbiome of Healthy Companion Dogs
Kerr, Katherine R.; Forster, Genevieve; Dowd, Scot E.; Ryan, Elizabeth P.; Swanson, Kelly S.
2013-01-01
Background Cooked bean powders are a promising novel protein and fiber source for dogs, which have demonstrated potential to alter microbial composition and function for chronic disease control and prevention. This study aimed to determine the impact of cooked navy bean powder fed as a staple food ingredient on the fecal microbiome of healthy adult pet dogs. Methodology/Principal Findings Fecal samples from healthy dogs prior to dietary control and after 4 wk of dietary treatment with macro- and micronutrient matched diets containing either 0 or 25% cooked navy beans (n = 11 and n = 10, respectively) were analyzed by 454-pyrosequencing of the 16S rRNA gene. There were few differences between dogs fed the control and navy bean diets after 4 wk of treatment. These data indicate that there were no major effects of navy bean inclusion on microbial populations. However, significant differences due to dietary intervention onto both research diets were observed (i.e., microbial populations at baseline versus 4 wk of intervention with 0 or 25% navy bean diets). After 4 wk of dietary intervention on either control or navy bean diet, the Phylum Firmicutes was increased and the Phyla Actinobacteria and Fusobacteria were decreased compared to baseline. Conclusions No negative alterations of microbial populations occurred following cooked navy bean intake in dogs, indicating that bean powders may be a viable protein and fiber source for commercial pet foods. The highly variable microbial populations observed in these healthy adult pet dogs at baseline is one potential reason for the difficulty to detect alterations in microbial populations following dietary changes. Given the potential physiological benefits of bean intake in humans and dogs, further evaluation of the impacts of cooked navy bean intake on fecal microbial populations with higher power or more sensitive methods are warranted. PMID:24040374
Genome surfing as driver of microbial genomic diversity
USDA-ARS?s Scientific Manuscript database
Historical changes in population size, such as those caused by demographic range expansions, can produce nonadaptive changes in genomic diversity through mechanisms such as gene surfing. We propose that demographic range expansion of a microbial population capable of horizontal gene exchange can res...
MICROBIAL POPULATION ANALYSIS AS A MEASURE OF ECOSYSTEM RESTORATION
During a controlled oil spill study in a freshwater wetland, four methods were used to track changes in microbial populations in response to in situ remediation treatments, including nutrient amendments and the removal of surface vegetation. Most probable number (MPN) esimates o...
Molecular Characterization of Swine Manure Lagoon Microbial and Antibiotic Resistant Populations
USDA-ARS?s Scientific Manuscript database
Background: The differences in swine manure lagoon effluent based on differing management styles or approaches such as different stages of swine rearing determines the presence of variable antibiotic resistance determinants and functional microbial populations. These concerns determine the suitabil...
Kim, Hyeun Bum; Borewicz, Klaudyna; White, Bryan A.; Singer, Randall S.; Sreevatsan, Srinand; Tu, Zheng Jin; Isaacson, Richard E.
2012-01-01
Antimicrobials have been used extensively as growth promoters (AGPs) in agricultural animal production. However, the specific mechanism of action for AGPs has not yet been determined. The work presented here was to determine and characterize the microbiome of pigs receiving one AGP, tylosin, compared with untreated pigs. We hypothesized that AGPs exerted their growth promoting effect by altering gut microbial population composition. We determined the fecal microbiome of pigs receiving tylosin compared with untreated pigs using pyrosequencing of 16S rRNA gene libraries. The data showed microbial population shifts representing both microbial succession and changes in response to the use of tylosin. Quantitative and qualitative analyses of sequences showed that tylosin caused microbial population shifts in both abundant and less abundant species. Our results established a baseline upon which mechanisms of AGPs in regulation of health and growth of animals can be investigated. Furthermore, the data will aid in the identification of alternative strategies to improve animal health and consequently production. PMID:22955886
NASA Astrophysics Data System (ADS)
Sedaghatdoost, A.; Mohanty, B.; Huang, Y.
2017-12-01
The biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P) have many contemporary significance due to their critical roles in determining the structure and function of ecosystems. The objectives of our study is to find out temporal dynamics and spatial distribution of soil physical, chemical, and biological properties and their interaction with C, N, and P cycles in the soil for different land covers and weather conditions. The study is being conducted at three locations within Texas Water Observatory (TWO), including Riesel (USDA-ARS experimental watersheds), Texas A&M Agrilife Research Farm, and Danciger forest in Texas. Soil physical, hydraulic, chemical (total C, total N, total P, pH, EC, redox potential, N-NO3-, N-NH4+, PO42-, K, Ca, Mg, Na, Mn, and Alox and Feox), and microbiological (Microbial biomass C, N, and P, PLFA analysis, enzymatic activity) properties are being measured in the top 30 cm of the soil profile. Our preliminary data shows that biogeochemical processes would be more profound in the areas with higher temperature and precipitation as these factors stimulate microbial activity and thus influence C, N, and P cycles. Also concentrations of C and N are greater in woodlands relative to remnant grasslands as a consequence of the greater above- and below-ground productivity of woodlands relative to remnant grasslands. We hypothesize that finer soil textures have more organic matter, microbial population, and reactive surfaces for chemicals than coarse soils, as described in some recent literature. However, the microbial activity may not be active in fine textured soils as organic materials may be sorbed to clay surfaces or protected from decomposing organisms. We also expect reduced condition in saturated soils which will decrease carbon mineralization while increase denitrification and alkalinity in the soil. Spatio-temporal data with initial evaluation of biogeochemical factors/processes for different land covers will be presented.
Total RNA concentration as an index of microbial activity and oxygen supply in an oxidation ditch.
Kanazawa, Nobuhiro; Urushigawa, Yoshikuni; Yato, Yumio
2005-06-01
Total RNA and chromosomal DNA concentrations at a municipal wastewater treatment plant with an oxidation ditch (OD) were monitored for 1.5 years using commercial extraction kits for DNA and RNA. No parameters correlated with the chromosomal DNA concentration. The total RNA concentration exhibited better correlation than the solids retention time and the mixed liquor suspended solids with the removal rate of total organic carbon, and can be regarded as an index of microbial activity. The total RNA concentration varied with a cycle of one year and increased at lower water temperatures in this OD. When diffusion theory was taken into account, it was found that the oxygen dissolution rate increased at lower temperature, and a small change in the oxygen dissolution rate caused a large variation in microbial activity and also affected nitrification and denitrification. The information was insufficient to clarify the various reaction relationships, but total RNA concentration will likely be useful as an index of microbial activity in actual wastewater treatment reactors.
The canine and feline skin microbiome in health and disease.
Weese, J Scott
2013-02-01
The skin harbours a diverse and abundant, yet inadequately investigated, microbial population. The population is believed to play an important role in both the pathophysiology and the prevention of disease, through a variety of poorly explored mechanisms. Early studies of the skin microbiota in dogs and cats reported a minimally diverse microbial composition of low overall abundance, most probably as a reflection of the limitations of testing methodology. Despite these limitations, it was clear that the bacterial population of the skin plays an important role in disease and in changes in response to both infectious and noninfectious diseases. Recent advances in technology are challenging some previous assumptions about the canine and feline skin microbiota and, with preliminary application of next-generation sequenced-based methods, it is apparent that the diversity and complexity of the canine skin microbiome has been greatly underestimated. A better understanding of this complex microbial population is critical for elucidation of the pathophysiology of various dermatological (and perhaps systemic) diseases and to develop novel ways to manipulate this microbial population to prevent or treat disease. © 2013 The Author. Veterinary Dermatology © 2013 ESVD and ACVD.
Concepts and tools for predictive modeling of microbial dynamics.
Bernaerts, Kristel; Dens, Els; Vereecken, Karen; Geeraerd, Annemie H; Standaert, Arnout R; Devlieghere, Frank; Debevere, Johan; Van Impe, Jan F
2004-09-01
Description of microbial cell (population) behavior as influenced by dynamically changing environmental conditions intrinsically needs dynamic mathematical models. In the past, major effort has been put into the modeling of microbial growth and inactivation within a constant environment (static models). In the early 1990s, differential equation models (dynamic models) were introduced in the field of predictive microbiology. Here, we present a general dynamic model-building concept describing microbial evolution under dynamic conditions. Starting from an elementary model building block, the model structure can be gradually complexified to incorporate increasing numbers of influencing factors. Based on two case studies, the fundamentals of both macroscopic (population) and microscopic (individual) modeling approaches are revisited. These illustrations deal with the modeling of (i) microbial lag under variable temperature conditions and (ii) interspecies microbial interactions mediated by lactic acid production (product inhibition). Current and future research trends should address the need for (i) more specific measurements at the cell and/or population level, (ii) measurements under dynamic conditions, and (iii) more comprehensive (mechanistically inspired) model structures. In the context of quantitative microbial risk assessment, complexity of the mathematical model must be kept under control. An important challenge for the future is determination of a satisfactory trade-off between predictive power and manageability of predictive microbiology models.
Screening For Alcohol-Producing Microbes
NASA Technical Reports Server (NTRS)
Schubert, Wayne W.
1988-01-01
Dye reaction rapidly identifies alcohol-producing microbial colonies. Method visually detects alcohol-producing micro-organisms, and distinguishes them from other microbial colonies that do not produce alcohol. Method useful for screening mixed microbial populations in environmental samples.
Tadonléké, R D; Jugnia, L B; Sime-Ngando, T; Devaux, J; Romagoux, J C
2002-01-01
Phytoplankton dynamics, bacterial standing stocks and living microbial biomass (derived from ATP measurements, 0.7-200 mm size class) were examined in 1996 in the newly flooded (1995) Sep Reservoir ('Massif Central,' France), for evidence of the importance of the microbial food web relative to the traditional food chain. Phosphate concentrations were low, N:P ratios were high, and phosphate losses converted into carbon accounted for <50% of phytoplankton biomass and production, indicating that P was limiting phytoplankton development during the study. The observed low availability of P contrasts with the high release of "directly" assimilable P often reported in newly flooded reservoirs, suggesting that factors determining nutrient dynamics in such ecosystems are complex. The phosphate availability, but also the water column stability, seemed to be among the major factors determining phytoplankton dynamics, as (i) large-size phytoplankton species were prominent during the period of increasing water column stability, whereas small-size species dominated phytoplankton assemblages during the period of decreasing stability, and (ii) a Dinobryon divergens bloom occurred during a period when inorganic P was undetectable, coinciding with the lowest values of bacterial standing stocks. Indication of grazing limitation of bacterial populations by the mixotrophic chrysophyte D. divergens (in late spring) and by other potential grazers (mainly rotifers in summer) seemed to be confirmed by the Model II or functional slopes of the bacterial vs phytoplankton regressions, which were always <0.63. Phytoplankton biomass was not correlated with phosphorus sources and its contribution was remarkably low relative to the living microbial biomass which, in contrast, was positively correlated with total phosphorus in summer. We conclude that planktonic microheterotrophs are strongly implicated in the phosphorus dynamics in the Sep Reservoir, and thus support the idea that an important amount of matter and energy flows through the "microbial loop" and food web, shortly after the flooding of a reservoir.
Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang
2015-01-01
This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4 +) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4 + content, nitrate content (NH3 −), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations. PMID:25658843
Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G
2014-01-01
The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai-Tibetan Plateau provide a valuable background for further studies on biogeochemical processes in this distinct ecosystem.
Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G.
2014-01-01
The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world’s highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1–10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai-Tibetan Plateau provide a valuable background for further studies on biogeochemical processes in this distinct ecosystem. PMID:25078273
Plasma discharge and time-dependence of its effect to bacteria.
Justan, I; Cernohorska, L; Dvorak, Z; Slavicek, P
2014-07-01
Several types of plasma discharge have been proven to have a capacity for sterilization. Our goal is to introduce new nonthermal plasma pencil. We used it to sterilize different microbial populations with differing ages. We used a plasma discharge of the following characteristics: radio frequency barrier discharger at atmospheric pressure with a working frequency of 13.56 MHz, and the working gas used was argon. We performed 110 tests with the following microbial populations: Pseudomonas aeruginosa, Staphylococcus aureus, Proteus species, and Klebsiella pneumoniae. All populations were inoculated on the previous day and also on the day of our experiment. We made our evaluations the following day and also after 5 days, with all our microbial populations. Eradication of microbial populations is dependent on the plasma discharge exposure time in all cases. With regard to freshly inoculated microbes, we were able to sterilize agar with intensive exposure lasting for 10 s of colonies Pseudomonas, Proteus, and Klebsiella. The most resistant microbe seems to be S. aureus, which survives 5 s of coherent exposure in half of the cases. Using the lightest plasma discharge exposure, we achieved a maximum of 10(4)-10(5) CFU/mL (colony-forming unit - CFU). Regarding older microbial populations inoculated the day before the experiment, we can only decrease population growth to 10(5) CFU/mL approximately, but never completely sterilize. The plasma discharge with our characteristics could be used for the sterilization of the aforementioned superficially growing microbes, but does not sufficiently affect deeper layers and thus seems to be a limitation for eradication of the already erupted colonies.
Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier
2014-09-01
A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.
Savvas, Savvas; Donnelly, Joanne; Patterson, Tim P; Dinsdale, Richard; Esteves, Sandra R
2017-03-01
A novel eco-engineered mixed anaerobic culture was successfully demonstrated for the first time to be capable of continuous regeneration in nutrient limiting conditions. Microbial catabolism has been found to support a closed system of nutrients able to enrich a culture of lithotrophic methanogens and provide microbial cell recycling. After enrichment, the hydrogenotrophic species was the dominating methanogens while a bacterial substratum was responsible for the redistribution of nutrients. q-PCR results indicated that 7% of the total population was responsible for the direct conversion of the gases. The efficiency of H 2 /CO 2 conversion to CH 4 reached 100% at a gassing rate of above 60v/v/d. The pH of the culture media was effectively sustained at optimal levels (pH 7-8) through a buffering system created by the dissolved CO 2 . The novel approach can reduce the process nutrient/metal requirement and enhance the environmental and financial performance of hydrogenotrophic methanogenesis for renewable energy storage. Copyright © 2016 Elsevier Ltd. All rights reserved.
GEOELECTRICAL EVIDENCE OF MICROBIAL DEGRADATION OF DIESEL CONTAMINATED SEDIMENTS
The alteration of physical properties by microbial activity in petroleum contaminated sediments was investigated using geophysical techniques in laboratory column experiments. Microbial population growth was determined by the Most Probable Number technique (MPN), community dynami...
Khateri, N.; Azizi, O.; Jahani-Azizabadi, H.
2017-01-01
Objective An experiment was conducted to investigate the effects of a specific mixture of essential oils (MEO), containing thyme, clove and cinnamon EO, on rumen microbial fermentation, nutrient apparent digestibility and blood metabolites in fistulated sheep. Methods Six sheep fitted with ruminal fistulas were used in a repeated measurement design with two 24-d periods to investigate the effect of adding MEO at 0 (control), 0.8, and 1.6 mL/d on apparent nutrient digestibility, rumen fermentation characteristics, rumen microbial population and blood chemical metabolites. Animals were fed with a 50:50 alfalfa hay:concentrate diet. Results Ruminal pH, total volatile fatty acids (VFA) concentration, molar proportion of individual VFA, acetate: propionate ratio and methane production were not affected with MEO. Relative to the control, Small peptides plus amino acid nitrogen and large peptides nitrogen concentration in rumen fluid were not affected with MEO supplementation; while, rumen fluid ammonia nitrogen concentration at 0 and 6 h after morning feeding in sheep fed with 1.6 mL/d of MEO was lower (p<0.05) compared to the control and 0.8 mL/d of MEO. At 0 h after morning feeding, ammonia nitrogen concentration was higher (p<0.05) in sheep fed 0.8 mL/d of MEO relative to 1.6 mL/d and control diet. Ruminal protozoa and hyper ammonia producing (HAP) bacteria counts were not affected by addition of MEO in the diet. Relative to the control, no changes were observed in the red and white blood cells, hemoglobin, hematocrit, glucose, beta-hydroxybutyric acid, cholesterol, total protein, albumin, blood urea nitrogen and aspartate aminotransferase and alanine aminotransferase concentration. Apparent total tract digestibility of dry matter, crude proten, organic matter, and neutral detergent fiber were not influenced by MEO supplementation. Conclusion The results of the present study suggested that supplementation of MEO may have limited effects on apparent nutrient digestibility, ruminal fermentation and protozoa and HAP bacteria count, blood cells and metabolites. PMID:28249376
Prakash, B; Saha, S K; Khate, K; Agarwal, N; Katole, S; Haque, N; Rajkhowa, C
2013-04-01
The aim of the study was to investigate the effect of feeding different diets on fermentation, enzyme activities and microbial population in the rumen fluid of mithun (Bos frontalis). In a randomized block design, 20 male mithun (6-8 months of age, 152 ± 12.6 kg body weight) were randomly divided into four experimental groups (n = 5/group) and fed experimental diets ad libitum for 180 days. The diet R1 contained tree foliages (TF), R2 comprised of 50% concentrate mixture (CM) and 50% TF, R3 contained 50% CM and 50% rice straw, and R4 contained 50% CM, 25% TF and 25% rice straw. Rumen liquor was collected at 0 and 180 days of the experiment for estimation of different ruminal parameters and a digestion trial was conducted at the end of the experiment. Rumen fluid was analysed for pH, ammonia nitrogen (NH3 -N), total-N, ruminal enzymes, short chain fatty acid (SCFA) and microbial profile. The relative quantification of ruminal microbes was carried out with real-time PCR using bacteria as the house keeping gene. The dry matter intake, nutrients digestibility, body weight gain, NH3 -N, total-N, carboxymethyl cellulase, avicelase, xylanase, amylase, protease and molar proportion of butyrate were (p < 0.05) higher in mithun fed R2 , R3 and R4 compared to those fed R1 diet. In contrast, increased (p < 0.05) ruminal pH, molar proportion of acetate and, acetate to propionate ratio was recorded in mithun fed only TF than those fed concentrate supplemented diets. Similarly, an increase (p < 0.05) in the population of Fibrobacter succinogenes, Ruminococcus flavefaciens and total bacteria were evident in mithun fed R2 , R3 and R4 compared to those fed R1 . Therefore, it is concluded that TF 25% and/or rice straw 25% along with CM 50% may be fed to the growing mithun for improved rumen ecology, nutrient utilization and thus better performance under stall fed system. © 2012 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Monard, C.; Gantner, S.; Bertilsson, S.; Hallin, S.; Stenlid, J.
2016-11-01
Observations of distributions of microorganisms and their differences in community composition across habitats provide evidence of biogeographical patterns. However, little is known about the processes controlling transfers across habitat gradients. By analysing the overall microbial community composition (bacteria, fungi, archaea) across a terrestrial-freshwater gradient, the aim of this study was to understand the spatial distribution patterns of populations and identify taxa capable of crossing biome borders. Barcoded 454 pyrosequencing of taxonomic gene markers was used to describe the microbial communities in adjacent soil, freshwater and sediment samples and study the role of biotic and spatial factors in shaping their composition. Few habitat generalists but a high number of specialists were detected indicating that microbial community composition was mainly regulated by species sorting and niche partitioning. Biotic interactions within microbial groups based on an association network underlined the importance of Actinobacteria, Sordariomycetes, Agaricomycetes and Nitrososphaerales in connecting among biomes. Even if dispersion seemed limited, the shore of the lake represented a transition area, allowing populations to cross the biome boundaries. In finding few broadly distributed populations, our study points to biome specialization within microbial communities with limited potential for dispersal and colonization of new habitats along the terrestrial-freshwater continuum.
Zhang, Jiachao; Wang, Xiaoru; Huo, Dongxue; Li, Wu; Hu, Qisong; Xu, Chuanbiao; Liu, Sixin; Li, Congfa
2016-01-01
Yucha is a typical traditional fermented food of the Li population in the Hainan province of China, and it is made up of cooked rice and fresh fish. In the present study, metagenomic approach and culture-dependent technology were applied to describe the diversity of microbiota and identify beneficial microbes in the Yucha. At the genus level, Lactobacillus was the most abundant genus (43.82% of the total reads), followed by Lactococcus, Enterococcus, Vibrio, Weissella, Pediococcus, Enterobacter, Salinivibrio, Acinetobacter, Macrococcus, Kluyvera and Clostridium; this result was confirmed by q-PCR. PCoA based on Weighted UniFrac distances showed an apparent clustering pattern for Yucha samples from different locations, and Lactobacillus sakei, Lactobacillus saniviri and Staphylococcus sciuri represented OTUs according to the major identified markers. At the microbial functional level, it was observed that there was an enrichment of metabolic functional features, including amino acid and carbohydrate metabolism, which implied that the microbial metabolism in the Yucha samples tended to be vigorous. Accordingly, we further investigated the correlation between the predominant microbes and metabolic functional features. Thirteen species of Lactobacillus (147 strains) were isolated, and Lactobacillus plantarum (60 isolates) and Lactobacillus pentosus (34 isolates) were isolated from every sample. PMID:27578483
Effect of rhizosphere on soil microbial community and in-situ pyrene biodegradation
Su, Y.; Yang, X.; Chiou, C.T.
2008-01-01
To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did. ?? 2008 Higher Education Press and Springer-Verlag GmbH.
Bruneel, Odile; Mghazli, N; Hakkou, R; Dahmani, I; Filali Maltouf, A; Sbabou, L
2017-07-01
In Morocco, pollution caused by closed mines continues to be a serious threat to the environment, like the generation of acid mine drainage. Mine drainage is produced by environmental and microbial oxidation of sulfur minerals originating from mine wastes. The fundamental role of microbial communities is well known, like implication of Fe-oxidizing and to a lesser extent S-oxidizing microorganism in bioleaching. However, the structure of the microbial communities varies a lot from one site to another, like diversity depends on many factors such as mineralogy, concentration of metals and metalloids or pH, etc. In this study, prokaryotic communities in the pyrrhotite-rich tailings of Kettara mine were characterized using the Illumina sequencing. In-depth phylogenetic analysis revealed a total of 12 phyla of bacteria and 1 phyla of Archaea. The majority of sequences belonged to the phylum of Proteobacteria and Firmicutes with a predominance of Bacillus, Pseudomonas or Corynebacterium genera. Many microbial populations are implicated in the iron, sulfur and arsenic cycles, like Acidiferrobacter, Leptospirillum, or Alicyclobacillus in Fe; Acidiferrobacter and Sulfobacillus in S; and Bacillus or Pseudomonas in As. This is one of the first description of prokaryotic communities in pyrrhotite-rich mine tailings using high-throughput sequencing.
Popendorf, Kimberly J; Duhamel, Solange
2015-10-01
Microbial uptake of dissolved phosphorus (P) is an important lever in controlling both microbial production and the fate and cycling of marine P. We investigated the relative role of heterotrophic bacteria and phytoplankton in P cycling by measuring the P uptake rates of individual microbial groups (heterotrophic bacteria and the phytoplankton groups Synechococcus, Prochlorococcus and picoeukaryotic phytoplankton) in the P-depleted Gulf of Mexico. Phosphorus uptake rates were measured using incubations with radiolabelled phosphate and adenosine triphosphate coupled with cell sorting flow cytometry. We found that heterotrophic bacteria were the dominant consumers of P on both a biomass basis and a population basis. Biovolume normalized heterotrophic bacteria P uptake rate per cell (amol P μm(-3) h(-1)) was roughly an order of magnitude greater than phytoplankton uptake rates, and heterotrophic bacteria were responsible for generally greater than 50% of total picoplankton P uptake. We hypothesized that this variation in uptake rates reflects variation in cellular P allocation strategies, and found that, indeed, the fraction of cellular P uptake utilized for phospholipid production was significantly higher in heterotrophic bacteria compared with cyanobacterial phytoplankton. These findings indicate that heterotrophic bacteria have a uniquely P-oriented physiology and play a dominant role in cycling dissolved P. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Metaproteomics of aquatic microbial communities in a deep and stratified estuary.
Colatriano, David; Ramachandran, Arthi; Yergeau, Etienne; Maranger, Roxane; Gélinas, Yves; Walsh, David A
2015-10-01
Here we harnessed the power of metaproteomics to assess the metabolic diversity and function of stratified aquatic microbial communities in the deep and expansive Lower St. Lawrence Estuary, located in eastern Canada. Vertical profiling of the microbial communities through the stratified water column revealed differences in metabolic lifestyles and in carbon and nitrogen processing pathways. In productive surface waters, we identified heterotrophic populations involved in the processing of high and low molecular weight organic matter from both terrestrial (e.g. cellulose and xylose) and marine (e.g. organic compatible osmolytes) sources. In the less productive deep waters, chemosynthetic production coupled to nitrification by MG-I Thaumarchaeota and Nitrospina appeared to be a dominant metabolic strategy. Similar to other studies of the coastal ocean, we identified methanol oxidation proteins originating from the common OM43 marine clade. However, we also identified a novel lineage of methanol-oxidizers specifically in the particle-rich bottom (i.e. nepheloid) layer. Membrane transport proteins assigned to the uncultivated MG-II Euryarchaeota were also specifically detected in the nepheloid layer. In total, these results revealed strong vertical structure of microbial taxa and metabolic activities, as well as the presence of specific "nepheloid" taxa that may contribute significantly to coastal ocean nutrient cycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Wei; Zhang, Fengli; He, Liming; Li, Zhiyong
2014-05-01
Diverse sessile organisms inhabit the coral reef ecosystems, including corals, sponges, and sea anemones. In the past decades, scleractinian corals (Cnidaria, Anthozoa, Scleractinia) and their associated microorganisms have attracted much attention. Zoanthids (Cnidaria, Anthozoa, Zoanthidea) are commonly found in coral reefs. However, little is known about the community structure of zoanthid-associated microbiota. In this study, the microbial community associated with the zoanthid Palythoa australiae in the South China Sea was investigated by 454 pyrosequencing. As a result, 2,353 bacterial, 583 archaeal, and 36 eukaryotic microbial ribotypes were detected, respectively. A total of 22 bacterial phyla (16 formally described phyla and six candidate phyla) were recovered. Proteobacteria was the most abundant group, followed by Chloroflexi and Actinobacteria. High-abundance Rhizobiales and diverse Chloroflexi were observed in the bacterial community. The archaeal population was composed of Crenarchaeota and Euryarchaeota, with Marine Group I as the dominant lineage. In particular, Candidatus Nitrosopumilus dominated the archaeal community. Besides bacteria and archaea, the zoanthid harbored eukaryotic microorganisms including fungi and algae though their diversity was very low. This study provided the first insights into the microbial community associated with P. australiae by 454 pyrosequencing, consequently laid a basis for the understanding of the association of P. australiae-microbes symbioses.
Zhang, Jiachao; Wang, Xiaoru; Huo, Dongxue; Li, Wu; Hu, Qisong; Xu, Chuanbiao; Liu, Sixin; Li, Congfa
2016-08-31
Yucha is a typical traditional fermented food of the Li population in the Hainan province of China, and it is made up of cooked rice and fresh fish. In the present study, metagenomic approach and culture-dependent technology were applied to describe the diversity of microbiota and identify beneficial microbes in the Yucha. At the genus level, Lactobacillus was the most abundant genus (43.82% of the total reads), followed by Lactococcus, Enterococcus, Vibrio, Weissella, Pediococcus, Enterobacter, Salinivibrio, Acinetobacter, Macrococcus, Kluyvera and Clostridium; this result was confirmed by q-PCR. PCoA based on Weighted UniFrac distances showed an apparent clustering pattern for Yucha samples from different locations, and Lactobacillus sakei, Lactobacillus saniviri and Staphylococcus sciuri represented OTUs according to the major identified markers. At the microbial functional level, it was observed that there was an enrichment of metabolic functional features, including amino acid and carbohydrate metabolism, which implied that the microbial metabolism in the Yucha samples tended to be vigorous. Accordingly, we further investigated the correlation between the predominant microbes and metabolic functional features. Thirteen species of Lactobacillus (147 strains) were isolated, and Lactobacillus plantarum (60 isolates) and Lactobacillus pentosus (34 isolates) were isolated from every sample.
NASA Astrophysics Data System (ADS)
Bastida, Felipe; Andrés, Manuela; Torres, Irene; García, Carlos; Ruiz Navarro, Antonio; Moreno, Francisco R.; López Serrano, Francisco R.
2017-04-01
Arid and semiarid ecosystems will be severely affected by drought derived from climate change. Forest management can promote the adaptations of plant and microbial communities to drought. For instance, thinning reduces competition for resources through a decrease in tree density and the promotion of plant survival. The resistance of soil microbial communities must be strongly related to the soil quality. However, in order to evaluate these properties, the active (and not only the total) microbial community should be carefully assessed. Here, we studied the functional and phylogenetic responses of the microbial community to six years of drought induced by rainfall exclusion and how thinning shapes its resistance to drought, in a semiarid ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel strategies against drought. The diversity and the composition of the total and active soil microbial communities were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially-mediated ecosystem multifunctionality was studied by the evaluation of enzyme activities related to C, N, and P dynamics. The microbial biomass and ecosystem multifunctionality decreased in plots subjected to drought, but this decrease was greater in unthinned plots. The diversity of the total bacterial and fungal communities were resistant to drought but were shaped by seasonal dynamics. However, the active community was more sensitive to drought and related to multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of multifunctionality to drought by changes in the active microbiome. Protein-based phylogeny was a better predictor of the impacts of drought and the adaptations of microbial communities. We highlight that the resistance of the microbial community and the active microbial community are ecological concepts strongly related to the concept of soil quality in the face of climate change.
Møller, Mikkel H; Glombitza, Clemens; Lever, Mark A; Deng, Longhui; Morono, Yuki; Inagaki, Fumio; Doll, Mechthild; Su, Chin-Chia; Lomstein, Bente A
2018-01-01
We investigated the impact of temperature on the microbial turnover of organic matter (OM) in a hydrothermal vent system in Guaymas Basin, by calculating microbial bio- and necromass turnover times based on the culture-independent D:L-amino acid model. Sediments were recovered from two stations near hydrothermal mounds (<74°C) and from one cold station (<9°C). Cell abundance at the two hydrothermal stations dropped from 10 8 to 10 6 cells cm -3 within ∼5 m of sediment depth resulting in a 100-fold lower cell number at this depth than at the cold site where numbers remained constant at 10 8 cells cm -3 throughout the recovered sediment. There were strong indications that the drop in cell abundance was controlled by decreasing OM quality. The quality of the sedimentary OM was determined by the diagenetic indicators %T AA C (percentage of total organic carbon present as amino acid carbon), %T AA N (percentage of total nitrogen present as amino acid nitrogen), aspartic acid:β-alanine ratios, and glutamic acid:γ-amino butyric acid ratios. All parameters indicated that the OM became progressively degraded with increasing sediment depth, and the OM in the hydrothermal sediment was more degraded than in the uniformly cold sediment. Nonetheless, the small community of microorganisms in the hydrothermal sediment demonstrated short turnover times. The modeled turnover times of microbial bio- and necromass in the hydrothermal sediments were notably faster (biomass: days to months; necromass: up to a few hundred years) than in the cold sediments (biomass: tens of years; necromass: thousands of years), suggesting that temperature has a significant influence on the microbial turnover rates. We suggest that short biomass turnover times are necessary for maintance of essential cell funtions and to overcome potential damage caused by the increased temperature.The reduced OM quality at the hyrothemal sites might thus only allow for a small population size of microorganisms.
NASA Astrophysics Data System (ADS)
Akondi, R.; Trexler, R.; Sharma, S.; Mouser, P. J.; Pfiffner, S. M.
2016-12-01
The deep subsurface is known to harbor diverse communities of living microbes, and can therefore be expected to also harbor an equally diverse and likely different set of non-viable microbial populations. In this study, diglyceride fatty acids, (DGFA, biomarkers for non-viable microbes) as well as their compound specific isotopes (CSIA) were used to study the yield and variety of DGFAs in deep subsurface mid-Devonian sediments of different lithologies. Pristine sidewall cores were obtained from intervals in the Marcellus, Mahantango, and the Marcellus/Mahantango formation interface. The biomarkers were extracted and DGFAs were methylated to fatty acid methyl esters (FAMEs) and analyzed using GC-MS, while the CSIAs were performed using GC-irMS. Sediments were also analyzed for total organic carbon (TOC), stable carbon isotopic composition of organic carbon (δ13Corg), inorganic carbon (δ13Ccarb), and nitrogen (δ15Norg). TOC concentration was highest in the Marcellus and there was a general trend of increasing TOC from Mahantango to the Marcellus. The δ13Corg and δ13Ccarb increased and decreased respectively from Mahantango to the Marcellus while δ15Norg did not show any trend. The FAME profiles consisted of normal saturated, monounsaturated, polyunsaturated, branched, epoxy, terminally branched, hydroxyl, and dimethyl esters. The total biomass yield and variety of DGFA-FAME profiles were higher in the Mahantango compared to the samples from the Marcellus formation and Marcellus/Mahantango interface, suggesting the presence of more paleo-microbial activity in the less consolidated Mahantango formation. We attribute this to the smaller pore throat sizes within the Marcellus formation compared to the Mahantango formation. Since organic matter in the sediments is also one of the key sources of energy for microbial metabolism, bulk 13C and CSIA of the lipids will be used to understand the source(s) and pathways of the carbon cycling within the microbial communities.
We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...
Effects of X-ray irradiation on the microbial growth and quality of flue-cured tobacco during aging
NASA Astrophysics Data System (ADS)
Wang, J. J.; Xu, Z. C.; Fan, J. L.; Wang, Y.; Tian, Z. J.; Chen, Y. T.
2015-06-01
X-ray irradiation was evaluated for improving microbial safety and the quality of flue-cured tobacco during aging. Tobacco samples were irradiated at doses of 0, 1, 2, 3 and 5 kGy and stored for 12 months under normal storage conditions or in a high-humidity (RH>70%) room. Microbiological data indicated that the population of total aerobic bacteria was significantly decreased with increasing irradiation doses. In particular, a dose of 2 kGy was effective for the decontamination of fungi from the tested samples, with a 0.93 log CFU/g reduction for bacteria. The control and 1 kGy X-ray treated tobacco samples were became rotted and moldy after the 12th month, whereas those treated with 2, 3 and 5 kGy had no detectable mold during 12 months of storage at high humidity. Chemical measurements showed that irradiation up to 3 kGy did not affect the total nitrogen, nicotine, reducing and total sugars, ratio of total nitrogen to nicotine and sugar-to-nicotine ratio. Furthermore, sensory evaluation results also showed that X-ray irradiation did not affect sensory scores with irradiation at a dose <3 kGy. Based on these results, X-ray irradiation dose in the range of 2-3 kGy is recommended for the decontamination of fungi from flue-cured tobacco.
Hall, A; Short, K; Saltmarsh, M; Fielding, L; Peters, A
2007-09-01
In order to understand the development of the microbial population within a hot-drinks vending machine a new machine was placed in a staff area of a university campus vending only hot chocolate. The machine was cleaned weekly using a detergent based protocol. Samples from the mixing bowl, dispense area, and drink were taken over a 19-wk period and enumerated using plate count agar. Bacillus cereus was identified using biochemical methods. Vended drinks were sampled at 0, 3, 6, and 9 min after vending; the hot chocolate powder was also sampled. Over the 1st 8 wk, a significant increase in the microbial load of the machine components was observed. By the end of the study, levels within the vended drink had also increased significantly. Inactivation of the automatic flush over a subsequent 5-wk period led to a statistically but not operationally significant increase in the microbial load of the dispense area and vended drink. The simple weekly clean had a significant impact on the microbial load of the machine components and the vended drink. This study demonstrated that a weekly, detergent-based cleaning protocol was sufficient to maintain the microbial population of the mixing bowl and dispense point in a quasi-steady state below 3.5 log CFU/cm2 ensuring that the microbial load of the vended drinks was maintained below 3.4 log CFU/mL. The microbial load of the drinks showed no significant changes over 9 min after vending, suggesting only spores are present in the final product.
Impact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells.
Liu, Qian; Liu, Bingfeng; Li, Wei; Zhao, Xin; Zuo, Wenjing; Xing, Defeng
2017-01-01
The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 μM facilitated MFC start-up compared to 150 μM, 200 μM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter , which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.
EVIDENCE FOR MICROBIAL ENHANCED ELECTRICAL CONDUCTIVITY IN HYDROCARBON-CONTAMINATED SEDIMENTS
Electrical conductivity of sediments during microbial mineralization of diesel was investigated in a mesoscale column experiment consisting of biotic contaminated and uncontaminated columns. Microbial population numbers increased with a clear pattern of depth zonation within the ...
Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J
2013-01-01
Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665
Morvan, B; Bonnemoy, F; Fonty, G; Gouet, P
1996-03-01
Total number of bacteria, cellulolytic bacteria, and H2-utilizing microbial populations (methanogenic archaea, acetogenic and sulfate-reducing bacteria) were enumerated in fresh rumen samples from sheep, cattle, buffaloes, deer, llamas, and caecal samples from horses. Methanogens and sulfate reducers were found in all samples, whereas acetogenes were not detected in some samples of each animal. Archaea methanogens were the largest H2-utilizing populations in all animals, and a correlation was observed between the numbers of methanogens and those of cellulolytic microorganisms. Higher counts of acetogens were found in horses and llamas (1 x 10(4) and 4 x 10(4) cells ml-1 respectively).
Direct Determination of Activities for Microorganisms of Chesapeake Bay Populations
Tabor, Paul S.; Neihof, Rex A.
1984-01-01
We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay. PMID:16346659
Direct determination of activities for microorganisms of chesapeake bay populations.
Tabor, P S; Neihof, R A
1984-11-01
We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay.
Zhang, Yihao; Bartlow, Andrew W; Wang, Zhenyu; Yi, Xianfeng
2018-05-07
Chemical compounds in seeds exert negative and even lethal effects on seed-consuming animals. Tannin-degrading bacteria in the guts of small mammals have been associated with the ability to digest seeds high in tannins. At the population level, it is not known if tannins influence rodent species differently according to the composition of their gut microbiota. Here, we test the hypothesis that sympatric tree species with different tannins exert contrasting effects on population fluctuations of seed-eating rodents. We collected a 10-year dataset of seed crops and rodent population sizes and sequenced 16S rRNA of gut microbes. The abundance of Apodemus peninsulae was not correlated with seed crop of either high-tannin Quercus mongolica or low-tannin Corylus mandshurica, but positively correlated with their total seed crops. Abundance of Tamias sibiricus was negatively correlated with seed crop of Q. mongolica but positively correlated with C. mandshurica. Body masses of A. peninsulae and T. sibiricus decreased when given high-tannin food; however, only the survival of T. sibiricus was reduced. The abundance of microbial genus Lactobacillus exhibiting potential tannin-degrading activity was significantly higher in A. peninsulae than in T. sibiricus. Our results suggest that masting tree species with different tannin concentrations may differentially influence population fluctuations of seed predators hosting different gut microbial communities. Although the conclusion is based on just correlational analysis of a short time-series, seeds with different chemical composition may influence rodent populations differently. Future work should examine these questions further to understand the complex interactions among seeds, gut microbes, and animal populations.
Determination of succession of rumen bacterial species in nursing beef calves
USDA-ARS?s Scientific Manuscript database
Ruminants are typically born with a non-functional rumen essentially devoid of microorganisms. The succession of the microbial population in the rumen from birth to animal maturity is of interest due to the key role that the rumen microbial population plays in the overall health and productivity of ...
2018-01-01
Objective Gelidium amansii (Lamouroux) is a red alga belonging to the family Gelidaceae and is commonly found in the shallow coasts of many East Asian countries, including Korea, China, and Japan. G. amansii has traditionally been utilized as an edible alga, and has various biological activities. The objective of this study was to determine whether dietary supplementation of G. amansii could be useful for improving ruminal fermentation. Methods As assessed by in vitro fermentation parameters such as pH, total gas, volatile fatty acid (VFA) production, gas profile (methane, carbon dioxide, hydrogen, and ammonia), and microbial growth rate was compared to a basal diet with timothy hay. Cannulated Holstein cows were used as rumen fluid donors and 15 mL rumen fluid: buffer (1:2) was incubated for up to 72 h with four treatments with three replicates. The treatments were: control (timothy only), basal diet with 1% G. amansii extract, basal diet with 3% G. amansii extract, and basal diet with 5% G. amansii extract. Results Overall, the results of our study indicate that G. amansii supplementation is potentially useful for improving ruminant growth performance, via increased total gas and VFA production, but does come with some undesirable effects, such as increasing pH, ammonia concentration, and methane production. In particular, real-time polymerase chain reaction indicated that the methanogenic archaea and Fibrobacter succinogenes populations were significantly reduced, while the Ruminococcus flavefaciens populations were significantly increased at 24 h, when supplemented with G. amansii extracts as compared with controls. Conclusion More research is required to elucidate what G. amansii supplementation can do to improve growth performance, and its effect on methane production in ruminants. PMID:29295611
Lee, Shin Ja; Shin, Nyeon Hak; Jeong, Jin Suk; Kim, Eun Tae; Lee, Su Kyoung; Lee, Il Dong; Lee, Sung Sill
2018-01-01
Gelidium amansii (Lamouroux) is a red alga belonging to the family Gelidaceae and is commonly found in the shallow coasts of many East Asian countries, including Korea, China, and Japan. G. amansii has traditionally been utilized as an edible alga, and has various biological activities. The objective of this study was to determine whether dietary supplementation of G. amansii could be useful for improving ruminal fermentation. As assessed by in vitro fermentation parameters such as pH, total gas, volatile fatty acid (VFA) production, gas profile (methane, carbon dioxide, hydrogen, and ammonia), and microbial growth rate was compared to a basal diet with timothy hay. Cannulated Holstein cows were used as rumen fluid donors and 15 mL rumen fluid: buffer (1:2) was incubated for up to 72 h with four treatments with three replicates. The treatments were: control (timothy only), basal diet with 1% G. amansii extract, basal diet with 3% G. amansii extract, and basal diet with 5% G. amansii extract. Overall, the results of our study indicate that G. amansii supplementation is potentially useful for improving ruminant growth performance, via increased total gas and VFA production, but does come with some undesirable effects, such as increasing pH, ammonia concentration, and methane production. In particular, real-time polymerase chain reaction indicated that the methanogenic archaea and Fibrobacter succinogenes populations were significantly reduced, while the Ruminococcus flavefaciens populations were significantly increased at 24 h, when supplemented with G. amansii extracts as compared with controls. More research is required to elucidate what G. amansii supplementation can do to improve growth performance, and its effect on methane production in ruminants.
Kang, H K; Park, S-B; Kim, C H
2016-10-01
This study was carried out to investigate the effect of dietary supplementation of red ginseng by-product (RGB) on the laying performance, blood biochemistry, and microbial population in laying hens. A total of 120 Hy-Line Brown laying hens (75 weeks old) were randomly allotted to 1 of 3 dietary treatments with 4 replicates per treatment. A commercial-type basal diet was prepared, and 2 additional diets were prepared by supplementing 5.0 or 10.0 g/kg of RGB to the basal diet at the expense of corn. The diets were fed to hens on an ad libitum basis for 4 weeks. There were no differences in feed intake, egg weight, and feed conversion ratio during 4 weeks of the feeding trial. However, hen-day egg production was significantly greater (p<0.05) for the RGB treatment groups than that for the basal treatment group. There were no differences in triglyceride, aspartate aminotransferase, and alanine aminotransferase during the 4-week feeding trial. However, RGB supplementation increased (p<0.05) the serum immunoglobulin G (IgG) and IgM content compared with basal treatment group. The total cholesterol was lower (p<0.05) in the RGB treatments groups than that in the basal treatment group. The intestinal Lactobacillus population was greater (p<0.05) for the RGB treatments groups than that for the basal treatment group. However, the numbers of Salmonella and Escherichia coli were not different among dietary treatments. During the entire experiment, there was no significant difference in egg quality among all the treatments. In conclusion, in addition to improving hen-day production, there were positive effects of dietary RGB supplementation on serum immunoglobulin and cholesterol levels in laying hens.
Kang, H. K.; Park, S.-B.; Kim, C. H.
2016-01-01
This study was carried out to investigate the effect of dietary supplementation of red ginseng by-product (RGB) on the laying performance, blood biochemistry, and microbial population in laying hens. A total of 120 Hy-Line Brown laying hens (75 weeks old) were randomly allotted to 1 of 3 dietary treatments with 4 replicates per treatment. A commercial-type basal diet was prepared, and 2 additional diets were prepared by supplementing 5.0 or 10.0 g/kg of RGB to the basal diet at the expense of corn. The diets were fed to hens on an ad libitum basis for 4 weeks. There were no differences in feed intake, egg weight, and feed conversion ratio during 4 weeks of the feeding trial. However, hen-day egg production was significantly greater (p<0.05) for the RGB treatment groups than that for the basal treatment group. There were no differences in triglyceride, aspartate aminotransferase, and alanine aminotransferase during the 4-week feeding trial. However, RGB supplementation increased (p<0.05) the serum immunoglobulin G (IgG) and IgM content compared with basal treatment group. The total cholesterol was lower (p<0.05) in the RGB treatments groups than that in the basal treatment group. The intestinal Lactobacillus population was greater (p<0.05) for the RGB treatments groups than that for the basal treatment group. However, the numbers of Salmonella and Escherichia coli were not different among dietary treatments. During the entire experiment, there was no significant difference in egg quality among all the treatments. In conclusion, in addition to improving hen-day production, there were positive effects of dietary RGB supplementation on serum immunoglobulin and cholesterol levels in laying hens. PMID:26954140
MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS
Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...
Microbial sewage communities consist of a combination of human faecal microorganisms and urban infrastructure-derived microbes originating from infiltration of rainwater and stormwater inputs. Together these different sources of microbial diversity form a unique population struc...
Energy, ecology and the distribution of microbial life.
Macalady, Jennifer L; Hamilton, Trinity L; Grettenberger, Christen L; Jones, Daniel S; Tsao, Leah E; Burgos, William D
2013-07-19
Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time.
Energy, ecology and the distribution of microbial life
Macalady, Jennifer L.; Hamilton, Trinity L.; Grettenberger, Christen L.; Jones, Daniel S.; Tsao, Leah E.; Burgos, William D.
2013-01-01
Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time. PMID:23754819
Experimental demonstration of an Allee effect in microbial populations.
Kaul, RajReni B; Kramer, Andrew M; Dobbs, Fred C; Drake, John M
2016-04-01
Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: 'Everything is everywhere, but the environment selects'. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml(-1)under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. © 2016 The Author(s).
Experimental demonstration of an Allee effect in microbial populations
Kramer, Andrew M.; Dobbs, Fred C.; Drake, John M.
2016-01-01
Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: ‘Everything is everywhere, but the environment selects’. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml−1 under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. PMID:27048467
Septic tank additive impacts on microbial populations.
Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J
2008-01-01
Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.
Standing variation in spatially growing populations
NASA Astrophysics Data System (ADS)
Fusco, Diana; Gralka, Matti; Kayser, Jona; Hallatschek, Oskar
Patterns of genetic diversity not only reflect the evolutionary history of a species but they can also determine the evolutionary response to environmental change. For instance, the standing genetic diversity of a microbial population can be key to rescue in the face of an antibiotic attack. While genetic diversity is in general shaped by both demography and evolution, very little is understood when both factors matter, as e.g. for biofilms with pronounced spatial organization. Here, we quantitatively explore patterns of genetic diversity by using microbial colonies and well-mixed test tube populations as antipodal model systems with extreme and very little spatial structure, respectively. We find that Eden model simulations and KPZ theory can remarkably reproduce the genetic diversity in microbial colonies obtained via population sequencing. The excellent agreement allows to draw conclusions on the resilience of spatially-organized populations and to uncover new strategies to contain antibiotic resistance.
Social interaction in synthetic and natural microbial communities.
Xavier, Joao B
2011-04-12
Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.
Crowe, K M; Bushway, A A; Bushway, R J; Davis-Dentici, K
2007-10-01
Phosmet-adapted bacteria isolated from lowbush blueberries (Vaccinium angustifolium) were evaluated for their ability to degrade phosmet on blueberry fruit and in minimal salt solutions. Microbial metabolism of phosmet by isolates of Enterobacter agglomerans and Pseudomonas fluorescens resulted in significant reductions (P < 0.05; 33.8%) in phosmet residues on blueberry fruit. Degradation was accompanied by microbial proliferation of phosmet-adapted bacteria. Preferential utilization of phosmet as a carbon source was investigated in minimal salt solutions inoculated with either E. agglomerans or P. fluorescens and supplemented with phosmet or phosmet and glucose. Microbial degradation concurrent with the proliferation of P. fluorescens was similar in both liquid systems, indicative of preferential utilization of phosmet as an energy substrate. E. agglomerans exhibited the ability to degrade phosmet as a carbon source, yet in the presence of added glucose, phosmet degradation occurred within the 1st 24 h only followed by total population mortality resulting in no appreciable degradation. Characteristic utilization of glucose by this isolate suggests a possible switch in carbon substrate utilization away from phosmet, which resulted in toxicity from the remaining phosmet. Overall, microbial metabolism of phosmet as an energy source resulted in significant degradation of residues on blueberries and in minimal salt solutions. Thus, the role of adapted strains of E. agglomerans and P. fluorescens in degrading phosmet on blueberries represents an extensive plant-microorganism relationship, which is essential to determination of phosmet persistence under pre- and postharvest conditions.
Heterotrophic and Autotrophic Microbial Populations in Cold Perennial Springs of the High Arctic ▿ †
Perreault, Nancy N.; Greer, Charles W.; Andersen, Dale T.; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G.
2008-01-01
The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO2 uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH4) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy. PMID:18805995
Smith, Stuart C; Choy, Rachel; Johnson, Stuart K; Hall, Ramon S; Wildeboer-Veloo, Alida C M; Welling, Gjalt W
2006-09-01
Changes in the composition of gastrointestinal microbiota by dietary interventions using pro- and prebiotics provide opportunity for improving health and preventing disease. However, the capacity of lupin kernel fiber (LKFibre), a novel legume-derived food ingredient, to act as a prebiotic and modulate the colonic microbiota in humans needed investigation. The present study aimed to determine the effect of LKFibre on human intestinal microbiota by quantitative fluorescent in situ hybridization (FISH) analysis. A total of 18 free-living healthy males between the ages of 24 and 64 years consumed a control diet and a LKFibre diet (containing an additional 17-30 g/day fiber beyond that of the control-incorporated into daily food items) for 28 days with a 28-day washout period in a single-blind, randomized, crossover dietary intervention design. Fecal samples were collected for 3 days towards the end of each diet and microbial populations analyzed by FISH analysis using 16S rRNA gene-based oligonucleotide probes targeting total and predominant microbial populations. Significantly higher levels of Bifidobacterium spp. (P = 0.001) and significantly lower levels of the clostridia group of C. ramosum, C. spiroforme and C. cocleatum (P = 0.039) were observed on the LKFibre diet compared with the control. No significant differences between the LKFibre and the control diet were observed for total bacteria, Lactobacillus spp., the Eubacterium spp., the C. histolyticum/C. lituseburense group and the Bacteroides-Prevotella group. Ingestion of LKFibre stimulated colonic bifidobacteria growth, which suggests that this dietary fiber may be considered as a prebiotic and may beneficially contribute to colon health.
Gao, Peike; Li, Guoqiang; Le, Jianjun; Liu, Xiaobo; Liu, Fang; Ma, Ting
2018-02-01
Further exploitation of the residual oil underground in post-polymer flooded reservoirs is attractive and challengeable. In this study, indigenous microbial enhanced oil recovery (IMEOR) in a post-polymer flooded reservoir was performed. The succession of microbial communities was revealed by high-throughput sequencing of 16S rRNA genes and changes of incremental oil were analyzed. The results indicated that the abundances of reservoir microorganisms significantly increased, with alpha diversities decreased in the IMEOR process. With the intermittent nutrient injection, microbial communities showed a regular change and were alternately dominated by minority populations: Pseudomonas and Acinetobacter significantly increased when nutrients were injected; Thauera, Azovibrio, Arcobacter, Helicobacter, Desulfitobacterium, and Clostridium increased in the following water-flooding process. Accompanied by the stimulated populations, higher oil production was obtained. However, these populations did not contribute a persistent level of incremental oil in the reservoir. In summary, this study revealed the alternative succession of microbial communities and the changes of incremental oil in a post-polymer flooded reservoir with intermittent nutrient stimulation process.
Albuquerque, Maria G E; Carvalho, Gilda; Kragelund, Caroline; Silva, Ana F; Barreto Crespo, Maria T; Reis, Maria A M; Nielsen, Per H
2013-01-01
The microbial community of a fermented molasses-fed sequencing batch reactor (SBR) operated under feast and famine conditions for production of polyhydroxyalkanoates (PHAs) was identified and quantified through a 16 S rRNA gene clone library and fluorescence in situ hybridization (FISH). The microbial enrichment was found to be composed of PHA-storing populations (84% of the microbial community), comprising members of the genera Azoarcus, Thauera and Paracoccus. The dominant PHA-storing populations ensured the high functional stability of the system (characterized by high PHA-storage efficiency, up to 60% PHA content). The fermented molasses contained primarily acetate, propionate, butyrate and valerate. The substrate preferences were determined by microautoradiography-FISH and differences in the substrate-uptake capabilities for the various probe-defined populations were found. The results showed that in the presence of multiple substrates, microbial populations specialized in different substrates were selected, thereby co-existing in the SBR by adapting to different niches. Azoarcus and Thauera, primarily consumed acetate and butyrate, respectively. Paracoccus consumed a broader range of substrates and had a higher cell-specific substrate uptake. The relative species composition and their substrate specialization were reflected in the substrate removal rates of different volatile fatty acids in the SBR reactor. PMID:22810062
Microbial Diversity of Impact-Generated Habitats
NASA Astrophysics Data System (ADS)
Pontefract, Alexandra; Osinski, Gordon R.; Cockell, Charles S.; Southam, Gordon; McCausland, Phil J. A.; Umoh, Joseph; Holdsworth, David W.
2016-10-01
Impact-generated lithologies have recently been identified as viable and important microbial habitats, especially within cold and arid regions such as the polar deserts on Earth. These unique habitats provide protection from environmental stressors, such as freeze-thaw events, desiccation, and UV radiation, and act to trap aerially deposited detritus within the fissures and pore spaces, providing necessary nutrients for endoliths. This study provides the first culture-independent analysis of the microbial community structure within impact-generated lithologies in a Mars analog environment, involving the analysis of 44,534 16S rRNA sequences from an assemblage of 21 rock samples that comprises three shock metamorphism categories. We find that species diversity increases (H = 2.4-4.6) with exposure to higher shock pressures, which leads to the development of three distinct populations. In each population, Actinobacteria were the most abundant (41%, 65%, and 59%), and the dominant phototrophic taxa came from the Chloroflexi. Calculated porosity (a function of shock metamorphism) for these samples correlates (R2 = 0.62) with inverse Simpson indices, accounting for overlap in populations in the higher shock levels. The results of our study show that microbial diversity is tied to the amount of porosity in the target substrate (as a function of shock metamorphism), resulting in the formation of distinct microbial populations.
What is microbial community ecology?
Konopka, Allan
2009-11-01
The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.
Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.
1997-01-01
Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) end low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) and low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semi-volatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.
Goldschmidt, Felix; Regoes, Roland R; Johnson, David R
2017-09-01
Successive range expansions occur within all domains of life, where one population expands first (primary expansion) and one or more secondary populations then follow (secondary expansion). In general, genetic drift reduces diversity during range expansion. However, it is not clear whether the same effect applies during successive range expansion, mainly because the secondary population must expand into space occupied by the primary population. Here we used an experimental microbial model system to show that, in contrast to primary range expansion, successive range expansion promotes local population diversity. Because of mechanical constraints imposed by the presence of the primary population, the secondary population forms fractal-like dendritic structures. This divides the advancing secondary population into many small sub-populations and promotes intermixing between the primary and secondary populations. We further developed a mathematical model to simulate the formation of dendritic structures in the secondary population during succession. By introducing mutations in the primary or dendritic secondary populations, we found that mutations are more likely to accumulate in the dendritic secondary populations. Our results thus show that successive range expansion can promote intermixing over the short term and increase genetic diversity over the long term. Our results therefore have potentially important implications for predicting the ecological processes and evolutionary trajectories of microbial communities.
Diversity of microbiota found in coffee processing wastewater treatment plant.
Pires, Josiane Ferreira; Cardoso, Larissa de Souza; Schwan, Rosane Freitas; Silva, Cristina Ferreira
2017-11-13
Cultivable microbiota presents in a coffee semi-dry processing wastewater treatment plant (WTP) was identified. Thirty-two operational taxonomic units (OTUs) were detected, these being 16 bacteria, 11 yeasts and 4 filamentous fungi. Bacteria dominated the microbial population (11.61 log CFU mL - 1 ), and presented the highest total diversity index when observed in the WTP aerobic stage (Shannon = 1.94 and Simpson = 0.81). The most frequent bacterial species were Enterobacter asburiae, Sphingobacterium griseoflavum, Chryseobacterium bovis, Serratia marcescens, Corynebacterium flavescens, Acetobacter orientalis and Acetobacter indonesiensis; these showed the largest total bacteria populations in the WTP, with approximately 10 log CFU mL - 1 . Yeasts were present at 7 log CFU mL - 1 of viable cells, with Hanseniaspora uvarum, Wickerhamomyces anomalus, Torulaspora delbrueckii, Saturnispora gosingensis, and Kazachstania gamospora being the prevalent species. Filamentous fungi were found at 6 log CFU mL - 1 , with Fusarium oxysporum the most populous species. The identified species have the potential to act as a biological treatment in the WTP, and the application of them for this purpose must be better studied.
Molecular characterization of microbial population dynamics during sildenafil citrate degradation.
De Felice, Bruna; Argenziano, Carolina; Guida, Marco; Trifuoggi, Marco; Russo, Francesca; Condorelli, Valerio; Inglese, Mafalda
2009-02-01
Little is known about pharmaceutical and personal care products pollutants (PPCPs), but there is a growing interest in how they might impact the environment and microbial communities. The widespread use of Viagra (sildenafil citrate) has attracted great attention because of the high usage rate, the unpredictable disposal and the unknown potential effects on wildlife and the environment. Until now information regarding the impact of Viagra on microbial community in water environment has not been reported. In this research, for the first time, the genetic profile of the microbial community, developing in a Viagra polluted water environment, was evaluated by means of the 16S and 18S rRNA genes, for bacteria and fungi, respectively, amplified by polymerase chain reaction (PCR) and separated using the denaturing gradient gel electrophoresis (DGGE) technique. The DGGE results revealed a complex microbial community structure with most of the population persisting throughout the experimental period. DNA sequences from bands observed in the different denaturing gradient gel electrophoresis profiles exhibited the highest degree of identity to uncultured bacteria and fungi found previously mainly in polluted environmental and treating bioreactors. Biotransformation ability of sildenafil citrate by the microbial pool was studied and the capability of these microorganisms to detoxify a polluted water ecosystem was assessed. The bacterial and fungal population was able to degrade sildenafil citrate entirely. Additionally, assays conducted on Daphnia magna, algal growth inhibition assay and cell viability determination on HepG2 human cells showed that biotransformation products obtained from the bacterial growth was not toxic. The higher removal efficiency for sildenafil citrate and the lack of toxicity by the biotransformation products obtained showed that the microbial community identified here represented a composite population that might have biotechnological relevance to retrieve sildenafil citrate contaminated sites.
Are Microbial Nanowires Responsible for Geoelectrical Changes at Hydrocarbon Contaminated Sites?
NASA Astrophysics Data System (ADS)
Hager, C.; Atekwana, E. A.; Gorby, Y. A.; Duris, J. W.; Allen, J. P.; Atekwana, E. A.; Ownby, C.; Rossbach, S.
2007-05-01
Significant advances in near-surface geophysics and biogeophysics in particular, have clearly established a link between geoelectrical response and the growth and enzymatic activities of microbes in geologic media. Recent studies from hydrocarbon contaminated sites suggest that the activities of distinct microbial populations, specifically syntrophic, sulfate reducing, and dissimilatory iron reducing microbial populations are a contributing factor to elevated sediment conductivity. However, a fundamental mechanistic understanding of the processes and sources resulting in the measured electrical response remains uncertain. The recent discovery of bacterial nanowires and their electron transport capabilities suggest that if bacterial nanowires permeate the subsurface, they may in part be responsible for the anomalous conductivity response. In this study we investigated the microbial population structure, the presence of nanowires, and microbial-induced alterations of a hydrocarbon contaminated environment and relate them to the sediments' geoelectrical response. Our results show that microbial communities varied substantially along the vertical gradient and at depths where hydrocarbons saturated the sediments, ribosomal intergenic spacer analysis (RISA) revealed signatures of microbial communities adapted to hydrocarbon impact. In contrast, RISA profiles from a background location showed little community variations with depth. While all sites showed evidence of microbial activity, a scanning electron microscope (SEM) study of sediment from the contaminated location showed pervasive development of "nanowire-like structures" with morphologies consistent with nanowires from laboratory experiments. SEM analysis suggests extensive alteration of the sediments by microbial Activity. We conclude that, excess organic carbon (electron donor) but limited electron acceptors in these environments cause microorganisms to produce nanowires to shuttle the electrons as they seek for distant electron acceptors. Hence, electron flow via bacterial nanowires may contribute to the geoelectrical response.
Jia, Yangyang; Ng, Siu-Kin; Lu, Hongyuan; Cai, Mingwei; Lee, Patrick K H
2018-01-01
Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum -related and Ruminococcus -related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum -related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the microbial conversion of lignocellulosic biomass to methane. The knowledge of this study can facilitate development of potential biomarkers and rational design of the microbiome in anaerobic digesters.
The size and quality of soil organic matter (SOM) pool can vary between ecosystems and can affect many soil properties. The objective of this study was to examine the relationship between gross N transformation rates and microbial populations and to investigate the role that SOM...
USDA-ARS?s Scientific Manuscript database
In recent years, there is a lot of interest in improving the intestinal health, and consequently increasing minerals as iron absorption, by managing the intestinal microbial population. This is traditionally done by the consumption of probiotics, which are live microbial food supplements. However, a...
Succession of ruminal bacterial species and fermentation characteristics in nursing Brangus calves
USDA-ARS?s Scientific Manuscript database
Ruminants are typically born with a non-functional rumen essentially devoid of microorganism. The succession of the microbial population in the rumen from birth to animal maturity is of interest due to the key role the rumen microbial population plays in the overall health and productivity of the ho...
Griffin, James S; Wells, George F
2017-01-01
Seasonal community structure and regionally synchronous population dynamics have been observed in natural microbial ecosystems, but have not been well documented in wastewater treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems facing similar meteorological conditions have been done to compare the importance of deterministic and neutral community assembly mechanisms. We subjected weekly activated sludge samples from six regional full-scale bioreactors at four wastewater treatment plants obtained over 1 year to Illumina sequencing of 16S ribosomal RNA genes, resulting in a library of over 17 million sequences. All samples derived from reactors treating primarily municipal wastewater. Despite variation in operational characteristics and location, communities displayed temporal synchrony at the individual operational taxonomic unit (OTU), broad phylogenetic affiliation and community-wide scale. Bioreactor communities were dominated by 134 abundant and highly regionally synchronized OTU populations that accounted for over 50% of the total reads. Non-core OTUs displayed abundance-dependent population synchrony. Alpha diversity varied by reactor, but showed a highly reproducible and synchronous seasonal fluctuation. Community similarity was dominated by seasonal changes, but individual reactors maintained minor stable differences after 1 year. Finally, the impacts of mass migration driven by direct biomass transfers between reactors was investigated, but had no significant effect on community similarity or diversity in the sink community. Our results show that population dynamics in activated sludge bioreactors are consistent with niche-driven assembly guided by seasonal temperature fluctuations. PMID:27996980
Feng, Xin Mei; Karlsson, Anna; Svensson, Bo H; Bertilsson, Stefan
2010-10-01
Laboratory-scale reactors treating food industry waste were used to investigate the effects of additions of cobalt (Co), nickel/molybdenum/boron (Ni/Mo/B) and selenium/tungsten (Se/W) on the biogas process and the associated microbial community. The highest methane production (predicted value: 860 mL g(-1) VS) was linked to high Se/W concentrations in combination with a low level of Co. A combination of quantitative real-time PCR of 16S rRNA genes, terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing was used for the community analysis. The T-RFLP data show a higher diversity for bacteria than for archaea in all the treatments. The most abundant bacterial population (31-55% of the total T-RFLP fragments' intensity) was most closely related to Actinomyces europaeus (94% homology). Two dominant archaeal populations shared 98-99% sequence homology with Methanosarcina siciliae and Methanoculleus bourgensis, respectively. Only limited influence of the trace metal additions was found on the bacterial community composition, with two bacterial populations responding to the addition of a combination of Ni/Mo/B, while the dominant archaeal populations were influenced by the addition of Ni/Mo/B and/or Se/W. The maintenance of methanogenic activity was largely independent of archaeal community composition, suggesting a high degree of functional redundancy in the methanogens of the biogas reactors. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Feng, Jie; Li, Bing; Jiang, Xiaotao; Yang, Ying; Wells, George F; Zhang, Tong; Li, Xiaoyan
2018-01-01
The human gut microbiota is an important reservoir of antibiotic resistance genes (ARGs). A metagenomic approach and network analysis were used to establish a comprehensive antibiotic resistome catalog and to obtain co-occurrence patterns between ARGs and microbial taxa in fecal samples from 180 healthy individuals from 11 different countries. In total, 507 ARG subtypes belonging to 20 ARG types were detected with abundances ranging from 7.12 × 10 -7 to 2.72 × 10 -1 copy of ARG/copy of 16S-rRNA gene. Tetracycline, multidrug, macrolide-lincosamide-streptogramin, bacitracin, vancomycin, beta-lactam and aminoglycoside resistance genes were the top seven most abundant ARG types. The multidrug ABC transporter, aadE, bacA, acrB, tetM, tetW, vanR and vanS were shared by all 180 individuals, suggesting their common occurrence in the human gut. Compared to populations from the other 10 countries, the Chinese population harboured the most abundant ARGs. Moreover, LEfSe analysis suggested that the MLS resistance type and its subtype 'ermF' were representative ARGs of the Chinese population. Antibiotic inactivation, antibiotic target alteration and antibiotic efflux were the dominant resistance mechanism categories in all populations. Procrustes analysis revealed that microbial phylogeny structured the antibiotic resistome. Co-occurrence patterns obtained via network analysis implied that 12 species might be potential hosts of 58 ARG subtypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Aimee T; Overby, Stephen; Hart, Stephen C
2007-01-01
Herbivores can directly impact ecosystem function by altering litter quality entering an ecosystem or indirectly by affecting a shift in the microbial community that mediate nutrient processes. We examine herbivore susceptibility and resistance effects on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore driven changes in litter inputs will feedback to the microbial community. Our study population consisted of individual trees that are susceptible or resistant to the stem-boring moth (Dioryctria albovittella) and trees that herbivores have been manually removed since 1982. Moth herbivory increased pi on litter nitrogen concentrations (16%) and canopy precipitation infiltrationmore » (28%), both significant factors influencing litter and soil microbial populations. Our research resulted in three major conclusions: 1) In spite of an increase in litter quality, herbivory does not change litter microarthropod abundance or species richness. 2) Herbivore susceptibility alters bulk soil microbial communities, but not soil properties. 3) Season has a strong influence on microbial communities, and their response to herbivore inputs, in this semi-arid ecosystem.« less
Effects of exotic plantation forests on soil edaphon and organic matter fractions.
Xu, Gang; Liu, Yao; Long, Zhijian; Hu, Shanglian; Zhang, Yuanbin; Jiang, Hao
2018-06-01
There is uncertainty and limited knowledge regarding soil microbial properties and organic matter fractions of natural secondary forest accompanying chemical environmental changes of replacement by pure alien plantation forests in a hilly area of southwest of Sichuan province China. The aim of this study was to evaluate the impact of natural secondary forest (NSF) to pure Cryptomeria fortunei forest (CFF) and Cunninghamia lanceolata forest (CLF) on soil organic fractions and microbial communities. The results showed that the soil total phospholipid fatty acids (PLFAs), total bacteria and fungi, microbial carbon pool, organic recalcitrant carbon (C) and (N) fractions, soil microbial quotient and labile and recalcitrant C use efficiencies in each pure plantation were significantly decreased, but their microbial N pool, labile C and N pools, soil carbon dioxide efflux, soil respiratory quotient and recalcitrant N use efficiency were increased. An RDA analysis revealed that soil total PLFAs, total bacteria and fungi and total Gram-positive and Gram-negative bacteria were significantly associated with exchangeable Al 3+ , exchangeable acid, Al 3+ , available P and Mg 2+ and pH, which resulted into microbial functional changes of soil labile and recalcitrant substrate use efficiencies. Modified microbial C- and N-use efficiency due to forest conversion ultimately meets those of rapidly growing trees in plantation forests. Enlarged soil labile fractions and soil respiratory quotients in plantation forests would be a potential positive effect for C source in the future forest management. Altogether, pure plantation practices could provoke regulatory networks and functions of soil microbes and enzyme activities, consequently leading to differentiated utilization of soil organic matter fractions accompanying the change in environmental factors. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of storage temperature on the microbial composition of ready-to-use vegetables.
Caldera, L; Franzetti, L
2014-02-01
Four different salad preparations were investigated from microbiological point of view: two were packaged in air and two under Modified Atmosphere. The samples were stored at 4 and 10 °C, and analysed at established times. Total bacterial count (TBC) was taken as the most relevant index to define their hygiene and quality at both temperatures. Lactic acid bacteria, yeasts and moulds were found only occasionally. In general, the most important factor was the packaging technique: TBC was lower when the product is packed under modified conditions. The packaging technique also influences the microbial population: Gram-negative aerobic rods are dominant in air-packaged products, whilst the presence of Enterobacteriaceae becomes important in salads packaged under Modified Atmosphere. Pseudomonas fluorescens, with all its biovars, was the most frequently found species amongst the aerobic isolates, whilst for the Enterobacteriaceae strains, there was no dominant species.
Improvement of Biogas Production by Bioaugmentation
Kovács, K. L.; Ács, N.; Kovács, E.; Wirth, R.; Rákhely, G.; Strang, Orsolya; Herbel, Zsófia; Bagi, Z.
2013-01-01
Biogas production technologies commonly involve the use of natural anaerobic consortia of microbes. The objective of this study was to elucidate the importance of hydrogen in this complex microbial food chain. Novel laboratory biogas reactor prototypes were designed and constructed. The fates of pure hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and Enterobacter cloacae were followed in time in thermophilic and mesophilic natural biogas-producing communities, respectively. Molecular biological techniques were applied to study the altered ecosystems. A systematic study in 5-litre CSTR digesters revealed that a key fermentation parameter in the maintenance of an altered population balance is the loading rate of total organic solids. Intensification of the biogas production was observed and the results corroborate that the enhanced biogas productivity is associated with the increased abundance of the hydrogen producers. Fermentation parameters did not indicate signs of failure in the biogas production process. Rational construction of more efficient and sustainable biogas-producing microbial consortia is proposed. PMID:23484123
Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells.
Liu, Qian; Yang, Yang; Mei, Xiaoxue; Liu, Bingfeng; Chen, Chuan; Xing, Defeng
2018-08-01
Ferric iron can affect the current generation of microbial electrochemical system (MES); however, how it influences microbial biofilm formation and metabolic activity has not been reported. Here, we describe the response of microbial electrode biofilm communities to insoluble ferric iron (Fe 3+ ) at different concentrations in microbial fuel cells (MFCs). Insoluble ferric iron (200μM) improved electrochemical activity of the MFCs microbial biofilms during start-up and resulted in a higher maximum power density of 0.95W/m 2 , compared with the control (0.76W/m 2 ), 500μM Fe 3+ (0.83W/m 2 ), 1000μM Fe 3+ (0.73W/m 2 ), and 2000μM Fe 3+ (0.59W/m 2 ) treatments. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that the predominant populations in the anode biofilms of the MFCs belonged to Geobacter, with relative abundance of 66-75%. Microbial cathode biofilm communities were more susceptible to Fe 3+ , as an obvious shift in the cathode biofilm community structures occurred as Fe 3+ concentration was increased. The most predominant populations in the MFC cathode biofilms without Fe 3+ and with 200μM Fe 3+ were affiliated with Thauera (46% and 35%), whereas no absolutely predominant populations were present in the MFC cathode biofilm with 1000μM Fe 3+ . The results demonstrate that a low concentration of Fe 3+ facilitated the power output of MFCs and shaped community structures of the electrode biofilm. Copyright © 2018 Elsevier B.V. All rights reserved.
Impacts of chemical gradients on microbial community structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less
Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu
2016-05-01
To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.
Impacts of chemical gradients on microbial community structure
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.; ...
2017-01-17
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less
Impacts of chemical gradients on microbial community structure
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc
2017-01-01
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems. PMID:28094795
Impacts of chemical gradients on microbial community structure.
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc
2017-04-01
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the 'redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.
Molecular Tools for Investigating the Gut Microbiota
NASA Astrophysics Data System (ADS)
Lay, Christophe
The “microbial world within us” (Zoetendal et al., 2006) is populated by a complex society of indigenous microorganisms that feature different “ethnic” populations. Those microbial cells thriving within us are estimated to outnumber human body cells by a factor of ten to one. Insights into the relation between the intestinal microbial community and its host have been gained through gnotobiology. Indeed, the influence of the gut microbiota upon human development, physiology, immunity, and nutrition has been inferred by comparing gnotoxenic and axenic murine models (Hooper et al., 1998, 2002, 2003; Hooper and Gordon, 2001).
Khadka, Ram B; Marasini, Madan; Rawal, Ranjana; Gautam, Durga M; Acedo, Antonio L
2017-01-01
Background . Fresh vegetables such as tomato should have low microbial population for safe consumption and long storage life. The aerobic bacterial count (ABC) and coliform bacterial count (CBC), yeast, and mold population are the most widely used microbial indicators in fresh vegetables which should be lower than 4 log CFU g -1 for safe consumption. The stages of the supply chain, postharvest handling methods, and crop varieties had significant effects on microbial population. ABC, CBC, yeast, and mold population were significantly highest ( P < 0.05) at retail market (5.59, 4.38, 2.60, and 3.14 log CFU g -1 , resp.), followed by wholesale market (4.72, 4.71, 2.43, and 2.44 log CFU g -1 , resp.), and were least at farm gate (3.89, 3.63, 2.38, and 2.03 log CFU g -1 , resp.). Improved postharvest practices (washing in clean water and grading and packaging in clean plastic crate) helped to reduce ABC, CBC, and mold population by 2.51, 32.70, and 29.86 percentage as compared to the conventional method (no washing and no grading and packaging in mud plastered bamboo baskets). Among varieties, Pusa ruby had the lowest microbial load of 2.58, 4.53, 0.96, and 1.77 log CFU g -1 for ABC, CBC, yeast, and mold count, respectively. Significantly negative correlation ( P < 0.05) was observed between fruit pH & ABC and pH & mold count. Although the microbial quality of fresh tomato is safe in the local market of western Terai of Nepal both in conventional and in improved practices however still it is essential to follow improved postharvest handling practices in production and marketing of newly introduced tomato cultivars (high-pH cultivars) for ensuring the safe availability of fresh tomato in the market.
Marasini, Madan; Rawal, Ranjana; Gautam, Durga M.; Acedo, Antonio L.
2017-01-01
Background. Fresh vegetables such as tomato should have low microbial population for safe consumption and long storage life. The aerobic bacterial count (ABC) and coliform bacterial count (CBC), yeast, and mold population are the most widely used microbial indicators in fresh vegetables which should be lower than 4 log CFU g−1 for safe consumption. The stages of the supply chain, postharvest handling methods, and crop varieties had significant effects on microbial population. ABC, CBC, yeast, and mold population were significantly highest (P < 0.05) at retail market (5.59, 4.38, 2.60, and 3.14 log CFU g−1, resp.), followed by wholesale market (4.72, 4.71, 2.43, and 2.44 log CFU g−1, resp.), and were least at farm gate (3.89, 3.63, 2.38, and 2.03 log CFU g−1, resp.). Improved postharvest practices (washing in clean water and grading and packaging in clean plastic crate) helped to reduce ABC, CBC, and mold population by 2.51, 32.70, and 29.86 percentage as compared to the conventional method (no washing and no grading and packaging in mud plastered bamboo baskets). Among varieties, Pusa ruby had the lowest microbial load of 2.58, 4.53, 0.96, and 1.77 log CFU g−1 for ABC, CBC, yeast, and mold count, respectively. Significantly negative correlation (P < 0.05) was observed between fruit pH & ABC and pH & mold count. Although the microbial quality of fresh tomato is safe in the local market of western Terai of Nepal both in conventional and in improved practices however still it is essential to follow improved postharvest handling practices in production and marketing of newly introduced tomato cultivars (high-pH cultivars) for ensuring the safe availability of fresh tomato in the market. PMID:29124068
Lan, Mu-ling; Gao, Ming
2015-11-01
Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on soil microbial community structure in water soil.
Li, Xiaofang; Bond, Philip L.; Van Nostrand, Joy D.; Zhou, Jizhong; Huang, Longbin
2015-01-01
Engineering microbial diversity to enhance soil functions may improve the success of direct revegetation in sulphidic mine tailings. Therefore, it is essential to explore how remediation and initial plant establishment can alter microbial communities, and, which edaphic factors control these changes under field conditions. A long-term revegetation trial was established at a Pb-Zn-Cu tailings impoundment in northwest Queensland. The control and amended and/or revegetated treatments were sampled from the 3-year-old trial. In total, 24 samples were examined using pyrosequencing of 16S rRNA genes and various chemical properties. The results showed that the microbial diversity was positively controlled by soil soluble Si and negatively controlled by soluble S, total Fe and total As, implying that pyrite weathering posed a substantial stress on microbial development in the tailings. All treatments were dominated by typical extremophiles and lithotrophs, typically Truepera, Thiobacillus, Rubrobacter; significant increases in microbial diversity, biomass and frequency of organotrophic genera (typically Nocardioides and Altererythrobacter) were detected in the revegetated and amended treatment. We concluded that appropriate phytostabilization options have the potential to drive the microbial diversity and community structure in the tailings toward those of natural soils, however, inherent environmental stressors may limit such changes. PMID:26268667
Song, Mengke; Cheng, Zhineng; Luo, Chunling; Jiang, Longfei; Zhang, Dayi; Yin, Hua; Zhang, Gan
2018-04-01
We performed the study of rhizospheric effects on soil microbial community structure, including bacteria, fungi, actinomycete, and archaea, at an electronic waste (e-waste) recycling site by analyzing the phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether (GDGT) contents. By comparing PLFA and isoprenoid GDGT profiles of rhizospheric and surrounding bulk soils of 11 crop species, we observed distinct microbial community structures. The total PLFA concentration was significantly higher in rhizospheric soils than in non-rhizospheric soils, whereas no obvious difference was found in the total isoprenoid GDGT concentrations. The microbial community structure was also different, with higher ratios of fungal-to-bacterial PLFAs (F/B) and lower relative abundance of Gram-positive bacteria in rhizospheric soils. The extent of rhizospheric effects varied among plant species, and Colocasia esculenta L. had the greatest positive effects on the total microbial biomass. Dissolved organic carbon and pH were the main environmental factors affecting the microbial community represented by PLFAs, while the archaeal community was influenced by copper and zinc in all soils. These results offer a comprehensive view of rhizospheric effects on microbes in heavy metal and persistent organic pollutant co-contaminated soil, and provide fundamental knowledge regarding microbial ecology in e-waste-contaminated soils.
Zhang, Qing; Wu, Baiyila; Nishino, Naoki; Wang, Xianguo; Yu, Zhu
2016-03-01
To study the microbial population and fermentation dynamics of large needlegrass (LN) and Chinese leymus (CL) during ensiling and subsequent exposure to air, silages were sampled and analyzed using culture-based techniques and denaturing gradient gel electrophoresis (DGGE). A total of 112 lactic acid bacteria (LAB) strains were isolated and identified using the 16S rRNA sequencing method. Lactic acid was not detected in the first 20 days in LN silage and the pH decreased to 6.13 after 45 days of ensiling. The temperature of the LN silage increased after approximately 30 h of air exposure and the CL silage showed a slight temperature variation. Enterococcus spp. were mainly present in LN silage. The proportion of Lactobacillus brevis in CL silage increased after exposure to air. LN silage with a higher proportion of Enterococcus spp. and propionic acid concentration did not show higher fermentation quality or aerobic stability than CL silage, which had a higher concentration of acetic acid, butyric acid and increased proportion of L. brevis after exposure to air. © 2015 Japanese Society of Animal Science.
Waste gas biofiltration: advances and limitations of current approaches in microbiology.
Ralebitso-Senior, T Komang; Senior, Eric; Di Felice, Renzo; Jarvis, Kirsty
2012-08-21
As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).
Brazilian Cerrado soil Actinobacteria ecology.
Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas
2013-01-01
A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.
Brazilian Cerrado Soil Actinobacteria Ecology
Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas
2013-01-01
A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production. PMID:23555089
Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne
2015-09-01
The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (β-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.
Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S.
2016-01-01
Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a state in which they minimize rates of metabolism and respiration. These transitions are poorly characterized in soil and are generally omitted from decomposition models. Most current approaches to model microbial control over soil CO2 production relate responses to total microbial biomass (TMB) and do not differentiate between microorganisms in active and dormant physiological states. Indeed, few data for active microbial biomass (AMB) exist with which to compare model output. Here, we tested the hypothesis that differences in soil microbial respiration rates across various environmental conditions are more closely related to differences in AMB (e.g., due to activation of dormant microorganisms) than in TMB. We measured basal respiration (SBR) of soil incubated for a week at two temperatures (24 and 33°C) and two moisture levels (10 and 20% soil dry weight [SDW]), and then determined TMB, AMB, microbial specific growth rate, and the lag time before microbial growth (tlag) using the Substrate-Induced Growth Response (SIGR) method. As expected, SBR was more strongly correlated with AMB than with TMB. This relationship indicated that each g active biomass C contributed ~0.04 g CO2-C h−1 of SBR. TMB responded very little to short-term changes in temperature and soil moisture and did not explain differences in SBR among the treatments. Maximum specific growth rate did not respond to environmental conditions, suggesting that the dominant microbial populations remained similar. However, warmer temperatures and increased soil moisture both reduced tlag, indicating that favorable abiotic conditions activated soil microorganisms. We conclude that soil respiratory responses to short-term changes in environmental conditions are better explained by changes in AMB than in TMB. These results suggest that decomposition models that explicitly represent microbial carbon pools should take into account the active microbial pool, and researchers should be cautious in comparing modeled microbial pool sizes with measurements of TMB. PMID:27148213
Pedersen, Karsten
2013-01-01
It was previously concluded that opposing gradients of sulphate and methane, observations of 16S ribosomal DNA sequences displaying great similarity to those of anaerobic methane-oxidizing Archaea and a peak in sulphide concentration in groundwater from a depth of 250–350 m in Olkiluoto, Finland, indicated proper conditions for methane oxidation with sulphate. In the present research, pressure-resistant, gas-tight circulating systems were constructed to enable the investigation of attached and unattached anaerobic microbial populations from a depth of 327 m in Olkiluoto under in situ pressure (2.4 MPa), diversity, dissolved gas and chemistry conditions. Three parallel flow cell cabinets were configured to allow observation of the influence on microbial metabolic activity of 11 mℳ methane, 11 mℳ methane plus 10 mℳ H2 or 2.1 mℳ O2 plus 7.9 mℳ N2 (that is, air). The concentrations of these gases and of organic acids and carbon, sulphur chemistry, pH and Eh, ATP, numbers of cultivable micro-organisms, and total numbers of cells and bacteriophages were subsequently recorded under batch conditions for 105 days. The system containing H2 and methane displayed microbial reduction of 0.7 mℳ sulphate to sulphide, whereas the system containing only methane resulted in 0.2 mℳ reduced sulphate. The system containing added air became inhibited and displayed no signs of microbial activity. Added H2 and methane induced increasing numbers of lysogenic bacteriophages per cell. It appears likely that a microbial anaerobic methane-oxidizing process coupled to acetate formation and sulphate reduction may be ongoing in aquifers at a depth of 250–350 m in Olkiluoto. PMID:23235288
Chemical manipulation of soil biota in a fescue meadow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, C. R.; Reichle, D. E.
Formalin, phorate, and sodium chlorate were used in field enclosures to create artificial habitats in a fescue meadow containing (1) reduced number of earthworms, (2) reduced numbers of earthworms and soil arthropods, and (3) reduction of total soil fauna and rate of microbial decomposition. Under these conditions, confined fescue litter initially decomposed more rapidly where arthropods or earthworms were suppressed than in controls with full complements of soil animals. After one year, reduction in numbers of soil animals had no net effect on litter decomposition, with faunal activity apparently having been compensated for by increased microbial activity. Where animals andmore » microbial activity were reduced, rate of litter loss was depressed initially but recovered after 10 months as the effects of chemical suppression of microbial populations subsided. Contrary to the effects on annual loss of litter, elimination of all or portions of the soil fauna depressed rates of loss of confined and buried roots, reflecting the role of animals in fragmenting roots before their decomposition by microorganisms. Habitat manipulations had pronounced effects on the mobility of 134Cs, and loss of the radionuclide from labelled litter was retarded despite an accelerated rate of decomposition. This effect apparently was associated with proliferation of microorganisms on litter and microbial immobilization of the radionuclide. Immobilization of 134Cs occurred following chemical perturbations, but only after an initial period of rapid loss resulting from increased microbial activity. Distribution of 134Cs in soil beneath tagged litter bags reflected the role of animals in element redistribution within soil. Finally, restricted vertical mobility of the nuclide occurred except where chemical application killed vegetation within the experimental enclosures.« less
Guimarães, T; Lopes, G; Pinto, M; Silva, E; Miranda, C; Correia, M J; Damásio, L; Thompson, G; Rocha, A
2015-01-15
Freezability of equine semen may be influenced by microorganism population of semen. The objective of this study was to verify the effect of single-layer density gradient centrifugation (SLC) of fresh semen before cryopreservation on semen's microbial load (ML) and sperm cells kinetics after freezing-thawing. For that, one ejaculate was collected from 20 healthy stallions and split into control (C) samples (cryopreserved without previous SLC) and SLC samples (subjected to SLC). Semen cryopreservation was performed according to the same protocol in both groups. Microbial load of each microorganism species and total microbial load (TML) expressed in colony-forming units (CFU/mL) as well as frozen-thawed sperm kinetics were assessed in both groups. Additional analysis of the TML was performed, subdividing the frozen-thawed samples in "suitable" (total motility ≥ 30%) and "unsuitable" (total motility < 30%) semen for freezing programs, and comparing the C and SLC groups within these subpopulations. After thawing, SLC samples had less (P < 0.05) TML (88.65 × 10(2) ± 83.8 × 10(2) CFU/mL) than C samples (155.69 × 10(2) ± 48.85 × 10(2) CFU/mL), mainly due to a reduction of Enterococcus spp. and Bacillus spp. A relationship between post-thaw motility and SLC effect on ML was noted, as only in samples with more than 30% total motility was ML reduced (P < 0.05) by SLC (from 51.33 × 10(2) ± 33.26 × 10(2) CFU/mL to 26.68 × 10(2) ± 12.39 × 10(2) CFU/mL in "suitable" frozen-thawed semen vs. 240.90 × 10(2) ± 498.20 × 10(2) to 139.30 × 10(2) ± 290.30 × 10(2) CFU/mL in "unsuitable" frozen-thawed semen). The effect of SLC on kinetics of frozen-thawed sperm cells was negligible. Copyright © 2015 Elsevier Inc. All rights reserved.
PCB126 modulates fecal microbial fermentation of the dietary fiber inulin
USDA-ARS?s Scientific Manuscript database
Exposure to environmental pollutants can alter gut microbial populations. Short-chain fatty acids (SCFAs), produced from gut microbial fermentation of dietary fibers such as inulin, exert numerous effects on host energy metabolism. SCFAs are also linked to health promoting effects, including a red...
Inferring Microbial Fitness Landscapes
2016-02-25
infer from data the determinants of microbial evolution with sufficient resolution that we can quantify 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Distribution Unlimited UU UU UU UU 25-02-2016 1-Oct-2012 30-Sep-2015 Final Report: Inferring Microbial Fitness Landscapes The views, opinions and/or findings...Triangle Park, NC 27709-2211 evolution, fitness landscapes, epistasis, microbial populations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT
Microbial activity discovered in previously ice-entombed Arctic ecosystems
NASA Astrophysics Data System (ADS)
Welker, J. M.; Fahnestock, J. T.; Henry, G. H. R.; 0'Dea, K. W.; Piper, R. E.
One of the more intriguing discoveries in the biogeochemical sciences in recent years is the tremendous capacity of microbial populations to occupy and flourish in extreme habitats [Rothschild and Mancinelli 2001]. Microbial populations survive and multiply under a diversity of harsh conditions, including the hot springs of Yellowstone National Park, Wyoming, and on the ocean floor around thermal vents. At the other extreme, active microbial communities occupy some of the coldest and driest habitats on Earth. For instance, a variety of bacterial and fungal species have been found in the Dry Valleys of Antarctica, and there is evidence that microbes are also present beneath the Antarctic Ice Sheet in Lake Vostok, a system that has not been exposed to the atmosphere for thousands of years.
Saadoun, Ismail; Mohammad, Munir J; Hameed, Khalid M; Shawaqfah, Mo'ayyad
2008-07-01
Microbial populations' inhabitants in crude petroleum contaminated soils were analyzed in relation with the soil characteristics. A noticeable greater decline of bacterial counts and diversity but a prevalence of the genus Pseudomonas over the other identified genera in the fresh contaminated soils as compared to the old ones was observed.
Murugan, A V; Swarnam, T P; Gnanasambandan, S
2013-10-01
Pesticides are shown to have a great effect on soil organisms, but the effect varies with pesticide group and concentration, and is modified by soil organic carbon content and soil texture. In the humid tropical islands of Andaman, India, no systematic study was carried out on pesticide residues in soils of different land uses. The present study used the modified QuEChERS method for multiresidue extraction from soils and detection with a gas chromatograph. DDT and its various metabolites, α-endosulfan, β-endosulfan, endosulfan sulfate, aldrin, and fenvalerate, were detected from the study area. Among the different pesticide groups detected, endosulfan and DDT accounted for 41.7 % each followed by aldrin (16.7 %) and synthetic pyrethroid (8.3 %). A significantly higher concentration of pesticide residues was detected in rice-vegetable grown in the valley followed by rice-fallow and vegetable-fallow in the coastal plains. Soil microbial biomass carbon is negatively correlated with the total pesticide residues in soils, and it varied from 181.2 to 350.6 mg kg(-1). Pesticide residues have adversely affected the soil microbial populations, more significantly the bacterial population. The Azotobacter population has decreased to the extent of 51.8 % while actinomycetes were the least affected though accounted for 32 % when compared to the soils with no residue.
NASA Astrophysics Data System (ADS)
Pereg, Lily
2013-04-01
Crop production and agricultural practices heavily impact the soil microbial communities, which differ among varying types of soils and environmental conditions. Soil-borne microbial communities in cotton production systems, as in every other cropping system, consist of microbial populations that may either be pathogenic, beneficial or neutral with respect to the cotton crop. Crop production practices have major roles in determining the composition of microbial communities and function of microbial populations in soils. The structure and function of any given microbial community is determined by various factors, including those that are influenced by farming and those not controlled by farming activities. Examples of the latter are environmental conditions such as soil type, temperature, daylight length and UV radiation, air humidity, atmospheric pressure and some abiotic features of the soil. On the other hand, crop production practices may determine other abiotic soil properties, such as water content, density, oxygen levels, mineral and elemental nutrient levels and the load of other crop-related soil amendments. Moreover, crop production highly influences the biotic properties of the soil and has a major role in determining the fate of soil-borne microbial communities associated with the crop plant. Various microbial strains react differently to the presence of certain plants and plant exudates. Therefore, the type of plant and crop rotations are important factors determining microbial communities. In addition, practice management, e.g. soil cultivation versus crop stubble retention, have a major effect on the soil conditions and, thus, on microbial community structure and function. All of the above-mentioned factors can lead to preferential selection of certain microbial population over others. It may affect not only the composition of microbial communities (diversity and abundance of microbial members) but also the function of the community (the ability of different microbes to perform certain activities). Therefore, agricultural practices may determine the ability of beneficial microbes to realise their plant growth promoting potential or the pathogenic expression of others. This presentation will review the current knowledge about the impact of cotton growing practices on microbial communities and soil health in different environments as well as endeavour to identify gaps worthwhile exploring in future research for promoting plant growth in healthy soils.
Orellana, Luis H; Chee-Sanford, Joanne C; Sanford, Robert A; Löffler, Frank E; Konstantinidis, Konstantinos T
2017-11-03
The dynamics of individual microbial populations and their gene functions in agricultural soils, especially after major activities such as nitrogen (N) fertilization, remain elusive but are important for better understanding nutrient cycling. Here, we analyzed 20 short-read metagenomes collected at four time points across one year from two depths (0-5 and 20-30 cm) in two Midwestern agricultural sites representing contrasting soil textures (sandy versus silty-loam), with similar cropping histories. Although microbial community taxonomic and functional compositions differed between the two locations and depths, they were more stable within a depth/site throughout the year than communities in natural water-based ecosystems. For example, among the 69 population genomes assembled from the metagenomes, 75% showed less than 2-fold change in abundance between any two sampling points. Interestingly, six deep-branching Thaumarchaeota and three complete ammonia oxidizer (comammox) Nitrospira populations increased up to 5-fold in abundance upon the addition of N fertilizer. These results indicated that indigenous archaeal ammonia oxidizers may respond faster (more copiotrophic) to N fertilization than previously thought. None of 29 recovered putative denitrifier genomes encoded the complete denitrification pathway, suggesting that denitrification is carried out by a collection of different populations. Altogether, our study identified novel microbial populations and genes responding to seasonal and human-induced perturbations in agricultural soils that should facilitate future monitoring efforts and N-related studies. Importance Even though the impact of agricultural management on the microbial community structure has already been recognized, understanding of the dynamics of individual microbial populations and what functions each population encodes are limited. Yet, this information is important for better understanding nutrient cycling, with potentially important implications for preserving nitrogen in soils and sustainability. Here we show that reconstructed metagenome-assembled genomes (MAGs) are relatively stable in their abundance and functional gene content year-round, and seasonal nitrogen fertilization has selected for novel Thaumarchaeota and comammox Nitrospira nitrifiers that are potentially less oligotrophic compared to their marine counterparts previously studied. Copyright © 2017 American Society for Microbiology.
Transport Functions Dominate the SAR11 Metaproteome at Low-Nutrient Extremes in the Sargasso Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, Sarah M.; Wilhelm, Larry; Norbeck, Angela D.
2009-01-01
The northwestern Sargasso Sea is part of the North Atlantic subtropical oceanic gyre that is characterized as seasonally oligotrophic with pronounced stratification in the summer and autumn. Essentially a marine desert, the biological productivity of this region is reduced during stratified periods as a result of low concentrations of phosphorous and nitrogen in the euphotic zone. To better understand the mechanisms of microbial survival in this oligotrophic environment, we used capillary LC-tandem mass spectrometry to study the composition of microbial proteomes in surface samples collected in September 2005. A total of 2279 peptides that mapped to 236 SAR11 proteins, andmore » 3208 peptides that mapped to 404 Synechococcus proteins, were detected. Mass spectra from SAR11 periplasmic binding proteins accounted for a disproportionately large fraction of the peptides detected, consistent with observations that these extremely small cells devote a large proportion of their volume to periplasm. Abundances were highest for periplasmic substrate-binding proteins for phosphate, amino acids, phosphonate, sugars, and spermidine. Although the data showed that a large fraction of microbial protein synthesis in the Sargasso Sea is devoted to inorganic and organic nutrient acquisition, the proteomes of both SAR11 and Synechococcus also indicated that these populations were actively growing. Our findings support the view that competition for multiple nutrients in oligotrophic systems is extreme but sufficient to sustain microbial community activity.« less
CRISPR Associated Diversity within a Population of Sulfolobus islandicus
Held, Nicole L.; Herrera, Alfa; Cadillo-Quiroz, Hinsby; Whitaker, Rachel J.
2010-01-01
Background Predator-prey models for virus-host interactions predict that viruses will cause oscillations of microbial host densities due to an arms race between resistance and virulence. A new form of microbial resistance, CRISPRs (clustered regularly interspaced short palindromic repeats) are a rapidly evolving, sequence-specific immunity mechanism in which a short piece of invading viral DNA is inserted into the host's chromosome, thereby rendering the host resistant to further infection. Few studies have linked this form of resistance to population dynamics in natural microbial populations. Methodology/Principal Findings We examined sequence diversity in 39 strains of the archeaon Sulfolobus islandicus from a single, isolated hot spring from Kamchatka, Russia to determine the effects of CRISPR immunity on microbial population dynamics. First, multiple housekeeping genetic markers identify a large clonal group of identical genotypes coexisting with a diverse set of rare genotypes. Second, the sequence-specific CRISPR spacer arrays split the large group of isolates into two very different groups and reveal extensive diversity and no evidence for dominance of a single clone within the population. Conclusions/Significance The evenness of resistance genotypes found within this population of S. islandicus is indicative of a lack of strain dominance, in contrast to the prediction for a resistant strain in a simple predator-prey interaction. Based on evidence for the independent acquisition of resistant sequences, we hypothesize that CRISPR mediated clonal interference between resistant strains promotes and maintains diversity in this natural population. PMID:20927396
Aiello, I.W.; Bekins, B.A.
2010-01-01
The recent discoveries of large, active populations of microbes in the subseafloor of the world's oceans supports the impact of the deep biosphere biota on global biogeochemical cycles and raises important questions concerning the functioning of these extreme environments for life. These investigations demonstrated that subseafloor microbes are unevenly distributed and that cell abundances and metabolic activities are often independent from sediment depths, with increased prokaryotic activity at geochemical and/or sedimentary interfaces. In this study we demonstrate that microbial populations vary at the scale of individual beds in the biogenic oozes of a drill site in the eastern equatorial Pacific (Ocean Drilling Program Leg 201, Site 1226). We relate bedding-scale changes in biogenic ooze sediment composition to organic carbon (OC) and microbial cell concentrations using high-resolution color reflectance data as proxy for lithology. Our analyses demonstrate that microbial concentrations are an order of magnitude higher in the more organic-rich diatom oozes than in the nannofossil oozes. The variations mimic small-scale variations in diatom abundance and OC, indicating that the modern distribution of microbial biomass is ultimately controlled by Milankovitch-frequency variations in past oceanographic conditions. ?? 2010 Geological Society of America.
McSweeney, C S; Denman, S E
2007-11-01
To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.
Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores.
Kohl, Kevin D; Dearing, M D
2012-09-01
For decades, ecologists have hypothesised that exposure to plant secondary compounds (PSCs) modifies herbivore-associated microbial community composition. This notion has not been critically evaluated in wild mammalian herbivores on evolutionary timescales. We investigated responses of the microbial communities of two woodrat species (Neotoma bryanti and N. lepida). For each species, we compared experienced populations that independently converged to feed on the same toxic plant (creosote bush, Larrea tridentata) to naïve populations with no exposure to creosote toxins. The addition of dietary PSCs significantly altered gut microbial community structure, and the response was dependent on previous experience. Microbial diversity and relative abundances of several dominant phyla increased in experienced woodrats in response to PSCs; however, opposite effects were observed in naïve woodrats. These differential responses were convergent in experienced populations of both species. We hypothesise that adaptation of the foregut microbiota to creosote PSCs in experienced woodrats drives this differential response. © 2012 Blackwell Publishing Ltd/CNRS.
Microbial consortia at steady supply
Taillefumier, Thibaud; Posfai, Anna; Meir, Yigal; Wingreen, Ned S
2017-01-01
Metagenomics has revealed hundreds of species in almost all microbiota. In a few well-studied cases, microbial communities have been observed to coordinate their metabolic fluxes. In principle, microbes can divide tasks to reap the benefits of specialization, as in human economies. However, the benefits and stability of an economy of microbial specialists are far from obvious. Here, we physically model the population dynamics of microbes that compete for steadily supplied resources. Importantly, we explicitly model the metabolic fluxes yielding cellular biomass production under the constraint of a limited enzyme budget. We find that population dynamics generally leads to the coexistence of different metabolic types. We establish that these microbial consortia act as cartels, whereby population dynamics pins down resource concentrations at values for which no other strategy can invade. Finally, we propose that at steady supply, cartels of competing strategies automatically yield maximum biomass, thereby achieving a collective optimum. DOI: http://dx.doi.org/10.7554/eLife.22644.001 PMID:28473032
Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K
2010-07-15
Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress. 2010 Elsevier B.V. All rights reserved.
Retzlaff, Deanna; Phebus, Randall; Kastner, Curtis; Marsden, James
2005-01-01
A static chamber steam pasteurization unit (SPS 400-SC()) was installed in a high-volume commercial beef slaughter facility. The SPS 400-SC consists of a three-phase carcass treatment cycle of water removal, steam pasteurization, and water chilling. Seven chamber temperatures (71.1, 73.9, 76.7, 79.4, 82.2, 85.0, and 87.8 degrees C) were evaluated at the midline area of pre-rigor beef carcasses. For each temperature evaluated, 20 carcass sides were randomly selected and aseptically sampled by tissue excision immediately before and after steam pasteurization to determine total aerobic bacteria, Enterobacteriaceae, generic E. coli, and total coliform populations. The 87.8 and 85.0 degrees C treatment temperatures were highly effective at reducing total aerobic bacterial populations, with log(10) reductions of 1.4 and 1.5 CFU/cm(2), respectively, from pretreatment mean population levels of 1.7 and 1.9 log10 CFU/cm(2). These temperatures also reduced Enterobacteriaceae, total coliforms, and generic E. coli to undetectable levels (<0.4 CFU/cm(2)) on all carcasses sampled. Treatment at 82.2 was marginally effective at reducing bacterial populations, while 71.1, 73.9, 76.7, and 79.4 degrees C treatments were ineffective at reducing microbial populations. In a Hazard Analysis Critical Control Points (HACCP)-based system employing steam pasteurization of carcasses as a critical control point, a critical limit of 85.0 degrees C as a minimum chamber temperature should be established, with a targeted operating temperature of 87.8 degrees C providing optimum antimicrobial activity.
Differences in soil biological activity by terrain types at the sub-field scale in central Iowa US
Kaleita, Amy L.; Schott, Linda R.; Hargreaves, Sarah K.; ...
2017-07-07
Soil microbial communities are structured by biogeochemical processes that occur at many different spatial scales, which makes soil sampling difficult. Because soil microbial communities are important in nutrient cycling and soil fertility, it is important to understand how microbial communities function within the heterogeneous soil landscape. In this study, a self-organizing map was used to determine whether landscape data can be used to characterize the distribution of microbial biomass and activity in order to provide an improved understanding of soil microbial community function. Points within a row crop field in south-central Iowa were clustered via a self-organizing map using sixmore » landscape properties into three separate landscape clusters. Twelve sampling locations per cluster were chosen for a total of 36 locations. After the soil samples were collected, the samples were then analysed for various metabolic indicators, such as nitrogen and carbon mineralization, extractable organic carbon, microbial biomass, etc. It was found that sampling locations located in the potholes and toe slope positions had significantly greater microbial biomass nitrogen and carbon, total carbon, total nitrogen and extractable organic carbon than the other two landscape position clusters, while locations located on the upslope did not differ significantly from the other landscape clusters. However, factors such as nitrate, ammonia, and nitrogen and carbon mineralization did not differ significantly across the landscape. Altogether, this research demonstrates the effectiveness of a terrain-based clustering method for guiding soil sampling of microbial communities.« less
Differences in soil biological activity by terrain types at the sub-field scale in central Iowa US
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaleita, Amy L.; Schott, Linda R.; Hargreaves, Sarah K.
Soil microbial communities are structured by biogeochemical processes that occur at many different spatial scales, which makes soil sampling difficult. Because soil microbial communities are important in nutrient cycling and soil fertility, it is important to understand how microbial communities function within the heterogeneous soil landscape. In this study, a self-organizing map was used to determine whether landscape data can be used to characterize the distribution of microbial biomass and activity in order to provide an improved understanding of soil microbial community function. Points within a row crop field in south-central Iowa were clustered via a self-organizing map using sixmore » landscape properties into three separate landscape clusters. Twelve sampling locations per cluster were chosen for a total of 36 locations. After the soil samples were collected, the samples were then analysed for various metabolic indicators, such as nitrogen and carbon mineralization, extractable organic carbon, microbial biomass, etc. It was found that sampling locations located in the potholes and toe slope positions had significantly greater microbial biomass nitrogen and carbon, total carbon, total nitrogen and extractable organic carbon than the other two landscape position clusters, while locations located on the upslope did not differ significantly from the other landscape clusters. However, factors such as nitrate, ammonia, and nitrogen and carbon mineralization did not differ significantly across the landscape. Altogether, this research demonstrates the effectiveness of a terrain-based clustering method for guiding soil sampling of microbial communities.« less
Zhao, Guang; Ma, Fang; Wei, Li; Chua, Hong; Chang, Chein-Chi; Zhang, Xiao-Jun
2012-09-01
A microbial fuel cell (MFC) was constructed to investigate the possible generation of electricity using cattle dung as a substrate. After 30 days of operation, stable electricity was generated, and the maximum volumetric power density was 0.220 W/m(3). The total chemical oxygen demand (TCOD) removal and coulombic efficiency (CE) of the MFC reached 73.9±1.8% and 2.79±0.6%, respectively, after 120 days of operation. Acetate was the main metabolite in the anolyte, and other volatile fatty acids (VFAs) (propionate and butyrate) were present in minor amounts. The PCR-DGGE analysis indicated that the following five groups of microbes were present: Proteobacteria, Bacteroides, Chloroflexi, Actinobacteria and Firmicutes. Proteobacteria and Firmicutes were the dominant phyla in the sample; specifically, 36.3% and 24.2% of the sequences obtained were Proteobacteria and Firmicutes, respectively. Clostridium sp., Pseudomonas luteola and Ochrobactrum pseudogrignonense were the most dominant groups during the electricity generation process. The diversity of archaea dramatically decreased after 20 days of operation. The detected archaea were hydrogenotrophic methanogens, and the Methanobacterium genus disappeared during the periods of stable electricity generation via acidogenesis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shavisi, Nassim; Khanjari, Ali; Basti, Afshin Akhondzadeh; Misaghi, Ali; Shahbazi, Yasser
2017-02-01
This study was conducted to examine the effects of polylactic acid (PLA) film containing propolis ethanolic extract (PE), cellulose nanoparticle (CN) and Ziziphora clinopodioides essential oil (ZEO) on chemical, microbial and sensory properties of minced beef during storage at refrigerated temperature for 11days. The initial total volatile base nitrogen (TVB-N) was 8.2mg/100g and after 7days reached to 29.1mg/100g in control, while it was lower than 25mg/100g for treated samples. At the end of storage time in control samples peroxide value (PV) reached to 2.01meqperoxide/1000g lipid, while the values for the treated samples remained lower than 2meqperoxide/1000g lipid. Final microbial population decreased approximately 1-3logCFU/g in treated samples compared to control (P<0.05). Films containing 2% ZEO alone and in combination with different concentrations of PE and CN extended the shelf life of minced beef during storage in refrigerated condition for at least 11days without any unfavorable organoleptic properties. Copyright © 2016. Published by Elsevier Ltd.
Leite, A M O; Mayo, B; Rachid, C T C C; Peixoto, R S; Silva, J T; Paschoalin, V M F; Delgado, S
2012-09-01
The microbial diversity and community structure of three different kefir grains from different parts of Brazil were examined via the combination of two culture-independent methods: PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. PCR-DGGE showed Lactobacillus kefiranofaciens and Lactobacillus kefiri to be the major bacterial populations in all three grains. The yeast community was dominated by Saccharomyces cerevisiae. Pyrosequencing produced a total of 14,314 partial 16S rDNA sequence reads from the three grains. Sequence analysis grouped the reads into three phyla, of which Firmicutes was dominant. Members of the genus Lactobacillus were the most abundant operational taxonomic units (OTUs) in all samples, accounting for up to 96% of the sequences. OTUs belonging to other lactic and acetic acid bacteria genera, such as Lactococcus, Leuconostoc, Streptococcus and Acetobacter, were also identified at low levels. Two of the grains showed identical DGGE profiles and a similar number of OTUs, while the third sample showed the highest diversity by both techniques. Pyrosequencing allowed the identification of bacteria that were present in small numbers and rarely associated with the microbial community of this complex ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microbial Mortality Rates in Support of Model Development in Three Distinct Ocean Regimes
NASA Astrophysics Data System (ADS)
Connell, P. E.; Gellene, A. G.; Campbell, V.; Hu, S. K.; Arrigo, K. R.; Caron, D. A.
2016-02-01
Quantitative assessments of trophic interactions have become increasingly important in plankton research with the recognition that delicate balances between predators and prey strongly influence biogeochemical cycles. As the modeling community continues to increase the complexity of ecosystem models in order to improve their predictive power, understanding the balances of production and loss across spatial and seasonal scales is critical. We measured the growth and mortality rates of the total phytoplankton community and key picophytoplankton groups (Synechococcus, Prochlorococcus, and photosynthetic picoeukaryotes) using a modified dilution method, as well as bacterial mortality rates via FLB (fluorescently-labeled bacteria) disappearance incubations. Community composition was assessed using microscopy and flow cytometry. Measurements were conducted in three climatic regions: coastal waters of the Southern California Bight, The Chukchi Sea, and the North Pacific Subtropical Gyre. Local seasonal variability was also assessed quarterly (January, April, July, October) in the Bight. These measurements provided insight into the relative turnover rates of key microbial groups and the microbial population dynamics of disparate ocean regimes. This study will aid our ability to construct predictive ecosystem models through the application of community composition and rate data to model parameterization.
Larsen, Peter; Hamada, Yuki; Gilbert, Jack
2012-07-31
Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. Copyright © 2012 Elsevier B.V. All rights reserved.
Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; ...
2016-12-03
Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. In order to assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling.more » Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.
Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. In order to assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling.more » Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.« less
Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton.
Cárdenas, Anny; Neave, Matthew J; Haroon, Mohamed Fauzi; Pogoreutz, Claudia; Rädecker, Nils; Wild, Christian; Gärdes, Astrid; Voolstra, Christian R
2018-01-01
Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.
NASA Astrophysics Data System (ADS)
Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; Stegen, James C.; Hobson, Chad; Wilkins, Michael J.
2016-12-01
Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. To assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ryan H.; Timm, Andrea C.; Timm, Collin M.
The structure, function and evolving composition of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment. The complexity of this parameter space in naturally occurring systems has made a clear understanding of the key drivers of community development elusive. Here, we examine the role of spatial confinement on community development using a microwell platform that allows for assembly and monitoring of unique microbial communities en masse. This platform was designed to contain microwells with varied size features in order to mimic various levels of spatial confinement found in natural systems. Microbial populations assembled inmore » wells with incrementally smaller size features showed increasingly larger variations in inoculum levels. By exploiting this size dependence, large wells were used to assemble homogenous initial populations of Pseudomonas aeruginosa, allowing for reproducible, directed growth trajectories. In contrast, smaller wells were used to assemble a heterogeneous range of initial populations, resulting in a variety of growth and decay trajectories. This allowed for parallel screening of single member communities across different levels of confinement to identify initial conditions in which P. aeruginosa colonies have dramatically higher probabilities of survival. These results demonstrate a unique approach for manipulating the distribution of initial microbial populations assembled into controlled microenvironments to rapidly identify population and environmental parameters conducive or inhibitive to growth. Additionally, multi-member community assembly was characterized to demonstrate the power of this platform for studying the role of member abundance on microbial competition, mutualism and community succession.« less
Hansen, Ryan H.; Timm, Andrea C.; Timm, Collin M.; ...
2016-05-06
The structure, function and evolving composition of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment. The complexity of this parameter space in naturally occurring systems has made a clear understanding of the key drivers of community development elusive. Here, we examine the role of spatial confinement on community development using a microwell platform that allows for assembly and monitoring of unique microbial communities en masse. This platform was designed to contain microwells with varied size features in order to mimic various levels of spatial confinement found in natural systems. Microbial populations assembled inmore » wells with incrementally smaller size features showed increasingly larger variations in inoculum levels. By exploiting this size dependence, large wells were used to assemble homogenous initial populations of Pseudomonas aeruginosa, allowing for reproducible, directed growth trajectories. In contrast, smaller wells were used to assemble a heterogeneous range of initial populations, resulting in a variety of growth and decay trajectories. This allowed for parallel screening of single member communities across different levels of confinement to identify initial conditions in which P. aeruginosa colonies have dramatically higher probabilities of survival. These results demonstrate a unique approach for manipulating the distribution of initial microbial populations assembled into controlled microenvironments to rapidly identify population and environmental parameters conducive or inhibitive to growth. Additionally, multi-member community assembly was characterized to demonstrate the power of this platform for studying the role of member abundance on microbial competition, mutualism and community succession.« less
Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing
2016-01-01
The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173
Beating Cheaters at Their Own Game
NASA Astrophysics Data System (ADS)
Rauch, Joseph; Kondev, Jane; Sanchez, Alvaro
2014-03-01
Public goods games occur over many different scales in nature, from microbial biofilms to the human commons. On each scale stable populations of cooperators (members who invest into producing some good shared by the entire population) and cheaters (members who make no investment yet still share the common goods) has been observed. This observation raises interesting questions, like how do cooperators maintain their presence in a game that seems to heavily favor cheaters, and what strategies for cooperation could populations employ to increase their success? We propose a model of a public goods game with two different player populations, S and D, which employ two different strategies: the D population always cheats and the S population makes a stochastic decision whether to cooperate or not. We find that stochastic cooperation improves the success of the S population over the competing D population, but at a price. As the probability of cheating by the S players increases they outcompete the D players but the total population becomes more ecologically unstable (i.e., the likelihood of its extinction grows). We investigate this trade off between evolutionary success and ecological stability and propose experiments using populations of yeast cells to test our predictions.
Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias
2014-08-01
Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.
Invited review: Essential oils as modifiers of rumen microbial fermentation.
Calsamiglia, S; Busquet, M; Cardozo, P W; Castillejos, L; Ferret, A
2007-06-01
Microorganisms in the rumen degrade nutrients to produce volatile fatty acids and synthesize microbial protein as an energy and protein supply for the ruminant, respectively. However, this fermentation process has energy (losses of methane) and protein (losses of ammonia N) inefficiencies that may limit production performance and contribute to the release of pollutants to the environment. Antibiotic ionophores have been very successful in reducing these energy and protein losses in the rumen, but the use of antibiotics in animal feeds is facing reduced social acceptance, and their use has been banned in the European Union since January 2006. For this reason, scientists have become interested in evaluating other alternatives to control specific microbial populations to modulate rumen fermentation. Essential oils can interact with microbial cell membranes and inhibit the growth of some gram-positive and gram-negative bacteria. As a result of such inhibition, the addition of some plant extracts to the rumen results in an inhibition of deamination and methanogenesis, resulting in lower ammonia N, methane, and acetate, and in higher propionate and butyrate concentrations. Results have indicated that garlic oil, cinnamaldehyde (the main active component of cinnamon oil), eugenol (the main active component of the clove bud), capsaicin (the active component of hot peppers), and anise oil, among others, may increase propionate production, reduce acetate or methane production, and modify proteolysis, peptidolysis, or deamination in the rumen. However, the effects of some of these essential oils are pH and diet dependent, and their use may be beneficial only under specific conditions and production systems. For example, capsaicin appears to have small effects in high-forage diets, whereas the changes observed in high-concentrate diets (increases in dry matter intake and total VFA, and reduction in the acetateto-propionate ratio and ammonia N concentration) may be beneficial. Because plant extracts may act at different levels in the carbohydrate and protein degradation pathways, their careful selection and combination may provide a useful tool to manipulate rumen microbial fermentation effectively. However, additional research is required to establish the optimal dose in vivo in units of the active component, to consider the potential adaptation of microbial populations to their activities, to examine the presence of residues in the products (milk or meat), and to demonstrate improvements in animal performance.
Microbial Populations in Two Swamp Soils of South Carolina
David S. Priester; William R. Harms
1971-01-01
Microbial populations were counted in agar-plated samples of two swamp soils collected in summer and winter. Number of aerobic and anaerobic microorganisms differed significantly among the soils and between seasons. Alluvial soil from the river swamp was high in organic matter, N, K, Ca, and pH and averaged 88 million microorganisms per gram over the growing season....
Tremblay, Julien
2018-01-22
Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremblay, Julien
2012-06-01
Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications
2013-01-01
Multiple subclonal populations of tumor cells can coexist within the same tumor. This intra-tumor heterogeneity will have clinical implications and it is therefore important to identify factors that drive or suppress such heterogeneous tumor progression. Evolutionary biology can provide important insights into this process. In particular, experimental evolution studies of microbial populations, which exist as clonal populations that can diversify into multiple subclones, have revealed important evolutionary processes driving heterogeneity within a population. There are transferrable lessons that can be learnt from these studies that will help us to understand the process of intra-tumor heterogeneity in the clinical setting. In this review, we summarize drivers of microbial diversity that have been identified, such as mutation rate and environmental influences, and discuss how knowledge gained from microbial experimental evolution studies may guide us to identify and understand important selective factors that promote intra-tumor heterogeneity. Furthermore, we discuss how these factors could be used to direct and optimize research efforts to improve patient care, focusing on therapeutic resistance. Finally, we emphasize the need for longitudinal studies to address the impact of these potential tumor heterogeneity-promoting factors on drug resistance, metastatic potential and clinical outcome. PMID:24267946
Huang, Hung-Jen; Chen, Wei-Yu; Wu, Jer-Horng
2014-01-01
Protein recovery is crucial for shotgun metaproteomics to study the in situ functionality of microbial populations from complex biofilms but still poorly addressed by far. To fill this knowledge gap, we systematically evaluated the sample preparation with extraction buffers comprising four detergents for the metaproteomics analysis of a terephthalate-degrading methanogenic biofilm using an on-line two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) system. Totally, 1018 non-repeated proteins were identified with the four treatments. On the whole, each treatment could recover the biofilm proteins with specific distributions of molecular weight, hydrophobicity, and isoelectric point. The extraction buffers containing zwitterionic and anionic detergents were found to harvest the proteins with better efficiency and quality, allowing identification up to 76.2% of total identified proteins with the LC-MS/MS analysis. According to the annotation with a relevant metagenomic database, we further observed different taxonomic profiles of bacterial and archaeal members and discriminable patterns of the functional expression among the extraction buffers used. Overall, the finding of the present study provides first insight to the effect of the detergents on the characteristics of extractable proteins from biofilm and the developed protocol combined with nano 2D-LC/MS/MS analysis can improve the metaproteomics studies on microbial functionality of biofilms in the wastewater treatment systems. PMID:24914765
Vanegas, Diana; Triviño, Lady; Galindo, Cristian; Franco, Leidy; Salguero, Gustavo; Camacho, Bernardo; Perdomo-Arciniegas, Ana-María
2017-09-01
The total nucleated cell dosage of umbilical cord blood (UCB) is an important factor in determining successful allogeneic hematopoietic stem cell transplantation after a minimum human leukocyte antigen donor-recipient match. The northern South American population is in need of a new-generation cord blood bank that cryopreserves only units with high total nucleated cell content, thereby increasing the likelihood of use. Colombia set up a public cord blood bank in 2014; and, as a result of its research for improving high total nucleated cell content, a new strategy for UCB collection was developed. Data from 2933 collected and 759 cryopreserved cord blood units between 2014 and 2015 were analyzed. The correlation of donor and collection variables with cellularity was evaluated. Moreover, blood volume, cell content, CD34+ count, clonogenic capacity, and microbial contamination were assessed comparing the new method, which combines in utero and ex utero techniques, with the conventional strategies. Multivariate analysis confirmed a correlation between neonatal birth weight and cell content. The new collection method increased total nucleated cell content in approximately 26% and did not alter pre-cryopreservation and post-thaw cell recovery, viability, or clonogenic ability. Furthermore, it showed a remarkably low microbial contamination rate (1.2%). The strategy for UCB collection developed at the first Colombian public cord blood bank increases total nucleated cell content and does not affect unit quality. The existence of this bank is a remarkable breakthrough for Latin-American patients in need of this kind of transplantation. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.
Engineering microbial consortia to enhance biomining and bioremediation.
Brune, Karl D; Bayer, Travis S
2012-01-01
In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.
Engineering microbial consortia to enhance biomining and bioremediation
Brune, Karl D.; Bayer, Travis S.
2012-01-01
In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage. PMID:22679443
Lei, Xinjian; Piao, Xiangshu; Ru, Yingjun; Zhang, Hongyu; Péron, Alexandre; Zhang, Huifang
2015-01-01
The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein. PMID:25557820
NASA Astrophysics Data System (ADS)
Kresnowati, M. T. A. P.; Listianingrum, Zaenudin, Ahmad; Trihatmoko, Kharisrama
2015-12-01
The processing of cassava into fermented cassava flour (fercaf) or the widely known as modified cassava flour (mocaf) presents an alternative solution to improve the competitiveness of local foods and to support national food security. However, the mass production of fercaf is being limited by several problems, among which is the availability of starter cultures. This paper presents the mapping of the effect of microbial starter compositions on the nutritional content of fercaf in order to obtain the suitable nutritional composition. Based on their enzymatic activities, the combination of Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae were tested during the study. In addition, commercial starter was also tested. During the fermentation, the dynamics in microbial population were measured as well as changes in cyanogenic glucoside content. The microbial starter composition was observed to affect the dynamics in microbial populationcynaogenic glucoside content of the produced fercaf. In general, steady state microbial population was reached within 12 hours of fermentation. Cyanogenic glucoside was observed to decrease along the fermentation.
SNP-VISTA: An Interactive SNPs Visualization Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nameeta; Teplitsky, Michael V.; Pennacchio, Len A.
2005-07-05
Recent advances in sequencing technologies promise better diagnostics for many diseases as well as better understanding of evolution of microbial populations. Single Nucleotide Polymorphisms(SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it is possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease and then screen for causative mutations.In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmentalmore » samples makes possible more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at http://genome.lbl.gov/vista/snpvista.« less
Metabolic heterogeneity in clonal microbial populations.
Takhaveev, Vakil; Heinemann, Matthias
2018-02-21
In the past decades, numerous instances of phenotypic diversity were observed in clonal microbial populations, particularly, on the gene expression level. Much less is, however, known about phenotypic differences that occur on the level of metabolism. This is likely explained by the fact that experimental tools probing metabolism of single cells are still at an early stage of development. Here, we review recent exciting discoveries that point out different causes for metabolic heterogeneity within clonal microbial populations. These causes range from ecological factors and cell-inherent dynamics in constant environments to molecular noise in gene expression that propagates into metabolism. Furthermore, we provide an overview of current methods to quantify the levels of metabolites and biomass components in single cells. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.
Lenski, Richard E
2017-10-01
Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.
Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system.
Wang, Sih-Yu; Kuo, Yu-Chia; Hong, Andy; Chang, Yu-Min; Kao, Chih-Ming
2016-12-01
Lubricant and diesel oil-polluted sites are difficult to remediate because they have less volatile and biodegradable characteristics. The goal of this research was to evaluate the potential of applying an enhanced landfarming to bioremediate soils polluted by lubricant and diesel. Microcosm study was performed to evaluate the optimal treatment conditions with the addition of different additives (nutrients, addition of activated sludge from oil-refining wastewater facility, compost, TPH-degrading bacteria, and fern chips) to enhance total petroleum hydrocarbon (TPH) removal. To simulate the aerobic landfarming biosystem, air in the microcosm headspace was replaced once a week. Results demonstrate that the additives of activated sludge and compost could result in the increase in soil microbial populations and raise TPH degradation efficiency (up to 83% of TPH removal with 175 days of incubation) with initial (TPH = 4100 mg/kg). The first-order TPH degradation rate reached 0.01 1/d in microcosms with additive of activated sludge (mass ratio of soil to inocula = 50:1). The soil microbial communities were determined by nucleotide sequence analyses and 16S rRNA-based denatured gradient gel electrophoresis. Thirty-four specific TPH-degrading bacteria were detected in microcosm soils. Chromatograph analyses demonstrate that resolved peaks were more biodegradable than unresolved complex mixture. Results indicate that more aggressive remedial measures are required to enhance the TPH biodegradation, which included the increase of (1) microbial population or TPH-degrading bacteria, (2) biodegradable carbon sources, (3) nutrient content, and (4) soil permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of alkyl polyglycoside (APG) on composting of agricultural wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Fabao; Gu Wenjie, E-mail: guwenjie1982@yahoo.cn; Xu Peizhi
2011-06-15
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into amore » compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.« less
Effects of alkyl polyglycoside (APG) on composting of agricultural wastes.
Zhang, Fabao; Gu, Wenjie; Xu, Peizhi; Tang, Shuanhu; Xie, Kaizhi; Huang, Xu; Huang, Qiaoyi
2011-06-01
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a "green" surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wanapat, M; Cherdthong, A; Pakdee, P; Wanapat, S
2008-12-01
This experiment was conducted to investigate the effect of lemongrass [Cymbopogon citratus (DC.) Stapf.] powder (LGP) on rumen ecology, rumen microorganisms, and digestibility of nutrients. Four ruminally fistulated crossbred (Brahman native) beef cattle were randomly assigned according to a 4 x 4 Latin square design. The dietary treatments were LGP supplementation at 0, 100, 200, and 300 g/d with urea-treated rice straw (5%) fed to allow ad libitum intake. Digestibilities of DM, ether extract, and NDF were significantly different among treatments and were greatest at 100 g/d of supplementation. However, digestibility of CP was decreased with LGP supplementation (P < 0.05), whereas ruminal NH(3)-N and plasma urea N were decreased with incremental additions of LGP (P < 0.05). Ruminal VFA concentrations were similar among supplementation concentrations (P > 0.05). Total viable bacteria, amylolytic bacteria, and cellulolytic bacteria were significantly different among treatments and were greatest at 100 g/d of supplementation (4.7 x 10(9), 1.7 x 10(7), and 2.0 x 10(9) cfu/mL, respectively). Protozoal populations were significantly decreased by LGP supplementation. In addition, efficiency of rumen microbial N synthesis based on OM truly digested in the rumen was enriched by LGP supplementation, especially at 100 g/d (34.2 g of N/kg of OM truly digested in the rumen). Based on this study, it could be concluded that supplementation of LGP at 100 g/d improved digestibilities of nutrients, rumen microbial population, and microbial protein synthesis efficiency, thus improving rumen ecology in beef cattle.
Effect of postharvest practices including degreening on citrus carpoplane microbial biomes.
Gomba, A; Chidamba, L; Korsten, L
2017-04-01
To investigate the effect of commercial citrus packhouse processing steps on the fruit surface microbiome of Clementines and Palmer navel oranges. Viable bacteria, yeast and fungi counts, and the pyrosequencing analysis of the 16S rRNA and ITS were used to evaluate the community structure and population dynamics of phylloepiphytic bacteria and fungi associated with commercial postharvest processing. Drenching significantly reduced microbial counts in all cases except for yeasts on navels, while the extent of degreening effects varied between the citrus varieties. Pyrosequencing analysis showed a total of 4409 bacteria and 5792 fungi nonchimeric unique sequences with an average of 1102 bacteria and 1448 fungi reads per sample. Dominant phyla on the citrus carpoplane were Proteobacteria (53·5%), Actinobacteria (19·9%), Bacteroidetes (5·6%) and Deinococcus-Thermus (5·4%) for bacteria and Ascomycota (80·5%) and Basidiomycota (9·8%) for fungi. Beginning with freshly harvested fruit fungal diversity declined significantly after drenching, but had little effect on bacteria and populations recovered during degreening treatments, including those for Penicillium sp. Packhouse processing greatly influences microbial communities on the citrus carpoplane. A broad orange biome was described with pyrosequencing and gave insight into the likely survival and persistence of pathogens, especially as they may affect the quality and safety of the packed product. A close examination of the microbiota of fruit and the impact of intervention strategies on the ecological balance may provide a more durable approach to reduce losses and spoilage. © 2017 The Society for Applied Microbiology.
Tillage system affects microbiological properties of soil
NASA Astrophysics Data System (ADS)
Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.
2012-04-01
Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the Shannon (H') and Gini (1-G) diversity index of microbial communities were determined in soil samples (0-10 cm depth) taken in autumn 2009. All the enzymatic activities and the biomass estimated by viable cell counting were significantly higher under no-till than under conventional tillage. However, only fluorescents pseudomonas population was increased under no-till, meanwhile oligotrophic bacteria and actinomycetes populations were higher with conventional tillage than with no-till. Overall, there was a higher use all the group of carbon sources used in the BiologR test with conventional tillage than with no-till, by except amines and phenols which showed non-significant differences. This reveals different physiological profiles in the microbial communities under both tillage systems. The Gini diversity was significantly lower with no-till than with conventional tillage. It can be concluded that no-till increases microbial biomass in soil and subsequently enzymatic activities likely ascribed to an increased organic matter content. Under low availability of hydrocarbon sources in soil due to conventional tillage, which promotes a decrease in the organic matter content of the soil, populations of oligotrophods and the diversity of microbial communities are increased. Under these conditions, there must not be dominant carbon sources promoting the selection of microorganisms with a given physiological profile. The reduced hydrocarbon availability and the higher diversity contribute to explain the increased use of carbon sources used in Biolog with conventional tillage than with no-till.
Microbial community and performance of slaughterhouse wastewater treatment filters.
Stets, M I; Etto, R M; Galvão, C W; Ayub, R A; Cruz, L M; Steffens, M B R; Barana, A C
2014-06-16
The performance of anaerobic filter bioreactors (AFs) is influenced by the composition of the substrate, support medium, and the microbial species present in the sludge. In this study, the efficiency of a slaughterhouse effluent treatment using three AFs containing different support media was tested, and the microbial diversity was investigated by amplified ribosomal DNA restriction analysis and 16S rRNA gene sequencing. The physicochemical analysis of the AF systems tested suggested their feasibility, with rates of chemical oxygen demand removal of 72±8% in hydraulic retention times of 1 day. Analysis of pH, alkalinity, volatile acidity, total solids, total volatile solids, total Kjeldahl nitrogen, and the microbial community structures indicated high similarity among the three AFs. The composition of prokaryotic communities showed a prevalence of Proteobacteria (27.3%) and Bacteroidetes (18.4%) of the Bacteria domain and Methanomicrobiales (36.4%) and Methanosarcinales (35.3%) of the Archaea domain. Despite the high similarity of the microbial communities among the AFs, the reactor containing pieces of clay brick as a support medium presented the highest richness and diversity of bacterial and archaeal operational taxonomic units.
Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake.
Navarro, Jason B; Moser, Duane P; Flores, Andrea; Ross, Christian; Rosen, Michael R; Dong, Hailiang; Zhang, Gengxin; Hedlund, Brian P
2009-02-01
Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by approximately 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of approximately 1x10(6) cells ml(-1) of culturable heterotrophs was replaced by a dense population of more than 1x10(9) cells ml(-1), which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria.
Bacterial succession within an ephemeral hypereutrophic mojave desert playa lake
Navarro, J.B.; Moser, D.P.; Flores, A.; Ross, C.; Rosen, Michael R.; Dong, H.; Zhang, G.; Hedlund, B.P.
2009-01-01
Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of 1 ?????106 cells ml-1 of culturable heterotrophs was replaced by a dense population of more than 1????????109 cells ml-1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. ?? 2008 Springer Science+Business Media, LLC.
NASA Technical Reports Server (NTRS)
Des Marais, David J.
2003-01-01
Photosynthetic microbial mats are remarkably complete self-sustaining ecosystems at the millimeter scale, yet they have substantially affected environmental processes on a planetary scale. These mats may be direct descendents of the most ancient biological communities in which even oxygenic photosynthesis might have developed. Photosynthetic mats are excellent natural laboratories to help us to learn how microbial populations associate to control dynamic biogeochemical gradients.
NASA Astrophysics Data System (ADS)
Emerson, J. B.; Brum, J. R.; Roux, S.; Bolduc, B.; Woodcroft, B. J.; Singleton, C. M.; Boyd, J. A.; Hodgkins, S. B.; Wilson, R.; Trubl, G. G.; Jang, H. B.; Crill, P. M.; Chanton, J.; Saleska, S. R.; Rich, V. I.; Tyson, G. W.; Sullivan, M. B.
2016-12-01
Methane and carbon dioxide emissions, which are under significant microbial control, provide positive feedbacks to climate change in thawing permafrost peatlands. Although viruses in marine systems have been shown to impact microbial ecology and biogeochemical cycling through host cell lysis, horizontal gene transfer, and auxiliary metabolic gene expression, viral ecology in permafrost and other soils remains virtually unstudied due to methodological challenges. Here, we identified viral sequences in 208 assembled bulk soil metagenomes derived from a permafrost thaw gradient in Stordalen Mire, northern Sweden, from 2010-2012. 2,048 viral populations were recovered, which genome- and network-based classification revealed to be largely novel, increasing known viral genera globally by 40%. Ecologically, viral communities differed significantly across the thaw gradient and by soil depth. Co-occurring microbial community composition, soil moisture, and pH were predictors of viral community composition, indicative of biological and biogeochemical feedbacks as permafrost thaws. Host prediction—achieved through clustered regularly interspaced short palindromic repeats (CRISPRs), tetranucleotide frequency patterns, and other sequence similarities to binned microbial population genomes—was able to link 38% of the viral populations to a microbial host. 5% of the implicated hosts were archaea, predominantly methanogens and ammonia-oxidizing Nitrososphaera, 45% were Acidobacteria or Verrucomicrobia (mostly predicted heterotrophic complex carbon degraders), and 21% were Proteobacteria, including methane oxidizers. Recovered viral genome fragments also contained auxiliary metabolic genes involved in carbon and nitrogen cycling. Together, these data reveal multiple levels of previously unknown viral contributions to biogeochemical cycling, including to carbon gas emissions, in peatland soils undergoing and contributing to climate change. This work represents a significant step towards understanding viral roles in microbially-mediated biogeochemical cycling in soil.
Zhang, Qian; Wu, Junjun; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli
2016-11-04
The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and adjacent uncultivated soils in central China. We also investigated soil organic carbon and nitrogen (SOC and SON), labile carbon and nitrogen (LC and LN), recalcitrant carbon and nitrogen (RC and RN), pH, moisture, and temperature. Afforestation averaged higher microbial PLFA biomass compared with cropland and uncultivated soils with higher values in top soils than deep soils. The microbial PLFA biomass was strongly correlated with SON and LC. Higher SOC, SON, LC, LN, moisture and lower pH in afforested soils could be explained approximately 87.3% of total variation of higher total PLFAs. Afforestation also enhanced the F: B ratios compared with cropland. The basal microbial respiration was higher while the basal microbial respiration on a per-unit-PLFA basis was lower in afforested land than adjacent cropland and uncultivated land, suggesting afforestation may increase soil C utilization efficiency and decrease respiration loss in afforested soils.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wu, Junjun; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli
2016-11-01
The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and adjacent uncultivated soils in central China. We also investigated soil organic carbon and nitrogen (SOC and SON), labile carbon and nitrogen (LC and LN), recalcitrant carbon and nitrogen (RC and RN), pH, moisture, and temperature. Afforestation averaged higher microbial PLFA biomass compared with cropland and uncultivated soils with higher values in top soils than deep soils. The microbial PLFA biomass was strongly correlated with SON and LC. Higher SOC, SON, LC, LN, moisture and lower pH in afforested soils could be explained approximately 87.3% of total variation of higher total PLFAs. Afforestation also enhanced the F: B ratios compared with cropland. The basal microbial respiration was higher while the basal microbial respiration on a per-unit-PLFA basis was lower in afforested land than adjacent cropland and uncultivated land, suggesting afforestation may increase soil C utilization efficiency and decrease respiration loss in afforested soils.
Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente
2014-08-01
Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.
Mangrove succession enriches the sediment microbial community in South China
Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai
2016-01-01
Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession. PMID:27265262
Mangrove succession enriches the sediment microbial community in South China.
Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai
2016-06-06
Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.
Microbial quality of agricultural water in Central Florida
Topalcengiz, Zeynal; Strawn, Laura K.
2017-01-01
The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface waters in the field. PMID:28399144
Microbial quality of agricultural water in Central Florida.
Topalcengiz, Zeynal; Strawn, Laura K; Danyluk, Michelle D
2017-01-01
The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface waters in the field.
Tracking microbial colonization patterns associated with micro-environments of rice
NASA Astrophysics Data System (ADS)
Schmidt, Hannes; Eickhorst, Thilo
2015-04-01
The interface between soil and roots (i.e. the rhizosphere) represents a highly dynamic micro-environment for microbial populations. Root-derived compounds are released into the rhizosphere and may attract, stimulate, or inhibit native soil microorganisms. Microbes associated with the rhizosphere, in turn, may have deleterious, neutral, or promoting effects on the plant. Such influences of microbial populations on the plant and vice versa are likely to be greatest in close vicinity to the root surface. It is therefore essential to detect and visualize preferential micro-sites of microbial root colonization to identify potential areas of microbe-plant interaction. We present a single-cell based approach allowing for the localization, quantification, and visualization of native microbial populations in the rhizosphere and on the rhizoplane of soil-grown roots in situ. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with confocal laser scanning microscopy was applied to observe colonization densities and patterns of microbial populations associated with wetland rice. Hybridizations with domain- and phylum-specific oligonucleotide probes showed that the growth stage of the rice plant as well as the distance to the root surface had a strong influence on microbial colonization patterns. Three-dimensional visualizations of root-associated microbes revealed micro-sites of preferential colonization. Highest cell numbers of archaea and bacteria were found at flowering stage of rice plant development. Irregular distribution patterns of microbiota observed at early growth stages shifted towards more uniform colonization with plant age. Accordingly, the highest colonization densities shifted from the tip to more mature regions of rice roots. Methanogenic archaea and methanotrophic bacteria were found to be co-localized at basal regions of lateral roots. Beneficial effects of a close association with root surfaces were indicated by proportionally higher numbers of methane-oxidizing bacteria on the rhizoplane compared to the rhizosphere. Such spatial effects could not be observed for methanogenic archaea. As a consequence, the detection and visualization of microbial colonization patterns on a micro-scale via CARD-FISH represents an instrumental approach in revealing potential sites of interaction between microbes and plants in soil micro-environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nostrand, J.D. Van; Wu, L.; Wu, W.M.
2010-08-15
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter{sup -1}). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed thatmore » Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.« less
Evolutionary ecology of pungency in wild chilies
Tewksbury, Joshua J.; Reagan, Karen M.; Machnicki, Noelle J.; Carlo, Tomás A.; Haak, David C.; Peñaloza, Alejandra Lorena Calderón; Levey, Douglas J.
2008-01-01
The primary function of fruit is to attract animals that disperse viable seeds, but the nutritional rewards that attract beneficial consumers also attract consumers that kill seeds instead of dispersing them. Many of these unwanted consumers are microbes, and microbial defense is commonly invoked to explain the bitter, distasteful, occasionally toxic chemicals found in many ripe fruits. This explanation has been criticized, however, due to a lack of evidence that microbial consumers influence fruit chemistry in wild populations. In the present study, we use wild chilies to show that chemical defense of ripe fruit reflects variation in the risk of microbial attack. Capsaicinoids are the chemicals responsible for the well known pungency of chili fruits. Capsicum chacoense is naturally polymorphic for the production of capsaicinoids and displays geographic variation in the proportion of individual plants in a population that produce capsaicinoids. We show that this variation is directly linked to variation in the damage caused by a fungal pathogen of chili seeds. We find that Fusarium fungus is the primary cause of predispersal chili seed mortality, and we experimentally demonstrate that capsaicinoids protect chili seeds from Fusarium. Further, foraging by hemipteran insects facilitates the entry of Fusarium into fruits, and we show that variation in hemipteran foraging pressure among chili populations predicts the proportion of plants in a population producing capsaicinoids. These results suggest that the pungency in chilies may be an adaptive response to selection by a microbial pathogen, supporting the influence of microbial consumers on fruit chemistry. PMID:18695236
2013-01-01
Background The composition of the microbiota of the equine intestinal tract is complex. Determining whether the microbial composition of fecal samples is representative of proximal compartments of the digestive tract could greatly simplify future studies. The objectives of this study were to compare the microbial populations of the duodenum, ileum, cecum, colon and rectum (feces) within and between healthy horses, and to determine whether rectal (fecal) samples are representative of proximal segments of the gastrointestinal tract. Intestinal samples were collected from ten euthanized horses. 16S rRNA gene PCR-based TRFLP was used to investigate microbiota richness in various segments of the gastrointestinal tract, and dice similarity indices were calculated to compare the samples. Results Within horses large variations of microbial populations along the gastrointestinal tract were seen. The microbiota in rectal samples was only partially representative of other intestinal compartments. The highest similarity was obtained when feces were compared to the cecum. Large compartmental variations were also seen when microbial populations were compared between six horses with similar dietary and housing management. Conclusion Rectal samples were not entirely representative of intestinal compartments in the small or large intestine. This should be taken into account when designing studies using fecal sampling to assess other intestinal compartments. Similarity between horses with similar dietary and husbandry management was also limited, suggesting that parts of the intestinal microbiota were unique to each animal in this study. PMID:23497580
Van Nostrand, Joy D.; Wu, Liyou; Wu, Wei-Min; Huang, Zhijian; Gentry, Terry J.; Deng, Ye; Carley, Jack; Carroll, Sue; He, Zhili; Gu, Baohua; Luo, Jian; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.; Marsh, Terence L.; Tiedje, James M.; Hazen, Terry C.; Zhou, Jizhong
2011-01-01
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter−1). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process. PMID:21498771
NASA Technical Reports Server (NTRS)
Roman, Monsi C.; Wieland, Paul O.
2005-01-01
Since January 1999, the chemical the International Space Station Thermal Control System (IATCS) and microbial state of (ISS) Internal Active fluid has been monitored by analysis of samples returned to Earth. Key chemical parameters have changed over time, including a drop in pH from the specified 9.5 +/- 0.5 ta = 58.4, an increase in the level of total inorganic carbon (TIC), total organic carbon (TOC) and dissolved nickel (Ni) in the fluid, and a decrease in the phosphate (PO,) level. In addition, silver (AS) ion levels in the fluid decreased rapidly as Ag deposited on internal metallic surfaces of the system. The lack of available Ag ions coupled with changes in the fluid chemistry has resulted in a favorable environment for microbial growth. Counts of heterotrophic bacteria have increased from less than 10 colony-forming units (CFUs)/l00 mL to l0(exp 6) to l0(exp 7) CFUs/100 mL. The increase of the microbial population is of concern because uncontrolled microbiological growth in the IATCS can contribute to deterioration in the performance of critical components within the system and potentially impact human health if opportunistic pathogens become established and escape into the cabin atmosphere. Micro-organisms can potentially degrade the coolant chemistry; attach to surfaces and form biofilms; lead to biofouling of filters, tubing, and pumps; decrease flow rates; reduce heat transfer; initiate and accelerate corrosion; and enhance mineral scale formation. The micro- biological data from the ISS IATCS fluid, and approaches to addressing the concerns, are summarized in this paper.
Nitrification at different salinities: Biofilm community composition and physiological plasticity.
Gonzalez-Silva, Blanca M; Jonassen, Kjell Rune; Bakke, Ingrid; Østgaard, Kjetill; Vadstein, Olav
2016-05-15
This paper describes an experimental study of microbial communities of three moving bed biofilm reactors (MBBR) inoculated with nitrifying cultures originated from environments with different salinity; freshwater, brackish (20‰) and seawater. All reactors were run until they operated at a conversion efficiency of >96%. The microbial communities were profiled using 454-pyrosequencing of 16S rRNA gene amplicons. Statistical analysis was used to investigate the differences in microbial community structure and distribution of the nitrifying populations with different salinity environments. Nonmetric multidimensional scaling analysis (NMDS) and the PERMANOVA test based on Bray-Curtis similarities revealed significantly different community structure in the three reactors. The brackish reactor showed lower diversity index than fresh and seawater reactors. Venn diagram showed that 60 and 78% of the total operational taxonomic units (OTUs) in the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) guild, respectively, were unique OTUs for a given reactor. Similarity Percentages (SIMPER) analysis showed that two-thirds of the total difference in community structure between the reactors was explained by 10 OTUs, indicating that only a small number of OTUs play a numerically dominant role in the nitrification process. Acute toxicity of salt stress on ammonium and nitrite oxidizing activities showed distinctly different patterns, reaching 97% inhibition of the freshwater reactor for ammonium oxidation rate. In the brackish culture, inhibition was only observed at maximal level of salinity, 32‰. In the fully adapted seawater culture, higher activities were observed at 32‰ than at any of the lower salinities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Durso, Lisa M; Harhay, Gregory P; Bono, James L; Smith, Timothy P L
2011-02-01
The bovine fecal microbiota impacts human food safety as well as animal health. Although the bacteria of cattle feces have been well characterized using culture-based and culture-independent methods, techniques have been lacking to correlate total community composition with community function. We used high throughput sequencing of total DNA extracted from fecal material to characterize general community composition and examine the repertoire of microbial genes present in beef cattle feces, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that traditional 16S sequencing using "universal" primers to generate full-length sequence may under represent Acitinobacteria and Proteobacteria. Over eight percent (8.4%) of the sequences from our beef cattle fecal pool sample could be categorized as virulence genes, including a suite of genes associated with resistance to antibiotic and toxic compounds (RATC). This is a higher proportion of virulence genes found in Sargasso sea, chicken cecum, and cow rumen samples, but comparable to the proportion found in Antarctic marine derived lake, human fecal, and farm soil samples. The quantitative nature of metagenomic data, combined with the large number of RATC classes represented in samples from widely different habitats indicates that metagenomic data can be used to track relative amounts of antibiotic resistance genes in individual animals over time. Consequently, these data can be used to generate sample-specific and temporal antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats. Published by Elsevier B.V.
Karam, D. S.; Arifin, A.; Radziah, O.; Shamshuddin, J.; Majid, N. M.; Hazandy, A. H.; Zahari, I.; Nor Halizah, A. H.; Rui, T. X.
2012-01-01
Deforestation leads to the deterioration of soil fertility which occurs rapidly under tropical climates. Forest rehabilitation is one of the approaches to restore soil fertility and increase the productivity of degraded areas. The objective of this study was to evaluate and compare soil biological properties under enrichment planting and secondary forests at Tapah Hill Forest Reserve, Perak after 42 years of planting. Both areas were excessively logged in the 1950s and left idle without any appropriate forest management until 1968 when rehabilitation program was initiated. Six subplots (20 m × 20 m) were established within each enrichment planting (F1) and secondary forest (F2) plots, after which soil was sampled at depths of 0–15 cm (topsoil) and 15–30 cm (subsoil). Results showed that total mean microbial enzymatic activity, as well as biomass C and N content, was significantly higher in F1 compared to F2. The results, despite sample variability, suggest that the rehabilitation program improves the soil biological activities where high rate of soil organic matter, organic C, N, suitable soil acidity range, and abundance of forest litter is believed to be the predisposing factor promoting higher population of microbial in F1 as compared to F2. In conclusion total microbial enzymatic activity, biomass C and biomass N evaluation were higher in enrichment planting plot compared to secondary forest. After 42 years of planting, rehabilitation or enrichment planting helps to restore the productivity of planted forest in terms of biological parameters. PMID:22606055
Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.
2004-01-01
In this study, the composition of the metabolically active fraction of the microbial community occurring in Gulf of Mexico marine sediments (water depth, 550 to 575 m) with overlying filamentous bacterial mats was determined. The mats were mainly composed of either orange- or white-pigmented Beggiatoa spp. Complementary 16S ribosomal DNA (crDNA) was obtained from rRNA extracted from three different sediment depths (0 to 2, 6 to 8, and 10 to 12 cm) that had been subjected to reverse transcription-PCR amplification. Domain-specific 16S PCR primers were used to construct 12 different 16S crDNA libraries containing 333 Archaea and 329 Bacteria clones. Analysis of the Archaea clones indicated that all sediment depths associated with overlying orange- and white-pigmented microbial mats were almost exclusively dominated by ANME-2 (95% of total Archaea clones), a lineage related to the methanogenic order Methanosarcinales. In contrast, bacterial diversity was considerably higher, with the dominant phylotype varying by sediment depth. An equivalent number of clones detected at 0 to 2 cm, representing a total of 93%, were related to the γ and δ classes of Proteobacteria, whereas clones related to δ-Proteobacteria dominated the metabolically active fraction of the bacterial community occurring at 6 to 8 cm (79%) and 10 to 12 cm (85%). This is the first phylogenetics-based evaluation of the presumptive metabolically active fraction of the Bacteria and Archaea community structure investigated along a sediment depth profile in the northern Gulf of Mexico, a hydrocarbon-rich cold-seep region. PMID:15345432
Chang, Ho-Won; Sung, Youlboong; Kim, Kyoung-Ho; Nam, Young-Do; Roh, Seong Woon; Kim, Min-Soo; Jeon, Che Ok; Bae, Jin-Woo
2008-08-15
A crucial problem in the use of previously developed genome-probing microarrays (GPM) has been the inability to use uncultivated bacterial genomes to take advantage of the high sensitivity and specificity of GPM in microbial detection and monitoring. We show here a method, digital multiple displacement amplification (MDA), to amplify and analyze various genomes obtained from single uncultivated bacterial cells. We used 15 genomes from key microbes involved in dichloromethane (DCM)-dechlorinating enrichment as microarray probes to uncover the bacterial population dynamics of samples without PCR amplification. Genomic DNA amplified from single cells originating from uncultured bacteria with 80.3-99.4% similarity to 16S rRNA genes of cultivated bacteria. The digital MDA-GPM method successfully monitored the dynamics of DCM-dechlorinating communities from different phases of enrichment status. Without a priori knowledge of microbial diversity, the digital MDA-GPM method could be designed to monitor most microbial populations in a given environmental sample.
Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro
2016-02-01
Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Marine, Rachel; McCarren, Coleen; Vorrasane, Vansay; Nasko, Dan; Crowgey, Erin; Polson, Shawn W; Wommack, K Eric
2014-01-30
Shotgun metagenomics has become an important tool for investigating the ecology of microorganisms. Underlying these investigations is the assumption that metagenome sequence data accurately estimates the census of microbial populations. Multiple displacement amplification (MDA) of microbial community DNA is often used in cases where it is difficult to obtain enough DNA for sequencing; however, MDA can result in amplification biases that may impact subsequent estimates of population census from metagenome data. Some have posited that pooling replicate MDA reactions negates these biases and restores the accuracy of population analyses. This assumption has not been empirically tested. Using mock viral communities, we examined the influence of pooling on population-scale analyses. In pooled and single reaction MDA treatments, sequence coverage of viral populations was highly variable and coverage patterns across viral genomes were nearly identical, indicating that initial priming biases were reproducible and that pooling did not alleviate biases. In contrast, control unamplified sequence libraries showed relatively even coverage across phage genomes. MDA should be avoided for metagenomic investigations that require quantitative estimates of microbial taxa and gene functional groups. While MDA is an indispensable technique in applications such as single-cell genomics, amplification biases cannot be overcome by combining replicate MDA reactions. Alternative library preparation techniques should be utilized for quantitative microbial ecology studies utilizing metagenomic sequencing approaches.
NASA Astrophysics Data System (ADS)
Moser, D. P.; Hamilton-Brehm, S.; Zhang, G.; Fisher, J.; Hughes, K.; Wheatley, A.; Thomas, J.; Zavarin, M.; Roberts, S. K.; Kryder, L.; McRae, R.; Howard, W.; Walker, J.; Federwisch, R.; King, M.; Friese, R.; Grim, S.; Amend, J.; Momper, L.; Sherwood Lollar, B.; Onstott, T. C.
2013-12-01
Recent decades have revealed anaerobic microbial ecosystems across a range of deep, continental settings; however, aerobic, regional aquifers represent a little-studied habitat for deep life. The US' Basin and Range Province is an extensional zone defined by deep, interconnected fracture systems that span multiple hydrologic basins and host regional aquifers. Here we describe a multi-basin microbiological assessment, applied to the Death Valley Regional Flow System (DVRFS). Our group has surveyed more than thirty deep boreholes (~ 1,000 m depth average) and deeply-sourced springs across a ~170 km inferred flow path from recharge areas in volcanic and carbonate rock highlands of the Nevada National Security Site (NNSS) and the Spring Mountains to discharge zones in Oasis, Amargosa, and Death Valleys. DVRFS waters were characterized by temperatures of 30 - 50 oC and the presence of dissolved O2 (4 - 8 mg/L in the recharge areas and ~0.2 - 2 mg/L in the discharge zones). Planktonic microbial populations, as tracked by molecular DNA approaches (e.g. 454 pyrotag), were of low abundance (e.g. ~ 10e3 ~10e6 per mL) and dominated by Proteobacteria and Nitrospirae. Archaea were also present and dominated by novel Thaumarchaeotes. Patterns of microbial diversity and the hypothesis that these patterns may have utility for recognition of hydrologic connectivity were assessed by statistical tools. At the species level, cosmopolitan, system-wide, and flow-path-specific groupings of both bacteria and archaea were detected. Even when in close proximity to aerobic springs and wells, sites sampling deep, hot, anaerobic groundwaters possessed completely distinct microbial populations (e.g. dominance by Firmicutes, ANME, and predicted methanogens). Among methodological refinements developed from this work, the repeated sampling of one deep borehole over a month-long pump test revealed that well-bore-associated contaminants required several days of pumping for complete removal and enabled the identification of the specific depth that produced most of the water. Our results reveal details of microbial community structure for a common, but little-studied microbial ecosystem and support the concept that regional flow systems possess distinct microbial populations, consistent with their geochemical and hydrologic characteristics. These results generally support the concept that microbial populations may have utility as amplifiable tracers for tracking the connectivity of fluids in the subsurface.
Microbial and chemical properties of log ponds along the Oregon Coast.
Iwan Ho; Ching Yan Li
1987-01-01
The microbial and chemical properties of log ponds along the Oregon coast were investigated. The log ponds were highly eutrophic, containing high concentrations of ammonium and nitrate nitrogen, phosphate, and organic compounds. Because of large microbial populations, the biochemical oxygen demand was high and dissolved oxygen was low. Bacterial species in log ponds...
USDA-ARS?s Scientific Manuscript database
The intensification and industrialization of animal agriculture throughout the world has led to considerable increases in animal production efficiencies but has also led to concerns that microbial pathogens, antibiotic residues, and other chemical contaminants could be concentrated in the environmen...
Diversity of anaerobic microbes in spacecraft assembly clean rooms.
Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L; Venkateswaran, Kasthuri
2010-05-01
Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Cindy
2015-07-17
The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.
Grange, Zoë L; Gartrell, Brett D; Biggs, Patrick J; Nelson, Nicola J; Anderson, Marti; French, Nigel P
2016-05-01
Isolation of wildlife into fragmented populations as a consequence of anthropogenic-mediated environmental change may alter host-pathogen relationships. Our understanding of some of the epidemiological features of infectious disease in vulnerable populations can be enhanced by the use of commensal bacteria as a proxy for invasive pathogens in natural ecosystems. The distinctive population structure of a well-described meta-population of a New Zealand endangered flightless bird, the takahe (Porphyrio hochstetteri), provided a unique opportunity to investigate the influence of host isolation on enteric microbial diversity. The genomic epidemiology of a prevalent rail-associated endemic commensal bacterium was explored using core genome and ribosomal multilocus sequence typing (rMLST) of 70 Campylobacter sp. nova 1 isolated from one third of the takahe population resident in multiple locations. While there was evidence of recombination between lineages, bacterial divergence appears to have occurred and multivariate analysis of 52 rMLST genes revealed location-associated differentiation of C. sp. nova 1 sequence types. Our results indicate that fragmentation and anthropogenic manipulation of populations can influence host-microbial relationships, with potential implications for niche adaptation and the evolution of micro-organisms in remote environments. This study provides a novel framework in which to explore the complex genomic epidemiology of micro-organisms in wildlife populations.
Martínez, M E; Ranilla, M J; Tejido, M L; Saro, C; Carro, M D
2010-08-01
Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of dietary characteristics on microbial populations and bacterial diversity. The purpose of the study was to assess how closely fermenters can mimic the differences between diets found in vivo. The 4 experimental diets contained forage to concentrate (F:C) ratios of 70:30 (high forage; HF) or 30:70 (high concentrate; HC) with either alfalfa hay (A) or grass hay (G) as the forage. Total bacterial numbers were greater in the rumen of sheep fed HF diets compared with those fed HC diets, whereas the opposite was found in fermenters. The numbers of cellulolytic bacteria were not affected by F:C ratio in any fermentation system, but cellulolytic numbers were 2.7 and 1.8 times greater in sheep than in fermenters for HF and HC diets, respectively. Neither total bacterial nor cellulolytic numbers were affected by the type of forage in sheep or fermenters. Decreasing F:C ratio increased total protozoa and Entodiniae numbers in sheep by about 29 and 25%, respectively, but it had no effect in fermenters. Isotrichidae and Ophryoscolecinae numbers in sheep were not affected by changing F:C ratio, but both disappeared completely from fermenters fed HC diets. Total protozoa and Entodiniae numbers were greater in sheep fed A diets than in those fed G diets, whereas the opposite was found in fermenters. Results indicate that under the conditions of the present study, protozoa population in Rusitec fermenters was not representative of that in the rumen of sheep fed the same diets. In addition, protozoa numbers in fermenters were 121 and 226 times lower than those in the sheep rumen for HF and HC diets, respectively. The automated ribosomal intergenic spacer analysis of the 16S ribosomal DNA was used to analyze the diversity of liquid- and solid-associated bacteria in both systems. A total of 170 peaks were detected in the automated ribosomal intergenic spacer analysis electropherograms of bacterial pellets across the full set of 64 samples, from which 160 were detected in at least 1 individual from each system (sheep or fermenter). Diversity of liquid-associated bacterial pellets was greater with G diets in fermenters but seemed to be unaffected by diet in sheep. Bacterial diversity in solid-associated bacteria pellets was greater for G diets compared with A diets in sheep and fermenters. Different conditions in the fermenters compared with sheep rumen might have caused a selection of some bacterial strains. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Specificity of marine microbial surface interactions.
Imam, S H; Bard, R F; Tosteson, T R
1984-01-01
The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293
Seo, Kyo Seong; Chang, Ho Nam; Park, Joong Kon; Choo, Kwang-Ho
2007-09-01
The biochemical oxygen demand (BOD) value is still a key parameter that can determine the level of organics, particularly the content of biodegradable organics in water. In this work, the effects of sample dilution, which should be done inevitably to get appropriate dissolved oxygen (DO) depletion, on the measurement of 5-day BOD (BOD(5)), was investigated with and without seeding using natural and synthetic water. The dilution effects were also evaluated for water samples taken in different seasons such as summer and winter because water temperature can cause a change in the types of microbial species, thus leading to different oxygen depletion profiles during BOD testing. The predation phenomenon between microbial cells was found to be dependent on the inorganic nutrients and carbon sources, showing a change in cell populations according to cell size after 5-day incubation. The dilution of water samples for BOD determination was linked to changes in the environment for microbial growth such as nutrition. The predation phenomenon between microbial cells was more important with less dilution. BOD(5) increased with the specific amount of inorganic nutrient per microbial mass when the natural water was diluted. When seeding was done for synthetic water samples, the seed volume also affected BOD due to the rate of organic uptake by microbes. BOD(5) increased with the specific bacterial population per organic source supplied at the beginning of BOD measurement. For more accurate BOD measurements, specific guidelines on dilution should be established.
Petri, Renee M; Schwaiger, Tyler; Penner, Greg B; Beauchemin, Karen A; Forster, Robert J; McKinnon, John J; McAllister, Tim A
2013-01-01
This study investigated the effect of diet and host on the rumen bacterial microbiome and the impact of an acidotic challenge on its composition. Using parallel pyrosequencing of the V3 hypervariable region of 16S rRNA gene, solid and liquid associated bacterial communities of 8 heifers were profiled. Heifers were exclusively fed forage, before being transitioned to a concentrate diet, subjected to an acidotic challenge and allowed to recover. Samples of rumen digesta were collected when heifers were fed forage, mixed forage, high grain, during challenge (4 h and 12 h) and recovery. A total of 560,994 high-quality bacterial sequences were obtained from the solid and liquid digesta. Using cluster analysis, prominent bacterial populations differed (P≤0.10) in solid and liquid fractions between forage and grain diets. Differences among hosts and diets were not revealed by DGGE, but real time qPCR showed that several bacteria taxon were impacted by changes in diet, with the exception of Streptococcus bovis. Analysis of the core rumen microbiome identified 32 OTU's representing 10 distinct bacterial taxa including Bacteroidetes (32.8%), Firmicutes (43.2%) and Proteobacteria (14.3%). Diversity of OTUs was highest with forage with 38 unique OTUs identified as compared to only 11 with the high grain diet. Comparison of the microbial profiles of clincial vs. subclinical acidotic heifers found a increases in the relative abundances of Acetitomaculum, Lactobacillus, Prevotella, and Streptococcus. Increases in Streptococcus and Lactobacillus likely reflect the tolerance of these species to low pH and their ability to proliferate on surplus fermentable carbohydrate. The acetogen, Acetitomaculum may thereforeplay a role in the conversion of lactate to acetate in acidotic animals. Further profiling of the bacterial populations associated with subclinical and clinical acidosis could establish a microbial fingerprint for these disorders and provide insight into whether there are causative microbial populations that could potentially be therapeutically manipulated.
Petri, Renee M.; Schwaiger, Tyler; Penner, Greg B.; Beauchemin, Karen A.; Forster, Robert J.; McKinnon, John J.; McAllister, Tim A.
2013-01-01
This study investigated the effect of diet and host on the rumen bacterial microbiome and the impact of an acidotic challenge on its composition. Using parallel pyrosequencing of the V3 hypervariable region of 16S rRNA gene, solid and liquid associated bacterial communities of 8 heifers were profiled. Heifers were exclusively fed forage, before being transitioned to a concentrate diet, subjected to an acidotic challenge and allowed to recover. Samples of rumen digesta were collected when heifers were fed forage, mixed forage, high grain, during challenge (4 h and 12 h) and recovery. A total of 560,994 high-quality bacterial sequences were obtained from the solid and liquid digesta. Using cluster analysis, prominent bacterial populations differed (P≤0.10) in solid and liquid fractions between forage and grain diets. Differences among hosts and diets were not revealed by DGGE, but real time qPCR showed that several bacteria taxon were impacted by changes in diet, with the exception of Streptococcus bovis. Analysis of the core rumen microbiome identified 32 OTU's representing 10 distinct bacterial taxa including Bacteroidetes (32.8%), Firmicutes (43.2%) and Proteobacteria (14.3%). Diversity of OTUs was highest with forage with 38 unique OTUs identified as compared to only 11 with the high grain diet. Comparison of the microbial profiles of clincial vs. subclinical acidotic heifers found a increases in the relative abundances of Acetitomaculum, Lactobacillus, Prevotella, and Streptococcus. Increases in Streptococcus and Lactobacillus likely reflect the tolerance of these species to low pH and their ability to proliferate on surplus fermentable carbohydrate. The acetogen, Acetitomaculum may thereforeplay a role in the conversion of lactate to acetate in acidotic animals. Further profiling of the bacterial populations associated with subclinical and clinical acidosis could establish a microbial fingerprint for these disorders and provide insight into whether there are causative microbial populations that could potentially be therapeutically manipulated. PMID:24391765
SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium.
Chen, Ye; Kim, Jae Kyoung; Hirning, Andrew J; Josić, Krešimir; Bennett, Matthew R
2015-08-28
A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types—an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types. Copyright © 2015, American Association for the Advancement of Science.
Li, Ping; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Zhou; Jiang, Dawei; Wang, Shang; Jiang, Hongchen; Wang, Yanxin; Dong, Hailiang
2015-01-01
A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12–267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4 2-, SO4 2-/total sulfur ratio, and Fe2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia. PMID:25970606
Li, Ping; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Zhou; Jiang, Dawei; Wang, Shang; Jiang, Hongchen; Wang, Yanxin; Dong, Hailiang
2015-01-01
A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-), SO4(2-)/total sulfur ratio, and Fe(2+) were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.
Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.
2016-01-01
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy. PMID:27666199
Kearns, Patrick J; Angell, John H; Howard, Evan M; Deegan, Linda A; Stanley, Rachel H R; Bowen, Jennifer L
2016-09-26
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.
Mazutti, Marcio A; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Débora; Di Luccio, Marco; Rodrigues, Maria Isabel; Maugeri, Francisco; Treichel, Helen
2010-04-01
This work investigated the growth of Kluyveromyces marxianus NRRL Y-7571 in solid-state fermentation in a medium composed of sugarcane bagasse, molasses, corn steep liquor and soybean meal within a packed-bed bioreactor. Seven experimental runs were carried out to evaluate the effects of flow rate and inlet air temperature on the following microbial rates: cell mass production, total reducing sugar and oxygen consumption, carbon dioxide and ethanol production, metabolic heat and water generation. A mathematical model based on an artificial neural network was developed to predict the above-mentioned microbial rates as a function of the fermentation time, initial total reducing sugar concentration, inlet and outlet air temperatures. The results showed that the microbial rates were temperature dependent for the range 27-50 degrees C. The proposed model efficiently predicted the microbial rates, indicating that the neural network approach could be used to simulate the microbial growth in SSF.
NASA Astrophysics Data System (ADS)
Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.
2016-09-01
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.
O'Sullivan, Daniel J.; O'Sullivan, Orla; McSweeney, Paul L. H.; Sheehan, Jeremiah J.
2015-01-01
We sought to determine if the time, within a production day, that a cheese is manufactured has an influence on the microbial community present within that cheese. To facilitate this, 16S rRNA amplicon sequencing was used to elucidate the microbial community dynamics of brine-salted continental-type cheese in cheeses produced early and late in the production day. Differences in the microbial composition of the core and rind of the cheese were also investigated. Throughout ripening, it was apparent that cheeses produced late in the day had a more diverse microbial population than their early equivalents. Spatial variation between the cheese core and rind was also noted in that cheese rinds were initially found to have a more diverse microbial population but thereafter the opposite was the case. Interestingly, the genera Thermus, Pseudoalteromonas, and Bifidobacterium, not routinely associated with a continental-type cheese produced from pasteurized milk, were detected. The significance, if any, of the presence of these genera will require further attention. Ultimately, the use of high-throughput sequencing has facilitated a novel and detailed analysis of the temporal and spatial distribution of microbes in this complex cheese system and established that the period during a production cycle at which a cheese is manufactured can influence its microbial composition. PMID:25636841
Active microbial soil communities in different agricultural managements
NASA Astrophysics Data System (ADS)
Landi, S.; Pastorelli, R.
2009-04-01
We studied the composition of active eubacterial microflora by RNA extraction from soil (bulk and rhizosphere) under different environmental impact managements, in a hilly basin in Gallura (Sardinia). We contrasted grassy vineyard, in which the soil had been in continuous contact with plant roots for a long period of time, with traditional tilled vineyard. Moreover, we examined permanent grassland, in which plants had been present for some years, with temporary grassland, in which varying plants had been present only during the respective growing seasons. Molecular analysis of total population was carried out by electrophoretic separation by Denaturing Gradient Gel Electrophoresis (DGGE) of amplified cDNA fragments obtained from 16S rRNA. In vineyards UPGMA (Unweighted Pair Group Mathematical Average) analysis made up separate clusters depending on soil management. In spring both clusters showed similarity over 70%, while in autumn the similarity increased, 84% and 90% for grassy and conventional tilled vineyard respectively. Permanent and temporary grassland joined in a single cluster in spring, while in autumn a partial separation was evidenced. The grassy vineyard, permanent and temporary grassland showed higher richness and diversity Shannon-Weiner index values than vineyard with conventional tillage although no significant. In conclusion the expected effect of the rhizosphere was visible: the grass cover influenced positively the diversity of active microbial population.
Gómez, Belén; Gullón, Beatriz; Remoroza, Connie; Schols, Henk A; Parajó, Juan C; Alonso, José L
2014-10-08
Pectic oligosaccharides (POS) were obtained by hydrothermal treatment of orange peel wastes (OPW) and purified by membrane filtration to yield a refined product containing 90 wt % of the target products. AraOS (DP 3-21), GalOS (DP 5-12), and OGalA (DP 2-12, with variable DM) were identified in POS mixtures, but long-chain products were also present. The prebiotic potential of the concentrate was assessed by in vitro fermentation using human fecal inocula. For comparative purposes, similar experiments were performed using orange pectin and commercial fructo-oligosaccharides (FOS) as substrates for fermentation. The dynamics of selected microbial populations was assessed by fluorescent in situ hybridization (FISH). Gas generation, pH, and short-chain fatty acid (SCFA) production were also measured. Under the tested conditions, all of the considered substrates were utilized by the microbiota, and fermentation resulted in increased numbers of all the bacterial groups, but the final profile of the microbial population depended on the considered carbon source. POS boosted particularly the numbers of bifidobacteria and lactobacilli, so that the ratio between the joint counts of both genera and the total cell number increased from 17% in the inocula to 27% upon fermentation. SCFA generation from POS fermentation was similar to that observed with FOS, but pectin fermentation resulted in reduced butyrate generation.
Rumen Bacterial Diversity of 80 to 110-Day-Old Goats Using 16S rRNA Sequencing
Han, Xufeng; Yang, Yuxin; Yan, Hailong; Wang, Xiaolong; Qu, Lei; Chen, Yulin
2015-01-01
The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host’s health and improve animal performance. PMID:25700157
The role of microbial reductive dechlorination of TCE at a phytoremediation site
Godsy, E.M.; Warren, E.; Paganelli, V.V.
2003-01-01
In April 1996, a phytoremediation field demonstration site at the Naval Air Station, Fort Worth, Texas, was developed to remediate shallow oxic ground water (< 3.7 m deep) contaminated with chlorinated ethenes. Microbial populations were sampled in February and June 1998. The populations under the newly planted cottonwood trees had not yet matured to an anaerobic community that could dechlorinate trichloroethene (TCE) to cis-1,2-dichloroethene (DCE); however, the microbial population under a mature (???22-year-old) cottonwood tree about 30 m southwest of the plantings had a mature anaerobic population capable of dechlorinating TCE to DCE, and DCE to vinyl chloride (VC). Oxygen-free sediment incubations with contaminated groundwater also demonstrated that resident microorganisms were capable of the dechlorination of TCE to DCE. This suggests that a sufficient amount of organic material is present for microbial dechlorination in aquifer microniches where dissolved O2 concentrations are low. Phenol, benzoic acid, acetic acid, and a cyclic hydrocarbon, compounds consistent with the degradation of root exudates and complex aromatic compounds, were identified by gas chromatography/mass spectrometry (GC/MS) in sediment samples under the mature cottonwood tree. Elsewhere at the site, transpiration and degradation by the cottonwood trees appears to be responsible for loss of chlorinated ethenes.
Tamminen, Manu V; Virta, Marko P J
2015-01-01
Recent progress in environmental microbiology has revealed vast populations of microbes in any given habitat that cannot be detected by conventional culturing strategies. The use of sensitive genetic detection methods such as CARD-FISH and in situ PCR have been limited by the cell wall permeabilization requirement that cannot be performed similarly on all cell types without lysing some and leaving some nonpermeabilized. Furthermore, the detection of low copy targets such as genes present in single copies in the microbial genomes, has remained problematic. We describe an emulsion-based procedure to trap individual microbial cells into picoliter-volume polyacrylamide droplets that provide a rigid support for genetic material and therefore allow complete degradation of cellular material to expose the individual genomes. The polyacrylamide droplets are subsequently converted into picoliter-scale reactors for genome amplification. The amplified genomes are labeled based on the presence of a target gene and differentiated from those that do not contain the gene by flow cytometry. Using the Escherichia coli strains XL1 and MC1061, which differ with respect to the presence (XL1), or absence (MC1061) of a single copy of a tetracycline resistance gene per genome, we demonstrate that XL1 genomes present at 0.1% of MC1061 genomes can be differentiated using this method. Using a spiked sediment microbial sample, we demonstrate that the method is applicable to highly complex environmental microbial communities as a target gene-based screen for individual microbes. The method provides a novel tool for enumerating functional cell populations in complex microbial communities. We envision that the method could be optimized for fluorescence-activated cell sorting to enrich genetic material of interest from complex environmental samples.
Islam, M M Majedul; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke
2018-03-01
Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study explores the combined impacts of future socio-economic and climate change scenarios on microbial water quality using a coupled hydrodynamic and water quality model (MIKE21FM-ECOLab). The model was applied to simulate the baseline (2014-2015) and future (2040s and 2090s) faecal indicator bacteria (FIB: E. coli and enterococci) concentrations in the Betna river in Bangladesh. The scenarios comprise changes in socio-economic variables (e.g. population, urbanization, land use, sanitation and sewage treatment) and climate variables (temperature, precipitation and sea-level rise). Scenarios have been developed building on the most recent Shared Socio-economic Pathways: SSP1 and SSP3 and Representative Concentration Pathways: RCP4.5 and RCP8.5 in a matrix. An uncontrolled future results in a deterioration of the microbial water quality (+75% by the 2090s) due to socio-economic changes, such as higher population growth, and changes in rainfall patterns. However, microbial water quality improves under a sustainable scenario with improved sewage treatment (-98% by the 2090s). Contaminant loads were more influenced by changes in socio-economic factors than by climatic change. To our knowledge, this is the first study that combines climate change and socio-economic development scenarios to simulate the future microbial water quality of a river. This approach can also be used to assess future consequences for health risks. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Microbial Certification of the MER spacecraft
NASA Technical Reports Server (NTRS)
Schubert, W. W.; Arakelian, T.; Barengoltz, J. B.; Chough, N. G.; Chung, S. Y.; Law, J.; Kirschner, L.; Koukol, R. C.; Newlin, L. E.; Morales, F.
2003-01-01
Spacecraft such as the Mars Exploration Rovers (MER) must meet acceptable microbial population levels prior to launch. Sensitive parts and materials prevent any single sterilization method from being used as a final step on the assembled spacecraft.
Teaching Microbial Growth by Simulation.
ERIC Educational Resources Information Center
Ruiz, A. Fernandez; And Others
1989-01-01
Presented is a simulation program for Apple II computer which assays the effects of a series of variables on bacterial growth and interactions between microbial populations. Results of evaluation of the program with students are summarized. (CW)
Huang, Qianqian; Holman, Devin B; Alexander, Trevor; Hu, Tianming; Jin, Long; Xu, Zhongjun; McAllister, Tim A; Acharya, Surya; Zhao, Guoqi; Wang, Yuxi
2018-01-01
The present study assessed the effect of purple prairie clover (PPC) and PPC condensed tannins (CT) on the fecal microbiota of lambs using high-throughput 16S rRNA gene pyrosequencing. A total of 18 individual lambs were randomly divided into three groups and fed either green chop alfalfa (Alf), a 40:60 (DM basis; Mix) mixture of Alf and PPC, or Mix supplemented with polyethylene glycol (Mix-P) for 18 days. Fecal samples were collected on days 13 through 18 using digital rectal retrieval. The DNA of fecal samples was extracted and the microbial 16S rRNA gene amplicons were sequenced using 454 pyrosequencing. Regardless of diet, the bacterial community was dominated by Firmicutes and Bacteroidetes with many sequences unclassified at the genus level. Forage type and CT had no effect on the fecal microbial composition at the phylum level or on α-diversity. Compared to the Alf diet, the Mix diet reduced the relative abundance of Akkermansia (P = 0.03) and Asteroleplasma (P = 0.05). Fecal microbial populations in Alf and Mix-P clustered separately from each other when assessed using unweighted UniFrac (P < 0.05). These results indicate that PPC CT up to 36 g/kg DM in the diet had no major effect on fecal microbial flora at the phyla level and exerted only minor effects on the genera composition of fecal microbiota in lambs.
Wang, Lin; Mao, Jiugeng; Zhao, Hejuan; Li, Min; Wei, Qishun; Zhou, Ying; Shao, Heping
2016-09-01
Rice straw (RS) is an important raw material for the preparation of Agaricus bisporus compost in China. In this study, the characterization of composting process from RS and wheat straw (WS) was compared for mushroom production. The results showed that the temperature in RS compost increased rapidly compared with WS compost, and the carbon (C)/nitrogen (N) ratio decreased quickly. The microbial changes during the Phase I and Phase II composting process were monitored using denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) analysis. Bacteria were the dominant species during the process of composting and the bacterial community structure dramatically changed during heap composting according to the DGGE results. The bacterial community diversity of RS compost was abundant compared with WS compost at stages 4-5, but no distinct difference was observed after the controlled tunnel Phase II process. The total amount of PLFAs of RS compost, as an indicator of microbial biomass, was higher than that of WS. Clustering by DGGE and principal component analysis of the PLFA compositions revealed that there were differences in both the microbial population and community structure between RS- and WS-based composts. Our data indicated that composting of RS resulted in improved degradation and assimilation of breakdown products by A. bisporus, and suggested that the RS compost was effective for sustaining A. bisporus mushroom growth as well as conventional WS compost.
Kiermeier, Andreas; Tamplin, Mark; May, Damian; Holds, Geoff; Williams, Michelle; Dann, Alison
2013-12-01
Packaging fresh lamb in a vacuum (VAC) versus a 100% CO2 modified atmosphere (MAP) may influence product shelf-life and the bacterial communities. While VAC is a common packing method and 100% CO2 MAP is used in some countries, there is little information about how these different techniques affect the growth of spoilage bacteria and sensory attributes of lamb. The aim of this study was to assess changes in microbiological and organoleptic properties, and determine differences in microbial communities by terminal restriction fragment length polymorphism (TRFLP) and 454 pyrosequencing, in bone-in (BI) and bone-out (BO) MAP- and VAC-packed lamb shoulders stored at -0.3 °C over 12 wk. VAC and MAP lamb shoulders were acceptable in sensory test scores over 12 wk of storage at -0.3 °C, despite total viable count (TVC) and lactic acid bacteria (LAB) levels increasing to 8 log10 CFU/cm(2) for VAC lamb and 4-6 log10 CFU/cm(2) for MAP lamb. Similar to the sensory results, there were no significant differences in microbial communities between BI and BO product. However, types of bacteria were different between VAC and MAP packaging. Specifically, while VAC shoulder became dominated by Carnobacterium spp. in the middle of the storage period, the MAP shoulder microbial population remained similar from the start until later storage times. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Jian; Wang, Silong; Feng, Zongwei; Wang, Qingkui
2009-01-01
The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations on the stability of SOC and its availability to microbes by adopting the two-step hydrolysis with H2SO4 and density fractionation. The results showed that successive rotations of Chinese fir decreased the quantity of total SOC, recalcitrant fraction, and carbohydrates in Labile Pool I (LP I), and microbial properties evidently, especially at 0-10 cm horizon. However, cellulose included in Labile Pool II (LP II) and the cellulose/total carbohydrates ratio increased in successive rotations of Chinese fir. The non-cellulose of carbohydrates included in LP I maybe highly available to soil microbial biomass. Hence the availability of SOC to microbial biomass declined over the successive rotations. Although there was no significant change in recalcitrance of SOC over the successive rotations of Chinese fir, the percentage of heavy fraction to total SOC increased, suggesting that the degree of physical protection for SOC increased and SOC became more stable over the successive rotations. The degradation of SOC quality in successive rotation soils may be attributed to worse environmental conditions resulted from disturbance that related to "slash and burn" site preparation. Being highly correlated with soil microbial properties, the cellulose/total carbohydrates ratio as an effective indicator of changes in availability of SOC to microbial biomass brought by management practices in forest soils.
A microbial perspective of human developmental biology.
Charbonneau, Mark R; Blanton, Laura V; DiGiulio, Daniel B; Relman, David A; Lebrilla, Carlito B; Mills, David A; Gordon, Jeffrey I
2016-07-07
When most people think of human development, they tend to consider only human cells and organs. Yet there is another facet that involves human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy prenatal and postnatal growth and to develop innovative strategies for disease prevention and treatment. Given the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we issue a call for the establishment of 'human microbial observatories' designed to examine microbial community development in birth cohorts representing populations with diverse anthropological characteristics, including those undergoing rapid change.
Human developmental biology viewed from a microbial perspective
Charbonneau, Mark R.; Blanton, Laura V.; DiGiulio, Daniel B.; Relman, David A.; Lebrilla, Carlito B.; Mills, David A.; Gordon, Jeffrey I.
2017-01-01
Preface Most people think of human development only in terms of ‘human’ cells and organs. Here, we discuss another facet involving human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy pre- and postnatal growth and to develop new strategies for disease prevention and treatment. Considering the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we issue a call for human microbial observatory programs designed to examine microbial community development in birth cohorts representing populations with diverse anthropologic characteristics, including those undergoing rapid change. PMID:27383979
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; stepp, A.K.; Dennis, D.M.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.
Wang, Gang; Or, Dani
2014-10-24
The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia.
Guo, Yun; Yang, Dian-hai; Lu, Wen-jian
2012-08-01
The microbial populations of the oxidation ditch process at the full-scale municipal wastewater treatment plants (WWTP) in a city in north China were analyzed by fluorescent in situ hybridization (FISH). Fractions structure varieties and distribution characteristics of Accumulibacter as potential phosphorus accumulating organisms (PAOs), and Competibacter as potential glycogen accumulating organisms (GAOs) were quantified. The results indicated that Accumulibacter comprised around 2.0% +/- 0.6%, 3.4% +/- 0.6% and 3.5% +/- 1.2% of the total biomass in the anaerobic tank, anoxic zone and zone, respectively, while the corresponding values for Competibacter were 25.3% +/- 8.7%, 30.3% +/- 7.1% and 24.4% +/- 6.1%. Lower Accumulibacter fractions were found compared with previous full-scale reports (7%-22%), indicating low phosphorus removal efficiency in the oxidation ditch system. Statistical analysis indicated that the amount of PAOs was significantly higher in the anoxic zone and the aerobic zone compared with that in the anaerobic tank, while GAOs remained at the same level.
NASA Astrophysics Data System (ADS)
Ensink, J.; Scott, C. A.; Cairncross, S.
2006-05-01
Wastewater discharge from expanding urban centers deteriorates the quality of receiving waters, a trend that has management and investment implications for cities around the world. This paper presents the results of a 14-month water quality evaluation over a 40-km longitudinal profile downstream of the city of Hyderabad, India (population 7 million) on the Musi River, a tributary to the Krishna River. Upstream to downstream improvements in Musi water quality for microbial constituents (nematode egg, faecal coliform), dissolved oxygen, and nitrate are attributed to natural attenuation processes (dilution, die-off, sedimentation and biological processes) coupled with the effects of in-stream hydraulic infrastructure (weirs and reservoirs). Conversely, upstream to downstream increases in total dissolved solids concentrations are caused by off- stream infrastructure and agricultural water use resulting in crop evapotranspiration and increased solute concentration in the return flow of irrigation diverted upstream in the wastewater system. Future water quality management challenges resulting from rampant urban growth, particularly in developing countries, are discussed.
Cherroud, Sanâa; Cachaldora, Aida; Fonseca, Sonia; Laglaoui, Amin; Carballo, Javier; Franco, Inmaculada
2014-10-01
The objective of this work was to define a simple technological process for dry-cured Halal goat meat elaboration. The aims of this study were to analyze physicochemical parameters and to enumerate the microbial population at the end of the different manufacturing processes (two salting times and the addition of olive oil and paprika covering) on 36 units of meat product. A total of 532 strains were isolated from several selective culture media and then identified using classical and molecular methods. In general, salt effect and the addition of olive oil and paprika were significant for all the studied microbial groups as well as on NaCl content and water activity. Molecular analysis proves that staphylococci, especially Staphylococcus xylosus and Staphylococcus equorum, were the most common naturally occurring microbiota. The best manufacturing process would be obtained with a longer salting time and the addition of the olive oil and paprika covering. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon
2013-10-01
An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shahbazi, Yasser
2018-06-01
The aim of the present study was to investigate the effects of carboxymethyl cellulose (CMC) and chitosan (CH) coatings containing Mentha spicata essential oil (MSO 0.1 and 0.2%) on survival of Listeria monocytogenes, and physicochemical (weight loss, titratable acidity and pH), microbial (total viable count, psychrotrophic bacteria as well as yeasts and molds) and sensory (appearance, color, texture and overall acceptability) properties of fresh strawberries during refrigerated storage. The treatments of fruits with CH+MSO 0.2% and CMC+MSO 0.2% resulted in the best microbial, physicochemical and organoleptic properties after 12days storage. The final population of L. monocytogenes in treated samples was decreased by 3.92-3.69 compared to control groups. It can be concluded that CH and CMC coatings enriched with MSO can be used as appropriate active packaging materials to preserve fresh strawberries in the food industry. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Hyoun Wook; Jeong, Jin Young; Seol, Kuk-Hwan; Seong, Pil-Nam; Ham, Jun-Sang
2016-01-01
Procyanidins, which are natural antioxidants and antimicrobials found in grapes, enhance the quality and extend the shelf life of meat. We explored the effects of edible films incorporating procyanidins on pork loin stored for various times. Procyanidins (0, 0.1, and 0.3%, w/w) were incorporated into the edible films. We assessed meat color, pH, levels of volatile basic nitrogen (VBN) and 2-thiobarbituric acid-reactive substances (TBARS), and microbial populations for 14 d. The chromaticities and pH values of pork loin wrapped in film containing procyanidins (0.1% and 0.3%) generally increased (p<0.05) with storage time. VBN and TBARS levels, and total bacterial and Escherichia coli (E. coli) counts, significantly decreased (p<0.05) in the procyanidin groups. In particular, procyanidins strongly inhibited TBARS formation. Thus, our findings suggest that edible film impregnated with procyanidins inhibits lipid oxidation and microbial growth, thereby enhancing the quality and shelf life of pork meat.
2016-01-01
Procyanidins, which are natural antioxidants and antimicrobials found in grapes, enhance the quality and extend the shelf life of meat. We explored the effects of edible films incorporating procyanidins on pork loin stored for various times. Procyanidins (0, 0.1, and 0.3%, w/w) were incorporated into the edible films. We assessed meat color, pH, levels of volatile basic nitrogen (VBN) and 2-thiobarbituric acid-reactive substances (TBARS), and microbial populations for 14 d. The chromaticities and pH values of pork loin wrapped in film containing procyanidins (0.1% and 0.3%) generally increased (p<0.05) with storage time. VBN and TBARS levels, and total bacterial and Escherichia coli (E. coli) counts, significantly decreased (p<0.05) in the procyanidin groups. In particular, procyanidins strongly inhibited TBARS formation. Thus, our findings suggest that edible film impregnated with procyanidins inhibits lipid oxidation and microbial growth, thereby enhancing the quality and shelf life of pork meat. PMID:27194932
Profile analysis of microbiomes in soils of solonetz complex in the Caspian Lowland
NASA Astrophysics Data System (ADS)
Chernov, T. I.; Lebedeva, M. P.; Tkhakakhova, A. K.; Kutovaya, O. V.
2017-01-01
The taxonomic structure of the microbiota in two associated soils—solonetz on a microhigh and meadow-chestnut soil in a microlow—was studied in the semidesert of the Caspian Lowland. A highthroughput sequencing of the 16S rRNA gene was used for the soil samples from genetic horizons. A considerable reduction in the bacterial diversity was found in the lower horizons of the solonetz and compact solonetzic horizon with a high content of exchangeable sodium. In the meadow-chestnut soil, the microbial diversity little decreased with the depth. In both soils, a portion of archaea from the Thaumarchaeota group also decreased in the deeper horizons. In the soil horizons with the lower total bacterial diversity, a share of proteobacteria of the Enterobacteriaceae, Pseudomonadaceae, and Sphingomonadaceae families became higher. The difference between the structure of the microbial population in the solonetz and meadow- chestnut soil can be first explained by the different water regimes and soil consistence.
Ruiz-Espinosa, H; Amador-Espejo, G G; Barcenas-Pozos, M E; Angulo-Guerrero, J O; Garcia, H S; Welti-Chanes, J
2013-02-01
Multiple-pass ultrahigh pressure homogenization (UHPH) was used for reducing microbial population of both indigenous spoilage microflora in whole raw milk and a baroresistant pathogen (Staphylococcus aureus) inoculated in whole sterile milk to define pasteurization-like processing conditions. Response surface methodology was followed and multiple response optimization of UHPH operating pressure (OP) (100, 175, 250 MPa) and number of passes (N) (1-5) was conducted through overlaid contour plot analysis. Increasing OP and N had a significant effect (P < 0·05) on microbial reduction of both spoilage microflora and Staph. aureus in milk. Optimized UHPH processes (five 202-MPa passes; four 232-MPa passes) defined a region where a 5-log(10) reduction of total bacterial count of milk and a baroresistant pathogen are attainable, as a requisite parameter for establishing an alternative method of pasteurization. Multiple-pass UHPH optimized conditions might help in producing safe milk without the detrimental effects associated with thermal pasteurization. © 2012 The Society for Applied Microbiology.
Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; ...
2015-07-21
Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less
Fall, Dioumacor; Bakhoum, Niokhor; Nourou Sall, Saïdou; Zoubeirou, Alzouma Mayaki; Sylla, Samba N; Diouf, Diegane
2016-01-01
Rhizobial inoculation has been widely used in controlled conditions as a substitute for chemical fertilizers to increase plants growth and productivity. However, very little is known about such effects on mature trees in natural habitats. In this study, we investigated the effect of rhizobial inoculation on soil total microbial biomass, mineral nitrogen content, potential CO2 respiration, fluorescein diacetate (FDA), acid phosphatase activities, and gum arabic production by 13-year-old Senegalia senegal (synonym: Acacia senegal) under natural conditions in the north part of Senegal during two consecutive years. Rhizobial inoculation was performed at the beginning of the rainy season (July) for both years with a cocktail of four strains (CIRADF 300, CIRADF 301, CIRADF 302, and CIRADF 303). Rhizospheric soils were collected in both dry and rainy seasons to a depth of 0-25 cm under uninoculated and inoculated trees. Trees were tapped in November (beginning of dry season) using traditional tools. Gum arabic was harvested every 15 days from December to March. The results obtained from both years demonstrated that rhizobial inoculation increased significantly the percentage of trees producing gum arabic, gum arabic production per tree, soil microbial biomass, FDA, and acid phosphatase activities. However, there was no significant effect on C mineralization and mineral nitrogen (N) content. Gum arabic production was positively correlated to rainfall, soil microbial biomass, and mineral nitrogen content. Our results showed a positive effect of rhizobial inoculation on soil microbial functioning and gum arabic production by mature S. senegal trees. These important findings deserve to be conducted in several contrasting sites in order to improve gum arabic production and contribute to increase rural population incomes.
Profile Changes in the Soil Microbial Community When Desert Becomes Oasis
Li, Chen-hua; Tang, Li-song; Jia, Zhong-jun; Li, Yan
2015-01-01
The conversion of virgin desert into oasis farmland creates two contrasting types of land-cover. During oasis formation with irrigation and fertilizer application, however, the changes in the soil microbial population, which play critical roles in the ecosystem, remain poorly understood. We applied high-throughput pyrosequencing to investigate bacterial and archaeal communities throughout the profile (0–3 m) in an experimental field, where irrigation and fertilization began in 1990 and cropped with winter wheat since then. To assess the effects of cultivation, the following treatments were compared with the virgin desert: CK (no fertilizer), PK, NK, NP, NPK, NPKR, and NPKM (R: straw residue; M: manure fertilizer). Irrigation had a greater impact on the overall microbial community than fertilizer application. The greatest impact occurred in topsoil (0–0.2 m), e.g., Cyanobacteria (25% total abundance) were most abundant in desert soil, while Actinobacteria (26%) were most abundant in oasis soil. The proportions of extremophilic and photosynthetic groups (e.g., Deinococcus-Thermus and Cyanobacteria) decreased, while the proportions of R-strategy (e.g., Gammaproteobacteria including Xanthomonadales), nitrifying (e.g., Nitrospirae), and anaerobic bacteria (e.g., Anaerolineae) increased throughout the oasis profile. Archaea occurred only in oasis soil. The impact of fertilizer application was mainly reflected in the non-dominant communities or finer taxonomic divisions. Oasis formation led to a dramatic shift in microbial community and enhanced soil enzyme activities. The rapidly increased soil moisture and decreased salt caused by irrigation were responsible for this shift. Furthermore, difference in fertilization and crop growth altered the organic carbon contents in the soil, which resulted in differences of microbial communities within oasis. PMID:26426279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penton, Christopher R.; St. Louis, Derek; Pham, Amanda
Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less
Ryu, Hodon; Alum, Absar; Alvarez, Maria; Mendoza, Jose; Abbaszadegan, Morteza
2005-06-01
Increased reliance of urban populations on Rio Grande water has necessitated an expanded microbial surveillance of the river to help identify and evaluate sources of human pathogens, which could pose a public health risk. The objectives of this study were to investigate microbial and chemical water quality in Rio Grande water and to perform risk assessment analyses for Cryptosporidium. No oocysts in any of the ten-litre samples were detected. However, the limit of detection in the water samples ranged between 20 and 200 oocysts/100 L. The limits of detection obtained in this study would result in one to two orders of magnitude higher risk of infection for Cryptosporidium than the U.S.EPA annual acceptable risk level of 10(-4). The bacterial data showed the significance of animal farming and raw sewage as sources of fecal pollution. Male specific and somatic coliphages were detected in 52% (11/21) and 62% (24/39) of the samples, respectively. Somatic coliphages were greater by one order of magnitude, and were better correlated with total (r2 = 0.6801; p < or = 0.05) and fecal coliform bacteria (r2 = 0.7366; p < or = 0.05) than male specific coliphages. The dissolved organic carbon (DOC) and specific ultraviolet absorbance (SUVA) values ranged 2.58-5.59mg/L and 1.23-2.29 m(-1) (mg/I)(-1), respectively. Low SUVA values of raw water condition make it difficult to remove DOC during physical and chemical treatment processes. The microbial and chemical data provided from this study can help drinking water utilities to maintain balance between greater microbial inactivation and reduced disinfection by-products (DBPs) formation.
Fall, Dioumacor; Bakhoum, Niokhor; Nourou Sall, Saïdou; Zoubeirou, Alzouma Mayaki; Sylla, Samba N.; Diouf, Diegane
2016-01-01
Rhizobial inoculation has been widely used in controlled conditions as a substitute for chemical fertilizers to increase plants growth and productivity. However, very little is known about such effects on mature trees in natural habitats. In this study, we investigated the effect of rhizobial inoculation on soil total microbial biomass, mineral nitrogen content, potential CO2 respiration, fluorescein diacetate (FDA), acid phosphatase activities, and gum arabic production by 13-year-old Senegalia senegal (synonym: Acacia senegal) under natural conditions in the north part of Senegal during two consecutive years. Rhizobial inoculation was performed at the beginning of the rainy season (July) for both years with a cocktail of four strains (CIRADF 300, CIRADF 301, CIRADF 302, and CIRADF 303). Rhizospheric soils were collected in both dry and rainy seasons to a depth of 0–25 cm under uninoculated and inoculated trees. Trees were tapped in November (beginning of dry season) using traditional tools. Gum arabic was harvested every 15 days from December to March. The results obtained from both years demonstrated that rhizobial inoculation increased significantly the percentage of trees producing gum arabic, gum arabic production per tree, soil microbial biomass, FDA, and acid phosphatase activities. However, there was no significant effect on C mineralization and mineral nitrogen (N) content. Gum arabic production was positively correlated to rainfall, soil microbial biomass, and mineral nitrogen content. Our results showed a positive effect of rhizobial inoculation on soil microbial functioning and gum arabic production by mature S. senegal trees. These important findings deserve to be conducted in several contrasting sites in order to improve gum arabic production and contribute to increase rural population incomes. PMID:27656192
Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil.
Xu, Yilu; Seshadri, Balaji; Sarkar, Binoy; Wang, Hailong; Rumpel, Cornelia; Sparks, Donald; Farrell, Mark; Hall, Tony; Yang, Xiaodong; Bolan, Nanthi
2018-04-15
Soil organic carbon is essential to improve soil fertility and ecosystem functioning. Soil microorganisms contribute significantly to the carbon transformation and immobilisation processes. However, microorganisms are sensitive to environmental stresses such as heavy metals. Applying amendments, such as biochar, to contaminated soils can alleviate the metal toxicity and add carbon inputs. In this study, Cd and Pb spiked soils treated with macadamia nutshell biochar (5% w/w) were monitored during a 49days incubation period. Microbial phospholipid fatty acids (PLFAs) were extracted and analysed as biomarkers in order to identify the microbial community composition. Soil properties, metal bioavailability, microbial respiration, and microbial biomass carbon were measured after the incubation period. Microbial carbon use efficiency (CUE) was calculated from the ratio of carbon incorporated into microbial biomass to the carbon mineralised. Total PLFA concentration decreased to a greater extent in metal contaminated soils than uncontaminated soils. Microbial CUE also decreased due to metal toxicity. However, biochar addition alleviated the metal toxicity, and increased total PLFA concentration. Both microbial respiration and biomass carbon increased due to biochar application, and CUE was significantly (p<0.01) higher in biochar treated soils than untreated soils. Heavy metals reduced the microbial carbon sequestration in contaminated soils by negatively influencing the CUE. The improvement of CUE through biochar addition in the contaminated soils could be attributed to the decrease in metal bioavailability, thereby mitigating the biotoxicity to soil microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Mosher, Jennifer J; Findlay, Robert H
2011-11-01
A correlative study was performed to determine if variation in streambed microbial community structure in low-order forested streams can be directly or indirectly linked to the chemical nature of the parental bedrock of the environments through which the streams flow. Total microbial and photosynthetic biomass (phospholipid phosphate [PLP] and chlorophyll a), community structure (phospholipid fatty acid analysis), and physical and chemical parameters were measured in six streams, three located in sandstone and three in limestone regions of the Bankhead National Forest in northern Alabama. Although stream water flowing through the two different bedrock types differed significantly in chemical composition, there were no significant differences in total microbial and photosynthetic biomass in the sediments. In contrast, sedimentary microbial community structure differed between the bedrock types and was significantly correlated with stream water ion concentrations. A pattern of seasonal variation in microbial community structure was also observed. Further statistical analysis indicated dissolved organic matter (DOM) quality, which was previously shown to be influenced by geological variation, correlated with variation in bacterial community structure. These results indicate that the geology of underlying bedrock influences benthic microbial communities directly via changes in water chemistry and also indirectly via stream water DOM quality.
Yadav, Deepak; Ghosh, Tarini Shankar; Mande, Sharmila S
2016-01-01
Factors like ethnicity, diet and age of an individual have been hypothesized to play a role in determining the makeup of gut microbiome. In order to investigate the gut microbiome structure as well as the inter-microbial associations present therein, we have performed a comprehensive global comparative profiling of the structure (composition, relative heterogeneity and diversity) and the inter-microbial networks in the gut microbiomes of 399 individuals of eight different nationalities. The study identified certain geography-specific trends with respect to composition, intra-group heterogeneity and diversity of the gut microbiomes. Interestingly, the gut microbial association/mutual-exlusion networks were observed to exhibit several cross-geography trends. It was seen that though the composition of gut microbiomes of the American and European individuals were similar, there were distinct patterns in their microbial interaction networks. Amongst European gut-microbiomes, the co-occurrence network obtained for the Danish population was observed to be most dense. Distinct patterns were also observed within Chinese, Japanese and Indian datasets. While performing an age-wise comparison, it was observed that the microbial interactions increased with the age of individuals. Furthermore, certain bacterial groups were identified to be present only in the older age groups. The trends observed in gut microbial networks could be due to the inherent differences in the diet of individuals belonging to different nationalities. For example, the higher number of microbial associations in the Danish population as compared to the Spanish population, may be attributed to the evenly distributed diet of the later. This is in line with previously reported findings which indicate an increase in functional interdependency of microbes in individuals with higher nutritional status. To summarise, the present study identifies geography and age specific patterns in the composition as well as microbial interactions in gut microbiomes.
Feedbacks Between Soil Structure and Microbial Activities in Soil
NASA Astrophysics Data System (ADS)
Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.
2017-12-01
Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate formation could alter how we currently treat our predictions of soil biogeochemistry. Current predictions are largely site- or biome-specific; quantitative mechanisms could underpin "rules" that operate at the pore-scale leading to more robust, mechanistic models.
NASA Astrophysics Data System (ADS)
Kim, B.; Song, H. P.; Choe, J. H.; Jung, S.; Jang, A.; Kim, Y. J.; Jo, C.
2009-07-01
Salted and seasoned short-necked clam ( Tapes Philippinarum; SNC) and its major ingredients, red hot pepper powder, ginger, garlic and onion were irradiated at 0.5, 1, 2 and 5 kGy, respectively, and the microbiological and sensory quality were evaluated. The water activities of SNC and red pepper powder were 0.91 and 0.56, respectively, and others were higher than 0.97. The initial microbial populations of SNC were approximately 3.99, 4.38 and 2.22 log CFU/g for total aerobic bacteria, yeast and mold, and coliform bacteria. The highest contamination of total aerobic bacteria was detected from ground ginger among ingredients at 5.51 log CFU/g. Electron-beam irradiation (0, 0.5, 1, 2 and 5 kGy) significantly reduced the initial microbial level of SNC and its ingredients not only immediately after irradiation, but also during storage at 10 °C for 4 weeks ( p<0.05). There was no adverse change of sensory score except for the color of onion irradiated at 5 kGy, which results in a lower score than control. From the results electron-beam irradiation is a useful tool to enhance the storage stability and safe distribution of SNC.
Effects of gamma and electron beam irradiation on the microbial quality of steamed tofu rolls
NASA Astrophysics Data System (ADS)
Jia, Qian; Gao, Meixu; Li, Shurong; Wang, Zhidong
2013-01-01
The effectiveness of two kinds of radiation processing, gamma and electron beam (ebeam) irradiation, for the inactivation of Staphylococcus aureus, Salmonella enteritidis and Listeria innocua which were inoculated in pre-sterilised steamed tofu rolls was studied. The corresponding effects of both irradiation types on total bacterial counts (TBCs) in commercial steamed tofu rolls available in the market were also examined. The microbiological results demonstrated that gamma irradiation yielded D10 values of 0.20, 0.24 and 0.22 kGy for S. aureus, S. enteritidis and L. innocua, respectively. The respective D10 values for ebeam irradiation were 0.31, 0.35 and 0.27 kGy. Gamma and ebeam irradiation yielded D10 values of 0.48 and 0.43 kGy for total bacterial counts in commercial steamed tofu rolls, respectively. The results suggest that ebeam irradiation has similar effect on decreasing TBCs in steamed tofu rolls, and gamma irradiation is slightly more effective than ebeam irradiation in reducing the populations of pathogenic bacteria. The observed differences in D10-values between them might be due to the significant differences in dose rate applied, and radiation processing of soybean products to improve their microbial quality could be available for other sources of protein.
Variation in microbial activity in histosols and its relationship to soil moisture.
Tate, R L; Terry, R E
1980-08-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.
Variation in Microbial Activity in Histosols and Its Relationship to Soil Moisture †
Tate, Robert L.; Terry, Richard E.
1980-01-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes. PMID:16345610
Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.
Jerison, Elizabeth R; Desai, Michael M
2015-12-01
Microbial evolution experiments enable us to watch adaptation in real time, and to quantify the repeatability and predictability of evolution by comparing identical replicate populations. Further, we can resurrect ancestral types to examine changes over evolutionary time. Until recently, experimental evolution has been limited to measuring phenotypic changes, or to tracking a few genetic markers over time. However, recent advances in sequencing technology now make it possible to extensively sequence clones or whole-population samples from microbial evolution experiments. Here, we review recent work exploiting these techniques to understand the genomic basis of evolutionary change in experimental systems. We first focus on studies that analyze the dynamics of genome evolution in microbial systems. We then survey work that uses observations of sequence evolution to infer aspects of the underlying fitness landscape, concentrating on the epistatic interactions between mutations and the constraints these interactions impose on adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Varloud, M; Fonty, G; Roussel, A; Guyonvarch, A; Julliand, V
2007-10-01
Our knowledge of the microflora of the stomach of the horse is still limited, although some data indicate its important role in nutrition. The objective of this experiment was to investigate the microbial and biochemical profiles in the stomach of the horse and to quantify the disappearance of dietary starch. Total anaerobic bacteria, lactate-utilizing bacteria, lactobacilli, and streptococci were determined, and biochemical characteristics (pH, and DM, D- and L-lactate, D-glucose, NH3, and VFA concentrations) were measured in chyme collected from 4 horses by naso-gastric intubation aided by endoscopy, at 30 min before and 60, 120, and 210 min after the meal. The total anaerobic population exhibited a linear increase (5.54 to 6.98 log10 cfu/mL; P = 0.018) within the first postprandial hour and reached 8.32 log10 cfu/mL at 210 min after the meal. The concentrations of lactobacilli, streptococci, and lactate-utilizing bacteria in the stomach contents were 5.52, 4.82, and 6.95 log10 cfu/mL, respectively. Lactate concentration increased linearly from 0.25 mmol/L before the meal to 7.98 mmol/L at the last collection point (P = 0.013). This increase was mostly due to L-lactate accumulation. The VFA concentration increased linearly (P = 0.002) during the postprandial period from 1.96 to 8.17 mmol/L. Acetate represented, on average, 78 mol/100 mol of total VFA. The average concentration of NH3 in the stomach content was 2.48 mmol/L. Dietary starch disappearance did not respond during the post-prandial period and was not consistent with previous findings. These in vivo data provide complementary information on the postprandial microbial and biochemical kinetics in the stomachs of horses and confirm its abundant microbial colonization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopka, Allan
The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbesmore » possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered a community property.« less
Pesce, Stéphane; Fajon, Céline; Bardot, Corinne; Bonnemoy, Frédérique; Portelli, Christophe; Bohatier, Jacques
2008-02-18
To determine the effects of anthropic activities on river planktonic microbial populations, monthly water samples were collected for 11 months from two sampling sites characterized by differing nutrient and pesticide levels. The difference in trophic level between the two stations was particularly pronounced from May to November. Total pesticide concentrations were notably higher at the downstream station from April to October with a clear predominance of herbicide residues, especially the glyphosate metabolite aminomethylphosphonic acid (AMPA). From spring, algal biomass and density were favored by the high orthophosphate concentrations recorded at the downstream location. However, isolated drops in algal biomass were recorded at this sampling station, suggesting an adverse effect of herbicides on algal communities. No major difference was observed in bacterial heterotrophic production, density, or activity (CTC reduction) between the two sampling stations. No major variation was detected using the fluorescent in situ hybridization (FISH) method, but shifts in bacterial community composition were recorded by PCR-TTGE analysis at the downstream station following high nutrient and pesticide inputs. However, outside the main anthropic pollution period, the water's chemical properties and planktonic microbial communities were very similar at the two sampling sites, suggesting a high recovery potential for this lotic system.
Sourdough microbial community dynamics: An analysis during French organic bread-making processes.
Lhomme, Emilie; Urien, Charlotte; Legrand, Judith; Dousset, Xavier; Onno, Bernard; Sicard, Delphine
2016-02-01
Natural sourdoughs are commonly used in bread-making processes, especially for organic bread. Despite its role in bread flavor and dough rise, the stability of the sourdough microbial community during and between bread-making processes is debated. We investigated the dynamics of lactic acid bacteria (LAB) and yeast communities in traditional organic sourdoughs of five French bakeries during the bread-making process and several months apart using classical and molecular microbiology techniques. Sourdoughs were sampled at four steps of the bread-making process with repetition. The analysis of microbial density over 68 sourdough/dough samples revealed that both LAB and yeast counts changed along the bread-making process and between bread-making runs. The species composition was less variable. A total of six LAB and nine yeast species was identified from 520 and 1675 isolates, respectively. The dominant LAB species was Lactobacillus sanfranciscensis, found for all bakeries and each bread-making run. The dominant yeast species changed only once between bread-making processes but differed between bakeries. They mostly belonged to the Kazachstania clade. Overall, this study highlights the change of population density within the bread-making process and between bread-making runs and the relative stability of the sourdough species community during bread-making process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hao, Da Cheng; Song, Si Meng; Mu, Jun; Hu, Wen Li; Xiao, Pei Gen
2016-01-01
The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccase-producing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. Total reads could be assigned to 2,141 Operational Taxonomic Units (OTUs) belonging to 31 bacteria phyla and 2,904 OTUs of at least seven fungi phyla. The abundance of Planctomycetes, Actinobacteria, and Chloroflexi was higher in T. cuspidata var. nana and T. × media rhizospheres than in T. mairei rhizosphere (NF), while Acidobacteria, Proteobacteria, Nitrospirae, and unclassified bacteria were more abundant in the latter. Ascomycota and Zygomycota were predominant in NF, while two temperate Taxus rhizospheres had more unclassified fungi, Basidiomycota, and Chytridiomycota. The bacterial/fungal community richness and diversity were lower in NF than in other two. Three dye decolorizing fungal isolates were shown to be highly efficient in removing three classes of reactive dye, while two PAH-degrading fungi were able to degrade recalcitrant benzo[a]pyrene. The present studies extend the knowledge pedigree of the microbial diversity populating rhizospheres, and exemplify the method shift in research and development of resource plant rhizosphere. PMID:27080869
High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments.
Engelhardt, Tim; Kallmeyer, Jens; Cypionka, Heribert; Engelen, Bert
2014-07-01
Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world's oceans (South Pacific Gyre (SPG)). The numbers of viruses (10(4)-10(9) cm(-3), counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.
Li, Dapeng; Zhang, Longteng; Song, Sijia; Wang, Zhiying; Kong, Chunli; Luo, Yongkang
2017-06-01
Biochemical and microbial changes after harvest strongly affect the final quality and shelf life of fish and fish products. In this study, the role of microbes in the degradation of adenosine triphosphate (ATP), and the origin of adenosine monophosphate deaminase (AMPD) and acid phosphatase (ACP) in common carp fillets during different stages of chilled storage (at 4°C) were investigated. The content of ATP, ADP, AMP, IMP, HxR, and Hx, the activity of AMPD and ACP, and the total count of viable, Aeromonas, Pseudomonas, H 2 S-producing bacteria, and lactic acid bacteria were examined. Results indicated that the population of microbial communities in control samples increased with storage time, and Pseudomonas peaked on the 10th day of storage. Changes in AMPD activity were less related to the abundance of microbes during the entire storage period. However, ACP was derived from both fish muscle and microbial secretion during the middle and late stages of storage. Degradation of ATP to IMP was not affected by spoilage bacteria, but the hydrolysis of IMP, and the transformation of HxR to Hx was affected considerably by the spoilage bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Green, M; Heumann, M; Sokolow, R; Foster, L R; Bryant, R; Skeels, M
1990-01-01
Bacillus thuringiensis var. kurstaki (B.t.-k) is a microbial pesticide which has been widely used for over 30 years. Its safety for a human population living in sprayed areas has never been tested. Surveillance for human infections caused by B.t.-k among Lane County, Oregon residents was conducted during two seasons of aerial B.t.-k spraying for gypsy moth control. Bacillus isolates from cultures obtained for routine clinical purposes were tested for presence of Bacillus thuringiensis (B.t.). Detailed clinical information was obtained for all B.t.-positive patients. About 80,000 people lived in the first year's spray area, and 40,000 in the second year's area. A total of 55 B.t.-positive cultures were identified. The cultures had been taken from 18 different body sites or fluids. Fifty-two (95 percent) of the B.t. isolates were assessed to be probable contaminants and not the cause of clinical illness. For three patients, B.t. could neither be ruled in nor out as a pathogen. Each of these three B.t.-positive patients had preexisting medical problems. The level of risk for B.t.-k and other existing or future microbial pesticides in immunocompromised hosts deserves further study. PMID:2356910
Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu
2011-09-01
In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.
NASA Astrophysics Data System (ADS)
Hao, Da Cheng; Song, Si Meng; Mu, Jun; Hu, Wen Li; Xiao, Pei Gen
2016-04-01
The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccase-producing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. Total reads could be assigned to 2,141 Operational Taxonomic Units (OTUs) belonging to 31 bacteria phyla and 2,904 OTUs of at least seven fungi phyla. The abundance of Planctomycetes, Actinobacteria, and Chloroflexi was higher in T. cuspidata var. nana and T. × media rhizospheres than in T. mairei rhizosphere (NF), while Acidobacteria, Proteobacteria, Nitrospirae, and unclassified bacteria were more abundant in the latter. Ascomycota and Zygomycota were predominant in NF, while two temperate Taxus rhizospheres had more unclassified fungi, Basidiomycota, and Chytridiomycota. The bacterial/fungal community richness and diversity were lower in NF than in other two. Three dye decolorizing fungal isolates were shown to be highly efficient in removing three classes of reactive dye, while two PAH-degrading fungi were able to degrade recalcitrant benzo[a]pyrene. The present studies extend the knowledge pedigree of the microbial diversity populating rhizospheres, and exemplify the method shift in research and development of resource plant rhizosphere.
Xu, Weihui; Wang, Zhigang; Wu, Fengzhi
2015-01-01
The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon) in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) were significantly increased, and the ratio of MBC/MBN was decreased (P < 0.05). Real-time PCR analysis showed that the Fon population declined significantly in the watermelon/wheat companion system compared with the monoculture system (P < 0.05). The analysis of microbial communities showed that the relative abundance of microbial communities was changed in the rhizosphere of watermelon. Compared with the monoculture system, the relative abundances of Alphaproteobacteria, Actinobacteria, Gemmatimonadetes and Sordariomycetes were increased, and the relative abundances of Gammaproteobacteria, Sphingobacteria, Cytophagia, Pezizomycetes, and Eurotiomycetes were decreased in the rhizosphere of watermelon in the watermelon/wheat companion system; importantly, the incidence of Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system.
Mapping the ecological networks of microbial communities.
Xiao, Yandong; Angulo, Marco Tulio; Friedman, Jonathan; Waldor, Matthew K; Weiss, Scott T; Liu, Yang-Yu
2017-12-11
Mapping the ecological networks of microbial communities is a necessary step toward understanding their assembly rules and predicting their temporal behavior. However, existing methods require assuming a particular population dynamics model, which is not known a priori. Moreover, those methods require fitting longitudinal abundance data, which are often not informative enough for reliable inference. To overcome these limitations, here we develop a new method based on steady-state abundance data. Our method can infer the network topology and inter-taxa interaction types without assuming any particular population dynamics model. Additionally, when the population dynamics is assumed to follow the classic Generalized Lotka-Volterra model, our method can infer the inter-taxa interaction strengths and intrinsic growth rates. We systematically validate our method using simulated data, and then apply it to four experimental data sets. Our method represents a key step towards reliable modeling of complex, real-world microbial communities, such as the human gut microbiota.
Cappelletti, Martina; Perazzolli, Michele; Antonielli, Livio; Nesler, Andrea; Torboli, Esmeralda; Bianchedi, Pier L.; Pindo, Massimo; Puopolo, Gerardo; Pertot, Ilaria
2016-01-01
Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies. PMID:27486468
Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D; Shi, Zhou; Zhou, Jizhong; Dong, Junde
2017-01-01
Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata , Avicennia marina , and Ceriops tagal , was undertaken using high - throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.
Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde
2017-01-01
Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata, Avicennia marina, and Ceriops tagal, was undertaken using high-throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem. PMID:29093705
Yan, H; Lu, H; Almeida, V V; Ward, M G; Adeola, O; Nakatsu, C H; Ajuwon, K M
2017-02-01
In the present study, the effects of dietary resistant starch (RS) content on serum metabolite and hormone concentrations, milk composition, and faecal microbial profiling in lactating sows, as well as on offspring performance was investigated. Sixteen sows were randomly allotted at breeding to two treatments containing low- and high-RS contents from normal and high-amylose corn varieties, respectively, and each treatment had eight replicates (sows). Individual piglet body weight (BW) and litter size were recorded at birth and weaning. Milk samples were obtained on day 10 after farrowing for composition analysis. On day 2 before weaning, blood and faecal samples were collected to determine serum metabolite and hormone concentrations and faecal microbial populations, respectively. Litter size at birth and weaning were not influenced (p > 0.05) by the sow dietary treatments. Although feeding the RS-rich diet to sows reduced (p = 0.004) offspring birth BW, there was no difference in piglet BW at weaning (p > 0.05). High-RS diet increased (p < 0.05) serum triacylglycerol and nonesterified fatty acid concentrations and milk total solid content, and tended (p = 0.09) to increase milk fat content in lactating sows. Feeding the RS-rich diet to sows increased (p < 0.01) faecal bacterial population diversity. These results indicate that high-RS diets induce fatty acid mobilization and a greater intestinal bacterial richness in lactating sows, as well as a greater nutrient density in maternal milk, without affecting offspring performance at weaning. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.