Sample records for total movement time

  1. Quiet eye training improves surgical knot tying more than traditional technical training: a randomized controlled study.

    PubMed

    Causer, Joe; Harvey, Adrian; Snelgrove, Ryan; Arsenault, Gina; Vickers, Joan N

    2014-08-01

    We examined the effectiveness of technical training (TT) and quiet eye training (QE) on the performance of one-handed square knot tying in surgical residents. Twenty surgical residents were randomly assigned to the 2 groups and completed pretest, training, retention, and transfer tests. Participants wore a mobile eye tracker that simultaneously recorded their gaze and hand movements. Dependent variables were knot tying performance (%), QE duration (%), number of fixations, total movement time (s), and hand movement phase time (s). The QE training group had significantly higher performance scores, a longer QE duration, fewer fixations, faster total knot tying times, and faster movement phase times compared with the TT group. The QE group maintained performance in the transfer test, whereas the TT group significantly decreased performance from retention to transfer. QE training significantly improved learning, retention, and transfer of surgical knot tying compared with a traditional technical approach. Both performance effectiveness (performance outcome) and movement efficiency (hand movement times) were improved using QE modeling, instruction, and feedback. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Mechanical energy expenditures and movement efficiency in full body reaching movements.

    PubMed

    Sha, Daohang; France, Christopher R; Thomas, James S

    2010-02-01

    The effect of target location, speed, and handedness on the average total mechanical energy and movement efficiency is studied in 15 healthy subjects (7 males and 8 females with age 22.9 +/- 1.79 years old) performing full body reaching movements. The average total mechanical energy is measured as the time average of integration of joint power, potential energy, and kinetic energy respectively. Movement efficiency is calculated as the ratio of total kinetic energy to the total joint power and potential energy. Results show that speed and target location have significant effects on total mechanical energy and movement efficiency, but reaching hand only effects kinetic energy. From our findings we conclude that (1) efficiency in whole body reaching is dependent on whether the height of the body center of mass is raised or lowered during the task; (2) efficiency is increased as movement speed is increased, in part because of greater changes in potential energy; and (3) the CNS does not appear to use movement efficiency as a primary planning variable in full body reaching. It may be dependent on a combination of other factors or constraints.

  3. The direction of bilateral transfer depends on the performance parameter.

    PubMed

    Pan, Zhujun; van Gemmert, Arend W A

    2013-10-01

    To acquire a more comprehensive understanding of the learning benefits associated with bilateral transfer and to gain knowledge of possible mechanisms behind bilateral transfer, we investigated the transfer direction of several parameters which are assumed to represent important features of movement control in a visuo-motor task. During the study, participants learned a multidirectional point-to-point drawing task in which the visual feedback was rotated 45° and the gain was increased. Performance changes of the untrained hand in movement time, trajectory length, normalized jerk, initial direction error, ratio of the primary sub-movement time to the total movement time, and the accuracy of the aiming movement after the primary sub-movement were investigated as indices of learning from bilateral transfer. The results showed that performance parameters related to the initial production of the movement, such as the initial direction, ratio of primary sub-movement to the total movement time, and movement accuracy after the primary sub-movement, only transferred to the non-dominant, while hand performance variables related to the overall outcome, such as movement duration, movement smoothness, and trajectory length, transferred in both directions. The findings of the current study support the basic principle of the "dynamic dominance model" because it is suggested that overall improvements in the non-dominant system are controlled by trajectory parameters in visuo-motor tasks, which resulted in transference of the afore mentioned production parameters to rather occur to the non-dominant hand as opposed to transference to the dominant hand. Published by Elsevier B.V.

  4. Fatness predicts decreased physical activity and increased sedentary time, but not vice versa: support from a longitudinal study in 8- to 11-year-old children.

    PubMed

    Hjorth, M F; Chaput, J-P; Ritz, C; Dalskov, S-M; Andersen, R; Astrup, A; Tetens, I; Michaelsen, K F; Sjödin, A

    2014-07-01

    To examine independent and combined cross-sectional associations between movement behaviors (physical activity (PA), sedentary time, sleep duration, screen time and sleep disturbance) and fat mass index (FMI), as well as to examine longitudinal associations between movement behaviors and FMI. Cross-sectional and longitudinal analyses were done using data from the OPUS school meal study on 785 children (52% boys, 13.4% overweight, ages 8-11 years). Total PA, moderate-to-vigorous PA (MVPA), sedentary time and sleep duration (7 days and 8 nights) were assessed by an accelerometer and FMI was determined by dual-energy X-ray absorptiometry (DXA) on three occasions over 200 days. Demographic characteristics, screen time and sleep disturbance (Children's Sleep Habits Questionnaire) were also obtained. Total PA, MVPA and sleep duration were negatively associated with FMI, while sedentary time and sleep disturbances were positively associated with FMI (P⩽0.01). However, only total PA, MVPA and sleep duration were independently associated with FMI after adjustment for multiple covariates (P<0.001). Nevertheless, combined associations revealed synergistic effects among the different movement behaviors. Changes over time in MVPA were negatively associated with changes in FMI (P<0.001). However, none of the movement behaviors at baseline predicted changes in FMI (P>0.05), but higher FMI at baseline predicted a decrease in total PA and MVPA, and an increase in sedentary time (P⩽0.001), even in normal-weight children (P⩽0.03). Total PA, MVPA and sleep duration were independently associated with FMI, and combined associations of movement behaviors showed a synergistic effect with FMI. In the longitudinal study design, a high FMI at baseline was associated with lower PA and higher sedentary time after 200 days but not vice versa, even in normal-weight children. Our results suggest that adiposity is a better predictor of PA and sedentary behavior changes than the other way around.

  5. Administration of midazolam in infancy does not affect learning and memory of adult mice.

    PubMed

    Xu, Hua; Liu, Zhi-Qiang; Liu, Yi; Zhang, Wei-Shi; Xu, Bo; Xiong, Yuan-Chang; Deng, Xiao-Ming

    2009-12-01

    1. Midazolam is a common fast-acting GABA(A) receptor agonist. Recent data suggest that exposure to midazolam in early life may cause long-term effects on brain function through stable epigenetic reprogramming. The aim of the present study was to determine whether the administration of midazolam to infant mice would affect their learning and memory in adulthood. 2. An open-field test was conducted before and then 3, 24, 48 and 72 h after administration of midazolam (50 mg/kg, i.p.) to infant mice. Saline control mice received an equal volume of saline i.p. 3 h before the open-field test. Total movements, total movement time, total movement distance and velocity were analysed. Novel object recognition (NOR), Morris water-maze and passive avoidance tests were performed when the treated mice grew to adulthood (105 days of age). 3. The results of open-field test showed that midazolam significantly reduced locomotor activity (total movements, total movement time, total movement distance and velocity) in infant mice 3 and 24 h after drug administration and that these effects had disappeared by 72 h after drug administration. The results of the water-maze, NOR and passive avoidance tests in adulthood (at 105 days of age) indicated that administration of midazolam in infancy had no long-term effects on the learning and memory behaviours of adult mice compared with the saline control. 4. Acute midazolam administration to infant mice affected spontaneous locomotor activity for approximately 2 days, but did not seem to have any significant impact on cognitive functioning that lasted into adulthood.

  6. Fundamental movement skills and habitual physical activity in young children.

    PubMed

    Fisher, Abigail; Reilly, John J; Kelly, Louise A; Montgomery, Colette; Williamson, Avril; Paton, James Y; Grant, Stan

    2005-04-01

    To test for relationships between objectively measured habitual physical activity and fundamental movement skills in a relatively large and representative sample of preschool children. Physical activity was measured over 6 d using the Computer Science and Applications (CSA) accelerometer in 394 boys and girls (mean age 4.2, SD 0.5 yr). Children were scored on 15 fundamental movement skills, based on the Movement Assessment Battery, by a single observer. Total physical activity (r=0.10, P<0.05) and percent time spent in moderate to vigorous physical activity (MVPA) (r=0.18, P<0.001) were significantly correlated with total movement skills score. Time spent in light-intensity physical activity was not significantly correlated with motor skills score (r=0.02, P>0.05). In this sample and setting, fundamental movement skills were significantly associated with habitual physical activity, but the association between the two variables was weak. The present study questions whether the widely assumed relationships between motor skills and habitual physical activity actually exist in young children.

  7. How gender and task difficulty affect a sport-protective response in young adults

    PubMed Central

    Lipps, David B.; Eckner, James T.; Richardson, James K.; Ashton-Miller, James A.

    2013-01-01

    We tested the hypotheses that gender and task difficulty affect the reaction, movement, and total response times associated with performing a head protective response. Twenty-four healthy young adults (13 females) performed a protective response of raising their hands from waist level to block a foam ball fired at their head from an air cannon. Participants initially stood 8.25 m away from the cannon (‘low difficulty’), and were moved successively closer in 60 cm increments until they failed to block at least 5 of 8 balls (‘high difficulty’). Limb motion was quantified using optoelectronic markers on the participants’ left wrist. Males had significantly faster total response times (p = 0.042), a trend towards faster movement times (p = 0.054), and faster peak wrist velocity (p < .001) and acceleration (p = 0.032) than females. Reaction time, movement time, and total response time were significantly faster under high difficulty conditions for both genders (p < .001). This study suggests that baseball and softball pitchers and fielders should have sufficient time to protect their head from a batted ball under optimal conditions if they are adequately prepared for the task. PMID:23234296

  8. Competing with lower level opponents decreases intra-team movement synchronization and time-motion demands during pre-season soccer matches.

    PubMed

    Folgado, Hugo; Duarte, Ricardo; Fernandes, Orlando; Sampaio, Jaime

    2014-01-01

    This study aimed to quantify the time-motion demands and intra-team movement synchronization during the pre-season matches of a professional soccer team according to the opposition level. Positional data from 20 players were captured during the first half of six pre-season matches of a Portuguese first league team. Time-motion demands were measured by the total distance covered and distance covered at different speed categories. Intra-team coordination was measured by calculating the relative phase of all pairs of outfield players. Afterwards, the percentage of time spent in the -30° to 30° bin (near-in-phase mode of coordination) was calculated for each dyad as a measure of space-time movement synchronization. Movement synchronization data were analyzed for the whole team, according to each dyad average speed and by groups of similar dyadic synchronization tendencies. Then, these data were compared according to the opponent team level (first league; second league; amateurs). Time-motion demands showed no differences in total distance covered per opposition levels, while matches opposing teams of superior level revealed more distance covered at very high intensity. Competing against superior level teams implied more time in synchronized behavior for the overall displacements and displacements at higher intensities. These findings suggest that playing against higher-level opponents (1st league teams) increased time-motion demands at high intensities in tandem with intra-team movement synchronization tendencies.

  9. Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements.

    PubMed

    Latash, M L; Gottlieb, G L

    1991-01-01

    The purpose of this study was to experimentally investigate the applicability of the equilibrium-point hypothesis to the dynamics of single-joint movements. Subjects were trained to perform relatively slow (movement time 600-1000 ms) or fast (movement time 200-300 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the same time pattern of central motor command for a series of movements when the external torque could slowly and unpredictably increase, decrease, or remain constant. For fast movements, the total muscle torque was calculated as a sum of external and inertial components. Analysis of the data allowed reconstruction of the elbow joint compliant characteristics at different times during execution of the learned motor command. "Virtual" trajectories of the movements, representing time-varying changes in a central control parameter, were reconstructed and compared with the "actual" trajectories. For slow movements, the actual trajectories lagged behind the virtual ones. There were no consistent changes in the joint stiffness during slow movements. Similar analysis of experiments without voluntary movements demonstrated a lack of changes in the central parameters, supporting the assumption that the subjects were able to keep the same central motor command in spite of externally imposed unexpected torque perturbations. For the fast movements, the virtual trajectories were N-shaped, and the joint stiffness demonstrated a considerable increase near the middle of the movement. These findings contradict an hypothesis of monotonic joint compliant characteristic translation at a nearly constant rate during such movements.

  10. Maximum Movement Workloads and High-Intensity Workload Demands by Position in NCAA Division I Collegiate Football.

    PubMed

    Sanders, Gabriel J; Roll, Brad; Peacock, Corey A; Kollock, Roger O

    2018-05-02

    Sanders, GJ, Roll, B, Peacock, CA, and Kollock, RO. Maximum movement workloads and high-intensity workload demands by position in NCAA division I collegiate football. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to quantify the average and maximum (i.e., peak) movement workloads, and the percent of those workloads performed at high intensity by NCAA division I football athletes during competitive games. Using global positioning system devices (Catapult Sports), low, moderate, and high and total multidirectional movement workloads were quantified by each position. Strategically achieving maximal workloads may improve both conditioning and rehabilitation protocols for athletes as they prepare for competition or return to play after an injury. A total of 40 football athletes were included in the analysis. For the data to be included, athletes were required to participate in ≥75% of the offensive or defensive snaps for any given game. There was a total of 286 data downloads from 13 different games for 8 different football positions. Data were calculated and compared by offensive and defensive position to establish the mean, SD, and maximum workloads during competitive games. The percent high-intensity workload profile was established to assess the total number and percent of high-intensity movement workloads by position. The profile was calculated by dividing a position's maximal high-intensity movement workload by the total (e.g., sum of maximal low, moderate, and high-intensity movements) movement workload. One-way analysis of variances revealed that there was a main effect of football position for total movement workloads and the percent of workloads performed at high intensities (p ≤ 0.025 for all). Maximal high-intensity workloads were 1.6-4.3 times greater than average high-intensity workloads, and the percent of total workloads performed at high intensities varied greatly by position. Strategically training for and using maximal movement workloads can help ensure that athletes are achieving workloads that are similar to the greatest demands of a competitive game.

  11. Pilot study: Investigating the effects of Kinesio Taping® on functional activities in children with cerebral palsy.

    PubMed

    da Costa, Carolina Souza Neves; Rodrigues, Fernanda Simioni; Leal, Fernanda Mustafe; Rocha, Nelci Adriana Cicuto Ferreira

    2013-01-01

    To investigate the immediate effects of Kinesio Taping® (KT) on sit-to-stand (STS) movement, balance and dynamic postural control in children with cerebral palsy (CP). Four children diagnosed with left hemiplegic CP level I by the Gross Motor Function Classification System were evaluated under conditions without taping as control condition (CC); and with KT as kinesio condition. A motion analysis system was used to measure total duration of STS movement and angular movements of each joint. Clinical instruments such as Pediatric Balance Scale (PBS) and Timed up and Go (TUG) were also applied. Compared to CC, decreased total duration of STS, lower peak ankle flexion, higher knee extension at the end of STS, and decreased total time in TUG; but no differences were obtained on PBS score in KT. Neuromuscular taping seems to be beneficial on dynamic activities, but not have the same performance in predominantly static activities studied.

  12. Predicting individual differences in decision-making process from signature movement styles: an illustrative study of leaders.

    PubMed

    Connors, Brenda L; Rende, Richard; Colton, Timothy J

    2013-01-01

    There has been a surge of interest in examining the utility of methods for capturing individual differences in decision-making style. We illustrate the potential offered by Movement Pattern Analysis (MPA), an observational methodology that has been used in business and by the US Department of Defense to record body movements that provide predictive insight into individual differences in decision-making motivations and actions. Twelve military officers participated in an intensive 2-h interview that permitted detailed and fine-grained observation and coding of signature movements by trained practitioners using MPA. Three months later, these subjects completed four hypothetical decision-making tasks in which the amount of information sought out before coming to a decision, as well as the time spent on the tasks, were under the partial control of the subject. A composite MPA indicator of how a person allocates decision-making actions and motivations to balance both Assertion (exertion of tangible movement effort on the environment to make something occur) and Perspective (through movements that support shaping in the body to perceive and create a suitable viewpoint for action) was highly correlated with the total number of information draws and total response time-individuals high on Assertion reached for less information and had faster response times than those high on Perspective. Discussion focuses on the utility of using movement-based observational measures to capture individual differences in decision-making style and the implications for application in applied settings geared toward investigations of experienced leaders and world statesmen where individuality rules the day.

  13. Energy-Efficient Querying of Wireless Sensor Networks

    DTIC Science & Technology

    2007-09-01

    will fail to locate the desired information. Depending on the rate of node movement , this data exchange will be costly in terms of total network...nodes is best accomplished using a small time window to reduce errors introduced by the node’s movement (i.e., older measurements are less likely to...embedded processor or input from upper layer applications,” nodes which detect their own movement transmit an alert signal over a “wake-up” channel

  14. The Emergence of Frequency Effects in Eye Movements

    ERIC Educational Resources Information Center

    Vanyukov, Polina M.; Warren, Tessa; Wheeler, Mark E.; Reichle, Erik D.

    2012-01-01

    A visual search experiment employed strings of Landolt "C"s to examine how the gap size of and frequency of exposure to distractor strings affected eye movements. Increases in gap size were associated with shorter first-fixation durations, gaze durations, and total times, as well as fewer fixations. Importantly, both the number and duration of…

  15. Eye Movements and Overt Rehearsal in Word Recall

    ERIC Educational Resources Information Center

    Geiselman, Ralph E.; Bellezza, Francis S.

    1977-01-01

    Rates of overt rehearsal and eye movement were compared to each other, and were also compared as predictors of immediate and delayed recall. Concludes that total looking time was the best predictor of long-term retention and that recall performance following overt rehearsal was different from recall performance following silent study. (Editor/RK)

  16. Relationships between Eye Movements during Sentence Reading Comprehension, Word Spelling and Reading, and DTI and fmri Connectivity In Students with and without Dysgraphia or Dyslexia

    PubMed Central

    Yagle, Kevin; Richards, Todd; Askren, Katie; Mestre, Zoe; Beers, Scott; Abbott, Robert; Nagy, William; Boord, Peter; Berninger, Virginia

    2017-01-01

    While eye movements were recorded and brains scanned, 29 children with and without specific learning disabilities (SLDs) decided if sentences they read (half with only correctly spelled words and half with homonym foils) were meaningful. Significant main effects were found for diagnostic groups (non-SLD control, dysgraphia control, and dyslexia) in total fixation (dwell) time, total number of fixations, and total regressions in during saccades; the dyslexia group had longer and more fixations and made more regressions in during saccades than either control group. The dyslexia group also differed from both control groups in (a) fractional anisotropy in left optic radiation and (b) silent word reading fluency on a task in which surrounding letters can be distracting, consistent with Rayner's selective attention dyslexia model. Different profiles for non-SLD control, dysgraphia, and dyslexia groups were identified in correlations between total fixation time, total number of fixations, regressions in during saccades, magnitude of gray matter connectivity during the fMRI sentence reading comprehension from left occipital temporal cortex seed with right BA44 and from left inferior frontal gyrus with right inferior frontoccipital fasciculus, and normed word-specific spelling and silent word reading fluency measures. The dysgraphia group was more likely than the non-SLD control or dyslexia groups to show negative correlations between eye movement outcomes and sentences containing incorrect homonym foils. Findings are discussed in reference to a systems approach in future sentence reading comprehension research that integrates eye movement, brain, and literacy measures. PMID:28936361

  17. Relationships between Eye Movements during Sentence Reading Comprehension, Word Spelling and Reading, and DTI and fmri Connectivity In Students with and without Dysgraphia or Dyslexia.

    PubMed

    Yagle, Kevin; Richards, Todd; Askren, Katie; Mestre, Zoe; Beers, Scott; Abbott, Robert; Nagy, William; Boord, Peter; Berninger, Virginia

    2017-01-01

    While eye movements were recorded and brains scanned, 29 children with and without specific learning disabilities (SLDs) decided if sentences they read (half with only correctly spelled words and half with homonym foils) were meaningful. Significant main effects were found for diagnostic groups (non-SLD control, dysgraphia control, and dyslexia) in total fixation (dwell) time, total number of fixations, and total regressions in during saccades; the dyslexia group had longer and more fixations and made more regressions in during saccades than either control group. The dyslexia group also differed from both control groups in (a) fractional anisotropy in left optic radiation and (b) silent word reading fluency on a task in which surrounding letters can be distracting, consistent with Rayner's selective attention dyslexia model. Different profiles for non-SLD control, dysgraphia, and dyslexia groups were identified in correlations between total fixation time, total number of fixations, regressions in during saccades, magnitude of gray matter connectivity during the fMRI sentence reading comprehension from left occipital temporal cortex seed with right BA44 and from left inferior frontal gyrus with right inferior frontoccipital fasciculus, and normed word-specific spelling and silent word reading fluency measures. The dysgraphia group was more likely than the non-SLD control or dyslexia groups to show negative correlations between eye movement outcomes and sentences containing incorrect homonym foils. Findings are discussed in reference to a systems approach in future sentence reading comprehension research that integrates eye movement, brain, and literacy measures.

  18. Developmental study of visual perception of handwriting movement: influence of motor competencies?

    PubMed

    Bidet-Ildei, Christel; Orliaguet, Jean-Pierre

    2008-07-25

    This paper investigates the influence of motor competencies for the visual perception of human movements in 6-10 years old children. To this end, we compared the kinematics of actual performed and perceptual preferred handwriting movements. The two children's tasks were (1) to write the letter e on a digitizer (handwriting task) and (2) to adjust the velocity of an e displayed on a screen so that it would correspond to "their preferred velocity" (perceptive task). In both tasks, the size of the letter (from 3.4 to 54.02 cm) was different on each trial. Results showed that irrespective of age and task, total movement time conforms to the isochrony principle, i.e., the tendency to maintain constant the duration of movement across changes of amplitude. However, concerning movement speed, there is no developmental correspondence between results obtained in the motor and the perceptive tasks. In handwriting task, movement time decreased with age but no effect of age was observed in the perceptive task. Therefore, perceptual preference of handwriting movement in children could not be strictly interpreted in terms of motor-perceptual coupling.

  19. Modularity and hierarchical organization of action programs in children's acquisition of graphic skills.

    PubMed

    Manoel, Edison de J; Dantas, Luiz; Gimenez, Roberto; de Oliveira, Dalton Lustosa

    2011-10-01

    The organization of actions is based on modules in memory as a result of practice, easing the demand of performing more complex actions. If this modularization occurs, the elements of the module must remain invariant in new tasks. To test this hypothesis, 35 children, age 10 yr., practiced a graphic criterion task on a digital tablet and completed a complex graphic task enclosing the previous one. Total movement and pause times to draw the figure indicated skill acquisition. A module was identified by the variability of relative timing, pause time, and sequencing. Total movement to perform the criterion task did not increase significantly when it was embedded in the more complex task. Modularity was evidenced by the stability of relative timing and pause time and sequencing. The spatial position of new elements did not perturb the module, so the grammar of action may still have been forming.

  20. An investigation of leg and trunk strength and reaction times of hard-style martial arts practitioners.

    PubMed

    Donovan, Oliver O; Cheung, Jeanette; Catley, Maria; McGregor, Alison H; Strutton, Paul H

    2006-01-01

    The purpose of this study was to investigate trunk and knee strength in practitioners of hard-style martial arts. An additional objective was to examine reaction times in these participants by measuring simple reaction times (SRT), choice reaction times (CRT) and movement times (MT). Thirteen high-level martial artists and twelve sedentary participants were tested under isokinetic and isometric conditions on an isokinetic dynamometer. Response and movement times were also measured in response to simple and choice auditory cues. Results indicated that the martial arts group generated a greater body-weight adjusted peak torque with both legs at all speeds during isokinetic extension and flexion, and in isometric extension but not flexion. In isokinetic and isometric trunk flexion and extension, martial artists tended to have higher peak torques than controls, but they were not significantly different (p > 0.05). During the SRT and CRT tasks the martial artists were no quicker in lifting their hand off a button in response to the stimulus [reaction time (RT)] but were significantly faster in moving to press another button [movement time (MT)]. In conclusion, the results reveal that training in a martial art increases the strength of both the flexors and extensors of the leg. Furthermore, they have faster movement times to auditory stimuli. These results are consistent with the physical aspects of the martial arts. Key PointsMartial artists undertaking hard-style martial arts have greater strength in their knee flexor and extensor muscles as tested under isokinetic testing. Under isometric testing conditions they have stronger knee extensors only.The trunk musculature is generally higher under both conditions of testing in the martial artists, although not significantly.The total reaction times of the martial artists to an auditory stimulus were significantly faster than the control participants. When analysed further it was revealed that the decrease in reaction time was due to the movement time component of the total reaction time.The training involved for the practice of the hard-style martial arts increases the strength of muscles involved in kicking. This increased strength is not seen in the trunk muscles. Furthermore, martial artists have a faster response time; the cause of which appears to be only the faster movement time.

  1. An Investigation Of Leg And Trunk Strength And Reaction Times Of Hard-Style Martial Arts Practitioners

    PubMed Central

    Donovan, Oliver O; Cheung, Jeanette; Catley, Maria; McGregor, Alison H.; Strutton, Paul H.

    2006-01-01

    The purpose of this study was to investigate trunk and knee strength in practitioners of hard-style martial arts. An additional objective was to examine reaction times in these participants by measuring simple reaction times (SRT), choice reaction times (CRT) and movement times (MT). Thirteen high-level martial artists and twelve sedentary participants were tested under isokinetic and isometric conditions on an isokinetic dynamometer. Response and movement times were also measured in response to simple and choice auditory cues. Results indicated that the martial arts group generated a greater body-weight adjusted peak torque with both legs at all speeds during isokinetic extension and flexion, and in isometric extension but not flexion. In isokinetic and isometric trunk flexion and extension, martial artists tended to have higher peak torques than controls, but they were not significantly different (p > 0.05). During the SRT and CRT tasks the martial artists were no quicker in lifting their hand off a button in response to the stimulus [reaction time (RT)] but were significantly faster in moving to press another button [movement time (MT)]. In conclusion, the results reveal that training in a martial art increases the strength of both the flexors and extensors of the leg. Furthermore, they have faster movement times to auditory stimuli. These results are consistent with the physical aspects of the martial arts. Key Points Martial artists undertaking hard-style martial arts have greater strength in their knee flexor and extensor muscles as tested under isokinetic testing. Under isometric testing conditions they have stronger knee extensors only. The trunk musculature is generally higher under both conditions of testing in the martial artists, although not significantly. The total reaction times of the martial artists to an auditory stimulus were significantly faster than the control participants. When analysed further it was revealed that the decrease in reaction time was due to the movement time component of the total reaction time. The training involved for the practice of the hard-style martial arts increases the strength of muscles involved in kicking. This increased strength is not seen in the trunk muscles. Furthermore, martial artists have a faster response time; the cause of which appears to be only the faster movement time. PMID:24376366

  2. Maternal perception of fetal movements in late pregnancy is affected by type and duration of fetal movement.

    PubMed

    Brown, Rebecca; Higgins, Lucy E; Johnstone, Edward D; Wijekoon, Jayawan H; Heazell, Alexander E P

    2016-01-01

    A reduction in fetal movements has been proposed to identify pregnancies at risk of stillbirth. The utility of this approach is limited by variability in maternal perception of fetal movements. We aimed to determine the proportion of fetal movements observed by ultrasound that were maternally perceived and identify factors that affected maternal perception. During 30-min recordings, women (n = 21) depressed a trigger upon perception of a fetal movement, while an ultrasound operator recorded observed movements according to the fetal parts involved. Women perceived between 2.4% and 81.0% (median 44.8%) of movements observed on scan. Synchronous movement of the fetal trunk and limbs was more likely to be recognized than either part in isolation (60.5% versus 37.5% and 30%, respectively). The ultrasound operator judged the fetus to be moving for a significantly greater proportion of the time than mothers (median 1.5% of total recording time versus 0.7%). There was no significant relationship between the ability to perceive fetal activity and placental site, parity, amniotic fluid index or maternal body mass index. Variations in maternal perception of fetal movements may affect detection of a clinically significant reduction in fetal movements for some women.

  3. Movements and distribution of polar bears in the Beaufort sea

    USGS Publications Warehouse

    Amstrup, Steven C.; Durner, George M.; Stirling, I.; Lunn, N.J.; Messier, F.

    2000-01-01

    We fitted 173 satellite radio collars (platform transmitter terminals) to 121 adult female polar bears in the Beaufort Sea and relocated the bears 44 736 times between 1985 and 1995. We regularly resighted many instrumented bears so that we could ascertain whether changes in movements or distribution were related to reproductive status. Mean short-term movement rates were less than 2 km/h for all classes of bears. Maximum movement rates occurred in winter and early summer. In the southern Beaufort Sea (SBS), net geographic movements from the beginning to the end of each month were smaller for females with cubs of the year than for solitary females, and larger in November than in April, May, or July. In May, June, July, and August, radio-collared bears in the SBS moved north. They moved south in October. In the northern Beaufort Sea (NBS), bears moved north in June and south in March and September. Total annual movements ranged from 1406 to 6203 km. Mean total distances moved each month ranged from 79 to 420 km. Total monthly movements by SBS bears were largest in early winter and smallest in early spring. In the NBS, movements were largest in summer and smallest in winter. In the SBS, females with cubs moved less each month than other females. Annual activity areas ranged from 7264 to 596 800 km2. Monthly activity areas ranged from 88 to 9760 km2. Seasonal fidelity to activity areas of bears captured in all parts of the Beaufort Sea was strongest in summer and weakest in spring.

  4. Predicting individual differences in decision-making process from signature movement styles: an illustrative study of leaders

    PubMed Central

    Connors, Brenda L.; Rende, Richard; Colton, Timothy J.

    2013-01-01

    There has been a surge of interest in examining the utility of methods for capturing individual differences in decision-making style. We illustrate the potential offered by Movement Pattern Analysis (MPA), an observational methodology that has been used in business and by the US Department of Defense to record body movements that provide predictive insight into individual differences in decision-making motivations and actions. Twelve military officers participated in an intensive 2-h interview that permitted detailed and fine-grained observation and coding of signature movements by trained practitioners using MPA. Three months later, these subjects completed four hypothetical decision-making tasks in which the amount of information sought out before coming to a decision, as well as the time spent on the tasks, were under the partial control of the subject. A composite MPA indicator of how a person allocates decision-making actions and motivations to balance both Assertion (exertion of tangible movement effort on the environment to make something occur) and Perspective (through movements that support shaping in the body to perceive and create a suitable viewpoint for action) was highly correlated with the total number of information draws and total response time—individuals high on Assertion reached for less information and had faster response times than those high on Perspective. Discussion focuses on the utility of using movement-based observational measures to capture individual differences in decision-making style and the implications for application in applied settings geared toward investigations of experienced leaders and world statesmen where individuality rules the day. PMID:24069012

  5. Cross-sectional and prospective associations of meeting 24-h movement guidelines with overweight and obesity in preschool children.

    PubMed

    Berglind, D; Ljung, R; Tynelius, P; Brooke, H L

    2018-01-31

    Cross-sectional studies report that meeting the newly developed 24-h movement guidelines (≥60 min moderate to vigorous physical activity (MVPA), ≤120 min screen time and 9-11 h sleep duration) are associated with lower adiposity indicators in children. However, prospective data are absent. The study sample consisted of 830 children from the PRIMROSE study with GT3X+ accelerometer measured physical activity and parent reported screen time and sleep duration at age 4 years and objectively measured anthropometrics at age 4 and 5 years. The main outcome variables were weight status, body mass index (BMI) and BMI z-score at ages 4 and 5 years. Exposure variables were defined as meeting vs. not meeting the 24-h movement guidelines and combinations of these recommendations. On average, 18.4% of the total study sample met the combination of MVPA, sleep duration and screen time recommendations. In isolation, the MVPA, screen time and sleep guidelines were met by 31%, 63% and 98% of the total study sample, respectively. Adherence to any single recommendation, or any combination of recommendations at age 4 years, was not associated with being overweight or obese nor with BMI and BMI z-score at age 4 or 5 years. In contrast to previous cross-sectional studies, neither individual movement behaviours nor combinations of behaviours at age 4 years was associated with overweight or obesity, BMI or BMI z-score at age 4 or 5 years. More prospective data are needed before effects on weight status from meeting the 24-h movement guidelines are elucidated. © 2018 World Obesity Federation.

  6. Movement Demands and Metabolic Power Comparisons Between Elite and Subelite Australian Footballers.

    PubMed

    Johnston, Richard J; Watsford, Mark L; Austin, Damien J; Pine, Matthew J; Spurrs, Robert W

    2015-10-01

    This study examined the differences in movement demands and metabolic power output of elite and subelite Australian football (AF) players and quantified the movement profiles of a subelite AF competition. Movement variables were collected from AF players using Global Positioning System devices over 2 AF League (elite) and North East Australian Football League (NEAFL, subelite) seasons. A total of 500 files were collected from 37 elite and subelite nomadic AF players. NEAFL players covered 13,547 m at an average speed of 124.5 m·min(-1). Elite players performed more high-speed running (5.7-6.3%) and high acceleration and deceleration efforts (1.9-14.7%, p ≤ 0.05). The elite players had a higher mean metabolic power output (3.2%) and time spent at the very high power zone (15.9%, p ≤ 0.05). In contrast, elite players recorded a lower total match duration than the subelite players (4%, p ≤ 0.05). The contrasting amount of high-intensity activities performed by the 2 groups demonstrates the need to alter the training programs of subelite players to ensure they are capable of meeting the demands of elite football. The differences in match duration suggest that reducing subelite players' match time through increasing their rotations would assist the replication of movement profiles of elite players.

  7. CONTROL LIMITER DEVICE

    DOEpatents

    DeShong, J.A.

    1960-03-01

    A control-limiting device for monltoring a control system is described. The system comprises a conditionsensing device, a condition-varying device exerting a control over the condition, and a control means to actuate the condition-varying device. A control-limiting device integrates the total movement or other change of the condition-varying device over any interval of time during a continuum of overlapping periods of time, and if the tothl movement or change of the condition-varying device exceeds a preset value, the control- limiting device will switch the control of the operated apparatus from automatic to manual control.

  8. Association of Psychosocial Factors With Physical Activity and Function After Total Knee Replacement: An Exploratory Study.

    PubMed

    Dominick, Gregory M; Zeni, Joseph A; White, Daniel K

    2016-09-01

    To examine the association between self-efficacy, social support, and fear of movement with physical activity and function at baseline and after 12 weeks of physical therapy. Nonrandomized cohort study, repeated-measures design. Outpatient rehabilitation clinic within the general community. Adults (N=49) undergoing outpatient physical therapy for total knee replacement (TKR). Not applicable. Self-efficacy for exercise (SEE), fear of movement, leisure-time physical activity (LTPA), 6-minute walk test (6MWT), and Knee Outcome Survey-Activities of Daily Living Scale (KOS-ADLS) were assessed at baseline and 12 weeks. Mean functional change scores significantly increased at 12 weeks for the 6MWT (95% confidence interval [CI], 42.3-106.2), KOS-ADLS (95% CI, 12.7-23.3), and LTPA (95% CI, 6.5-26.1). Self-efficacy and fear of movement were not significantly associated with function at baseline or 12 weeks. Participants with lower SEE had 6 fewer metabolic equivalents per week of improvement in LTPA than those with high self-efficacy (95% CI, -27.9 to 14.8), and those with high fear of movement had 26.1m less improvement in the 6MWT than those with low fear of movement (95% CI, -42.2 to 94.5). Most participants reported having no family or peer support for exercise. Physical therapy for TKR improves physical function and self-reported physical activity. High fear of movement and low SEE may be associated with less improvement in physical activity and function over time. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.

  10. Resource allocation in neural networks for motor control

    NASA Astrophysics Data System (ADS)

    Milton, J.; Cummins, J.; Gunnoe, J.; Tollefson, M.; Cabrera, J. L.; Ohira, T.

    2006-03-01

    Multiplicative noise plays an important part of a non-predictive control mechanism for stick balancing at the fingertip. However, intentionally-directed movements are also used in stick balancing, particularly by beginners. The interplay between intentional and non-predictive control mechanisms for stick balancing was assessed using two dual task paradigms: the subject was asked to either move one of their legs rhythmically or to imagine moving their leg while balancing a stick (55.4 cm, 35 g) at their fingertip. Performance was measured by determining the stick survival function, i.e. the fraction of trials (total >=25) for which the stick remained balanced at time t as a function of t. Performance was increased by concurrent rhythmic leg movements (50% survival time shifted from 8-9s to 15s in a typical subject). Imagined movements resulted in a similar improvement (50% survival time of 20s for the above subject) suggesting that this enhancement is not simply related to mechanical vibrations of the fingertip induced by leg movement. These observations emphasize the importance of the development of mathematical models for neural control of skilled motor movements that take into resource allocation of limited resources, such as intention.

  11. Effects of mirror therapy on motor and sensory recovery in chronic stroke: a randomized controlled trial.

    PubMed

    Wu, Ching-Yi; Huang, Pai-Chuan; Chen, Yu-Ting; Lin, Keh-Chung; Yang, Hsiu-Wen

    2013-06-01

    To compare the effects of mirror therapy (MT) versus control treatment (CT) on movement performance, motor control, sensory recovery, and performance of activities of daily living in people with chronic stroke. Single-blinded, randomized controlled trial. Four hospitals. Outpatients with chronic stroke (N=33) with mild to moderate motor impairment. The MT group (n=16) received upper extremity training involving repetitive bimanual, symmetrical movement practice, in which the individual moves the affected limb while watching the reflective illusion of the unaffected limb's movements from a mirror. The CT group received task-oriented upper extremity training. The intensity for both groups was 1.5 hours/day, 5 days/week, for 4 weeks. The Fugl-Meyer Assessment; kinematic variables, including reaction time, normalized movement time, normalized total displacement, joint recruitment, and maximum shoulder-elbow cross-correlation; the Revised Nottingham Sensory Assessment; the Motor Activity Log; and the ABILHAND questionnaire. The MT group performed better in the overall (P=.01) and distal part (P=.04) Fugl-Meyer Assessment scores and demonstrated shorter reaction time (P=.04), shorter normalized total displacement (P=.04), and greater maximum shoulder-elbow cross-correlation (P=.03). The Revised Nottingham Sensory Assessment temperature scores improved significantly more in the MT group than in the CT group. No significant differences on the Motor Activity Log and the ABILHAND questionnaire were found immediately after MT or at follow-up. The application of MT after stroke might result in beneficial effects on movement performance, motor control, and temperature sense, but may not translate into daily functions in the population with chronic stroke. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Nonexercise movement in elderly compared with young people.

    PubMed

    Harris, Ann M; Lanningham-Foster, Lorraine M; McCrady, Shelly K; Levine, James A

    2007-04-01

    The association between free-living daily activity and aging is unclear because nonexercise movement and its energetic equivalent, nonexercise activity thermogenesis, have not been exhaustively studied in the elderly. We wanted to address the hypothesis that free-living nonexercise movement is lower in older individuals compared with younger controls matched for lean body mass. Ten lean, healthy, sedentary elderly and 10 young subjects matched for lean body mass underwent measurements of nonexercise movement and body posture over 10 days using sensitive, validated technology. In addition, energy expenditure was assessed using doubly labeled water and indirect calorimetry. Total nonexercise movement (acceleration arbitrary units), standing time, and standing acceleration were significantly lower in the elderly subjects; this was specifically because the elderly walked less distance per day despite having a similar number of walking bouts per day compared with the young individuals. The energetic cost of basal metabolic rate, thermic effect of food, total daily energy expenditure, and nonexercise activity thermogenesis were not different between the elderly and young groups. Thus, the energetic cost of walking in the elderly may be greater than in the young. Lean, healthy elderly individuals may have a biological drive to be less active than the young.

  13. Study of Sedative-Hypnotic Effects of Aloe vera L. Aqueous Extract through Behavioral Evaluations and EEG Recording in Rats

    PubMed Central

    Abdollahnejad, Fatemeh; Mosaddegh, Mahmoud; Nasoohi, Sanaz; Mirnajafi-Zadeh, Javad; Kamalinejad, Mohammad; Faizi, Mehrdad

    2016-01-01

    In this study, we investigated the sedative and hypnotic effects of the aqueous extract of Aloe vera on rats. In order to evaluate the overall hypnotic effects of the Aloe vera extract, open field and loss of righting reflex tests were primarily used. The sedative and hypnotic effects of the extract were then confirmed by detection of remarkable raise in the total sleeping time through analysis of electroencephalographic (EEG) recordings of animals. Analysis of the EEG recordings showed that there is concomitant change in Rapid Eye Movement (REM) and None Rapid Eye Movement (NREM) sleep in parallel with the prolonged total sleeping time. Results of the current research show that the extract has sedative-hypnotic effects on both functional and electrical activities of the brain. PMID:27610170

  14. The Effect of Core Stability Training on Functional Movement Patterns in Collegiate Athletes.

    PubMed

    Bagherian, Sajad; Ghasempoor, Khodayar; Rahnama, Nader; Wikstrom, Erik A

    2018-02-06

    Pre-participation examinations are the standard approach for assessing poor movement quality that would increase musculoskeletal injury risk. However, little is known about how core stability influences functional movement patterns. The primary purpose of this study was to determine the effect of an 8-week core stability program on functional movement patterns in collegiate athletes. The secondary purpose was to determine if the core stability training program would be more effective in those with worse movement quality (i.e. ≤14 baseline FMS score). Quasi-experimental design. Athletic Training Facility. One-hundred collegiate athletes. Functional movement patterns included the Functional Movement Screen (FMS), Lateral step down (LSD) and Y balance test (YBT) and were assessed before and after the 8-week program. Participants were placed into 1 of the 2 groups: intervention and control. The intervention group was required to complete a core stability training program that met 3 times per week for 8-week. Significant group x time interactions demonstrated improvements in FMS, LSD and YBT scores in the experimental group relative to the control group (p<0.001). Independent sample t-tests demonstrate that change scores were larger (greater improvement) for the FMS total score and Hurdle step (p<0.001) in athletes with worse movement quality. An 8-week core stability training program enhances functional movement patterns and dynamic postural control in collegiate athletes. The benefits are more pronounced in collegiate athletes with poor movement quality.

  15. Dependence of Basipetal Polar Transport of Auxin upon Aerobic Metabolism 1

    PubMed Central

    Wilkins, Malcolm B.; Martin, Mary

    1967-01-01

    The movement of IAA-14C through coleoptile segments of Avena and Zea has been investigated under aerobic and anaerobic conditions. The results are as follows: Zea. Using a 5-mm segment and a 2-hour transport period anaerobic conditions reduced the total uptake of 14C from an apical donor by 74% and the proportion of the total found in the receiving block by at least 45%. Anaerobic conditions reduced total uptake from a basal donor by 58% but no 14C reached the apical receiving block in either air or N2. Uptake from apical and basal donor blocks in N2 is closely similar. The presence of 14C in the basal receiving blocks, and its absence in the apical receiving blocks, in N2 suggests that even in anaerobic conditions movement of IAA is polarized basipetally, although the movement occurs at only a fraction of the rate found in air. Anaerobic conditions induced a similar reduction in basipetal movement of IAA in upper and lower 5-mm segments taken from the apical 10 mm of a Zea coleoptile. Using 10-mm Zea segments no 14C was recovered in the receiving blocks at the basal end of the segment after 2 and 4 hours in N2 whereas large amounts were recovered in air. Avena: Using 5-mm segments and a 2-hour transport period the total uptake of 14C from an apical donor is reduced by 83%. Movement of 14C into the basal donor is totally inhibited in N2. Total uptake of 14C from a basal donor is reduced by 61% in nitrogen and no 14C reached the apical receiving blocks regardless of the atmospheric conditions. A time course for the movement of 14C into the basal and apical receiving blocks through 5-mm segments showed that in air the amount in the basal receivers increased for 4 hours and then remained approximately uniform. In N2 no significant 14C reached the receivers until 6 to 8 hours after the application of donors but even then the amounts were about 12 to 14% of that in aerobic receivers. Movement of 14C into apical receivers was similar in air and in nitrogen and even after 6 to 8 hours the amount of radioactivity barely reached significant levels. PMID:16656578

  16. Modelling the time at which overcrowding and feed interruption emerge on the swine premises under movement restrictions during a classical swine fever outbreak.

    PubMed

    Weng, H Y; Yadav, S; Olynk Widmar, N J; Croney, C; Ash, M; Cooper, M

    2017-03-01

    A stochastic risk model was developed to estimate the time elapsed before overcrowding (TOC) or feed interruption (TFI) emerged on the swine premises under movement restrictions during a classical swine fever (CSF) outbreak in Indiana, USA. Nursery (19 to 65 days of age) and grow-to-finish (40 to 165 days of age) pork production operations were modelled separately. Overcrowding was defined as the total weight of pigs on premises exceeding 100% to 115% of the maximum capacity of the premises, which was computed as the total weight of the pigs at harvest/transition age. Algorithms were developed to estimate age-specific weight of the pigs on premises and to compare the daily total weight of the pigs with the threshold weight defining overcrowding to flag the time when the total weight exceeded the threshold (i.e. when overcrowding occurred). To estimate TFI, an algorithm was constructed to model a swine producer's decision to discontinue feed supply by incorporating the assumptions that a longer estimated epidemic duration, a longer time interval between the age of pigs at the onset of the outbreak and the harvest/transition age, or a longer progression of an ongoing outbreak would increase the probability of a producer's decision to discontinue the feed supply. Adverse animal welfare conditions were modelled to emerge shortly after an interruption of feed supply. Simulations were run with 100 000 iterations each for a 365-day period. Overcrowding occurred in all simulated iterations, and feed interruption occurred in 30% of the iterations. The median (5th and 95th percentiles) TOC was 24 days (10, 43) in nursery operations and 78 days (26, 134) in grow-to-finish operations. Most feed interruptions, if they emerged, occurred within 15 days of an outbreak. The median (5th and 95th percentiles) time at which either overcrowding or feed interruption emerged was 19 days (4, 42) in nursery and 57 days (4, 130) in grow-to-finish operations. The study findings suggest that overcrowding and feed interruption could emerge early during a CSF outbreak among swine premises under movement restrictions. The outputs derived from the risk model could be used to estimate and evaluate associated mitigation strategies for alleviating adverse animal welfare conditions resulting from movement restrictions.

  17. Total Risk Integrated Methodology (TRIM) - TRIM.FaTE

    EPA Pesticide Factsheets

    TRIM.FaTE is a spatially explicit, compartmental mass balance model that describes the movement and transformation of pollutants over time, through a user-defined, bounded system that includes both biotic and abiotic compartments.

  18. Effects of interactive metronome training on upper extremity function, ADL and QOL in stroke patients.

    PubMed

    Yu, Ga-Hui; Lee, Jae-Shin; Kim, Su-Kyoung; Cha, Tae-Hyun

    2017-01-01

    Rhythm and timing training is stimulation that substitutes for a damaged function controls muscular movement or temporal element, which has positive impacts on the neurological aspect and movement of the brain. This study is to assess the changes caused by rhythm and timing training using an interactive metronome (IM) on upper extremity function, ADL and QOL in stroke patients. In order to assess the effects of IM training, a group experiment was conducted on 30 stroke patients. Twelve sessions of IM training were provided for the experimental group three times a week for four weeks, while the control group was trained with a Bilateral arm Self-Exercise (BSE) for the same period. Both groups were evaluated by pre- and post-tests through MFT, MAL, K-MBI and SS-QOL. There were more statistically significant differences (<0.05) in the total score of MFT and the finger control item in the IM Group than in the BSE Group. With respect to ADL, there were more statistically significant differences (<0.05) in the total score of K-MBI and the dressing item in the IM Group than in the BSE Group. The study proposes that IM training can be applied as an occupational therapy program in patients with various diseases who need to adjust the time for performing movements as well as stroke patients.

  19. Can a novel smartphone application detect periodic limb movements?

    PubMed

    Bhopi, Rashmi; Nagy, David; Erichsen, Daniel

    2012-01-01

    Periodic limb movements (PLMs) are repetitive, stereotypical and unconscious movements, typically of the legs, that occur in sleep and are associated with several sleep disorders. The gold standard for detecting PLMs is overnight electromyography which, although highly sensitive and specific, is time and labour consuming. The current generation of smart phones is equipped with tri-axial accelerometers that record movement. To develop a smart phone application that can detect PLMs remotely. A leg movement sensing application (LMSA) was programmed in iOS 5x and incorporated into an iPhone 4S (Apple INC.). A healthy adult male subject underwent simultaneous EMG and LMSA measurements of voluntary stereotypical leg movements. The mean number of leg movements recorded by EMG and by the LMSA was compared. A total of 403 leg movements were scored by EMG of which the LMSA recorded 392 (97%). There was no statistical difference in mean number of leg movements recorded between the two modalities (p = 0.3). These preliminary results indicate that a smart phone application is able to accurately detect leg movements outside of the hospital environment and may be a useful tool for screening and follow up of patients with PLMs.

  20. A Mirror Therapy-Based Action Observation Protocol to Improve Motor Learning After Stroke.

    PubMed

    Harmsen, Wouter J; Bussmann, Johannes B J; Selles, Ruud W; Hurkmans, Henri L P; Ribbers, Gerard M

    2015-07-01

    Mirror therapy is a priming technique to improve motor function of the affected arm after stroke. To investigate whether a mirror therapy-based action observation (AO) protocol contributes to motor learning of the affected arm after stroke. A total of 37 participants in the chronic stage after stroke were randomly allocated to the AO or control observation (CO) group. Participants were instructed to perform an upper-arm reaching task as fast and as fluently as possible. All participants trained the upper-arm reaching task with their affected arm alternated with either AO or CO. Participants in the AO group observed mirrored video tapes of reaching movements performed by their unaffected arm, whereas participants in the CO group observed static photographs of landscapes. The experimental condition effect was investigated by evaluating the primary outcome measure: movement time (in seconds) of the reaching movement, measured by accelerometry. Movement time decreased significantly in both groups: 18.3% in the AO and 9.1% in the CO group. Decrease in movement time was significantly more in the AO compared with the CO group (mean difference = 0.14 s; 95% confidence interval = 0.02, 0.26; P = .026). The present study showed that a mirror therapy-based AO protocol contributes to motor learning after stroke. © The Author(s) 2014.

  1. Constraining eye movement in individuals with Parkinson's disease during walking turns.

    PubMed

    Ambati, V N Pradeep; Saucedo, Fabricio; Murray, Nicholas G; Powell, Douglas W; Reed-Jones, Rebecca J

    2016-10-01

    Walking and turning is a movement that places individuals with Parkinson's disease (PD) at increased risk for fall-related injury. However, turning is an essential movement in activities of daily living, making up to 45 % of the total steps taken in a given day. Hypotheses regarding how turning is controlled suggest an essential role of anticipatory eye movements to provide feedforward information for body coordination. However, little research has investigated control of turning in individuals with PD with specific consideration for eye movements. The purpose of this study was to examine eye movement behavior and body segment coordination in individuals with PD during walking turns. Three experimental groups, a group of individuals with PD, a group of healthy young adults (YAC), and a group of healthy older adults (OAC), performed walking and turning tasks under two visual conditions: free gaze and fixed gaze. Whole-body motion capture and eye tracking characterized body segment coordination and eye movement behavior during walking trials. Statistical analysis revealed significant main effects of group (PD, YAC, and OAC) and visual condition (free and fixed gaze) on timing of segment rotation and horizontal eye movement. Within group comparisons, revealed timing of eye and head movement was significantly different between the free and fixed gaze conditions for YAC (p < 0.001) and OAC (p < 0.05), but not for the PD group (p > 0.05). In addition, while intersegment timings (reflecting segment coordination) were significantly different for YAC and OAC during free gaze (p < 0.05), they were not significantly different in PD. These results suggest individuals with PD do not make anticipatory eye and head movements ahead of turning and that this may result in altered segment coordination during turning. As such, eye movements may be an important addition to training programs for those with PD, possibly promoting better coordination during turning and potentially reducing the risk of falls.

  2. [Microinjections of heat shock protein 70 kDa into the nucleus reticularis pontis oralis induce inhibition of rapid eye movement sleep in pigeons].

    PubMed

    Gusel'nikova, E A; Pastukhov, Iu F

    2008-03-01

    Recently it was indicated that microinjections of heat shock proteins 70 kDa (Hsp70) into the third ventricle of brain in pigeons results in an increase in the duration of slow wave sleep and a decrease in somato-visceral indices. It is suggested that Hsp70 effect may be related to GABA(A) receptors activation in the preoptic area of the hypothalamus. However, what transmitter mechanisms of activation are related to the removal effect (in 2-3 hrs) of rapid eye movement sleep inhibition still remains poorly understood. To solve this problem in the present study, microinjections of Hsp70 into the Nucleus reticularis pontis oralis (NRPO) were done. It is well known that cholinergic neurons of the NRPO are crucial for rapid eye movement sleep generation. The data show that Hsp70 produces more early (for first two hrs) a decrease in number of episodes and total time of rapid eye movement sleep, a diminution of electroencephalogram (EEG) power spectra in the 9-14 Hz band, a decrease in contractile muscle activity and brain temperature. It is suggested that Hsp70 effects are realized due to activation of GABA(A) receptors in the NRPO and induced inhibition of cholinergic mechanisms of rapid eye movement sleep triggering. The microinjections of Hsp70 into the NRPO increase the slow wave sleep total time with long latency (for 8-12 hrs). This effect may be related to influence of Hsp70 on neurons population, which are responsible for slow wave sleep maintenance outside the NRPO.

  3. Lactulose Breath Test Gas Production in Childhood IBS Is Associated With Intestinal Transit and Bowel Movement Frequency.

    PubMed

    Chumpitazi, Bruno P; Weidler, Erica M; Shulman, Robert J

    2017-04-01

    In adults with irritable bowel syndrome (IBS), bacterial gas production (colonic fermentation) is related to both symptom generation and intestinal transit. Whether gas production affects symptom generation, psychosocial distress, or intestinal transit in childhood IBS is unknown. Children (ages 7-17 years) with pediatric Rome III IBS completed validated psychosocial questionnaires and a 2-week daily diary capturing pain and stooling characteristics. Stool form determined IBS subtype. Subjects then completed a 3-hour lactulose breath test for measurement of total breath hydrogen and methane production. Carmine red was used to determine whole intestinal transit time. A total of 87 children (mean age 13 ± 2.6 [standard deviation] years) were enrolled, of whom 50 (57.5%) were girls. All children produced hydrogen and 51 (58.6%) produced methane. Hydrogen and methane production did not correlate with either abdominal pain frequency/severity or psychosocial distress. Hydrogen and methane production did not differ significantly by IBS subtype. Methane production correlated positively with whole intestinal transit time (r = 0.31, P < 0.005) and inversely with bowel movement frequency (r = -0.245, P < 0.05). Methane production (threshold 3 ppm) as a marker for identifying IBS-C had a sensitivity of 60% and specificity of 42.9%. Lactulose breath test total methane production may serve as a biomarker of whole intestinal transit time and bowel movement frequency in children with IBS. In children with IBS, lactulose breath test hydrogen and methane production did not, however, correlate with abdominal pain, IBS subtype, or psychosocial distress.

  4. Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: a randomized controlled study.

    PubMed

    Wang, Yong-Hui; Meng, Fei; Zhang, Yang; Xu, Mao-Yu; Yue, Shou-Wei

    2016-06-01

    To investigate whether full-movement neuromuscular electrical stimulation, which can generate full range of movement, reduces spasticity and/or improves motor function more effectively than control, sensory threshold-neuromuscular electrical stimulation, and motor threshold-neuromuscular electrical stimulation in sub-acute stroke patients. A randomized, single-blind, controlled study. Physical therapy room and functional assessment room. A total of 72 adult patients with sub-acute post-stroke hemiplegia and plantar flexor spasticity. Patients received 30-minute sessions of neuromuscular electrical stimulation on the motor points of the extensor hallucis and digitorum longus twice a day, five days per week for four weeks. Composite Spasticity Scale, Ankle Active Dorsiflexion Score, and walking time in the Timed Up and Go Test were assessed at pretreatment, posttreatment, and at two-week follow-up. After four weeks of treatment, when comparing interclass pretreatment and posttreatment, only the full-movement neuromuscular electrical stimulation group had a significant reduction in the Composite Spasticity Scale (mean % reduction = 19.91(4.96)%, F = 3.878, p < 0.05) and improvement in the Ankle Active Dorsiflexion Score (mean scores = 3.29(0.91), F = 3.140, p < 0.05). Furthermore, these improvements were maintained two weeks after the treatment ended. However, there were no significant differences in the walking time after four weeks of treatment among the four groups (F = 1.861, p > 0.05). Full-movement neuromuscular electrical stimulation with a stimulus intensity capable of generating full movement can significantly reduce plantar flexor spasticity and improve ankle active dorsiflexion, but cannot decrease walking time in the Timed Up and Go Test in sub-acute stroke patients. © The Author(s) 2015.

  5. Activity in descending dopaminergic neurons represents but is not required for leg movements in the fruit fly Drosophila

    PubMed Central

    Tschida, Katherine; Bhandawat, Vikas

    2015-01-01

    Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output. PMID:25742959

  6. Estimation of gastric emptying time (GET) in clownfish (Amphiprion ocellaris) using X-radiography technique

    NASA Astrophysics Data System (ADS)

    Ling, Khoo Mei; Ghaffar, Mazlan Abd.

    2014-09-01

    This study examines the movement of food item and the estimation of gastric emptying time using the X-radiography techniques, in the clownfish (Amphiprion ocellaris) fed in captivity. Fishes were voluntarily fed to satiation after being deprived of food for 72 hours, using pellets that were tampered with barium sulphate (BaSO4). The movement of food item was monitored over different time of feeding. As a result, a total of 36 hours were needed for the food items to be evacuated completely from the stomach. Results on the modeling of meal satiation were also discussed. The size of satiation meal to body weight relationship was allometric, with the power value equal to 1.28.

  7. Estimation of gastric emptying time (GET) in clownfish (Amphiprion ocellaris) using X-radiography technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Khoo Mei; Ghaffar, Mazlan Abd.

    2014-09-03

    This study examines the movement of food item and the estimation of gastric emptying time using the X-radiography techniques, in the clownfish (Amphiprion ocellaris) fed in captivity. Fishes were voluntarily fed to satiation after being deprived of food for 72 hours, using pellets that were tampered with barium sulphate (BaSO{sub 4}). The movement of food item was monitored over different time of feeding. As a result, a total of 36 hours were needed for the food items to be evacuated completely from the stomach. Results on the modeling of meal satiation were also discussed. The size of satiation meal tomore » body weight relationship was allometric, with the power value equal to 1.28.« less

  8. Effect of Fiber Orientation on Dynamic Compressive Properties of an Ultra-High Performance Concrete

    DTIC Science & Technology

    2017-08-01

    measurements for LSFfiberOrient function for multiple cores. Elapsed time is the total time taken to run ; CPU time is the number of cores times the...Superscripts Maximum value during a test Measured value from a calibration run ...movement left or right. Before cutting, the Cor-Tuf Baseline beam was placed on the table and squared with the blade . The blade was then moved into

  9. Piezosurgery®-assisted periodontally accelerated osteogenic orthodontics.

    PubMed

    Pakhare, Vikas Vilas; Khandait, Chinmay Harishchandra; Shrivastav, Sunita Satish; Dhadse, Prasad Vijayrao; Baliga, Vidya Sudhindhra; Seegavadi, Vasudevan Dwarkanathan

    2017-01-01

    Periodontally accelerated osteogenic orthodontic procedure has become useful adjunct to reduce orthodontic treatment time as compared with conventional orthodontics. This case demonstrates the use of Piezosurgery ® to facilitate rapid tooth movement with relatively shorter treatment time. A 23-year-old male with Angles Class I malocclusion having spaced anterior teeth and protrusion requested orthodontic treatment with reduced time period. Before surgery, presurgical orthodontic treatment was done to do initial alignment of the teeth. This was followed by piezosurgical corticotomy and final space closure was achieved by active orthodontic tooth movement. The total treatment time required to complete the orthodontic treatment was 5 months. 1-year follow-up revealed no evidence of any adverse periodontal effects or relapse. Thus, Piezosurgery ® -assisted corticotomy may prove to be a noble and effective treatment approach to decrease the orthodontic treatment time.

  10. Piezosurgery®-assisted periodontally accelerated osteogenic orthodontics

    PubMed Central

    Pakhare, Vikas Vilas; Khandait, Chinmay Harishchandra; Shrivastav, Sunita Satish; Dhadse, Prasad Vijayrao; Baliga, Vidya Sudhindhra; Seegavadi, Vasudevan Dwarkanathan

    2017-01-01

    Periodontally accelerated osteogenic orthodontic procedure has become useful adjunct to reduce orthodontic treatment time as compared with conventional orthodontics. This case demonstrates the use of Piezosurgery® to facilitate rapid tooth movement with relatively shorter treatment time. A 23-year-old male with Angles Class I malocclusion having spaced anterior teeth and protrusion requested orthodontic treatment with reduced time period. Before surgery, presurgical orthodontic treatment was done to do initial alignment of the teeth. This was followed by piezosurgical corticotomy and final space closure was achieved by active orthodontic tooth movement. The total treatment time required to complete the orthodontic treatment was 5 months. 1-year follow-up revealed no evidence of any adverse periodontal effects or relapse. Thus, Piezosurgery®-assisted corticotomy may prove to be a noble and effective treatment approach to decrease the orthodontic treatment time. PMID:29491592

  11. Interactive exploration of surveillance video through action shot summarization and trajectory visualization.

    PubMed

    Meghdadi, Amir H; Irani, Pourang

    2013-12-01

    We propose a novel video visual analytics system for interactive exploration of surveillance video data. Our approach consists of providing analysts with various views of information related to moving objects in a video. To do this we first extract each object's movement path. We visualize each movement by (a) creating a single action shot image (a still image that coalesces multiple frames), (b) plotting its trajectory in a space-time cube and (c) displaying an overall timeline view of all the movements. The action shots provide a still view of the moving object while the path view presents movement properties such as speed and location. We also provide tools for spatial and temporal filtering based on regions of interest. This allows analysts to filter out large amounts of movement activities while the action shot representation summarizes the content of each movement. We incorporated this multi-part visual representation of moving objects in sViSIT, a tool to facilitate browsing through the video content by interactive querying and retrieval of data. Based on our interaction with security personnel who routinely interact with surveillance video data, we identified some of the most common tasks performed. This resulted in designing a user study to measure time-to-completion of the various tasks. These generally required searching for specific events of interest (targets) in videos. Fourteen different tasks were designed and a total of 120 min of surveillance video were recorded (indoor and outdoor locations recording movements of people and vehicles). The time-to-completion of these tasks were compared against a manual fast forward video browsing guided with movement detection. We demonstrate how our system can facilitate lengthy video exploration and significantly reduce browsing time to find events of interest. Reports from expert users identify positive aspects of our approach which we summarize in our recommendations for future video visual analytics systems.

  12. Behavior of White Sturgeon near hydroprojects and fishways

    USGS Publications Warehouse

    Parsley, M.J.; Wright, C.D.; Van Der Leeuw, B. K.; Kofoot, E.E.; Perry, C.A.; Moser, M.L.

    2006-01-01

    During March 2004 through November 2005, white sturgeon movements were monitored at The Dalles Dam to characterize their distribution and movements in the immediate vicinity of the dam and to determine timing and routes of passage. A combination of radio and acoustic telemetry technologies were used to detect tagged fish within fishways and at strategic locations along the dam, the shorelines, and in the forebay. White sturgeon > 95 cm total length (TL) that were captured on baited setlines fished in the forebay and in the tailrace cul-de-sac received a surgically implanted transmitter that emitted radio and acoustic signals. During the course of this study, a total of 148 fish were tagged; 58 were captured and released in the forebay and 90 in the tailrace.

  13. Peak velocity of elbow joint during hair combing activity for normal subject

    NASA Astrophysics Data System (ADS)

    Che-Nan, Hasyatun; Rambely, Azmin Sham

    2018-04-01

    Study of upper limb movements is very important for clinical assessment and diagnosis purposes. Thus it requires the analysis of motion. Therefore this study intend to investigate peak velocity of elbow joint during hair-combing activity. Twenty healthy subjects with three trials and age range 20 - 59 years old (n = 60) performed a complete cycle of hand reaching, forward transport, combing, back transport and returning the hand to its initial position. This activity was analyzed using Vicon motion-analysis system, which consisted of three infra-red and high speed cameras. Mean total movement times was recorded at 5.2s for the whole phases. Peak velocities during reaching and forward transport were found to be decreasing in value for the healthy subject. This obtained results provide information on kinematic analysis especially on movement times and peak velocities for clinical, assessment and diagnosis purposes.

  14. Rule modification in junior sport: Does it create differences in player movement?

    PubMed

    Gastin, Paul B; Allan, Matthew D; Bellesini, Kylie; Spittle, Michael

    2017-10-01

    To determine the effects of rule modification on player movement during matchplay in junior Australian football (AF). Quasi-experimental study design. Time-motion analysis was used to record variables pertaining to player movement including total distance covered, high-speed running (HSR) distance (>14.4km/h) and HSR efforts. GPS data obtained from 145 players (7-12 years) were analysed across four junior AF leagues and three age group combinations (U8/U9, U9/U10 and U11/U12). The four leagues were collapsed into two separate conditions (compliant and non-compliant) based on their adherence to a modified junior sport policy. To control for the influence of age and physical maturity, a secondary analysis was performed on an adequately matched U8 subset of data (n=48). Significant differences (p<0.05) were found between compliant and non-compliant leagues for age and all player movement variables, with participants in the compliant leagues achieving less player movement. Significant differences were also evident between conditions in the U8 subset in total and relative distance and HSR efforts, with moderate to very large differences (29-60%) observed for all player movement variables. Rule modifications limits the extent and intensity of player movement in junior AF compared to standard playing conditions. The unintended effect of reduced physical activity with rule modifications should be compensated for with additional activities wherever possible. League administrators and policy makers should consider the objectives of rule modifications and weigh up both positive and negative outcomes. Copyright © 2017. Published by Elsevier Ltd.

  15. Sediment in a Michigan trout stream, its source movement, and some effects on fish habitat.

    Treesearch

    Edward A. Hansen

    1971-01-01

    A sediment budget was constructed from 3 years of measurements on a pool and riffle stream. Total sediment load increased five times along a 26-mile length of stream; most sediment came from 204 eroding banks. Three-fourths of the total sediment load was sand size. The area of streambed covered with sand decreased downstream, indicating that the transporting...

  16. Quantifying performance and effects of load carriage during a challenging balancing task using an array of wireless inertial sensors.

    PubMed

    Cain, Stephen M; McGinnis, Ryan S; Davidson, Steven P; Vitali, Rachel V; Perkins, Noel C; McLean, Scott G

    2016-01-01

    We utilize an array of wireless inertial measurement units (IMUs) to measure the movements of subjects (n=30) traversing an outdoor balance beam (zigzag and sloping) as quickly as possible both with and without load (20.5kg). Our objectives are: (1) to use IMU array data to calculate metrics that quantify performance (speed and stability) and (2) to investigate the effects of load on performance. We hypothesize that added load significantly decreases subject speed yet results in increased stability of subject movements. We propose and evaluate five performance metrics: (1) time to cross beam (less time=more speed), (2) percentage of total time spent in double support (more double support time=more stable), (3) stride duration (longer stride duration=more stable), (4) ratio of sacrum M-L to A-P acceleration (lower ratio=less lateral balance corrections=more stable), and (5) M-L torso range of motion (smaller range of motion=less balance corrections=more stable). We find that the total time to cross the beam increases with load (t=4.85, p<0.001). Stability metrics also change significantly with load, all indicating increased stability. In particular, double support time increases (t=6.04, p<0.001), stride duration increases (t=3.436, p=0.002), the ratio of sacrum acceleration RMS decreases (t=-5.56, p<0.001), and the M-L torso lean range of motion decreases (t=-2.82, p=0.009). Overall, the IMU array successfully measures subject movement and gait parameters that reveal the trade-off between speed and stability in this highly dynamic balance task. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effects of some antipsychotics and a benzodiazepine hypnotic on the sleep-wake pattern in an animal model of schizophrenia.

    PubMed

    Ishida, Takayuki; Obara, Yoshihito; Kamei, Chiaki

    2009-09-01

    We studied the effects of antipsychotics and a hypnotic on sleep disturbance in schizophrenia using an animal model of the disease. Electrodes for the electroencephalogram (EEG) and electromyogram (EMG) were chronically implanted into the cortex and the dorsal neck muscle of rats. EEG and EMG were recorded with an electroencephalograph for 6 h (10:00 - 16:00). SleepSign ver. 2.0 was used for EEG and EMG analysis. Haloperidol and olanzapine had an antagonizing effect on the increases in sleep latency and total awake time and the decrease in total non-rapid eye movement (NREM) sleep time induced by MK-801. Olanzapine also antagonized the decrease in total rapid eye movement (REM) sleep time induced by MK-801. Aripiprazole antagonized only the increase in sleep latency induced by MK-801, whereas, risperidone, quetiapine, and flunitrazepam had no effect in the changes of sleep-wake pattern induced by MK-801. Olanzapine increased delta activity and decreased beta activity during NREM sleep. In contrast, flunitrazepam had an opposite effect. It was clarified that haloperidol and olanzapine were effective for decrease of sleep time in this animal model of schizophrenia. In addition, aripiprazole showed a sleep-inducing effect in schizophrenia model rat. On the other hand, flunitrazepam showed no beneficial effect on sleep disturbance in schizophrenia model rat.

  18. Virtual trajectories of single-joint movements performed under two basic strategies.

    PubMed

    Latash, M L; Gottlieb, G L

    1992-01-01

    The framework of the equilibrium point hypothesis has been used to analyse motor control processes for single-joint movements. Virtual trajectories and joint stiffness were reconstructed for different movement speeds and distances when subjects were instructed either to move "as fast as possible" or to intentionally vary movement speed. These instructions are assumed to be associated with similar or different rates of change of hypothetical central control variables (corresponding to the speed-sensitive and speed-insensitive strategies). The subjects were trained to perform relatively slow, moderately fast and very fast (nominal movement times 800, 400 and 250 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the motor command for a series of movements while ignoring possible changes in the external torque which could slowly and unpredictably increase, decrease, or remain constant. The total muscle torque was calculated as a sum of external and inertial components. Fast movements over different distances were made with the speed-insensitive strategy. They were characterized by an increase in joint stiffness near the midpoint of the movements which was relatively independent of movement amplitude. Their virtual trajectories had a non-monotonic N-shape. All three arms of the N-shape scaled with movement amplitude. Movements over one distance at different speeds were made with a speed-sensitive strategy. They demonstrated different patterns of virtual trajectories and joint stiffness that depended on movement speed. The N-shape became less apparent for moderately fast movements and virtually disappeared for the slow movements. Slow movements showed no visible increase in joint stiffness.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Correlation Between Body Movements and Salivary Secretion During Sedation.

    PubMed

    Sasaki, Yoko; Kato, Seiichi; Miura, Masaaki; Fukayama, Haruhisa

    2016-01-01

    During dental sedation, control of the cough reflex is crucial for a safe and smooth procedure. Accumulated saliva is one of the predisposing factors for coughing. Body movements during dental sedation appear to enhance salivation. Therefore, the aim of this study was to investigate the difference in salivary secretion between the with-movements state and the without-movements state during sedation. Salivary weight for 1 min was measured 3 times in 27 patients with intellectual disability during dental treatment under deep sedation with midazolam and propofol. The observed variables were body movements, bispectral index (BIS), and predicted propofol effect-site concentration. A total of 81 measurements were classified into the with-movements state (n = 39; ie, measurements during which body movements were observed) or the without-movements state (n = 42; ie, measurements during which no body movements were observed). The median salivary weight was significantly smaller in the without-movements state compared with the with-movements state (0.03 vs 0.11 g, P < .0001). The BIS was significantly lower in the without-movements state. There was no significant difference in the predicted propofol effect-site concentration between the 2 states. Significant correlation was observed between salivary weight and BIS in the with-movements state (r = 0.44, P = .004). The findings indicate that salivary secretion decreased according to deep sedation. Furthermore, immobility also reduced salivary secretion. We concluded that one reason that immobility is beneficial is because of the resulting decreased salivary secretion during dental treatment under deep sedation.

  20. Toxicological effects of mainstream whole smoke solutions on embryonic movements of the developing embryo.

    PubMed

    Ejaz, Sohail; Seok, Kim Bum; Woong, Lim Chae

    2005-01-01

    Cigarette smoking is unrivaled among developmental toxicants in terms of total adverse impact on the human population. Maternal tobacco use during pregnancy adversely affects prenatal and postnatal growth and increases the risk of behavioral and developmental defects in children and adolescents. In the current study, the effects of different preparations of nicotine and mainstream whole smoke solutions (MSWSS) on embryonic movements during neonatal development were examined in vivo, using the chicken embryo model, recorded in real-time by a video camera. It was observed that low doses of nicotine induced hyperactivity and higher doses induced hypoactivity. Accordingly, a significant (p < 0.01) decrease in movements was observed by application of 10 microg of nicotine and different preparations of MSWSS. A dose-dependent decrease in embryonic movements was observed, which did not recover by the end of experiment. It was concluded that nicotine could alter embryonic movements, which are important during embryogenesis for differentiation and maturation of the body systems.

  1. Long-term effects of caffeine therapy for apnea of prematurity on sleep at school age.

    PubMed

    Marcus, Carole L; Meltzer, Lisa J; Roberts, Robin S; Traylor, Joel; Dix, Joanne; D'ilario, Judy; Asztalos, Elizabeth; Opie, Gillian; Doyle, Lex W; Biggs, Sarah N; Nixon, Gillian M; Narang, Indra; Bhattacharjee, Rakesh; Davey, Margot; Horne, Rosemary S C; Cheshire, Maureen; Gibbons, Jeremy; Costantini, Lorrie; Bradford, Ruth; Schmidt, Barbara

    2014-10-01

    Apnea of prematurity is a common condition that is usually treated with caffeine, an adenosine receptor blocker that has powerful influences on the central nervous system. However, little is known about the long-term effects of caffeine on sleep in the developing brain. We hypothesized that neonatal caffeine use resulted in long-term abnormalities in sleep architecture and breathing during sleep. A total of 201 ex-preterm children aged 5-12 years who participated as neonates in a double-blind, randomized, controlled clinical trial of caffeine versus placebo underwent actigraphy, polysomnography, and parental sleep questionnaires. Coprimary outcomes were total sleep time on actigraphy and apnea-hypopnea index on polysomnography. There were no significant differences in primary outcomes between the caffeine group and the placebo (adjusted mean difference of -6.7 [95% confidence interval (CI) = -15.3 to 2.0 min]; P = 0.13 for actigraphic total sleep time; and adjusted rate ratio [caffeine/placebo] for apnea-hypopnea index of 0.89 [95% CI = 0.55-1.43]; P = 0.63). Polysomnographic total recording time and total sleep time were longer in the caffeine group, but there was no difference in sleep efficiency between groups. The percentage of children with obstructive sleep apnea (8.2% of caffeine group versus 11.0% of placebo; P = 0.22) or elevated periodic limb movements of sleep (17.5% in caffeine group versus 11% in placebo group) was high, but did not differ significantly between groups. Therapeutic neonatal caffeine administration has no long-term effects on sleep duration or sleep apnea during childhood. Ex-preterm infants, regardless of caffeine status, are at risk for obstructive sleep apnea and periodic limb movements in later childhood.

  2. Effects Total Solar Eclipse to Nasty Behaviour of the Several Legume Plants as a Result Student Research

    NASA Astrophysics Data System (ADS)

    Anggraeni, S.; Diana, S.; Supriatno, B.

    2017-09-01

    Some group students of plant Physiology course have given task to do free inquiry. They investigated of the nasty behaviour of several legume plants in response to changes in light during the partial solar eclipse that occurred at March 9, 2016. The investigation carried out in UPI Bandung, West Java, Indonesia, which is in the penumbra region of a total solar eclipse with the location coordinates of latitude: -6.86105, longitude: 07.59071, S 6057’ 37.53553 “and E 107035’ 24.29141”. They were measuring the movement of opening leaves every ten minutes at the beginning of the start until the end of the eclipse compared with the behaviour without eclipsing. Influence is expressed by comparing the leaf opening movement (measured in the form of leaf angular) at the time of the eclipse with a normal day. Each group was observed for one plant of the legume, there are: Mimosa pudica, Bauhinia purpurea, Caesalpinia pulcherrima, and Arachis pintoi. The results showed that the changes in leaf angular in plants Mimosa pudica, Caesalpinia pulcherrima, and Arachis pintoi differently significant, except for Bauhinia purpurea. In conclusion, the total solar eclipse in the penumbra area affects the movement of some nasty legume plants. It is recommended to conduct a study of the nasty behaviour of legume plants in the area umbra in the path of a total solar eclipse.

  3. Alloplastic total temporomandibular joint replacements: do they perform like natural joints? Prospective cohort study with a historical control.

    PubMed

    Wojczyńska, A; Leiggener, C S; Bredell, M; Ettlin, D A; Erni, S; Gallo, L M; Colombo, V

    2016-10-01

    The aim of this study was to qualitatively and quantitatively describe the biomechanics of existing total alloplastic reconstructions of temporomandibular joints (TMJ). Fifteen patients with unilateral or bilateral TMJ total joint replacements and 15 healthy controls were evaluated via dynamic stereometry technology. This non-invasive method combines three-dimensional imaging of the subject's anatomy with jaw tracking. It provides an insight into the patient's jaw joint movements in real time and provides a quantitative evaluation. The patients were also evaluated clinically for jaw opening, protrusive and laterotrusive movements, pain, interference with eating, and satisfaction with the joint replacements. The qualitative assessment revealed that condyles of bilateral total joint replacements displayed similar basic motion patterns to those of unilateral prostheses. Quantitatively, mandibular movements of artificial joints during opening, protrusion, and laterotrusion were all significantly shorter than those of controls. A significantly restricted mandibular range of motion in replaced joints was also observed clinically. Fifty-three percent of patients suffered from chronic pain at rest and 67% reported reduced chewing function. Nonetheless, patients declared a high level of satisfaction with the replacement. This study shows that in order to gain a comprehensive understanding of complex therapeutic measures, a multidisciplinary approach is needed. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Fundamental movement skills and physical activity among children living in low-income communities: a cross-sectional study.

    PubMed

    Cohen, Kristen E; Morgan, Philip J; Plotnikoff, Ronald C; Callister, Robin; Lubans, David R

    2014-04-08

    Although previous studies have demonstrated that children with high levels of fundamental movement skill competency are more active throughout the day, little is known regarding children's fundamental movement skill competency and their physical activity during key time periods of the school day (i.e., lunchtime, recess and after-school). The purpose of this study was to examine the associations between fundamental movement skill competency and objectively measured moderate-to-vigorous physical activity (MVPA) throughout the school day among children attending primary schools in low-income communities. Eight primary schools from low-income communities and 460 children (8.5 ± 0.6 years, 54% girls) were involved in the study. Children's fundamental movement skill competency (TGMD-2; 6 locomotor and 6 object-control skills), objectively measured physical activity (ActiGraph GT3X and GT3X + accelerometers), height, weight and demographics were assessed. Multilevel linear mixed models were used to assess the cross-sectional associations between fundamental movement skills and MVPA. After adjusting for age, sex, BMI and socio-economic status, locomotor skill competency was positively associated with total (P=0.002, r=0.15) and after-school (P=0.014, r=0.13) MVPA. Object-control skill competency was positively associated with total (P<0.001, r=0.20), lunchtime (P=0.03, r=0.10), recess (P=0.006, r=0.11) and after-school (P=0.022, r=0.13) MVPA. Object-control skill competency appears to be a better predictor of children's MVPA during school-based physical activity opportunities than locomotor skill competency. Improving fundamental movement skill competency, particularly object-control skills, may contribute to increased levels of children's MVPA throughout the day. Australian New Zealand Clinical Trials Registry No: ACTRN12611001080910.

  5. Mirror movements in healthy humans across the lifespan: effects of development and ageing.

    PubMed

    Koerte, Inga; Eftimov, Lara; Laubender, Ruediger Paul; Esslinger, Olaf; Schroeder, Andreas Sebastian; Ertl-Wagner, Birgit; Wahllaender-Danek, Ute; Heinen, Florian; Danek, Adrian

    2010-12-01

    mirror movements are a transient phenomenon during childhood, which decrease in intensity with motor development. An increasing inhibitory competence resulting in the ability of movement lateralization is thought to be the underlying mechanism. We aimed to quantify unintended mirror movements systematically across the lifespan and to investigate the influences of age, sex, handedness, and task frequency. a total of 236 participants (127 females, 109 males; 216 right-handed, 20 left-handed; age range 3-96y, median 25y 8mo) first performed four clinical routine tests while mirror movements were rated by the observer. They were then asked to hold a force transducer in each hand between the thumb and index finger and to perform oscillatory grip force changes in one hand, while the other hand had to prevent the force transducer from dropping. age showed a strong nonlinear effect on the mirror-movement ratio (the amplitude ratio of the mirror and active hand, adjusted by the respective maximum grip force). Initially, there was a steep decline in the mirror-movement ratio during childhood and adolescence, followed by a gradual rise during adulthood. Males had lower mirror-movement ratios than females. The high-frequency condition triggered lower mirror-movement ratios. No significant differences of mirror movements between dominant and non-dominant hand, or left- and right-handed participants, were found. this study provides, for the first time to our knowledge, normative values of mirror movements across the lifespan that can aid differentiation between physiological and pathological mirror movements.

  6. Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors

    PubMed Central

    Hübl, Johannes; McArdell, Brian W.; Walter, Fabian

    2018-01-01

    The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz), several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio. PMID:29789449

  7. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction.

    PubMed

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-07-03

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient's upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision.

  8. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction

    PubMed Central

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-01-01

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient’s upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision. PMID:28671632

  9. Influence of body mass index on movement efficiency among firefighter recruits.

    PubMed

    Cornell, David J; Gnacinski, Stacy L; Zamzow, Aaron; Mims, Jason; Ebersole, Kyle T

    2016-06-04

    Previous research has demonstrated links between musculoskeletal injury risk and measures of obesity and movement efficiency among the firefighter population. However, the influence of obesity on movement efficiency among firefighter recruits remains uninvestigated. To investigate the influence of obesity on movement efficiency measures among firefighter recruits. Measures of obesity were collected among 73 male firefighter recruits. Participants were grouped into standard body mass index (BMI) categories (normal, overweight, obese). Differences in Total Functional Movement Screen (FMS) scores and Y-Balance Test (YBT) composite scores were examined between BMI categories. In addition, the relationships between measures of obesity and movement efficiency were also examined. No significant differences in movement efficiency measures were identified between BMI categories (p > 0.05). However, significant bivariate correlations were identified between BMI (kg/m2) and Total FMS score (r = -0.235, p = 0.045), as well as between fat-free mass (FFM) and Total FMS score (r = -0.231, p = 0.049), when examined among all participants. BMI may influence measures of movement efficiency among firefighter recruits to a lesser extent than among other previously examined populations. Future research should examine the influence of other unexamined physiological variables on movement efficiency.

  10. Movements, Home-Range Size and Habitat Selection of Mallards during Autumn Migration

    PubMed Central

    Bengtsson, Daniel; Avril, Alexis; Gunnarsson, Gunnar; Elmberg, Johan; Söderquist, Pär; Norevik, Gabriel; Tolf, Conny; Safi, Kamran; Fiedler, Wolfgang; Wikelski, Martin; Olsen, Björn; Waldenström, Jonas

    2014-01-01

    The mallard (Anas platyrhynchos) is a focal species in game management, epidemiology and ornithology, but comparably little research has focused on the ecology of the migration seasons. We studied habitat use, time-budgets, home-range sizes, habitat selection, and movements based on spatial data collected with GPS devices attached to wild mallards trapped at an autumn stopover site in the Northwest European flyway. Sixteen individuals (13 males, 3 females) were followed for 15–38 days in October to December 2010. Forty-nine percent (SD = 8.4%) of the ducks' total time, and 85% of the day-time (SD = 28.3%), was spent at sheltered reefs and bays on the coast. Two ducks used ponds, rather than coast, as day-roosts instead. Mallards spent most of the night (76% of total time, SD = 15.8%) on wetlands, mainly on alvar steppe, or in various flooded areas (e.g. coastal meadows). Crop fields with maize were also selectively utilized. Movements between roosting and foraging areas mainly took place at dawn and dusk, and the home-ranges observed in our study are among the largest ever documented for mallards (mean  = 6,859 ha; SD = 5,872 ha). This study provides insights into relatively unknown aspects of mallard ecology. The fact that autumn-staging migratory mallards have a well-developed diel activity pattern tightly linked to the use of specific habitats has implications for wetland management, hunting and conservation, as well as for the epidemiology of diseases shared between wildlife and domestic animals. PMID:24971887

  11. Quantifying movement demands of AFL football using GPS tracking.

    PubMed

    Wisbey, Ben; Montgomery, Paul G; Pyne, David B; Rattray, Ben

    2010-09-01

    Global positioning system (GPS) monitoring of movement patterns is widespread in elite football including the Australian Football League (AFL). However documented analysis of this activity is lacking. We quantified the movement patterns of AFL football and differences between nomadic (midfield), forward and defender playing positions, and determined whether the physical demands have increased over a four season period. Selected premiership games were monitored during the 2005 (n=80 game files), 2006 (n=244), 2007 (n=632) and 2008 (n=793) AFL seasons. Players were fitted with a shoulder harness containing a GPS unit. GPS data were downloaded after games and the following measures extracted: total distance (km), time in various speed zones, maximum speed, number of surges, accelerations, longest continuous efforts and a derived exertion index representing playing intensity. In 2008 nomadic players covered per game 3.4% more total distance (km), had 4.8% less playing time (min), a 17% higher exertion index (per min), and 23% more time running >18kmh(-1) than forwards and defenders (all p<0.05). Physical demands were substantially higher in the 2008 season compared with 2005: an 8.4% increase in mean speed, a 14% increase in intensity (exertion index) and a 9.0% decrease in playing time (all p<0.05). Nomadic players in AFL work substantially harder than forwards and defenders in covering more ground and at higher running intensities. Increases in the physical demands of AFL football were evident between 2005 and 2008. The increasing speed of the game has implications for game authorities, players and coaching staff.

  12. Physical and Physiological Demands of Elite Rugby Union Officials.

    PubMed

    Blair, Matthew R; Elsworthy, Nathan; Rehrer, Nancy J; Button, Chris; Gill, Nicholas D

    2018-04-13

    To examine the movement and physiological demands of rugby union officiating within elite competition. Movement demands of 9 elite officials across 12 Super Rugby matches were calculated, using global positioning system devices. Total distance (m), relative distance (m·min -1 ), percentage time spent within various speed zones were calculated across a match. Heart rate responses were also recorded throughout each match. Cohen d effect sizes were reported to examine the within match variations. The total distance covered was 8,030 ± 506 m, with a relative distance of 83 ± 5 m·min -1 and with no differences observed between halves. Most game time was spent at lower movement speeds (76 ± 2%; <2.0 m·s -1 ), with large effects for time spent >7.0 m·s -1 between halves (d=2.85). Mean heart rate was 154 ± 10 b·min -1 (83.8 ± 2.9% HR max ), with no differences observed between the first and second halves. Most game time was spent between 81-90% HR max (40.5 ± 7.5%) with no observable differences between halves. Distances covered above 5.1 m·s -1 were highest during the first 10 minutes of a match, while distance at speeds 3.7-5 m·s -1 decreased during the final 10 minutes of play. These findings highlight the highly demanding and intermittent nature of rugby union officiating, with only some minor variations in physical and physiological demands across a match. These results have implications for the physical preparation of professional rugby union referees.

  13. Movement Repetitions in Physical and Occupational Therapy during Spinal Cord Injury Rehabilitation

    PubMed Central

    Zbogar, Dominik; Eng, Janice J; Miller, William C; Krassioukov, Andrei V; Verrier, Molly C

    2016-01-01

    Study Design Longitudinal observational study. Objective To quantify the amount of upper and lower extremity movement repetitions (i.e., voluntary movements as part of a functional task or specific motion) occurring during inpatient spinal cord injury (SCI) physical (PT) and occupational therapy (OT), and examine changes over the inpatient rehabilitation stay. Setting Two stand-alone inpatient SCI rehabilitation centres. Methods Participants 103 patients were recruited through consecutive admissions to SCI rehabilitation. Interventions Trained assistants observed therapy sessions and obtained clinical outcome measures in the second week following admission and in the second to last week prior to discharge. Main Outcome Measures PT and OT time, upper and lower extremity repetitions, and changes in these outcomes over the rehabilitation stay. Results We observed 561 PT and 347 OT sessions. Therapeutic time comprised two-thirds of total therapy time. Summed over PT and OT, median upper extremity repetitions in patients with paraplegia were 7 repetitions and in patients with tetraplegia, 42 repetitions. Lower extremity repetitions and steps primarily occurred in ambulatory patients and amounted to 218 and 115, respectively (summed over PT and OT sessions at discharge). Wilcoxon signed rank tests revealed that most repetition variables did not change significantly over the inpatient rehabilitation stay. In contrast, clinical outcomes for the arm and leg improved over this time period. Conclusions Repetitions of upper and lower extremity movement are markedly low during PT and OT sessions. Despite improvements in clinical outcomes, there was no significant increase in movement repetitions over the inpatient rehabilitation stay. PMID:27752057

  14. Soccer Injury Movement Screen (SIMS) Composite Score Is Not Associated With Injury Among Semi-Professional Soccer Players.

    PubMed

    McCunn, Robert; Fünten, Karen Aus der; Whalan, Matthew; Sampson, John A; Meyer, Tim

    2018-05-08

    Study Design Prospective cohort. Background The association between movement quality and injury is equivocal. No soccer-specific movement assessment has been prospectively investigated in relation to injury risk. Objectives To investigate the association between a soccer-specific movement quality assessment and injury risk among semi-professional soccer players. Methods Semi-professional soccer players (n=306) from 12 clubs completed the Soccer Injury Movement Screen (SIMS) during the pre-season period. Individual training/match exposure and non-contact time loss injuries were recorded prospectively for the entirety of the 2016 season. Relative risks (RR) were calculated, and presented with 90% confidence intervals (CI), for the SIMS composite and individual sub-test scores from generalized linear models with Poisson distribution offset for exposure. Results When considering non-contact time loss lower extremity injuries (primary level of analysis), there was a most likely trivial association with the SIMS composite score. Similarly, SIMS composite score demonstrated most likely to likely trivial associations to all injury categories included in the secondary level of analysis (non-contact time loss hip/groin, thigh, knee and ankle injuries). When considering hamstring strains and ankle sprains specifically (tertiary level of analysis) the SIMS composite score, again, demonstrated very likely trivial associations. A total of 262 non-contact time loss injuries were recorded. The overall (training and match exposure combined) incidence of non-contact time loss injury was 12/1000 hours. Conclusion The SIMS composite score demonstrated no association to any of the investigated categories of soccer-related injury. The SIMS composite score should not be used to group players into 'high' or 'low' risk groups. Level of Evidence Prognosis, level 4. J Orthop Sports Phys Ther, Epub 8 May 2018. doi:10.2519/jospt.2018.8037.

  15. Semireal Time Monitoring Of The Functional Movements Of The Mandible

    NASA Astrophysics Data System (ADS)

    Isaacson, Robert J.; Baumrind, Sheldon; Curry, Sean; Molthen, Robert A.

    1983-07-01

    Many branches of dental practice would benefit from the availability of a relatively accurate, precise, and efficient method for monitoring the movements of the human mandible during function. Mechanical analog systems have been utilized in the past but these are difficult to quantify, have limited accuracy due to frictional resistance of the components, and contain information only on the borders of the envelopes of possible movement of the landmarks measured (rather than on the functional paths of the landmarks which lie within their envelopes). Those electronic solutions which have been attempted thus far have been prohibitively expensive and time consuming for clinical use, have had lag times between data acquisition and display, or have involved such restrictions of freedom of motion as to render ambiguous the meaning of the data obtained. We report work aimed at developing a relatively non-restrictive semi-real time acoustical system for monitoring the functional movement of the mandible relative to the rest of the head. A set of three sparking devices is mounted to the mandibular component of a light, relatively non-constraining extra-oral harness and another set of three sparkers is attached to the harness' cranial or skull component. The sparkers are fired sequentially by a multiplexer and the sound associated with each firing is recorded by an array of three or more microphones. Computations based on the known speed of sound are used to evaluate the distances between the sparkers and the microphones. These data can then be transformed by computer to provide numeric or graphic information on the movement of selected mandibular landmarks with respect to the skull. Total elapsed time between the firing of the sparkers and the display of graphic information need not exceed 30-60 seconds using even a relatively modest modern computer.

  16. Total Quality Management: Good Enough for Government Work

    DTIC Science & Technology

    1992-10-01

    expectations. This monograph consists of two basic parts. The first part reviews the quality movement in the United States from the time of the industrial ... revolution up to and including strategic quality management. It will help readers understand how quality developed over the years and why particular

  17. The contribution of volume, technique, and load to single-repetition and total-repetition kinematics and kinetics in response to three loading schemes.

    PubMed

    Crewther, Blair T; Cronin, John; Keogh, Justin W L

    2008-11-01

    This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.

  18. High-frequency video capture and a computer program with frame-by-frame angle determination functionality as tools that support judging in artistic gymnastics.

    PubMed

    Omorczyk, Jarosław; Nosiadek, Leszek; Ambroży, Tadeusz; Nosiadek, Andrzej

    2015-01-01

    The main aim of this study was to verify the usefulness of selected simple methods of recording and fast biomechanical analysis performed by judges of artistic gymnastics in assessing a gymnast's movement technique. The study participants comprised six artistic gymnastics judges, who assessed back handsprings using two methods: a real-time observation method and a frame-by-frame video analysis method. They also determined flexion angles of knee and hip joints using the computer program. In the case of the real-time observation method, the judges gave a total of 5.8 error points with an arithmetic mean of 0.16 points for the flexion of the knee joints. In the high-speed video analysis method, the total amounted to 8.6 error points and the mean value amounted to 0.24 error points. For the excessive flexion of hip joints, the sum of the error values was 2.2 error points and the arithmetic mean was 0.06 error points during real-time observation. The sum obtained using frame-by-frame analysis method equaled 10.8 and the mean equaled 0.30 error points. Error values obtained through the frame-by-frame video analysis of movement technique were higher than those obtained through the real-time observation method. The judges were able to indicate the number of the frame in which the maximal joint flexion occurred with good accuracy. Using the real-time observation method as well as the high-speed video analysis performed without determining the exact angle for assessing movement technique were found to be insufficient tools for improving the quality of judging.

  19. Sedative Effects of Intranasal Midazolam Administration in Wild Caught Blue-fronted Amazon (Amazona aestiva) and Orange-winged Amazon (Amazona amazonica) Parrots.

    PubMed

    Schaffer, Débora P H; de Araújo, Nayone L L C; Raposo, Ana Cláudia S; Filho, Emanoel F Martins; Vieira, João Victor R; Oriá, Arianne P

    2017-09-01

    Safe and effective sedation protocols are important for chemical restraint of birds in clinical and diagnostic procedures, such as clinical evaluations, radiographic positioning, and blood collection. These protocols may reduce stress and ease the management of wild-caught birds, which are susceptible to injury or death when exposed to stressful situations. We compare the sedative effect of intranasal midazolam in wild-caught blue-fronted (Amazona aestiva) and orange-winged (Amazona amazonica) Amazon parrots. Ten adult parrots of each species (n = 20), of unknown sex, weighing 0.337 ± 0.04 (blue-fronted) and 0.390 ± 0.03 kg (orange-winged), kg were used. Midazolam (2 mg/kg) was administered intranasally and the total volume of the drug was divided equally between the 2 nostrils. Onset time and total sedation time were assessed. Satisfactory sedation for clinical evaluation was induced in all birds. Onset time and total sedation times were similar in both species: 5.36 ± 1.16 and 25.40 ± 5.72 minutes, respectively, for blue-fronted Amazons and 5.09 ± 0.89 and 27.10 ± 3.73 minutes, respectively, for orange-winged Amazons. A total of 15 animals showed absence of vocalization, with moderate muscle relaxation and wing movement upon handling, and 2 animals presented with lateral recumbence, with intense muscle relaxation and no wing movement, requiring no restraint. Three blue-fronted Amazons had no effective sedation. Intranasally administered midazolam at a dose of 2 mg/kg effectively promoted sedative effects with a short latency time and fast recovery in wild-caught parrots.

  20. Tooth movement using palatal implant supported anchorage compared to conventional dental anchorage.

    PubMed

    Borsos, Gabriella; Vokó, Zoltan; Gredes, Tomasz; Kunert-Keil, Christiane; Vegh, Andras

    2012-11-01

    Tooth stability is one of the most changing parameters in age. The aim of the present study has been to clarify the therapeutic benefit of the osseointegrated palatal implant (PI) supported anchorage in adolescents compared with conventional dental anchorage (DA) in extraction cases requiring 'maximum anchorage' in growing patients following the post pubertal growth spurt. Thirty patients (14.22±1.37 years) selected with homogeneous facial skeletal characteristics were divided in two groups. In the PI group, Orthosystem(®) implants were placed into the palate for anchorage and the transpalatal arch (TPA) was fixed to the implant and to the molar bands. In the DA group maximal anchorage was provided by a TPA and a utility arch. Super-elastic spring was used for canine- and contraction arch for incisor retraction. An insignificant difference was observed between the groups as to the duration of the canine retraction. In the PI group, the duration of the front retraction and the total treatment time was shorter compared to the DA group (P<0.05). No significant difference in molar mesial movement was found during canine retraction, but during front retraction, there was significantly less mesial molar movement in the PI group compared to the DA group (P<0.05). The use of palatal implant-based anchorage does not offer a shorter canine retraction period, but resulted in a significant shortening of the front-retraction phase and a total treatment time shortened by 5 months on average. The tooth stability in adolescent patients is adequate for tooth movements using both methods. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. Incidental movement, lifestyle-embedded activity and sleep: new frontiers in physical activity assessment.

    PubMed

    Tremblay, Mark S; Esliger, Dale W; Tremblay, Angelo; Colley, Rachel

    2007-01-01

    Canadian public health messages relating to physical activity have historically focused on the prescription of purposeful exercise, most often assessing leisure-time physical activity (LTPA). Although LTPA contributes to total energy expenditure (TEE), a large part of the day remains neglected unless one also considers the energy expended outside of purposeful exercise. This paper reviews the potential impact of incidental (non-exercise or non-purposeful) physical activity and lifestyle-embedded activities (chores and incidental walking) upon TEE and indicators of health. Given that incidental movement occurs sporadically throughout the day, this form of energy expenditure is perhaps most vulnerable to increasingly ubiquitous mechanization and automation. The paper also explores the relationship of physical inactivity, including sleep, to physical activity, TEE, and health outcomes. Suggestions are provided for a more comprehensive physical activity recommendation that includes all components of TEE. Objective physical activity monitors with time stamps are considered as a better means to capture and examine human movements over the entire day.

  2. An eye movement corpus study of the age-of-acquisition effect.

    PubMed

    Dirix, Nicolas; Duyck, Wouter

    2017-12-01

    In the present study, we investigated the effects of word-level age of acquisition (AoA) on natural reading. Previous studies, using multiple language modalities, showed that earlier-learned words are recognized, read, spoken, and responded to faster than words learned later in life. Until now, in visual word recognition the experimental materials were limited to single-word or sentence studies. We analyzed the data of the Ghent Eye-tracking Corpus (GECO; Cop, Dirix, Drieghe, & Duyck, in press), an eyetracking corpus of participants reading an entire novel, resulting in the first eye movement megastudy of AoA effects in natural reading. We found that the ages at which specific words were learned indeed influenced reading times, above other important (correlated) lexical variables, such as word frequency and length. Shorter fixations for earlier-learned words were consistently found throughout the reading process, in both early (single-fixation durations, first-fixation durations, gaze durations) and late (total reading times) measures. Implications for theoretical accounts of AoA effects and eye movements are discussed.

  3. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction.

    PubMed

    Povšič, K; Jezeršek, M; Možina, J

    2015-07-01

    Real-time 3D visualization of the breathing displacements can be a useful diagnostic tool in order to immediately observe the most active regions on the thoraco-abdominal surface. The developed method is capable of separating non-relevant torso movement and deformations from the deformations that are solely related to breathing. This makes it possible to visualize only the breathing displacements. The system is based on the structured laser triangulation principle, with simultaneous spatial and color data acquisition of the thoraco-abdominal region. Based on the tracking of the attached passive markers, the torso movement and deformation is compensated using rigid and non-rigid transformation models on the three-dimensional (3D) data. The total time of 3D data processing together with visualization equals 20 ms per cycle.In vitro verification of the rigid movement extraction was performed using the iterative closest point algorithm as a reference. Furthermore, a volumetric evaluation on a live subject was performed to establish the accuracy of the rigid and non-rigid model. The root mean square deviation between the measured and the reference volumes shows an error of  ±0.08 dm(3) for rigid movement extraction. Similarly, the error was calculated to be  ±0.02 dm(3) for torsional deformation extraction and  ±0.11 dm(3) for lateral bending deformation extraction. The results confirm that during the torso movement and deformation, the proposed method is sufficiently accurate to visualize only the displacements related to breathing. The method can be used, for example, during the breathing exercise on an indoor bicycle or a treadmill.

  4. Subjective Estimation of Task Time and Task Difficulty of Simple Movement Tasks.

    PubMed

    Chan, Alan H S; Hoffmann, Errol R

    2017-01-01

    It has been demonstrated in previous work that the same neural structures are used for both imagined and real movements. To provide a strong test of the similarity of imagined and actual movement times, 4 simple movement tasks were used to determine the relationship between estimated task time and actual movement time. The tasks were single-component visually controlled movements, 2-component visually controlled, low index of difficulty (ID) moves and pin-to-hole transfer movements. For each task there was good correspondence between the mean estimated times and actual movement times. In all cases, the same factors determined the actual and estimated movement times: the amplitudes of movement and the IDs of the component movements, however the contribution of each of these variables differed for the imagined and real tasks. Generally, the standard deviations of the estimated times were linearly related to the estimated time values. Overall, the data provide strong evidence for the same neural structures being used for both imagined and actual movements.

  5. Eye Movement Analysis and Cognitive Assessment. The Use of Comparative Visual Search Tasks in a Non-immersive VR Application.

    PubMed

    Rosa, Pedro J; Gamito, Pedro; Oliveira, Jorge; Morais, Diogo; Pavlovic, Matthew; Smyth, Olivia; Maia, Inês; Gomes, Tiago

    2017-03-23

    An adequate behavioral response depends on attentional and mnesic processes. When these basic cognitive functions are impaired, the use of non-immersive Virtual Reality Applications (VRAs) can be a reliable technique for assessing the level of impairment. However, most non-immersive VRAs use indirect measures to make inferences about visual attention and mnesic processes (e.g., time to task completion, error rate). To examine whether the eye movement analysis through eye tracking (ET) can be a reliable method to probe more effectively where and how attention is deployed and how it is linked with visual working memory during comparative visual search tasks (CVSTs) in non-immersive VRAs. The eye movements of 50 healthy participants were continuously recorded while CVSTs, selected from a set of cognitive tasks in the Systemic Lisbon Battery (SLB). Then a VRA designed to assess of cognitive impairments were randomly presented. The total fixation duration, the number of visits in the areas of interest and in the interstimulus space, along with the total execution time was significantly different as a function of the Mini Mental State Examination (MMSE) scores. The present study demonstrates that CVSTs in SLB, when combined with ET, can be a reliable and unobtrusive method for assessing cognitive abilities in healthy individuals, opening it to potential use in clinical samples.

  6. Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts' law.

    PubMed

    Willett, Francis R; Murphy, Brian A; Memberg, William D; Blabe, Christine H; Pandarinath, Chethan; Walter, Benjamin L; Sweet, Jennifer A; Miller, Jonathan P; Henderson, Jaimie M; Shenoy, Krishna V; Hochberg, Leigh R; Kirsch, Robert F; Ajiboye, A Bolu

    2017-04-01

    Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts' law: [Formula: see text] (where MT is movement time, D is target distance, R is target radius, and [Formula: see text] are parameters). Fitts' law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio [Formula: see text]) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to [Formula: see text]). Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts' law. We found that movement times were better described by the equation [Formula: see text], which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the [Formula: see text] ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user's motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts' law-like relationship to iBCI movements may require non-linear decoding strategies.

  7. Oral oxycodone offers equivalent analgesia to intravenous patient-controlled analgesia after total hip replacement: a randomized, single-centre, non-blinded, non-inferiority study.

    PubMed

    Rothwell, M P; Pearson, D; Hunter, J D; Mitchell, P A; Graham-Woollard, T; Goodwin, L; Dunn, G

    2011-06-01

    To determine if oral oxycodone (OOXY) could provide equivalent postoperative analgesia and a similar side-effect profile to i.v. patient-controlled morphine in patients undergoing elective primary total hip replacement (THR) under spinal anaesthesia. We studied 110 consecutive patients aged 60-85 yr. After operation, patients were randomly allocated to receive either oral controlled- and immediate-release OOXY or i.v. patient-controlled analgesia (IVPCA) with morphine. Both groups received regular co-analgesia and antiemetics. The primary outcome measures were: (i) postoperative pain at rest and movement and (ii) nausea score recorded 12 hourly. The secondary outcome measures were: (i) time to first mobilization, (ii) total amount of opioid consumed, (iii) number of additional antiemetic doses, and (iv) time to analgesic discontinuation. There were no statistically significant differences in the primary outcome measures of pain at rest and movement (P>0.05, 95% confidence intervals -0.41, +0.96) or nausea score (P>0.5). The secondary outcome measures showed no significant difference in the total amount of opioid consumed (102 vs 63 mg; P>0.05) or time to mobilization (24.45 vs 26.6 h, P=0.2). The number of antiemetic doses required in the first 24 h was significantly lower in the OOXY group (1.1 vs 1.4, P<0.05). The time to analgesic discontinuation was significantly shorter in the OOXY group (50.5 vs 56.6 h, P<0.05). Oral analgesia with OOXY was approximately GBP 10 less expensive per patient than IVPCA. Oral analgesia with OOXY after THR offers non-inferior analgesia to IVPCA and may offer some logistical and cost advantages.

  8. Proportion of preschool-aged children meeting the Canadian 24-Hour Movement Guidelines and associations with adiposity: results from the Canadian Health Measures Survey.

    PubMed

    Chaput, Jean-Philippe; Colley, Rachel C; Aubert, Salomé; Carson, Valerie; Janssen, Ian; Roberts, Karen C; Tremblay, Mark S

    2017-11-20

    New Canadian 24-Hour Movement Guidelines for the Early Years have been released in 2017. According to the guidelines, within a 24-h period, preschoolers should accumulate at least 180 min of physical activity (of which at least 60 min is moderate-to-vigorous physical activity), engage in no more than 1 h of screen time, and obtain between 10 and 13 h of sleep. This study examined the proportions of preschool-aged (3 to 4 years) Canadian children who met these new guidelines and different recommendations within the guidelines, and the associations with adiposity indicators. Participants were 803 children (mean age: 3.5 years) from cycles 2-4 of the Canadian Health Measures Survey (CHMS), a nationally representative cross-sectional sample of Canadians. Physical activity was accelerometer-derived, and screen time and sleep duration were parent-reported. Participants were classified as meeting the overall 24-Hour Movement Guidelines if they met all three specific time recommendations for physical activity, screen time, and sleep. The adiposity indicators in this study were body mass index (BMI) z-scores and BMI status (World Health Organization Growth Standards). A total of 12.7% of preschool-aged children met the overall 24-Hour Movement Guidelines, and 3.3% met none of the three recommendations. A high proportion of children met the sleep duration (83.9%) and physical activity (61.8%) recommendations, while 24.4% met the screen time recommendation. No associations were found between meeting individual or combined recommendations and adiposity. Very few preschool-aged children in Canada (~13%) met all three recommendations contained within the 24-Hour Movement Guidelines. None of the combinations of recommendations were associated with adiposity in this sample. Future work should focus on identifying innovative ways to reduce screen time in this population, and should examine the associations of guideline adherence with health indicators other than adiposity.

  9. Non-Instrumental Movement Inhibition (NIMI) Differentially Suppresses Head and Thigh Movements during Screenic Engagement: Dependence on Interaction

    PubMed Central

    Witchel, Harry J.; Santos, Carlos P.; Ackah, James K.; Westling, Carina E. I.; Chockalingam, Nachiappan

    2016-01-01

    Background: Estimating engagement levels from postural micromovements has been summarized by some researchers as: increased proximity to the screen is a marker for engagement, while increased postural movement is a signal for disengagement or negative affect. However, these findings are inconclusive: the movement hypothesis challenges other findings of dyadic interaction in humans, and experiments on the positional hypothesis diverge from it. Hypotheses: (1) Under controlled conditions, adding a relevant visual stimulus to an auditory stimulus will preferentially result in Non-Instrumental Movement Inhibition (NIMI) of the head. (2) When instrumental movements are eliminated and computer-interaction rate is held constant, for two identically-structured stimuli, cognitive engagement (i.e., interest) will result in measurable NIMI of the body generally. Methods: Twenty-seven healthy participants were seated in front of a computer monitor and speakers. Discrete 3-min stimuli were presented with interactions mediated via a handheld trackball without any keyboard, to minimize instrumental movements of the participant's body. Music videos and audio-only music were used to test hypothesis (1). Time-sensitive, highly interactive stimuli were used to test hypothesis (2). Subjective responses were assessed via visual analog scales. The computer users' movements were quantified using video motion tracking from the lateral aspect. Repeated measures ANOVAs with Tukey post hoc comparisons were performed. Results: For two equivalently-engaging music videos, eliminating the visual content elicited significantly increased non-instrumental movements of the head (while also decreasing subjective engagement); a highly engaging user-selected piece of favorite music led to further increased non-instrumental movement. For two comparable reading tasks, the more engaging reading significantly inhibited (42%) movement of the head and thigh; however, when a highly engaging video game was compared to the boring reading, even though the reading task and the game had similar levels of interaction (trackball clicks), only thigh movement was significantly inhibited, not head movement. Conclusions: NIMI can be elicited by adding a relevant visual accompaniment to an audio-only stimulus or by making a stimulus cognitively engaging. However, these results presume that all other factors are held constant, because total movement rates can be affected by cognitive engagement, instrumental movements, visual requirements, and the time-sensitivity of the stimulus. PMID:26941666

  10. Non-Instrumental Movement Inhibition (NIMI) Differentially Suppresses Head and Thigh Movements during Screenic Engagement: Dependence on Interaction.

    PubMed

    Witchel, Harry J; Santos, Carlos P; Ackah, James K; Westling, Carina E I; Chockalingam, Nachiappan

    2016-01-01

    Estimating engagement levels from postural micromovements has been summarized by some researchers as: increased proximity to the screen is a marker for engagement, while increased postural movement is a signal for disengagement or negative affect. However, these findings are inconclusive: the movement hypothesis challenges other findings of dyadic interaction in humans, and experiments on the positional hypothesis diverge from it. (1) Under controlled conditions, adding a relevant visual stimulus to an auditory stimulus will preferentially result in Non-Instrumental Movement Inhibition (NIMI) of the head. (2) When instrumental movements are eliminated and computer-interaction rate is held constant, for two identically-structured stimuli, cognitive engagement (i.e., interest) will result in measurable NIMI of the body generally. Twenty-seven healthy participants were seated in front of a computer monitor and speakers. Discrete 3-min stimuli were presented with interactions mediated via a handheld trackball without any keyboard, to minimize instrumental movements of the participant's body. Music videos and audio-only music were used to test hypothesis (1). Time-sensitive, highly interactive stimuli were used to test hypothesis (2). Subjective responses were assessed via visual analog scales. The computer users' movements were quantified using video motion tracking from the lateral aspect. Repeated measures ANOVAs with Tukey post hoc comparisons were performed. For two equivalently-engaging music videos, eliminating the visual content elicited significantly increased non-instrumental movements of the head (while also decreasing subjective engagement); a highly engaging user-selected piece of favorite music led to further increased non-instrumental movement. For two comparable reading tasks, the more engaging reading significantly inhibited (42%) movement of the head and thigh; however, when a highly engaging video game was compared to the boring reading, even though the reading task and the game had similar levels of interaction (trackball clicks), only thigh movement was significantly inhibited, not head movement. NIMI can be elicited by adding a relevant visual accompaniment to an audio-only stimulus or by making a stimulus cognitively engaging. However, these results presume that all other factors are held constant, because total movement rates can be affected by cognitive engagement, instrumental movements, visual requirements, and the time-sensitivity of the stimulus.

  11. Long-range dependence and time-clustering behavior in pedestrian movement patterns in stampedes: The Love Parade case-study

    NASA Astrophysics Data System (ADS)

    Lian, Liping; Song, Weiguo; Richard, Yuen Kwok Kit; Ma, Jian; Telesca, Luciano

    2017-03-01

    Pedestrian stampede happened more and more often during these years, such as Love Parade disaster in Germany 2010, trampling in Shanghai bund 2014 and crowd stampede in pilgrimages. Love Parade disaster 2010 stands out for well recorded videos, which are HD quality and available for researchers. There were totally seven surveillance cameras capturing the whole festival progress and the video we study is just before the disaster happened. Pedestrian motion was special and a small disturbance would lead the group to an avalanche in this kind of critical situation. Here we focus on the individual movement pattern. The trajectories of each pedestrian involved were extracted by a mean-shift algorithm. We analyzed the space-time patterns of the pedestrians involved in the Love Parade stampede by using the detrended fluctuation analysis and the coefficient of variation. Our results reveal that the pedestrians' movement in crowd-quakes is persistent in space, globally time-clusterized but locally regular or quasi-periodic behavior. Pedestrian movement was treated as stop and go state by point process-based representation. When the threshold increases, this means that the "go" state is longer and pedestrians keep on walking in several consecutive time frames; this is difficult in crowded situations and lead to special time-clustering behavior of the sequence of "go" events. The study reveals pedestrian motion characteristics in critical situations, which will enhance the understanding of pedestrian behaviors and supply early warning features for not only Love Parade Disaster, but also other similar large events.

  12. The Total Quality Movement in Education.

    ERIC Educational Resources Information Center

    Leuenberger, John A.; Whitaker, Sheldon V., Jr.

    The total quality movement began as a result of the desire of W. Edwards Deming, an American statistician, to permit the economic system to maintain its edge in a growing global market. The 14 points Deming listed as essential to "total quality management" have recently been adapted to the field of education. The success of the total…

  13. A tale of two trainers: virtual reality versus a video trainer for acquisition of basic laparoscopic skills.

    PubMed

    Debes, Anders J; Aggarwal, Rajesh; Balasundaram, Indran; Jacobsen, Morten B

    2010-06-01

    This study aimed to assess the transferability of basic laparoscopic skills between a virtual reality simulator (MIST-VR) and a video trainer box (D-Box). Forty-six medical students were randomized into 2 groups, training on MIST-VR or D-Box. After training with one modality, a crossover assessment on the other was performed. When tested on MIST-VR, the MIST-VR group showed significantly shorter time (90.3 seconds vs 188.6 seconds, P <.001), better economy of movements (4.40 vs 7.50, P <.001), and lower score (224.7 vs 527.0, P <.001). However, when assessed on the D-Box, there was no difference between the groups for time (402.0 seconds vs 325.6 seconds, P = .152), total hand movements (THC) (289 vs 262, P = .792), or total path length (TPL) (34.9 m vs 34.6 m, P = .388). Both simulators provide significant improvement in performance. Our results indicate that skills learned on the MIST-VR are transferable to the D-Box, but the opposite cannot be demonstrated. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Detection of differential viewing patterns to erotic and non-erotic stimuli using eye-tracking methodology.

    PubMed

    Lykins, Amy D; Meana, Marta; Kambe, Gretchen

    2006-10-01

    As a first step in the investigation of the role of visual attention in the processing of erotic stimuli, eye-tracking methodology was employed to measure eye movements during erotic scene presentation. Because eye-tracking is a novel methodology in sexuality research, we attempted to determine whether the eye-tracker could detect differences (should they exist) in visual attention to erotic and non-erotic scenes. A total of 20 men and 20 women were presented with a series of erotic and non-erotic images and tracked their eye movements during image presentation. Comparisons between erotic and non-erotic image groups showed significant differences on two of three dependent measures of visual attention (number of fixations and total time) in both men and women. As hypothesized, there was a significant Stimulus x Scene Region interaction, indicating that participants visually attended to the body more in the erotic stimuli than in the non-erotic stimuli, as evidenced by a greater number of fixations and longer total time devoted to that region. These findings provide support for the application of eye-tracking methodology as a measure of visual attentional capture in sexuality research. Future applications of this methodology to expand our knowledge of the role of cognition in sexuality are suggested.

  15. Structural Brain Damage and Upper Limb Kinematics in Children with Unilateral Cerebral Palsy.

    PubMed

    Mailleux, Lisa; Simon-Martinez, Cristina; Klingels, Katrijn; Jaspers, Ellen; Desloovere, Kaat; Demaerel, Philippe; Fiori, Simona; Guzzetta, Andrea; Ortibus, Els; Feys, Hilde

    2017-01-01

    Background: In children with unilateral cerebral palsy (uCP) virtually nothing is known on the relation between structural brain damage and upper limb (UL) kinematics quantified with three-dimensional movement analysis (3DMA). This explorative study aimed to (1) investigate differences in UL kinematics between children with different lesion timings, i.e., periventricular white matter (PWM) vs. cortical and deep gray matter (CDGM) lesions and (2) to explore the relation between UL kinematics and lesion location and extent within each lesion timing group. Methods: Forty-eight children (age 10.4 ± 2.7 year; 29 boys; 21 right-sided; 33 PWM; 15 CDGM) underwent an UL 3DMA during a reach-to-grasp task. Spatiotemporal parameters [movement duration, (timing of) maximum velocity, trajectory straightness], the Arm Profile Score (APS) and Arm Variable Scores (AVS) were extracted. The APS and AVS refer to the total amount of movement pathology and movement deviations of the wrist, elbow, shoulder, scapula and trunk respectively. Brain lesion location and extent were scored based on FLAIR-images using a semi-quantitative MRI-scale. Results: Children with CDGM lesions showed more aberrant spatiotemporal parameters ( p < 0.03) and more movement pathology (APS, p = 0.003) compared to the PWM group, mostly characterized by increased wrist flexion ( p = 0.01). In the CDGM group, moderate to high correlations were found between lesion location and extent and duration, timing of maximum velocity and trajectory straightness ( r = 0.53-0.90). Lesion location and extent were further moderately correlated with distal UL movement pathology (wrist flexion/extension, elbow pronation/supination, elbow flexion/extension; r = 0.50-0.65) and with the APS ( r = 0.51-0.63). In the PWM group, only a few and low correlations were observed, mostly between damage to the PLIC and higher AVS of elbow flexion/extension, shoulder elevation and trunk rotation ( r = 0.35-0.42). Regression analysis revealed damage to the temporal lobe with lesion timing as interactor (27%, p = 0.002) and the posterior limb of the internal capsule (PLIC) (7%, p = 0.04) as the strongest predictors, explaining 34% of the variance in APS. Conclusion: UL kinematic deviations are more influenced by lesion location and extent in children with later (CDGM) versus earlier lesions (PWM), except for proximal movement pathology. Damage to the PLIC is a significant predictor for UL movement pathology irrespective of lesion timing.

  16. Fear of Movement and Low Self-Efficacy Are Important Barriers in Physical Activity after Renal Transplantation

    PubMed Central

    Zelle, Dorien M.; Corpeleijn, Eva; Klaassen, Gerald; Schutte, Elise; Navis, Gerjan; Bakker, Stephan J. L.

    2016-01-01

    Background Physical activity (PA) and exercise are commonly used as preventive measures for cardiovascular disease in the general population, and could be effective in the management of post-transplantation cardiovascular risk. PA levels are low after renal transplantation and very few renal transplant recipients (RTR) meet the PA guidelines. Identification of barriers to regular PA is important to identify targets for intervention to improve PA levels after renal transplantation. We investigated fear of movement and physical self-efficacy as barriers to PA in RTR. Methods RTR were investigated between 2001–2003. The Tampa Score of Kinesiophobia–Dutch Version (TSK-11) was used to assess fear of movement. Physical self-efficacy was measured with the LIVAS-scale. PA was assessed using validated questionnaires (Tecumseh Occupational Activity Questionnaire and the Minnesota Leisure Time Physical Activity Questionnaire). Results A total of 487 RTR (age 51±12 years, 55% men) were studied. Median score [interquartile range] on TSK-11 was 22 [17–26]. Low physical self-efficacy (Exp B:0.41[0.31–0.54], p<0.001) and history of myocardial infarction, transient ischemic attack and cerebrovascular accident (Exp B:1.30[1.03–1.63],p = 0.03) were independent determinants for fear of movement. Fear of movement was associated with lower daily PA, occupational, sports and leisure time PA. Mediation-analysis showed that a large part (73%) of the effect of fear of movement on PA was explained by low physical self-efficacy. Conclusions This study was the first to examine fear of movement and self-efficacy in relation to PA in RTR. Fear of movement was associated with a low PA level, and the larger part of this relation was mediated by low physical self-efficacy. Both fear of movement and physical self-efficacy level are important targets for intervention during rehabilitation after renal transplantation. PMID:26844883

  17. Fear of Movement and Low Self-Efficacy Are Important Barriers in Physical Activity after Renal Transplantation.

    PubMed

    Zelle, Dorien M; Corpeleijn, Eva; Klaassen, Gerald; Schutte, Elise; Navis, Gerjan; Bakker, Stephan J L

    2016-01-01

    Physical activity (PA) and exercise are commonly used as preventive measures for cardiovascular disease in the general population, and could be effective in the management of post-transplantation cardiovascular risk. PA levels are low after renal transplantation and very few renal transplant recipients (RTR) meet the PA guidelines. Identification of barriers to regular PA is important to identify targets for intervention to improve PA levels after renal transplantation. We investigated fear of movement and physical self-efficacy as barriers to PA in RTR. RTR were investigated between 2001-2003. The Tampa Score of Kinesiophobia-Dutch Version (TSK-11) was used to assess fear of movement. Physical self-efficacy was measured with the LIVAS-scale. PA was assessed using validated questionnaires (Tecumseh Occupational Activity Questionnaire and the Minnesota Leisure Time Physical Activity Questionnaire). A total of 487 RTR (age 51±12 years, 55% men) were studied. Median score [interquartile range] on TSK-11 was 22 [17-26]. Low physical self-efficacy (Exp B:0.41[0.31-0.54], p<0.001) and history of myocardial infarction, transient ischemic attack and cerebrovascular accident (Exp B:1.30[1.03-1.63],p = 0.03) were independent determinants for fear of movement. Fear of movement was associated with lower daily PA, occupational, sports and leisure time PA. Mediation-analysis showed that a large part (73%) of the effect of fear of movement on PA was explained by low physical self-efficacy. This study was the first to examine fear of movement and self-efficacy in relation to PA in RTR. Fear of movement was associated with a low PA level, and the larger part of this relation was mediated by low physical self-efficacy. Both fear of movement and physical self-efficacy level are important targets for intervention during rehabilitation after renal transplantation.

  18. Transition from shod to barefoot alters dynamic stability during running.

    PubMed

    Ekizos, Antonis; Santuz, Alessandro; Arampatzis, Adamantios

    2017-07-01

    Barefoot running recently received increased attention, with controversial results regarding its effects on injury risk and performance. Numerous studies examined the kinetic and kinematic changes between the shod and the barefoot condition. Intrinsic parameters such as the local dynamic stability could provide new insight regarding neuromuscular control when immediately transitioning from one running condition to the other. We investigated the local dynamic stability during the change from shod to barefoot running. We further measured biomechanical parameters to examine the mechanisms governing this transition. Twenty habitually shod, young and healthy participants ran on a pressure plate-equipped treadmill and alternated between shod and barefoot running. We calculated the largest Lyapunov exponents as a measure of errors in the control of the movement. Biomechanical parameters were also collected. Local dynamic stability decreased significantly (d=0.41; 2.1%) during barefoot running indicating worse control over the movement. We measured higher cadence (d=0.35; 2.2%) and total flight time (d=0.58; 19%), lower total contact time (d=0.58; -5%), total vertical displacement (d=0.39; -4%), and vertical impulse (d=1.32; 11%) over the two minutes when running barefoot. The strike index changed significantly (d=1.29; 237%) towards the front of the foot. Immediate transition from shod to the barefoot condition resulted in an increased instability and indicates a worst control over the movement. The increased instability was associated with biomechanical changes (i.e. foot strike patterns) of the participants in the barefoot condition. Possible reasons why this instability arises, might be traced in the stance phase and particularly in the push-off. The decreased stability might affect injury risk and performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of different sleep deprivation protocols on sleep perception in healthy volunteers.

    PubMed

    Goulart, Leonardo I; Pinto, Luciano R; Perlis, Michael L; Martins, Raquel; Caboclo, Luis Otavio; Tufik, Sergio; Andersen, Monica L

    2014-10-01

    To investigate whether different protocols of sleep deprivation modify sleep perception. The effects of total sleep deprivation (TD) and selective rapid eye movement (REM) sleep deprivation (RD) on sleep perception were analyzed in normal volunteers. Thirty-one healthy males with normal sleep were randomized to one of three conditions: (i) normal uninterrupted sleep; (ii) four nights of RD; or (iii) two nights of TD. Morning perception of total sleep time was evaluated for each condition. Sleep perception was estimated using total sleep time (in hours) as perceived by the volunteer divided by the total sleep time (in hours) measured by polysomnography (PSG). The final value of this calculation was defined as the perception index (PI). There were no significant differences among the three groups of volunteers in the total sleep time measured by PSG or in the perception of total sleep time at baseline condition. Volunteers submitted to RD exhibited lower sleep PI scores as compared with controls during the sleep deprivation period (P <0.05). Both RD and TD groups showed PI similar to controls during the recovery period. Selective REM sleep deprivation reduced the ability of healthy young volunteers to perceive their total sleep time when compared with time measured by PSG. The data reinforce the influence of sleep deprivation on sleep perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Kinect-based choice reaching and stepping reaction time tests for clinical and in-home assessment of fall risk in older people: a prospective study.

    PubMed

    Ejupi, Andreas; Gschwind, Yves J; Brodie, Matthew; Zagler, Wolfgang L; Lord, Stephen R; Delbaere, Kim

    2016-01-01

    Quick protective reactions such as reaching or stepping are important to avoid a fall or minimize injuries. We developed Kinect-based choice reaching and stepping reaction time tests (Kinect-based CRTs) and evaluated their ability to differentiate between older fallers and non-fallers and the feasibility of administering them at home. A total of 94 community-dwelling older people were assessed on the Kinect-based CRTs in the laboratory and were followed-up for falls for 6 months. Additionally, a subgroup (n = 20) conducted the Kinect-based CRTs at home. Signal processing algorithms were developed to extract features for reaction, movement and the total time from the Kinect skeleton data. Nineteen participants (20.2 %) reported a fall in the 6 months following the assessment. The reaction time (fallers: 797 ± 136 ms, non-fallers: 714 ± 89 ms), movement time (fallers: 392 ± 50 ms, non-fallers: 358 ± 51 ms) and total time (fallers: 1189 ± 170 ms, non-fallers: 1072 ± 109 ms) of the reaching reaction time test differentiated well between the fallers and non-fallers. The stepping reaction time test did not significantly discriminate between the two groups in the prospective study. The correlations between the laboratory and in-home assessments were 0.689 for the reaching reaction time and 0.860 for stepping reaction time. The study findings indicate that the Kinect-based CRT tests are feasible to administer in clinical and in-home settings, and thus represents an important step towards the development of sensor-based fall risk self-assessments. With further validation, the assessments may prove useful as a fall risk screen and home-based assessment measures for monitoring changes over time and effects of fall prevention interventions.

  1. Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts’ law

    PubMed Central

    Willett, Francis R.; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Pandarinath, Chethan; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Hochberg, Leigh R.; Kirsch, Robert F.; Ajiboye, A. Bolu

    2017-01-01

    Objective Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts’ law: MT = a + b log2(D/R ) (where MT is movement time, D is target distance, R is target radius, and a,b are parameters). Fitts’ law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio D/R) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to D/R). Approach Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts’ law. Main Results We found that movement times were better described by the equation MT = a + bD + cR−2, which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the D/R ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user’s motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. Significance The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts’ law-like relationship to iBCI movements may require nonlinear decoding strategies. PMID:28177925

  2. Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts’ law

    NASA Astrophysics Data System (ADS)

    Willett, Francis R.; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Pandarinath, Chethan; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Hochberg, Leigh R.; Kirsch, Robert F.; Bolu Ajiboye, A.

    2017-04-01

    Objective. Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts’ law: \\text{MT}=a+b{{log}2}(D/R) (where MT is movement time, D is target distance, R is target radius, and a,~b are parameters). Fitts’ law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio D/R ) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to D/R ). Approach. Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts’ law. Main results. We found that movement times were better described by the equation \\text{MT}=a+bD+c{{R}-2} , which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the D/R ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user’s motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. Significance. The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts’ law-like relationship to iBCI movements may require non-linear decoding strategies.

  3. A Non-Contact Measurement System for the Range of Motion of the Hand

    PubMed Central

    Pham, Trieu; Pathirana, Pubudu N.; Trinh, Hieu; Fay, Pearse

    2015-01-01

    An accurate and standardised tool to measure the active range of motion (ROM) of the hand is essential to any progressive assessment scenario in hand therapy practice. Goniometers are widely used in clinical settings for measuring the ROM of the hand. However, such measurements have limitations with regard to inter-rater and intra-rater reliability and involve direct physical contact with the hand, possibly increasing the risk of transmitting infections. The system proposed in this paper is the first non-contact measurement system utilising Intel Perceptual Technology and a Senz3D Camera for measuring phalangeal joint angles. To enhance the accuracy of the system, we developed a new approach to achieve the total active movement without measuring three joint angles individually. An equation between the actual spacial position and measurement value of the proximal inter-phalangeal joint was established through the measurement values of the total active movement, so that its actual position can be inferred. Verified by computer simulations, experimental results demonstrated a significant improvement in the calculation of the total active movement and successfully recovered the actual position of the proximal inter-phalangeal joint angles. A trial that was conducted to examine the clinical applicability of the system involving 40 healthy subjects confirmed the practicability and consistency in the proposed system. The time efficiency conveyed a stronger argument for this system to replace the current practice of using goniometers. PMID:26225976

  4. Fundamental movement skills and physical activity among children living in low-income communities: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Although previous studies have demonstrated that children with high levels of fundamental movement skill competency are more active throughout the day, little is known regarding children’s fundamental movement skill competency and their physical activity during key time periods of the school day (i.e., lunchtime, recess and after-school). The purpose of this study was to examine the associations between fundamental movement skill competency and objectively measured moderate-to-vigorous physical activity (MVPA) throughout the school day among children attending primary schools in low-income communities. Methods Eight primary schools from low-income communities and 460 children (8.5 ± 0.6 years, 54% girls) were involved in the study. Children’s fundamental movement skill competency (TGMD-2; 6 locomotor and 6 object-control skills), objectively measured physical activity (ActiGraph GT3X and GT3X + accelerometers), height, weight and demographics were assessed. Multilevel linear mixed models were used to assess the cross-sectional associations between fundamental movement skills and MVPA. Results After adjusting for age, sex, BMI and socio-economic status, locomotor skill competency was positively associated with total (P = 0.002, r = 0.15) and after-school (P = 0.014, r = 0.13) MVPA. Object-control skill competency was positively associated with total (P < 0.001, r = 0.20), lunchtime (P = 0.03, r = 0.10), recess (P = 0.006, r = 0.11) and after-school (P = 0.022, r = 0.13) MVPA. Conclusions Object-control skill competency appears to be a better predictor of children’s MVPA during school-based physical activity opportunities than locomotor skill competency. Improving fundamental movement skill competency, particularly object-control skills, may contribute to increased levels of children’s MVPA throughout the day. Trial registration Australian New Zealand Clinical Trials Registry No: ACTRN12611001080910. PMID:24708604

  5. Flexibility of the elderly after one-year practice of yoga and calisthenics.

    PubMed

    Farinatti, Paulo T V; Rubini, Ercole C; Silva, Elirez B; Vanfraechem, Jacques H

    Flexibility training responses to distinct stretching techniques are not well defined, especially in the elderly. This study compared the flexibility of elderly individuals before and after having practiced hatha yoga and calisthenics for 1 year (52 weeks), at least 3 times/week. Sixty-six subjects (12 men) measured and assigned to 3 groups: control (n = 24, age = 67.7±6.9 years), hatha yoga (n = 22, age = 61.2±4.8 years), and calisthenics (n = 20, age = 69.0±5.8 years). The maximal range of passive motion of 13 movements in 7 joints was assessed by the Flexitest, comparing the range obtained with standard charts representing each arc of movement on a discontinuous and non-dimensional scale from 0 to 4. Results of individual movements were summed to define 4 indexes (ankle+knee, hip+trunk, wrist+elbow, and shoulder) and total flexibility (Flexindex). Results showed significant increases of total flexibility in the hatha yoga group (by 22.5 points) and the calisthenics group (by 5.8 points) (p < 0.01 for each) and a decrease in the control group (by 2.1 points) (p < 0.01) after one year of intervention. Between-group comparison showed that increases in the hatha yoga group were greater than in the calisthenics group for most flexibility indexes, particularly the overall flexibility (p <0.05). In conclusion, the practice of hatha yoga (i.e., slow/passive movements) was more effective in improving flexibility compared to calisthenics (i.e., fast/dynamic movements), but calisthenics was able to prevent flexibility losses observed in sedentary elderly subjects.

  6. The ergonomics of laparoscopic surgery: a quantitative study of the time and motion of laparoscopic surgeons in live surgical environments.

    PubMed

    Aitchison, Lucy Ping; Cui, Cathy Kexin; Arnold, Amy; Nesbitt-Hawes, Erin; Abbott, Jason

    2016-11-01

    Laparoscopic surgery presents multiple ergonomic difficulties for the surgeon, requiring awkward body postures and prolonged static muscle loading that increases risk of musculoskeletal strain and injury. This prospective study quantitatively measures the biomechanical movements of surgeons during laparoscopic procedures to determine at-risk movements from prolonged static muscle loading and repetitive motions that may lead to injury. A total of 150 video recordings of 18 surgeons, standing at the patient's left, were captured from three fixed camera positions during live gynecological laparoscopic surgery. Postoperative processing quantified surgeon movements at the neck, shoulders and elbows using computer software to measure extreme joint angles and time spent within defined joint angle ranges. Surgeons spent a median of 98 % (range 77-100 %) of surgical time with their neck rotated at 21° (range 0°-52°). The non-dominant arm was subjected to more extreme positions for significantly longer periods of time compared to the dominant, with shoulder flexion at 45°-90° for 35 vs. 0 % (p < 0.001) and elbow flexion at >120° for 31 vs. 0 % (p < 0.001) of total surgical time. Procedures involving power morcellation required significantly greater number of instrument insertion/removals-119 (range 56-182) compared with 12 (range 2-122) when morcellation was not used (p < 0.001). Shorter surgeons maintained significantly greater degrees of neck rotation when viewing the monitor (p < 0.003) and surgeons with shorter arm lengths spent longer in extreme positions with their non-dominant shoulder at >90° (p = 0.04) and elbow at >120° (p < 0.001) compared with taller surgeons. No significant correlations were found between BMI or surgical experience and more extreme joint positions. Four primary areas have been identified where surgeons are consistently demonstrating movements that increase their risk of harm: (1) extended periods of neck rotation; (2) asymmetrical loading between the dominant and non-dominant shoulders; (3) power morcellation and frequent insertions/removals of laparoscopic instruments resulting in repetitions of the most extreme shoulder positions and (4) a negative correlation between height and percentage time spent in more extreme positions.

  7. A Force-Velocity Relationship and Coordination Patterns in Overarm Throwing

    PubMed Central

    van den Tillaar, Roland; Ettema, Gertjan

    2004-01-01

    A force-velocity relationship in overarm throwing was determined using ball weights varying from 0.2 to 0.8 kg. Seven experienced handball players were filmed at 240 frames per second. Velocity of joints of the upper extremity and ball together with the force on the ball were derived from the data. A statistically significant negative relationship between force and maximal ball velocity, as well as between ball weight and maximal ball velocity was observed. Also, with increase of ball weight the total throwing movement time increased. No significant change in relative timing of the different joints was demonstrated, suggesting that the subjects did not change their “global ”coordination pattern (kinematics) within the tested range of ball weights. A simple model revealed that 67% of ball velocity at ball release was explained by the summation of effects from the velocity of elbow extension and internal rotation of the shoulder. With regard to the upper extremity the internal rotation of the shoulder and elbow extension are two important contributors to the total ball velocity at release. Key Points An inverse relationship between load and velocity and a linear force-velocity exists in overarm throwing with ball weights varying from 0.2 to 0.8 kg. Qualitatively, no changes in coordination pattern (relative timing) occur with increasing ball weight within the tested range of ball weights. The absolute throwing movement time increased with ball weight. Quantitatively, with regard to the upper extremity, the internal rotation of the shoulder and elbow extension are two important contributors to the total ball velocity at release. PMID:24624005

  8. An eye movement based reading intervention in lexical and segmental readers with acquired dyslexia.

    PubMed

    Ablinger, Irene; von Heyden, Kerstin; Vorstius, Christian; Halm, Katja; Huber, Walter; Radach, Ralph

    2014-01-01

    Due to their brain damage, aphasic patients with acquired dyslexia often rely to a greater extent on lexical or segmental reading procedures. Thus, therapy intervention is mostly targeted on the more impaired reading strategy. In the present work we introduce a novel therapy approach based on real-time measurement of patients' eye movements as they attempt to read words. More specifically, an eye movement contingent technique of stepwise letter de-masking was used to support sequential reading, whereas fixation-dependent initial masking of non-central letters stimulated a lexical (parallel) reading strategy. Four lexical and four segmental readers with acquired central dyslexia received our intensive reading intervention. All participants showed remarkable improvements as evident in reduced total reading time, a reduced number of fixations per word and improved reading accuracy. Both types of intervention led to item-specific training effects in all subjects. A generalisation to untrained items was only found in segmental readers after the lexical training. Eye movement analyses were also used to compare word processing before and after therapy, indicating that all patients, with one exclusion, maintained their preferred reading strategy. However, in several cases the balance between sequential and lexical processing became less extreme, indicating a more effective individual interplay of both word processing routes.

  9. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    NASA Astrophysics Data System (ADS)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  10. Intra-Cyclic Phases of Arm-Leg Movement and Index of Coordination in Relation to Sprint Breaststroke Swimming in Young Swimmers

    PubMed Central

    Strzala, Marek; Krezalek, Piotr; Glab, Grzegorz; Kaca, Marcin; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K.

    2013-01-01

    Despite the limitations set by FINA regulations, execution technique in breaststroke swimming is being improved thanks to more and more advanced analyses of the efficiency of the swimmer’s movements. The aim of this study was to detect the parameters of the time structure of the cycle correlated with the maximal swimming speed at the of 50 meters distance, in order to focus to specific technical aspects in the breaststroke training. In the group of 23 participants, between the age of 15.0 ± 1.17, the breaststroke cycle movement of the arms and legs was divided into two phases: propulsive or non-propulsive. In addition, indices characterizing the temporal coordination of movements of the upper limbs in relation to the lower limbs were distinguished: 1) Arm-Leg Lag - determines the interval between the phases of propulsion generated by upper and lower limbs; 2) Glide or Overlap - the inter-cyclic glide or overlap of the propulsive movement of the upper on lower limbs. Significant dependence was noted between the swim speed (V50surface breast) and the percentage of time of the arm propulsive in-sweep phase 0.64, p < 0.01. A significant correlation was observed between the V50surface breast with the percentage of partially surfaced hand phase of arm recovery 0.54, p < 0.01. Correlation between total leg propulsion and non-propulsion phases with V50surface breast was 0.49 and -0.49 respectively, both p < 0.01. The Glide or Overlap index was significantly related to the swimming speed V50surface breast 0.48, p < 0.05. This type of analysis suggests how to refine the swimming technique, with the goal to improve the current speed capabilities; furthermore the results also indicate the direction of its development in the future swimmers of the group studied. Key Points This study investigated the influence of the inter- and intra-cyclic time structure of the movements in sprint breaststroke swimming. The distinction of the operations phases of the upper limbs in the propulsive movement shows significant correlation 0.64, p <0.01 between the swimming speed V50surface breast and the execution time of the in-sweep phase in the movement cycle. Significant relationship was noted between minimizing the first non-propulsive phase of arm recovery with higher contribution of the next, partially immersed sliding phase of arm recovery. The specification of the inter-cyclic coordination index of the upper and lower limbs during the movement cycle shows influence of the overlap of the propulsive movement of the upper limbs on the propulsive movement of the lower limbs on V50surface breast with correlation 0.48, p <0.05 for young swimmers. PMID:24421728

  11. Fundamental movement skills in preschoolers: a randomized controlled trial targeting object control proficiency.

    PubMed

    Donath, L; Faude, O; Hagmann, S; Roth, R; Zahner, L

    2015-11-01

    Adequately developed fundamental movement skills, particularly object control dimensions, are considered essential to learn more complex movement patterns and to increase the likelihood to successfully participate in organized and non-organized sports during later years. Thus, the present randomized controlled trial aimed at improving object control dimensions at an early state in a kindergarten setting. Catching, throwing, kicking, rolling and stationary dribbling were assessed via gross motor development 2 (TGMD-2) testing in 41 normally developed preschoolers. On a cluster-randomized basis [strata: age, sex and body mass index (BMI)], three kindergartens were randomly assigned to an intervention group (n = 22, INT, age: 4.6 ± 1.0 years; BMI: 16.2 ± 1.1 kg/m(2) ) and three to a control group (n = 19, CON: age: 4.5 ± 1.2 years; BMI: 16.8 ± 1.2 kg/m(2) ). Twelve structured training sessions were given within 6 weeks (12 sessions). The total training volume was 330 min. Moderate time × group interaction were observed for the total sum score (Δ+22%, P = 0.05) and dribbling (Δ+41%, P = 0.002). Adjusting for baseline differences analyses of covariance did not affect these results. Interestingly, likely to most likely practically worthwhile effects were detected for the total sum score, catching and dribbling. Object control dimensions such as dribbling and catching that apparently rely on rhythmical movement patterns and anticipatory eye-hand coordination seem to benefit from short-term object control training. These skills are considered important for successful team-sport participation and appropriate sportive motor development. © 2015 John Wiley & Sons Ltd.

  12. Head Rotation Movement Times.

    PubMed

    Hoffmann, Errol R; Chan, Alan H S; Heung, P T

    2017-09-01

    The aim of this study was to measure head rotation movement times in a Fitts' paradigm and to investigate the transition region from ballistic movements to visually controlled movements as the task index of difficulty (ID) increases. For head rotation, there are gaps in the knowledge of the effects of movement amplitude and task difficulty around the critical transition region from ballistic movements to visually controlled movements. Under the conditions of 11 ID values (from 1.0 to 6.0) and five movement amplitudes (20° to 60°), participants performed a head rotation task, and movement times were measured. Both the movement amplitude and task difficulty have effects on movement times at low IDs, but movement times are dependent only on ID at higher ID values. Movement times of participants are higher than for arm/hand movements, for both ballistic and visually controlled movements. The information-processing rate of head rotational movements, at high ID values, is about half that of arm movements. As an input mode, head rotations are not as efficient as the arm system either in ability to use rapid ballistic movements or in the rate at which information may be processed. The data of this study add to those in the review of Hoffmann for the critical IDs of different body motions. The data also allow design for the best arrangement of display that is under the design constraints of limited display area and difficulty of head-controlled movements in a data-inputting task.

  13. Space availability in confined sheep during pregnancy, effects in movement patterns and use of space.

    PubMed

    Averós, Xavier; Lorea, Areta; Beltrán de Heredia, Ignacia; Arranz, Josune; Ruiz, Roberto; Estevez, Inma

    2014-01-01

    Space availability is essential to grant the welfare of animals. To determine the effect of space availability on movement and space use in pregnant ewes (Ovis aries), 54 individuals were studied during the last 11 weeks of gestation. Three treatments were tested (1, 2, and 3 m2/ewe; 6 ewes/group). Ewes' positions were collected for 15 minutes using continuous scan samplings two days/week. Total and net distance, net/total distance ratio, maximum and minimum step length, movement activity, angular dispersion, nearest, furthest and mean neighbour distance, peripheral location ratio, and corrected peripheral location ratio were calculated. Restriction in space availability resulted in smaller total travelled distance, net to total distance ratio, maximum step length, and angular dispersion but higher movement activity at 1 m2/ewe as compared to 2 and 3 m2/ewe (P<0.01). On the other hand, nearest and furthest neighbour distances increased from 1 to 3 m2/ewe (P<0.001). Largest total distance, maximum and minimum step length, and movement activity, as well as lowest net/total distance ratio and angular dispersion were observed during the first weeks (P<0.05) while inter-individual distances increased through gestation. Results indicate that movement patterns and space use in ewes were clearly restricted by limitations of space availability to 1 m2/ewe. This reflected in shorter, more sinuous trajectories composed of shorter steps, lower inter-individual distances and higher movement activity potentially linked with higher restlessness levels. On the contrary, differences between 2 and 3 m2/ewe, for most variables indicate that increasing space availability from 2 to 3 m2/ewe would appear to have limited benefits, reflected mostly in a further increment in the inter-individual distances among group members. No major variations in spatial requirements were detected through gestation, except for slight increments in inter-individual distances and an initial adaptation period, with ewes being restless and highly motivated to explore their new environment.

  14. Wear-Time Compliance with a Dual-Accelerometer System for Capturing 24-h Behavioural Profiles in Children and Adults.

    PubMed

    Duncan, Scott; Stewart, Tom; Mackay, Lisa; Neville, Jono; Narayanan, Anantha; Walker, Caroline; Berry, Sarah; Morton, Susan

    2018-06-21

    To advance the field of time-use epidemiology, a tool capable of monitoring 24 h movement behaviours including sleep, physical activity, and sedentary behaviour is needed. This study explores compliance with a novel dual-accelerometer system for capturing 24 h movement patterns in two free-living samples of children and adults. A total of 103 children aged 8 years and 83 adults aged 20-60 years were recruited. Using a combination of medical dressing and purpose-built foam pouches, participants were fitted with two Axivity AX3 accelerometers—one to the thigh and the other to the lower back—for seven 24 h periods. AX3 accelerometers contain an inbuilt skin temperature sensor that facilitates wear time estimation. The median (IQR) wear time in children was 160 (67) h and 165 (79) h (out of a maximum of 168 h) for back and thigh placement, respectively. Wear time was significantly higher and less variable in adults, with a median (IQR) for back and thigh placement of 168 (1) and 168 (0) h. A greater proportion of adults (71.6%) achieved the maximum number of complete days when compared to children (41.7%). We conclude that a dual-accelerometer protocol using skin attachment methods holds considerable promise for monitoring 24-h movement behaviours in both children and adults.

  15. Effect of Olanzapine on Clinical and Polysomnography Profiles in Patients with Schizophrenia

    PubMed Central

    Sarkar, Sukanto; Nizamie, S. Haque

    2018-01-01

    Acute and short-term administration of olanzapine has a favorable effect on sleep in schizophrenia patients. This study aimed to clarify the effect of olanzapine on polysomnographic profiles of schizophrenia patients during the acute phase of illness after controlling for previous drug exposure. Twenty-five drug-naïve or drug-free schizophrenia patients were assessed at baseline and after six weeks of olanzapine treatment on Brief Psychiatric Rating Scale (BPRS), Positive and Negative Syndrome Scale (PANSS), and Udvalg for Kliniske Undersogelser (UKU) side-effect rating scale and a whole-night polysomnography; fifteen patients completed the study. There was a significant reduction in all psychopathological variables with maximum reduction in PANSS total, BPRS total, and PANSS positive scores. A significant increase in total sleep time (TST), sleep efficiency (SE), nonrapid eye movement (NREM) stage 1 duration, stage 3 duration, stage 4 duration, and stage 4 percentage of TST, number of rapid eye movement (REM) periods, REM duration, and REM percentage of TST was observed. REM latency at baseline inversely predicted the reduction in BPRS total and PANSS total and positive scores. In summary, short-term treatment with olanzapine produced significant improvement in clinical and polysomnography profiles of patients with schizophrenia with shorter REM latency predicting a good clinical response. PMID:29675276

  16. Sleep-wake patterns, non-rapid eye movement, and rapid eye movement sleep cycles in teenage narcolepsy.

    PubMed

    Xu, Xing; Wu, Huijuan; Zhuang, Jianhua; Chen, Kun; Huang, Bei; Zhao, Zhengqing; Zhao, Zhongxin

    2017-05-01

    To further characterize sleep disorders associated with narcolepsy, we assessed the sleep-wake patterns, rapid eye movement (REM), and non-REM (NREM) sleep cycles in Chinese teenagers with narcolepsy. A total of 14 Chinese type 1 narcoleptic patients (13.4 ± 2.6 years of age) and 14 healthy age- and sex-matched control subjects (13.6 ± 1.8 years of age) were recruited. Ambulatory 24-h polysomnography was recorded for two days, with test subjects adapting to the instruments on day one and the study data collection performed on day two. Compared with the controls, the narcoleptic patients showed a 1.5-fold increase in total sleep time over 24 h, characterized by enhanced slow-wave sleep and REM sleep. Frequent sleep-wake transitions were identified in nocturnal sleep with all sleep stages switching to wakefulness, with more awakenings and time spent in wakefulness after sleep onset. Despite eight cases of narcolepsy with sleep onset REM periods at night, the mean duration of NREM-REM sleep cycle episode and the ratio of REM/NREM sleep between patients and controls were not significantly different. Our study identified hypersomnia in teenage narcolepsy despite excessive daytime sleepiness. Sleep fragmentation extended to all sleep stages, indicating impaired sleep-wake cycles and instability of sleep stages. The limited effects on NREM-REM sleep cycles suggest the relative conservation of ultradian regulation of sleep. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Tooth movements in foxhounds after one or two alveolar corticotomies.

    PubMed

    Sanjideh, Payam A; Rossouw, P Emile; Campbell, Phillip M; Opperman, Lynne A; Buschang, Peter H

    2010-02-01

    The aim of this split-mouth experimental study was to determine (1) whether corticotomy procedures increase tooth movement and (2) the effects of a second corticotomy procedure after 4 weeks on the rate of tooth movement. The mandibular third and maxillary second premolars of five skeletally mature male foxhounds, approximately 2 years of age, were extracted. One randomly selected mandibular quadrant had buccal and lingual flaps and corticotomies performed around the second premolar; the other quadrant served as the control. Both maxillary quadrants had initial buccal flaps and corticotomies; one randomly selected quadrant had a second buccal flap surgery and corticotomy after 28 days. Coil springs (200 g force), along with a 0.045 mm diameter tube on a 0.040 mm diameter guiding wire, were used to move the mandibular second and maxillary third premolars. Records, including digital calliper measurements and radiographs, were taken on days 0, 10, 14, 28, 42, and 56. Multilevel statistical procedures were used to model longitudinal tooth movements. The radiographic measurements initially showed increasing mandibular tooth movement rates, peaking between 22 and 25 days, and then decelerating. Total mandibular tooth movements were significantly (P < 0.05) greater on the experimental (2.4 mm) than on the control (1.3 mm) side. The rates of maxillary tooth movement slowed over time, with significantly (P < 0.05) more overall tooth movement on the side that had two (2.3 mm) than one (2.0 mm) corticotomy procedure. Alveolar corticotomy significantly increases orthodontic tooth movement. Performing a second corticotomy procedure after 4 weeks maintained higher rates of tooth movement over a longer duration and produced greater overall tooth movement than performing just one initial corticotomy, but the difference was small.

  18. The Human Potential Movement: Forms of Body/Movement/Nonverbal Experiencing.

    ERIC Educational Resources Information Center

    Caldwell, Stratton F.

    A social, humanistic movement has emerged which focuses on the desire of many affluent and advantaged citizens for personal, interpersonal, transpersonal, and organizational growth. It has been termed the "Human Potential Movement." Growth centers, which emphasize the integrated totality of the person, have developed all over the United…

  19. Kinematics of prehension and pointing movements in C6 quadriplegic patients.

    PubMed

    Laffont, I; Briand, E; Dizien, O; Combeaud, M; Bussel, B; Revol, M; Roby-Brami, A

    2000-06-01

    C6 quadriplegic patients lack voluntary control of their triceps muscle but can still perform reaching movements to grasp objects or point to targets. The present study documents the kinematic properties of reaching in these patients. We investigated the kinematics of prehension and pointing movements in four quadriplegic patients and five control subjects. Prehension and pointing movements were recorded for each subject using various object positions (ie different directions and distances from the subject). The 3D motion was analyzed with Fastrack Polhemus sensors. During prehension tasks the velocity profile of control subjects showed two peaks (go and return); the first velocity peak was scaled to the distance of the object. In quadriplegic patients there was a third intermediary peak corresponding to the grasping of the object. The amplitude of the first peak was slightly smaller than in control subjects. Velocity was scaled to the distance of the object, but with a greater dispersion than in control subjects. Total movement time was longer in quadriplegics because of the prolonged grasping phase. There were few differences in the pointing movements of normal and quadriplegic subjects. The scapula contributed more to the reaching phase of both movements in quadriplegic patients. In spite of some quantitative differences, the kinematics of the hand during reaching and pointing in quadriplegic patients are surprisingly similar to those of control subjects. Spinal Cord (2000) 38, 354 - 362.

  20. Body size and substrate type modulate movement by the western Pacific crown-of-thorns starfish, Acanthaster solaris.

    PubMed

    Pratchett, Morgan S; Cowan, Zara-Louise; Nadler, Lauren E; Caballes, Ciemon F; Hoey, Andrew S; Messmer, Vanessa; Fletcher, Cameron S; Westcott, David A; Ling, Scott D

    2017-01-01

    The movement capacity of the crown-of-thorns starfishes (Acanthaster spp.) is a primary determinant of both their distribution and impact on coral assemblages. We quantified individual movement rates for the Pacific crown-of-thorns starfish (Acanthaster solaris) ranging in size from 75-480 mm total diameter, across three different substrates (sand, flat consolidated pavement, and coral rubble) on the northern Great Barrier Reef. The mean (±SE) rate of movement for smaller (<150 mm total diameter) A. solaris was 23.99 ± 1.02 cm/ min and 33.41 ± 1.49 cm/ min for individuals >350 mm total diameter. Mean (±SE) rates of movement varied with substrate type, being much higher on sand (36.53 ± 1.31 cm/ min) compared to consolidated pavement (28.04 ± 1.15 cm/ min) and slowest across coral rubble (17.25 ± 0.63 cm/ min). If average rates of movement measured here can be sustained, in combination with strong directionality, displacement distances of adult A. solaris could range from 250-520 m/ day, depending on the prevailing substrate. Sustained movement of A. solaris is, however, likely to be highly constrained by habitat heterogeneity, energetic constraints, resource availability, and diurnal patterns of activity, thereby limiting their capacity to move between reefs or habitats.

  1. A novel method to accelerate orthodontic tooth movement

    PubMed Central

    Buyuk, S. Kutalmış; Yavuz, Mustafa C.; Genc, Esra; Sunar, Oguzhan

    2018-01-01

    This clinical case report presents fixed orthodontic treatment of a patient with moderately crowded teeth. It was performed with a new technique called ‘discision’. Discision method that was described for the first time by the present authors yielded predictable outcomes, and orthodontic treatment was completed in a short period of time. The total duration of orthodontic treatment was 4 months. Class I molar and canine relationships were established at the end of the treatment. Moreover, crowding in the mandible and maxilla was corrected, and optimal overjet and overbite were established. No scar tissue was observed in any gingival region on which discision was performed. The discision technique was developed as a minimally invasive alternative method to piezocision technique, and the authors suggest that this new method yields good outcomes in achieving rapid tooth movement. PMID:29436571

  2. Diel periodicity and chronology of upstream migration in yellow-phase American eels (Anguilla rostrata)

    USGS Publications Warehouse

    Aldinger, Joni L.; Welsh, Stuart A.

    2017-01-01

    Yellow-phase American eel (Anguilla rostrata) upstream migration is temporally punctuated, yet migration chronology within diel time periods is not well-understood. This study examined diel periodicity, chronology, and total length (TL) of six multi-day, high-count (285–1,868 eels) passage events of upstream migrant yellow-phase American eels at the Millville Dam eel ladder, lower Shenandoah River, West Virginia during 2011–2014. We categorized passage by diel periods (vespertine, nocturnal, matutinal, diurnal) and season (spring, summer, late summer/early fall, fall). We depicted passage counts as time-series histograms and used time-series spectral analysis (Fast Fourier Transformation) to identify cyclical patterns and diel periodicity of upstream migration. We created histograms to examine movement patterns within diel periods for each passage event and fit normal mixture models (2–9 mixtures) to describe multiple peaks of passage counts. Periodicity of movements for each passage event followed a 24-h activity cycle with mostly nocturnal movement. Multimodal models were supported by the data; most modes represented nocturnal movements, but modes at or near the transition between twilight and night were also common. We used mixed-model methodology to examine relationships among TL, diel period, and season. An additive-effects model of diel period + season was the best approximating model. A decreasing trend of mean TL occurred across diel movement periods, with the highest mean TL occurring during fall relative to similar mean values of TL for spring, summer, and late summer/early fall. This study increased our understanding of yellow-phase American eels by demonstrating the non-random nature of their upstream migration.

  3. The Interrelationship of Common Clinical Movement Screens: Establishing Population-Specific Norms in a Large Cohort of Military Applicants.

    PubMed

    de la Motte, Sarah J; Gribbin, Timothy C; Lisman, Peter; Beutler, Anthony I; Deuster, Patricia

    2016-11-01

     Musculoskeletal injuries (MSK-Is) are a leading cause of missed duty time and morbidity in the military. Modifiable risk factors for MSK-Is, such as inadequate core stability, poor movement patterns, and dynamic balance deficits, have not been identified in military applicants on entering service.  To establish normative functional movement data using a series of screens in military applicants entering basic training and explore relationships among several movement tests.  Cross-sectional study.  Military Entrance Processing Station.  A total of 1714 (1434 male, 280 female) military applicants entering the US Army (n = 546), Navy (n = 414), Air Force (n = 229), or Marine Corps (n = 525).  We conducted the Functional Movement Screen (FMS), Y-Balance Test (YBT), overhead squat (OHS), and Landing Error Scoring System (LESS). Movements were assessed using the scoring convention for each screen.  The FMS, YBT, OHS, and LESS scores and associations among the movement screens as well as clinical meaningfulness.  A total of 1037 of the 1714 enrolled applicants were screened on the day they left for basic training. Normative means for this population were established: FMS = 14.7 ± 1.8, YBT anterior-reach difference = 3.1 ± 3.0 cm, mean YBT composite differences = 8.0 ± 6.8 cm, mean YBT composite percentage = 90.9% ± 8.3%, OHS errors = 5.0 ± 2.8, and LESS score = 5.7 ± 2.1. Backward regression results revealed that the YBT composite percentage was related to the FMS and OHS scores in males and to the FMS and LESS results in females. However, clinically meaningful relationships between the tests varied for both males and females.  Sex-normative values for the FMS, YBT, OHS, and LESS screens were established for US military applicants, and some of the assessments overlapped. Overall, males performed better on the OHS and LESS and achieved a greater YBT composite percentage than females. The regression results revealed movement screen performance relationships that varied by sex and clinical meaningfulness. In future studies, we will determine if performance on any of the screens is associated with MSK-Is in basic trainees.

  4. Overlap of movement planning and movement execution reduces reaction time.

    PubMed

    Orban de Xivry, Jean-Jacques; Legrain, Valéry; Lefèvre, Philippe

    2017-01-01

    Motor planning is the process of preparing the appropriate motor commands in order to achieve a goal. This process has largely been thought to occur before movement onset and traditionally has been associated with reaction time. However, in a virtual line bisection task we observed an overlap between movement planning and execution. In this task performed with a robotic manipulandum, we observed that participants (n = 30) made straight movements when the line was in front of them (near target) but often made curved movements when the same target was moved sideways (far target, which had the same orientation) in such a way that they crossed the line perpendicular to its orientation. Unexpectedly, movements to the far targets had shorter reaction times than movements to the near targets (mean difference: 32 ms, SE: 5 ms, max: 104 ms). In addition, the curvature of the movement modulated reaction time. A larger increase in movement curvature from the near to the far target was associated with a larger reduction in reaction time. These highly curved movements started with a transport phase during which accuracy demands were not taken into account. We conclude that an accuracy demand imposes a reaction time penalty if processed before movement onset. This penalty is reduced if the start of the movement consists of a transport phase and if the movement plan can be refined with respect to accuracy demands later in the movement, hence demonstrating an overlap between movement planning and execution. In the planning of a movement, the brain has the opportunity to delay the incorporation of accuracy requirements of the motor plan in order to reduce the reaction time by up to 100 ms (average: 32 ms). Such shortening of reaction time is observed here when the first phase of the movement consists of a transport phase. This forces us to reconsider the hypothesis that motor plans are fully defined before movement onset. Copyright © 2017 the American Physiological Society.

  5. Overlap of movement planning and movement execution reduces reaction time

    PubMed Central

    Legrain, Valéry; Lefèvre, Philippe

    2016-01-01

    Motor planning is the process of preparing the appropriate motor commands in order to achieve a goal. This process has largely been thought to occur before movement onset and traditionally has been associated with reaction time. However, in a virtual line bisection task we observed an overlap between movement planning and execution. In this task performed with a robotic manipulandum, we observed that participants (n = 30) made straight movements when the line was in front of them (near target) but often made curved movements when the same target was moved sideways (far target, which had the same orientation) in such a way that they crossed the line perpendicular to its orientation. Unexpectedly, movements to the far targets had shorter reaction times than movements to the near targets (mean difference: 32 ms, SE: 5 ms, max: 104 ms). In addition, the curvature of the movement modulated reaction time. A larger increase in movement curvature from the near to the far target was associated with a larger reduction in reaction time. These highly curved movements started with a transport phase during which accuracy demands were not taken into account. We conclude that an accuracy demand imposes a reaction time penalty if processed before movement onset. This penalty is reduced if the start of the movement consists of a transport phase and if the movement plan can be refined with respect to accuracy demands later in the movement, hence demonstrating an overlap between movement planning and execution. NEW & NOTEWORTHY In the planning of a movement, the brain has the opportunity to delay the incorporation of accuracy requirements of the motor plan in order to reduce the reaction time by up to 100 ms (average: 32 ms). Such shortening of reaction time is observed here when the first phase of the movement consists of a transport phase. This forces us to reconsider the hypothesis that motor plans are fully defined before movement onset. PMID:27733598

  6. Surface tension and modeling of cellular intercalation during zebrafish gastrulation.

    PubMed

    Calmelet, Colette; Sepich, Diane

    2010-04-01

    In this paper we discuss a model of zebrafish embryo notochord development based on the effect of surface tension of cells at the boundaries. We study the process of interaction of mesodermal cells at the boundaries due to adhesion and cortical tension, resulting in cellular intercalation. From in vivo experiments, we obtain cell outlines of time-lapse images of cell movements during zebrafish embryo development. Using Cellular Potts Model, we calculate the total surface energy of the system of cells at different time intervals at cell contacts. We analyze the variations of total energy depending on nature of cell contacts. We demonstrate that our model can be viable by calculating the total surface energy value for experimentally observed configurations of cells and showing that in our model these configurations correspond to a decrease in total energy values in both two and three dimensions.

  7. Movement suppression time-out for undesirable behavior in psychotic and severely developmentally delayed children.

    PubMed

    Rolider, A; Van Houten, R

    1985-01-01

    The effects of a movement suppression time-out, which involved punishing any movement or verbalization while a client is in the time-out area, were evaluated in four experiments. The first experiment examined the effects of a DRO procedure and movement suppression plus DRO in suppressing self-injurious behavior in a psychotic child in three different situations. In Experiment 2, the results of the previous experiment were replicated with two dangerous behaviors in a second psychotic child. In a third experiment, movement suppression plus DRO was compared with contingent restraint in reducing inappropriate poking behavior in two settings. The movement suppression procedure eliminated poking whereas contingent restraint had little effect. In the final experiment, movement suppression time-out alone was compared with exclusionary time-out alone and simple corner time-out alone. Self-stimulation occurred at high levels during the exclusionary and simple corner time-out procedures. Self-stimulation was either suppressed or reduced during movement suppression time-out. The movement suppression time-out procedure produced a larger reduction in the target behavior in all three children. The effectiveness of the movement suppression procedure was explained in terms of the suppression of self-stimulation while the time-out procedure was being applied.

  8. Development of a video-guided real-time patient motion monitoring system.

    PubMed

    Ju, Sang Gyu; Huh, Woong; Hong, Chae-Seon; Kim, Jin Sung; Shin, Jung Suk; Shin, Eunhyuk; Han, Youngyih; Ahn, Yong Chan; Park, Hee Chul; Choi, Doo Ho

    2012-05-01

    The authors developed a video image-guided real-time patient motion monitoring (VGRPM) system using PC-cams, and its clinical utility was evaluated using a motion phantom. The VGRPM system has three components: (1) an image acquisition device consisting of two PC-cams, (2) a main control computer with a radiation signal controller and warning system, and (3) patient motion analysis software developed in-house. The intelligent patient motion monitoring system was designed for synchronization with a beam on/off trigger signal in order to limit operation to during treatment time only and to enable system automation. During each treatment session, an initial image of the patient is acquired as soon as radiation starts and is compared with subsequent live images, which can be acquired at up to 30 fps by the real-time frame difference-based analysis software. When the error range exceeds the set criteria (δ(movement)) due to patient movement, a warning message is generated in the form of light and sound. The described procedure repeats automatically for each patient. A motion phantom, which operates by moving a distance of 0.1, 0.2, 0.3, 0.5, and 1.0 cm for 1 and 2 s, respectively, was used to evaluate the system performance. The authors measured optimal δ(movement) for clinical use, the minimum distance that can be detected with this system, and the response time of the whole system using a video analysis technique. The stability of the system in a linear accelerator unit was evaluated for a period of 6 months. As a result of the moving phantom test, the δ(movement) for detection of all simulated phantom motion except the 0.1 cm movement was determined to be 0.2% of total number of pixels in the initial image. The system can detect phantom motion as small as 0.2 cm. The measured response time from the detection of phantom movement to generation of the warning signal was 0.1 s. No significant functional disorder of the system was observed during the testing period. The VGRPM system has a convenient design, which synchronizes initiation of the analysis with a beam on/off signal from the treatment machine and may contribute to a reduction in treatment error due to patient motion and increase the accuracy of treatment dose delivery.

  9. Effects of circuit low-intensity resistance exercise with slow movement on oxygen consumption during and after exercise.

    PubMed

    Mukaimoto, Takahiro; Ohno, Makoto

    2012-01-01

    The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.

  10. Using Animal-Borne Cameras to Quantify Prey Field, Habitat Characteristics and Foraging Success in a Marine Top Predator

    DTIC Science & Technology

    2010-09-30

    adult female Australian fur seals in various habitats using video footage recorded on the seals; 2) determine seal movements at the fine-scale...the animal to assist in relocating it at the colony for recapture and for recording at-sea movements , respectively. In total, all devices attached...in each of the three years of the study (120 in total). In the laboratory, the at-sea movements of individuals instrumented with a Crittercam

  11. Clinical and polysomnographic course of childhood narcolepsy with cataplexy.

    PubMed

    Pizza, Fabio; Franceschini, Christian; Peltola, Hanna; Vandi, Stefano; Finotti, Elena; Ingravallo, Francesca; Nobili, Lino; Bruni, Oliviero; Lin, Ling; Edwards, Mark J; Partinen, Markku; Dauvilliers, Yves; Mignot, Emmanuel; Bhatia, Kailash P; Plazzi, Giuseppe

    2013-12-01

    Our aim was to investigate the natural evolution of cataplexy and polysomnographic features in untreated children with narcolepsy with cataplexy. To this end, clinical, polysomnographic, and cataplexy-video assessments were performed at diagnosis (mean age of 10 ± 3 and disease duration of 1 ± 1 years) and after a median follow-up of 3 years from symptom onset (mean age of 12 ± 4 years) in 21 children with narcolepsy with cataplexy and hypocretin 1 deficiency (tested in 19 subjects). Video assessment was also performed in two control groups matched for age and sex at first evaluation and follow-up and was blindly scored for presence of hypotonic (negative) and active movements. Patients' data at diagnosis and at follow-up were contrasted, compared with controls, and related with age and disease duration. At diagnosis children with narcolepsy with cataplexy showed an increase of sleep time during the 24 h; at follow-up sleep time and nocturnal sleep latency shortened, in the absence of other polysomnographic or clinical (including body mass index) changes. Hypotonic phenomena and selected facial movements decreased over time and, tested against disease duration and age, appeared as age-dependent. At onset, childhood narcolepsy with cataplexy is characterized by an abrupt increase of total sleep over the 24 h, generalized hypotonia and motor overactivity. With time, the picture of cataplexy evolves into classic presentation (i.e., brief muscle weakness episodes triggered by emotions), whereas total sleep time across the 24 h decreases, returning to more age-appropriate levels.

  12. Clinical and polysomnographic course of childhood narcolepsy with cataplexy

    PubMed Central

    Pizza, Fabio; Franceschini, Christian; Peltola, Hanna; Vandi, Stefano; Finotti, Elena; Ingravallo, Francesca; Nobili, Lino; Bruni, Oliviero; Lin, Ling; Edwards, Mark J.; Partinen, Markku; Dauvilliers, Yves; Mignot, Emmanuel; Bhatia, Kailash P.

    2013-01-01

    Our aim was to investigate the natural evolution of cataplexy and polysomnographic features in untreated children with narcolepsy with cataplexy. To this end, clinical, polysomnographic, and cataplexy-video assessments were performed at diagnosis (mean age of 10 ± 3 and disease duration of 1 ± 1 years) and after a median follow-up of 3 years from symptom onset (mean age of 12 ± 4 years) in 21 children with narcolepsy with cataplexy and hypocretin 1 deficiency (tested in 19 subjects). Video assessment was also performed in two control groups matched for age and sex at first evaluation and follow-up and was blindly scored for presence of hypotonic (negative) and active movements. Patients’ data at diagnosis and at follow-up were contrasted, compared with controls, and related with age and disease duration. At diagnosis children with narcolepsy with cataplexy showed an increase of sleep time during the 24 h; at follow-up sleep time and nocturnal sleep latency shortened, in the absence of other polysomnographic or clinical (including body mass index) changes. Hypotonic phenomena and selected facial movements decreased over time and, tested against disease duration and age, appeared as age-dependent. At onset, childhood narcolepsy with cataplexy is characterized by an abrupt increase of total sleep over the 24 h, generalized hypotonia and motor overactivity. With time, the picture of cataplexy evolves into classic presentation (i.e. brief muscle weakness episodes triggered by emotions), whereas total sleep time across the 24 h decreases, returning to more age-appropriate levels. PMID:24142146

  13. Counting repetitions: an observational study of video game play in people with chronic poststroke hemiparesis.

    PubMed

    Peters, Denise M; McPherson, Aaron K; Fletcher, Blake; McClenaghan, Bruce A; Fritz, Stacy L

    2013-09-01

    The use of video gaming as a therapeutic intervention has increased in popularity; however, the number of repetitions in comparison with traditional therapy methods has yet to be investigated. The primary purpose of this study was to document and compare the number of repetitions performed while playing 1 of 2 video gaming systems for a time frame similar to that of a traditional therapy session in individuals with chronic stroke. Twelve participants with chronic stroke (mean age, 66.8 ± 8.2 years; time poststroke, 19.2 ± 15.4 months) completed video game play sessions, using either the Nintendo Wii or the Playstation 2 EyeToy. A total of 203 sessions were captured on video record; of these, 50 sessions for each gaming system were randomly selected for analysis. For each selected record, active upper and lower extremity repetitions were counted for a 36-minute segment of the recorded session. The Playstation 2 EyeToy group produced an average of 302.5 (228.1) upper extremity active movements and 189.3 (98.3) weight shifts, significantly higher than the Nintendo Wii group, which produced an average of 61.9 (65.7) upper extremity active movements and 109.7 (78.5) weight shifts. No significant differences were found in steps and other lower extremity active movements between the 2 systems. The Playstation 2 EyeToy group produced more upper extremity active movements and weight shifting movements than the Nintendo Wii group; the number and type of repetitions varied across games. Active gaming (specifically Playstation 2 EyeToy) provided more upper extremity repetitions than those reported in the literature by using traditional therapy, suggesting that it may be a modality to promote increased active movements in individuals poststroke.

  14. Comparison of Path Length and Ranges of Movement of the Center of Pressure and Reaction Time and Between Paired-Play and Solo-Play of a Virtual Reality Game.

    PubMed

    Portnoy, Sigal; Hersch, Ayelet; Sofer, Tal; Tresser, Sarit

    2017-06-01

    To test whether paired-play will induce longer path length and ranges of movement of the center of pressure (COP), which reflects on balance performance and stability, compared to solo-play and to test the difference in the path length and ranges of movement of the COP while playing the virtual reality (VR) game with the dominant hand compared to playing it with the nondominant hand. In this cross-sectional study 20 children (age 6.1 ± 0.7 years old) played an arm movement controlled VR game alone and with a peer while each of them stood on a pressure measuring pad to track the path length and ranges of movement of the COP. The total COP path was significantly higher during the paired-play (median 295.8 cm) compared to the COP path during the solo-play (median 189.2 cm). No significant differences were found in the reaction time and the mediolateral and anterior-posterior COP ranges between solo-play and paired-play. No significant differences were found between the parameters extracted during paired-play with the dominant or nondominant hand. Our findings imply that the paired-play is advantageous compared to solo-play since it induces a greater movement for the child, during which, higher COP velocities are reached that may contribute to improving the balance control of the child. Apart from the positive social benefits of paired-play, this positive effect on the COP path length is a noteworthy added value in the clinical setting when treating children with balance disorder.

  15. Rover Takes a Sunday Drive

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation, made with images from the Mars Exploration Rover Spirit hazard-identification camera, shows the rover's perspective of its first post-egress drive on Mars Sunday. Engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack. The drive took approximately 30 minutes to complete, including time stopped to take images. Spirit first made a series of arcing turns totaling approximately 1 meter (3 feet). It then turned in place and made a series of short, straightforward movements totaling approximately 2 meters (6.5 feet).

  16. Movement measurements at home for multiple sclerosis: walking speed measured by a novel ambient measurement system.

    PubMed

    Smith, Victoria Mj; Varsanik, Jonathan S; Walker, Rachel A; Russo, Andrew W; Patel, Kevin R; Gabel, Wendy; Phillips, Glenn A; Kimmel, Zebadiah M; Klawiter, Eric C

    2018-01-01

    Gait disturbance is a major contributor to clinical disability in multiple sclerosis (MS). A sensor was developed to assess walking speed at home for people with MS using infrared technology in real-time without the use of wearables. To develop continuous in-home outcome measures to assess gait in adults with MS. Movement measurements were collected continuously for 8 months from six people with MS. Average walking speed and peak walking speed were calculated from movement data, then analyzed for variability over time, by room (location), and over the course of the day. In-home continuous gait outcomes and variability were correlated with standard in-clinic gait outcomes. Measured in-home average walking speed of participants ranged from 0.33 m/s to 0.96 m/s and peak walking speed ranged from 0.89 m/s to 1.51 m/s. Mean total within-participant coefficient of variation for daily average walking speed and peak walking speed were 10.75% and 10.93%, respectively. Average walking speed demonstrated a moderately strong correlation with baseline Timed 25-Foot Walk (r s  = 0.714, P  = 0.111). New non-wearable technology provides reliable and continuous in-home assessment of walking speed.

  17. Experience with compound words influences their processing: An eye movement investigation with English compound words.

    PubMed

    Juhasz, Barbara J

    2016-11-14

    Recording eye movements provides information on the time-course of word recognition during reading. Juhasz and Rayner [Juhasz, B. J., & Rayner, K. (2003). Investigating the effects of a set of intercorrelated variables on eye fixation durations in reading. Journal of Experimental Psychology: Learning, Memory and Cognition, 29, 1312-1318] examined the impact of five word recognition variables, including familiarity and age-of-acquisition (AoA), on fixation durations. All variables impacted fixation durations, but the time-course differed. However, the study focused on relatively short, morphologically simple words. Eye movements are also informative for examining the processing of morphologically complex words such as compound words. The present study further examined the time-course of lexical and semantic variables during morphological processing. A total of 120 English compound words that varied in familiarity, AoA, semantic transparency, lexeme meaning dominance, sensory experience rating (SER), and imageability were selected. The impact of these variables on fixation durations was examined when length, word frequency, and lexeme frequencies were controlled in a regression model. The most robust effects were found for familiarity and AoA, indicating that a reader's experience with compound words significantly impacts compound recognition. These results provide insight into semantic processing of morphologically complex words during reading.

  18. Functional dissociation between action and perception of object shape in developmental visual object agnosia.

    PubMed

    Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon

    2016-03-01

    According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Movements and diving behavior of internesting green turtles along Pacific Costa Rica.

    PubMed

    Blanco, Gabriela S; Morreale, Stephen J; Seminoff, Jeffrey A; Paladino, Frank V; Piedra, Rotney; Spotila, James R

    2013-09-01

    Using satellite transmitters, we determined the internesting movements, spatial ecology and diving behavior of East Pacific green turtles (Chelonia mydas) nesting on Nombre de Jesús and Zapotillal beaches along the Pacific coast of northwestern Costa Rica. Kernel density analysis indicated that turtles spent most of their time in a particularly small area in the vicinity of the nesting beaches (50% utilization distribution was an area of 3 km(2) ). Minimum daily distance traveled during a 12 day internesting period was 4.6 ± 3.5 km. Dives were short and primarily occupied the upper 10 m of the water column. Turtles spent most of their time resting at the surface and conducting U-dives (ranging from 60 to 81% of the total tracking time involved in those activities). Turtles showed a strong diel pattern, U-dives mainly took place during the day and turtles spent a large amount of time resting at the surface at night. The lack of long-distance movements demonstrated that this area was heavily utilized by turtles during the nesting season and, therefore, was a crucial location for conservation of this highly endangered green turtle population. The unique behavior of these turtles in resting at the surface at night might make them particularly vulnerable to fishing activities near the nesting beaches. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  20. Late onset of atypical paroxysmal non-kinesigenic dyskinesia with remote history of Graves' disease.

    PubMed

    Rana, Abdul Qayyum; Nadeem, Ambreen; Yousuf, Muhammad Saad; Kachhvi, Zakerabibi M

    2013-10-01

    Paroxysmal non-kinesigenic dyskinesia (PNKD) is a rare hyperkinetic movement disorder and falls under the category of paroxysmal movement disorders. In this condition, episodes are spontaneous, involuntary, and involve dystonic posturing with choreic and ballistic movements. Attacks last for minutes to hours and rarely occur more than once per day. Attacks are not typically triggered by sudden movement, but may be brought on by alcohol, caffeine, stress, fatigue, or chocolate. We report a patient with multiple atypical features of PNKD. She had a 7-year history of this condition with onset at the age of 59, and a remote history of Graves' disease requiring total thyroidectomy. The frequency of attacks in our case ranged from five to six times a day to a minimum of twice per week, and the duration of episode was short, lasting not more than 2 min. Typically, PNKDs occur at a much younger age and have longer attack durations with low frequency. Administering clonazepam worked to reduce her symptoms, although majority of previous research suggests that pharmacological interventions have poor outcomes.

  1. Meeting new Canadian 24-Hour Movement Guidelines for the Early Years and associations with adiposity among toddlers living in Edmonton, Canada.

    PubMed

    Lee, Eun-Young; Hesketh, Kylie D; Hunter, Stephen; Kuzik, Nicholas; Rhodes, Ryan E; Rinaldi, Christina M; Spence, John C; Carson, Valerie

    2017-11-20

    Canada has recently released guidelines that include toddler-specific recommendations for physical activity, screen-based sedentary behaviour, and sleep. This study examined the proportions of toddlers meeting the new Canadian 24-Hour Movement Guidelines for the Early Years (0-4 years) and associations with body mass index (BMI) z-scores in a sample from Edmonton, Canada. Participants included 151 toddlers (aged 19.0 ± 1.9 months) for whom there was complete objectively measured physical activity data from the Parents' Role in Establishing healthy Physical activity and Sedentary behaviour habits (PREPS) project. Toddlers' physical activity was measured using ActiGraph wGT3X-BT monitors. Toddlers' screen time and sleep were measured using the PREPS questionnaire. Toddlers' height and weight were objectively measured by public health nurses and BMI z-scores were calculated using World Health Organization growth standards. Meeting the overall 24-Hour Movement Guidelines was defined as: ≥180 min/day of total physical activity, including ≥1 min/day of moderate- to vigorous-intensity physical activity; no screen time per day (for those aged 12-23 months) or ≤1 h/day of screen time per day (ages 24-35 months); and 11-14 h of sleep per 24-h period. Frequency analyses and linear regression models were conducted. Only 11.9% of toddlers met the overall 24-Hour Movement Guidelines, but this finding was largely driven by screen time. The majority of toddlers met the individual physical activity (99.3%) and sleep (82.1%) recommendations, while only 15.2% of toddlers met the screen time recommendation. No associations were observed between meeting specific and general combinations of recommendations within the guidelines and BMI z-scores. Most toddlers in this sample were meeting physical activity and sleep recommendations but were engaging in more screen time than recommended. Consequently, only a small proportion of toddlers met the overall guidelines. Based on the findings of this study, identifying modifiable correlates of screen time to inform appropriate strategies to reduce screen time appears key for increasing the proportion of toddlers meeting the 24-Hour Movement Guidelines for the Early Years. Future research should examine the associations between meeting the new guidelines and other health indicators. Furthermore, future high-quality studies examining dose-response relationships between movement behaviours and health indicators are needed to inform guideline updates.

  2. Department of the Navy Fiscal Year 2014 Annual Financial Report. The Nation’s Total Force: At the Right Place, At the Right Time, All the Time

    DTIC Science & Technology

    2014-11-01

    for ship movement planning ● Improves collaboration with the University of Melbourne, Kenyan and Indian scientific organizations Self - Healing ...broken capsules forms a waxy, water-repellant coating across the exposed steel that protects against corrosion While many self - healing paints are...The DON also participated in the first Guam Exercise (GUAMEX) with the Japanese Maritime Self -Defense Force to enhance the interoperability of the

  3. Entropy of Movement Outcome in Space-Time.

    PubMed

    Lai, Shih-Chiung; Hsieh, Tsung-Yu; Newell, Karl M

    2015-07-01

    Information entropy of the joint spatial and temporal (space-time) probability of discrete movement outcome was investigated in two experiments as a function of different movement strategies (space-time, space, and time instructional emphases), task goals (point-aiming and target-aiming) and movement speed-accuracy constraints. The variance of the movement spatial and temporal errors was reduced by instructional emphasis on the respective spatial or temporal dimension, but increased on the other dimension. The space-time entropy was lower in targetaiming task than the point aiming task but did not differ between instructional emphases. However, the joint probabilistic measure of spatial and temporal entropy showed that spatial error is traded for timing error in tasks with space-time criteria and that the pattern of movement error depends on the dimension of the measurement process. The unified entropy measure of movement outcome in space-time reveals a new relation for the speed-accuracy.

  4. Effects of orthographic consistency on eye movement behavior: German and English children and adults process the same words differently.

    PubMed

    Rau, Anne K; Moll, Kristina; Snowling, Margaret J; Landerl, Karin

    2015-02-01

    The current study investigated the time course of cross-linguistic differences in word recognition. We recorded eye movements of German and English children and adults while reading closely matched sentences, each including a target word manipulated for length and frequency. Results showed differential word recognition processes for both developing and skilled readers. Children of the two orthographies did not differ in terms of total word processing time, but this equal outcome was achieved quite differently. Whereas German children relied on small-unit processing early in word recognition, English children applied small-unit decoding only upon rereading-possibly when experiencing difficulties in integrating an unfamiliar word into the sentence context. Rather unexpectedly, cross-linguistic differences were also found in adults in that English adults showed longer processing times than German adults for nonwords. Thus, although orthographic consistency does play a major role in reading development, cross-linguistic differences are detectable even in skilled adult readers. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Space Availability in Confined Sheep during Pregnancy, Effects in Movement Patterns and Use of Space

    PubMed Central

    Averós, Xavier; Lorea, Areta; Beltrán de Heredia, Ignacia; Arranz, Josune; Ruiz, Roberto; Estevez, Inma

    2014-01-01

    Space availability is essential to grant the welfare of animals. To determine the effect of space availability on movement and space use in pregnant ewes (Ovis aries), 54 individuals were studied during the last 11 weeks of gestation. Three treatments were tested (1, 2, and 3 m2/ewe; 6 ewes/group). Ewes' positions were collected for 15 minutes using continuous scan samplings two days/week. Total and net distance, net/total distance ratio, maximum and minimum step length, movement activity, angular dispersion, nearest, furthest and mean neighbour distance, peripheral location ratio, and corrected peripheral location ratio were calculated. Restriction in space availability resulted in smaller total travelled distance, net to total distance ratio, maximum step length, and angular dispersion but higher movement activity at 1 m2/ewe as compared to 2 and 3 m2/ewe (P<0.01). On the other hand, nearest and furthest neighbour distances increased from 1 to 3 m2/ewe (P<0.001). Largest total distance, maximum and minimum step length, and movement activity, as well as lowest net/total distance ratio and angular dispersion were observed during the first weeks (P<0.05) while inter-individual distances increased through gestation. Results indicate that movement patterns and space use in ewes were clearly restricted by limitations of space availability to 1 m2/ewe. This reflected in shorter, more sinuous trajectories composed of shorter steps, lower inter-individual distances and higher movement activity potentially linked with higher restlessness levels. On the contrary, differences between 2 and 3 m2/ewe, for most variables indicate that increasing space availability from 2 to 3 m2/ewe would appear to have limited benefits, reflected mostly in a further increment in the inter-individual distances among group members. No major variations in spatial requirements were detected through gestation, except for slight increments in inter-individual distances and an initial adaptation period, with ewes being restless and highly motivated to explore their new environment. PMID:24733027

  6. Taking movement data to new depths: Inferring prey availability and patch profitability from seabird foraging behavior.

    PubMed

    Chimienti, Marianna; Cornulier, Thomas; Owen, Ellie; Bolton, Mark; Davies, Ian M; Travis, Justin M J; Scott, Beth E

    2017-12-01

    Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills ( Alca torda , N  = 5, from Fair Isle, UK) and common guillemots ( Uria aalge , N  = 2 from Fair Isle and N  = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive ( N  = 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives ( N  = 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.

  7. Relationships between fundamental movement skills and objectively measured physical activity in preschool children.

    PubMed

    Cliff, Dylan P; Okely, Anthony D; Smith, Leif M; McKeen, Kim

    2009-11-01

    Gender differences in cross-sectional relationships between fundamental movement skill (FMS) subdomains (locomotor skills, object-control skills) and physical activity were examined in preschool children. Forty-six 3- to 5-year-olds (25 boys) had their FMS video assessed (Test of Gross Motor Development II) and their physical activity objectively monitored (Actigraph 7164 accelerometers). Among boys, object-control skills were associated with physical activity and explained 16.9% (p = .024) and 13.7% (p = .049) of the variance in percent of time in moderate-to-vigorous physical activity (MVPA) and total physical activity, respectively, after controlling for age, SES and z-BMI. Locomotor skills were inversely associated with physical activity among girls, and explained 19.2% (p = .023) of the variance in percent of time in MVPA after controlling for confounders. Gender and FMS subdomain may influence the relationship between FMS and physical activity in preschool children.

  8. [Deep brain recording and length of surgery in stereotactic and functional neurosurgery for movement disorders].

    PubMed

    Teijeiro, Juan; Macías, Raúl J; Maragoto, Carlos; García, Iván; Alvarez, Mario; Quintanal, Nelson E

    2014-01-01

    Our objectives were to study the length of multi-unit recordings (MURs) of brain activity in 20 years of movement disorder neurosurgeries and to determine the number of times in which it was necessary for the teams using single-unit recording (SUR) to explore all the electrode tracks in the simultaneously recorded sites (SRS). This was a retrospective descriptive statistical analysis of MUR length on 4,296 tracks in 952 surgeries. The exclusion criteria were: tracks with fewer than 5 recorded signals, tracks that had a signal length different from the habitual 2s, or there being unusual situations not related to the MUR, as well as the first 20 surgeries of each surgical target. This yielded a total of 3,448 tracks in 805 surgeries. We also determined the number of the total 952 surgeries in which all the tracks in the SURs of the SRS were explored. The mean and its confidence interval (P=.05) of time per MUR track were 5.49±0.16min in subthalamic nucleus surgery, 8.82±0.24min in the medial or internal globus pallidus) and 18.51±1.31min in the ventral intermediate nucleus of the thalamus. For the total sum of tracks per surgery, in 75% of cases the total time was less than 39min in subthalamic nucleus, almost 42min in the medial or internal globus pallidus and less than 1h and 17min in ventral intermediate nucleus of the thalamus. All the tracks in the SUR SRS were explored in only 4.2% of the surgeries. The impact of MUR on surgical time is acceptable for this guide in objective localization for surgical targets, without having to use several simultaneous electrodes (not all indispensable in most of the cases). Consequently, there is less risk for the patient. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  9. Implant design influences patient outcome after total knee arthroplasty: a prospective double-blind randomised controlled trial.

    PubMed

    Hamilton, D F; Burnett, R; Patton, J T; Howie, C R; Moran, M; Simpson, A H R W; Gaston, P

    2015-01-01

    Total knee arthroplasty (TKA) is an established and successful procedure. However, the design of prostheses continues to be modified in an attempt to optimise the functional outcome of the patient. The aim of this study was to determine if patient outcome after TKA was influenced by the design of the prosthesis used. A total of 212 patients (mean age 69; 43 to 92; 131 female (62%), 81 male (32%)) were enrolled in a single centre double-blind trial and randomised to receive either a Kinemax (group 1) or a Triathlon (group 2) TKA. Patients were assessed pre-operatively, at six weeks, six months, one year and three years after surgery. The outcome assessments used were the Oxford Knee Score; range of movement; pain numerical rating scales; lower limb power output; timed functional assessment battery and a satisfaction survey. Data were assessed incorporating change over all assessment time points, using repeated measures analysis of variance longitudinal mixed models. Implant group 2 showed a significantly greater range of movement (p = 0.009), greater lower limb power output (p = 0.026) and reduced report of 'worst daily pain' (p = 0.003) over the three years of follow-up. Differences in Oxford Knee Score (p = 0.09), report of 'average daily pain' (p = 0.57) and timed functional performance tasks (p = 0.23) did not reach statistical significance. Satisfaction with outcome was significantly better in group 2 (p = 0.001). These results suggest that patient outcome after TKA can be influenced by the prosthesis used. ©2015 The British Editorial Society of Bone & Joint Surgery.

  10. Verification of models for ballistic movement time and endpoint variability.

    PubMed

    Lin, Ray F; Drury, Colin G

    2013-01-01

    A hand control movement is composed of several ballistic movements. The time required in performing a ballistic movement and its endpoint variability are two important properties in developing movement models. The purpose of this study was to test potential models for predicting these two properties. Twelve participants conducted ballistic movements of specific amplitudes using a drawing tablet. The measured data of movement time and endpoint variability were then used to verify the models. This study was successful with Hoffmann and Gan's movement time model (Hoffmann, 1981; Gan and Hoffmann 1988) predicting more than 90.7% data variance for 84 individual measurements. A new theoretically developed ballistic movement variability model, proved to be better than Howarth, Beggs, and Bowden's (1971) model, predicting on average 84.8% of stopping-variable error and 88.3% of aiming-variable errors. These two validated models will help build solid theoretical movement models and evaluate input devices. This article provides better models for predicting end accuracy and movement time of ballistic movements that are desirable in rapid aiming tasks, such as keying in numbers on a smart phone. The models allow better design of aiming tasks, for example button sizes on mobile phones for different user populations.

  11. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement.

    PubMed

    Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing

    2013-05-01

    To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P < .05. From day 3 to day 7, bone volume fraction, structure model index, trabecular thickness, and trabecular separation decreased significantly on the compression side, but the same parameters increased significantly on the tension side from day 7 to day 14. Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.

  12. Quantitative evaluation of age-related decline in control of preprogramed movement

    PubMed Central

    Lee, Jongho; Kodama, Mitsuhiko; Kakei, Shinji; Masakado, Yoshihisa

    2017-01-01

    In this paper, we examined the age-related changes in control of preprogramed movement, with emphasis on its accuracy. Forty-nine healthy subjects participated in this study, and were divided into three groups depending on their ages: the young group (20–39 years) (n = 16), the middle-age group (40–59 years) (n = 16), and the elderly group (60–79 years) (n = 17). We asked the subjects to perform step-tracking movements of the wrist joint with a manipulandum, and recorded the movements. We evaluated the accuracy of control of preprogramed movement in the three groups in terms of the primary submovement, which was identified as the first segment of the step-tracking movement based on the bell-shaped velocity profile, and calculated the distance between the end position of the primary submovement and the target (i.e. error). The error in the young group was found to be significantly smaller than that in the middle-age and elderly groups, i.e., the error was larger for the higher age groups. These results suggest that young subjects have better control of preprogramed movement than middle-age or elderly subjects. Finally, we examined the temporal property of the primary submovement and its age-related changes. The duration of the primary submovement tended to be longer for the aged groups, although significance was reached only for the elderly group. In particular, the ratio of the duration of the primary submovement to total movement time tended to be lower for the aged groups, suggesting that the proportion of additional movements that are required to compensate for the incomplete control in the preprogramed movement, which are under feedback control, was higher for the aged groups. Consequently, our results indicate that the distance between the end point of the primary submovement and the target center (i.e. error) in the step-tracking movement is a useful parameter to evaluate the age-related changes in control of preprogramed movement. PMID:29186168

  13. Quantitative evaluation of age-related decline in control of preprogramed movement.

    PubMed

    Shimoda, Naoshi; Lee, Jongho; Kodama, Mitsuhiko; Kakei, Shinji; Masakado, Yoshihisa

    2017-01-01

    In this paper, we examined the age-related changes in control of preprogramed movement, with emphasis on its accuracy. Forty-nine healthy subjects participated in this study, and were divided into three groups depending on their ages: the young group (20-39 years) (n = 16), the middle-age group (40-59 years) (n = 16), and the elderly group (60-79 years) (n = 17). We asked the subjects to perform step-tracking movements of the wrist joint with a manipulandum, and recorded the movements. We evaluated the accuracy of control of preprogramed movement in the three groups in terms of the primary submovement, which was identified as the first segment of the step-tracking movement based on the bell-shaped velocity profile, and calculated the distance between the end position of the primary submovement and the target (i.e. error). The error in the young group was found to be significantly smaller than that in the middle-age and elderly groups, i.e., the error was larger for the higher age groups. These results suggest that young subjects have better control of preprogramed movement than middle-age or elderly subjects. Finally, we examined the temporal property of the primary submovement and its age-related changes. The duration of the primary submovement tended to be longer for the aged groups, although significance was reached only for the elderly group. In particular, the ratio of the duration of the primary submovement to total movement time tended to be lower for the aged groups, suggesting that the proportion of additional movements that are required to compensate for the incomplete control in the preprogramed movement, which are under feedback control, was higher for the aged groups. Consequently, our results indicate that the distance between the end point of the primary submovement and the target center (i.e. error) in the step-tracking movement is a useful parameter to evaluate the age-related changes in control of preprogramed movement.

  14. A slow calcium-dependent component of charge movement in Rana temporaria cut twitch fibres.

    PubMed

    Hui, C S

    1998-06-15

    1. Charge movement was studied in highly stretched frog cut twitch fibres in a double Vaseline-gap voltage-clamp chamber, with the internal solution containing either 0.1 mM EGTA or 20 mM EGTA plus 1. 8 mM total Ca2+. 2. Fibres were stimulated with TEST pulses lasting 100-400 ms. Replacement of the external Cl- with an 'impermeant' anion, such as SO42-, CH3SO3-, gluconate or glutamate, greatly reduced the calcium-dependent Cl- current in the ON segment and generated a slowly decaying inward OFF current in charge movement traces. 3. Application of 20 mM EGTA to the internal solution abolished the slow inward OFF current, implying that the activation of the current depended on the presence of Ca2+ in the myoplasm. The possibility that the slow inward OFF current was carried by cations flowing inwards or anions flowing outwards was studied and determined to be unlikely. 4. During a long (2000 ms) TEST pulse, a slowly decaying ON current was also observed. When the slow ON and OFF currents were included as parts of the total charge movement, ON-OFF charge equality was preserved. This slow capacitive current is named Idelta. 5. When Cl- was the major anion in the external solution, the OFF Idelta was mostly cancelled by a slow outward current carried by the inflow of Cl-. 6. The OFF Idelta component showed a rising phase. The average values of the rising time constants in CH3SO3- and SO42- were similar and about half of that in gluconate. 7. The OFF Idelta component in CH3SO3- had a larger magnitude and longer time course than that in SO42-. The maximum amount of Qdelta in CH3SO3- was about three times as much as that in SO42-, whereas the voltage dependence of Qdelta was similar in the two solutions. 8. Since the existence of Qdelta depends on the presence of Ca2+ in the myoplasm, it is speculated that Qdelta could be a function of intracellular calcium release.

  15. Age-related differences in the motor planning of a lower leg target matching task.

    PubMed

    Davies, Brenda L; Gehringer, James E; Kurz, Max J

    2015-12-01

    While the development and execution of upper extremity motor plans have been well explored, little is known about how individuals plan and execute rapid, goal-directed motor tasks with the lower extremities. Furthermore, the amount of time needed to integrate the proper amount of visual and proprioceptive feedback before being able to accurately execute a goal-directed movement is not well understood; especially in children. Therefore, the purpose of this study was to initially interrogate how the amount of motor planning time provided to a child before movement execution may influence the preparation and execution of a lower leg goal-directed movement. The results displayed that the amount of pre-movement motor planning time provided may influence the reaction time and accuracy of a goal directed leg movement. All subjects in the study had longer reaction times and less accurate movements when no pre-movement motor planning time was provided. In addition, the children had slower reaction times, slower movements, and less accurate movements than the adults for all the presented targets and motor planning times. These results highlight that children may require more time to successfully plan a goal directed movement with the lower extremity. This suggests that children may potentially have less robust internal models than adults for these types of motor skills. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Independence of Movement Preparation and Movement Initiation.

    PubMed

    Haith, Adrian M; Pakpoor, Jina; Krakauer, John W

    2016-03-09

    Initiating a movement in response to a visual stimulus takes significantly longer than might be expected on the basis of neural transmission delays, but it is unclear why. In a visually guided reaching task, we forced human participants to move at lower-than-normal reaction times to test whether normal reaction times are strictly necessary for accurate movement. We found that participants were, in fact, capable of moving accurately ∼80 ms earlier than their reaction times would suggest. Reaction times thus include a seemingly unnecessary delay that accounts for approximately one-third of their duration. Close examination of participants' behavior in conventional reaction-time conditions revealed that they generated occasional, spontaneous errors in trials in which their reaction time was unusually short. The pattern of these errors could be well accounted for by a simple model in which the timing of movement initiation is independent of the timing of movement preparation. This independence provides an explanation for why reaction times are usually so sluggish: delaying the mean time of movement initiation relative to preparation reduces the risk that a movement will be initiated before it has been appropriately prepared. Our results suggest that preparation and initiation of movement are mechanistically independent and may have a distinct neural basis. The results also demonstrate that, even in strongly stimulus-driven tasks, presentation of a stimulus does not directly trigger a movement. Rather, the stimulus appears to trigger an internal decision whether to make a movement, reflecting a volitional rather than reactive mode of control. Copyright © 2016 the authors 0270-6474/16/363007-10$15.00/0.

  17. Year-round movements of a Wahlberg's eagle Aquila wahlbergi tracked by satellite

    USGS Publications Warehouse

    Meyburg, B.-U.; Mendelsohn, J.M.; Ellis, D.H.; Smith, D.G.; Meyburg, C.; Kemp, A.C.

    1995-01-01

    An adult female Wahlberg's Eagle from northern Namibia was tracked by satellite ovcr a total distance of 8816 km and located 104 times between 11 February and 4 November 1994. It migrated on an almost due north heading to northern Cameroon, north-eastern Nigeria and western Chad through the rain forest belt of the Congo and Zaire after the breeding season. The total trans-equatorial distance between the breeding and non-breeding ranges was 3520 km. During the non-breeding season the bird ranged over a large area (ca. 60 000 km2) for about six weeks (29 April - 14 June) in these three countries in a rather nomadic pattern covering a minimum distance of 1256 km. During two further months (14 June - 14 August) it restricted its movements to an area of about 50002 km near Maiduguri in the Sudan savannah of north-eastern Nigeria. The return migration took about two weeks longer than that to the north, which took about a month.

  18. Efficacy and safety of a natural mineral water rich in magnesium and sulphate for bowel function: a double-blind, randomized, placebo-controlled study.

    PubMed

    Bothe, Gordana; Coh, Aljaz; Auinger, Annegret

    2017-03-01

    The present placebo-controlled, double-blind, randomized trial aimed to investigate whether a natural mineral water rich in magnesium sulphate and sodium sulphate (Donat Mg) may help to improve bowel function. A total of 106 otherwise healthy subjects with functional constipation were randomly assigned to consume 300 or 500 mL of a natural mineral water as compared to placebo water, over a course of 6 weeks. The 300-mL arms were terminated due to the results of a planned interim analysis. Subjects documented the complete spontaneous bowel movements, spontaneous and overall bowel movements/week, stool consistency, gastrointestinal symptoms and general well-being in a diary. Change in the number of complete spontaneous bowel movements was defined as the primary outcome. For the 75 subjects in the 500-mL arms, the change in the number of complete spontaneous bowel movements per week tended to be higher in the active group when compared to placebo after 6 weeks (T2 = 1.8; p value  = 0.036; one-sided). The mean number of spontaneous bowel movements significantly increased over the course of the study, with significant differences between study arms considering the whole study time (F test = 4.743; p time × group  = 0.010, 2-sided). Stool consistency of spontaneous bowel movements (p < 0.001) and the subjectively perceived symptoms concerning constipation (p = 0.005) improved significantly with the natural mineral water as compared to placebo. The daily consumption of a natural mineral water rich in magnesium sulphate and sodium sulphate improved bowel movement frequency and stool consistency in subjects with functional constipation. Moreover, the subjects' health-related quality of life improved. EudraCT No 2012-005130-11.

  19. Effect of complete and partial removable dentures on chewing movements.

    PubMed

    Gonçalves, T M S V; Vilanova, L S R; Gonçalves, L M; Rodrigues Garcia, R C M

    2014-03-01

    Partial or complete edentulism impairs mastication. However, it is unclear how the chewing cycle is affected by prosthetics. We evaluated the chewing movements of patients fitted with complete (CD) or removable partial denture (RPD). A total of 29 subjects were kinesiographically evaluated during chewing of peanuts and Optocal portions in a random sequence. The subjects were divided into two groups according to prosthesis type. Group RPD was composed of 14 partially edentulous patients using a lower distal extension RPD (mean age 61 ± 8 years), and group CD contained 15 completely edentulous patients using CD (mean age 65·9 ± 7·9 years) in both jaws. Opening, closing, occlusal and masticatory cycle times, movement angle (opening and closing), maximum velocity (opening and closing), total area and chewing cycle amplitudes were evaluated. The results were subjected to anova and Tukey's HSD test at a significance level of 5%. The RPD group exhibited shorter opening and closing phases and masticatory cycle time (P < 0·05). Maximum velocities were also higher in the RPD group, irrespective of the test material (P < 0·05). The area and amplitude of the chewing envelope was smaller in the CD group (P < 0·0001). The test material did not influence chewing cycles in any of the parameters evaluated (P > 0·05). RPD wearers use a faster chewing sequence with greater vertical and lateral jaw excursions compared with CD wearers. © 2013 John Wiley & Sons Ltd.

  20. Distribution and movement of humpback chub in the Colorado River, Grand Canyon, based on recaptures

    USGS Publications Warehouse

    Paukert, C.P.; Coggins, L.G.; Flaccus, C.E.

    2006-01-01

    Mark-recapture data from the federally endangered humpback chub Gila cypha in the Colorado River, Grand Canyon, were analyzed from 1989 to 2002 to determine large-scale movement patterns and distribution. A total of 14,674 recaptures from 7,127 unique fish were documented; 87% of the recaptures occurred in the same main-stem river reach or tributary as the original captures, suggesting restricted distribution by most fish. A total of 99% of all recaptures were from in and around the Little Colorado River (LCR), a tributary of the Colorado River and primary aggregation and spawning location of humpback chub in Grand Canyon. Time at liberty averaged 394 d, but some fish were recaptured near their main-stem capture location over 10 years later. Proportionally fewer large (>300-mm) humpback chub exhibited restricted distribution than small (<200-mm) fish. However, several fish did move more than 154 km throughout Grand Canyon between capture and recapture, suggesting that limited movement occurs throughout Grand Canyon. The majority of the recaptured fish remained in or returned to the LCR or the Colorado River near the LCR. Although many large-river fishes exhibit extensive migrations to fulfill their life history requirements, most of the humpback chub in Grand Canyon appear to remain in or come back to the LCR and LCR confluence across multiple sizes and time scales. Detecting trends in the overall abundance of this endangered fish in Grand Canyon can probably be accomplished by monitoring the area in and around the LCR.

  1. Factors determining the level and changes in intra-articular pressure in the knee joint of the dog.

    PubMed Central

    Nade, S; Newbold, P J

    1983-01-01

    Intra-articular pressure levels were determined for joint positions throughout the normal physiological range of movement of dogs' knee joints. Change in joint position resulted in change in intra-articular pressure. It was demonstrated that intra-articular pressure is highest with the joint in the fully flexed position. Minimum pressure was recorded at a position between 80 degrees and 120 degrees. Minimum pressures were usually subatmospheric. The rate of change of joint position affected intra-articular pressure. The relationship of intra-articular pressure and joint position before and after full flexion demonstrated a hysteresis effect; the pressures were lower than for the same joint position before flexion. Maintenance of the joint in the fully flexed position for increasing periods of time between repeated movement cycles resulted in a similar reduction, of constant magnitude, in pressure between joint positions before and after each period of flexion. However, there was also a progressive decrease in pressure for all joint angles over the total number of movement cycles. There is a contribution to intra-articular pressure of joint capsular compliance and fluid movement into and out of the joint (both of which are time-dependent). The recording of intra-articular pressure in conscious, upright dogs revealed similar pressure levels to those measured in anaesthetized supine dogs. The major determinants of intra-articular pressure in normal dog knee joints include joint size, synovial fluid volume, position of joint, peri-articular tissue and joint anatomy, membrane permeability, capsular compliance, and movement of fluid into and out of the joint. Images Fig. 1 PMID:6875957

  2. Match-play demands of elite youth Gaelic football using global positioning system tracking.

    PubMed

    Reilly, Brian; Akubat, Ibrahim; Lyons, Mark; Collins, D Kieran

    2015-04-01

    Global positioning systems (GPS) technology has made athlete-tracking a convenient and accepted technique to specify movement patterns and physical demands in sport. The purpose of this study was to examine positional demands of elite youth Gaelic football match-play using portable GPS technology to examine movement patterns and heart rates across match periods. Fifty-six elite youth male Gaelic footballers (age, 15 ± 0.66 years) fitted with portable 4-Hz GPS units were observed during 6 competitive matches (60 minutes). Data provided from the GPS unit included total distance, high-intensity (≥17·km·h(-1)) distance, sprint (≥22 km·h(-1)) distance, and total number of sprints. Heart rate was monitored continuously throughout the games. Players covered a mean distance of 5732 ± 1047 m, and the mean intensity of match-play was 85% of the peak heart rate. There was a significant (p = 0.028) drop in the total distance covered in the second half (2783 ± 599 m) compared with the first half (2948 ± 580 m). In particular, there is a noticeable drop in the distance covered in the third quarter of the game (after half-time), which has implications for re-warming up at the end of the half-time interval. There was a highly significant (p < .001) difference in the distance traveled across the 5 positional groups with midfielders covering the greatest total distance (6740 ± 384 m). The significant differences found with respect to positional groups support the implementation of individual, position-specific strength and conditioning programs.

  3. Changes in Predictive Task Switching with Age and with Cognitive Load.

    PubMed

    Levy-Tzedek, Shelly

    2017-01-01

    Predictive control of movement is more efficient than feedback-based control, and is an important skill in everyday life. We tested whether the ability to predictively control movements of the upper arm is affected by age and by cognitive load. A total of 63 participants were tested in two experiments. In both experiments participants were seated, and controlled a cursor on a computer screen by flexing and extending their dominant arm. In Experiment 1, 20 young adults and 20 older adults were asked to continuously change the frequency of their horizontal arm movements, with the goal of inducing an abrupt switch between discrete movements (at low frequencies) and rhythmic movements (at high frequencies). We tested whether that change was performed based on a feed-forward (predictive) or on a feedback (reactive) control. In Experiment 2, 23 young adults performed the same task, while being exposed to a cognitive load half of the time via a serial subtraction task. We found that both aging and cognitive load diminished, on average, the ability of participants to predictively control their movements. Five older adults and one young adult under a cognitive load were not able to perform the switch between rhythmic and discrete movement (or vice versa). In Experiment 1, 40% of the older participants were able to predictively control their movements, compared with 70% in the young group. In Experiment 2, 48% of the participants were able to predictively control their movements with a cognitively loading task, compared with 70% in the no-load condition. The ability to predictively change a motor plan in anticipation of upcoming changes may be an important component in performing everyday functions, such as safe driving and avoiding falls.

  4. Bobath Concept versus constraint-induced movement therapy to improve arm functional recovery in stroke patients: a randomized controlled trial.

    PubMed

    Huseyinsinoglu, Burcu Ersoz; Ozdincler, Arzu Razak; Krespi, Yakup

    2012-08-01

    To compare the effects of the Bobath Concept and constraint-induced movement therapy on arm functional recovery among stroke patients with a high level of function on the affected side. A single-blinded, randomized controlled trial. Outpatient physiotherapy department of a stroke unit. A total of 24 patients were randomized to constraint-induced movement therapy or Bobath Concept group. The Bobath Concept group was treated for 1 hour whereas the constraint-induced movement therapy group received training for 3 hours per day during 10 consecutive weekdays. Main measures were the Motor Activity Log-28, the Wolf Motor Function Test, the Motor Evaluation Scale for Arm in Stroke Patients and the Functional Independence Measure. The two groups were found to be homogeneous based on demographic variables and baseline measurements. Significant improvements were seen after treatment only in the 'Amount of use' and 'Quality of movement' subscales of the Motor Activity Log-28 in the constraint-induced movement therapy group over the the Bobath Concept group (P = 0.003; P = 0.01 respectively). There were no significant differences in Wolf Motor Function Test 'Functional ability' (P = 0.137) and 'Performance time' (P = 0.922), Motor Evaluation Scale for Arm in Stroke Patients (P = 0.947) and Functional Independence Measure scores (P = 0.259) between the two intervention groups. Constraint-induced movement therapy and the Bobath Concept have similar efficiencies in improving functional ability, speed and quality of movement in the paretic arm among stroke patients with a high level of function. Constraint-induced movement therapy seems to be slightly more efficient than the Bobath Concept in improving the amount and quality of affected arm use.

  5. Cumulative trauma disorders in the upper extremities: reliability of the postural and repetitive risk-factors index.

    PubMed

    James, C P; Harburn, K L; Kramer, J F

    1997-08-01

    This study addresses test-retest reliability of the Postural and Repetitive Risk-Factors Index (PRRI) for work-related upper body injuries. This assessment was developed by the present authors. A repeated measures design was used to assess the test-retest reliability of a videotaped work-site assessment of subjects' movements. Ten heavy users of video display terminals (VDTs) from a local banking industry participated in the study. The 10 subjects' movements were videotaped for 2 hours on each of 2 separate days, while working on-site at their VDTs. The videotaped assessment, which utilized known postural risk factors for developing musculoskeletal disorder, pain, and discomfort in heavy VDT users (ie, repetitiveness, awkward and static postures, and contraction time), was called the PRRI. The videotaped movement assessments were subsequently analyzed in 15-minute sessions (five sessions per 2-hour videotape, which produced a total of 10 sessions over the 2 testing days), and each session was chosen randomly from the videotape. The subjects' movements were given a postural risk score according to the criteria in the PRRI. Each subject was therefore tested a total of 10 times (ie, 10 sessions), over two days. The maximum PRRI score for both sides of the body was 216 points. Reliability coefficients (RCs) for the PRRI scores were calculated, and the reliability of any one session met the minimum criterion for excellent reliability, which was .75. A two-way analysis of variance (ANOVA) confirmed that there was no statistically significant difference between sessions (p < .05). Calculations using the standard error of measurement (SEM) indicated that an individual tested once, on one day and with a PRRI score of 25, required a change of at least 8 points in order to be confident that a true change in score had occurred. The significant results from the reliability tests indicated that the PRRI was a reliable measurement tool that could be used by occupational health practitioners on the job site.

  6. A comparison of tape-tying versus a tube-holding device for securing endotracheal tubes in adults.

    PubMed

    Murdoch, E; Holdgate, A

    2007-10-01

    During the transfer of intubated patients, endotracheal tube security is paramount. This study aims to compare two methods of securing an endotracheal tube in adults: tying with a cloth tape versus the Thomas Endotracheal Tube Holder (Laerdal). A manikin-based study was performed using paramedics and critical care doctors (consultants and senior trainees) as participants. Each participant was asked to secure an endotracheal tube that had been placed within the trachea of a manikin a total of six times, the first three times using tied cloth tape and the last three times using a Thomas Endotracheal Tube Holder. Following each 'fixation' and after the participant had left the room, the security of the tube was tested by applying a fixed force laterally and to the right by dropping a 1.25 kg weight a distance of 50 cm. The amount of movement of the tube with respect to the teeth was measured and recorded in millimetres. Two-hundred-and-seventy tube fixations (135 tied vs. 135 tube holder) were performed by 45 participants. The degree of tube movement was significantly higher when the tube was secured with a tie compared with when the tube holder was used (median movement 22 mm vs. 4 mm, P < 0.0001). We have demonstrated that the tube holder device minimised tube movement in a manikin model when compared with conventional tape tying. The use of this device when transporting intubated patients may reduce the risk of tube displacement though further clinical studies are warranted.

  7. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    PubMed

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  8. Curriculum enrichment with self-testing activities in development of fundamental movement skills of first-grade children in Greece.

    PubMed

    Karabourniotis, Dimitrios; Evaggelinou, Christina; Tzetzis, George; Kourtessis, Thomas

    2002-06-01

    The purpose of this study was to investigate the effect of self-testing activities on the development of fundamental movement skills in first-grade children in Greece. Two groups of children were tested. The Control group (n = 23 children) received the regular 12-wk. physical education school program and the Experimental group (n = 22 children) received a 12-wk. skill-oriented program with an increasing allotment of self-testing activities. The Test of Gross Motor Development was used to assess fundamental movement skills, while the content areas of physical education courses were estimated with an assessment protocol, based on the interval recording system called the Academic Learning Time-Physical Education. A 2 x 2 repeated measures analysis of variance with group as the between factor and testing time (pretest vs posttest) as the repeated-measures factor was performed to assess differences between the two groups. A significant interaction of group with testing time was found for the Test of Gross Motor Development total score, with the Experimental group scoring higher then the Control group. A significant main effect was also found for test but not for group. This study provides evidence supporting the notion that a balanced allotment of the self-testing and game activities beyond the usual curriculum increases the fundamental motor-skill development of children. Also, it stresses the necessity for content and performance standards for the fundamental motor skills in educational programs. Finally, it seems that the Test of Gross Motor Development is a useful tool for the assessment of children's fundamental movement skills.

  9. Intermanual transfer in training with an upper-limb myoelectric prosthesis simulator: a mechanistic, randomized, pretest-posttest study.

    PubMed

    Romkema, Sietske; Bongers, Raoul M; van der Sluis, Corry K

    2013-01-01

    Intermanual transfer may improve prosthetic handling and acceptance if used in training soon after an amputation. The purpose of this study was to determine whether intermanual transfer effects can be detected after training with a myoelectric upper-limb prosthesis simulator. A mechanistic, randomized, pretest-posttest design was used. A total of 48 right-handed participants (25 women, 23 men) who were able-bodied were randomly assigned to an experimental group or a control group. The experimental group performed a training program of 5 days' duration using the prosthesis simulator. To determine the improvement in skill, a test was administered before, immediately after, and 6 days after training. The control group only performed the tests. Training was performed with the unaffected arm, and tests were performed with the affected arm (the affected arm simulating an amputated limb). Half of the participants were tested with the dominant arm and half with the nondominant arm. Initiation time was defined as the time from starting signal until start of the movement, movement time was defined as the time from the beginning of the movement until completion of the task, and force control was defined as the maximal applied force on a deformable object. The movement time decreased significantly more in the experimental group (F₂,₉₂=7.42, P=.001, η²(G)=.028) when compared with the control group. This finding is indicative of faster handling of the prosthesis. No statistically significant differences were found between groups with regard to initiation time and force control. We did not find a difference in intermanual transfer between the dominant and nondominant arms. The training utilized participants who were able-bodied in a laboratory setting and focused only on transradial amputations. Intermanual transfer was present in the affected arm after training the unaffected arm with a myoelectric prosthesis simulator, and this effect did not depend on laterality. This effect may improve rehabilitation of patients with an upper-limb amputation.

  10. Human behaviours associated with dominance in elite amateur boxing bouts: A comparison of winners and losers under the Ten Point Must System

    PubMed Central

    Humberstone, Clare E.; Iredale, K. Fiona; Martin, David T.; Blazevich, Anthony J.

    2017-01-01

    Humans commonly ascertain physical dominance through non-lethal fighting by participating in combat sports. However, the behaviours that achieve fight dominance are not fully understood. Amateur boxing competition, which is judged using the subjective “Ten Point Must-System”, provides insight into fight dominance behaviours. Notational analysis was performed on 26 elite male competitors in a national boxing championship. Behavioural (guard-drop time; movement style [stepping/bouncing time]; clinch-time; interaction-time) and technical (total punches; punches landed [%Hit]; air punches [%Air]; defence) measures were recorded. Participants reported effort required (0–100%) and perceived effect of fatigue on their own performance (5-point Likert scale) following bouts. Differences between winners and losers, and changes across the duration of the bout were examined. Winners punched more accurately than losers (greater %Hit [33% vs. 23%] and lower %Air [17% vs. 27%]) but total punches, defence and interaction-time were similar. From rounds 1–2, clinch-time and guard drops increased whilst bouncing decreased. Perceived effect of fatigue increased throughout the bout while perceived effort increased only from rounds 2–3. %Hit and movement index together in regression analysis correctly classified 85% of bout outcomes, indicating that judges (subjectively) chose winning (dominant) boxers according to punch accuracy and style, rather than assertiveness (more punches thrown). Boxers appear to use tactical strategies throughout the bout to pace their effort and minimise fatigue (increased guard drops, reduced bouncing), but these did not influence perceived dominance or bout outcome. These results show that judges use several performance indicators not including the total number of successful punches thrown to assess fight dominance and superiority between fighters. These results provide valuable information as to how experienced fight observers subjectively rate superiority and dominance during one-on-one human fighting. PMID:29287064

  11. A virtual shopping test for realistic assessment of cognitive function

    PubMed Central

    2013-01-01

    Background Cognitive dysfunction caused by brain injury often prevents a patient from achieving a healthy and high quality of life. By now, each cognitive function is assessed precisely by neuropsychological tests. However, it is also important to provide an overall assessment of the patients’ ability in their everyday life. We have developed a Virtual Shopping Test (VST) using virtual reality technology. The objective of this study was to clarify 1) the significance of VST by comparing VST with other conventional tests, 2) the applicability of VST to brain-damaged patients, and 3) the performance of VST in relation to age differences. Methods The participants included 10 patients with brain damage, 10 age-matched healthy subjects for controls, 10 old healthy subjects, and 10 young healthy subjects. VST and neuropsychological tests/questionnaires about attention, memory and executive function were conducted on the patients, while VST and the Mini-Mental State Examination (MMSE) were conducted on the controls and healthy subjects. Within the VST, the participants were asked to buy four items in the virtual shopping mall quickly in a rational way. The score for evaluation included the number of items bought correctly, the number of times to refer to hints, the number of movements between shops, and the total time spent to complete the shopping. Results Some variables on VST correlated with the scores of conventional assessment about attention and everyday memory. The mean number of times referring to hints and the mean number of movements were significantly larger for the patients with brain damage, and the mean total time was significantly longer for the patients than for the controls. In addition, the mean total time was significantly longer for the old than for the young. Conclusions The results suggest that VST is able to evaluate the ability of attention and everyday memory in patients with brain damage. The time of VST is increased by age. PMID:23777412

  12. A virtual shopping test for realistic assessment of cognitive function.

    PubMed

    Okahashi, Sayaka; Seki, Keiko; Nagano, Akinori; Luo, Zhiwei; Kojima, Maki; Futaki, Toshiko

    2013-06-18

    Cognitive dysfunction caused by brain injury often prevents a patient from achieving a healthy and high quality of life. By now, each cognitive function is assessed precisely by neuropsychological tests. However, it is also important to provide an overall assessment of the patients' ability in their everyday life. We have developed a Virtual Shopping Test (VST) using virtual reality technology. The objective of this study was to clarify 1) the significance of VST by comparing VST with other conventional tests, 2) the applicability of VST to brain-damaged patients, and 3) the performance of VST in relation to age differences. The participants included 10 patients with brain damage, 10 age-matched healthy subjects for controls, 10 old healthy subjects, and 10 young healthy subjects. VST and neuropsychological tests/questionnaires about attention, memory and executive function were conducted on the patients, while VST and the Mini-Mental State Examination (MMSE) were conducted on the controls and healthy subjects. Within the VST, the participants were asked to buy four items in the virtual shopping mall quickly in a rational way. The score for evaluation included the number of items bought correctly, the number of times to refer to hints, the number of movements between shops, and the total time spent to complete the shopping. Some variables on VST correlated with the scores of conventional assessment about attention and everyday memory. The mean number of times referring to hints and the mean number of movements were significantly larger for the patients with brain damage, and the mean total time was significantly longer for the patients than for the controls. In addition, the mean total time was significantly longer for the old than for the young. The results suggest that VST is able to evaluate the ability of attention and everyday memory in patients with brain damage. The time of VST is increased by age.

  13. Human behaviours associated with dominance in elite amateur boxing bouts: A comparison of winners and losers under the Ten Point Must System.

    PubMed

    Dunn, Emily C; Humberstone, Clare E; Iredale, K Fiona; Martin, David T; Blazevich, Anthony J

    2017-01-01

    Humans commonly ascertain physical dominance through non-lethal fighting by participating in combat sports. However, the behaviours that achieve fight dominance are not fully understood. Amateur boxing competition, which is judged using the subjective "Ten Point Must-System", provides insight into fight dominance behaviours. Notational analysis was performed on 26 elite male competitors in a national boxing championship. Behavioural (guard-drop time; movement style [stepping/bouncing time]; clinch-time; interaction-time) and technical (total punches; punches landed [%Hit]; air punches [%Air]; defence) measures were recorded. Participants reported effort required (0-100%) and perceived effect of fatigue on their own performance (5-point Likert scale) following bouts. Differences between winners and losers, and changes across the duration of the bout were examined. Winners punched more accurately than losers (greater %Hit [33% vs. 23%] and lower %Air [17% vs. 27%]) but total punches, defence and interaction-time were similar. From rounds 1-2, clinch-time and guard drops increased whilst bouncing decreased. Perceived effect of fatigue increased throughout the bout while perceived effort increased only from rounds 2-3. %Hit and movement index together in regression analysis correctly classified 85% of bout outcomes, indicating that judges (subjectively) chose winning (dominant) boxers according to punch accuracy and style, rather than assertiveness (more punches thrown). Boxers appear to use tactical strategies throughout the bout to pace their effort and minimise fatigue (increased guard drops, reduced bouncing), but these did not influence perceived dominance or bout outcome. These results show that judges use several performance indicators not including the total number of successful punches thrown to assess fight dominance and superiority between fighters. These results provide valuable information as to how experienced fight observers subjectively rate superiority and dominance during one-on-one human fighting.

  14. Recognition and characterization of migratory movements of Australian plague locusts, Chortoicetes terminifera, with an insect monitoring radar

    NASA Astrophysics Data System (ADS)

    Drake, V. Alistair; Wang, Haikou

    2013-01-01

    Two special purpose insect-detecting radar units have operated in inland eastern Australia, in the region where nocturnal migratory movements of Australian plague locusts Chortoicetes terminifera occur, for over 10 years. The fully automatic radars detect individual insects as they fly directly overhead and "interrogate" them to obtain information about their characters (size, shape, and wing beating) and trajectory (speed, direction, and orientation). The character data allow locusts to be distinguished from most other migrant species. A locust index, calculated from the total count of locust-like targets for a night, provides a simple indication of migration intensity. For nights of heavy migration, the variation of numbers, directions, and speeds with both height and time can be examined. Emigration and immigration events can be distinguished, as can "transmigration," the passage overhead of populations originating elsewhere. Movement distances can be inferred, and broad source and (more tentatively) destination regions are identified. Movements were typically over distances of up to 400 km. Interpretation of radar observations requires judgment, and the present two units provide only partial coverage of the locust infestation area, but their capacity to detect major population movements promptly, and to provide information between necessarily infrequent surveys, has proved valuable.

  15. Diffusion tensor spectroscopic imaging of the human brain in children and adults.

    PubMed

    Fotso, Kevin; Dager, Stephen R; Landow, Alec; Ackley, Elena; Myers, Orrin; Dixon, Mindy; Shaw, Dennis; Corrigan, Neva M; Posse, Stefan

    2017-10-01

    We developed diffusion tensor spectroscopic imaging (DTSI), based on proton-echo-planar-spectroscopic imaging (PEPSI), and evaluated the feasibility of mapping brain metabolite diffusion in adults and children. PRESS prelocalized DTSI at 3 Tesla (T) was performed using navigator-based correction of movement-related phase errors and cardiac gating with compensation for repetition time (TR) related variability in T 1 saturation. Mean diffusivity (MD) and fractional anisotropy (FA) of total N-acetyl-aspartate (tNAA), total creatine (tCr), and total choline (tCho) were measured in eight adults (17-60 years) and 10 children (3-24 months) using b max  = 1734 s/mm 2 , 1 cc and 4.5 cc voxel sizes, with nominal scan times of 17 min and 8:24 min. Residual movement-related phase encoding ghosting (PEG) was used as a regressor across scans to correct overestimation of MD. After correction for PEG, metabolite slice-averaged MD estimated at 20% PEG were lower (P < 0.042) for adults (0.17/0.20/0.18 × 10 -3 mm 2 /s) than for children (0.26/0.27/0.24 × 10 -3 mm 2 /s). Extrapolated to 0% PEG, the MD estimates decreased further (0.09/0.11/0.11 × 10 -3 mm 2 /s versus 0.15/0.16/0.15 × 10 -3 mm 2 /s). Slice-averaged FA of tNAA (P = 0.049), tCr (P = 0.067), and tCho (P = 0.003) were higher in children. This high-speed DTSI approach with PEG regression allows for estimation of metabolite MD and FA with improved tolerance to movement. Our preliminary data suggesting age-related changes support DTSI as a sensitive technique for investigating intracellular markers of biological processes. Magn Reson Med 78:1246-1256, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Differences in infant and parent behaviors during routine bed sharing compared with cot sleeping in the home setting.

    PubMed

    Baddock, Sally A; Galland, Barbara C; Bolton, David P G; Williams, Sheila M; Taylor, Barry J

    2006-05-01

    To observe the behavior of infants sleeping in the natural physical environment of home, comparing the 2 different sleep practices of bed sharing and cot sleeping quantifying to factors that have been identified as potential risks or benefits. Forty routine bed-sharing infants, aged 5-27 weeks were matched for age and season of study with 40 routine cot-sleeping infants. Overnight video and physiologic data of bed-share infants and cot-sleep infants were recorded in the infants' own homes. Sleep time, sleep position, movements, feeding, blanket height, parental checks, and time out of the bed or cot were logged. The total sleep time was similar in both groups (bed-sharing median: 8.6 hours; cot-sleeping median: 8.2 hours). Bed-sharing infants spent most time in the side position (median: 5.7 hours, 66% of sleep time) and most commonly woke at the end of sleep in this position, whereas cot-sleeping infants most commonly slept supine (median: 7.5 hours, 100%) and woke at the end of sleep in the supine position. Prone sleep was uncommon in both groups. Head covering above the eyes occurred in 22 bed-sharing infants and 1 cot-sleeping infant. Five of these bed-sharing infants were head covered at final waking time, but the cot-sleeping infant was not. Bed-sharing parents looked at or touched their infant more often (median: 11 vs 4 times per night) but did not always fully wake to do so. Movement episodes were shorter in the bed-sharing group as was total movement time (37 vs 50 minutes respectively), whereas feeding was 3.7 times more frequent in the bed-sharing group than the cot-sleeping group. Bed-share infants without known risk factors for sudden infant death syndrome (SIDS) experience increased maternal touching and looking, increased breastfeeding, and faster and more frequent maternal responses. This high level of interaction is unlikely to occur if maternal arousal is impaired, for example, by alcohol or overtiredness. Increased head covering and side sleep position occur during bed-sharing, but whether these factors increase the risk of SIDS, as they do in cot sleeping, requires further investigation.

  17. A Prospective Video-Polysomnographic Analysis of Movements during Physiological Sleep in 100 Healthy Sleepers

    PubMed Central

    Stefani, Ambra; Gabelia, David; Mitterling, Thomas; Poewe, Werner; Högl, Birgit; Frauscher, Birgit

    2015-01-01

    Study Objectives: Video-polysomnography (v-PSG) is the gold standard for the diagnosis of sleep disorders. Quantitative assessment of type and distribution of physiological movements during sleep for the differentiation between physiological and pathological motor activity is lacking. We performed a systematic and detailed analysis of movements during physiological sleep using v-PSG technology. Design: Prospective v-PSG investigation. Setting: Academic referral center sleep laboratory. Participants: One hundred healthy sleepers aged 19–77 years recruited from a representative population sample after a two-step screening. Interventions: N/A. Measurements and Results: All subjects underwent v-PSG. In all cases where electromyographic activity > 100 msec duration was visible during sleep in the mentalis, submentalis, flexor digitorum superficialis, or anterior tibialis muscles, the time-synchronized video was analyzed. Visible movements were classified according to movement type and topography, and movement rates were computed for the different sleep stages. A total of 9,790 movements (median 10.2/h, IQR 4.6–16.2) were analyzed: 99.7% were elementary, 0.3% complex. Movement indices were higher in men than women (men: median 13/h, interquartile range 7.1–29.3, women: median 7.9/h, interquartile range 3.4–14.5; P = 0.006). The majority of movements involved the extremities (87.9%) and were classified as focal (53.3%), distal (79.6%), and unilateral (71.5%); 15.3% of movements were associated with arousals. REM-related movements (median 0.8 sec, IQR 0.5–1.2) were shorter than NREM-related movements (median 1.1 sec, IQR 0.8–1.6; P = 0.001). Moreover, REM-related movements were predominantly myocloniform (86.6%), whereas NREM-related movements were more often non-myocloniform (59.1%, P < 0.001). Conclusion: Minor movements are frequent during physiological sleep, and are associated with low arousal rates. REM-related movements were predominantly myocloniform and shorter than NREM movements, indicating different influences on motor control during both sleep states. Citation: Stefani A, Gabelia D, Mitterling T, Poewe W, Högl B, Frauscher B. A prospective video-polysomnographic analysis of movements during physiological sleep in 100 healthy sleepers. SLEEP 2015;38(9):1479–1487. PMID:25669176

  18. Fundamental movement skills in relation to weekday and weekend physical activity in preschool children.

    PubMed

    Foweather, Lawrence; Knowles, Zoe; Ridgers, Nicola D; O'Dwyer, Mareesa V; Foulkes, Jonathan D; Stratton, Gareth

    2015-11-01

    To examine associations between fundamental movement skills and weekday and weekend physical activity among preschool children living in deprived communities. Cross-sectional observation study. Six locomotor skills and 6 object-control skills were video-assessed using The Children's Activity and Movement in Preschool Study Motor Skills Protocol. Physical activity was measured via hip-mounted accelerometry. A total of 99 children (53% boys) aged 3-5 years (M 4.6, SD 0.5) completed all assessments. Multilevel mixed regression models were used to examine associations between fundamental movement skills and physical activity. Models were adjusted for clustering, age, sex, standardised body mass index and accelerometer wear time. Boys were more active than girls and had higher object-control skill competency. Total skill score was positively associated with weekend moderate-to-vigorous physical activity (p = 0.034) but not weekday physical activity categories (p > 0.05). When subdomains of skills were examined, object-control skills was positively associated with light physical activity on weekdays (p = 0.008) and with light (p = 0.033), moderate-to-vigorous (p = 0.028) and light- and moderate-to-vigorous (p = 0.008) physical activity at weekends. Locomotor skill competency was positively associated with moderate-to-vigorous physical activity on weekdays (p = 0.016) and light physical activity during the weekend (p = 0.035). The findings suggest that developing competence in both locomotor and object-control skills may be an important element in promoting an active lifestyle in young children during weekdays and at weekends. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. The Interrelationship of Common Clinical Movement Screens: Establishing Population-Specific Norms in a Large Cohort of Military Applicants

    PubMed Central

    de la Motte, Sarah J.; Gribbin, Timothy C.; Lisman, Peter; Beutler, Anthony I.; Deuster, Patricia

    2016-01-01

    Context: Musculoskeletal injuries (MSK-Is) are a leading cause of missed duty time and morbidity in the military. Modifiable risk factors for MSK-Is, such as inadequate core stability, poor movement patterns, and dynamic balance deficits, have not been identified in military applicants on entering service. Objective: To establish normative functional movement data using a series of screens in military applicants entering basic training and explore relationships among several movement tests. Design: Cross-sectional study. Setting: Military Entrance Processing Station. Patients or Other Participants: A total of 1714 (1434 male, 280 female) military applicants entering the US Army (n = 546), Navy (n = 414), Air Force (n = 229), or Marine Corps (n = 525). Intervention(s): We conducted the Functional Movement Screen (FMS), Y-Balance Test (YBT), overhead squat (OHS), and Landing Error Scoring System (LESS). Movements were assessed using the scoring convention for each screen. Main Outcome Measure(s): The FMS, YBT, OHS, and LESS scores and associations among the movement screens as well as clinical meaningfulness. Results: A total of 1037 of the 1714 enrolled applicants were screened on the day they left for basic training. Normative means for this population were established: FMS = 14.7 ± 1.8, YBT anterior-reach difference = 3.1 ± 3.0 cm, mean YBT composite differences = 8.0 ± 6.8 cm, mean YBT composite percentage = 90.9% ± 8.3%, OHS errors = 5.0 ± 2.8, and LESS score = 5.7 ± 2.1. Backward regression results revealed that the YBT composite percentage was related to the FMS and OHS scores in males and to the FMS and LESS results in females. However, clinically meaningful relationships between the tests varied for both males and females. Conclusions: Sex-normative values for the FMS, YBT, OHS, and LESS screens were established for US military applicants, and some of the assessments overlapped. Overall, males performed better on the OHS and LESS and achieved a greater YBT composite percentage than females. The regression results revealed movement screen performance relationships that varied by sex and clinical meaningfulness. In future studies, we will determine if performance on any of the screens is associated with MSK-Is in basic trainees. PMID:27831746

  20. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. © 2016. Published by The Company of Biologists Ltd.

  1. Fitts’ Law in Early Postural Adjustments

    PubMed Central

    Bertucco, M.; Cesari, P.; Latash, M.L

    2012-01-01

    We tested a hypothesis that the classical relation between movement time and index of difficulty (ID) in quick pointing action (Fitts’ Law) reflects processes at the level of motor planning. Healthy subjects stood on a force platform and performed quick and accurate hand movements into targets of different size located at two distances. The movements were associated with early postural adjustments that are assumed to reflect motor planning processes. The short distance did not require trunk rotation, while the long distance did. As a result, movements over the long distance were associated with substantiual Coriolis forces. Movement kinematics and contact forces and moments recorded by the platform were studied. Movement time scaled with ID for both movements. However, the data could not be fitted with a single regression: Movements over the long distance had a larger intercept corresponding to movement times about 140 ms longer than movements over the shorter distance. The magnitude of postural adjustments prior to movement initiation scaled with ID for both short and long distances. Our results provide strong support for the hypothesis that Fitts’ Law emerges at the level of motor planning, not at the level of corrections of ongoing movements. They show that, during natural movements, changes in movement distance may lead to changes in the relation between movement time and ID, for example when the contribution of different body segments to the movement varies and when the action of Coriolis force may require an additional correction of the movement trajectory. PMID:23211560

  2. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors.

    PubMed

    Bouchard, Amy E; Corriveau, Hélène; Milot, Marie-Hélène

    2015-01-01

    With age, a decline in the temporal aspect of movement is observed such as a longer movement execution time and a decreased timing accuracy. Robotic training can represent an interesting approach to help improve movement timing among the elderly. Two types of robotic training-haptic guidance (HG; demonstrating the correct movement for a better movement planning and improved execution of movement) and error amplification (EA; exaggerating movement errors to have a more rapid and complete learning) have been positively used in young healthy subjects to boost timing accuracy. For healthy seniors, only HG training has been used so far where significant and positive timing gains have been obtained. The goal of the study was to evaluate and compare the impact of both HG and EA robotic trainings on the improvement of seniors' movement timing. Thirty-two healthy seniors (mean age 68 ± 4 years) learned to play a pinball-like game by triggering a one-degree-of-freedom hand robot at the proper time to make a flipper move and direct a falling ball toward a randomly positioned target. During HG and EA robotic trainings, the subjects' timing errors were decreased and increased, respectively, based on the subjects' timing errors in initiating a movement. Results showed that only HG training benefited learning, but the improvement did not generalize to untrained targets. Also, age had no influence on the efficacy of HG robotic training, meaning that the oldest subjects did not benefit more from HG training than the younger senior subjects. Using HG to teach the correct timing of movement seems to be a good strategy to improve motor learning for the elderly as for younger people. However, more studies are needed to assess the long-term impact of HG robotic training on improvement in movement timing.

  3. [In vitro analysis of the continuous active patellofemoral kinematics of the normal and prosthetic knee].

    PubMed

    Jenny, J-Y; Lefèbvre, Y; Vernizeau, M; Lavaste, F; Skalli, W

    2002-12-01

    In vitro experiments are particularly useful for studying kinematic changes from the normal knee to experimental conditions simulating different disease states. We developed an experimental protocol allowing a kinematic analysis of the femorotibial and femoropatellar joints in the healthy knee and after implantation of a knee prosthesis, according to the central pivot during simulated active loaded movement from the standing to sitting position. An experimental device was designed to apply force to the femur of a cadaveric specimen including the femur, the patella and the tibia. The tibia was angled in the sagittal plane and the femur was free to move in space in response to the geometric movement of the knee joint, the capsuloligamentary structures, the quadriceps tendon and gravity. Variation in the length of the quadriceps tendon controlled the flexion-extension movement. The experimental setup included computer-controlled activation allowing continuous coordinated movement of the femur relative to the tibia and of the tibia relative to the ground. Standard activations simulated movement from the standing to the sitting position. Five pairs of fresh-frozen cadaver specimens including the entire femur, patella, tibia and fibula, the capsuloligamentary and intra-articular structures of the knee, the superior and inferior tibiofibular ligaments and the quadriceps tendon were studied. The quadriceps tendon was connected to the computer-guided activation device. Reflectors were fixed onto the anterior aspect of the femur, the superior tibial epiphysis and the center of the patella. Anatomic landmarks on the femur, the tibia, and the patella were identified to determine the plane of movement of each bone in the three rotation axes and the three translation directions. Three infrared cameras recorded movements of the reflectors fixed on the bony segments and, by mathematical transformation, the movement of the corresponding bony segment, displayed in time-course curves. The patella moved in continuous fashion over the femur, directly following the angle of knee flexion with a ratio of about 60%, which was constant for all knees studied and for all configurations. The patella of healthy knees and knees implanted with a unicompartmental prosthesis exhibited medial rotation during the first 30 degrees of flexion, with a movement of about of 10 degrees, then a lateral rotation of about 10 degrees to 20 degrees when the flexion reached 90 degrees; implantation of a total knee prosthesis led to a medial rotation which was continuous from 5 degrees to 15 degrees. There was a trend towards continuous abduction of about 10 degrees. The patella exhibited a continuous anterior translation of 10 to 20 mm from the tibia with increasing knee flexion, in both normal and prosthetic knees (unicompartmental prosthesis); knees implanted with a total knee prosthesis exhibited 5 to 10 mm anterior translation from 0 degrees to 50 degrees flexion, then an equivalent posterior translation for 50 degrees to 90 degrees flexion. The patella made a continuous 5 to 10 mm medial translation movement over the tibia in both normal and prosthetic (unicompartmental) knees; knees implanted with a total knee prosthesis exhibited 0 to 5 mm lateral translation starting after 50 degrees flexion. The patella also exhibited a continuous distal translation over the tibia of about 20 to 30 mm, for all configurations. The experimental set up enables a comparison of the kinetics of a normal knee with the kinetics observed after implantation of a prosthesis on the same knee. Implantation of a unicompartmental medial prosthesis, leaving the posterior cruciate ligament intact and irrespective of the status of the anterior cruciate ligament, did not, in these experimental conditions, exhibit any significant difference in the femorotibial or femoropatellar kinetics compared with the same normal knee. Implantation of a total knee prosthesis had a significant effect on the femoropatellar kinematics, compared with the same knee before implantation. The main anomalies were related to the medial-lateral rotation of the patella which exhibited an abnormal lateral rotation, possibly favorable for subluxation; these changes were directly related to femorotibial rotation after implantation of the total prosthesis and appeared to be related to the symmetry of the femoral condyles of the prosthesis model studied, perturbing the normal automatic rotation of the knee. There is thus a strong relationship between femorotibial and femoropatellar kinetics in the total knee prosthesis.

  4. The Propagation of Movement Variability in Time: A Methodological Approach for Discrete Movements with Multiple Degrees of Freedom.

    PubMed

    Krüger, Melanie; Straube, Andreas; Eggert, Thomas

    2017-01-01

    In recent years, theory-building in motor neuroscience and our understanding of the synergistic control of the redundant human motor system has significantly profited from the emergence of a range of different mathematical approaches to analyze the structure of movement variability. Approaches such as the Uncontrolled Manifold method or the Noise-Tolerance-Covariance decomposition method allow to detect and interpret changes in movement coordination due to e.g., learning, external task constraints or disease, by analyzing the structure of within-subject, inter-trial movement variability. Whereas, for cyclical movements (e.g., locomotion), mathematical approaches exist to investigate the propagation of movement variability in time (e.g., time series analysis), similar approaches are missing for discrete, goal-directed movements, such as reaching. Here, we propose canonical correlation analysis as a suitable method to analyze the propagation of within-subject variability across different time points during the execution of discrete movements. While similar analyses have already been applied for discrete movements with only one degree of freedom (DoF; e.g., Pearson's product-moment correlation), canonical correlation analysis allows to evaluate the coupling of inter-trial variability across different time points along the movement trajectory for multiple DoF-effector systems, such as the arm. The theoretical analysis is illustrated by empirical data from a study on reaching movements under normal and disturbed proprioception. The results show increased movement duration, decreased movement amplitude, as well as altered movement coordination under ischemia, which results in a reduced complexity of movement control. Movement endpoint variability is not increased under ischemia. This suggests that healthy adults are able to immediately and efficiently adjust the control of complex reaching movements to compensate for the loss of proprioceptive information. Further, it is shown that, by using canonical correlation analysis, alterations in movement coordination that indicate changes in the control strategy concerning the use of motor redundancy can be detected, which represents an important methodical advance in the context of neuromechanics.

  5. Frequency of postural changes during sitting whilst using a desktop computer--exploring an analytical methodology.

    PubMed

    Niekerk, Sjan-Mari van; Louw, Quinette Abigail; Grimmer-Sommers, Karen

    2014-01-01

    Dynamic movement whilst sitting is advocated as a way to reduce musculoskeletal symptoms from seated activities. Conventionally, in ergonomics research, only a 'snapshot' of static sitting posture is captured, which does not provide information on the number or type of movements over a period of time. A novel approach to analyse the number of postural changes whist sitting was employed in order to describe the sitting behaviour of adolescents whilst undertaking computing activities. A repeated-measures observational study was conducted. A total of 12 high school students were randomly selected from a conveniently selected school. Fifteen minutes of 3D posture measurements were recorded to determine the number of postural changes whilst using computers. Data of 11 students were able to be analysed. Large intra-subject variation of the median and IQR was observed, indicating frequent postural changes whilst sitting. Better understanding of usual dynamic postural movements whilst sitting will provide new insights into causes of musculoskeletal symptoms experienced by computer users.

  6. Physical demand of seven closed agility drills.

    PubMed

    Atkinson, Mark; Rosalie, Simon; Netto, Kevin

    2016-11-01

    The present study aimed to quantify the demand of seven generic, closed agility drills. Twenty males with experience in invasion sports volunteered to participate in this study. They performed seven, closed agility drills over a standardised 30-m distance. Physical demand measures of peak velocity, total foot contacts, peak impacts, completion time, and maximum heart rate were obtained via the use of wearable sensor technologies. A subjective rating of perceived exertion (RPE) was also obtained. All measures, with the exception of maximum heart rates and RPE were able to delineate drills in terms of physical and physiological demand. The findings of this study exemplify the differences in demand of agility-type movements. Drill demand was dictated by the type of agility movement initiated with the increase in repetitiveness of a given movement type also contributing to increased demand. Findings from this study suggest agility drills can be manipulated to vary physical and physiological demand. This allows for the optimal application of training principles such as overload, progression, and periodisation.

  7. The test-retest reliability and criterion validity of a high-intensity, netball-specific circuit test: The Net-Test.

    PubMed

    Mungovan, Sean F; Peralta, Paula J; Gass, Gregory C; Scanlan, Aaron T

    2018-04-12

    To examine the test-retest reliability and criterion validity of a high-intensity, netball-specific fitness test. Repeated measures, within-subject design. Eighteen female netball players competing in an international competition completed a trial of the Net-Test, which consists of 14 timed netball-specific movements. Players also completed a series of netball-relevant criterion fitness tests. Ten players completed an additional Net-Test trial one week later to assess test-retest reliability using intraclass correlation coefficient (ICC), typical error of measurement (TEM), and coefficient of variation (CV). The typical error of estimate expressed as CV and Pearson correlations were calculated between each criterion test and Net-Test performance to assess criterion validity. Five movements during the Net-Test displayed moderate ICC (0.84-0.90) and two movements displayed high ICC (0.91-0.93). Seven movements and heart rate taken during the Net-Test held low CV (<5%) with values ranging from 1.7 to 9.5% across measures. Total time (41.63±2.05s) during the Net-Test possessed low CV and significant (p<0.05) correlations with 10m sprint time (1.98±0.12s; CV=4.4%, r=0.72), 20m sprint time (3.38±0.19s; CV=3.9%, r=0.79), 505 Change-of-Direction time (2.47±0.08s; CV=2.0%, r=0.80); and maximum oxygen uptake (46.59±2.58 mLkg -1 min -1 ; CV=4.5%, r=-0.66). The Net-Test possesses acceptable reliability for the assessment of netball fitness. Further, the high criterion validity for the Net-Test suggests a range of important netball-specific fitness elements are assessed in combination. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Response of Bighead Carp and Silver Carp to repeated water gun operation in an enclosed shallow pond

    USGS Publications Warehouse

    Romine, Jason G.; Jensen, Nathan; Parsley, Michael J.; Gaugush, Robert F.; Severson, Todd J.; Hatton, Tyson W.; Adams, Ryan F.; Gaikowski, Mark P.

    2015-01-01

    The Bighead Carp Hypophthalmichthys nobilis and Silver Carp H. molitrix are nonnative species that pose a threat to Great Lakes ecosystems should they advance into those areas. Thus, technologies to impede Asian carp movement into the Great Lakes are needed; one potential technology is the seismic water gun. We evaluated the efficacy of a water gun array as a behavioral deterrent to the movement of acoustic-tagged Bighead Carp and Silver Carp in an experimental pond. Behavioral responses were evaluated by using four metrics: (1) fish distance from the water guns (D); (2) spatial area of the fish's utilization distribution (UD); (3) persistence velocity (Vp); and (4) number of times a fish transited the water gun array. For both species, average D increased by 10 m during the firing period relative to the pre-firing period. During the firing period, the spatial area of use within the pond decreased. Carp were located throughout the pond during the pre-firing period but were concentrated in the north end of the pond during the firing period, thus reducing their UDs by roughly 50%. Overall, Vp decreased during the firing period relative to the pre-firing period, as fish movement became more tortuous and confined, suggesting that the firing of the guns elicited a change in carp behavior. The water gun array was partially successful at impeding carp movement, but some fish did transit the array. Bighead Carp moved past the guns a total of 78 times during the pre-firing period and 15 times during the firing period; Silver Carp moved past the guns 96 times during the pre-firing period and 13 times during the firing period. Although the water guns did alter carp behavior, causing the fish to move away from the guns, this method was not 100% effective as a passage deterrent.

  9. Tortuous iliac systems--a significant burden to conventional cannulation in the visceral segment: is there a role for robotic catheter technology?

    PubMed

    Riga, Celia V; Bicknell, Colin D; Hamady, Mohamad; Cheshire, Nicholas

    2012-10-01

    To attempt to quantify the effect of varying degrees of iliac tortuosity on maneuverability and "torquability" of endovascular catheters in the visceral segment, comparing conventional and robotic cannulation techniques. In a fenestrated endograft within a pulsatile phantom, 10 experienced operators cannulated the renal arteries via three different access vessels of varying iliac tortuosity with the use of conventional and robotic techniques. All procedures were performed in the angiography suite and recorded for blinded video assessment for quantitative (time, catheter-tip movements) and qualitative metrics (operator performance scores). In total, 120 cannulations were observed. With increasing iliac tortuosity, median time and number of catheter movements required for renal cannulation with conventional techniques increased in stepwise fashion for mild, moderate, and severe iliac tortuosity (times, 7.6 min [interquartile range (IQR), 4.6-9.3 min] vs 6.9 min [4.2-11.4 min] vs 17.7 min [13.3-22.6 min], respectively; movements, 184 [IQR, 110-351] vs 251 [207-395] vs 569 [409-616], respectively). Median renal cannulation times were significantly reduced with the use of the robotic system irrespective of mild, moderate, or severe tortuosity (times, 1.4 min [IQR, 1.1-1.9 min] vs 3 min [2.3-3.3 min] vs 2.8 min [1.5-3.9 min], respectively; movements, 19 [IQR, 14-27] vs 46 [43-58] vs 45 [40-66], respectively; P < .005). Overall operator performance scores improved significantly with the use of the robotic system irrespective of iliac tortuosity severity. In cases of moderate to severe iliac tortuosity, conventional catheter manipulation and control becomes an issue. The improvement in positional control and predictability seen with advanced catheter designs may be amplified in cases of severe iliac tortuosity. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  10. A single aerobic exercise session accelerates movement execution but not central processing.

    PubMed

    Beyer, Kit B; Sage, Michael D; Staines, W Richard; Middleton, Laura E; McIlroy, William E

    2017-03-27

    Previous research has demonstrated that aerobic exercise has disparate effects on speed of processing and movement execution. In simple and choice reaction tasks, aerobic exercise appears to increase speed of movement execution while speed of processing is unaffected. In the flanker task, aerobic exercise has been shown to reduce response time on incongruent trials more than congruent trials, purportedly reflecting a selective influence on speed of processing related to cognitive control. However, it is unclear how changes in speed of processing and movement execution contribute to these exercise-induced changes in response time during the flanker task. This study examined how a single session of aerobic exercise influences speed of processing and movement execution during a flanker task using electromyography to partition response time into reaction time and movement time, respectively. Movement time decreased during aerobic exercise regardless of flanker congruence but returned to pre-exercise levels immediately after exercise. Reaction time during incongruent flanker trials decreased over time in both an aerobic exercise and non-exercise control condition indicating it was not specifically influenced by exercise. This disparate influence of aerobic exercise on movement time and reaction time indicates the importance of partitioning response time when examining the influence of aerobic exercise on speed of processing. The decrease in reaction time over time independent of aerobic exercise indicates that interpreting pre-to-post exercise changes in behavior requires caution. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Clinical efficacy of Daikenchuto for gastrointestinal dysfunction following colon surgery: a randomized, double-blind, multicenter, placebo-controlled study (JFMC39-0902)

    PubMed Central

    Katsuno, Hidetoshi; Maeda, Koutarou; Kaiho, Takashi; Kunieda, Katsuyuki; Funahashi, Kimihiko; Sakamoto, Junichi; Kono, Toru; Hasegawa, Hirotoshi; Furukawa, Yoshiyuki; Imazu, Yoshihiro; Morita, Satoshi; Watanabe, Masahiko

    2015-01-01

    Objective This exploratory trial was performed to determine whether Daikenchuto accelerates recovery of gastrointestinal function in patients undergoing open colectomy for colon cancer. Methods A total of 386 patients undergoing colectomy at 1 of the 51 clinical trial sites in Japan from January 2009 to June 2011 were registered for the study (JFMC39-0902). Patients received either placebo or Daikenchuto (15.0 g/day, t.i.d) between post-operative day 2 and post-operative day 8. Primary end-points included time to first bowel movement, frequency of bowel movement and stool form. The incidence of intestinal obstruction was evaluated post-operatively. The safety profile of Daikenchuto until post-operative day 8 was also evaluated. Results The results for 336 patients (Daikenchuto, n = 174; placebo, n = 162) were available for statistical analysis. The time to first bowel movement did not differ significantly between the two groups. All patients reported having diarrhea or soft stools immediately after surgery, and the time until stool normalization (50th percentile) in the Daikenchuto and placebo groups was 6 days and 7 days, respectively. The placebo group had a significantly greater number of hard stools at post-operative day 8 (P = 0.016), and bowel movement frequency continued to increase until post-operative day 8 as well. In contrast, bowel movement frequency in the Daikenchuto group increased until post-operative day 6, however decreased from post-operative day 7 and was significantly lower at post-operative day 8 compared with the placebo group (P = 0.024). Conclusion The moderate effects of Daikenchuto were observed ∼1 week after the operation. Although Daikenchuto had an effect on gastrointestinal function after open surgery in patients with colon cancer, this study did not show its clinical benefits adequately. PMID:25972515

  12. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements.

    PubMed

    Bravi, Riccardo; Quarta, Eros; Cohen, Erez J; Gottard, Anna; Minciacchi, Diego

    2014-01-01

    A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.

  13. What we think before a voluntary movement.

    PubMed

    Schneider, Logan; Houdayer, Elise; Bai, Ou; Hallett, Mark

    2013-06-01

    A central feature of voluntary movement is the sense of volition, but when this sense arises in the course of movement formulation and execution is not clear. Many studies have explored how the brain might be actively preparing movement before the sense of volition; however, because the timing of the sense of volition has depended on subjective and retrospective judgments, these findings are still regarded with a degree of scepticism. EEG events such as beta event-related desynchronization and movement-related cortical potentials are associated with the brain's programming of movement. Using an optimized EEG signal derived from multiple variables, we were able to make real-time predictions of movements in advance of their occurrence with a low false-positive rate. We asked participants what they were thinking at the time of prediction: Sometimes they were thinking about movement, and other times they were not. Our results indicate that the brain can be preparing to make voluntary movements while participants are thinking about something else.

  14. What we think before a voluntary movement

    PubMed Central

    Schneider, L.; Houdayer, E.; Bai, O.; Hallett, M.

    2016-01-01

    A central feature of voluntary movement is the sense of volition, but when this sense arises in the course of movement formulation and execution is not clear. Many studies have explored how the brain might be actively preparing movement prior to the sense of volition, however, because the timing of the sense of volition has depended on subjective and retrospective judgements these findings are still regarded with a degree of scepticism. Electroencephalographic (EEG) events such as beta event-related desynchronization (βERD) and movement-related cortical potentials (MRCPs) are associated with the brain’s programming of movement. Using an optimized EEG signal derived from multiple variables we were able to make real-time predictions of movements in advance of their occurrence with a low false positive rate. We asked subjects what they were thinking at the time of prediction: sometimes they were thinking about movement, and other times they were not. Our results indicate that the brain can be preparing to make voluntary movements while subjects are thinking about something else. PMID:23363409

  15. Movement patterns, habitat use, and survival of Lahontan cutthroat trout in the Truckee River

    USGS Publications Warehouse

    Alexiades, Alexander V.; Peacock, Mary M.; Al-Chokhachy, Robert K.

    2012-01-01

    Habitat fragmentation, hybridization, and competition with nonnative salmonids are viewed as major threats to Lahontan cutthroat trout Oncorhynchus clarkii henshawi. Understanding Lahontan cutthroat trout behavior and survival is a necessary step in the reintroduction and establishment of naturally reproducing populations of Lahontan cutthroat trout. We used weekly radiotelemetry monitoring to examine movement patterns, habitat use, and apparent survival of 42 hatchery-reared Lahontan cutthroat trout in a 16.5-km stretch of the Truckee River, Nevada, across three reaches separated by barriers to upstream movement. We found differences in total movement distances and home range sizes of fish in different reaches within our study area. Fish used pool habitats more than fast water habitats in all reaches. Time of year, stream temperature, and fish standard length covariates had the strongest relationship with apparent survival. Monthly apparent survival was lowest in January, which coincided with the lowest flows and temperatures during the study period. Our results verify the mobility of Lahontan cutthroat trout and indicate that conditions during winter may limit the survival and reintroduction success in the portions of the Truckee River evaluated in this study.

  16. Gait and Functional Mobility Deficits in Fragile X-Associated Tremor/Ataxia Syndrome.

    PubMed

    O'Keefe, Joan A; Robertson-Dick, Erin E; Hall, Deborah A; Berry-Kravis, Elizabeth

    2016-08-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) results from a "premutation" (PM) size CGG repeat expansion in the fragile X mental retardation 1 (FMR1) gene. Cerebellar gait ataxia is the primary feature in some FXTAS patients causing progressive disability. However, no studies have quantitatively characterized gait and mobility deficits in FXTAS. We performed quantitative gait and mobility analysis in seven FMR1 PM carriers with FXTAS and ataxia, six PM carriers without FXTAS, and 18 age-matched controls. We studied four independent gait domains, trunk range of motion (ROM), and movement transitions using an instrumented Timed Up and Go (i-TUG). We correlated these outcome measures with FMR1 molecular variables and clinical severity scales. PM carriers with FXTAS were globally impaired in every gait performance domain except trunk ROM compared to controls. These included total i-TUG duration, stride velocity, gait cycle time, cadence, double-limb support and swing phase times, turn duration, step time before turn, and turn-to-sit duration, and increased gait variability on several measures. Carriers without FXTAS did not differ from controls on any parameters, but double-limb support time was close to significance. Balance and disability scales correlated with multiple gait and movement transition parameters, while the FXTAS Rating Scale did not. This is the first study to quantitatively examine gait and movement transitions in FXTAS patients. Gait characteristics were consistent with those from previous cohorts with cerebellar ataxia. Sensitive measures like the i-TUG may help determine efficacy of interventions, characterize disease progression, and provide early markers of disease in FXTAS.

  17. Analysis of cattle movements in Argentina, 2005.

    PubMed

    Aznar, M N; Stevenson, M A; Zarich, L; León, E A

    2011-02-01

    We describe the movement of cattle throughout Argentina in 2005. Details of farm-to-farm and farm-to-slaughter movements of cattle were obtained from the Sanitary Management System database (Sistema de Gestión Sanitaria, SGS), maintained by the National Service for Agrifood Health and Quality (SENASA). Movements were described at the regional and district level in terms of frequency, the number of stock transported, the district of origin and destination and Euclidean distance traveled. Social network analysis was used to characterize the connections made between regions and districts as a result of cattle movement transactions, and to show how these characteristics might influence disease spread. Throughout 2005 a total of 1.3 million movement events involving 32 million head of cattle (equivalent to approximately 57% of the national herd) were recorded in the SGS database. The greatest number of farm-to-farm movements occurred from April to June whereas numbers of farm-to-slaughter movement events were relatively constant throughout the year. Throughout 2005 there was a 1.1-1.6-fold increase in the number of farm-to-farm movements of cattle during April-June, compared with other times of the year. District in-degree and out-degree scores varied by season, with higher maximum scores during the autumn and winter compared with summer and spring. Districts with high in-degree scores were concentrated in the Finishing region of the country whereas districts with high out-degree scores were concentrated not only in the Finishing region but also in Mesopotamia, eastern Border and southern Central regions. Although movements of cattle from the Border region tended not to be mediated via markets, the small number of districts in this area with relatively high out-degree scores is a cause for concern as they have the potential to distribute infectious disease widely, in the event of an incursion. Published by Elsevier B.V.

  18. Actigraphy-defined Measures of Sleep and Movement Across the Menstrual Cycle In Midlife Menstruating Women: SWAN Sleep Study

    PubMed Central

    Zheng, Huiyong; Harlow, Siobán D; Kravitz, Howard M; Bromberger, Joyce; Buysse, Daniel J; Matthews, Karen A; Gold, Ellen B; Owens, Jane F; Hall, Martica

    2014-01-01

    Objective To evaluate patterns in actigraphy-defined sleep measures across the menstrual cycle, testing the hypothesis that sleep would be more disrupted in the premenstrual period, i.e. in the 14 days prior to menses. Methods A community-based, longitudinal study of wrist actigraphy-derived sleep measures was conducted with 163 women (58 African-American, 78 White, and 27 Chinese) of late reproductive age (mean=51.5, SD=2.0 years) from the Study of Women's Health Across the Nation (SWAN) Sleep Study. Daily measures of sleep [sleep efficiency (%) and total sleep time (minutes)] and movement during sleep [mean activity score (counts)] were characterized using wrist actigraphy across a menstrual cycle or 35 days, whichever was shorter. Data were standardized to 28 days to account for the variation of unequal cycle lengths and divided into four weekly segments for analyses. Results Sleep efficiency percentage declined gradually across the menstrual cycle, but the decline became pronounced in fourth week, the premenstrual period. Compared with third week, sleep efficiency declined by 5% (p<0.0001) and mean total sleep time was 25 minutes less (p=0.0002) in fourth week. No significant mean differences were found when comparing the means of second week versus third week. The association of weekly segments with sleep efficiency or minutes of total sleep time was modified by sociodemographic and lifestyle factors, including body mass index (BMI), race, study site, financial strain, marital status, and smoking. Conclusions Sleep varied systematically across the menstrual cycle in women of late reproductive age, including a gradual decline in sleep efficiency across all weeks, with a more marked change premenstrually during the last week of the menstrual cycle. These sleep changes may be modifiable by altering lifestyle factors. PMID:24845393

  19. Strength training, walking, and social activity improve sleep in nursing home and assisted living residents: randomized controlled trial.

    PubMed

    Richards, Kathy C; Lambert, Corinne; Beck, Cornelia K; Bliwise, Donald L; Evans, William J; Kalra, Gurpreet K; Kleban, Morton H; Lorenz, Rebecca; Rose, Karen; Gooneratne, Nalaka S; Sullivan, Dennis H

    2011-02-01

    To compare the effects of physical resistance strength training and walking (E), individualized social activity (SA), and E and SA (ESA) with a usual care control group on total nocturnal sleep time in nursing home and assisted living residents. Pretest-posttest experimental design with assignment to one of four groups for 7 weeks: E (n=55), SA (n=50), ESA (n=41), and usual care control (n=47). Ten nursing homes and three assisted living facilities. One hundred ninety-three residents were randomly assigned; 165 completed the study. The E group participated in high-intensity physical resistance strength training 3 days a week and on 2 days walked for up to 45 minutes, the SA group received social activity 1 hour daily 5 days a week, the ESA group received both E and SA, and the control group participated in usual activities provided in the homes. Total nocturnal sleep time was measured using 2 nights of polysomnography before and 2 nights of polysomnography after the intervention. Sleep efficiency (SE), non-rapid eye movement (NREM) sleep, rapid eye movement sleep, and sleep onset latency were also analyzed. Total nocturnal sleep time was significantly greater in the ESA group than in the control group (adjusted means 364.2 minutes vs 328.9 minutes), as was SE and NREM sleep. High-intensity physical resistance strength training and walking combined with social activity significantly improved sleep in nursing home and assisted living residents. The interventions by themselves did not have significant effects on sleep in this population. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  20. Actigraphy-defined measures of sleep and movement across the menstrual cycle in midlife menstruating women: Study of Women's Health Across the Nation Sleep Study.

    PubMed

    Zheng, Huiyong; Harlow, Siobán D; Kravitz, Howard M; Bromberger, Joyce; Buysse, Daniel J; Matthews, Karen A; Gold, Ellen B; Owens, Jane F; Hall, Martica

    2015-01-01

    This study aims to evaluate patterns in actigraphy-defined sleep measures across the menstrual cycle by testing the hypothesis that sleep would be more disrupted in the premenstrual period (ie, within the 14 d before menses). A community-based longitudinal study of wrist actigraphy-derived sleep measures was conducted in 163 (58 African American, 78 white, and 27 Chinese) late-reproductive-age (mean [SD], 51.5 [2.0] y) women from the Study of Women's Health Across the Nation Sleep Study. Daily measures of sleep (sleep efficiency [%] and total sleep time [minutes]) and movement during sleep (mean activity score [counts]) were characterized using wrist actigraphy across a menstrual cycle or 35 days, whichever was shorter. Data were standardized to 28 days to account for unequal cycle lengths and divided into four weekly segments for analyses. Sleep efficiency declined gradually across the menstrual cycle, but the decline became pronounced on the fourth week (the premenstrual period). Compared with the third week, sleep efficiency declined by 5% (P < 0.0001) and mean total sleep time was 25 minutes less (P = 0.0002) on the fourth week. We found no significant differences between the mean for the second week and the mean for the third week. The association of weekly segments with sleep efficiency or total sleep time was modified by sociodemographic and lifestyle factors, including body mass index, race, study site, financial strain, marital status, and smoking. Among late-reproductive-age women, sleep varies systematically across the menstrual cycle, including a gradual decline in sleep efficiency across all weeks, with a more marked change premenstrually during the last week of the menstrual cycle. These sleep changes may be modified by altering lifestyle factors.

  1. Conscious motor processing and movement self-consciousness: two dimensions of personality that influence laparoscopic training.

    PubMed

    Malhotra, Neha; Poolton, Jamie M; Wilson, Mark R; Fan, Joe K M; Masters, Rich S W

    2014-01-01

    Identifying personality factors that account for individual differences in surgical training and performance has practical implications for surgical education. Movement-specific reinvestment is a potentially relevant personality factor that has a moderating effect on laparoscopic performance under time pressure. Movement-specific reinvestment has 2 dimensions, which represent an individual's propensity to consciously control movements (conscious motor processing) or to consciously monitor their 'style' of movement (movement self-consciousness). This study aimed at investigating the moderating effects of the 2 dimensions of movement-specific reinvestment in the learning and updating (cross-handed technique) of laparoscopic skills. Medical students completed the Movement-Specific Reinvestment Scale, a psychometric assessment tool that evaluates the conscious motor processing and movement self-consciousness dimensions of movement-specific reinvestment. They were then trained to a criterion level of proficiency on a fundamental laparoscopic skills task and were tested on a novel cross-handed technique. Completion times were recorded for early-learning, late-learning, and cross-handed trials. Propensity for movement self-consciousness but not conscious motor processing was a significant predictor of task completion times both early (p = 0.036) and late (p = 0.002) in learning, but completion times during the cross-handed trials were predicted by the propensity for conscious motor processing (p = 0.04) rather than movement self-consciousness (p = 0.21). Higher propensity for movement self-consciousness is associated with slower performance times on novel and well-practiced laparoscopic tasks. For complex surgical techniques, however, conscious motor processing plays a more influential role in performance than movement self-consciousness. The findings imply that these 2 dimensions of movement-specific reinvestment have a differential influence in the learning and updating of laparoscopic skills. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  2. Programming and execution of movement in Parkinson's disease.

    PubMed

    Sheridan, M R; Flowers, K A; Hurrell, J

    1987-10-01

    Programming and execution of arm movements in Parkinson's disease were investigated in choice and simple reaction time (RT) situations in which subjects made aimed movements at a target. A no-aiming condition was also studied. Reaction time was fractionated using surface EMG recording into premotor (central) and motor (peripheral) components. Premotor RT was found to be greater for parkinsonian patients than normal age-matched controls in the simple RT condition, but not in the choice condition. This effect did not depend on the parameters of the impending movement. Thus, paradoxically, parkinsonian patients were not inherently slower at initiating aiming movements from the starting position, but seemed unable to use advance information concerning motor task demands to speed up movement initiation. For both groups, low velocity movements took longer to initiate than high velocity ones. In the no-aiming condition parkinsonian RTs were markedly shorter than when aiming, but were still significantly longer than control RTs. Motor RT was constant across all conditions and was not different for patient and control subjects. In all conditions, parkinsonian movements were around 37% slower than control movements, and their movement times were more variable, the differences showing up early on in the movement, that is, during the initial ballistic phase. The within-subject variability of movement endpoints was also greater in patients. The motor dysfunction displayed in Parkinson's disease involves a number of components: (1) a basic central problem with simply initiating movements, even when minimal programming is required (no-aiming condition); (2) difficulty in maintaining computed forces for motor programs over time (simple RT condition); (3) a basic slowness of movement (bradykinesia) in all conditions; and (4) increased variability of movement in both time and space, presumably caused by inherent variability in force production.

  3. Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts.

    PubMed

    Wilson, Mark; McGrath, John; Vine, Samuel; Brewer, James; Defriend, David; Masters, Richard

    2010-10-01

    Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed.

  4. Monkey primary somatosensory cortical activity during the early reaction time period differs with cues that guide movements

    PubMed Central

    Liu, Yu; Denton, John M.; Nelson, Randall J.

    2009-01-01

    Vibration-related neurons in monkey primary somatosensory cortex (SI) discharge rhythmically when vibratory stimuli are presented. It remains unclear how functional information carried by vibratory inputs is coded in rhythmic neuronal activity. In the present study, we compared neuronal activity during wrist movements in response to two sets of cues. In the first, movements were guided by vibratory cue only (VIB trials). In the second, movements were guided by simultaneous presentation of both vibratory and visual cues (COM trials). SI neurons were recorded extracellularly during both wrist extensions and flexions. Neuronal activity during the instructed delay period (IDP) and the early reaction time period (RTP) were analyzed. A total of 96 cases from 48 neurons (each neuron contributed two cases, one each for extension and flexion) showed significant vibration entrainment during the early RTPs, as determined by circular statistics (Rayleigh test). Of these, 50 cases had cutaneous (CUTA) and 46 had deep (DEEP) receptive fields. The CUTA neurons showed lower firing rates during the IDPs and greater firing rate changes during the early RTPs when compared with the DEEP neurons. The CUTA neurons also demonstrated decreases in activity entrainment during VIB trials when compared with COM trials. For the DEEP neurons, the difference of entrainment between VIB and COM trials was not statistically significant. The results suggest that somatic vibratory input is coded by both the firing rate and the activity entrainment of the CUTA neurons in SI. The results also suggest that when vibratory inputs are required for successful task completion, the activity of the CUTA neurons increases but the entrainment degrades. The DEEP neurons may be tuned before movement initiation for processing information encoded by proprioceptive afferents. PMID:18288475

  5. Could transient hypoxia be associated with rhythmic masticatory muscle activity in sleep bruxism in the absence of sleep-disordered breathing? A preliminary report.

    PubMed

    Dumais, I E; Lavigne, G J; Carra, M C; Rompré, P H; Huynh, N T

    2015-11-01

    Sleep bruxism (SB) is a repetitive jaw-muscle activity characterised by clenching or grinding of the teeth during sleep. Sleep bruxism activity is characterised by rhythmic masticatory muscle activity (RMMA). Many but not all RMMA episodes are associated with sleep arousal. The aim of this study was to evaluate whether transient oxygen saturation level change can be temporally associated with genesis of RMMA/SB. Sleep laboratory or home recordings data from 22 SB (tooth grinding history in the absence of reported sleep-disordered breathing) and healthy subjects were analysed. A total of 143 RMMA/SB episodes were classified in four categories: (i) no arousal + no body movement; (ii) arousal + no body movement; (iii) no arousal + body movement; (iv) arousal + body movement. Blood oxygen levels (SaO2 ) were assessed from finger oximetry signal at the baseline (before RMMA), and during RMMA. Significant variation in SaO2 over time (P = 0·001) was found after RMMA onset (+7 to +9 s). No difference between categories (P = 0·91) and no interaction between categories and SaO2 variation over time (P = 0·10) were observed. SaO2 of six of 22 subjects (27%) remained equal or slight increase after the RMMA/SB onset (+8 s) compared to baseline; 10 subjects (45%) slightly decreased (drop 0·01-1%) and the remaining (27%) decreased between 1% and 2%. These preliminary findings suggest that a subgroup of SB subjects had (i) a minor transient hypoxia potentially associated with the onset of RMMA episodes, and this (ii) independently of concomitant sleep arousal or body movements. © 2015 John Wiley & Sons Ltd.

  6. Monkey primary somatosensory cortical activity during the early reaction time period differs with cues that guide movements.

    PubMed

    Liu, Yu; Denton, John M; Nelson, Randall J

    2008-05-01

    Vibration-related neurons in monkey primary somatosensory cortex (SI) discharge rhythmically when vibratory stimuli are presented. It remains unclear how functional information carried by vibratory inputs is coded in rhythmic neuronal activity. In the present study, we compared neuronal activity during wrist movements in response to two sets of cues. In the first, movements were guided by vibratory cue only (VIB trials). In the second, movements were guided by simultaneous presentation of both vibratory and visual cues (COM trials). SI neurons were recorded extracellularly during both wrist extensions and flexions. Neuronal activity during the instructed delay period (IDP) and the early reaction time period (RTP) were analyzed. A total of 96 cases from 48 neurons (each neuron contributed two cases, one each for extension and flexion) showed significant vibration entrainment during the early RTPs, as determined by circular statistics (Rayleigh test). Of these, 50 cases had cutaneous (CUTA) and 46 had deep (DEEP) receptive fields. The CUTA neurons showed lower firing rates during the IDPs and greater firing rate changes during the early RTPs when compared with the DEEP neurons. The CUTA neurons also demonstrated decreases in activity entrainment during VIB trials when compared with COM trials. For the DEEP neurons, the difference of entrainment between VIB and COM trials was not statistically significant. The results suggest that somatic vibratory input is coded by both the firing rate and the activity entrainment of the CUTA neurons in SI. The results also suggest that when vibratory inputs are required for successful task completion, the activity of the CUTA neurons increases but the entrainment degrades. The DEEP neurons may be tuned before movement initiation for processing information encoded by proprioceptive afferents.

  7. Diel movement and habitat use by paddlefish in Navigation Pool 8 of the upper Mississippi River

    USGS Publications Warehouse

    Zigler, Steven J.; Dewey, Michael R.; Knights, Brent C.

    1999-01-01

    We studied diel movement and habitat use by paddlefish Polyodon spathula implanted with radio transmitters in Navigation Pool 8 of the upper Mississippi River. We radio-tracked five paddlefish during three randomly chosen 24-h periods each month in May, Aug, and Oct 1995. Paddlefish were located by boat one to three times every 3 h during each 24-h period. At each location, geographic coordinates were determined with a global positioning system receiver using the Precise Positioning Service, and depth was measured with a depth sounder. Location coordinates were plotted with ARC/INFO software on a Geographic Information System land–water coverage. Movement distances were calculated as the linear distance between sequential locations. Radio-tagged paddlefish usually remained in a secondary channel that had low current velocity during all seasons, whereas main channel, main channel border, tailwater, and backwater habitats were seldom used. Paddlefish strongly selected areas that were deep; about 62% of paddlefish locations were in areas with more than 6 m of depth, although this habitat constituted only 14.5% of the total study area. However, paddlefish used significantly shallower areas during the night than during the day. Paddlefish moved significantly larger distances at night than during the day in spring and fall, but differences in movement among diel periods during summer were not significant. Our research suggests that radiotelemetry studies that need to determine depth use or movement of paddlefish during small time scales may need to incorporate a diel component. However, study objectives to determine use of general habitat types by radio-marked paddlefish can be adequately met by tracking during the day.

  8. Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts

    PubMed Central

    McGrath, John; Vine, Samuel; Brewer, James; Defriend, David; Masters, Richard

    2010-01-01

    Background Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. Methods A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. Results The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. Conclusion The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed. PMID:20333405

  9. Ball Machine Usage in Tennis: Movement Initiation and Swing Timing While Returning Balls from a Ball Machine and from a Real Server

    PubMed Central

    Carboch, Jan; Süss, Vladimir; Kocib, Tomas

    2014-01-01

    Practicing with the use of a ball machine could handicap a player compared to playing against an actual opponent. Recent studies have shown some differences in swing timing and movement coordination, when a player faces a ball projection machine as opposed to a human opponent. We focused on the time of movement initiation and on stroke timing during returning tennis serves (simulated by a ball machine or by a real server). Receivers’ movements were measured on a tennis court. In spite of using a serving ball speed from 90 kph to 135 kph, results showed significant differences in movement initiation and backswing duration between serves received from a ball machine and serves received from a real server. Players had shorter movement initiation when they faced a ball machine. Backswing duration was longer for the group using a ball machine. That demonstrates different movement timing of tennis returns when players face a ball machine. Use of ball machines in tennis practice should be limited as it may disrupt stroke timing. Key points Players have shorter initial move time when they are facing the ball machine. Using the ball machine results in different swing timing and movement coordination. The use of the ball machine should be limited. PMID:24790483

  10. Ball machine usage in tennis: movement initiation and swing timing while returning balls from a ball machine and from a real server.

    PubMed

    Carboch, Jan; Süss, Vladimir; Kocib, Tomas

    2014-05-01

    Practicing with the use of a ball machine could handicap a player compared to playing against an actual opponent. Recent studies have shown some differences in swing timing and movement coordination, when a player faces a ball projection machine as opposed to a human opponent. We focused on the time of movement initiation and on stroke timing during returning tennis serves (simulated by a ball machine or by a real server). Receivers' movements were measured on a tennis court. In spite of using a serving ball speed from 90 kph to 135 kph, results showed significant differences in movement initiation and backswing duration between serves received from a ball machine and serves received from a real server. Players had shorter movement initiation when they faced a ball machine. Backswing duration was longer for the group using a ball machine. That demonstrates different movement timing of tennis returns when players face a ball machine. Use of ball machines in tennis practice should be limited as it may disrupt stroke timing. Key pointsPlayers have shorter initial move time when they are facing the ball machine.Using the ball machine results in different swing timing and movement coordination.The use of the ball machine should be limited.

  11. When to be discrete: the importance of time formulation in understanding animal movement.

    PubMed

    McClintock, Brett T; Johnson, Devin S; Hooten, Mevin B; Ver Hoef, Jay M; Morales, Juan M

    2014-01-01

    Animal movement is essential to our understanding of population dynamics, animal behavior, and the impacts of global change. Coupled with high-resolution biotelemetry data, exciting new inferences about animal movement have been facilitated by various specifications of contemporary models. These approaches differ, but most share common themes. One key distinction is whether the underlying movement process is conceptualized in discrete or continuous time. This is perhaps the greatest source of confusion among practitioners, both in terms of implementation and biological interpretation. In general, animal movement occurs in continuous time but we observe it at fixed discrete-time intervals. Thus, continuous time is conceptually and theoretically appealing, but in practice it is perhaps more intuitive to interpret movement in discrete intervals. With an emphasis on state-space models, we explore the differences and similarities between continuous and discrete versions of mechanistic movement models, establish some common terminology, and indicate under which circumstances one form might be preferred over another. Counter to the overly simplistic view that discrete- and continuous-time conceptualizations are merely different means to the same end, we present novel mathematical results revealing hitherto unappreciated consequences of model formulation on inferences about animal movement. Notably, the speed and direction of movement are intrinsically linked in current continuous-time random walk formulations, and this can have important implications when interpreting animal behavior. We illustrate these concepts in the context of state-space models with multiple movement behavior states using northern fur seal (Callorhinus ursinus) biotelemetry data.

  12. When to be discrete: The importance of time formulation in understanding animal movement

    USGS Publications Warehouse

    McClintock, Brett T.; Johnson, Devin S.; Hooten, Mevin B.; Ver Hoef, Jay M.; Morales, Juan M.

    2014-01-01

    Animal movement is essential to our understanding of population dynamics, animal behavior, and the impacts of global change. Coupled with high-resolution biotelemetry data, exciting new inferences about animal movement have been facilitated by various specifications of contemporary models. These approaches differ, but most share common themes. One key distinction is whether the underlying movement process is conceptualized in discrete or continuous time. This is perhaps the greatest source of confusion among practitioners, both in terms of implementation and biological interpretation. In general, animal movement occurs in continuous time but we observe it at fixed discrete-time intervals. Thus, continuous time is conceptually and theoretically appealing, but in practice it is perhaps more intuitive to interpret movement in discrete intervals. With an emphasis on state-space models, we explore the differences and similarities between continuous and discrete versions of mechanistic movement models, establish some common terminology, and indicate under which circumstances one form might be preferred over another. Counter to the overly simplistic view that discrete- and continuous-time conceptualizations are merely different means to the same end, we present novel mathematical results revealing hitherto unappreciated consequences of model formulation on inferences about animal movement. Notably, the speed and direction of movement are intrinsically linked in current continuous-time random walk formulations, and this can have important implications when interpreting animal behavior. We illustrate these concepts in the context of state-space models with multiple movement behavior states using northern fur seal (Callorhinus ursinus) biotelemetry data.

  13. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation

    PubMed Central

    Lee, Michael L.; Katsuyama, Ângela M.; Duge, Leanne S.; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J.; de la Iglesia, Horacio O.

    2016-01-01

    Study Objectives: Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. Methods: We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. Results: When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Conclusions: Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. Citation: Lee ML, Katsuyama AM, Duge LS, Sriram C, Krushelnytskyy M, Kim JJ, de la Iglesia HO. Fragmentation of rapid eye movement and nonrapid eye movement sleep without total sleep loss impairs hippocampus-dependent fear memory consolidation. SLEEP 2016;39(11):2021–2031. PMID:27568801

  14. Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit.

    PubMed Central

    Lamb, G D; Walsh, T

    1987-01-01

    1. The Vaseline-gap technique was used to record slow calcium currents and asymmetric charge movement in single fibres of fast-twitch muscles (extensor digitorum longus (e.d.l.) and sternomastoid) and slow-twitch muscles (soleus) from rat and rabbit, at a holding potential of -90 mV. 2. The slow calcium current in soleus fibres was about one-third of the size of the current in e.d.l. fibres, but was very similar otherwise. In both e.d.l. and soleus fibres, the dihydropyridine (DHP), nifedipine, suppressed the calcium current entirely. 3. In these normally polarized fibres, nifedipine suppressed only part (qns) of the asymmetric charge movement. The proportion of qns suppressed by various concentrations of nifedipine was linearly related to the associated reduction of the calcium current. Half-maximal suppression of both parameters was obtained with about 0.5 microM-nifedipine. The calcium current and the qns component of the charge movement also were suppressed over the same time course by nifedipine. Another DHP calcium antagonist, (+)PN200/110, was indistinguishable from nifedipine in its effects of suppressing calcium currents and qns. 4. In all muscle types, the total amount of qns in each fibre was linearly related to the size of the calcium current (in the absence of DHP). On average, qns was 3.3 times larger in e.d.l. fibres than in soleus fibres. 5. In contrast to the other dihydropyridines, (-)bay K8644, a calcium channel agonist, did not suppress any asymmetric charge movement. 6. The potential dependence of the slow calcium current implied a minimum gating charge of about five or six electronic charges. The movement of qns occurred over a more negative potential range than the change in calcium conductance. 7. Experiments on the binding of (+)PN200/110 indicated that e.d.l. muscles had between about 2 and 3 times more specific DHP binding sites than did soleus muscle. 8. These results point to a close relationship between slow calcium channels, the qns component of the charge movement and DHP binding sites, in both fast- and slow-twitch mammalian muscle. qns appears to be part of the gating current of the T-system calcium channels. PMID:2451745

  15. Respiratory pattern in awake rats: effects of motor activity and of alerting stimuli.

    PubMed

    Kabir, Muammar M; Beig, Mirza I; Baumert, Mathias; Trombini, Mimosa; Mastorci, Francesca; Sgoifo, Andrea; Walker, Frederick R; Day, Trevor A; Nalivaiko, Eugene

    2010-08-04

    Our aim was to assess the impact of motor activity and of arousing stimuli on respiratory rate in the awake rats. The study was performed in male adult Sprague-Dawley (SD, n=5) and Hooded Wistar (HW, n=5) rats instrumented for ECG telemetry. Respiratory rate was recorded using whole-body plethysmograph, with a piezoelectric sensor attached for the simultaneous assessment of motor activity. All motor activity was found to be associated with an immediate increase in respiratory rate that remained elevated for the whole duration of movement; this was reflected by: i) bimodal distribution of respiratory intervals (modes for slow peak: 336+/-19 and 532+/-80 ms for HW and SD, p<0.05; modes for fast peak 128+/-6 and 132+/-7 ms for HW and SD, NS); and ii) a tight correlation between total movement time and total time of tachypnoea, with an R(2) ranging 0.96-0.99 (n=10, p<0001). The extent of motor-related tachypnoea was significantly correlated with the intensity of associated movement. Mild alerting stimuli produced stereotyped tachypnoeic responses, without affecting heart rate: tapping the chamber raised respiratory rate from 117+/-7 to 430+/-15 cpm; sudden side move--from 134+/-13 to 487+/-16 cpm, and turning on lights--from 136+/-12 to 507+/-14 cpm (n=10; p<0.01 for all; no inter-strain differences). We conclude that: i) sniffing is an integral part of the generalized arousal response and does not depend on the modality of sensory stimuli; ii) tachypnoea is a sensitive index of arousal; and iii) respiratory rate is tightly correlated with motor activity. Copyright 2010 Elsevier Inc. All rights reserved.

  16. The effect of divided attention on novices and experts in laparoscopic task performance.

    PubMed

    Ghazanfar, Mudassar Ali; Cook, Malcolm; Tang, Benjie; Tait, Iain; Alijani, Afshin

    2015-03-01

    Attention is important for the skilful execution of surgery. The surgeon's attention during surgery is divided between surgery and outside distractions. The effect of this divided attention has not been well studied previously. We aimed to compare the effect of dividing attention of novices and experts on a laparoscopic task performance. Following ethical approval, 25 novices and 9 expert surgeons performed a standardised peg transfer task in a laboratory setup under three randomly assigned conditions: silent as control condition and two standardised auditory distracting tasks requiring response (easy and difficult) as study conditions. Human reliability assessment was used for surgical task analysis. Primary outcome measures were correct auditory responses, task time, number of surgical errors and instrument movements. Secondary outcome measures included error rate, error probability and hand specific differences. Non-parametric statistics were used for data analysis. 21109 movements and 9036 total errors were analysed. Novices had increased mean task completion time (seconds) (171 ± 44SD vs. 149 ± 34, p < 0.05), number of total movements (227 ± 27 vs. 213 ± 26, p < 0.05) and number of errors (127 ± 51 vs. 96 ± 28, p < 0.05) during difficult study conditions compared to control. The correct responses to auditory stimuli were less frequent in experts (68 %) compared to novices (80 %). There was a positive correlation between error rate and error probability in novices (r (2) = 0.533, p < 0.05) but not in experts (r (2) = 0.346, p > 0.05). Divided attention conditions in theatre environment require careful consideration during surgical training as the junior surgeons are less able to focus their attention during these conditions.

  17. Deoxygenation and the blood volume signals in the flexor carpi ulnaris and radialis muscles obtained during the execution of the Mirallas's test of judo athletes

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan; Mirallas, Jaume A.

    1996-12-01

    The technique of execution of any movement in Judo is extremely important. The coaches want tests and tools easy to use and cheaper, to evaluate the progress of a judoist in the tatame. In this paper we present a test developed by Mirallas, which has his name 'Test of Mirallas' to evaluate the maximal power capacity of the judoist. The near infrared spectroscopy (NIRS) signals were obtained to have a measurement of the metabolic work of the flexor carpi ulnaris and radialis muscles, during the execution of the ippon-seoi-nage movement, allowing this measurement to assess by NIRS the maximal oxygen uptake. Also obtained were tympanic, skin forehead, and biceps brachii temperatures during the test time and recovery phase to study the effects of ambient conditions and the post-exercise oxygen consumption. The deoxygenation and blood volume signals obtained gave different results, demonstrating the hypothesis of the coaches that some judoist do the execution of the ippon-seoi-nage movement correctly and the rest didn't. The heart rate frequency obtained in the group of judoist was between 190-207 bpm, and in the minute five of post-exercise was 114-137 bpm; the time employed in the MIrallas's test were from 7 feet 14 inches to 13 feet 49 inches, and the total of movements were from 199 to 409. The data obtained in the skin forehead, and skin biceps brachii confirms previous works that the oxygen consumption remains after exercise in the muscle studied. According to the results, the test developed by Mirallas is a good tool to evaluate the performance of judoist any time, giving better results compared with standard tests.

  18. Relationship between movement time and hip moment impulse in the sagittal plane during sit-to-stand movement: a combined experimental and computer simulation study.

    PubMed

    Inai, Takuma; Takabayashi, Tomoya; Edama, Mutsuaki; Kubo, Masayoshi

    2018-04-27

    The association between repetitive hip moment impulse and the progression of hip osteoarthritis is a recently recognized area of study. A sit-to-stand movement is essential for daily life and requires hip extension moment. Although a change in the sit-to-stand movement time may influence the hip moment impulse in the sagittal plane, this effect has not been examined. The purpose of this study was to clarify the relationship between sit-to-stand movement time and hip moment impulse in the sagittal plane. Twenty subjects performed the sit-to-stand movement at a self-selected natural speed. The hip, knee, and ankle joint angles obtained from experimental trials were used to perform two computer simulations. In the first simulation, the actual sit-to-stand movement time obtained from the experiment was entered. In the second simulation, sit-to-stand movement times ranging from 0.5 to 4.0 s at intervals of 0.25 s were entered. Hip joint moments and hip moment impulses in the sagittal plane during sit-to-stand movements were calculated for both computer simulations. The reliability of the simulation model was confirmed, as indicated by the similarities in the hip joint moment waveforms (r = 0.99) and the hip moment impulses in the sagittal plane between the first computer simulation and the experiment. In the second computer simulation, the hip moment impulse in the sagittal plane decreased with a decrease in the sit-to-stand movement time, although the peak hip extension moment increased with a decrease in the movement time. These findings clarify the association between the sit-to-stand movement time and hip moment impulse in the sagittal plane and may contribute to the prevention of the progression of hip osteoarthritis.

  19. Kinect based real-time position calibration for nasal endoscopic surgical navigation system

    NASA Astrophysics Data System (ADS)

    Fan, Jingfan; Yang, Jian; Chu, Yakui; Ma, Shaodong; Wang, Yongtian

    2016-03-01

    Unanticipated, reactive motion of the patient during skull based tumor resective surgery is the source of the consequence that the nasal endoscopic tracking system is compelled to be recalibrated. To accommodate the calibration process with patient's movement, this paper developed a Kinect based Real-time positional calibration method for nasal endoscopic surgical navigation system. In this method, a Kinect scanner was employed as the acquisition part of the point cloud volumetric reconstruction of the patient's head during surgery. Then, a convex hull based registration algorithm aligned the real-time image of the patient head with a model built upon the CT scans performed in the preoperative preparation to dynamically calibrate the tracking system if a movement was detected. Experimental results confirmed the robustness of the proposed method, presenting a total tracking error within 1 mm under the circumstance of relatively violent motions. These results point out the tracking accuracy can be retained stably and the potential to expedite the calibration of the tracking system against strong interfering conditions, demonstrating high suitability for a wide range of surgical applications.

  20. Mental Transformation Skill in Young Children: The Role of Concrete and Abstract Motor Training.

    PubMed

    Levine, Susan C; Goldin-Meadow, Susan; Carlson, Matthew T; Hemani-Lopez, Naureen

    2018-05-01

    We examined the effects of three different training conditions, all of which involve the motor system, on kindergarteners' mental transformation skill. We focused on three main questions. First, we asked whether training that involves making a motor movement that is relevant to the mental transformation-either concretely through action (action training) or more abstractly through gestural movements that represent the action (move-gesture training)-resulted in greater gains than training using motor movements irrelevant to the mental transformation (point-gesture training). We tested children prior to training, immediately after training (posttest), and 1 week after training (retest), and we found greater improvement in mental transformation skill in both the action and move-gesture training conditions than in the point-gesture condition, at both posttest and retest. Second, we asked whether the total gain made by retest differed depending on the abstractness of the movement-relevant training (action vs. move-gesture), and we found that it did not. Finally, we asked whether the time course of improvement differed for the two movement-relevant conditions, and we found that it did-gains in the action condition were realized immediately at posttest, with no further gains at retest; gains in the move-gesture condition were realized throughout, with comparable gains from pretest-to-posttest and from posttest-to-retest. Training that involves movement, whether concrete or abstract, can thus benefit children's mental transformation skill. However, the benefits unfold differently over time-the benefits of concrete training unfold immediately after training (online learning); the benefits of more abstract training unfold in equal steps immediately after training (online learning) and during the intervening week with no additional training (offline learning). These findings have implications for the kinds of instruction that can best support spatial learning. Copyright © 2018 Cognitive Science Society, Inc.

  1. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements

    PubMed Central

    Bravi, Riccardo; Quarta, Eros; Cohen, Erez J.; Gottard, Anna; Minciacchi, Diego

    2014-01-01

    A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance. PMID:25309355

  2. Impact of movement training on upper limb motor strategies in persons with shoulder impingement syndrome

    PubMed Central

    Roy, Jean-Sébastien; Moffet, Hélène; McFadyen, Bradford J; Lirette, Richard

    2009-01-01

    Background Movement deficits, such as changes in the magnitude of scapulohumeral and scapulathoracic muscle activations or perturbations in the kinematics of the glenohumeral, sternoclavicular and scapulothoracic joints, have been observed in people with shoulder impingement syndrome. Movement training has been suggested as a mean to contribute to the improvement of the motor performance in persons with musculoskeletal impairments. However, the impact of movement training on the movement deficits of persons with shoulder impingement syndrome is still unknown. The aim of this study was to evaluate the short-term effects of supervised movement training with feedback on the motor strategies of persons with shoulder impingement syndrome. Methods Thirty-three subjects with shoulder impingement were recruited. They were involved in two visits, one day apart. During the first visit, supervised movement training with feedback was performed. The upper limb motor strategies were evaluated before, during, immediately after and 24 hours after movement training. They were characterized during reaching movements in the frontal plane by EMG activity of seven shoulder muscles and total excursion and final position of the wrist, elbow, shoulder, clavicle and trunk. Movement training consisted of reaching movements performed under the supervision of a physiotherapist who gave feedback aimed at restoring shoulder movements. One-way repeated measures ANOVAs were run to analyze the effect of movement training. Results During, immediately after and 24 hours after movement training with feedback, the EMG activity was significantly decreased compared to the baseline level. For the kinematics, total joint excursion of the trunk and final joint position of the trunk, shoulder and clavicle were significantly improved during and immediately after training compared to baseline. Twenty-four hours after supervised movement training, the kinematics of trunk, shoulder and clavicle were back to the baseline level. Conclusion Movement training with feedback brought changes in motor strategies and improved temporarily some aspects of the kinematics. However, one training session was not enough to bring permanent improvement in the kinematic patterns. These results demonstrate the potential of movement training in the rehabilitation of movement deficits associated with shoulder impingement syndrome. PMID:19445724

  3. Kinematic and kinetic analyses of the toes in dance movements.

    PubMed

    Jarvis, Danielle N; Kulig, Kornelia

    2016-09-01

    Due to the significant amount of time dancers spend on the forefoot, loads on the metatarsophalangeal joints are likely high, yet vary between dance movements. The purpose of this study was to compare joint motion and net joint moments at the metatarsophalangeal joints during three different dance movements ranging in demands at the foot and ankle joints. Ten healthy, female dancers (27.6 ± 3.2 years; 56.3 ± 6.9 kg; 1.6 ± 0.1 m) with an average 21.7 ± 4.9 years of dance training performed relevés (rising up onto the toes), sautés (vertical bipedal jumps), and saut de chat leaps (split jumps involving both vertical and horizontal components). Metatarsophalangeal joint kinematics and kinetics in the sagittal plane were calculated. Total excursion and peak net joint moments during rising or push-off were compared between the three dance movements. Greater extension of the metatarsophalangeal joints was seen during relevés compared to sautés or saut de chat leaps, and the largest metatarsophalangeal net joint moments were seen during saut de chat leaps. The metatarsophalangeal joints frequently and repetitively manage external loads and substantial metatarsophalangeal extension during these three dance movements, which may contribute to the high rate of foot and ankle injuries in dancers.

  4. Lagtime of river systems to changes in pollutant load on the catchment: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Żurek, Anna J.; Różański, Kazimierz; Witczak, Stanisław

    2017-04-01

    Transport of conservative contaminants through groundwater systems (e.g. nitrate under oxidized conditions) is significantly delayed when compared to movement of those contaminants through surface water compartments. Characteristic time scales of groundwater movement may easily reach tens or hundreds of years. This results in large lagtimes of contaminant transport in the subsurface. These lagtimes are particularly important when response of river basins to measures aimed at recovery of good groundwater status is considered. Incorporating lagtime principles into water quality regulations may result in more realistic expectations when such policies are designed and implemented. The lagtime of contaminant transport in the subsurface with respect to transport through surface and near-surface (drainage) runoff can be separated into two components: (i) the delay associated with travel time of water (and contaminants) through the unsaturated zone, and (ii) the delay linked to time scales of groundwater flow, from the recharge area down to the discharge zone (river). Thus, the travel time of water through unsaturated and saturated zones can be considered a quantitative measure of the lagtime. Lagtime in the unsaturated zone on the territory of Poland was assessed on the basis of the existing Groundwater Vulnerability Map of Poland (GVMP) (Witczak et al., 2007; 2011). The adopted approach relies on MRT (Mean Residence Time) of water in the strata separating the saturated aquifer from the land surface, as an integrated vulnerability index. In the framework of GVMP, the MRT is calculated as turnover time of the infiltrating water in the vadose zone. The piston-flow type of water movement through the unsaturated zone is considered. The lagtime in the saturated zone (Tsat) can be approximated by travel time of water, flowing along the local hydraulic gradient to the closest river. The lagtime of river systems with respect to changes in pollutant load on the catchment is a sum of the travel time of water through the unsaturated zone (MRT) and the travel time associated with movement of water in the saturated zone (Tsat). Preliminary assessments of total lagtime (MRT + Tsat) suggest that for the territory of Poland the mean value of the total lagtime of conservative contaminant is in the order of 25 years, with the range of 10 to 60 years corresponding to one standard deviation. References: Witczak S. (Ed.) (2011). Groundwater Vulnerability Map of Poland. Ministerstwo Środowiska. Warszawa. Witczak S., Duda R., Zurek A. (2007). The Polish concept of groundwater vulnerability mapping. [In:] Witkowski A.J., Kowalczyk A., Vrba J., Groundwater Vulnerability Assessment and Mapping, Selected Papers on Hydrogeology 11, 45-59. Acknowledgements. The work was carried out as part of the project BONUS Soils2Sea and the statutory funds of the AGH University of Science and Technology (projects No.11.11.140.797 and 11.11.220.01).

  5. A Biomechanical Comparison of the Long Snap in Football Between High School and University Football Players.

    PubMed

    Chizewski, Michael G; Alexander, Marion J L

    2015-08-01

    Limited previous research was located that examined the technique of the long snap in football. The purpose of the study was to compare the joint movements, joint velocities, and body positions used to perform fast and accurate long snaps in high school (HS) and university (UNI) athletes. Ten HS and 10 UNI subjects were recruited for filming, each performing 10 snaps at a target with the fastest and most accurate trial being selected for subject analysis. Eighty-three variables were measured using Dartfish Team Pro 4.5.2 video analysis software, with statistical analysis performed using Microsoft Excel and SPSS 16.0. Several significant comparisons to long snapping technique between groups were noted during analysis; however, the body position and movement variables at release showed the greatest number of significant differences. The UNI athletes demonstrated significantly higher release velocity and left elbow extension velocity, with significantly lower release height and release angle than the HS group. Total snap time (release time + total flight time) was determined to have the strongest correlation to release velocity for the HS group (r = -0.915) and UNI group (r = -0.918). The study suggests HS long snappers may benefit from less elbow flexion and more knee flexion in the backswing (set position) to increase release velocity. University long snappers may benefit from increased left elbow extension range of motion during force production and decreased shoulder flexion at critical instant to increase long snap release velocity.

  6. Radiosteriometric analysis of movement in the sacroiliac joint during a single-leg stance in patients with long-lasting pelvic girdle pain.

    PubMed

    Kibsgård, Thomas J; Røise, Olav; Sturesson, Bengt; Röhrl, Stephan M; Stuge, Britt

    2014-04-01

    Chamberlain's projections (anterior-posterior X-ray of the pubic symphysis) have been used to diagnose sacroiliac joint mobility during the single-leg stance test. This study examined the movement in the sacroiliac joint during the single-leg stance test with precise radiostereometric analysis. Under general anesthesia, tantalum markers were inserted into the dorsal sacrum and the ilium of 11 patients with long-lasting and severe pelvic girdle pain. After two to three weeks, a radiostereometric analysis was conducted while the subjects performed a single-leg stance. Small movements were detected in the sacroiliac joint during the single-leg stance. In both the standing- and hanging-leg sacroiliac join, a total of 0.5 degree rotation was observed; however, no translations were detected. There were no differences in total movement between the standing- and hanging-leg sacroiliac joint. The movement in the sacroiliac joint during the single-leg stance is small and almost undetectable by the precise radiostereometric analysis. A complex movement pattern was seen during the test, with a combination of movements in the two joints. The interpretation of the results of this study is that, the Chamberlain examination likely is inadequate in the examination of sacroiliac joint movement in patients with pelvic girdle pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Inverse dynamic investigation of voluntary trunk movements in weightlessness: a new microgravity-specific strategy.

    PubMed

    Pedrocchi, Alessandra; Pedotti, Antonio; Baroni, Guido; Massion, Jean; Ferrigno, Giancarlo

    2003-11-01

    Present investigation faces the question of quantitative assessment of exchanged forces and torques at the restraints during whole body posture exercises in long-term microgravity. Inverse dynamic modelling and total angular momentum at the ankle joint were used in order to reconstruct movement dynamics at the restraining point, represented by the ankle joint. The hypothesis is that the minimisation of the torques at the interface point assumes a key role in movement planning in 0 g. This hypothesis would respond to an optimisation of muscles activity, a minimisation of energy expenditure and therefore an accurate control of body movement. Results show that the 0 g movement strategy adopted ensures that the integral of the net ankle moment between the beginning and the end of the movement is zero. This expected mechanical constraint is not satisfied when 0 g movement dynamics is simulated using terrestrial kinematics. This accounts for a significant imposed change of movement strategy. Particularly, the efficient compensation of the inertial effects of the segments in terms of total angular momentum at the ankle joint was evidenced. These results explain the exaggerated axial synergies, observed on kinematics and which moved centre of mass (CM) backward from its already backward initial positioning, as a tool for enhancing the compensation and achieving the desired minimisation of the torques exchanges at the restraints.

  8. 77 FR 10799 - Revised Guidance for Requesting One-Time Movement (OTM) Approvals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... DEPARTMENT OF TRANSPORTATION Federal Railroad Administration Revised Guidance for Requesting One-Time Movement (OTM) Approvals AGENCY: Federal Railroad Administration (FRA), Department of... as one-time movement approvals (OTMA). Recently, FRA revised its OTMA procedures to streamline the...

  9. 77 FR 70876 - Revised Guidance for Requesting One-Time Movement Approvals (OTMA)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... DEPARTMENT OF TRANSPORTATION Federal Railroad Administration Revised Guidance for Requesting One-Time Movement Approvals (OTMA) AGENCY: Federal Railroad Administration (FRA), Department of... revised guidance for requesting one-time movement approvals (OTMA) for the transportation by rail of...

  10. Analysis of horse movements from non-commercial horse properties in New Zealand.

    PubMed

    Rosanowski, S M; Cogger, N; Rogers, C W; Bolwell, C F; Benschop, J; Stevenson, M A

    2013-09-01

    To investigate property-level factors associated with the movement of horses from non-commercial horse properties, including the size and location of the property, number and reason for keeping horses. Using a cross-sectional survey 2,912 questionnaires were posted to randomly selected non-commercial horse properties listed in a rural property database. The survey collected information about the number of horses, and reasons for keeping horses on the property, and any movement of horses in the previous 12 months. Three property-level outcomes were investigated; the movement status of the property, the frequency of movement events, and the median distance travelled from a property. Associations were examined using logistic regression and Kruskal-Wallis analysis of variance. In total 62.0% (488/791) of respondents reported at least one movement event in the year prior to the survey, for a total of 22,050 movement events. The number of movement events from a property varied significantly by the number of horses on the property (p<0.02), while the median distance travelled per property varied significantly by both region (p<0.03) and property size (p<0.01). Region, property size, the number of horses kept, and keeping horses for competition, recreation, racing or as pets were all significantly associated with movement status in the multivariable analyses (p<0.001). This study showed that there are characteristics of non-commercial horse properties that influence movement behaviour. During an exotic disease outbreak the ability to identify properties with these characteristics for targeted control will enhance the effectiveness of control measures.

  11. Functional Movement Screen for Predicting Running Injuries in 18- to 24-Year-Old Competitive Male Runners.

    PubMed

    Hotta, Takayuki; Nishiguchi, Shu; Fukutani, Naoto; Tashiro, Yuto; Adachi, Daiki; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Aoyama, Tomoki

    2015-10-01

    The purpose of this study was to investigate whether the functional movement screen (FMS) could predict running injuries in competitive runners. Eighty-four competitive male runners (average age = 20.0 ± 1.1 years) participated. Each subject performed the FMS, which consisted of 7 movement tests (each score range: 0-3, total score range: 0-21), during the preseason. The incidence of running injuries (time lost because of injury ≤ 4 weeks) was investigated through a follow-up survey during the 6-month season. Mann-Whitney U-tests were used to investigate which movement tests were significantly associated with running injuries. The receiver-operator characteristic (ROC) analysis was used to determine the cutoff. The mean FMS composite score was 14.1 ± 2.3. The ROC analysis determined the cutoff at 14/15 (sensitivity = 0.73, specificity = 0.54), suggesting that the composite score had a low predictability for running injuries. However, the total scores (0-6) from the deep squat (DS) and active straight leg raise (ASLR) tests (DS and ASLR), which were significant with the U-test, had relatively high predictability at the cutoff of 3/4 (sensitivity = 0.73, specificity = 0.74). Furthermore, the multivariate logistic regression analysis revealed that the DS and ASLR scores of ≤3 significantly influenced the incidence of running injuries after adjusting for subjects' characteristics (odds ratio = 9.7, 95% confidence interval = 2.1-44.4). Thus, the current study identified the DS and ASLR score as a more effective method than the composite score to screen the risk of running injuries in competitive male runners.

  12. Relationship between masticatory performance using a gummy jelly and masticatory movement.

    PubMed

    Uesugi, Hanako; Shiga, Hiroshi

    2017-10-01

    The purpose of this study was to clarify the relationship between masticatory performance using a gummy jelly and masticatory movement. Thirty healthy males were asked to chew a gummy jelly on their habitual chewing side for 20s, and the parameters of masticatory performance and masticatory movement were calculated as follows. For evaluating the masticatory performance, the amount of glucose extraction during chewing of a gummy jelly was measured. For evaluating the masticatory movement, the movement of the mandibular incisal point was recorded using the MKG K6-I, and ten parameters of the movement path (opening distance and masticatory width), movement rhythm (opening time, closing time, occluding time, and cycle time), stability of movement (stability of path and stability of rhythm), and movement velocity (opening maximum velocity and closing maximum velocity) were calculated from 10 cycles of chewing beginning with the fifth cycle. The relationship between the amount of glucose extraction and parameters representing masticatory movement was investigated and then stepwise multiple linear regression analysis was performed. The amount of glucose extraction was associated with 7 parameters representing the masticatory movement. Stepwise multiple linear regression analysis showed that the opening distance, closing time, stability of rhythm, and closing maximum velocity were the most important factors affecting the glucose extraction. From these results it was suggested that there was a close relation between masticatory performance and masticatory movement, and that the masticatory performance could be increased by rhythmic, rapid and stable mastication with a large opening distance. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. Network analysis of pig movements: Loyalty patterns and contact chains of different holding types in Denmark

    PubMed Central

    Boklund, Anette; Halasa, Tariq H. B.; Toft, Nils; Lentz, Hartmut H. K.

    2017-01-01

    Understanding animal movements is an important factor for the development of meaningful surveillance and control programs, but also for the development of disease spread models. We analysed the Danish pig movement network using static and temporal network analysis tools to provide deeper insight in the connection between holdings dealing with pigs, such as breeding and multiplier herds, production herds, slaughterhouses or traders. Pig movements, which occurred between 1st January 2006 and 31st December 2015 in Denmark, were summarized to investigate temporal trends such as the number of active holdings, the number of registered movements and the number of pigs moved. To identify holdings and holding types with potentially higher risk for introduction or spread of diseases via pig movements, we determined loyalty patterns, annual network components and contact chains for the 24 registered holding types. The total number of active holdings as well as the number of pig movements decreased during the study period while the holding sizes increased. Around 60–90% of connections between two pig holdings were present in two consecutive years and around one third of the connections persisted within the considered time period. Weaner herds showed the highest level of in-loyalty, whereas we observed an intermediate level of in-loyalty for all breeding sites and for production herds. Boar stations, production herds and trade herds showed a high level of out-loyalty. Production herds constituted the highest proportion of holdings in the largest strongly connected component. All production sites showed low levels of in-going contact chains and we observed a high level of out-going contact chain for breeding and multiplier herds. Except for livestock auctions, all transit sites also showed low levels of out-going contact chains. Our results reflect the pyramidal structure of the underlying network. Based on the considered disease, the time frame for the calculation of network measurements needs to be adapted. Using these adapted values for loyalty and contact chains might help to identify holdings with high potential of spreading diseases and thus limit the outbreak size or support control or eradication of the considered pathogen. PMID:28662077

  14. Network analysis of pig movements: Loyalty patterns and contact chains of different holding types in Denmark.

    PubMed

    Schulz, Jana; Boklund, Anette; Halasa, Tariq H B; Toft, Nils; Lentz, Hartmut H K

    2017-01-01

    Understanding animal movements is an important factor for the development of meaningful surveillance and control programs, but also for the development of disease spread models. We analysed the Danish pig movement network using static and temporal network analysis tools to provide deeper insight in the connection between holdings dealing with pigs, such as breeding and multiplier herds, production herds, slaughterhouses or traders. Pig movements, which occurred between 1st January 2006 and 31st December 2015 in Denmark, were summarized to investigate temporal trends such as the number of active holdings, the number of registered movements and the number of pigs moved. To identify holdings and holding types with potentially higher risk for introduction or spread of diseases via pig movements, we determined loyalty patterns, annual network components and contact chains for the 24 registered holding types. The total number of active holdings as well as the number of pig movements decreased during the study period while the holding sizes increased. Around 60-90% of connections between two pig holdings were present in two consecutive years and around one third of the connections persisted within the considered time period. Weaner herds showed the highest level of in-loyalty, whereas we observed an intermediate level of in-loyalty for all breeding sites and for production herds. Boar stations, production herds and trade herds showed a high level of out-loyalty. Production herds constituted the highest proportion of holdings in the largest strongly connected component. All production sites showed low levels of in-going contact chains and we observed a high level of out-going contact chain for breeding and multiplier herds. Except for livestock auctions, all transit sites also showed low levels of out-going contact chains. Our results reflect the pyramidal structure of the underlying network. Based on the considered disease, the time frame for the calculation of network measurements needs to be adapted. Using these adapted values for loyalty and contact chains might help to identify holdings with high potential of spreading diseases and thus limit the outbreak size or support control or eradication of the considered pathogen.

  15. A Comparison of Athletic Movement Among Talent-Identified Juniors From Different Football Codes in Australia: Implications for Talent Development.

    PubMed

    Woods, Carl T; Keller, Brad S; McKeown, Ian; Robertson, Sam

    2016-09-01

    Woods, CT, Keller, BS, McKeown, I, and Robertson, S. A comparison of athletic movement among talent-identified juniors from different football codes in Australia: implications for talent development. J Strength Cond Res 30(9): 2440-2445, 2016-This study aimed to compare the athletic movement skill of talent-identified (TID) junior Australian Rules football (ARF) and soccer players. The athletic movement skill of 17 TID junior ARF players (17.5-18.3 years) was compared against 17 TID junior soccer players (17.9-18.7 years). Players in both groups were members of an elite junior talent development program within their respective football codes. All players performed an athletic movement assessment that included an overhead squat, double lunge, single-leg Romanian deadlift (both movements performed on right and left legs), a push-up, and a chin-up. Each movement was scored across 3 essential assessment criteria using a 3-point scale. The total score for each movement (maximum of 9) and the overall total score (maximum of 63) were used as the criterion variables for analysis. A multivariate analysis of variance tested the main effect of football code (2 levels) on the criterion variables, whereas a 1-way analysis of variance identified where differences occurred. A significant effect was noted, with the TID junior ARF players outscoring their soccer counterparts when performing the overhead squat and push-up. No other criterions significantly differed according to the main effect. Practitioners should be aware that specific sporting requirements may incur slight differences in athletic movement skill among TID juniors from different football codes. However, given the low athletic movement skill noted in both football codes, developmental coaches should address the underlying movement skill capabilities of juniors when prescribing physical training in both codes.

  16. Head, withers and pelvic movement asymmetry and their relative timing in trot in racing Thoroughbreds in training.

    PubMed

    Pfau, T; Noordwijk, K; Sepulveda Caviedes, M F; Persson-Sjodin, E; Barstow, A; Forbes, B; Rhodin, M

    2018-01-01

    Horses show compensatory head movement in hindlimb lameness and compensatory pelvis movement in forelimb lameness but little is known about the relationship of withers movement symmetry with head and pelvic asymmetry in horses with naturally occurring gait asymmetries. To document head, withers and pelvic movement asymmetry and timing differences in horses with naturally occurring gait asymmetries. Retrospective analysis of gait data. Head, withers and pelvic movement asymmetry and timing of displacement minima and maxima were quantified from inertial sensors in 163 Thoroughbreds during trot-ups on hard ground. Horses were divided into 4 subgroups using the direction of head and withers movement asymmetry. Scatter plots of head vs. pelvic movement asymmetry illustrated how the head-withers relationship distinguishes between contralateral and ipsilateral head-pelvic movement asymmetry. Independent t test or Mann-Whitney U test (P<0.05) compared pelvic movement asymmetry and timing differences between groups. The relationship between head and withers asymmetry (i.e. same sided or opposite sided asymmetry) predicts the relationship between head and pelvic asymmetry in 69-77% of horses. Pelvic movement symmetry was significantly different between horses with same sign vs. opposite sign of head-withers asymmetry (P<0.0001). Timing of the maximum head height reached after contralateral ('sound') stance was delayed compared to withers (P = 0.02) and pelvis (P = 0.04) in horses with contralateral head-withers asymmetry. The clinical lameness status of the horses was not investigated. In the Thoroughbreds with natural gait asymmetries investigated here, the direction of head vs. withers movement asymmetry identifies the majority of horses with ipsilateral and contralateral head and pelvic movement asymmetries. Withers movement should be further investigated for differentiating between forelimb and hindlimb lame horses. Horses with opposite sided head and withers asymmetry significantly delay the upward movement of the head after 'sound' forelimb stance. © 2017 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

  17. Entropy of space-time outcome in a movement speed-accuracy task.

    PubMed

    Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M

    2015-12-01

    The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Pulmonary function in children with development coordination disorder.

    PubMed

    Wu, Sheng K; Cairney, John; Lin, Hsiao-Hui; Li, Yao-Chuen; Song, Tai-Fen

    2011-01-01

    The purpose of this study was to compare pulmonary function in children with developmental coordination disorder (DCD) with children who are typically developing (TD), and also analyze possible gender differences in pulmonary function between these groups. The Movement ABC test was used to identify the movement coordination ability of children. Two hundred and fifty participants (90 children with DCD and 160 TD children) aged 9-10 years old completed this study. Using the KoKo spirometry, forced vital capacity (FVC) and forced expiratory volume in 1s (FEV(1.0)) were used to measure pulmonary function. The 800-m run was also conducted to assess cardiopulmonary fitness of children in the field. There was a significant difference in pulmonary function between TD children and those with DCD. The values of FVC and FEV(1.0) in TD children were significantly higher than in children with DCD. A significant, but low correlation (r = -0.220, p < .001) was found between total score on the MABC and FVC; similarly, a positive but low correlation (r = 0.252, p < .001) was found between total score on the MABC and the completion time of 800-m run. However, no significant correlation between FVC and the time of 800-m run was found (p > .05). Significant correlations between total score on the MABC and the completion time of the 800-m run (r = 0.352, p < .05) and between FVC and the time of 800-m run (r = -0.285, p < .05) were observed in girls with DCD but not boys with this condition. Based on the results of this study, pulmonary function in children with DCD was significantly lower than that of TD children. The field test, 800-m run, may not be a good indicator to distinguish aerobic ability between children with DCD and those who are TD. It is possible that poor pulmonary function in children with DCD is due to reduced physical activity in this population. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Transitions between discrete and rhythmic primitives in a unimanual task

    PubMed Central

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  20. Moving Events in Time: Time-Referent Hand-Arm Movements Influence Perceived Temporal Distance to Past Events

    ERIC Educational Resources Information Center

    Blom, Stephanie S. A. H.; Semin, Gun R.

    2013-01-01

    We examine and find support for the hypothesis that time-referent hand-arm movements influence temporal judgments. In line with the concept of "left is associated with earlier times, and right is associated with later times," we show that performing left (right) hand-arm movements while thinking about a past event increases (decreases) the…

  1. Preoperative ropivacaine with or without tramadol for femoral nerve block in total knee arthroplasty.

    PubMed

    Tang, Q; Li, X; Yu, L; Hao, Y; Lu, G

    2016-08-01

    To compare the analgesic effect of preoperative ropivacaine with or without tramadol for femoral nerve block in total knee arthroplasty (TKA). 14 men and 46 women aged 59 to 80 years who were American Society of Anesthesiologists (ASA) grade I or II and were scheduled for TKA were randomised to receive preoperative femoral nerve block with 20 ml of 0.375% ropivacaine plus tramadol 0 mg (n=15), 50 mg (n=15), or 100 mg (n=15), or no preoperative femoral nerve block (control) [n=15]. Femoral nerve block was performed by a single anaesthesiologist before the standardised combined spinal epidural anaesthesia. Postoperatively, patientcontrolled analgesia was given. The visual analogue score (VAS) for pain at rest and on movement was recorded at 8, 12, 24, 48, and 72 hours. Passive knee range of motion (ROM) was measured at 24, 48, and 72 hours. The 4 groups were comparable in terms of age, gender, weight, ASA grade, and operating time. Compared with patients who received no femoral nerve block or ropivacaine alone, those who received femoral nerve block with 20 ml of 0.375% ropivacaine plus tramadol 50 mg or 100 mg recorded a lower VAS for pain at rest and on movement at 8 to 72 hours, longer sensory and motor block time, and lower demand, delivery, and total amount of patientcontrolled analgesia. The passive knee ROM at 24 to 72 hours was greater in patients with femoral nerve block than in those without. Preoperative femoral nerve block with 20 ml of 0.375% ropivacaine and 100 mg tramadol resulted in the best analgesic effect.

  2. Preliminary Experience Using Eye-Tracking Technology to Differentiate Novice and Expert Image Interpretation for Ultrasound-Guided Regional Anesthesia.

    PubMed

    Borg, Lindsay K; Harrison, T Kyle; Kou, Alex; Mariano, Edward R; Udani, Ankeet D; Kim, T Edward; Shum, Cynthia; Howard, Steven K

    2018-02-01

    Objective measures are needed to guide the novice's pathway to expertise. Within and outside medicine, eye tracking has been used for both training and assessment. We designed this study to test the hypothesis that eye tracking may differentiate novices from experts in static image interpretation for ultrasound (US)-guided regional anesthesia. We recruited novice anesthesiology residents and regional anesthesiology experts. Participants wore eye-tracking glasses, were shown 5 sonograms of US-guided regional anesthesia, and were asked a series of anatomy-based questions related to each image while their eye movements were recorded. The answer to each question was a location on the sonogram, defined as the area of interest (AOI). The primary outcome was the total gaze time in the AOI (seconds). Secondary outcomes were the total gaze time outside the AOI (seconds), total time to answer (seconds), and time to first fixation on the AOI (seconds). Five novices and 5 experts completed the study. Although the gaze time (mean ± SD) in the AOI was not different between groups (7 ± 4 seconds for novices and 7 ± 3 seconds for experts; P = .150), the gaze time outside the AOI was greater for novices (75 ± 18 versus 44 ± 4 seconds for experts; P = .005). The total time to answer and total time to first fixation in the AOI were both shorter for experts. Experts in US-guided regional anesthesia take less time to identify sonoanatomy and spend less unfocused time away from a target compared to novices. Eye tracking is a potentially useful tool to differentiate novices from experts in the domain of US image interpretation. © 2017 by the American Institute of Ultrasound in Medicine.

  3. Territory surveillance and prey management: Wolves keep track of space and time.

    PubMed

    Schlägel, Ulrike E; Merrill, Evelyn H; Lewis, Mark A

    2017-10-01

    Identifying behavioral mechanisms that underlie observed movement patterns is difficult when animals employ sophisticated cognitive-based strategies. Such strategies may arise when timing of return visits is important, for instance to allow for resource renewal or territorial patrolling. We fitted spatially explicit random-walk models to GPS movement data of six wolves ( Canis lupus ; Linnaeus, 1758) from Alberta, Canada to investigate the importance of the following: (1) territorial surveillance likely related to renewal of scent marks along territorial edges, to reduce intraspecific risk among packs, and (2) delay in return to recently hunted areas, which may be related to anti-predator responses of prey under varying prey densities. The movement models incorporated the spatiotemporal variable "time since last visit," which acts as a wolf's memory index of its travel history and is integrated into the movement decision along with its position in relation to territory boundaries and information on local prey densities. We used a model selection framework to test hypotheses about the combined importance of these variables in wolf movement strategies. Time-dependent movement for territory surveillance was supported by all wolf movement tracks. Wolves generally avoided territory edges, but this avoidance was reduced as time since last visit increased. Time-dependent prey management was weak except in one wolf. This wolf selected locations with longer time since last visit and lower prey density, which led to a longer delay in revisiting high prey density sites. Our study shows that we can use spatially explicit random walks to identify behavioral strategies that merge environmental information and explicit spatiotemporal information on past movements (i.e., "when" and "where") to make movement decisions. The approach allows us to better understand cognition-based movement in relation to dynamic environments and resources.

  4. On the dynamic dependence and asymmetric co-movement between the US and Central and Eastern European transition markets

    NASA Astrophysics Data System (ADS)

    Boubaker, Heni; Raza, Syed Ali

    2016-10-01

    In this paper, we attempt to evaluate the time-varying and asymmetric co-movement of CEE equity markets with the US stock markets around the subprime crisis and the resulting global financial crisis. The econometric approach adopted is based on recent development of time-varying copulas. For that, we propose a new class of time-varying copulas that allows for long memory behavior in both marginal and joint distributions. Our empirical approach relies on the flexibility and usefulness of bivariate copulas that allow to model not only the dynamic co-movement through time but also to account for any extreme interaction, nonlinearity and asymmetry in the co-movement patterns. The time-varying dependence structure can be also modeled conditionally on the economic policy uncertainty index of the crisis country. Empirical results show strong evidence of co-movement between the US and CEE equity markets and find that the co-movement exhibits large time-variations and asymmetry in the tails of the return distributions.

  5. Two-phase strategy of neural control for planar reaching movements: II--relation to spatiotemporal characteristics of movement trajectory.

    PubMed

    Rand, Miya K; Shimansky, Yury P

    2013-09-01

    In the companion paper utilizing a quantitative model of optimal motor coordination (Part I, Rand and Shimansky, in Exp Brain Res 225:55-73, 2013), we examined coordination between X and Y movement directions (XYC) during reaching movements performed under three prescribed speeds, two movement amplitudes, and two target sizes. The obtained results indicated that the central nervous system (CNS) utilizes a two-phase strategy, where the initial and the final phases correspond to lower and higher precision of information processing, respectively, for controlling goal-directed reach-type movements to optimize the total cost of task performance including the cost of neural computations. The present study investigates how two different well-known concepts used for describing movement performance relate to the concepts of optimal XYC and two-phase control strategy. First, it is examined to what extent XYC is equivalent to movement trajectory straightness. The data analysis results show that the variability, the movement trajectory's deviation from the straight line, increases with an increase in prescribed movement speed. In contrast, the dependence of XYC strength on movement speed is opposite (in total agreement with an assumption of task performance optimality), suggesting that XYC is a feature of much higher level of generality than trajectory straightness. Second, it is tested how well the ballistic and the corrective components described in the traditional concept of two-component model of movement performance match with the initial and the final phase of the two-phase control strategy, respectively. In fast reaching movements, the percentage of trials with secondary corrective submovement was smaller under larger-target shorter-distance conditions. In slower reaching movements, meaningful parsing was impossible due to massive fluctuations in the kinematic profile throughout the movement. Thus, the parsing points determined by the conventional submovement analysis did not consistently reflect separation between the ballistic and error-corrective components. In contrast to the traditional concept of two-component movement performance, the concept of two-phase control strategy is applicable to a wide variety of experimental conditions.

  6. The Effectiveness of Neck Stretching Exercises Following Total Thyroidectomy on Reducing Neck Pain and Disability: A Randomized Controlled Trial.

    PubMed

    Ayhan, Hatice; Tastan, Sevinc; Iyigün, Emine; Oztürk, Erkan; Yildiz, Ramazan; Görgülü, Semih

    2016-06-01

    Although there are a limited number of studies showing effects of neck stretching exercises following a thyroidectomy in reducing neck discomfort symptoms, no study has specifically dealt with and examined the effect of neck stretching exercises on neck pain and disability. To analyze the effect of neck stretching exercises, following a total thyroidectomy, on reducing neck pain and disability. A randomized controlled trial was conducted. The participants were randomly assigned either to the stretching exercise group (n = 40) or to the control group (n = 40). The stretching exercise group learned the neck stretching exercises immediately after total thyroidectomy. The effects of the stretching exercises on the participants' neck pain and disability, neck sensitivity, pain with neck movements as well as on wound healing, were evaluated at the end of the first week and at 1 month following surgery. When comparing neck pain and disability scale (NPDS) scores, neck sensitivity and pain with neck movement before thyroidectomy, after 1 week and after 1-month time-points, it was found that patients experienced significantly less pain and disability in the stretching exercise group than the control group (p < .001). At the end of the first week, the NPDS scores (mean [SD] = 8.82 [12.23] vs. 30.28 [12.09]), neck sensitivity scores (median [IR] = 0 [.75] vs. 2.00 [4.0]) and pain levels with neck movements (median [IR] = 0 [2.0] vs. 3.5 [5.75]) of the stretching exercise group were significantly lower than those of the control group. However, there was no significant difference between the groups with regard to the scores at the 1-month evaluation (p > .05). Neck stretching exercises done immediately after a total thyroidectomy reduce short-term neck pain and disability symptoms. © 2016 Sigma Theta Tau International.

  7. Effects of local and widespread muscle fatigue on movement timing.

    PubMed

    Cowley, Jeffrey C; Dingwell, Jonathan B; Gates, Deanna H

    2014-12-01

    Repetitive movements can cause muscle fatigue, leading to motor reorganization, performance deficits, and/or possible injury. The effects of fatigue may depend on the type of fatigue task employed, however. The purpose of this study was to determine how local fatigue of a specific muscle group versus widespread fatigue of various muscle groups affected the control of movement timing. Twenty healthy subjects performed an upper extremity low-load work task similar to sawing for 5 continuous minutes both before and after completing a protocol that either fatigued all the muscles used in the task (widespread fatigue) or a protocol that selectively fatigued the primary muscles used to execute the pushing stroke of the sawing task (localized fatigue). Subjects were instructed to time their movements with a metronome. Timing error, movement distance, and speed were calculated for each movement. Data were then analyzed using a goal-equivalent manifold approach to quantify changes in goal-relevant and non-goal-relevant variability. We applied detrended fluctuation analysis to each time series to quantify changes in fluctuation dynamics that reflected changes in the control strategies used. After localized fatigue, subjects made shorter, slower movements and exerted greater control over non-goal-relevant variability. After widespread fatigue, subjects exerted less control over non-goal-relevant variability and did not change movement patterns. Thus, localized and widespread muscle fatigue affected movement differently. Local fatigue may reduce the available motor solutions and therefore cause greater movement reorganization than widespread muscle fatigue. Subjects altered their control strategies but continued to achieve the timing goal after both fatigue tasks.

  8. The Use of Ground Penetrating Radar and Electrical Resistivity Imaging for the Characterisation of Slope Movements in Expansive Marls

    NASA Astrophysics Data System (ADS)

    Rey, Isabel; Martínez, Julián; Cortada, Unai; Hildago, Mª Carmen

    2017-04-01

    Slope movements are one of the natural hazards that most affect linear projects, becoming an important waste of money and time for building companies. Thus, studies to identify the processes that provoke these movements, as well as to characterise the landslides are necessary. For this purpose, geophysical prospecting techniques as Ground Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) could become useful. However, the effectiveness of these techniques in slope movement characterisation is affected by many factors, like soil humidity, grain size or failure plane depth. Therefore, studies that determine the usefulness of these techniques in different kind of soils and slope movements are required. In this study, GPR and ERI techniques efficiency for the analysis of slope movements in Upper Miocene expansive marls was evaluated. In particular, two landslides in an old regional road in the province of Jaen (Spain) were studied. A total of 53 GPR profiles were made, 31 with a 250 MHz frequency antenna and 22 with an 800 MHz frequency antenna. Marl facies rapidly attenuated the signal of the electromagnetic waves, which means that this technique only provided information of the first two meters of the subsoil. In spite of this low depth of penetration, it is necessary to point out the precision and detail undertaken. Thus, both GPR antennas gave information of the thicknesses and quality-continuity of the different soil layers. In addition, several restoration phases of the linear work were detected. Therefore, this technique was useful to detect the current state and history of the structure, even though it could not detect the shear surface of the slope movement. On the other hand, two profiles of electrical tomography were made, one in each studied sector. The profiles were configured with a total length of 189 m, with 64 electrodes and a spacing of 3 m. This allowed investigating up to 35 m depth. This penetration capability enabled to detect the depth of the shear surfaces and therefore the minimum depth at which the possible piles should be placed in the design of the restoration structures. Thus, this method was more effective than the GPR for the detection of slope surfaces in uniform expansive marls. Nevertheless, the GPR was efficient for the analysis of the previous restoration phases, which was helpful to determine any relation between them and the causes that provoked the slope movements.

  9. An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Chen, Guoxian; Huang, Yuefei; Yang, Jerry Zhijian; Feng, Hui

    2013-04-01

    A new geometrical conservative interpolation on unstructured meshes is developed for preserving still water equilibrium and positivity of water depth at each iteration of mesh movement, leading to an adaptive moving finite volume (AMFV) scheme for modeling flood inundation over dry and complex topography. Unlike traditional schemes involving position-fixed meshes, the iteration process of the AFMV scheme moves a fewer number of the meshes adaptively in response to flow variables calculated in prior solutions and then simulates their posterior values on the new meshes. At each time step of the simulation, the AMFV scheme consists of three parts: an adaptive mesh movement to shift the vertices position, a geometrical conservative interpolation to remap the flow variables by summing the total mass over old meshes to avoid the generation of spurious waves, and a partial differential equations(PDEs) discretization to update the flow variables for a new time step. Five different test cases are presented to verify the computational advantages of the proposed scheme over nonadaptive methods. The results reveal three attractive features: (i) the AMFV scheme could preserve still water equilibrium and positivity of water depth within both mesh movement and PDE discretization steps; (ii) it improved the shock-capturing capability for handling topographic source terms and wet-dry interfaces by moving triangular meshes to approximate the spatial distribution of time-variant flood processes; (iii) it was able to solve the shallow water equations with a relatively higher accuracy and spatial-resolution with a lower computational cost.

  10. The effect of food bolus location on jaw movement smoothness and masticatory efficiency.

    PubMed

    Molenaar, W N B; Gezelle Meerburg, P J; Luraschi, J; Whittle, T; Schimmel, M; Lobbezoo, F; Peck, C C; Murray, G M; Minami, I

    2012-09-01

    Masticatory efficiency in individuals with extensive tooth loss has been widely discussed. However, little is known about jaw movement smoothness during chewing and the effect of differences in food bolus location on movement smoothness and masticatory efficiency. The aim of this study was to determine whether experimental differences in food bolus location (anterior versus posterior) had an effect on masticatory efficiency and jaw movement smoothness. Jaw movement smoothness was evaluated by measuring jerk-cost (calculated from acceleration) with an accelerometer that was attached to the skin of the mentum of 10 asymptomatic subjects, and acceleration was recorded during chewing on two-colour chewing gum, which was used to assessed masticatory efficiency. Chewing was performed under two conditions: posterior chewing (chewing on molars and premolars only) and anterior chewing (chewing on canine and first premolar teeth only). Jerk-cost and masticatory efficiency (calculated as the ratio of unmixed azure colour to the total area of gum, the unmixed fraction) were compared between anterior and posterior chewing with the Wilcoxon signed rank test (two-tailed). Subjects chewed significantly less efficiently during anterior chewing than during posterior chewing (P = 0·0051). There was no significant difference in jerk-cost between anterior and posterior conditions in the opening phase (P = 0·25), or closing phase (P = 0·42). This is the first characterisation of the effect of food bolus location on jaw movement smoothness at the same time as recording masticatory efficiency. The data suggest that anterior chewing decreases masticatory efficiency, but does not influence jerk-cost. © 2012 Blackwell Publishing Ltd.

  11. Changes in Head Stability Control in Response to a Lateral Perturbation while Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2008-01-01

    Falling is a main contributor of injury in older adults. The decline in sensory systems associated with aging limits information needed to successfully compensate for unexpected perturbations. Therefore, sensory changes result in older adults having problems maintaining balance stability when experiencing an unexpected lateral perturbation (e.g. slip) in the environment. The goal of this study was to determine head stability movement strategies used by older adults when experiencing an unexpected lateral perturbation during walking. A total of 16 healthy adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors were placed on the center of mass for the head and trunk segments to collect head and trunk movement in all three planes of motion. The predominant movement strategies for maintaining head stability were determined from the results of the cross-correlation analyses between the head and trunk segments. The Chi square test of independence was used to evaluate the movement pattern distributions of head-trunk coordination during perturbed and non-perturbed walking. When perturbed, head stabilization was significantly challenged in the yaw and roll planes of motion. Subjects demonstrated a movement pattern of the head leading the trunk in an effort to stabilize the head. The older adult subjects used this head stabilization movement pattern to compensate for sensory changes when experiencing the unexpected lateral perturbation.

  12. Randomized trial of safinamide add-on to levodopa in Parkinson's disease with motor fluctuations.

    PubMed

    Borgohain, Rupam; Szasz, J; Stanzione, P; Meshram, C; Bhatt, M; Chirilineau, D; Stocchi, F; Lucini, V; Giuliani, R; Forrest, E; Rice, P; Anand, R

    2014-02-01

    Levodopa is effective for the motor symptoms of Parkinson's disease (PD), but is associated with motor fluctuations and dyskinesia. Many patients require add-on therapy to improve motor fluctuations without exacerbating dyskinesia. The objective of this Phase III, multicenter, double-blind, placebo-controlled, parallel-group study was to evaluate the efficacy and safety of safinamide, an α-aminoamide with dopaminergic and nondopaminergic mechanisms, as add-on to l-dopa in the treatment of patients with PD and motor fluctuations. Patients were randomized to oral safinamide 100 mg/day (n = 224), 50 mg/day (n = 223), or placebo (n = 222) for 24 weeks. The primary endpoint was total on time with no or nontroublesome dyskinesia (assessed using the Hauser patient diaries). Secondary endpoints included off time, Unified Parkinson's Disease Rating Scale (UPDRS) Part III (motor) scores, and Clinical Global Impression-Change (CGI-C). At week 24, mean ± SD increases in total on time with no or nontroublesome dyskinesia were 1.36 ± 2.625 hours for safinamide 100 mg/day, 1.37 ± 2.745 hours for safinamide 50 mg/day, and 0.97 ± 2.375 hours for placebo. Least squares means differences in both safinamide groups were significantly higher versus placebo. Improvements in off time, UPDRS Part III, and CGI-C were significantly greater in both safinamide groups versus placebo. There were no significant between-group differences for incidences of treatment-emergent adverse events (TEAEs) or TEAEs leading to discontinuation. The addition of safinamide 50 mg/day or 100 mg/day to l-dopa in patients with PD and motor fluctuations significantly increased total on time with no or nontroublesome dyskinesia, decreased off time, and improved parkinsonism, indicating that safinamide improves motor symptoms and parkinsonism without worsening dyskinesia. © 2013 The Authors. Movement Disorders published by Wiley on behalf of the International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. Effects of uncertainty, transmission type, driver age and gender on brake reaction and movement time.

    PubMed

    Warshawsky-Livne, Lora; Shinar, David

    2002-01-01

    Braking time (BT) is a critical component in safe driving, and various approaches have been applied to minimize it. This study analyzed the components of BT in order to assess the effects of age, gender, vehicle transmission type, and event uncertainty, on its two primary components, perception-reaction time and brake-movement time. Perception-reaction time and brake-movement time were measured at the onset of lights for 72 subjects in a simulator. The six experimental conditions were three levels of uncertainty conditions (none, some, and some + false alarms) and two types of transmission (manual and automatic). The 72 subjects, half male and half female, were further divided into three age groups (mean of 23, 30, and 62 years). Each subject had 10 trials in each of the three levels of uncertainty conditions. Transmission type did not significantly affect either perception-reaction time or brake-movement time. Perception-reaction time increased significantly from 0.32 to 0.42 s (P < .05) as uncertainty increased but brake-movement time did not change. Perception-reaction time increased (from 0.35 to 0.43 s) with age but brake-movement time did not change with age. Gender did not affect perception-reaction time but did affect brake-movement time (males 0.19 s vs. females 0.16 s). At 90 km/h, a car travels 0.25 m in 0.01 s. Consequently, even such small effects multiplied by millions of vehicle-kilometers can contribute to significant savings in lives and damages.

  14. Distinct timing mechanisms produce discrete and continuous movements.

    PubMed

    Huys, Raoul; Studenka, Breanna E; Rheaume, Nicole L; Zelaznik, Howard N; Jirsa, Viktor K

    2008-04-25

    The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems) to accomplish varying behavioral functions such as speed constraints.

  15. Impact of time-resolved MRA on diagnostic accuracy in patients with symptomatic peripheral artery disease of the calf station.

    PubMed

    Hansmann, Jan; Michaely, Henrik J; Morelli, John N; Diehl, Steffen J; Meyer, Mathias; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-12-01

    The purpose of this article is to evaluate the added diagnostic accuracy of time-resolved MR angiography (MRA) of the calves compared with continuous-table-movement MRA in patients with symptomatic lower extremity peripheral artery disease (PAD) using digital subtraction angiography (DSA) correlation. Eighty-four consecutive patients with symptomatic PAD underwent a low-dose 3-T MRA protocol, consisting of continuous-table-movement MRA, acquired from the diaphragm to the calves, and an additional time-resolved MRA of the calves; 0.1 mmol/kg body weight (bw) of contrast material was used (0.07 mmol/kg bw for continuous-table-movement MRA and 0.03 mmol/kg bw for time-resolved MRA). Two radiologists rated image quality on a 4-point scale and stenosis degree on a 3-point scale. An additional assessment determined the degree of venous contamination and whether time-resolved MRA improved diagnostic confidence. The accuracy of stenosis gradation with continuous-table-movement and time-resolved MRA was compared with that of DSA as a correlation. Overall diagnostic accuracy was calculated for continuous-table-movement and time-resolved MRA. Median image quality was rated as good for 578 vessel segments with continuous-table-movement MRA and as excellent for 565 vessel segments with time-resolved MRA. Interreader agreement was excellent (κ = 0.80-0.84). Venous contamination interfered with diagnosis in more than 60% of continuous-table-movement MRA examinations. The degree of stenosis was assessed for 340 vessel segments. The diagnostic accuracies (continuous-table-movement MRA/time-resolved MRA) combined for the readers were obtained for the tibioperoneal trunk (84%/93%), anterior tibial (69%/87%), posterior tibial (85%/91%), and peroneal (67%/81%) arteries. The addition of time-resolved MRA improved diagnostic confidence in 69% of examinations. The addition of time-resolved MRA at the calf station improves diagnostic accuracy over continuous-table-movement MRA alone in symptomatic patients with PAD.

  16. One palatal implant for skeletal anchorage--frequency and range of indications.

    PubMed

    Krieger, Elena; Yildizhan, Zeynep; Wehrbein, Heinrich

    2015-04-21

    Aim of this investigation was to analyze the frequency and range of indications of orthodontic treatments using one palatal implant for skeletal anchorage, in a time frame of four years. A sample was comprised by viewing retrospectively the patient collective of a specialized university clinic who started orthodontic treatment in the time frame 01/09-12/12. Inclusion criterion was the first application of a superstructure within the investigated period after successful insertion of a palatal implant (Ortho-System®, Straumann, Basel, Switzerland). Frequency and range of indications of the conducted skeletally anchored tooth movement were determined by analyzing the individual patient documentation such as medical records, radiographs and casts. From a total of 1350 patients who started orthodontic treatment in this period met 56 (=4.2%) the inclusion criterion. In 85.7% of this sample was sagittal orthodontic tooth movement conducted, most frequently mesialization of ≥1 tooth (44.6%). Vertical tooth movement was in 57.1% of the sample performed, mostly extrusion of ≥1 tooth (34%). In 33.9% of the sample was ≥1 displaced tooth orthodontically relocated. One or two upper incisors were in 16.1% of the sample permanently replaced by the superstructure, all but one even after orthodontic treatment. In 66.1% of all cases were multi-functional anchorage challenges performed. 4.2 % of all treated patients within the investigated period required orthodontic treatment with skeletal anchorage (palatal implant), mainly for performing sagittal tooth movement (mesialization). The palatal implant was primarily used for multi-functional anchorage purposes, including skeletally anchored treatment in the mandible.

  17. Preparation time influences ankle and knee joint control during dynamic change of direction movements.

    PubMed

    Fuerst, Patrick; Gollhofer, Albert; Gehring, Dominic

    2017-04-01

    The influence of preparation time on ankle joint biomechanics during highly dynamic movements is largely unknown. The aim of this study was to evaluate the impact of limited preparation time on ankle joint loading during highly dynamic run-and-cut movements. Thirteen male basketball players performed 45°-sidestep-cutting and 180°-turning manoeuvres in reaction to light signals which appeared during the approach run. Both movements were executed under (1) an easy condition, in which the light signal appeared very early, (2) a medium condition and (3) a hard condition with very little time to prepare the movements. Maximum ankle inversion angles, moments and velocities during ground contact, as well as EMG signals of three lower extremity muscles, were analysed. In 180°-turning movements, reduced preparation time led to significantly increased maximum ankle inversion velocities. Muscular activation levels, however, did not change. Increased inversion velocities, without accompanying changes in muscular activation, may have the potential to destabilise the ankle joint when less preparation time is available. This may result in a higher injury risk during turning movements and should therefore be considered in ankle injury research and the aetiology of ankle sprains.

  18. Sequence learning in Parkinson's disease: Focusing on action dynamics and the role of dopaminergic medication.

    PubMed

    Ruitenberg, Marit F L; Duthoo, Wout; Santens, Patrick; Seidler, Rachael D; Notebaert, Wim; Abrahamse, Elger L

    2016-12-01

    Previous studies on movement sequence learning in Parkinson's disease (PD) have produced mixed results. A possible explanation for the inconsistent findings is that some studies have taken dopaminergic medication into account while others have not. Additionally, in previous studies the response modalities did not allow for an investigation of the action dynamics of sequential movements as they unfold over time. In the current study we investigated sequence learning in PD by specifically considering the role of medication status in a sequence learning task where mouse movements were performed. The focus on mouse movements allowed us to examine the action dynamics of sequential movement in terms of initiation time, movement time, movement accuracy, and velocity. PD patients performed the sequence learning task once on their regular medication, and once after overnight withdrawal from their medication. Results showed that sequence learning as reflected in initiation times was impaired when PD patients performed the task ON medication compared to OFF medication. In contrast, sequence learning as reflected in the accuracy of movement trajectories was enhanced when performing the task ON compared to OFF medication. Our findings suggest that while medication enhances execution processes of movement sequence learning, it may at the same time impair planning processes that precede actual execution. Overall, the current study extends earlier findings on movement sequence learning in PD by differentiating between various components of performance, and further refines previous dopamine overdose effects in sequence learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Normal aging reduces motor synergies in manual pointing.

    PubMed

    Verrel, Julius; Lövdén, Martin; Lindenberger, Ulman

    2012-01-01

    Depending upon its organization, movement variability may reflect poor or flexible control of a motor task. We studied adult age-related differences in the structure of postural variability in manual pointing using the uncontrolled manifold (UCM) method. Participants from 2 age groups (younger: 20-30 years; older: 70-80 years; 12 subjects per group) completed a total of 120 pointing trials to 2 different targets presented according to 3 schedules: blocked, alternating, and random. The age groups were similar with respect to basic kinematic variables, end point precision, as well as the accuracy of the biomechanical forward model of the arm. Following the uncontrolled manifold approach, goal-equivalent and nongoal-equivalent components of postural variability (goal-equivalent variability [GEV] and nongoal-equivalent variability [NGEV]) were determined for 5 time points of the movements (start, 10%, 50%, 90%, and end) and used to define a synergy index reflecting the flexibility/stability aspect of motor synergies. Toward the end of the movement, younger adults showed higher synergy indexes than older adults. Effects of target schedule were not reliable. We conclude that normal aging alters the organization of common multidegree-of-freedom movements, with older adults making less flexible use of motor abundance than younger adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Survival of angled saugers in the lower Tennessee River

    USGS Publications Warehouse

    Kitterman, Christy L.; Bettoli, Phillip William

    2011-01-01

    An intense winter fishery for sauger Sander canadensis exists in the lower Tennessee River, and the objective of this study was to estimate the survival of angled saugers. In February 2008 and January–March 2009, 81 angled saugers (72 live plus 9 euthanized) were affixed with ultrasonic tags. The movements (or lack thereof) by saugers released alive were compared with those of euthanized fish to assess survival. Sixty-eight percent of the tagged saugers that were released alive exhibited maximum daily movements exceeding the greatest movement of any euthanized fish (0.5 km/d), and those fish were subsequently classified as survivors. The upstream movements of several euthanized fish indicated that their carcasses were ingested by piscivorous scavengers. In logistic models, the probability of mortality was significantly and inversely related to total length but not to capture depth, water temperature, handling time, or ascent rate. In 2 × 2 contingency tables, the fate of released saugers was not found to be associated with either the presence or absence of bleeding from the hooking wound or whether or not the fish displayed gastric distension. Most released fish survived despite the fact that gastric distension was observed in 72% of the angled saugers.

  1. Fast-ball sports experts depend on an inhibitory strategy to reprogram their movement timing.

    PubMed

    Nakamoto, Hiroki; Ikudome, Sachi; Yotani, Kengo; Maruyama, Atsuo; Mori, Shiro

    2013-07-01

    The purpose of our study was to clarify whether an inhibitory strategy is used for reprogramming of movement timing by experts in fast-ball sports when they correct their movement timing due to unexpected environmental changes. We evaluated the influence of disruption of inhibitory function of the right inferior frontal gyrus (rIFG) on reprogramming of movement timing of experts and non-experts in fast-ball sports. The task was to manually press a button to coincide with the arrival of a moving target. The target moved at a constant velocity, and its velocity was suddenly either increased or decreased in some trials. The task was performed either with or without transcranial magnetic stimulation (TMS), which was delivered to the region of the rIFG. Under velocity change conditions without TMS, the experts showed significantly smaller timing errors and a higher rate of reprogramming of movement timing than the non-experts. Moreover, TMS application during the task significantly diminished the expert group's performance, but not the control group, particularly in the condition where the target velocity decreases. These results suggest that experts use an inhibitory strategy for reprogramming of movement timing. In addition, the rIFG inhibitory function contributes to the superior movement correction of experts in fast-ball sports.

  2. A video method to study Drosophila sleep.

    PubMed

    Zimmerman, John E; Raizen, David M; Maycock, Matthew H; Maislin, Greg; Pack, Allan I

    2008-11-01

    To use video to determine the accuracy of the infrared beam-splitting method for measuring sleep in Drosophila and to determine the effect of time of day, sex, genotype, and age on sleep measurements. A digital image analysis method based on frame subtraction principle was developed to distinguish a quiescent from a moving fly. Data obtained using this method were compared with data obtained using the Drosophila Activity Monitoring System (DAMS). The location of the fly was identified based on its centroid location in the subtracted images. The error associated with the identification of total sleep using DAMS ranged from 7% to 95% and depended on genotype, sex, age, and time of day. The degree of the total sleep error was dependent on genotype during the daytime (P < 0.001) and was dependent on age during both the daytime and the nighttime (P < 0.001 for both). The DAMS method overestimated sleep bout duration during both the day and night, and the degree of these errors was genotype dependent (P < 0.001). Brief movements that occur during sleep bouts can be accurately identified using video. Both video and DAMS detected a homeostatic response to sleep deprivation. Video digital analysis is more accurate than DAMS in fly sleep measurements. In particular, conclusions drawn from DAMS measurements regarding daytime sleep and sleep architecture should be made with caution. Video analysis also permits the assessment of fly position and brief movements during sleep.

  3. Effect of the bitterness of food on muscular activity and masticatory movement.

    PubMed

    Okada, Yamato; Shiga, Hiroshi

    2017-10-01

    The purpose of this study was to clarify the effect of the bitterness of food on muscular activity and masticatory movement. Twenty healthy subjects were asked to chew a non-bitter gummy jelly and a bitter gummy jelly on their habitual chewing side. The masseter muscular activity and the movement of mandibular incisal point were recorded simultaneously. For all cycles excluding the first cycle, parameters representing the muscular activity (total integral value and integral value per cycle) and masticatory movement (path, rhythm, and stability) were calculated and compared between the two types of gummy jellies. The total integral value of masseter muscular activity during the chewing of bitter gummy jelly was significantly smaller than during the chewing of non-bitter gummy jelly, however, no definite trends in the integral value per cycle and the stability of movement were observed. The parameters representing the movement path tended to be small during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. The masticatory width was significantly smaller during the chewing of bitter gummy jelly. The parameters representing the rhythm of movement were significantly longer during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. From these results it was suggested that the bitterness of food does not affect the integral value per cycle or the stability of the masticatory movement, but it does affect the movement path and rhythm, with narrowing of the path and slowing of the rhythm. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. The association between functional movement and overweight and obesity in British primary school children

    PubMed Central

    2013-01-01

    Background The purpose of this study was to examine the association between functional movement and overweight and obesity in British children. Methods Data were obtained from 90, 7–10 year old children (38 boys and 52 girls). Body mass (kg) and height (m) were assessed from which body mass index (BMI) was determined and children were classified as normal weight, overweight or obese according to international cut offs. Functional movement was assessed using the functional movement screen. Results Total functional movement score was significantly, negatively correlated with BMI (P = .0001). Functional movement scores were also significantly higher for normal weight children compared to obese children (P = .0001). Normal weight children performed significantly better on all individual tests within the functional movement screen compared to their obese peers (P <0.05) and significantly better than overweight children for the deep squat (P = .0001) and shoulder mobility tests (P = .04). Overweight children scored significantly better than obese in the hurdle step (P = .0001), in line lunge (P = .05), shoulder mobility (P = .04) and active straight leg raise (P = .016). Functional movement scores were not significantly different between boys and girls (P > .05) when considered as total scores. However, girls performed significantly better than boys on the hurdle step (P = .03) and straight leg raise (P = .004) but poorer than boys on the trunk stability push-up (P = .014). Conclusions This study highlights that overweight and obesity are significantly associated with poorer functional movement in children and that girls outperform boys in functional movements. PMID:23675746

  5. Table tennis dystonia.

    PubMed

    Le Floch, Anne; Vidailhet, Marie; Flamand-Rouvière, Constance; Grabli, David; Mayer, Jean-Michel; Gonce, Michel; Broussolle, Emmanuel; Roze, Emmanuel

    2010-02-15

    Focal task-specific dystonia (FTSD) occurs exclusively during a specific activity that usually involves a highly skilled movement. Classical FTSD dystonias include writer's cramp and musician's dystonia. Few cases of sport-related dystonia have been reported. We describe the first four cases of FTSD related to table tennis (TT), two involving professional international competitors. We also systematically analyzed the literature for reports of sport-related dystonia including detailed clinical descriptions. We collected a total of 13 cases of sport-related dystonia, including our four TT players. Before onset, all the patients had trained for many years, for a large number of hours per week. Practice time had frequently increased significantly in the year preceding onset. As TT is characterized by highly skilled hand/forearm movements acquired through repetitive exercises, it may carry a higher risk of FTSD than other sports. Intensive training may result in maladaptive responses and overwhelm homeostatic mechanisms that regulate cortical plasticity in vulnerable individuals. Our findings support the importance of environmental risk factors in sport-related FTSD, as also suggested in classical FTSD, and have important implications for clinical practice. (c) 2010 Movement Disorder Society.

  6. Eye movements when reading sentences with handwritten words.

    PubMed

    Perea, Manuel; Marcet, Ana; Uixera, Beatriz; Vergara-Martínez, Marta

    2016-10-17

    The examination of how we read handwritten words (i.e., the original form of writing) has typically been disregarded in the literature on reading. Previous research using word recognition tasks has shown that lexical effects (e.g., the word-frequency effect) are magnified when reading difficult handwritten words. To examine this issue in a more ecological scenario, we registered the participants' eye movements when reading handwritten sentences that varied in the degree of legibility (i.e., sentences composed of words in easy vs. difficult handwritten style). For comparison purposes, we included a condition with printed sentences. Results showed a larger reading cost for sentences with difficult handwritten words than for sentences with easy handwritten words, which in turn showed a reading cost relative to the sentences with printed words. Critically, the effect of word frequency was greater for difficult handwritten words than for easy handwritten words or printed words in the total times on a target word, but not on first-fixation durations or gaze durations. We examine the implications of these findings for models of eye movement control in reading.

  7. Independent associations between fatty acids and sleep quality among obese patients with obstructive sleep apnoea syndrome.

    PubMed

    Papandreou, Christopher

    2013-10-01

    The aim of this study was to examine the relationships between gluteal adipose tissue fatty acids and sleep quality in obese patients with obstructive sleep apnoea syndrome after controlling for possible confounders. Sixty-three patients with obstructive sleep apnoea syndrome based on overnight attended polysomnography were included. Gluteal adipose tissue fatty acids were analysed by gas chromatography. Anthropometric measurements were carried out. Depressive symptoms were assessed by the Zung Self-rating Depression Scale. Saturated fatty acids were positively related to total sleep time, sleep efficiency and rapid eye movement sleep. Significant positive associations were found between polyunsaturated fatty acids and sleep efficiency and rapid eye movement sleep. Moreover, n-3 fatty acids were positively associated with sleep efficiency, slow wave sleep and rapid eye movement sleep. This study revealed independent associations between certain gluteal adipose tissue fatty acids and sleep quality after controlling for age, gender, obesity, obstructive sleep apnoea syndrome indices and Zung Self-rating Depression Scale scores in patients with moderate to severe obstructive sleep apnoea syndrome. © 2013 European Sleep Research Society.

  8. The Effects of Coordination and Movement Education on Pre School Children's Basic Motor Skills Improvement

    ERIC Educational Resources Information Center

    Altinkök, Mustafa

    2016-01-01

    This research was conducted for the purpose of analyzing the effect of the movement education program through a 12-week-coordination on the development of basic motor movements of pre-school children. A total of 78 students of pre-school period, 38 of whom were in the experimental group and 40 of whom were in the control group, were incorporated…

  9. The Flipped Classroom: Primary and Secondary Teachers' Views on an Educational Movement in Schools in Sweden Today

    ERIC Educational Resources Information Center

    Hultén, Magnus; Larsson, Bo

    2018-01-01

    The aim of this study is to contribute to an increased understanding of the flipped classroom movement. A total of 7 teachers working in school years 4-9 and who both actively flipped their classrooms and had been early adopters in this movement were interviewed. Two research questions were posed: "What characterizes flipped classroom…

  10. Classification of Animal Movement Behavior through Residence in Space and Time.

    PubMed

    Torres, Leigh G; Orben, Rachael A; Tolkova, Irina; Thompson, David R

    2017-01-01

    Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST's ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST's ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST's response to less resolved data. Finally, we evaluate RST's performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data can enhance our fine- and broad- scale understanding of animal movement ecology.

  11. Design and Experiment of Electrooculogram (EOG) System and Its Application to Control Mobile Robot

    NASA Astrophysics Data System (ADS)

    Sanjaya, W. S. M.; Anggraeni, D.; Multajam, R.; Subkhi, M. N.; Muttaqien, I.

    2017-03-01

    In this paper, we design and investigate a biological signal detection of eye movements (Electrooculogram). To detect a signal of Electrooculogram (EOG) used 4 instrument amplifier process; differential instrumentation amplifier, High Pass Filter (HPF) with 3 stage filters, Low Pass Filter (LPF) with 3 stage filters and Level Shifter circuit. The total of amplifying is 1000 times of gain, with frequency range 0.5-30 Hz. IC OP-Amp OP07 was used for all amplifying process. EOG signal will be read as analog input for Arduino microprocessor, and will interfaced with serial communication to PC Monitor using Processing® software. The result of this research show a differences value of eye movements. Differences signal of EOG have been applied to navigation control of the mobile robot. In this research, all communication process using Bluetooth HC-05.

  12. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin

    PubMed Central

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation exhibited among individual fish within a stock can complicate these efforts. PMID:25919286

  13. Migratory Patterns of Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-flowing River Basin

    USGS Publications Warehouse

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation exhibited among individual fish within a stock can complicate these efforts.

  14. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception

    PubMed Central

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance. PMID:27313900

  15. Programming and reprogramming sequence timing following high and low contextual interference practice.

    PubMed

    Wright, David L; Magnuson, Curt E; Black, Charles B

    2005-09-01

    Individuals practiced two unique discrete sequence production tasks that differed in their relative time profile in either a blocked or random practice schedule. Each participant was subsequently administered a "precuing" protocol to examine the cost of initially compiling or modifying the plan for an upcoming movement's relative timing. The findings indicated that, in general, random practice facilitated the programming of the required movement timing, and this was accomplished while exhibiting greater accuracy in movement production. Participants exposed to random practice exhibited the greatest motor programming benefit, when a modification to an already prepared movement timing profile was required. When movement timing was only partially constructed prior to the imperative signal, the individuals who were trained in blocked and random practice formats accrued a similar cost to complete the programming process. These data provide additional support for the recent claim of Immink & Wright (2001) that at least some of the benefit from experience in a random as opposed to blocked training context can be localized to superior development and implementation of the motor programming process before executing the movement.

  16. Submovement control processes in discrete aiming as a function of space-time constraints.

    PubMed

    Hsieh, Tsung-Yu; Liu, Yeou-Teh; Newell, Karl M

    2017-01-01

    There is preliminary evidence that there are several types of submovements in movement aiming that reflect different processes of control and can result from particular task constraints. The purpose of the study was to investigate the effect of movement space and time task criteria on the prevalence of different submovement control characteristics in discrete aiming. Twelve participants completed 3 distance x 5 time conditions each with 100 trials in a target-aiming movement task. The kinematic structure of the trajectory determined the prevalence of 5 submovement types (none; pre-peak, post-peak movement velocity; undershoot, overshoot). The findings showed that the overall number of submovements increased in the slower space-time conditions and was predominantly characterized by post-peak trajectory submovements rather than discrete overshoot submovements. Overshoot submovements were more frequent in the high average movement velocity and short time duration conditions. We concluded that there are qualitatively different distributional patterns of submovement types in discrete aiming tasks that are organized by the quantitative scaling of the average movement velocity arising from multiple control processes to meet the specific space-time task constraints.

  17. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception.

    PubMed

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance.

  18. Pelvic position and movement during hip replacement.

    PubMed

    Grammatopoulos, G; Pandit, H G; da Assunção, R; Taylor, A; McLardy-Smith, P; De Smet, K A; Murray, D W; Gill, H S

    2014-07-01

    The orientation of the acetabular component is influenced not only by the orientation at which the surgeon implants the component, but also the orientation of the pelvis at the time of implantation. Hence, the orientation of the pelvis at set-up and its movement during the operation, are important. During 67 hip replacements, using a validated photogrammetric technique, we measured how three surgeons orientated the patient's pelvis, how much the pelvis moved during surgery, and what effect these had on the final orientation of the acetabular component. Pelvic orientation at set-up, varied widely (mean (± 2, standard deviation (sd))): tilt 8° (2sd ± 32), obliquity -4° (2sd ± 12), rotation -8° (2sd ± 14). Significant differences in pelvic positioning were detected between surgeons (p < 0.001). The mean angular movement of the pelvis between set-up and component implantation was 9° (sd 6). Factors influencing pelvic movement included surgeon, approach (posterior > lateral), procedure (hip resurfacing > total hip replacement) and type of support (p < 0.001). Although, on average, surgeons achieved their desired acetabular component orientation, there was considerable variability (2sd ± 16) in component orientation. We conclude that inconsistency in positioning the patient at set-up and movement of the pelvis during the operation account for much of the variation in acetabular component orientation. Improved methods of positioning and holding the pelvis are required. ©2014 The British Editorial Society of Bone & Joint Surgery.

  19. The effect of changes in habitat conditions on the movement of juvenile Snail Kites Rostrhamus sociabilis

    USGS Publications Warehouse

    Bowling, Andrea C.; Martin, Julien; Kitchens, Wiley M.

    2012-01-01

    The degradation of habitats due to human activities is a major topic of interest for the conservation and management of wild populations. There is growing evidence that the Florida Everglades ecosystem continues to suffer from habitat degradation. After a period of recovery in the 1990s, the Snail Kite Rostrhamus sociabilis population suffered a substantial decline in 2001 and has not recovered since. Habitat degradation has been suggested as one of the primary reasons for this lack of recovery. As a consequence of the continued degradation of the Everglades, we hypothesized that this would have led to increased movement of juvenile Kites over time, as a consequence of the need to find more favourable habitat. We used multistate mark-recapture models to compare between-site movement probabilities of juvenile Snail Kites in the 1990s (1992–95; which corresponds to the period before the decline) and 2000s (2003–06; after the decline). Our analyses were based on an extensive radiotelemetry study (266 birds tracked monthly over the entire state of Florida for a total period of 6 years) and considered factors such as sex and age of marked individuals. There was evidence of increased movement of juvenile Snail Kites during the post-decline period from most of the wetland regions used historically by Kites. Higher movement rates may contribute to an increase in the probability of mortality of young individuals and could contribute to the observed declines.

  20. Temporal predictive mechanisms modulate motor reaction time during initiation and inhibition of speech and hand movement.

    PubMed

    Johari, Karim; Behroozmand, Roozbeh

    2017-08-01

    Skilled movement is mediated by motor commands executed with extremely fine temporal precision. The question of how the brain incorporates temporal information to perform motor actions has remained unanswered. This study investigated the effect of stimulus temporal predictability on response timing of speech and hand movement. Subjects performed a randomized vowel vocalization or button press task in two counterbalanced blocks in response to temporally-predictable and unpredictable visual cues. Results indicated that speech and hand reaction time was decreased for predictable compared with unpredictable stimuli. This finding suggests that a temporal predictive code is established to capture temporal dynamics of sensory cues in order to produce faster movements in responses to predictable stimuli. In addition, results revealed a main effect of modality, indicating faster hand movement compared with speech. We suggest that this effect is accounted for by the inherent complexity of speech production compared with hand movement. Lastly, we found that movement inhibition was faster than initiation for both hand and speech, suggesting that movement initiation requires a longer processing time to coordinate activities across multiple regions in the brain. These findings provide new insights into the mechanisms of temporal information processing during initiation and inhibition of speech and hand movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A functional model for characterizing long-distance movement behaviour

    USGS Publications Warehouse

    Buderman, Frances E.; Hooten, Mevin B.; Ivan, Jacob S.; Shenk, Tanya M.

    2016-01-01

    Advancements in wildlife telemetry techniques have made it possible to collect large data sets of highly accurate animal locations at a fine temporal resolution. These data sets have prompted the development of a number of statistical methodologies for modelling animal movement.Telemetry data sets are often collected for purposes other than fine-scale movement analysis. These data sets may differ substantially from those that are collected with technologies suitable for fine-scale movement modelling and may consist of locations that are irregular in time, are temporally coarse or have large measurement error. These data sets are time-consuming and costly to collect but may still provide valuable information about movement behaviour.We developed a Bayesian movement model that accounts for error from multiple data sources as well as movement behaviour at different temporal scales. The Bayesian framework allows us to calculate derived quantities that describe temporally varying movement behaviour, such as residence time, speed and persistence in direction. The model is flexible, easy to implement and computationally efficient.We apply this model to data from Colorado Canada lynx (Lynx canadensis) and use derived quantities to identify changes in movement behaviour.

  2. Mutual information in the evolution of trajectories in discrete aiming movements.

    PubMed

    Lai, Shih-Chiung; Mayer-Kress, Gottfried; Newell, Karl M

    2008-07-01

    This study investigated the mutual information in the trajectories of discrete aiming movements on a computer controlled graphics tablet where movement time ( 300 - 2050 ms) was manipulated in a given distance (100 mm) and movement distance (15-240 mm) in 2 given movement times (300 ms and 800 ms ). For the distance-fixed conditions, there was higher mutual information in the slower movements in the 0 vs. 80-100% trajectory point comparisons, whereas the mutual information was higher for the faster movements when comparing within the 80 and 100% points of the movement trajectory. For the time-fixed conditions, the spatial constraints led to a decreasing pattern of the mutual information throughout the points of the trajectory, with the highest mutual information found in the 80 vs. 100% comparison. Overall, the pattern of mutual information reveals systematic modulation of the trajectories between the attractive fixed point of the target as a function of movement condition. These mutual information patterns are postulated to be the consequence of the different relative contributions of feedforward and feedback control processes in trajectory formation as a function of task constraints.

  3. An Intact Anterior Cruciate Ligament at the Time of Posterior Cruciate Ligament-Retaining Total Knee Arthroplasty Was Associated With Reduced Patient Satisfaction and Inferior Pain and Stair Function.

    PubMed

    Jacobs, Cale A; Christensen, Christian P; Karthikeyan, Tharun

    2016-08-01

    Patients with an intact anterior cruciate ligament (ACL) at the time of ACL-sacrificing total knee arthroplasty (TKA) have been suggested to have inferior outcomes compared with those with a dysfunctional ACL. However, to date, no published clinical studies have evaluated the potential link between the condition of the ACL at the time of posterior cruciate ligament-retaining TKA and postoperative pain, function, and satisfaction. As such, the purpose of this study was to compare subjective function, movement-elicited pain, pain at rest, and patient satisfaction between those with an intact or dysfunctional ACL. We identified 562 posterior cruciate ligament-retaining TKAs with complete intraoperative and postoperative data. Patients were categorized based on the condition of the ACL at the time of TKA as either being intact or dysfunctional (absent or lax). Knee Society Function Scores, movement-elicited pain, pain at rest, and patient satisfaction were then compared between groups. At mean follow-up of 5.1 years, a significantly lower proportion of patients in the intact group were satisfied with their operation (intact: 391/453 [86.3%] vs dysfunctional: 102/109 [93.6%], P = .0496). Inspection of the individual activities revealed that the groups did not differ in walking ability or pain when walking; however, the intact group reported significantly reduced ability to navigate stairs with greater pain during that activity. The lack of difference in pain at rest between groups suggests that pain and functional impairments during more demanding activities such as navigating stairs may be associated with the lost function of the ACL rather than by altered central pain processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Computer mouse movement patterns: A potential marker of mild cognitive impairment.

    PubMed

    Seelye, Adriana; Hagler, Stuart; Mattek, Nora; Howieson, Diane B; Wild, Katherine; Dodge, Hiroko H; Kaye, Jeffrey A

    2015-12-01

    Subtle changes in cognitively demanding activities occur in MCI but are difficult to assess with conventional methods. In an exploratory study, we examined whether patterns of computer mouse movements obtained from routine home computer use discriminated between older adults with and without MCI. Participants were 42 cognitively intact and 20 older adults with MCI enrolled in a longitudinal study of in-home monitoring technologies. Mouse pointer movement variables were computed during one week of routine home computer use using algorithms that identified and characterized mouse movements within each computer use session. MCI was associated with making significantly fewer total mouse moves ( p <.01), and making mouse movements that were more variable, less efficient, and with longer pauses between movements ( p <.05). Mouse movement measures were significantly associated with several cognitive domains ( p 's<.01-.05). Remotely monitored computer mouse movement patterns are a potential early marker of real-world cognitive changes in MCI.

  5. Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA

    NASA Astrophysics Data System (ADS)

    Godfrey, Andrew E.; Everitt, Benjamin L.; Duque, José F. Martín

    2008-12-01

    The Fremont River drains about 1000 km 2 of Mancos Shale badlands, which provide a large percentage of the total sediment load of its middle and lower reaches. Factors controlling sediment movement include: weathering that produces thin paralithic soils, mass movement events that move the soil onto locations susceptible to fluvial transport, intense precipitation events that move the sediment along rills and across local pediments, and finally Fremont River floods that move the sediment to the main-stem Colorado River. A forty-year erosion-pin study has shown that down-slope creep moves the weathered shale crust an average of 5.9 cm/yr. Weather records and our monitoring show that wet winters add large slab failures and mudflows. Recent sediment-trap studies show that about 95% of sediment movement across pediments is accomplished by high-intensity summer convective storms. Between 1890 and 1910, a series of large autumn floods swept down the Fremont River, eroding its floodplain and transforming it from a narrow and meandering channel to a broad, braided one. Beginning about 1940, the Fremont's channel began to narrow. Sequential aerial photos and cross-sections suggest that floodplain construction since about 1966 has stored about 4000 to 8000 m 3 of sediment per kilometer per year. These data suggest that it will take two centuries to restore the floodplain to its pre-1890 condition, which is in line with geologic studies elsewhere on the Colorado Plateau. The various landscape elements of slope, pediment, and floodplain are semi-independent actors in sediment delivery, each with its own style. Accelerated mass movement on the slopes has an approximate 20-year recurrence. Sediment movement from slope across pediments to master stream is episodic and recurs more frequently. The slope-to-pediment portion of the system appears well connected. However, sediment transport through the floodplain is not well connected in the decadal time scale, but increases in the century and millennial time scales, and changes over time depending on the cycle of arroyo cutting and filling.

  6. Comparison of Urban Human Movements Inferring from Multi-Source Spatial-Temporal Data

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Tu, Wei; Cao, Jinzhou; Li, Qingquan

    2016-06-01

    The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ) level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  7. "Their Rising Voices": A Study of Civil Rights, Social Movements, and Advertising in the "New York Times."

    ERIC Educational Resources Information Center

    Ross, Susan Dente

    1998-01-01

    Contributes to scholarship on social movements, the strategic use of advertising, and journalism by documenting strategic use of advertising in the "New York Times" by the civil rights movement between 1955 and 1961. Finds that the ads framed the civil rights movement to prime the audience to receive radical messages from marginalized…

  8. 10-Month-Old Infants Are Sensitive to the Time Course of Perceived Actions: Eye-Tracking and EEG Evidence.

    PubMed

    Bache, Cathleen; Springer, Anne; Noack, Hannes; Stadler, Waltraud; Kopp, Franziska; Lindenberger, Ulman; Werkle-Bergner, Markus

    2017-01-01

    Research has shown that infants are able to track a moving target efficiently - even if it is transiently occluded from sight. This basic ability allows prediction of when and where events happen in everyday life. Yet, it is unclear whether, and how, infants internally represent the time course of ongoing movements to derive predictions. In this study, 10-month-old crawlers observed the video of a same-aged crawling baby that was transiently occluded and reappeared in either a temporally continuous or non-continuous manner (i.e., delayed by 500 ms vs. forwarded by 500 ms relative to the real-time movement). Eye movement and rhythmic neural brain activity (EEG) were measured simultaneously. Eye movement analyses showed that infants were sensitive to slight temporal shifts in movement continuation after occlusion. Furthermore, brain activity associated with sensorimotor processing differed between observation of continuous and non-continuous movements. Early sensitivity to an action's timing may hence be explained within the internal real-time simulation account of action observation. Overall, the results support the hypothesis that 10-month-old infants are well prepared for internal representation of the time course of observed movements that are within the infants' current motor repertoire.

  9. 10-Month-Old Infants Are Sensitive to the Time Course of Perceived Actions: Eye-Tracking and EEG Evidence

    PubMed Central

    Bache, Cathleen; Springer, Anne; Noack, Hannes; Stadler, Waltraud; Kopp, Franziska; Lindenberger, Ulman; Werkle-Bergner, Markus

    2017-01-01

    Research has shown that infants are able to track a moving target efficiently – even if it is transiently occluded from sight. This basic ability allows prediction of when and where events happen in everyday life. Yet, it is unclear whether, and how, infants internally represent the time course of ongoing movements to derive predictions. In this study, 10-month-old crawlers observed the video of a same-aged crawling baby that was transiently occluded and reappeared in either a temporally continuous or non-continuous manner (i.e., delayed by 500 ms vs. forwarded by 500 ms relative to the real-time movement). Eye movement and rhythmic neural brain activity (EEG) were measured simultaneously. Eye movement analyses showed that infants were sensitive to slight temporal shifts in movement continuation after occlusion. Furthermore, brain activity associated with sensorimotor processing differed between observation of continuous and non-continuous movements. Early sensitivity to an action’s timing may hence be explained within the internal real-time simulation account of action observation. Overall, the results support the hypothesis that 10-month-old infants are well prepared for internal representation of the time course of observed movements that are within the infants’ current motor repertoire. PMID:28769831

  10. Transfer of mechanical energy during the shot put.

    PubMed

    Błażkiewicz, Michalina; Łysoń, Barbara; Chmielewski, Adam; Wit, Andrzej

    2016-09-01

    The aim of this study was to analyse transfer of mechanical energy between body segments during the glide shot put. A group of eight elite throwers from the Polish National Team was analysed in the study. Motion analysis of each throw was recorded using an optoelectronic Vicon system composed of nine infrared camcorders and Kistler force plates. The power and energy were computed for the phase of final acceleration of the glide shot put. The data were normalized with respect to time using the algorithm of the fifth order spline and their values were interpolated with respect to the percentage of total time, assuming that the time of the final weight acceleration movement was different for each putter. Statistically significant transfer was found in the study group between the following segments: Right Knee - Right Hip (p = 0.0035), Left Hip - Torso (p = 0.0201), Torso - Right Shoulder (p = 0.0122) and Right Elbow - Right Wrist (p = 0.0001). Furthermore, the results of cluster analysis showed that the kinetic chain used during the final shot acceleration movement had two different models. Differences between the groups were revealed mainly in the energy generated by the hips and trunk.

  11. Planning multiple movements within a fixed time limit: The cost of constrained time allocation in a visuo-motor task

    PubMed Central

    Zhang, Hang; Wu, Shih-Wei; Maloney, Laurence T.

    2010-01-01

    S.-W. Wu, M. F. Dal Martello, and L. T. Maloney (2009) evaluated subjects' performance in a visuo-motor task where subjects were asked to hit two targets in sequence within a fixed time limit. Hitting targets earned rewards and Wu et al. varied rewards associated with targets. They found that subjects failed to maximize expected gain; they failed to invest more time in the movement to the more valuable target. What could explain this lack of response to reward? We first considered the possibility that subjects require training in allocating time between two movements. In Experiment 1, we found that, after extensive training, subjects still failed: They did not vary time allocation with changes in payoff. However, their actual gains equaled or exceeded the expected gain of an ideal time allocator, indicating that constraining time itself has a cost for motor accuracy. In a second experiment, we found that movements made under externally imposed time limits were less accurate than movements made with the same timing freely selected by the mover. Constrained time allocation cost about 17% in expected gain. These results suggest that there is no single speed–accuracy tradeoff for movement in our task and that subjects pursued different motor strategies with distinct speed–accuracy tradeoffs in different conditions. PMID:20884550

  12. Transboundary movement of polycyclic aromatic hydrocarbons (PAHs) in the Kuroshio Sphere of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Huang, Hu-Ching; Lee, Chon-Lin; Lai, Chin-Hsing; Fang, Meng-Der; Lai, I.-Chien

    2012-07-01

    Atmospheric PAHs in the Kuroshio Sphere of southern Taiwan were measured and characterized using samples collected simultaneously at four sites from February to October in 2007. Higher PAH concentrations occurred in winter (range 2.41 ± 1.85 to 40.8 ± 6.97 ng m-3) and autumn (range 1.21 ± 0.32 to 65.1 ± 57.4 ng m-3) than in summer (range 0.87 ± 0.36 to 17.7 ± 2.88 ng m-3). Comparison of the total PAH concentrations from the four sampling sites showed that the total PAH concentrations from the Kaohsiung urban site (KHU) were 1.7-4.4 times higher than those from the Kaohsiung coastal site (KHC), 3.6-26 times those from a rural coastal site (Kenting, KT), and 16.9-53.8 times those from an offshore island site (Lanyu, LY). The PAH compositional pattern, diagnostic ratios and principal component analysis indicated that the major sources of PAHs in the study area can be classified into three categories. The first is vehicular sources from local traffic, the second is natural soils, and the third is industrial activities including coke ovens and incinerator emissions. The results from back trajectories also demonstrated that atmospheric PAHs were produced by local sources but were also influenced by transboundary movement of terrestrial pollutants. The characteristics and sources of atmospheric PAHs identified in this study provide useful information for estimating the effects and transportation of PAHs in the Kuroshio Sphere.

  13. Clinical importance of voluntary and induced Bennett movement.

    PubMed

    Tupac, R G

    1978-07-01

    A total of 136 dentulous patients were divided into three groups for purposes of quantitative pantographic comparison of voluntary and induced Bennett movement. The effects of patient age and operator experience on recording the Bennett movement were also studied. The results indicates that for patients studied with Bennett movement iduced in the manner described: 1. Experienced operators can obtain more induced Bennett movement that inexperienced operators. 2. Inducing Bennett movement has a greater effect on the immediate side shift component than it has on the progressive side shift component. 3. For older individuals the amount and direction of induced immediate side shift is greater than for younger patients, statistically highly significant, and therefore clinically important. In conclusion, if the objective of a pantographic survey is to record the complete capacity of the joint to move, *lateral jaw movements must be induced.

  14. Decoding intentions from movement kinematics

    PubMed Central

    Cavallo, Andrea; Koul, Atesh; Ansuini, Caterina; Capozzi, Francesca; Becchio, Cristina

    2016-01-01

    How do we understand the intentions of other people? There has been a longstanding controversy over whether it is possible to understand others’ intentions by simply observing their movements. Here, we show that indeed movement kinematics can form the basis for intention detection. By combining kinematics and psychophysical methods with classification and regression tree (CART) modeling, we found that observers utilized a subset of discriminant kinematic features over the total kinematic pattern in order to detect intention from observation of simple motor acts. Intention discriminability covaried with movement kinematics on a trial-by-trial basis, and was directly related to the expression of discriminative features in the observed movements. These findings demonstrate a definable and measurable relationship between the specific features of observed movements and the ability to discriminate intention, providing quantitative evidence of the significance of movement kinematics for anticipating others’ intentional actions. PMID:27845434

  15. Effect of rubber flooring on dairy cattle stepping behavior and muscle activity.

    PubMed

    Rajapaksha, Eranda; Winkler, Christoph; Tucker, Cassandra B

    2015-04-01

    Use of compressible flooring, such as rubber, has increased on dairy farms. Rubber improves locomotion and is well used by cattle in preference experiments that combine walking and standing. Previous work has found that rubber is particularly beneficial for lame animals, perhaps because a softer material is particularly useful when a single hoof is compromised. The goal of this work was to evaluate the effect of flooring while standing, because cattle in freestall housing spend 40 to 50% of their time engaged in this behavior. In a 2 × 2 design, cows (n = 16) were evaluated on 4 standing surfaces that varied in terms of both floor type (concrete or rubber) and presentation [same floor under all 4 legs (all 4 legs on either concrete or rubber) or a rough surface under only one hind leg and the other 3 legs on concrete or rubber] in a crossover design. Surface electromyograms were used to evaluate muscle fatigue, total activity, and movement of muscle activity between legs during 1 h of standing. Muscle fatigue was evaluated in 2 contexts: (1) static contractions when cows continuously transferred weight to each hind leg, before and after 1 h of standing, and (2) dynamic contractions associated with steps during 1 h on treatment surfaces. In addition, stepping rate, time between each consecutive step, and the latency to lie down after testing were measured. No interaction between floor type and presentation was found. Presentation had a significant effect; when one hind leg was on a rough surface, cattle took 1.7 times more steps with this leg and the non-rough hind leg had 1.2 times more muscle activity, compared with when all 4 legs were on the same surface. These changes are consistent with movement away from concrete with protrusions. When standing on rubber, muscle-activity movements among legs remained stable (0.6-0.7 movements per min) over 1 h but increased on concrete (0.6-0.9 movements per min), indicating that, like humans, cattle may sway to counteract effects of standing. However, additional work, including measurements of blood flow in the leg, is needed to fully understand the biological implications of these changes. Overall, the rubber flooring tested had little effect on standing behavior. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Fetal movement detection: comparison of the Toitu actograph with ultrasound from 20 weeks gestation.

    PubMed

    DiPietro, J A; Costigan, K A; Pressman, E K

    1999-01-01

    This study evaluates the validity of Doppler-detected fetal movement by a commercially available monitor and investigates whether characteristics of maternal body habitus and the intrauterine environment affect its performance. Fetal movement was evaluated in normal pregnancies using both ultrasound visualization and a fetal actocardiograph (Toitu MT320; Tofa Medical Inc., Malvern, PA). Data were collected for 32 min on 34 fetuses stratified by gestational age (20-25 weeks; 28-32 weeks; 35-39 weeks). Fetal and maternal characteristics were recorded. Comparisons between ultrasound-detected trunk and limb movements and actograph records were conducted based both on 10-s time intervals and on detection of individual movements. Time-based comparisons indicated agreement between ultrasound and actograph 94.7% of the time; this association rose to 98% when movements of less than 1 s duration were excluded. Individual movements observed on ultrasound were detected by the actograph 91% of the time, and 97% of the time when brief, isolated movements were excluded. The overall kappa value for agreement was 0.88. The actograph was reliable in detecting periods of quiescence as well as activity. These findings did not vary by gestational age. The number of movements detected by the actograph, but not the single-transducer ultrasound, significantly increased over gestation. Maternal age, parity, weight, height, or body mass index were not consistently associated with actograph validity. Characteristics of the uterine environment, including placenta location, fetal presentation, and amniotic fluid volume also did not affect results. The Toitu actograph accurately detects fetal movement and quiescence from as early as 20 weeks gestation and has utility in both clinical and research settings. Actographs are most useful for providing objective and quantifiable measures of fetal activity level, including number and duration of movements, while visualization through ultrasound is necessary for studies of movement quality, source, or mechanics.

  17. SU-E-J-17: Intra-Fractional Prostate Movement Correction During Treatment Delivery Period for Prostate Cancer Using the Intra-Fractional Orthogonal KV-MV Image Pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Azawi, S; Cho-Lim, J

    Purpose: To evaluate the intra-fractional prostate movement range during the beam delivery and implement new IGRT method to correct the prostate movement during the hypofractionated prostate treatment delivery. Methods: To evaluate the prostate internal motion range during the beam delivery, 11 conventional treatments were utilized. Two-arc RapidArc plans were used for the treatment delivery. Orthogonal KV imaging is performed in the middle of the treatment to correct intra-fractional prostate movement. However, it takes gantry-mounted on-board imaging system relative long time to finish the orthogonal KV imaging because of gantry rotation. To avoid gantry movement and accelerate the IGRT processing time,more » orthogonal KV-MV image pair is tested using the OBI daily QA Cube phantom. Results: The average prostate movement between two orthogonal KV image pairs was 0.38cm (0.20cm ∼ 0.85cm). And the interval time between them was 6.71 min (4.64min ∼ 9.22 min). 2-arc beam delivery time is within 3 minutes for conventional RapidArc treatment delivery. Hypofractionated treatment or SBRT need 4 partial arc and possible non-coplanar technology, which need much longer beam delivery time. Therefore prostate movement might be larger. New orthogonal KV-MV image pair is a new method to correct the prostate movement in the middle of the beam delivery if real time tracking method is not available. Orthogonal KV-MV image pair doesn’t need gantry rotation. Images were acquired quickly which minimized possible new prostate movement. Therefore orthogonal KV-MV image pair is feasible for IGRT. Conclusion: Hypofractionated prostate treatment with less PTV margin always needs longer beam delivery time. Therefore prostate movement correction during the treatment delivery is critical. Orthogonal KV-MV imaging pair is efficient and accurate to correct the prostate movement during treatment beam delivery. Due to limited fraction number and high dose per fraction, the MV imaging dose is negligible.« less

  18. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  19. Eye movements and postural control in dyslexic children performing different visual tasks.

    PubMed

    Razuk, Milena; Barela, José Angelo; Peyre, Hugo; Gerard, Christophe Loic; Bucci, Maria Pia

    2018-01-01

    The aim of this study was to examine eye movements and postural control performance among dyslexic children while reading a text and performing the Landolt reading task. Fifteen dyslexic and 15 non-dyslexic children were asked to stand upright while performing two experimental visual tasks: text reading and Landolt reading. In the text reading task, children were asked to silently read a text displayed on a monitor, while in the Landolt reading task, the letters in the text were replaced by closed circles and Landolt rings, and children were asked to scan each circle/ring in a reading-like fashion, from left to right, and to count the number of Landolt rings. Eye movements (Mobile T2®, SuriCog) and center of pressure excursions (Framiral®, Grasse, France) were recorded. Visual performance variables were total reading time, mean duration of fixation, number of pro- and retro-saccades, and amplitude of pro-saccades. Postural performance variable was the center of pressure area. The results showed that dyslexic children spent more time reading the text and had a longer duration of fixation than non-dyslexic children. However, no difference was observed between dyslexic and non-dyslexic children in the Landolt reading task. Dyslexic children performed a higher number of pro- and retro-saccades than non-dyslexic children in both text reading and Landolt reading tasks. Dyslexic children had smaller pro-saccade amplitude than non-dyslexic children in the text reading task. Finally, postural performance was poorer in dyslexic children than in non-dyslexic children. Reading difficulties in dyslexic children are related to eye movement strategies required to scan and obtain lexical and semantic meaning. However, postural control performance, which was poor in dyslexic children, is not related to lexical and semantic reading requirements and might not also be related to different eye movement behavior.

  20. Carbon Dioxide and Nitrogen Infused Compressed Air Foam for Depopulation of Caged Laying Hens.

    PubMed

    Gurung, Shailesh; White, Dima; Archer, Gregory; Styles, Darrel; Zhao, Dan; Farnell, Yuhua; Byrd, James; Farnell, Morgan

    2018-01-03

    Depopulation of infected poultry flocks is a key strategy to control and contain reportable diseases. Water-based foam, carbon dioxide inhalation, and ventilation shutdown are depopulation methods available to the poultry industry. Unfortunately, these methods have limited usage in caged layer hen operations. Personnel safety and welfare of birds are equally important factors to consider during emergency depopulation procedures. We have previously reported that compressed air foam (CAF) is an alternative method for depopulation of caged layer hens. We hypothesized that infusion of gases, such as carbon dioxide (CO₂) and nitrogen (N₂), into the CAF would reduce physiological stress and shorten time to cessation of movement. The study had six treatments, namely a negative control, CO₂ inhalation, N₂ inhalation, CAF with air (CAF Air), CAF with 50% CO₂ (CAF CO₂), and CAF with 100% N₂ (CAF N₂). Four spent hens were randomly assigned to one of these treatments on each of the eight replication days. A total of 192 spent hens were used in this study. Serum corticosterone and serotonin levels were measured and compared between treatments. Time to cessation of movement of spent hens was determined using accelerometers. The addition of CO₂ in CAF significantly reduced the foam quality while the addition of N₂ did not. The corticosterone and serotonin levels of spent hens subjected to foam (CAF, CAF CO₂, CAF N₂) and gas inhalation (CO₂, N₂) treatments did not differ significantly. The time to cessation of movement of spent hens in the CAF N₂ treatment was significantly shorter than CAF and CAF CO₂ treatments but longer than the gas inhalation treatments. These data suggest that the addition of N₂ is advantageous in terms of shortening time to death and improved foam quality as compared to the CAF CO₂ treatment.

  1. Effects of special exercise programs on functional movement screen scores and injury prevention in preprofessional young football players.

    PubMed

    Dinc, Engin; Kilinc, Bekir Eray; Bulat, Muge; Erten, Yunus Turgay; Bayraktar, Bülent

    2017-10-01

    To increase movement capacity and to reduce injury risk in young soccer players by implementing a special functional exercise program based on functional movement screen (FMS) and correctives. 67 young male athletes 14-19 years of age from a Super League Football Club Academy participated in the study. Functional movement patterns were evaluated with FMS assessment protocol. Deep squat, hurdle step, inline lunge, shoulder mobility, active straight leg raise, trunk stability push-up, and rotatory stability were examined in FMS. Considering the FMS scores the number of intervention and control groups were defined as 24 and 43, respectively. Intervention program was composed of 1 hr twice a week sessions in total of 12 weeks with 4 weeks of mobility, 4 weeks of stability, and 4 weeks of integration exercises. At the end of 12-week intervention and control groups were re-evaluated with FMS protocol. Contact and noncontact sports injuries recorded during one season. In intervention group there was statistically significant difference in increase in total FMS scores ( P <0.01), deep squat ( P ≤0.001), hurdle step ( P <0.05), inline lunge ( P <0.01), and trunk stability push-up ( P <0.01). In control group total FMS, deep squat, and trunk stability push-up scores increased with a statistical difference ( P <0.01, P <0.05, P ≤0.01, respectively). The incidence of noncontact injury in control group was higher than intervention group ( P <0.05). Periodic movement screening and proper corrections with functional training is valuable in order to create better movement capacity to build better physical performance and more effective injury prevention.

  2. First-Time Mothers' Use of Music and Movement with Their Young Infants: The Impact of a Teaching Program.

    ERIC Educational Resources Information Center

    Vlismas, Wendy; Bowes, Jennifer

    1999-01-01

    Examined impact of a 5-week music/movement program involving relaxation, kinesics, singing, visual contact, and tactile stimulation on first-time mothers' use of music and movement with their infants. Found that the program extended mothers' use of relaxation to music and rhythmical movement with their infants but not the use of song and massage…

  3. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: A TMS study

    PubMed Central

    van Elswijk, Gijs; Schot, Willemijn D; Stegeman, Dick F; Overeem, Sebastiaan

    2008-01-01

    Background Preparation of the direction of a forthcoming movement has a particularly strong influence on both reaction times and neuronal activity in the primate motor cortex. Here, we aimed to find direct neurophysiologic evidence for the preparation of movement direction in humans. We used single-pulse transcranial magnetic stimulation (TMS) to evoke isolated thumb-movements, of which the direction can be modulated experimentally, for example by training or by motor tasks. Sixteen healthy subjects performed brisk concentric voluntary thumb movements during a reaction time task in which the required movement direction was precued. We assessed whether preparation for the thumb movement lead to changes in the direction of TMS-evoked movements and to changes in amplitudes of motor-evoked potentials (MEPs) from the hand muscles. Results When the required movement direction was precued early in the preparatory interval, reaction times were 50 ms faster than when precued at the end of the preparatory interval. Over time, the direction of the TMS-evoked thumb movements became increasingly variable, but it did not turn towards the precued direction. MEPs from the thumb muscle (agonist) were differentially modulated by the direction of the precue, but only in the late phase of the preparatory interval and thereafter. MEPs from the index finger muscle did not depend on the precued direction and progressively decreased during the preparatory interval. Conclusion Our data show that the human corticospinal movement representation undergoes progressive changes during motor preparation. These changes are accompanied by inhibitory changes in corticospinal excitability, which are muscle specific and depend on the prepared movement direction. This inhibition might indicate a corticospinal braking mechanism that counteracts any preparatory motor activation. PMID:18559096

  4. P-CPA pretreatment reverses the changes in sleep and behavior following acute immobilization stress rats.

    PubMed

    Sinha, Rakesh Kumar

    2006-02-01

    The effects of p-CPA (para-chlorophenylalanine) pretreatment was studied on the sleep-wake parameters and patterns of behavioral activities in an animal model of acute immobilization stress. For the experiments, young male Charles Foster rats were divided into three groups, subjected to (i) acute immobilization stress for four hours on specially designed wooden boards, (ii) a similar model of acute immobilization stress after pretreatment of p-CPA (injected through i.p. route), and (iii) control rats (p-CPA untreated and unstressed). Three channels of electrographic signals, i.e., EEG (electroencephalogram), EOG (electrooculogram), and EMG (electromyogram) were recorded continuously for four hours for all three groups of rats to analyze the changes in sleep-wake stages. The assessment of behavior was performed just after the stress on separate groups of rats in Open-Field (OF) and Elevated Plus-Maze (EPM) apparatuses. The significant changes in total sleep time (P < 0.05), total time for rapid eye movement sleep (P < 0.01), and total time in wakefulness (P < 0.01) following acute immobilization stress were found reversed in the p-CPA (a serotonin inhibitor) pretreated group of rats. Simultaneously, the results of the present work also revealed that the changes in grooming behavior (P < 0.05) in OF and the total time spent on the center of EPM (P < 0.05) were observed altered in p-CPA pretreated group of rats.

  5. Femoro-tibial kinematics after TKA in fixed- and mobile-bearing knees in the sagittal plane.

    PubMed

    Daniilidis, Kiriakos; Höll, Steffen; Gosheger, Georg; Dieckmann, Ralf; Martinelli, Nicolo; Ostermeier, Sven; Tibesku, Carsten O

    2013-10-01

    Lack of the anterior cruciate ligament in total knee arthroplasty results in paradoxical movement of the femur as opposed to the tibia under deep flexion. Total knee arthroplasty with mobile-bearing inlays has been developed to provide increased physiological movement of the knee joint and to reduce polyethylene abrasion. The aim of this study was to perform an in vitro analysis of the kinematic movement in the sagittal plane in order to show differences between fixed- and mobile-bearing TKA in comparison with the natural knee joint. Seven knee joints of human cadaver material were used in a laboratory experiment. Fixed- and mobile-bearing inlays were tested in sequences under isokinetic extension in so-called kinemator for knee joints, which can simulate muscular traction power by the use of hydraulic cylinders, which crossover the knee joint. As a target parameter, the a.p. translation of the tibio-femoral relative movement was measured in the sagittal plane under ultrasound (Zebris) control. The results show a reduced tibial a.p. translation in relation to the femur in the bearing group compared to the natural joint. In the Z-axis, between 110° and 50° of flexion, linear movement decreases towards caudal movement under extension. Admittedly, the study did not show differences in the movement pattern between "mobile-bearing" and "fixed-bearing" prostheses. Results of this study cannot prove functional advantages of mobile-bearing prostheses for the knee joint kinematic after TKA. Both types of prostheses show typical kinematics of an anterior instability, hence they were incapable of performing physiological movement.

  6. A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys

    PubMed Central

    Jousimo, Jussi; Ovaskainen, Otso

    2016-01-01

    Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683

  7. Skills based evaluation of alternative input methods to command a semi-autonomous electric wheelchair.

    PubMed

    Rojas, Mario; Ponce, Pedro; Molina, Arturo

    2016-08-01

    This paper presents the evaluation, under standardized metrics, of alternative input methods to steer and maneuver a semi-autonomous electric wheelchair. The Human-Machine Interface (HMI), which includes a virtual joystick, head movements and speech recognition controls, was designed to facilitate mobility skills for severely disabled people. Thirteen tasks, which are common to all the wheelchair users, were attempted five times by controlling it with the virtual joystick and the hands-free interfaces in different areas for disabled and non-disabled people. Even though the prototype has an intelligent navigation control, based on fuzzy logic and ultrasonic sensors, the evaluation was done without assistance. The scored values showed that both controls, the head movements and the virtual joystick have similar capabilities, 92.3% and 100%, respectively. However, the 54.6% capacity score obtained for the speech control interface indicates the needs of the navigation assistance to accomplish some of the goals. Furthermore, the evaluation time indicates those skills which require more user's training with the interface and specifications to improve the total performance of the wheelchair.

  8. Accessible laparoscopic instrument tracking ("InsTrac"): construct validity in a take-home box simulator.

    PubMed

    Partridge, Roland W; Hughes, Mark A; Brennan, Paul M; Hennessey, Iain A M

    2014-08-01

    Objective performance feedback has potential to maximize the training benefit of laparoscopic simulators. Instrument movement metrics are, however, currently the preserve of complex and expensive systems. We aimed to develop and validate affordable, user-ready software that provides objective feedback by tracking instrument movement in a "take-home" laparoscopic simulator. Computer-vision processing tracks the movement of colored bands placed around the distal instrument shafts. The position of each instrument is logged from the simulator camera feed and movement metrics calculated in real time. Ten novices (junior doctors) and 13 general surgery trainees (StR) (training years 3-7) performed a standardized task (threading string through hoops) on the eoSim (eoSurgical™ Ltd., Edinburgh, Scotland, United Kingdom) take-home laparoscopic simulator. Statistical analysis was performed using unpaired t tests with Welch's correction. The software was able to track the instrument tips reliably and effectively. Significant differences between the two groups were observed in time to complete task (StR versus novice, 2 minutes 33 seconds versus 9 minutes 53 seconds; P=.01), total distance traveled by instruments (3.29 m versus 11.38 m, respectively; P=.01), average instrument motion smoothness (0.15 mm/second(3) versus 0.06 mm/second(3), respectively; P<.01), and handedness (mean difference between dominant and nondominant hand) (0.55 m versus 2.43 m, respectively; P=.03). There was no significant difference seen in the distance between instrument tips, acceleration, speed of instruments, or time off-screen. We have developed software that brings objective performance feedback to the portable laparoscopic box simulator. Construct validity has been demonstrated. Removing the need for additional motion-tracking hardware makes it affordable and accessible. It is user-ready and has the potential to enhance the training benefit of portable simulators both in the workplace and at home.

  9. Using InSAR time series to identify geologic hazards associated with the Hayward and Calaveras faults along the South Bay Aqueduct

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Burgmann, R.; Hoirup, D. F., Jr.; Hawkins, B.

    2016-12-01

    We evaluated Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data using InSAR time series analysis and documented ground movement along the Calaveras and Hayward faults near the South Bay Aqueduct (SBA). Images from seven different UAVSAR flight lines at 7m x 7m resolution were used for the study. A total of 132 acquisitions (between 12 and 51 per line) were acquired between 2009 and 2015. Each of the seven lines observed only part of the aqueduct, but all segments of the aqueduct were imaged in more than one line with some segments in up to four lines. This provided between one and three imaging geometries for every fault location along the aqueduct. The SBA transports water from the Sacramento-San Joaquin Delta (Delta) to communities east and south of San Francisco Bay through a combination of open canals, tunnels, and pipelines. From its starting point immediately west of the Delta at Bethany Reservoir, the SBA extends westward, crossing multiple faults, including Calaveras and Hayward faults. The aqueduct continues south, largely following the Hayward fault to its terminus east of San Jose. The SBA and associated infrastructure are at risk from landslides and from movement along any of these faults, with the landslides often spatially associated with the faults. We report linear rates of surface movement averaged across the six-year time period, and identify locations experiencing significant movement along the Calaveras and Hayward faults. Aseismic displacement is quantified and mapped for the two faults, including multiple traces of the Calaveras fault extending north and south of where it crosses the SBA. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the California Dept. of Water Resources and with the National Aeronautics and Space Administration.

  10. Action history influences subsequent movement via two distinct processes

    PubMed Central

    Poh, Eugene; de Rugy, Aymar

    2017-01-01

    The characteristics of goal-directed actions tend to resemble those of previously executed actions, but it is unclear whether such effects depend strictly on action history, or also reflect context-dependent processes related to predictive motor planning. Here we manipulated the time available to initiate movements after a target was specified, and studied the effects of predictable movement sequences, to systematically dissociate effects of the most recently executed movement from the movement required next. We found that directional biases due to recent movement history strongly depend upon movement preparation time, suggesting an important contribution from predictive planning. However predictive biases co-exist with an independent source of bias that depends only on recent movement history. The results indicate that past experience influences movement execution through a combination of temporally-stable processes that are strictly use-dependent, and dynamically-evolving and context-dependent processes that reflect prediction of future actions. PMID:29058670

  11. Behavioral Speed Contagion: Automatic Modulation of Movement Timing by Observation of Body Movements

    ERIC Educational Resources Information Center

    Watanabe, Katsumi

    2008-01-01

    To coordinate our actions with those of others, it is crucial to not only choose an appropriate category of action but also to execute it at an appropriate timing. It is widely documented that people tend to unconsciously mimic others' behavior. The present study show that people also tend to modify their movement timing according to others'…

  12. Movement Suppression Time-Out for Undesirable Behavior in Psychotic and Severely Developmentally Delayed Children.

    ERIC Educational Resources Information Center

    Rolider, Ahmos; Van Houten, Ron

    1985-01-01

    Effects of a movement suppression time-out, which involved punishing any movements or verbalization while a client is in the time-out area, were evaluated in four experiments. The procedure produced a larger reduction in the target behavior in all three children and effectiveness was explained in terms of suppression of self-stimulation during…

  13. EEG patterns in theta and gamma frequency range and their probable relation to human voluntary movement organization.

    PubMed

    Popivanov, D; Mineva, A; Krekule, I

    1999-05-21

    In experiments with EEG accompanying continuous slow goal-directed voluntary movements we found abrupt short-term transients (STs) of the coefficients of EEG time-varying autoregressive (TVAR) model. The onset of STs indicated (i) a positive EEG wave related to an increase of 3-7 Hz oscillations in time period before the movement start, (ii) synchronization of 35-40 Hz prior to movement start and during the movement when the target is nearly reached. Both these phenomena are expressed predominantly over supplementary motor area, premotor and parietal cortices. These patterns were detected after averaging of EEG segments synchronized to the abrupt changes of the TVAR coefficients computed in the time course of EEG single records. The results are discussed regarding the cognitive aspect of organization of goal-directed movements.

  14. Self-directed therapy programmes for arm rehabilitation after stroke: a systematic review.

    PubMed

    Da-Silva, Ruth H; Moore, Sarah A; Price, Christopher I

    2018-05-01

    To investigate the effectiveness of self-directed arm interventions in adult stroke survivors. A systematic review of Medline, EMBASE, CINAHL, SCOPUS and IEEE Xplore up to February 2018 was carried out. Studies of stroke arm interventions were included where more than 50% of the time spent in therapy was initiated and carried out by the participant. Quality of the evidence was assessed using the Cochrane risk of bias tool. A total of 40 studies ( n = 1172 participants) were included (19 randomized controlled trials (RCTs) and 21 before-after studies). Studies were grouped according to no technology or the main additional technology used (no technology n = 5; interactive gaming n = 6; electrical stimulation n = 11; constraint-induced movement therapy n = 6; robotic and dynamic orthotic devices n = 8; mirror therapy n = 1; telerehabilitation n = 2; wearable devices n = 1). A beneficial effect on arm function was found for self-directed interventions using constraint-induced movement therapy ( n = 105; standardized mean difference (SMD) 0.39, 95% confidence interval (CI) -0.00 to 0.78) and electrical stimulation ( n = 94; SMD 0.50, 95% CI 0.08-0.91). Constraint-induced movement therapy and therapy programmes without technology improved independence in activities of daily living. Sensitivity analysis demonstrated arm function benefit for patients >12 months poststroke ( n = 145; SMD 0.52, 95% CI 0.21-0.82) but not at 0-3, 3-6 or 6-12 months. Self-directed interventions can enhance arm recovery after stroke but the effect varies according to the approach used and timing. There were benefits identified from self-directed delivery of constraint-induced movement therapy, electrical stimulation and therapy programmes that increase practice without using additional technology.

  15. Clinical assessment and three-dimensional movement analysis: An integrated approach for upper limb evaluation in children with unilateral cerebral palsy

    PubMed Central

    Ortibus, Els; Simon-Martinez, Cristina; Desloovere, Kaat; Molenaers, Guy; Klingels, Katrijn; Feys, Hilde

    2017-01-01

    Introduction The clinical application of upper limb (UL) three-dimensional movement analysis (3DMA) in children with unilateral cerebral palsy (uCP) remains challenging, despite its benefits compared to conventional clinical scales. Moreover, knowledge on UL movement pathology and how this relates to clinical parameters remains scarce. Therefore, we investigated UL kinematics across different manual ability classification system (MACS) levels and explored the relation between clinical and kinematic parameters in children with uCP. Patients and methods Fifty children (MACS: I = 15, II = 26, III = 9) underwent an UL evaluation of sensorimotor impairments (grip force, muscle strength, muscle tone, two-point discrimination, stereognosis), bimanual performance (Assisting Hand Assessment, AHA), unimanual capacity (Melbourne Assessment 2, MA2) and UL-3DMA during hand-to-head, hand-to-mouth and reach-to-grasp tasks. Global parameters (Arm Profile Score (APS), duration, (timing of) maximum velocity, trajectory straightness) and joint specific parameters (angles at task endpoint, ROM and Arm Variable Scores (AVS)) were extracted. The APS and AVS refer respectively to the total amount of movement pathology and movement deviations of wrist, elbow, shoulder, scapula and trunk. Results Longer movement durations and increased APS were found with higher MACS-levels (p<0.001). Increased APS was also associated with more severe sensorimotor impairments (r = -0.30-(-0.73)) and with lower AHA and MA2-scores (r = -0.50-(-0.86)). For the joint specific parameters, stronger movement deviations distally were significantly associated with increased muscle weakness (r = -0.32-(-0.74)) and muscle tone (r = 0.33-(-0.61)); proximal movement deviations correlated only with muscle weakness (r = -0.35–0.59). Regression analysis exposed grip force as the most important predictor for the variability in APS (p<0.002). Conclusion We found increased movement pathology with increasing MACS-levels and demonstrated the adverse impact of especially muscle weakness. The lower correlations suggest that 3DMA provides additional information regarding UL motor function, particularly for the proximal joints. Integrating both methods seems clinically meaningful to obtain a comprehensive representation of all aspects of a child’s UL functioning. PMID:28671953

  16. Online kinematic regulation by visual feedback for grasp versus transport during reach-to-pinch

    PubMed Central

    Nataraj, Raviraj; Pasluosta, Cristian; Li, Zong-Ming

    2014-01-01

    Purpose This study investigated novel kinematic performance parameters to understand regulation by visual feedback (VF) of the reaching hand on the grasp and transport components during the reach-to-pinch maneuver. Conventional metrics often signify discrete movement features to postulate sensory-based control effects (e.g., time for maximum velocity to signify feedback delay). The presented metrics of this study were devised to characterize relative vision-based control of the sub-movements across the entire maneuver. Methods Movement performance was assessed according to reduced variability and increased efficiency of kinematic trajectories. Variability was calculated as the standard deviation about the observed mean trajectory for a given subject and VF condition across kinematic derivatives for sub-movements of inter-pad grasp (distance between thumb and index finger-pads; relative orientation of finger-pads) and transport (distance traversed by wrist). A Markov analysis then examined the probabilistic effect of VF on which movement component exhibited higher variability over phases of the complete maneuver. Jerk-based metrics of smoothness (minimal jerk) and energy (integrated jerk-squared) were applied to indicate total movement efficiency with VF. Results/Discussion The reductions in grasp variability metrics with VF were significantly greater (p<0.05) compared to transport for velocity, acceleration, and jerk, suggesting separate control pathways for each component. The Markov analysis indicated that VF preferentially regulates grasp over transport when continuous control is modeled probabilistically during the movement. Efficiency measures demonstrated VF to be more integral for early motor planning of grasp than transport in producing greater increases in smoothness and trajectory adjustments (i.e., jerk-energy) early compared to late in the movement cycle. Conclusions These findings demonstrate the greater regulation by VF on kinematic performance of grasp compared to transport and how particular features of this relativistic control occur continually over the maneuver. Utilizing the advanced performance metrics presented in this study facilitated characterization of VF effects continuously across the entire movement in corroborating the notion of separate control pathways for each component. PMID:24968371

  17. Clinical assessment and three-dimensional movement analysis: An integrated approach for upper limb evaluation in children with unilateral cerebral palsy.

    PubMed

    Mailleux, Lisa; Jaspers, Ellen; Ortibus, Els; Simon-Martinez, Cristina; Desloovere, Kaat; Molenaers, Guy; Klingels, Katrijn; Feys, Hilde

    2017-01-01

    The clinical application of upper limb (UL) three-dimensional movement analysis (3DMA) in children with unilateral cerebral palsy (uCP) remains challenging, despite its benefits compared to conventional clinical scales. Moreover, knowledge on UL movement pathology and how this relates to clinical parameters remains scarce. Therefore, we investigated UL kinematics across different manual ability classification system (MACS) levels and explored the relation between clinical and kinematic parameters in children with uCP. Fifty children (MACS: I = 15, II = 26, III = 9) underwent an UL evaluation of sensorimotor impairments (grip force, muscle strength, muscle tone, two-point discrimination, stereognosis), bimanual performance (Assisting Hand Assessment, AHA), unimanual capacity (Melbourne Assessment 2, MA2) and UL-3DMA during hand-to-head, hand-to-mouth and reach-to-grasp tasks. Global parameters (Arm Profile Score (APS), duration, (timing of) maximum velocity, trajectory straightness) and joint specific parameters (angles at task endpoint, ROM and Arm Variable Scores (AVS)) were extracted. The APS and AVS refer respectively to the total amount of movement pathology and movement deviations of wrist, elbow, shoulder, scapula and trunk. Longer movement durations and increased APS were found with higher MACS-levels (p<0.001). Increased APS was also associated with more severe sensorimotor impairments (r = -0.30-(-0.73)) and with lower AHA and MA2-scores (r = -0.50-(-0.86)). For the joint specific parameters, stronger movement deviations distally were significantly associated with increased muscle weakness (r = -0.32-(-0.74)) and muscle tone (r = 0.33-(-0.61)); proximal movement deviations correlated only with muscle weakness (r = -0.35-0.59). Regression analysis exposed grip force as the most important predictor for the variability in APS (p<0.002). We found increased movement pathology with increasing MACS-levels and demonstrated the adverse impact of especially muscle weakness. The lower correlations suggest that 3DMA provides additional information regarding UL motor function, particularly for the proximal joints. Integrating both methods seems clinically meaningful to obtain a comprehensive representation of all aspects of a child's UL functioning.

  18. Understanding movement control in infants through the analysis of limb intersegmental dynamics.

    PubMed

    Schneider, K; Zernicke, R F; Ulrich, B D; Jensen, J L; Thelen, E

    1990-12-01

    One important component in the understanding of the control of limb movements is the way in which the central nervous system accounts for joint forces and torques that may be generated not only by muscle actions but by gravity and by passive reactions related to the movements of limb segments. In this study, we asked how the neuromotor system of young infants controls a range of active and passive forces to produce a stereotypic, nonintentional movement. We specifically analyzed limb intersegmental dynamics in spontaneous, cyclic leg movements (kicking) of varying intensity in supine 3-month-old human infants. Using inverse dynamics, we calculated the contributions of active (muscular) and passive (motion-dependent and gravitational) torque components at the hip, knee, and ankle joints from three-dimensional limb kinematics. To calculate joint torques, accurate estimates were needed of the limb's anthropometric parameters, which we determined using a model of the human body. Our analysis of limb intersegmental dynamics explicitly quantified the complex interplay of active and passive forces producing the simple, involuntary kicking movements commonly seen in 3-month-old infants. our results revealed that in nonvigorous kicks, hip joint reversal was the result of an extensor torque due to gravity, opposed by the combined flexor effect of the muscle torque and the total motion-dependent torque. The total motion-dependent torque increased as a hip flexor torque in more vigorous kicks; an extensor muscle torque was necessary to counteract the flexor influences of the total motion-dependent torque and, in the case of large ranges of motion, a flexor gravity torque as well. Thus, with changing passive torque influences due to motions of the linked segments, the muscle torques were adjusted to produce a net torque to reverse the kicking motion. As a consequence, despite considerable heterogeneity in the intensity, range of motion, coordination, and movement context of each kick, smooth trajectories resulted from the muscle torque, counteracting and complementing not only gravity but also the motion-dependent torques generated by movement of the linked segments.

  19. Corrective response times in a coordinated eye-head-arm countermanding task.

    PubMed

    Tao, Gordon; Khan, Aarlenne Z; Blohm, Gunnar

    2018-06-01

    Inhibition of motor responses has been described as a race between two competing decision processes of motor initiation and inhibition, which manifest as the reaction time (RT) and the stop signal reaction time (SSRT); in the case where motor initiation wins out over inhibition, an erroneous movement occurs that usually needs to be corrected, leading to corrective response times (CRTs). Here we used a combined eye-head-arm movement countermanding task to investigate the mechanisms governing multiple effector coordination and the timing of corrective responses. We found a high degree of correlation between effector response times for RT, SSRT, and CRT, suggesting that decision processes are strongly dependent across effectors. To gain further insight into the mechanisms underlying CRTs, we tested multiple models to describe the distribution of RTs, SSRTs, and CRTs. The best-ranked model (according to 3 information criteria) extends the LATER race model governing RTs and SSRTs, whereby a second motor initiation process triggers the corrective response (CRT) only after the inhibition process completes in an expedited fashion. Our model suggests that the neural processing underpinning a failed decision has a residual effect on subsequent actions. NEW & NOTEWORTHY Failure to inhibit erroneous movements typically results in corrective movements. For coordinated eye-head-hand movements we show that corrective movements are only initiated after the erroneous movement cancellation signal has reached a decision threshold in an accelerated fashion.

  20. The impact of old age on surgical outcomes of totally laparoscopic gastrectomy for gastric cancer.

    PubMed

    Kim, Min Gyu; Kim, Hee Sung; Kim, Byung Sik; Kwon, Sung Joon

    2013-11-01

    Old age is regarded as the risk factor of major abdominal surgery due to the lack of functional reserve and the increased presence of comorbidities. This study aimed to evaluate the impact of old age on the surgical outcomes of totally laparoscopic gastrectomy for gastric cancer. This study enrolled 389 gastric cancer patients who underwent totally laparoscopic gastrectomy at Hanyang University Guri Hospital and ASAN Medical Center. The patients were classified into two groups according to age as those older than 70 years and those younger than 70 years. Early surgical outcomes such as operation time, postoperative complications, time to first flatus, days until soft diet began, and hospital stay were evaluated. No patient was converted to open surgery. The two groups differed significantly in terms of overall postoperative complication rate, time to first flatus, days until soft diet began, and hospital stay. The patients who underwent Roux-en-Y gastrojejunostomy differed in incidence of postoperative ileus but not in severe postoperative complication rate. The results of this study demonstrated that old age can have an effect on the surgical outcomes of totally laparoscopic gastrectomy. This study especially showed that elderly patients are affected by the return of bowel movement after totally laparoscopic gastrectomy. On the other hand, however, it is presumed that old age has not had a serious impact on surgical outcomes in totally laparoscopic gastrectomy because no difference in the severe postoperative complication rate was observed.

  1. Synthesis of asymmetric movement trajectories in timed rhythmic behaviour by means of frequency modulation.

    PubMed

    Waadeland, Carl Haakon

    2017-01-01

    Results from different empirical investigations on gestural aspects of timed rhythmic movements indicate that the production of asymmetric movement trajectories is a feature that seems to be a common characteristic of various performances of repetitive rhythmic patterns. The behavioural or neural origin of these asymmetrical trajectories is, however, not identified. In the present study we outline a theoretical model that is capable of producing syntheses of asymmetric movement trajectories documented in empirical investigations by Balasubramaniam et al. (2004). Characteristic qualities of the extension/flexion profiles in the observed asymmetric trajectories are reproduced, and we conduct an experiment similar to Balasubramaniam et al. (2004) to show that the empirically documented movement trajectories and our modelled approximations share the same spectral components. The model is based on an application of frequency modulated movements, and a theoretical interpretation offered by the model is to view paced rhythmic movements as a result of an unpaced movement being "stretched" and "compressed", caused by the presence of a metronome. We discuss our model construction within the framework of event-based and emergent timing, and argue that a change between these timing modes might be reflected by the strength of the modulation in our model. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition

    PubMed Central

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-01-01

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates (F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware. PMID:28208736

  3. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition.

    PubMed

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-02-08

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates ( F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware.

  4. Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans.

    PubMed Central

    Dijk, D J; Shanahan, T L; Duffy, J F; Ronda, J M; Czeisler, C A

    1997-01-01

    1. The circadian pacemaker regulates the timing, structure and consolidation of human sleep. The extent to which this pacemaker affects electroencephalographic (EEG) activity during sleep remains unclear. 2. To investigate this, a total of 1.22 million power spectra were computed from EEGs recorded in seven men (total, 146 sleep episodes; 9 h 20 min each) who participated in a one-month-long protocol in which the sleep-wake cycle was desynchronized from the rhythm of plasma melatonin, which is driven by the circadian pacemaker. 3. In rapid eye movement (REM) sleep a small circadian variation in EEG activity was observed. The nadir of the circadian rhythm of alpha activity (8.25-10.5 Hz) coincided with the end of the interval during which plasma melatonin values were high, i.e. close to the crest of the REM sleep rhythm. 4. In non-REM sleep, variation in EEG activity between 0.25 and 11.5 Hz was primarily dependent on prior sleep time and only slightly affected by circadian phase, such that the lowest values coincided with the phase of melatonin secretion. 5. In the frequency range of sleep spindles, high-amplitude circadian rhythms with opposite phase positions relative to the melatonin rhythm were observed. Low-frequency sleep spindle activity (12.25-13.0 Hz) reached its crest and high-frequency sleep spindle activity (14.25-15.5 Hz) reached its nadir when sleep coincided with the phase of melatonin secretion. 6. These data indicate that the circadian pacemaker induces changes in EEG activity during REM and non-REM sleep. The changes in non-REM sleep EEG spectra are dissimilar from the spectral changes induced by sleep deprivation and exhibit a close temporal association with the melatonin rhythm and the endogenous circadian phase of sleep consolidation. PMID:9457658

  5. Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement

    PubMed Central

    Misra, Gaurav; Ofori, Edward; Chung, Jae Woo; Coombes, Stephen A.

    2017-01-01

    Abstract Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement. PMID:26965905

  6. Sit-To-Stand Biomechanics Before and After Total Hip Arthroplasty

    PubMed Central

    Abujaber, Sumayeh B.; Marmon, Adam R.; Pozzi, Federico; Rubano, James J.; Zeni, Joseph A.

    2015-01-01

    The purpose of this study was to evaluate changes in movement patterns during a sit-to-stand (STS) task before and after total hip arthroplasty (THA), and to compare biomechanical outcomes after THA to a control group. Forty-five subjects who underwent THA and twenty-three healthy control subjects participated in three-dimensional motion analysis. Pre-operatively, subjects exhibited inter-limb movement asymmetries with lower vertical ground reaction force (VGRF) and smaller moments on the operated limb. Although there were significant improvements in movement symmetry 3 months after THA, patients continued to demonstrate lower VGRF and smaller moments on the operated limb compared to non-operated and to control limbs. Future studies should identify the contributions of physical impairments and the influence of surgical approach on STS biomechanics. PMID:26117068

  7. The reliability and validity of subjective notational analysis in comparison to global positioning system tracking to assess athlete movement patterns.

    PubMed

    Doğramac, Sera N; Watsford, Mark L; Murphy, Aron J

    2011-03-01

    Subjective notational analysis can be used to track players and analyse movement patterns during match-play of team sports such as futsal. The purpose of this study was to establish the validity and reliability of the Event Recorder for subjective notational analysis. A course was designed, replicating ten minutes of futsal match-play movement patterns, where ten participants undertook the course. The course allowed a comparison of data derived from subjective notational analysis, to the known distances of the course, and to GPS data. The study analysed six locomotor activity categories, focusing on total distance covered, total duration of activities and total frequency of activities. The values between the known measurements and the Event Recorder were similar, whereas the majority of significant differences were found between the Event Recorder and GPS values. The reliability of subjective notational analysis was established with all ten participants being analysed on two occasions, as well as analysing five random futsal players twice during match-play. Subjective notational analysis is a valid and reliable method of tracking player movements, and may be a preferred and more effective method than GPS, particularly for indoor sports such as futsal, and field sports where short distances and changes in direction are observed.

  8. Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice.

    PubMed

    Miyazaki, Koyomi; Itoh, Nanako; Yamamoto, Saori; Higo-Yamamoto, Sayaka; Nakakita, Yasukazu; Kaneda, Hirotaka; Shigyo, Tatsuro; Oishi, Katsutaka

    2014-08-28

    We previously reported that heat-killed Lactobacillus brevis SBC8803 enhances appetite via changes in autonomic neurotransmission. Here we assessed whether a diet supplemented with heat-killed SBC8803 affects circadian locomotor rhythmicity and sleep architecture. Daily total activity gradually increased in mice over 4 weeks and supplementation with heat-killed SBC8803 significantly intensified the increase, which reached saturation at 25 days. Electroencephalography revealed that SBC8803 supplementation significantly reduced the total amount of time spent in non-rapid eye movement (NREM) sleep and increased the amount of time spent being awake during the latter half of the nighttime, but tended to increase the total amount of time spent in NREM sleep during the daytime. Dietary supplementation with SBC8803 can extend the duration of activity during the nighttime and of sleep during the daytime. Daily voluntary wheel-running and sleep rhythmicity become intensified when heat-killed SBC8803 is added to the diet. Dietary heat-killed SBC8803 can modulate circadian locomotion and sleep rhythms, which might benefit individuals with circadian rhythms that have been disrupted by stress or ageing. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Assessment of Oropharyngeal Dysphagia in Patients With Parkinson Disease: Use of Ultrasonography.

    PubMed

    Oh, Eun Hyun; Seo, Jin Seok; Kang, Hyo Jung

    2016-04-01

    To compare tongue thickness, the shortest hyoid-thyroid approximation (distance between the hyoid bone and thyroid cartilage), and the time interval between the initiation of tongue movement and the time of the shortest hyoid-thyroid approximation, by using ultrasonography in healthy controls and patients with Parkinson disease (PD). Healthy controls and PD patients with dysphagia were compared. Ultrasonography was performed 3 times for the evaluation of tongue thickness, the shortest hyoid-thyroid approximation, and the time between the initiation of tongue movement and the shortest hyoid-thyroid approximation. A total of 24 healthy controls and 24 PD patients with dysphagia were enrolled. No significant differences were demonstrated between the two groups for the shortest hyoid-thyroid approximation (controls, 1.19±0.34 cm; PD patients, 1.37±0.5 cm; p=0.15) and tongue thickness (controls, 4.42±0.46 cm; PD patients, 4.27±0.51 cm; p=0.3). In contrast, the time to the shortest hyoid-thyroid approximation was significantly different between the two groups (controls, 1.53±0.87 ms; PD patients, 2.4±1.4 ms, p=0.048). Ultrasonography can be useful in evaluating dysphagia in patients with PD by direct visualization and measurement of the hyoid bone. Moreover, ultrasonography might contribute to a greater understanding of the pathophysiology of dysphagia in PD.

  10. Intercepting beats in predesignated target zones.

    PubMed

    Craig, Cathy; Pepping, Gert-Jan; Grealy, Madeleine

    2005-09-01

    Moving to a rhythm necessitates precise timing between the movement of the chosen limb and the timing imposed by the beats. However, the temporal information specifying the moment when a beat will sound (the moment onto which one must synchronise one's movement) is not continuously provided by the acoustic array. Because of this informational void, the actors need some form of prospective information that will allow them to act sufficiently ahead of time in order to get their hand in the right place at the right time. In this acoustic interception study, where participants were asked to move between two targets in such a way that they arrived and stopped in the target zone at the same time as a beat sounded, we tested a model derived from tau-coupling theory (Lee DN (1998) Ecol Psychol 10:221-250). This model attempts to explain the form of a potential timing guide that specifies the duration of the inter-beat intervals and also describes how this informational guide can be used in the timing and guidance of movements. The results of our first experiment show that, for inter-beat intervals of less than 3 s, a large proportion of the movement (over 70%) can be explained by the proposed model. However, a second experiment, which augments the time between beats so that it surpasses 3 s, shows a marked decline in the percentage of information/movement coupling. A close analysis of the movement kinematics indicates a lack of control and anticipation in the participants' movements. The implications of these findings, in light of other research studies, are discussed.

  11. Using diel movement behavior to infer foraging strategies related to ecological and social factors in elephants.

    PubMed

    Polansky, Leo; Douglas-Hamilton, Iain; Wittemyer, George

    2013-01-01

    Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions and movement behavior have focused on such metrics as travel distance, velocity, home range size or patch occupancy time as the salient metrics of behavior. Driven by the emergence of very regular high frequency data, more recently the importance of interpreting the autocorrelation structure of movement as a behavioral metric has become apparent. Studying movement of a free ranging African savannah elephant population, we evaluated how two movement metrics, diel displacement (DD) and movement predictability (MP - the degree of autocorrelated movement activity at diel time scales), changed in response to variation in resource availability as measured by the Normalized Difference Vegetation Index. We were able to capitalize on long term (multi-year) yet high resolution (hourly) global positioning system tracking datasets, the sample size of which allows robust analysis of complex models. We use optimal foraging theory predictions as a framework to interpret our results, in particular contrasting the behaviors across changes in social rank and resource availability to infer which movement behaviors at diel time scales may be optimal in this highly social species. Both DD and MP increased with increasing forage availability, irrespective of rank, reflecting increased energy expenditure and movement predictability during time periods of overall high resource availability. However, significant interactions between forage availability and social rank indicated a stronger response in DD, and a weaker response in MP, with increasing social status. Relative to high ranking individuals, low ranking individuals expended more energy and exhibited less behavioral movement autocorrelation during lower forage availability conditions, likely reflecting sub-optimal movement behavior. Beyond situations of contest competition, rank status appears to influence the extent to which individuals can modify their movement strategies across periods with differing forage availability. Large-scale spatiotemporal resource complexity not only impacts fine scale movement and optimal foraging strategies directly, but likely impacts rates of inter- and intra-specific interactions and competition resulting in socially based movement responses to ecological dynamics.

  12. Auditory reafferences: the influence of real-time feedback on movement control.

    PubMed

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  13. The Investigation of Laparoscopic Instrument Movement Control and Learning Effect

    PubMed Central

    Lin, Chiuhsiang Joe

    2013-01-01

    Laparoscopic surgery avoids large incisions for intra-abdominal operations as required in conventional open surgery. Whereas the patient benefits from laparoscopic techniques, the surgeon encounters new difficulties that were not present during open surgery procedures. However, limited literature has been published in the essential movement characteristics such as magnification, amplitude, and angle. For this reason, the present study aims to investigate the essential movement characteristics of instrument manipulation via Fitts' task and to develop an instrument movement time predicting model. Ten right-handed subjects made discrete Fitts' pointing tasks using a laparoscopic trainer. The experimental results showed that there were significant differences between the three factors in movement time and in throughput. However, no significant differences were observed in the improvement rate for movement time and throughput between these three factors. As expected, the movement time was rather variable and affected markedly by direction to target. The conventional Fitts' law model was extended by incorporating a directional parameter into the model. The extended model was shown to better fit the data than the conventional model. These findings pointed to a design direction for the laparoscopic surgery training program, and the predictive model can be used to establish standards in the training procedure. PMID:23984348

  14. The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales

    PubMed Central

    Wesolowski, Amy; Buckee, Caroline O.; Pindolia, Deepa K.; Eagle, Nathan; Smith, David L.; Garcia, Andres J.; Tatem, Andrew J.

    2013-01-01

    Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data. PMID:23326367

  15. Human amygdala activation during rapid eye movements of rapid eye movement sleep: an intracranial study.

    PubMed

    Corsi-Cabrera, María; Velasco, Francisco; Del Río-Portilla, Yolanda; Armony, Jorge L; Trejo-Martínez, David; Guevara, Miguel A; Velasco, Ana L

    2016-10-01

    The amygdaloid complex plays a crucial role in processing emotional signals and in the formation of emotional memories. Neuroimaging studies have shown human amygdala activation during rapid eye movement sleep (REM). Stereotactically implanted electrodes for presurgical evaluation in epileptic patients provide a unique opportunity to directly record amygdala activity. The present study analysed amygdala activity associated with REM sleep eye movements on the millisecond scale. We propose that phasic activation associated with rapid eye movements may provide the amygdala with endogenous excitation during REM sleep. Standard polysomnography and stereo-electroencephalograph (SEEG) were recorded simultaneously during spontaneous sleep in the left amygdala of four patients. Time-frequency analysis and absolute power of gamma activity were obtained for 250 ms time windows preceding and following eye movement onset in REM sleep, and in spontaneous waking eye movements in the dark. Absolute power of the 44-48 Hz band increased significantly during the 250 ms time window after REM sleep rapid eye movements onset, but not during waking eye movements. Transient activation of the amygdala provides physiological support for the proposed participation of the amygdala in emotional expression, in the emotional content of dreams and for the reactivation and consolidation of emotional memories during REM sleep, as well as for next-day emotional regulation, and its possible role in the bidirectional interaction between REM sleep and such sleep disorders as nightmares, anxiety and post-traumatic sleep disorder. These results provide unique, direct evidence of increased activation of the human amygdala time-locked to REM sleep rapid eye movements. © 2016 European Sleep Research Society.

  16. SU-E-J-172: Development of a Video Guided Real-Time Patient Motion Monitoring System for Helical Tomotherpay.

    PubMed

    Ju, S; Hong, C; Yim, D; Kim, M; Kim, J; Han, Y; Shin, J; Shin, E; Ahn, S; Choi, D

    2012-06-01

    We developed a video image-guided real-time patient motion monitoring system for helical Tomotherapy (VGRPM-Tomo), and its clinical utility was evaluated using a motion phantom. The VGRPM-Tomo consisted of three components: an image acquisition device consisting of two PC-cams, a main control computer with a radiation signal controller and warning system, and patient motion analysis software, which was developed in house. The system was designed for synchronization with a beam on/off trigger signal to limit operation during treatment time only and to enable system automation. In order to detect the patient motion while the couch is moving into the gantry, a reference image, which continuously updated its background by exponential weighting filter (EWF), is compared with subsequent live images using the real-time frame difference-based analysis software. When the error range exceeds the set criteria (δ_movement) due to patient movement, a warning message is generated in the form of light and sound. The described procedure repeats automatically for each patient. A motion phantom, which operates by moving a distance of 0.1, 0.2, 0.5, and 1.0 cm for 1 and 2 sec, respectively, was used to evaluate the system performance at maximum couch speed (0.196 cm/sec) in a Helical Tomotherapy (HD, Hi-art, Tomotherapy, USA). We measured the optimal EWF factor (a) and δ_movement, which is the minimum distance that can be detected with this system, and the response time of the whole system. The optimal a for clinical use ranged from 0.85 to 0.9. The system was able to detect phantom motion as small as 0.2 cm with tight δ_movement, 0.1% total number of pixels in the reference image. The measured response time of the whole system was 0.1 sec. The VGRPM-tomo can contribute to reduction of treatment error caused by the motion of patients and increase the accuracy of treatment dose delivery in HD. This work was supported by the Technology Innovation Program, 10040362, Development of an integrated management solution for radiation therapy funded by the Ministry of Knowledge Economy (MKE, Korea). This idea is protected by a Korean patent (patent no. 10-1007367). © 2012 American Association of Physicists in Medicine.

  17. Movement Integration and the One-Target Advantage.

    PubMed

    Hoffmann, Errol R

    2017-01-01

    The 1-target advantage (OTA) has been found to occur in many circumstances and the current best explanation for this phenomenon is that of the movement integration hypothesis. The author's purpose is twofold: (a) to model the conditions under which there is integration of the movement components in a 2-component movement and (b) to study the factors that determine the magnitude of the OTA for both the first and second component of a 2-component movement. Results indicate that integration of movement components, where times for one component are affected by the geometry of the other component, occurs when 1 of the movement components is made ballistically. Movement components that require ongoing visual control show only weak interaction with the second component, whereas components made ballistically always show movement time dependence on first and second component amplitude, independent of location within the sequence. The OTA is present on both the first and second components of the movement, with a magnitude that is dependent on whether the components are performed ballistically or with ongoing visual control and also on the amplitudes and indexes of difficulty of the component movements.

  18. Patient Obesity Influences Pelvic Lift During Cup Insertion in Total Hip Arthroplasty Through a Lateral Transgluteal Approach in Supine Position.

    PubMed

    Brodt, Steffen; Nowack, Dimitri; Jacob, Benjamin; Krakow, Linda; Windisch, Christoph; Matziolis, Georg

    2017-09-01

    Movement of the pelvis during implantation of total hip arthroplasty (THA) has a major influence on the positioning of the acetabular cup. Strong traction caused by retractors leads to iatrogenic pelvic lift and can thus be partly responsible for cup malpositioning. The objective of this study was to investigate such factors that influence pelvic lift. The dynamic movement of the pelvis was measured during implantation of THA in 67 patients. This was done by measuring the acceleration using the SensorLog app on a smartphone. At its maximum, the pelvis was lifted by an average of 6.7°. When impacting the press-fit cup, the surgical side was raised by 4.4° compared with the time of skin incision. This lift at the time of cup implantation correlates significantly with the body mass index and the patient's abdominal and pelvic circumference. Every surgeon performing THA must be aware of the pelvic lift during an operation. Especially in patients with a high body mass index, a large abdominal circumference, or a large pelvic circumference, there is an increased risk of malpositioning of the acetabular cup. When impacting the cup, we recommend releasing the traction of the retractor, so that the pelvis can tilt back into its natural position, and thus, the anticipated cup positioning can be implemented as exactly as possible. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling

    NASA Astrophysics Data System (ADS)

    Fraser, S. A.; Wood, N. J.; Johnston, D. M.; Leonard, G. S.; Greening, P. D.; Rossetto, T.

    2014-06-01

    Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate evacuation departure time or assumed a common departure time for all exposed population. In this paper, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The model is demonstrated for a case study of local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb-level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds can approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios.

  20. Classification of visual and linguistic tasks using eye-movement features.

    PubMed

    Coco, Moreno I; Keller, Frank

    2014-03-07

    The role of the task has received special attention in visual-cognition research because it can provide causal explanations of goal-directed eye-movement responses. The dependency between visual attention and task suggests that eye movements can be used to classify the task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails to achieve accurate classification of visual tasks based on eye-movement features. In the present study, we hypothesize that tasks can be successfully classified when they differ with respect to the involvement of other cognitive domains, such as language processing. We extract the eye-movement features used by Greene et al. as well as additional features from the data of three different tasks: visual search, object naming, and scene description. First, we demonstrated that eye-movement responses make it possible to characterize the goals of these tasks. Then, we trained three different types of classifiers and predicted the task participants performed with an accuracy well above chance (a maximum of 88% for visual search). An analysis of the relative importance of features for classification accuracy reveals that just one feature, i.e., initiation time, is sufficient for above-chance performance (a maximum of 79% accuracy in object naming). Crucially, this feature is independent of task duration, which differs systematically across the three tasks we investigated. Overall, the best task classification performance was obtained with a set of seven features that included both spatial information (e.g., entropy of attention allocation) and temporal components (e.g., total fixation on objects) of the eye-movement record. This result confirms the task-dependent allocation of visual attention and extends previous work by showing that task classification is possible when tasks differ in the cognitive processes involved (purely visual tasks such as search vs. communicative tasks such as scene description).

  1. The effect of age and sex on facial mimicry: a three-dimensional study in healthy adults.

    PubMed

    Sforza, C; Mapelli, A; Galante, D; Moriconi, S; Ibba, T M; Ferraro, L; Ferrario, V F

    2010-10-01

    To assess sex- and age-related characteristics in standardized facial movements, 40 healthy adults (20 men, 20 women; aged 20-50 years) performed seven standardized facial movements (maximum smile; free smile; "surprise" with closed mouth; "surprise" with open mouth; eye closure; right- and left-side eye closures). The three-dimensional coordinates of 21 soft tissue facial landmarks were recorded by a motion analyser, their movements computed, and asymmetry indices calculated. Within each movement, total facial mobility was independent from sex and age (analysis of variance, p>0.05). Asymmetry indices of the eyes and mouth were similar in both sexes (p>0.05). Age significantly influenced eye and mouth asymmetries of the right-side eye closure, and eye asymmetry of the surprise movement. On average, the asymmetry indices of the symmetric movements were always lower than 8%, and most did not deviate from the expected value of 0 (Student's t). Larger asymmetries were found for the asymmetric eye closures (eyes, up to 50%, p<0.05; mouth, up to 30%, p<0.05 only in the 20-30-year-old subjects). In conclusion, sex and age had a limited influence on total facial motion and asymmetry in normal adult men and women. Copyright © 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Quantifying Postural Control during Exergaming Using Multivariate Whole-Body Movement Data: A Self-Organizing Maps Approach

    PubMed Central

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J.; Roerdink, Jos B. T. M; Verkerke, Gijsbertus J.; Lamoth, Claudine J. C.

    2015-01-01

    Background Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user’s balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating) exergame. Methods Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM), an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older adults based on the SOM features. Results Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%. Conclusions Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training. PMID:26230655

  3. Short-term variability in amplitude and motor topography of whole-body involuntary movements in Parkinson's disease dyskinesias and in Huntington's chorea.

    PubMed

    Fenney, Alison; Jog, Mandar S; Duval, Christian

    2008-02-01

    Clinical observations have noted variability in amplitude of levodopa-induced dyskinesias (LID) in Parkinson's disease (PD) and chorea in Huntington's disease (HD) during the day. However, no studies have examined whether both the amplitude and body location (motor topography) of whole-body involuntary movement (WBIM) varied over short periods of time (seconds or minutes), which may have a distinct and significant effect on how disruptive these WBIM may be. The present study quantified the variability of WBIM amplitude and motor topography in patients with PD having LID and in patients with HD having chorea. WBIM was quantified using the MotionMonitor magnetic motion tracker system. Five patients in each group were tested in two conditions: sitting and standing. WBIM increased from sitting to standing, more so in choreic patients. WBIM varied from 17% to 102% of total WBIM amplitude. Chorea tended to present with greater variability than LID in absolute terms in the standing condition, but not when the mean WBIM amplitude was taken into consideration. Motor topography of WBIM also varied more in the HD group, but mostly in the seated condition where more limbs were free to move. Neither group expressed any laterality of involuntary movement, with amplitude being equally distributed on both sides of the body. Results show significant short-term variability in amplitude of chorea and LID, as well as, variability in location of these involuntary movements, illustrating the complexity of the adaptations required to live and be active with involuntary movements such as HD chorea or PD dyskinesias.

  4. Effectiveness of a 16 week gymnastics curriculum at developing movement competence in children.

    PubMed

    Rudd, James R; Barnett, Lisa M; Farrow, Damian; Berry, Jason; Borkoles, Erika; Polman, Remco

    2017-02-01

    Internationally, children's movement competence levels are low. This study's aim was to evaluate the effectiveness of a 16 week gymnastics curriculum on stability, locomotive and object control skills and general body coordination. It was hypothesised that the gymnastics intervention group would demonstrate significant improvements beyond a PE comparison group. This study used a non-randomised control design. The intervention and comparison groups were drawn from three primary schools. The study followed the transparent reporting of evaluations with nonrandomized designs (TREND) statement for reporting. A total of 333 children (51% girls, 41% intervention) with a mean age of 8.1 years (SD=1.1) participated. Intervention children (16 weeks×2h of gymnastics) were compared to children who received (16×2h) standard PE curriculum. Children's movement competence was assessed using the Test of Gross Motor Development-2, Stability Skills Assessment and the Körper-Koordinationstest für Kinder. Multilevel linear mixed models, accounting for variation at the class level and adjusted for age and sex, were used to assess intervention relative to comparison differences in all aspects of movement competence. Stability and object control skills showed a significant (p<0.05) intervention×time interaction effect. No difference was found in locomotor skills or general coordination. Gymnastics is effective at developing stability skills and object control skills without hindering the development of locomotor skills or general coordination. Accelerated learning of stability skills may support the development of more complex movement skills. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Quantifying Postural Control during Exergaming Using Multivariate Whole-Body Movement Data: A Self-Organizing Maps Approach.

    PubMed

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J; Roerdink, Jos B T M; Verkerke, Gijsbertus J; Lamoth, Claudine J C

    2015-01-01

    Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user's balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating) exergame. Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM), an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older adults based on the SOM features. Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%. Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training.

  6. Use of PIT tag and underwater video recording in assessing estuarine fish movement in a high intertidal mangrove and salt marsh creek

    NASA Astrophysics Data System (ADS)

    Meynecke, Jan-Olaf; Poole, Geoffrey C.; Werry, Jonathan; Lee, Shing Yip

    2008-08-01

    We assessed movement patterns in relation to habitat availability (reflected by the extent of tidal flooding) for several commercially and recreationally important species in and out of a small mangrove creek within the subtropical Burrum River estuary (25°10'S 152°37'E) in Queensland, Australia. Movement patterns of Acanthopagrus australis, Pomadasys kaakan, Lutjanus russelli and Mugil cephalus were examined between December 2006 and April 2007 using a stationary passive integrated transponder (PIT) system adapted for saline environments (30-38 ppt) and underwater digital video cameras (DVCs). This is the second known application of a stationary PIT tag system to studying fish movement in estuarine environments. The transponder system was set in place for 104 days and recorded >5000 detections. Overall 'recapture' rate of tagged fish by the transponder system was >40%. We used PIT tags implanted in a total of 75 fish from a tidal creek connected to the main channel of the estuary. We also developed a high-resolution digital elevation (2.5 m cell size) model of the estuary derived from airborne light detection and ranging (LIDAR) and aerial imagery to estimate inundation dynamics within the tidal creek, and related the timing of inundation in various habitats to the timing of fish immigration to and emigration from the creek. Over 50% of all tagged fish were moving in and out of the creek at a threshold level when 50% of the mangrove forest became flooded. Individuals of all four species moved into and out of the tidal creek repeatedly at different times depending on species and size, indicating strong residential behaviour within the estuary. The main activity of fishes was at night time. Manual interpretation of video from >700 fish sightings at three different mangrove sites confirmed the findings of the stationary PIT system, that the function of shelter vs food in mangrove habitat may be size dependent. Our established techniques assess the spatial ecology of estuarine fish and provide important insights into fish habitat utilisation and site fidelity behaviour.

  7. Velocity-based movement modeling for individual and population level inference

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Johnson, Devin S.; Sterling, Jeremy T.

    2011-01-01

    Understanding animal movement and resource selection provides important information about the ecology of the animal, but an animal's movement and behavior are not typically constant in time. We present a velocity-based approach for modeling animal movement in space and time that allows for temporal heterogeneity in an animal's response to the environment, allows for temporal irregularity in telemetry data, and accounts for the uncertainty in the location information. Population-level inference on movement patterns and resource selection can then be made through cluster analysis of the parameters related to movement and behavior. We illustrate this approach through a study of northern fur seal (Callorhinus ursinus) movement in the Bering Sea, Alaska, USA. Results show sex differentiation, with female northern fur seals exhibiting stronger response to environmental variables.

  8. Velocity-Based Movement Modeling for Individual and Population Level Inference

    PubMed Central

    Hanks, Ephraim M.; Hooten, Mevin B.; Johnson, Devin S.; Sterling, Jeremy T.

    2011-01-01

    Understanding animal movement and resource selection provides important information about the ecology of the animal, but an animal's movement and behavior are not typically constant in time. We present a velocity-based approach for modeling animal movement in space and time that allows for temporal heterogeneity in an animal's response to the environment, allows for temporal irregularity in telemetry data, and accounts for the uncertainty in the location information. Population-level inference on movement patterns and resource selection can then be made through cluster analysis of the parameters related to movement and behavior. We illustrate this approach through a study of northern fur seal (Callorhinus ursinus) movement in the Bering Sea, Alaska, USA. Results show sex differentiation, with female northern fur seals exhibiting stronger response to environmental variables. PMID:21931584

  9. Direct cortical control of 3D neuroprosthetic devices.

    PubMed

    Taylor, Dawn M; Tillery, Stephen I Helms; Schwartz, Andrew B

    2002-06-07

    Three-dimensional (3D) movement of neuroprosthetic devices can be controlled by the activity of cortical neurons when appropriate algorithms are used to decode intended movement in real time. Previous studies assumed that neurons maintain fixed tuning properties, and the studies used subjects who were unaware of the movements predicted by their recorded units. In this study, subjects had real-time visual feedback of their brain-controlled trajectories. Cell tuning properties changed when used for brain-controlled movements. By using control algorithms that track these changes, subjects made long sequences of 3D movements using far fewer cortical units than expected. Daily practice improved movement accuracy and the directional tuning of these units.

  10. Balancing out dwelling and moving: optimal sensorimotor synchronization

    PubMed Central

    Girard, Benoît; Guigon, Emmanuel

    2015-01-01

    Sensorimotor synchronization is a fundamental skill involved in the performance of many artistic activities (e.g., music, dance). After a century of research, the manner in which the nervous system produces synchronized movements remains poorly understood. Typical rhythmic movements involve a motion and a motionless phase (dwell). The dwell phase represents a sizable fraction of the rhythm period, and scales with it. The rationale for this organization remains unexplained and is the object of this study. Twelve participants, four drummers (D) and eight nondrummers (ND), performed tapping movements paced at 0.5–2.5 Hz by a metronome. The participants organized their tapping behavior into dwell and movement phases according to two strategies: 1) Eight participants (1 D, 7 ND) maintained an almost constant ratio of movement time (MT) and dwell time (DT) irrespective of the metronome period. 2) Four participants increased the proportion of DT as the period increased. The temporal variabilities of both the dwell and movement phases were consistent with Weber's law, i.e., their variability increased with their durations, and the longest phase always exhibited the smallest variability. We developed an optimal statistical model that formalized the distribution of time into dwell and movement intervals as a function of their temporal variability. The model accurately predicted the participants' dwell and movement durations irrespective of their strategy and musical skill, strongly suggesting that the distribution of DT and MT results from an optimization process, dependent on each participant's skill to predict time during rest and movement. PMID:25878154

  11. Periodic Limb Movements and Disrupted Sleep in Children with Sickle Cell Disease

    PubMed Central

    Rogers, Valerie E.; Marcus, Carole L.; Jawad, Abbas F.; Smith-Whitley, Kim; Ohene-Frempong, Kwaku; Bowdre, Cheryl; Allen, Julian; Arens, Raanan; Mason, Thornton B. A.

    2011-01-01

    Study Objectives: To describe the rate, distribution and correlates of periodic limb movements in sleep (PLMS) in children with sickle cell disease (SCD). Design: Prospective, cross-sectional. Setting: Hospital-based sleep laboratory. Participants: Sixty-four children aged 2–18 years with SCD, hemoglobin SS-type who had an overnight polysomnogram and a parent-completed Pediatric Sleep Questionnaire. Mean age was 8.4 years (SD 4.8); 50% were male. Interventions: N/A Measurements and Results: The mean PLMS index was 3.7 (6.6) and ranged from 0 to 31.8, with 23.4% of the sample having PLMS ≥ 5/h. Sleep efficiency was decreased (P = 0.03), and the total arousal index (P = 0.003) and PLMS arousal index (P < 0.001) were increased in children with PLMS ≥ 5/h compared to those with PLMS < 5/h. PLMS were most frequent in NREM stage 2 sleep and during the fourth hour of sleep. Inter-movement interval duration peaked at 25–30 s. “Growing pains worst in bed” or “restlessness of the legs”, suggesting restless legs syndrome (RLS), were reported in 12.5% of the total sample and were more common in children with elevated PLMS. A PLMS score for identifying elevated PLMS in children, based on items from the Pediatric Sleep Questionnaire, did not significantly predict PLMS ≥ 5/h. Conclusions: Elevated PLMS are common in children with SCD and are associated with sleep disruption and symptoms of RLS. Future research into the time structure of PLMS, their causes and consequences, and development of a disease-specific sleep disorders screening questionnaire, is needed in children with SCD. Citation: Rogers VE; Marcus CL; Jawad AF; Smith-Whitley K; Ohene-Frempong K; Bowdre C; Allen J; Arens R; Mason TBA. Periodic limb movements and disrupted sleep in children with sickle cell disease. SLEEP 2011;34(7):899-908. PMID:21731140

  12. Total Control – Pollen Presentation and Floral Longevity in Loasaceae (Blazing Star Family) Are Modulated by Light, Temperature and Pollinator Visitation Rates

    PubMed Central

    Henning, Tilo; Weigend, Maximilian

    2012-01-01

    Stamen movements can be understood as a mechanism influencing pollen presentation and increasing outbreeding success of hermaphroditic flowers via optimized male function. In this study we experimentally analyzed the factors regulating autonomous and thigmonastic (triggered by flower visitors) stamen movements in eight species of Loasaceae. Both types of stamen movements are positively influenced by light and temperature and come to a virtual standstill in the dark and at low temperatures (12°C). Pollen presentation is thus discontinued during periods where pollinators are not active. Overall stamen presentation increases with increasing flower age. Contrary to expectation, no geometrical correlation between the floral scale stimulated and the stamen fascicle reacting exists, indicating that the stimulus is transmitted over the receptacle and stamen maturation dictates which and how many stamens react. Thigmonastic stamen presentation is dramatically accelerated compared to autonomous movement (3–37 times), indicating that the rate of stamen maturation can be adjusted to different visitation schedules. Flowers can react relatively uniformly down to stimulation intervals of 10–15 min., consistently presenting comparable numbers of stamens in the flower c. 5 min. after the stimulus and can thus keep the amount of pollen presented relatively constant even under very high visitation frequencies of 4–6 visits/h. Thigmonastic pollen presentation dramatically reduces the overall duration of the staminate phase (to 1/3rd in Nasa macrothyrsa). Similarly, the carpellate phase is dramatically reduced after pollination, down to 1 d from 4 d. Overall flower longevity is reduced by more than 2/3rds under high visitation rates (<3 d versus 10 d under visitor exclusion) and depleted and pollinated flowers are rapidly removed from the pool. Complex floral behaviour in Loasaceae thus permits a near-total control over pollen dispensation schedules and floral longevity of the individual flower by an extraordinary fine-tuning to both biotic and abiotic factors. PMID:22916102

  13. Speech Breathing in Speakers Who Use an Electrolarynx

    ERIC Educational Resources Information Center

    Bohnenkamp, Todd A.; Stowell, Talena; Hesse, Joy; Wright, Simon

    2010-01-01

    Speakers who use an electrolarynx following a total laryngectomy no longer require pulmonary support for speech. Subsequently, chest wall movements may be affected; however, chest wall movements in these speakers are not well defined. The purpose of this investigation was to evaluate speech breathing in speakers who use an electrolarynx during…

  14. Retention of movement pattern changes after a lower extremity injury prevention program is affected by program duration.

    PubMed

    Padua, Darin A; DiStefano, Lindsay J; Marshall, Stephen W; Beutler, Anthony I; de la Motte, Sarah J; DiStefano, Michael J

    2012-02-01

    Changes in movement patterns have been repeatedly observed immediately after completing a lower extremity injury prevention program. However, it is not known if movement pattern changes are maintained after discontinuing the training program. The ability to maintain movement pattern changes after training has ceased may be influenced by the program's duration. The authors hypothesized that among individuals who completed either a 3-month or 9-month training program and who demonstrated immediate movement pattern changes, only those who completed the 9-month training program would maintain movement pattern changes after a 3-month period of no longer performing the exercises. Cohort study; Level of evidence, 2. A total of 140 youth soccer athletes from 15 separate teams volunteered to participate. Athletes' movement patterns were assessed using the Landing Error Scoring System (LESS) at pretest, posttest, and 3 months after ceasing the program (retention test). Eighty-four of the original 140 participants demonstrated improvements in their LESS scores between pretest and posttest (change in LESS score >0) and were included in the final analyses for this study (n = 84; 20 boys and 64 girls; mean age, 14 ± 2 years; age range, 11-17 years). Teams performed 3-month (short-duration group) and 9-month (extended-duration group) injury prevention programs. The exercises performed were identical for both groups. Teams performed the programs as part of their normal warm-up routine. Although both groups improved their total LESS scores from pretest to posttest, only the extended-duration training group retained their improvements 3 months after ceasing the injury prevention program (F(2,137) = 3.38; P = .04). Results suggest that training duration may be an important factor to consider when designing injury prevention programs that facilitate long-term changes in movement control.

  15. On the estimation of dispersal and movement of birds

    USGS Publications Warehouse

    Kendall, W.L.; Nichols, J.D.

    2004-01-01

    The estimation of dispersal and movement is important to evolutionary and population ecologists, as well as to wildlife managers. We review statistical methodology available to estimate movement probabilities. We begin with cases where individual birds can be marked and their movements estimated with the use of multisite capture-recapture methods. Movements can be monitored either directly, using telemetry, or by accounting for detection probability when conventional marks are used. When one or more sites are unobservable, telemetry, band recoveries, incidental observations, a closed- or open-population robust design, or partial determinism in movements can be used to estimate movement. When individuals cannot be marked, presence-absence data can be used to model changes in occupancy over time, providing indirect inferences about movement. Where abundance estimates over time are available for multiple sites, potential coupling of their dynamics can be investigated using linear cross-correlation or nonlinear dynamic tools.

  16. Influence of social presence on eye movements in visual search tasks.

    PubMed

    Liu, Na; Yu, Ruifeng

    2017-12-01

    This study employed an eye-tracking technique to investigate the influence of social presence on eye movements in visual search tasks. A total of 20 male subjects performed visual search tasks in a 2 (target presence: present vs. absent) × 2 (task complexity: complex vs. simple) × 2 (social presence: alone vs. a human audience) within-subject experiment. Results indicated that the presence of an audience could evoke a social facilitation effect on response time in visual search tasks. Compared with working alone, the participants made fewer and shorter fixations, larger saccades and shorter scan path in simple search tasks and more and longer fixations, smaller saccades and longer scan path in complex search tasks when working with an audience. The saccade velocity and pupil diameter in the audience-present condition were larger than those in the working-alone condition. No significant change in target fixation number was observed between two social presence conditions. Practitioner Summary: This study employed an eye-tracking technique to examine the influence of social presence on eye movements in visual search tasks. Results clarified the variation mechanism and characteristics of oculomotor scanning induced by social presence in visual search.

  17. Kinematics of self-initiated and reactive karate punches.

    PubMed

    Martinez de Quel, Oscar; Bennett, Simon J

    2014-03-01

    This study investigated whether within-task expertise affects the reported asymmetry in execution time exhibited in reactive and self-initiated movements. Karate practitioners and no-karate practitioners were compared performing a reverse punch in reaction to an external stimulus or following the intention to produce a response (self-initiated). The task was completed following the presentation of a specific (i.e., life-size image of opponent) or general stimulus and in the presence of click trains or white noise. Kinematic analyses indicated reactive movement had shorter time to peak velocity and movement time, as well as greater accuracy than self-initiated movement. These differences were independent of participant skill level although peak velocity was higher in the karate practice group than in the no-karate practice group. Reaction time (RT) of skilled participants was facilitated by a specific stimulus. There was no effect on RT or kinematic variables of the different type of auditory cues. The results of this study indicate that asymmetry in execution time of reactive and self-initiated movement holds irrespective of within-task expertise and stimulus specificity. This could have implications for training of sports and/or relearning of tasks that require rapid and accurate movements to intercept/contact a target.

  18. Infant-Directed Visual Prosody: Mothers’ Head Movements and Speech Acoustics

    PubMed Central

    Smith, Nicholas A.; Strader, Heather L.

    2014-01-01

    Acoustical changes in the prosody of mothers’ speech to infants are distinct and near universal. However, less is known about the visible properties mothers’ infant-directed (ID) speech, and their relation to speech acoustics. Mothers’ head movements were tracked as they interacted with their infants using ID speech, and compared to movements accompanying their adult-directed (AD) speech. Movement measures along three dimensions of head translation, and three axes of head rotation were calculated. Overall, more head movement was found for ID than AD speech, suggesting that mothers exaggerate their visual prosody in a manner analogous to the acoustical exaggerations in their speech. Regression analyses examined the relation between changing head position and changing acoustical pitch (F0) over time. Head movements and voice pitch were more strongly related in ID speech than in AD speech. When these relations were examined across time windows of different durations, stronger relations were observed for shorter time windows (< 5 sec). However, the particular form of these more local relations did not extend or generalize to longer time windows. This suggests that the multimodal correspondences in speech prosody are variable in form, and occur within limited time spans. PMID:25242907

  19. Quantifying animal movement for caching foragers: the path identification index (PII) and cougars, Puma concolor

    USGS Publications Warehouse

    Ironside, Kirsten E.; Mattson, David J.; Theimer, Tad; Jansen, Brian; Holton, Brandon; Arundel, Terry; Peters, Michael; Sexton, Joseph O.; Edwards, Thomas C.

    2017-01-01

    Relocation studies of animal movement have focused on directed versus area restricted movement, which rely on correlations between step-length and turn angles, along with a degree of stationarity through time to define behavioral states. Although these approaches may work well for grazing foraging strategies in a patchy landscape, species that do not spend a significant amount of time searching out and gathering small dispersed food items, but instead feed for short periods on large, concentrated sources or cache food result in movements that maybe difficult to analyze using turning and velocity alone. We use GPS telemetry collected from a prey-caching predator, the cougar (Puma concolor), to test whether adding additional movement metrics capturing site recursion, to the more traditional velocity and turning, improve the ability to identify behaviors. We evaluated our movement index’s ability to identify behaviors using field investigations. We further tested for statistical stationarity across behaviors for use of topographic view-sheds. We found little correlation between turn angle, velocity, tortuosity, and site fidelity and combined them into a movement index used to identify movement paths (temporally autocorrelated movements) related to fast directed movements (taxis), area restricted movements (search), and prey caching (foraging). Changes in the frequency and duration of these movements were helpful for identifying seasonal activities such as migration and denning in females. Comparison of field investigations of cougar activities to behavioral classes defined using the movement index and found an overall classification accuracy of 81%. Changes in behaviors resulted in changes in how cougars used topographic view-sheds, showing statistical non-stationarity over time. The movement index shows promise for identifying behaviors in species that frequently return to specific locations such as food caches, watering holes, or dens, and highlights the role memory and cognitive abilities may play in determining animal movements. With the addition of measures capturing site recursion the temporal structure in movements of a caching forager was revealed.

  20. Evaluation of target scores and benchmarks for the traversal task scenario of the Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) laparoscopy simulator.

    PubMed

    Hackethal, A; Immenroth, M; Bürger, T

    2006-04-01

    The Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) simulator is validated for laparoscopy training, but benchmarks and target scores for assessing single tasks are needed. Control data for the MIST-VR traversal task scenario were collected from 61 novices who performed the task 10 times over 3 days (1 h daily). Data were collected on the time taken, error score, economy of movement, and total score. Test differences were analyzed through percentage scores and t-tests for paired samples. Improvement was greatest over tests 1 to 5 (improvement: test(1.2), 38.07%; p = 0.000; test(4.5), 10.66%; p = 0.010): between tests 5 and 10, improvement slowed and scores stabilized. Variation in participants' performance fell steadily over the 10 tests. Trainees should perform at least 10 tests of the traversal task-five to get used to the equipment and task (automation phase; target total score, 95.16) and five to stabilize and consolidate performance (test 10 target total score, 74.11).

  1. Network analysis of translocated Takahe populations to identify disease surveillance targets.

    PubMed

    Grange, Zoë L; VAN Andel, Mary; French, Nigel P; Gartrell, Brett D

    2014-04-01

    Social network analysis is being increasingly used in epidemiology and disease modeling in humans, domestic animals, and wildlife. We investigated this tool in describing a translocation network (area that allows movement of animals between geographically isolated locations) used for the conservation of an endangered flightless rail, the Takahe (Porphyrio hochstetteri). We collated records of Takahe translocations within New Zealand and used social network principles to describe the connectivity of the translocation network. That is, networks were constructed and analyzed using adjacency matrices with values based on the tie weights between nodes. Five annual network matrices were created using the Takahe data set, each incremental year included records of previous years. Weights of movements between connected locations were assigned by the number of Takahe moved. We calculated the number of nodes (i(total)) and the number of ties (t(total)) between the nodes. To quantify the small-world character of the networks, we compared the real networks to random graphs of the equivalent size, weighting, and node strength. Descriptive analysis of cumulative annual Takahe movement networks involved determination of node-level characteristics, including centrality descriptors of relevance to disease modeling such as weighted measures of in degree (k(i)(in)), out degree (k(i)(out)), and betweenness (B(i)). Key players were assigned according to the highest node measure of k(i)(in), k(i)(out), and B(i) per network. Networks increased in size throughout the time frame considered. The network had some degree small-world characteristics. Nodes with the highest cumulative tie weights connecting them were the captive breeding center, the Murchison Mountains and 2 offshore islands. The key player fluctuated between the captive breeding center and the Murchison Mountains. The cumulative networks identified the captive breeding center every year as the hub of the network until the final network in 2011. Likewise, the wild Murchison Mountains population was consistently the sink of the network. Other nodes, such as the offshore islands and the wildlife hospital, varied in importance over time. Common network descriptors and measures of centrality identified key locations for targeting disease surveillance. The visual representation of movements of animals in a population that this technique provides can aid decision makers when they evaluate translocation proposals or attempt to control a disease outbreak. © 2014 Society for Conservation Biology.

  2. The Efficacy of LUCAS in Prehospital Cardiac Arrest Scenarios: A Crossover Mannequin Study.

    PubMed

    Gyory, Robert A; Buchle, Scott E; Rodgers, David; Lubin, Jeffrey S

    2017-04-01

    High-quality cardiopulmonary resuscitation (CPR) is critical for successful cardiac arrest outcomes. Mechanical devices may improve CPR quality. We simulated a prehospital cardiac arrest, including patient transport, and compared the performance of the LUCAS™ device, a mechanical chest compression-decompression system, to manual CPR. We hypothesized that because of the movement involved in transporting the patient, LUCAS would provide chest compressions more consistent with high-quality CPR guidelines. We performed a crossover-controlled study in which a recording mannequin was placed on the second floor of a building. An emergency medical services (EMS) crew responded, defibrillated, and provided either manual or LUCAS CPR. The team transported the mannequin through hallways and down stairs to an ambulance and drove to the hospital with CPR in progress. Critical events were manually timed while the mannequin recorded data on compressions. Twenty-three EMS providers participated. Median time to defibrillation was not different for LUCAS compared to manual CPR (p=0.97). LUCAS had a lower median number of compressions per minute (112/min vs. 125/min; IQR = 102-128 and 102-126 respectively; p<0.002), which was more consistent with current American Heart Association CPR guidelines, and percent adequate compression rate (71% vs. 40%; IQR = 21-93 and 12-88 respectively; p<0.002). In addition, LUCAS had a higher percent adequate depth (52% vs. 36%; IQR = 25-64 and 29-39 respectively; p<0.007) and lower percent total hands-off time (15% vs. 20%; IQR = 10-22 and 15-27 respectively; p<0.005). LUCAS performed no differently than manual CPR in median compression release depth, percent fully released compressions, median time hands off, or percent correct hand position. In our simulation, LUCAS had a higher rate of adequate compressions and decreased total hands-off time as compared to manual CPR. Chest compression quality may be better when using a mechanical device during patient movement in prehospital cardiac arrest patient.

  3. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease.

    PubMed

    Galna, Brook; Barry, Gillian; Jackson, Dan; Mhiripiri, Dadirayi; Olivier, Patrick; Rochester, Lynn

    2014-04-01

    The Microsoft Kinect sensor (Kinect) is potentially a low-cost solution for clinical and home-based assessment of movement symptoms in people with Parkinson's disease (PD). The purpose of this study was to establish the accuracy of the Kinect in measuring clinically relevant movements in people with PD. Nine people with PD and 10 controls performed a series of movements which were measured concurrently with a Vicon three-dimensional motion analysis system (gold-standard) and the Kinect. The movements included quiet standing, multidirectional reaching and stepping and walking on the spot, and the following items from the Unified Parkinson's Disease Rating Scale: hand clasping, finger tapping, foot, leg agility, chair rising and hand pronation. Outcomes included mean timing and range of motion across movement repetitions. The Kinect measured timing of movement repetitions very accurately (low bias, 95% limits of agreement <10% of the group mean, ICCs >0.9 and Pearson's r>0.9). However, the Kinect had varied success measuring spatial characteristics, ranging from excellent for gross movements such as sit-to-stand (ICC=.989) to very poor for fine movement such as hand clasping (ICC=.012). Despite this, results from the Kinect related strongly to those obtained with the Vicon system (Pearson's r>0.8) for most movements. The Kinect can accurately measure timing and gross spatial characteristics of clinically relevant movements but not with the same spatial accuracy for smaller movements, such as hand clasping. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Identifying the time scale of synchronous movement: a study on tropical snakes.

    PubMed

    Lindström, Tom; Phillips, Benjamin L; Brown, Gregory P; Shine, Richard

    2015-01-01

    Individual movement is critical to organismal fitness and also influences broader population processes such as demographic stochasticity and gene flow. Climatic change and habitat fragmentation render the drivers of individual movement especially critical to understand. Rates of movement of free-ranging animals through the landscape are influenced both by intrinsic attributes of an organism (e.g., size, body condition, age), and by external forces (e.g., weather, predation risk). Statistical modelling can clarify the relative importance of those processes, because externally-imposed pressures should generate synchronous displacements among individuals within a population, whereas intrinsic factors should generate consistency through time within each individual. External and intrinsic factors may vary in importance at different time scales. In this study we focused on daily displacement of an ambush-foraging snake from tropical Australia (the Northern Death Adder Acanthophis praelongus), based on a radiotelemetric study. We used a mixture of spectral representation and Bayesian inference to study synchrony in snake displacement by phase shift analysis. We further studied autocorrelation in fluctuations of displacement distances as "one over f noise". Displacement distances were positively autocorrelated with all considered noise colour parameters estimated as >0. We show how the methodology can reveal time scales of particular interest for synchrony and found that for the analysed data, synchrony was only present at time scales above approximately three weeks. We conclude that the spectral representation combined with Bayesian inference is a promising approach for analysis of movement data. Applying the framework to telemetry data of A. praelongus, we were able to identify a cut-off time scale above which we found support for synchrony, thus revealing a time scale where global external drivers have a larger impact on the movement behaviour. Our results suggest that for the considered study period, movement at shorter time scales was primarily driven by factors at the individual level; daily fluctuations in weather conditions had little effect on snake movement.

  5. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors.

    PubMed

    Belkacem, Abdelkader Nasreddine; Saetia, Supat; Zintus-art, Kalanyu; Shin, Duk; Kambara, Hiroyuki; Yoshimura, Natsue; Berrached, Nasreddine; Koike, Yasuharu

    2015-01-01

    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control.

  6. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors

    PubMed Central

    Saetia, Supat; Zintus-art, Kalanyu; Shin, Duk; Kambara, Hiroyuki; Yoshimura, Natsue; Berrached, Nasreddine; Koike, Yasuharu

    2015-01-01

    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control. PMID:26690500

  7. A controlled, randomized, double-blind trial to evaluate the effect of a supplement of cocoa husk that is rich in dietary fiber on colonic transit in constipated pediatric patients.

    PubMed

    Castillejo, Gemma; Bulló, Mònica; Anguera, Anna; Escribano, Joaquin; Salas-Salvadó, Jordi

    2006-09-01

    Although a diet that is rich in fiber is widely recommended for preventing and treating constipation, the efficacy of fiber supplements have not been tested sufficiently in children. Our aim with this pilot study was to evaluate if fiber supplementation is beneficial for the treatment of children with idiopathic chronic constipation. Using a parallel, randomized, double-blind, controlled trial, we conducted an interventional study to evaluate the efficacy of a supplement of cocoa husk rich in dietary fiber on intestinal transit time and other indices of constipation in children with constipation. After screening, the patients were randomly allocated to receive, for a period of 4 weeks, either a cocoa husk supplement or placebo plus standardized toilet training procedures. Before and after 4 weeks of treatment, we (1) performed anthropometry, a physical examination, and routine laboratory measurements, (2) determined total and segmental colonic transit time, (3) evaluated bowel movement habits and stool consistency using a diary, and (4) received a subjective evaluation from the parents regarding the efficacy of the treatment. The main variable for verifying the efficacy of the treatment was the total colonic transit time. Fifty-six chronically constipated children were randomly assigned into the study, but only 48 children completed it. These children, who were aged between 3 and 10 years, had a diagnosis of chronic idiopathic constipation. With respect to total, partial colon, and rectum transit time, there seemed to be a trend, although statistically nonsignificant, toward faster transit times in the cocoa husk group than in the placebo group. When we analyzed the evolution of the intestinal transit time throughout the study of children whose total basal intestinal transit time was > 50th percentile, significant differences were observed between the groups. The total transit time decreased by 45.4 +/- 38.4 hours in the cocoa husk group and by 8.7 +/- 28.9 hours in the placebo group (-38.1 hours). In the case of the right colon, changes in transit time also were significant between groups. Mean changes tended toward faster transit times in the left colon and the rectum, although the differences were not statistically significant. The children who received cocoa husk supplements tended to increase the number of bowel movements by more than that of the children of the placebo group. We also observed a reduction in the percentage of patients who reported hard stools (hard scybalous or pebble-like stools), although this reduction was significantly greater in the cocoa husk group. At the end of the intervention, 41.7% and 75.0% of the patients who received cocoa husk supplementation or placebo, respectively, reported having hard stools. Moreover, a significantly higher number of children (or their parents) reported a subjective improvement in stool consistency. No significant adverse effects were reported during the study. This study confirms the beneficial effect of a supplement of cocoa husk that is rich in dietary fiber on chronic idiopathic constipation in children. These benefits seem to be more evident in pediatric constipated patients with slow colonic transit time.

  8. Individual differences in executive control relate to metaphor processing: an eye movement study of sentence reading

    PubMed Central

    Columbus, Georgie; Sheikh, Naveed A.; Côté-Lecaldare, Marilena; Häuser, Katja; Baum, Shari R.; Titone, Debra

    2015-01-01

    Metaphors are common elements of language that allow us to creatively stretch the limits of word meaning. However, metaphors vary in their degree of novelty, which determines whether people must create new meanings on-line or retrieve previously known metaphorical meanings from memory. Such variations affect the degree to which general cognitive capacities such as executive control are required for successful comprehension. We investigated whether individual differences in executive control relate to metaphor processing using eye movement measures of reading. Thirty-nine participants read sentences including metaphors or idioms, another form of figurative language that is more likely to rely on meaning retrieval. They also completed the AX-CPT, a domain-general executive control task. In Experiment 1, we examined sentences containing metaphorical or literal uses of verbs, presented with or without prior context. In Experiment 2, we examined sentences containing idioms or literal phrases for the same participants to determine whether the link to executive control was qualitatively similar or different to Experiment 1. When metaphors were low familiar, all people read verbs used as metaphors more slowly than verbs used literally (this difference was smaller for high familiar metaphors). Executive control capacity modulated this pattern in that high executive control readers spent more time reading verbs when a prior context forced a particular interpretation (metaphorical or literal), and they had faster total metaphor reading times when there was a prior context. Interestingly, executive control did not relate to idiom processing for the same readers. Here, all readers had faster total reading times for high familiar idioms than literal phrases. Thus, executive control relates to metaphor but not idiom processing for these readers, and for the particular metaphor and idiom reading manipulations presented. PMID:25628557

  9. Individual differences in executive control relate to metaphor processing: an eye movement study of sentence reading.

    PubMed

    Columbus, Georgie; Sheikh, Naveed A; Côté-Lecaldare, Marilena; Häuser, Katja; Baum, Shari R; Titone, Debra

    2014-01-01

    Metaphors are common elements of language that allow us to creatively stretch the limits of word meaning. However, metaphors vary in their degree of novelty, which determines whether people must create new meanings on-line or retrieve previously known metaphorical meanings from memory. Such variations affect the degree to which general cognitive capacities such as executive control are required for successful comprehension. We investigated whether individual differences in executive control relate to metaphor processing using eye movement measures of reading. Thirty-nine participants read sentences including metaphors or idioms, another form of figurative language that is more likely to rely on meaning retrieval. They also completed the AX-CPT, a domain-general executive control task. In Experiment 1, we examined sentences containing metaphorical or literal uses of verbs, presented with or without prior context. In Experiment 2, we examined sentences containing idioms or literal phrases for the same participants to determine whether the link to executive control was qualitatively similar or different to Experiment 1. When metaphors were low familiar, all people read verbs used as metaphors more slowly than verbs used literally (this difference was smaller for high familiar metaphors). Executive control capacity modulated this pattern in that high executive control readers spent more time reading verbs when a prior context forced a particular interpretation (metaphorical or literal), and they had faster total metaphor reading times when there was a prior context. Interestingly, executive control did not relate to idiom processing for the same readers. Here, all readers had faster total reading times for high familiar idioms than literal phrases. Thus, executive control relates to metaphor but not idiom processing for these readers, and for the particular metaphor and idiom reading manipulations presented.

  10. Prospective versus predictive control in timing of hitting a falling ball.

    PubMed

    Katsumata, Hiromu; Russell, Daniel M

    2012-02-01

    Debate exists as to whether humans use prospective or predictive control to intercept an object falling under gravity (Baurès et al. in Vis Res 47:2982-2991, 2007; Zago et al. in Vis Res 48:1532-1538, 2008). Prospective control involves using continuous information to regulate action. τ, the ratio of the size of the gap to the rate of gap closure, has been proposed as the information used in guiding interceptive actions prospectively (Lee in Ecol Psychol 10:221-250, 1998). This form of control is expected to generate movement modulation, where variability decreases over the course of an action based upon more accurate timing information. In contrast, predictive control assumes that a pre-programmed movement is triggered at an appropriate criterion timing variable. For a falling object it is commonly argued that an internal model of gravitational acceleration is used to predict the motion of the object and determine movement initiation. This form of control predicts fixed duration movements initiated at consistent time-to-contact (TTC), either across conditions (constant criterion operational timing) or within conditions (variable criterion operational timing). The current study sought to test predictive and prospective control hypotheses by disrupting continuous visual information of a falling ball and examining consistency in movement initiation and duration, and evidence for movement modulation. Participants (n = 12) batted a ball dropped from three different heights (1, 1.3 and 1.5 m), under both full-vision and partial occlusion conditions. In the occlusion condition, only the initial ball drop and the final 200 ms of ball flight to the interception point could be observed. The initiation of the swing did not occur at a consistent TTC, τ, or any other timing variable across drop heights, in contrast with previous research. However, movement onset was not impacted by occluding the ball flight for 280-380 ms. This finding indicates that humans did not need to be continuously coupled to vision of the ball to initiate the swing accurately, but instead could use predictive control based on acceleration timing information (TTC2). However, other results provide evidence for movement modulation, a characteristic of prospective control. Strong correlations between movement initiation and duration and reduced timing variability from swing onset to arrival at the interception point, both support compensatory variability. An analysis of modulation within the swing revealed that early in the swing, the movement acceleration was strongly correlated to the required mean velocity at swing onset and that later in the swing, the movement acceleration was again strongly correlated with the current required mean velocity. Rather than a consistent movement initiated at the same time, these findings show that the swing was variable but modulated for meeting the demands of each trial. A prospective model of coupling τ (bat-ball) with τ (ball-target) was found to provide a very strong linear fit for an average of 69% of the movement duration. These findings provide evidence for predictive control based on TTC2 information in initiating the swing and prospective control based on τ in guiding the bat to intercept the ball.

  11. Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task.

    PubMed

    Papaxanthis, Charalambos; Pozzo, Thierry; Skoura, Xanthi; Schieppati, Marco

    2002-08-21

    The purpose of the present study was to investigate the effects on the duration of imagined movements of changes in timing and order of performance of actual and imagined movement. Two groups of subjects had to actually execute and imagine a walking and a writing task. The first group first executed 10 trials of the actual movements (block A) and then imagined the same movements at different intervals: immediately after actual movements (block I-1) and after 25 min (I-2), 50 min (I-3) and 75 min (I-4) interval. The second group first imagined and then actually executed the tasks. The duration of actual and imagined movements, recorded by means of an electronic stopwatch operated by the subjects, was analysed. The duration of imagined movements was very similar to those of actual movements, for both tasks, regardless of either the interval elapsed from the actual movements (first group) or the order of performance (second group). However, the variability of imagined movement duration was significantly increased compared to variability of the actual movements, for both motor tasks and groups. The findings give evidence of similar cognitive processes underlying both imagination and actual performance of movement. Copyright 2002 Elsevier Science B.V.

  12. Movement, home range, and site fidelity of bluegills in a Great Plains Lake

    USGS Publications Warehouse

    Paukert, C.P.; Willis, D.W.; Bouchard, M.A.

    2004-01-01

    Little is known about the distribution, movement, and home ranges of bluegills Lepomis macrochirus in lentic environments. Therefore, the objectives of this study were to evaluate the seasonal and diel differences in movement rates, site fidelity, and home range of bluegills in a shallow, natural Great Plains lake. A total of 78 bluegills (200-273 mm total length) were implanted with radio transmitters in March and May 2000. Of these fish, 10 males and 10 females were randomly selected and located every 2 h during one 24-h period each month from April to September 2000. Bluegill movement peaked during midsummer: however, there was little difference in diel movements, suggesting relatively consistent movement throughout the 24-h period. Home range estimates (which included the 24-h tracking plus an additional six locations from the same fish located once per day for six consecutive days each month) ranged up to 172 ha, probably because only about half of the bluegills exhibited site fidelity during any month sampled. Bluegill movement did not appear to be strongly linked with water temperature, barometric pressure, or wind speed. These results suggest that bluegills move considerable distances and that many roam throughout this 332-ha shallow lake. However, diel patterns were not evident. Sampling bluegills in Great Plains lakes using passive gears (e.g., trap nets) may be most effective during the summer months, when fish are most active. Active sampling (e.g., electrofishing) may be more effective than the use of passive gears in spring and fall, when bluegills are less active.

  13. Top Down versus Bottom Up: The Social Construction of the Health Literacy Movement

    ERIC Educational Resources Information Center

    Huber, Jeffrey T.; Shapiro, Robert M., II; Gillaspy, Mary L.

    2012-01-01

    The health literacy movement has been socially constructed over time. Unlike the consumer health information movement, which developed with broad public support, the health literacy movement has been fashioned primarily from the top down, initiated by policy makers and imposed on targeted populations. Interest in the health literacy movement has…

  14. Feasibility of a Respiratory Movement Evaluation Tool to Quantify Thoracoabdominal Movement for Neuromuscular Diseases.

    PubMed

    Liu, Fumio; Kawakami, Michiyuki; Tamura, Kimimasa; Taki, Yoshihito; Shimizu, Katsumi; Otsuka, Tomoyoshi; Tsuji, Tetsuya; Miyata, Chieko; Tashiro, Syoichi; Wada, Ayako; Mizuno, Katsuhiro; Aoki, Yoshimitsu; Liu, Meigen

    2017-04-01

    An objective method to evaluate thoracoabdominal movement is needed in daily clinical practice to detect patients at risk of hypoventilation and to allow for timely interventions in neuromuscular diseases. The clinical feasibility, reliability, and validity of a newly developed method for quantifying respiratory movement using fiber grating sensors, called the Respiratory Movement Evaluation Tool (RMET), was evaluated. The time needed to measure respiratory movement and the usability of the measurement were determined by 5 clinicians using the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST) 2.0 questionnaire. Thoracoabdominal movement was measured using RMET 3 times in 10 healthy subjects to evaluate intraclass correlation coefficients (ICC). The subjects were encouraged to breathe 10 times while voluntarily changing the amount of air during ventilation simultaneously with the RMET and a spirometer, and their correlations were evaluated to test validity using Pearson's product-moment correlation coefficients. The same measurements were also performed in 10 subjects with Duchenne muscular dystrophy. Real-time recordings of thoracoabdominal movements were obtained over a mean time of 374 ± 23.9 s. With QUEST 2.0, the median score of each item exceeded 3 (more or less satisfied). In healthy subjects, ICC(1,1) ranged from 0.82 to 0.99, and ICC(2,1) ranged from 0.83 to 0.97. Significant correlations were observed between the respiratory amplitudes measured with RMET, and the amount of air during ventilation was measured with a spirometer (r = 0.995, P < .001). In subjects with Duchenne muscular dystrophy, ICC(1,1) ranged from 0.87 to 0.97, and ICC(2,1) ranged from 0.84 to 0.99. The respiratory amplitudes measured with RMET correlated significantly with the amount of air during ventilation with a spirometer (r = 0.957, P < .001). We developed a novel method of quantifying respiratory movement called RMET that was feasible to use in daily clinical practice. Copyright © 2017 by Daedalus Enterprises.

  15. The Remote Detection of Incipient Catastrophic Failure in Large Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Bulmer, M. H.; Murphy, W.; Mantovani, F.

    2001-12-01

    Landslide movement is commonly associated with brittle failure and ductile deformation. Kilburn and Petley (2001) proposed that cracking in landslides occurs due to downslope stress acting on the deforming horizon. If the assumption that a given crack event breaks a fixed distance of unbroken rock or soil the rate of cracking becomes equivalent to the number of crack events per unit time. Where crack growth (not nucleation) is occurring, the inverse rate of displacement changes linearly with time. Failure can be assumed to be the time at which displacement rates become infinitely large. Thus, for a slope heading towards catastrophic failure due to the development of a failure plane, this relationship would be linear, with the point at which failure will occur being the time when the line intercepts the x-axis. Increasing rates of deformation associated with ductile processes of crack nucleation would yield a curve with a negative gradient asymptopic to the x-axis. This hypothesis is being examined. In the 1960 movement of the Vaiont slide, Italy, although the rate of movement was accelerating, the plot of 1/deformation against time shows that it was increasing towards a steady state deformation. This movement has been associated with a low accumulated strain ductile phase of movement. In the 1963 movement event, the trend is linear. This was associated with a brittle phase of movement. A plot of 1/deformation against time for movement of the debris flow portion of the Tessina landslide (1998) shows a curve with a negative gradient asymptopic to the x-axis. This indicates that the debris flow moved as a result of ductile deformation processes. Plots of movement data for the Black Ven landslide over 1999 and 2001 also show curves that correlate with known deformation and catastrophic phases. The model results suggest there is a definable deformation pattern that is diagnostic of landslides approaching catastrophic failure. This pattern can be differentiated from landslides that are undergoing ductile deformation and those that are suffering crack nucleation.

  16. Integration of the functional movement screen into the National Hockey League Combine.

    PubMed

    Rowan, Chip P; Kuropkat, Christiane; Gumieniak, Robert J; Gledhill, Norman; Jamnik, Veronica K

    2015-05-01

    The sport of ice hockey requires coordination of complex skills involving musculoskeletal and physiological abilities while simultaneously exposing players to a high risk for injury. The Functional Movement Screen (FMS) was developed to assess fundamental movement patterns that underlie both sport performance and injury risk. The top 111 elite junior hockey players from around the world took part in the 2013 National Hockey League Entry Draft Combine (NHL Combine). The FMS was integrated into the comprehensive medical and physiological fitness evaluations at the request of strength and conditioning coaches with affiliations to NHL teams. The inclusion of the FMS aimed to help develop strategies that could maximize its utility among elite hockey players and to encourage or inform further research in this field. This study evaluated the outcomes of integrating the FMS into the NHL Combine and identified any links to other medical plus physical and physiological fitness assessment outcomes. These potential associations may provide valuable information to identify elements of future training programs that are individualized to athletes' specific needs. The results of the FMS (total score and number of asymmetries identified) were significantly correlated to various body composition measures, aerobic and anaerobic fitness, leg power, timing of recent workouts, and the presence of lingering injury at the time of the NHL Combine. Although statistically significant correlations were observed, the implications of the FMS assessment outcomes remain difficult to quantify until ongoing assessment of FMS patterns, tracking of injuries, and hockey performance are available.

  17. Processing of Written Irony in Autism Spectrum Disorder: An Eye-Movement Study.

    PubMed

    Au-Yeung, Sheena K; Kaakinen, Johanna K; Liversedge, Simon P; Benson, Valerie

    2015-12-01

    Previous research has suggested that individuals with Autism Spectrum Disorders (ASD) have difficulties understanding others communicative intent and with using contextual information to correctly interpret irony. We recorded the eye movements of typically developing (TD) adults ASD adults when they read statements that could either be interpreted as ironic or non-ironic depending on the context of the passage. Participants with ASD performed as well as TD controls in their comprehension accuracy for speaker's statements in both ironic and non-ironic conditions. Eye movement data showed that for both participant groups, total reading times were longer for the critical region containing the speaker's statement and a subsequent sentence restating the context in the ironic condition compared to the non-ironic condition. The results suggest that more effortful processing is required in both ASD and TD participants for ironic compared with literal non-ironic statements, and that individuals with ASD were able to use contextual information to infer a non-literal interpretation of ironic text. Individuals with ASD, however, spent more time overall than TD controls rereading the passages, to a similar degree across both ironic and non-ironic conditions, suggesting that they either take longer to construct a coherent discourse representation of the text, or that they take longer to make the decision that their representation of the text is reasonable based on their knowledge of the world. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  18. Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques.

    PubMed

    Kiss, Barbara; Polska, Elzbieta; Dorner, Guido; Polak, Kaija; Findl, Oliver; Mayrl, Gabriele Fuchsjäger; Eichler, Hans-Georg; Wolzt, Michael; Schmetterer, Leopold

    2002-07-01

    Retinal vasculature shows pronounced vasoconstriction in response to hyperoxia, which appears to be related to the constant oxygen demand of the retina. However, the exact amount of blood flow reduction and the exact time course of this phenomenon are still a matter of debate. We set out to investigate the retinal response to hyperoxia using innovative techniques for the assessment of retinal hemodynamics. In a total of 48 healthy volunteers we studied the effect of 100% O(2) breathing on retinal blood flow using two methods. Red blood cell movement in larger retinal veins was quantified with combined laser Doppler velocimetry and retinal vessel size measurement. Retinal white blood cell movement was quantified with the blue field entoptic technique. The time course of retinal vasoconstriction in response to hyperoxia was assessed by continuous vessel size determination using the Zeiss retinal vessel analyzer. The response to hyperoxia as measured with combined laser Doppler velocimetry and vessel size measurement was almost twice as high as that observed with the blue field technique. Vasoconstriction in response to 100% O(2) breathing occurred within the first 5 min and no counterregulatory or adaptive mechanisms were observed. Based on these results we hypothesize that hyperoxia-induced vasoconstriction differentially affects red and white blood cell movement in the human retina. This hypothesis is based on the complex interactions between red and white blood cells in microcirculation, which have been described in detail for other vascular beds.

  19. Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement.

    PubMed

    Misra, Gaurav; Ofori, Edward; Chung, Jae Woo; Coombes, Stephen A

    2017-04-01

    Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.

    PubMed

    Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M

    2017-01-01

    Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.

  1. Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty

    PubMed Central

    Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M.

    2017-01-01

    Summary Introduction Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. Methods A new analytical wear model, based upon Archard’s law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. Results The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. Conclusions It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise. PMID:29721453

  2. Discovering frequently recurring movement sequences in team-sport athlete spatiotemporal data.

    PubMed

    Sweeting, Alice J; Aughey, Robert J; Cormack, Stuart J; Morgan, Stuart

    2017-12-01

    Athlete external load is typically analysed from predetermined movement thresholds. The combination of movement sequences and differences in these movements between playing positions is also currently unknown. This study developed a method to discover the frequently recurring movement sequences across playing position during matches. The external load of 12 international female netball athletes was collected by a local positioning system during four national-level matches. Velocity, acceleration and angular velocity were calculated from positional (X, Y) data, clustered via one-dimensional k-means and assigned a unique alphabetic label. Combinations of velocity, acceleration and angular velocity movement were compared using the Levenshtein distance and similarities computed by the longest common substring problem. The contribution of each movement sequence, according to playing position and relative to the wider data set, was then calculated via the Minkowski distance. A total of 10 frequently recurring combinations of movement were discovered, regardless of playing position. Only the wing attack, goal attack and goal defence playing positions are closely related. We developed a technique to discover the movement sequences, according to playing position, performed by elite netballers. This methodology can be extended to discover the frequently recurring movements within other team sports and across levels of competition.

  3. [Hypothesis on the equilibrium point and variability of amplitude, speed and time of single-joint movement].

    PubMed

    Latash, M; Gottleib, G

    1990-01-01

    Problems of single-joint movement variability are analysed in the framework of the equilibrium-point hypothesis (the lambda-model). Control of the movements is described with three parameters related to movement amplitude speed, and time. Three strategies emerge from this description. Only one of them is likely to lead to a Fitts' type speed-accuracy trade-off. Experiments were performed to test one of the predictions of the model. Subjects performed identical sets of single-joint fast movements with open or closed eyes and some-what different instructions. Movements performed with closed eyes were characterized with higher peak speeds and unchanged variability in seeming violation of the Fitt's law and in a good correspondence to the model.

  4. The time course of phase correction: A kinematic investigation of motor adjustment to timing perturbations during sensorimotor synchronization

    PubMed Central

    Hove, Michael J.; Balasubramaniam, Ramesh; Keller, Peter E.

    2014-01-01

    Synchronizing movements with a beat requires rapid compensation for timing errors. The phase-correction response (PCR) has been studied extensively in finger tapping by shifting a metronome onset and measuring the adjustment of the following tap time. How the response unfolds during the subsequent tap cycle remains unknown. Using motion capture, we examined finger kinematics during the PCR. Participants tapped with a metronome containing phase perturbations. They tapped in ‘legato’ and ‘staccato’ style at various tempi, which altered the timing of the constituent movement stages (dwell at the surface, extension, flexion). After a phase perturbation, tapping kinematics changed compared to baseline, and the PCR was distributed differently across movement stages. In staccato tapping, the PCR trajectory changed primarily during finger extension across tempi. In legato tapping, at fast tempi the PCR occurred primarily during extension, whereas at slow tempi most phase correction was already completed during dwell. Across conditions, timing adjustments occurred primarily 100-250 ms into the following tap cycle. The change in movement around 100 ms represents the time to integrate information into an already planned movement and the rapidity suggests a subcortical route. PMID:25151103

  5. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals

    NASA Astrophysics Data System (ADS)

    Felton, E. A.; Radwin, R. G.; Wilson, J. A.; Williams, J. C.

    2009-10-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals.

  6. Physiological demands of women's rugby union: time-motion analysis and heart rate response.

    PubMed

    Virr, Jody Lynn; Game, Alex; Bell, Gordon John; Syrotuik, Daniel

    2014-01-01

    The aim of this study was to determine the physical demands of women's rugby union match play using time-motion analysis and heart rate (HR) response. Thirty-eight premier club level female rugby players, ages 18-34 years were videotaped and HRs monitored for a full match. Performances were coded into 12 different movement categories: 5 speeds of locomotion (standing, walking, jogging, striding, sprinting), 4 forms of intensive non-running exertion (ruck/maul/tackle, pack down, scrum, lift) and 3 discrete activities (kick, jump, open field tackle). The main results revealed that backs spend significantly more time sprinting and walking whereas forwards spend more time in intensive non-running exertion and jogging. Forwards also had a significantly higher total work frequency compared to the backs, but a higher total rest frequency compared to the backs. In terms of HR responses, forwards displayed higher mean HRs throughout the match and more time above 80% of their maximum HR than backs. In summary, women's rugby union is characterised by intermittent bursts of high-intensity activity, where forwards and backs have similar anaerobic energy demands, but different specific match demands.

  7. Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling

    NASA Astrophysics Data System (ADS)

    Fraser, S. A.; Wood, N. J.; Johnston, D. M.; Leonard, G. S.; Greening, P. D.; Rossetto, T.

    2014-11-01

    Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate departure or a common evacuation departure time for all exposed population. Here, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The method is demonstrated for hypothetical local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios. However, it requires detailed exposure data, which may preclude its use in many situations.

  8. Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling

    USGS Publications Warehouse

    Fraser, Stuart A.; Wood, Nathan J.; Johnston, David A.; Leonard, Graham S.; Greening, Paul D.; Rossetto, Tiziana

    2014-01-01

    Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate departure or a common evacuation departure time for all exposed population. Here, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The method is demonstrated for hypothetical local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios. However, it requires detailed exposure data, which may preclude its use in many situations.

  9. The role of resting duration in the kinematic pattern of two consecutive bench press sets to failure in elite sprint kayakers.

    PubMed

    García-López, D; Herrero, J A; Abadía, O; García-Isla, F J; Ualí, I; Izquierdo, M

    2008-09-01

    This study aimed to investigate the role of rest period duration (RP) on the time course of the acceleration portion (AP) and mean velocity of the concentric phase across two bench press sets to failure with a submaximal load (60% of the 1RM) using different RP. Ten elite junior kayakers performed, on four different days, two consecutive bench press sets to failure, allowing randomly 1-, 2-, 3- and 4-min RP between sets. AP reached a maximal value of 66% of the concentric movement time. This maximal AP was observed in repetition number 2 or 3, and then AP declined during the set, with a significant decrease when the number of repetitions was over 80% of the total number of repetitions performed. AP and lifting velocity patterns of the concentric phase were not altered during a second set to failure, regardless of RP. However, when velocity was expressed in absolute terms, 1-min RP was insufficient to maintain the average lifting velocity during the second set, compared to the first one. These results may be of use in selecting number of repetitions and resting duration in order to ensure optimal maintenance of the accelerative portion of concentric movement time with different resting-period durations.

  10. Collective behavior of mice passing through an exit under panic

    NASA Astrophysics Data System (ADS)

    Zhang, Teng; Zhang, Xuelin; Huang, Shenshi; Li, Changhai; Lu, Shouxiang

    2018-04-01

    Collective movement of animal in emergency condition has attracted growing attentions among researchers. However, many rules still need to be confirmed with adequate explanation. Study of collective behavior of mice can improve our understanding about the dynamics of pedestrian movement. However, its rules still need to be confirmed with adequate explanation. In this paper, collective behavior of mice passing through an exit under panic was investigated. The results showed that the total evacuation time decreased with exit width increasing in a certain range. Based on the different tendency of the curve in temporal evolution, the process of mice flow was divided into three stages. The density of mice near the exit peaks at a certain horizontal offset and starts to decrease over time. With the increase of the exit width, the duration of the higher density state decreased. We found that the frequency of time intervals obeyed a lognormal distribution or an exponential decay for different exit widths. In addition, the relationship between the group size and the group flow rate in different scenarios was analyzed. The phenomena found in our experiments show the collective behavioral characteristic of mice under panic. Our analysis in this paper will deepen our understanding of crowd dynamics in emergency condition.

  11. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages.

    PubMed

    Ng, Marcus; Pavlova, Milena

    2013-01-01

    Since the formal characterization of sleep stages, there have been reports that seizures may preferentially occur in certain phases of sleep. Through ascending cholinergic connections from the brainstem, rapid eye movement (REM) sleep is physiologically characterized by low voltage fast activity on the electroencephalogram, REMs, and muscle atonia. Multiple independent studies confirm that, in REM sleep, there is a strikingly low proportion of seizures (~1% or less). We review a total of 42 distinct conventional and intracranial studies in the literature which comprised a net of 1458 patients. Indexed to duration, we found that REM sleep was the most protective stage of sleep against focal seizures, generalized seizures, focal interictal discharges, and two particular epilepsy syndromes. REM sleep had an additional protective effect compared to wakefulness with an average 7.83 times fewer focal seizures, 3.25 times fewer generalized seizures, and 1.11 times fewer focal interictal discharges. In further studies REM sleep has also demonstrated utility in localizing epileptogenic foci with potential translation into postsurgical seizure freedom. Based on emerging connectivity data in sleep, we hypothesize that the influence of REM sleep on seizures is due to a desynchronized EEG pattern which reflects important connectivity differences unique to this sleep stage.

  12. Reliability of measuring sciatic and tibial nerve movement with diagnostic ultrasound during a neural mobilisation technique.

    PubMed

    Ellis, Richard; Hing, Wayne; Dilley, Andrew; McNair, Peter

    2008-08-01

    Diagnostic ultrasound provides a technique whereby real-time, in vivo analysis of peripheral nerve movement is possible. This study measured sciatic nerve movement during a "slider" neural mobilisation technique (ankle dorsiflexion/plantar flexion and cervical extension/flexion). Transverse and longitudinal movement was assessed from still ultrasound images and video sequences by using frame-by-frame cross-correlation software. Sciatic nerve movement was recorded in the transverse and longitudinal planes. For transverse movement, at the posterior midthigh (PMT) the mean value of lateral sciatic nerve movement was 3.54 mm (standard error of measurement [SEM] +/- 1.18 mm) compared with anterior-posterior/vertical (AP) movement of 1.61 mm (SEM +/- 0.78 mm). At the popliteal crease (PC) scanning location, lateral movement was 6.62 mm (SEM +/- 1.10 mm) compared with AP movement of 3.26 mm (SEM +/- 0.99 mm). Mean longitudinal sciatic nerve movement at the PMT was 3.47 mm (SEM +/- 0.79 mm; n = 27) compared with the PC of 5.22 mm (SEM +/- 0.05 mm; n = 3). The reliability of ultrasound measurement of transverse sciatic nerve movement was fair to excellent (Intraclass correlation coefficient [ICC] = 0.39-0.76) compared with excellent (ICC = 0.75) for analysis of longitudinal movement. Diagnostic ultrasound presents a reliable, noninvasive, real-time, in vivo method for analysis of sciatic nerve movement.

  13. Phase and amplitude analysis in time-frequency space--application to voluntary finger movement.

    PubMed

    Ginter, J; Blinowska, K J; Kamiński, M; Durka, P J

    2001-09-30

    Two methods operating in time-frequency space were applied to analysis of EEG activity accompanying voluntary finger movements. The first one, based on matching pursuit approach provided high-resolution distributions of power in time-frequency space. The phenomena of event related desynchronization (ERD) and synchronization (ERS) were investigated without the need of band-pass filtering. Time evolution of mu- and beta-components was observed in a detailed way. The second method was based on a multichannel autoregressive model (MVAR) adapted for investigation of short-time changes in EEG signal. The direction and spectral content of the EEG activity propagation was estimated by means of short-time directed transfer function (SDTF). The evidence of 'cross-talk' between different areas of motor and sensory cortex was found. The earlier known phenomena, connected with voluntary movements, were confirmed and a new evidence concerning focal ERD/surround ERS and beta activity post-movement synchronization was found.

  14. Cross-slope Movement Patterns in Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper-seated landslide was more complex. Though the dominant movement vector is downslope, there is evidence to suggest that there has been a cross-slope component of motion that corresponds to the bedding orientation.

  15. A functional movement screen profile of an Australian state police force: a retrospective cohort study.

    PubMed

    Orr, Robin Marc; Pope, Rodney; Stierli, Michael; Hinton, Ben

    2016-07-18

    Police officers are required to perform dynamic movements in unpredictable environments, the results of which can lead to injury. Early identification of poor movement patterns of a police population, and potential sub groups within this population, may provide opportunities to treat and minimise injury risks. The aim of this study was to profile the functional movement capabilities of an Australian state police force and potential sub groups through a retrospective cohort study. Retrospective data from an Australian State Police Force were provided for analysis (♂ n = 1155, mean (±SD) age = 31.34 ± 8.41 years: ♀ n = 357, mean age = 27.99 ± 8.02 years). Data consisted of Functional Movement Screen (FMS) assessment results of male and female trainees and qualified police officers with all assessments conducted by a qualified Police Physical Training Instructor. Significantly higher (U = 253863, p < .001) FMS total scores were found for recruits (mean 15.23 ± SD 2.01 points) when compared to attested officers (14.57 ± 2.96 points) and differences in FMS total scores also approached significance for females (15.24 ± 2.35 points) when compared to males (14.84 ± 2.55 points, U = 186926, p = .007), with age found to be a key, significant factor in explaining these observed differences (F (1,1507) = 23.519, p < .001). The FMS components demonstrating poorest movement performance across all groups were the hurdle step and rotary stability. Generally, police personnel (both attested officers and recruits of both genders) of greater age have a lower functional movement capability when compared to younger personnel, with greater percentages scoring 14 or below on the FMS. Specific conditioning programs to improve strength, range of motion and stability during identified key movement types in those demonstrating poorer movement performance may serve to reduce injuries in police personnel.

  16. Young Children's Reports of when Learning Occurred

    ERIC Educational Resources Information Center

    Tang, Connie M.; Bartsch, Karen; Nunez, Narina

    2007-01-01

    This study investigated young children's reports of when learning occurred. A total of 96 4-, 5-, and 6-year-olds were recruited from suburban preschools and elementary schools. The children learned an animal fact and a body movement. A week later, children learned another animal fact and another body movement and then answered questions about…

  17. THE INTERNATIONAL WALDORF SCHOOL MOVEMENT.

    ERIC Educational Resources Information Center

    VON BARAVALLE, HERMANN

    AN HISTORICAL REVIEW OF THE WALDORF SCHOOL PLAN TRACES THE MOVEMENT FROM ITS FOUNDING IN STUTTGART, GERMANY IN 1919, BY THE WALDORF ASTORIA COMPANY AND UNDER THE DIRECTION OF RUDOLF STEINER, TO ITS INTRODUCTION INTO SWITZERLAND, OTHER EUROPEAN COUNTRIES, THE AMERICAS, AUSTRALIA, NEW ZEALAND, AND SOUTH AFRICA, A TOTAL OF 175 SCHOOLS AS OF 1963. THE…

  18. Muscle cocontraction following dynamics learning.

    PubMed

    Darainy, Mohammad; Ostry, David J

    2008-09-01

    Coactivation of antagonist muscles is readily observed early in motor learning, in interactions with unstable mechanical environments and in motor system pathologies. Here we present evidence that the nervous system uses coactivation control far more extensively and that patterns of cocontraction during movement are closely tied to the specific requirements of the task. We have examined the changes in cocontraction that follow dynamics learning in tasks that are thought to involve finely sculpted feedforward adjustments to motor commands. We find that, even following substantial training, cocontraction varies in a systematic way that depends on both movement direction and the strength of the external load. The proportion of total activity that is due to cocontraction nevertheless remains remarkably constant. Moreover, long after indices of motor learning and electromyographic measures have reached asymptotic levels, cocontraction still accounts for a significant proportion of total muscle activity in all phases of movement and in all load conditions. These results show that even following dynamics learning in predictable and stable environments, cocontraction forms a central part of the means by which the nervous system regulates movement.

  19. Attention Switching during Scene Perception: How Goals Influence the Time Course of Eye Movements across Advertisements

    ERIC Educational Resources Information Center

    Wedel, Michel; Pieters, Rik; Liechty, John

    2008-01-01

    Eye movements across advertisements express a temporal pattern of bursts of respectively relatively short and long saccades, and this pattern is systematically influenced by activated scene perception goals. This was revealed by a continuous-time hidden Markov model applied to eye movements of 220 participants exposed to 17 ads under a…

  20. Motivational State, Reward Value, and Pavlovian Cues Differentially Affect Skilled Forelimb Grasping in Rats

    ERIC Educational Resources Information Center

    Mosberger, Alice C.; de Clauser, Larissa; Kasper, Hansjörg; Schwab, Martin E.

    2016-01-01

    Motor skills represent high-precision movements performed at optimal speed and accuracy. Such motor skills are learned with practice over time. Besides practice, effects of motivation have also been shown to influence speed and accuracy of movements, suggesting that fast movements are performed to maximize gained reward over time as noted in…

  1. Total and segmental colon transit time in constipated children assessed by scintigraphy with 111In-DTPA given orally.

    PubMed

    Vattimo, A; Burroni, L; Bertelli, P; Messina, M; Meucci, D; Tota, G

    1993-12-01

    Serial colon scintigraphy using 111In-DTPA (2 MBq) given orally was performed in 39 children referred for constipation, and the total and segmental colon transit times were measured. The bowel movements during the study were recorded and the intervals between defecations (ID) were calculated. This method proved able to identify children with normal colon morphology (no. = 32) and those with dolichocolon (no. = 7). Normal children were not included for ethical reasons and we used the normal range determined by others using x-ray methods (29 +/- 4 hours). Total and segmental colon transit times were found to be prolonged in all children with dolichocolon (TC: 113.55 +/- 41.20 hours; RC: 39.85 +/- 26.39 hours; LC: 43.05 +/- 18.30 hours; RS: 30.66 +/- 26.89 hours). In the group of children with a normal colon shape, 13 presented total and segmental colon transit times within the referred normal value (TC: 27.79 +/- 4.10 hours; RC: 9.11 +/- 2.53 hours; LC: 9.80 +/- 3.50 hours; RS: 8.88 +/- 4.09 hours) and normal bowel function (ID: 23.37 +/- 5.93 hours). In the remaining children, 5 presented prolonged retention in the rectum (RS: 53.36 +/- 29.66 hours), and 14 a prolonged transit time in all segments. A good correlation was found between the transit time and bowel function. From the point of view of radiation dosimetry, the most heavily irradiated organs were the lower large intestine and the ovaries, and the level of radiation burden depended on the colon transit time. We can conclude that the described method results safe, accurate and fully diagnostic.

  2. Movement Precision and Amplitude as Separate Factors in the Control of Movement.

    ERIC Educational Resources Information Center

    Kerr, Robert

    The purpose of this study was to assess Welford's dual controlling factor interpretation of Fitts' Law--describing movement time as being a linear function of movement distance (or amplitude) and the required precision of the movement (or target width). Welford's amplification of the theory postulates that two separate processes ought to be…

  3. Object motion computation for the initiation of smooth pursuit eye movements in humans.

    PubMed

    Wallace, Julian M; Stone, Leland S; Masson, Guillaume S

    2005-04-01

    Pursuing an object with smooth eye movements requires an accurate estimate of its two-dimensional (2D) trajectory. This 2D motion computation requires that different local motion measurements are extracted and combined to recover the global object-motion direction and speed. Several combination rules have been proposed such as vector averaging (VA), intersection of constraints (IOC), or 2D feature tracking (2DFT). To examine this computation, we investigated the time course of smooth pursuit eye movements driven by simple objects of different shapes. For type II diamond (where the direction of true object motion is dramatically different from the vector average of the 1-dimensional edge motions, i.e., VA not equal IOC = 2DFT), the ocular tracking is initiated in the vector average direction. Over a period of less than 300 ms, the eye-tracking direction converges on the true object motion. The reduction of the tracking error starts before the closing of the oculomotor loop. For type I diamonds (where the direction of true object motion is identical to the vector average direction, i.e., VA = IOC = 2DFT), there is no such bias. We quantified this effect by calculating the direction error between responses to types I and II and measuring its maximum value and time constant. At low contrast and high speeds, the initial bias in tracking direction is larger and takes longer to converge onto the actual object-motion direction. This effect is attenuated with the introduction of more 2D information to the extent that it was totally obliterated with a texture-filled type II diamond. These results suggest a flexible 2D computation for motion integration, which combines all available one-dimensional (edge) and 2D (feature) motion information to refine the estimate of object-motion direction over time.

  4. First experience with THE AUTOLAP™ SYSTEM: an image-based robotic camera steering device.

    PubMed

    Wijsman, Paul J M; Broeders, Ivo A M J; Brenkman, Hylke J; Szold, Amir; Forgione, Antonello; Schreuder, Henk W R; Consten, Esther C J; Draaisma, Werner A; Verheijen, Paul M; Ruurda, Jelle P; Kaufman, Yuval

    2018-05-01

    Robotic camera holders for endoscopic surgery have been available for 20 years but market penetration is low. The current camera holders are controlled by voice, joystick, eyeball tracking, or head movements, and this type of steering has proven to be successful but excessive disturbance of surgical workflow has blocked widespread introduction. The Autolap™ system (MST, Israel) uses a radically different steering concept based on image analysis. This may improve acceptance by smooth, interactive, and fast steering. These two studies were conducted to prove safe and efficient performance of the core technology. A total of 66 various laparoscopic procedures were performed with the AutoLap™ by nine experienced surgeons, in two multi-center studies; 41 cholecystectomies, 13 fundoplications including hiatal hernia repair, 4 endometriosis surgeries, 2 inguinal hernia repairs, and 6 (bilateral) salpingo-oophorectomies. The use of the AutoLap™ system was evaluated in terms of safety, image stability, setup and procedural time, accuracy of imaged-based movements, and user satisfaction. Surgical procedures were completed with the AutoLap™ system in 64 cases (97%). The mean overall setup time of the AutoLap™ system was 4 min (04:08 ± 0.10). Procedure times were not prolonged due to the use of the system when compared to literature average. The reported user satisfaction was 3.85 and 3.96 on a scale of 1 to 5 in two studies. More than 90% of the image-based movements were accurate. No system-related adverse events were recorded while using the system. Safe and efficient use of the core technology of the AutoLap™ system was demonstrated with high image stability and good surgeon satisfaction. The results support further clinical studies that will focus on usability, improved ergonomics and additional image-based features.

  5. Performance on the Functional Movement Screen Is Related to Hop Performance But Not to Hip and Knee Strength in Collegiate Football Players.

    PubMed

    Willigenburg, Nienke; Hewett, Timothy E

    2017-03-01

    To define the relationship between Functional Movement Screen (FMS) scores and hop performance, hip strength, and knee strength in collegiate football players. Cross-sectional cohort. Freshmen of a Division I collegiate American football team (n = 59). The athletes performed the FMS, and also a variety of hop tests, isokinetic knee strength, and isometric hip strength tasks. We recorded total FMS score, peak strength, and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman correlation coefficients quantified the relationships between these measures, and χ analyses compared the number of athletes with asymmetries on the different tasks. We observed significant correlations (r = 0.38-0.56, P ≤ 0.02) between FMS scores and hop distance but not between FMS scores and hip or knee strength (all P ≥ 0.21). The amount of asymmetry on the FMS test was significantly correlated to the amount of asymmetry on the timed 6-m hop (r = 0.44, P < 0.01) but not to hip or knee strength asymmetries between limbs (all P ≥ 0.34). Functional Movement Screen score was positively correlated to hop distance, and limb asymmetry in FMS tasks was correlated to limb asymmetry in 6-m hop time in football players. No significant correlations were observed between FMS score and hip and knee strength or between FMS asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time-efficient and cost-efficient alternative to FMS testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries.

  6. Real-time animation software for customized training to use motor prosthetic systems.

    PubMed

    Davoodi, Rahman; Loeb, Gerald E

    2012-03-01

    Research on control of human movement and development of tools for restoration and rehabilitation of movement after spinal cord injury and amputation can benefit greatly from software tools for creating precisely timed animation sequences of human movement. Despite their ability to create sophisticated animation and high quality rendering, existing animation software are not adapted for application to neural prostheses and rehabilitation of human movement. We have developed a software tool known as MSMS (MusculoSkeletal Modeling Software) that can be used to develop models of human or prosthetic limbs and the objects with which they interact and to animate their movement using motion data from a variety of offline and online sources. The motion data can be read from a motion file containing synthesized motion data or recordings from a motion capture system. Alternatively, motion data can be streamed online from a real-time motion capture system, a physics-based simulation program, or any program that can produce real-time motion data. Further, animation sequences of daily life activities can be constructed using the intuitive user interface of Microsoft's PowerPoint software. The latter allows expert and nonexpert users alike to assemble primitive movements into a complex motion sequence with precise timing by simply arranging the order of the slides and editing their properties in PowerPoint. The resulting motion sequence can be played back in an open-loop manner for demonstration and training or in closed-loop virtual reality environments where the timing and speed of animation depends on user inputs. These versatile animation utilities can be used in any application that requires precisely timed animations but they are particularly suited for research and rehabilitation of movement disorders. MSMS's modeling and animation tools are routinely used in a number of research laboratories around the country to study the control of movement and to develop and test neural prostheses for patients with paralysis or amputations.

  7. Long-term movement patterns of a coral reef predator

    NASA Astrophysics Data System (ADS)

    Heupel, M. R.; Simpfendorfer, C. A.

    2015-06-01

    Long-term monitoring is required to fully define periodicity and patterns in animal movement. This is particularly relevant for defining what factors are driving the presence, location, and movements of individuals. The long-term movement and space use patterns of grey reef sharks, Carcharhinus amblyrhynchos, were examined on a whole of reef scale in the southern Great Barrier Reef to define whether movement and activity space varied through time. Twenty-nine C. amblyrhynchos were tracked for over 2 years to define movement patterns. All individuals showed high residency within the study site, but also had high roaming indices. This indicated that individuals remained in the region and used all of the monitored habitat (i.e., the entire reef perimeter). Use of space was consistent through time with high reuse of areas most of the year. Therefore, individuals maintained discrete home ranges, but undertook broader movements around the reef at times. Mature males showed greatest variation in movement with larger activity spaces and movement into new regions during the mating season (August-September). Depth use patterns also differed, suggesting behaviour or resource requirements varied between sexes. Examination of the long-term, reef-scale movements of C. amblyrhynchos has revealed that reproductive activity may play a key role in space use and activity patterns. It was unclear whether mating behaviour or an increased need for food to sustain reproductive activity and development played a greater role in these patterns. Reef shark movement patterns are becoming more clearly defined, but research is still required to fully understand the biological drivers for the observed patterns.

  8. Monkeys time their pauses of movement and not their movement-kinematics during a synchronization-continuation rhythmic task.

    PubMed

    Donnet, Sophie; Bartolo, Ramon; Fernandes, José Maria; Cunha, João Paulo Silva; Prado, Luis; Merchant, Hugo

    2014-05-01

    A critical question in tapping behavior is to understand whether the temporal control is exerted on the duration and trajectory of the downward-upward hand movement or on the pause between hand movements. In the present study, we determined the duration of both the movement execution and pauses of monkeys performing a synchronization-continuation task (SCT), using the speed profile of their tapping behavior. We found a linear increase in the variance of pause-duration as a function of interval, while the variance of the motor implementation was relatively constant across intervals. In fact, 96% of the variability of the duration of a complete tapping cycle (pause + movement) was due to the variability of the pause duration. In addition, we performed a Bayesian model selection to determine the effect of interval duration (450-1,000 ms), serial-order (1-6 produced intervals), task phase (sensory cued or internally driven), and marker modality (auditory or visual) on the duration of the movement-pause and tapping movement. The results showed that the most important parameter used to successfully perform the SCT was the control of the pause duration. We also found that the kinematics of the tapping movements was concordant with a stereotyped ballistic control of the hand pressing the push-button. The present findings support the idea that monkeys used an explicit timing strategy to perform the SCT, where a dedicated timing mechanism controlled the duration of the pauses of movement, while also triggered the execution of fixed movements across each interval of the rhythmic sequence. Copyright © 2014 the American Physiological Society.

  9. Altitudinal migration and the future of an iconic Hawaiian honeycreeper in response to climate change and management

    USGS Publications Warehouse

    Guillaumet, Alban; Kuntz, Wendy A.; Samuel, Michael D.; Paxton, Eben H.

    2017-01-01

    Altitudinal movement by tropical birds to track seasonally variable resources can move them from protected areas to areas of increased vulnerability. In Hawaiʻi, historical reports suggest that many Hawaiian honeycreepers such as the ‘I‘iwi (Drepanis coccinea) once undertook seasonal migrations, but the existence of such movements today is unclear. Because Hawaiian honeycreepers are highly susceptible to avian malaria, currently minimal in high-elevation forests, understanding the degree to which honeycreepers visit lower elevation forests may be critical to predict the current impact of malaria on population dynamics and how susceptible bird populations may respond to climate change and mitigation scenarios. Using radio telemetry data, we demonstrate for the first time that a large fraction of breeding adult and juvenile ‘I‘iwi originating from an upper-elevation (1,920 m) population at Hakalau Forest National Wildlife Refuge exhibit post-breeding movements well below the upper elevational limit for mosquitoes. Bloom data suggest seasonal variation in floral resources is the primary driver of seasonal movement for ‘I‘iwi. To understand the demographic implications of such movement, we developed a spatial individual-based model calibrated using previously published and original data. ʻI‘iwi dynamics were simulated backward in time, to estimate population levels in the absence of avian malaria, and forward in time, to assess the impact of climate warming as well as two potential mitigation actions. Even in disease-free ‘refuge’ populations, we found that breeding densities failed to reach the estimated carrying capacity, suggesting the existence of a seasonal “migration load” as a result of travel to disease-prevalent areas. We predict that ‘I‘iwi may be on the verge of extinction in 2100, with the total number of pairs reaching only ~ 0.2–12.3% of the estimated pre-malaria density, based on an optimistic climate change scenario. The probability of extinction of ‘I‘iwi populations, as measured by population estimates for 2100, is strongly related to their estimated migration propensity. Long-term conservation strategies likely will require a multi-pronged response including a reduction of malaria threats, habitat restoration and continued landscape-level access to seasonally variable nectar resources.

  10. Motor Timing Deficits in Sequential Movements in Parkinson Disease Are Related to Action Planning: A Motor Imagery Study

    PubMed Central

    Avanzino, Laura; Pelosin, Elisa; Martino, Davide; Abbruzzese, Giovanni

    2013-01-01

    Timing of sequential movements is altered in Parkinson disease (PD). Whether timing deficits in internally generated sequential movements in PD depends also on difficulties in motor planning, rather than merely on a defective ability to materially perform the planned movement is still undefined. To unveil this issue, we adopted a modified version of an established test for motor timing, i.e. the synchronization–continuation paradigm, by introducing a motor imagery task. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Fourteen patients with PD and twelve matched healthy volunteers were asked to tap in synchrony with a metronome cue (SYNC) and then, when the tone stopped, to keep tapping, trying to maintain the same rhythm (CONT-EXE) or to imagine tapping at the same rhythm, rather than actually performing it (CONT-MI). We tested both a sub-second and a supra-second inter-stimulus interval between the cues. Performance was recorded using a sensor-engineered glove and analyzed measuring the temporal error and the interval reproduction accuracy index. PD patients were less accurate than healthy subjects in the supra-second time reproduction task when performing both continuation tasks (CONT-MI and CONT-EXE), whereas no difference was detected in the synchronization task and on all tasks involving a sub-second interval. Our findings suggest that PD patients exhibit a selective deficit in motor timing for sequential movements that are separated by a supra-second interval and that this deficit may be explained by a defect of motor planning. Further, we propose that difficulties in motor planning are of a sufficient degree of severity in PD to affect also the motor performance in the supra-second time reproduction task. PMID:24086534

  11. Analyzing Movements Development and Evaluation of the Body Awareness Scale Movement Quality (BAS MQ).

    PubMed

    Sundén, A; Ekdahl, C; Horstman, V; Gyllensten, A L

    2016-06-01

    Limitations in everyday movements, physical activities are/or pain are the main reasons for seeking help from a physiotherapist. The purpose of this study was to investigate the psychometric properties of the Body Awareness Scale Movement Quality (BAS MQ) focusing on factor structure, validity and reliability and to explore whether BAS MQ could discriminate between healthy individuals and patients. BAS MQ assesses both limitations and resources concerning functional ability and quality of movements. The total sample in the study (n = 172) consisted of individuals with hip osteoarthritis (OA) (n = 132), individuals with psychiatric disorders (n = 33) and healthy individuals (n = 7). A factor analysis of the BAS MQ was performed for the total group. Inter-rater reliability was tested in a group of individuals with hip OA (n = 24). Concurrent validity was tested in a group of individuals with hip OA (n = 89). The Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36), the 6-Minute Walk Test (6MWT) and the Hip Osteoarthritis Outcome Score (HOOS) were chosen in the validation process. The factor analysis revealed three factors that together explained 60.8% of the total variance of BAS MQ. The inter-rater reliability was considered good or very good with a kappa value of 0.61. Significant correlations between BAS MQ and SF-36, HOOS and 6MWT in the subjects with hip OA confirmed the validity. The BAS MQ was able to discriminate between healthy individuals and individuals with physical and psychiatric limitations. Results of the study revealed that BAS MQ has a satisfactory factor structure. The inter-rater reliability and validity were acceptable in a group of individuals with hip OA. BAS MQ could be a useful assessment tool for physiotherapists when evaluating the quality of everyday movements in different patient groups. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Movement Timing and Invariance Arise from Several Geometries

    PubMed Central

    Bennequin, Daniel; Fuchs, Ronit; Berthoz, Alain; Flash, Tamar

    2009-01-01

    Human movements show several prominent features; movement duration is nearly independent of movement size (the isochrony principle), instantaneous speed depends on movement curvature (captured by the 2/3 power law), and complex movements are composed of simpler elements (movement compositionality). No existing theory can successfully account for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion or compression in individual parameters. The theory was mathematically formulated using Cartan's moving frame method. Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small loops). Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the implications of this theory: the origin of the dominance of equi-affine geometry, the possibility that the brain uses different mixtures of these geometries to encode movement duration and speed, and the ontogeny of such representations. PMID:19593380

  13. Eye movement identification based on accumulated time feature

    NASA Astrophysics Data System (ADS)

    Guo, Baobao; Wu, Qiang; Sun, Jiande; Yan, Hua

    2017-06-01

    Eye movement is a new kind of feature for biometrical recognition, it has many advantages compared with other features such as fingerprint, face, and iris. It is not only a sort of static characteristics, but also a combination of brain activity and muscle behavior, which makes it effective to prevent spoofing attack. In addition, eye movements can be incorporated with faces, iris and other features recorded from the face region into multimode systems. In this paper, we do an exploring study on eye movement identification based on the eye movement datasets provided by Komogortsev et al. in 2011 with different classification methods. The time of saccade and fixation are extracted from the eye movement data as the eye movement features. Furthermore, the performance analysis was conducted on different classification methods such as the BP, RBF, ELMAN and SVM in order to provide a reference to the future research in this field.

  14. Effects of damping head movement and facial expression in dyadic conversation using real–time facial expression tracking and synthesized avatars

    PubMed Central

    Boker, Steven M.; Cohn, Jeffrey F.; Theobald, Barry-John; Matthews, Iain; Brick, Timothy R.; Spies, Jeffrey R.

    2009-01-01

    When people speak with one another, they tend to adapt their head movements and facial expressions in response to each others' head movements and facial expressions. We present an experiment in which confederates' head movements and facial expressions were motion tracked during videoconference conversations, an avatar face was reconstructed in real time, and naive participants spoke with the avatar face. No naive participant guessed that the computer generated face was not video. Confederates' facial expressions, vocal inflections and head movements were attenuated at 1 min intervals in a fully crossed experimental design. Attenuated head movements led to increased head nods and lateral head turns, and attenuated facial expressions led to increased head nodding in both naive participants and confederates. Together, these results are consistent with a hypothesis that the dynamics of head movements in dyadicconversation include a shared equilibrium. Although both conversational partners were blind to the manipulation, when apparent head movement of one conversant was attenuated, both partners responded by increasing the velocity of their head movements. PMID:19884143

  15. A gradient method for the quantitative analysis of cell movement and tissue flow and its application to the analysis of multicellular Dictyostelium development.

    PubMed

    Siegert, F; Weijer, C J; Nomura, A; Miike, H

    1994-01-01

    We describe the application of a novel image processing method, which allows quantitative analysis of cell and tissue movement in a series of digitized video images. The result is a vector velocity field showing average direction and velocity of movement for every pixel in the frame. We apply this method to the analysis of cell movement during different stages of the Dictyostelium developmental cycle. We analysed time-lapse video recordings of cell movement in single cells, mounds and slugs. The program can correctly assess the speed and direction of movement of either unlabelled or labelled cells in a time series of video images depending on the illumination conditions. Our analysis of cell movement during multicellular development shows that the entire morphogenesis of Dictyostelium is characterized by rotational cell movement. The analysis of cell and tissue movement by the velocity field method should be applicable to the analysis of morphogenetic processes in other systems such as gastrulation and neurulation in vertebrate embryos.

  16. A comparative study of soil water movement under different vegetation covers

    NASA Astrophysics Data System (ADS)

    FERNANDO, A.; Tanaka, T.

    2002-05-01

    Vegetation, varying widely floristically, structurally, and in spatial distribution, is a complex phenomenon, delicately adjusted within itself and to its broader environment. To investigate the soil water movement of different vegetation covers, soil physical properties, and pressure head of soil water, have been analysed in a pine forest and adjacent disturbed grassland at the Terrestrial Environmental Research Centre (ERC) of Tsukuba University, Japan. Our results of the soil physical properties showed significant differences under different vegetation. At the forest site, the total porosity was nearly constant, i.e. 81% to 84%, from the ground surface to the depth of 70 cm, and decreased uniformly with the depth to reach 63.2% at 150 cm. At the grassland site, the total porosity was about 70% near the ground surface, however, expeditiously decreased to approximately 62% between the depths of 10 and 40 cm. Below these depths the total porosity increased to a maximum of about 77% between the depths of 50 and 80 cm, then decreased again to 54.9% at 150 cm. The total pressure head indicated that the evapotranspiration zone of the pine forest was 70 cm but was 50 cm in the grassland. KEY WORDS: Natural pine forest, Disturbed grassland, Soil water movement, Soil physical properties, Evaporation effective zone.

  17. Factors predicting weight-bearing asymmetry 1month after unilateral total knee arthroplasty: a cross-sectional study.

    PubMed

    Christiansen, Cory L; Bade, Michael J; Weitzenkamp, David A; Stevens-Lapsley, Jennifer E

    2013-03-01

    Factors predicting weight-bearing asymmetry (WBA) after unilateral total knee arthroplasty (TKA) are not known. However, identifying modifiable and non-modifiable predictors of WBA is needed to optimize rehabilitation, especially since WBA is negatively correlated to poor functional performance. The purpose of this study was to identify factors predictive of WBA during sit-stand transitions for people 1month following unilateral TKA. Fifty-nine people were tested preoperatively and 1month following unilateral TKA for WBA using average vertical ground reaction force under each foot during the Five Times Sit-to-Stand Test. Candidate variables tested in the regression analysis represented physical impairments (strength, muscle activation, pain, and motion), demographics, anthropometrics, and movement compensations. WBA, measured as the ratio of surgical/non-surgical limb vertical ground reaction force, was 0.69 (0.18) (mean (SD)) 1month after TKA. Regression analysis identified preoperative WBA (β=0.40), quadriceps strength ratio (β=0.31), and hamstrings strength ratio (β=0.19) as factors predictive of WBA 1month after TKA (R(2)=0.30). Greater amounts of WBA 1month after TKA are predicted by modifiable factors including habitual movement pattern and asymmetry in quadriceps and hamstrings strength. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-08

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  19. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

    PubMed Central

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-01

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702

  20. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  1. A model for combined targeting and tracking tasks in computer applications.

    PubMed

    Senanayake, Ransalu; Hoffmann, Errol R; Goonetilleke, Ravindra S

    2013-11-01

    Current models for targeted-tracking are discussed and shown to be inadequate as a means of understanding the combined task of tracking, as in the Drury's paradigm, and having a final target to be aimed at, as in the Fitts' paradigm. It is shown that the task has to be split into components that are, in general, performed sequentially and have a movement time component dependent on the difficulty of the individual component of the task. In some cases, the task time may be controlled by the Fitts' task difficulty, and in others, it may be dominated by the Drury's task difficulty. Based on an experiment carried out that captured movement time in combinations of visually controlled and ballistic movements, a model for movement time in targeted-tracking was developed.

  2. Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach

    NASA Astrophysics Data System (ADS)

    Hussain, Muntazir; Zebende, Gilney Figueira; Bashir, Usman; Donghong, Ding

    2017-01-01

    Most empirical literature investigates the relation between oil prices and exchange rate through different models. These models measure this relationship on two time scales (long and short terms), and often fail to observe the co-movement of these variables at different time scales. We apply a detrended cross-correlation approach (DCCA) to investigate the co-movements of the oil price and exchange rate in 12 Asian countries. This model determines the co-movements of oil price and exchange rate at different time scale. The exchange rate and oil price time series indicate unit root problem. Their correlation and cross-correlation are very difficult to measure. The result becomes spurious when periodic trend or unit root problem occurs in these time series. This approach measures the possible cross-correlation at different time scale and controlling the unit root problem. Our empirical results support the co-movements of oil prices and exchange rate. Our results support a weak negative cross-correlation between oil price and exchange rate for most Asian countries included in our sample. The results have important monetary, fiscal, inflationary, and trade policy implications for these countries.

  3. Does Data Distribution Change as a Function of Motor Skill Practice?

    ERIC Educational Resources Information Center

    Yan, Jin H.; Rodriguez, Ward A.; Thomas, Jerry R.

    2005-01-01

    The purpose of this study was to determine whether data distribution changes as a result of motor skill practice or learning. The data on three dependent measures (movement time; MT), percentage of movement time in primary submovement (PSB), and movement jerk (JEK) were collected at baseline and practice Blocks 1 to 5. Sixty 6-year-olds,…

  4. Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson's disease: effects of moving targets.

    PubMed

    Wang, Ching-Yi; Hwang, Wen-Juh; Fang, Jing-Jing; Sheu, Ching-Fan; Leong, Iat-Fai; Ma, Hui-Ing

    2011-08-01

    To compare the performance of reaching for stationary and moving targets in virtual reality (VR) and physical reality in persons with Parkinson's disease (PD). A repeated-measures design in which all participants reached in physical reality and VR under 5 conditions: 1 stationary ball condition and 4 conditions with the ball moving at different speeds. University research laboratory. Persons with idiopathic PD (n=29) and age-matched controls (n=25). Not applicable. Success rates and kinematics of arm movement (movement time, amplitude of peak velocity, and percentage of movement time for acceleration phase). In both VR and physical reality, the PD group had longer movement time (P<.001) and lower peak velocity (P<.001) than the controls when reaching for stationary balls. When moving targets were provided, the PD group improved more than the controls did in movement time (P<.001) and peak velocity (P<.001), and reached a performance level similar to that of the controls. Except for the fastest moving ball condition (0.5-s target viewing time), which elicited worse performance in VR than in physical reality, most cueing conditions in VR elicited performance generally similar to those in physical reality. Although slower than the controls when reaching for stationary balls, persons with PD increased movement speed in response to fast moving balls in both VR and physical reality. This suggests that with an appropriate choice of cueing speed, VR is a promising tool for providing visual motion stimuli to improve movement speed in persons with PD. More research on the long-term effect of this type of VR training program is needed. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Skill learning from kinesthetic feedback.

    PubMed

    Pinzon, David; Vega, Roberto; Sanchez, Yerly Paola; Zheng, Bin

    2017-10-01

    It is important for a surgeon to perform surgical tasks under appropriate guidance from visual and kinesthetic feedback. However, our knowledge on kinesthetic (muscle) memory and its role in learning motor skills remains elementary. To discover the effect of exclusive kinesthetic training on kinesthetic memory in both performance and learning. In Phase 1, a total of twenty participants duplicated five 2 dimensional movements of increasing complexity via passive kinesthetic guidance, without visual or auditory stimuli. Five participants were asked to repeat the task in the Phase 2 over a period of three weeks, for a total of nine sessions. Subjects accurately recalled movement direction using kinesthetic memory, but recalling movement length was less precise. Over the nine training sessions, error occurrence dropped after the sixth session. Muscle memory constructs the foundation for kinesthetic training. Knowledge gained helps surgeons learn skills from kinesthetic information in the condition where visual feedback is limited. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Proximal Versus Distal Control of Two-Joint Planar Reaching Movements in the Presence of Neuromuscular Noise

    PubMed Central

    Nguyen, Hung P.; Dingwell, Jonathan B.

    2012-01-01

    Determining how the human nervous system contends with neuro-motor noise is vital to understanding how humans achieve accurate goal-directed movements. Experimentally, people learning skilled tasks tend to reduce variability in distal joint movements more than in proximal joint movements. This suggests that they might be imposing greater control over distal joints than proximal joints. However, the reasons for this remain unclear, largely because it is not experimentally possible to directly manipulate either the noise or the control at each joint independently. Therefore, this study used a 2 degree-of-freedom torque driven arm model to determine how different combinations of noise and/or control independently applied at each joint affected the reaching accuracy and the total work required to make the movement. Signal-dependent noise was simultaneously and independently added to the shoulder and elbow torques to induce endpoint errors during planar reaching. Feedback control was then applied, independently and jointly, at each joint to reduce endpoint error due to the added neuromuscular noise. Movement direction and the inertia distribution along the arm were varied to quantify how these biomechanical variations affected the system performance. Endpoint error and total net work were computed as dependent measures. When each joint was independently subjected to noise in the absence of control, endpoint errors were more sensitive to distal (elbow) noise than to proximal (shoulder) noise for nearly all combinations of reaching direction and inertia ratio. The effects of distal noise on endpoint errors were more pronounced when inertia was distributed more toward the forearm. In contrast, the total net work decreased as mass was shifted to the upper arm for reaching movements in all directions. When noise was present at both joints and joint control was implemented, controlling the distal joint alone reduced endpoint errors more than controlling the proximal joint alone for nearly all combinations of reaching direction and inertia ratio. Applying control only at the distal joint was more effective at reducing endpoint errors when more of the mass was more proximally distributed. Likewise, controlling the distal joint alone required less total net work than controlling the proximal joint alone for nearly all combinations of reaching distance and inertia ratio. It is more efficient to reduce endpoint error and energetic cost by selectively applying control to reduce variability in the distal joint than the proximal joint. The reasons for this arise from the biomechanical configuration of the arm itself. PMID:22757504

  7. Proximal versus distal control of two-joint planar reaching movements in the presence of neuromuscular noise.

    PubMed

    Nguyen, Hung P; Dingwell, Jonathan B

    2012-06-01

    Determining how the human nervous system contends with neuro-motor noise is vital to understanding how humans achieve accurate goal-directed movements. Experimentally, people learning skilled tasks tend to reduce variability in distal joint movements more than in proximal joint movements. This suggests that they might be imposing greater control over distal joints than proximal joints. However, the reasons for this remain unclear, largely because it is not experimentally possible to directly manipulate either the noise or the control at each joint independently. Therefore, this study used a 2 degree-of-freedom torque driven arm model to determine how different combinations of noise and/or control independently applied at each joint affected the reaching accuracy and the total work required to make the movement. Signal-dependent noise was simultaneously and independently added to the shoulder and elbow torques to induce endpoint errors during planar reaching. Feedback control was then applied, independently and jointly, at each joint to reduce endpoint error due to the added neuromuscular noise. Movement direction and the inertia distribution along the arm were varied to quantify how these biomechanical variations affected the system performance. Endpoint error and total net work were computed as dependent measures. When each joint was independently subjected to noise in the absence of control, endpoint errors were more sensitive to distal (elbow) noise than to proximal (shoulder) noise for nearly all combinations of reaching direction and inertia ratio. The effects of distal noise on endpoint errors were more pronounced when inertia was distributed more toward the forearm. In contrast, the total net work decreased as mass was shifted to the upper arm for reaching movements in all directions. When noise was present at both joints and joint control was implemented, controlling the distal joint alone reduced endpoint errors more than controlling the proximal joint alone for nearly all combinations of reaching direction and inertia ratio. Applying control only at the distal joint was more effective at reducing endpoint errors when more of the mass was more proximally distributed. Likewise, controlling the distal joint alone required less total net work than controlling the proximal joint alone for nearly all combinations of reaching distance and inertia ratio. It is more efficient to reduce endpoint error and energetic cost by selectively applying control to reduce variability in the distal joint than the proximal joint. The reasons for this arise from the biomechanical configuration of the arm itself.

  8. Position-Dependent Cardiovascular Response and Time-Motion Analysis During Training Drills and Friendly Matches in Elite Male Basketball Players.

    PubMed

    Torres-Ronda, Lorena; Ric, Angel; Llabres-Torres, Ivan; de Las Heras, Bernat; Schelling I Del Alcazar, Xavi

    2016-01-01

    The purpose of this study was to measure differences in the cardiovascular workload (heart rate [HR]) and time-motion demands between positional groups, during numerous basketball training drills, and compare the results with in-game competition demands. A convenience sample of 14 top-level professional basketball players from the same club (Spanish First Division, ACB) participated in the study. A total of 146 basketball exercises per player (performed over an 8-week period in 32 team training sessions throughout the competitive season) and 7 friendly matches (FM) played during the preparatory phase were analyzed. The results reveal that HRavg and HRpeak were the highest in FM (158 ± 10; 198 ± 9 b · min(-1), respectively). Time-motion analysis showed 1v1 to be the most demanding drill (53 ± 8 and 46 ± 12 movements per minute for full and half court, respectively). During FM, players performed 33 ± 7 movements per minute. Positional differences exist for both HR and time-motion demands, ranging from moderate to very large for all basketball drills compared with FM. Constraints such as number of players, court size, work-to-rest ratios, and coach intervention are key factors influencing cardiovascular responses and time-motion demands during basketball training sessions. These results demonstrate that systematic monitoring of the physical demands and physiological responses during training and competition can inform and potentially improve coaching strategy, basketball-specific training drills, and ultimately, match performance.

  9. Learning to juggle: on the assembly of functional subsystems into a task-specific dynamical organization.

    PubMed

    Huys, R; Daffertshofer, A; Beek, P J

    2003-04-01

    We examined the development of task-specific couplings among functional subsystems (i.e., ball circulation, respiration, and body sway) when learning to juggle a three-ball cascade, with a focus on learning-induced changes in the coupling between ball movements and respiration and the coupling between ball movements and body sway. Six novices practiced to juggle three balls in cascade fashion for one hour per day for twenty days. On specific days (7 in total), ball movements, center-of-pressure (CoP) trajectories and respiration traces were measured simultaneously. Discrete, time-continuous and spectral analyses revealed that the spatio-temporal variability of the juggling patterns decreased with practice and that the degree to which the task constraints were satisfied increased gradually. No conclusive evidence was found for ball movement-respiration coupling. In contrast, clear-cut evidence was found for the presence of 1:3 and 2:3 frequency locking between the vertical component of the ball trajectories and both the anterior-posterior and the medio-lateral components of the CoP. Incidence and expression of these mode locks varied across individuals and altered in the course of learning. Gradual changes in locking strength, appearances and disappearances of mode locks, as well as abrupt transitions between coupled states were observed. These results indicate that dissimilar learning dynamics may arise in the functional embedding of subsystems into a task-specific organization and that motor equivalence is an inherent property of such emerging task-specific organizations.

  10. Age affects sleep microstructure more than sleep macrostructure.

    PubMed

    Schwarz, Johanna F A; Åkerstedt, Torbjörn; Lindberg, Eva; Gruber, Georg; Fischer, Håkan; Theorell-Haglöw, Jenny

    2017-06-01

    It is well known that the quantity and quality of physiological sleep changes across age. However, so far the effect of age on sleep microstructure has been mostly addressed in small samples. The current study examines the effect of age on several measures of sleep macro- and microstructure in 211 women (22-71 years old) of the 'Sleep and Health in Women' study for whom ambulatory polysomnography was registered. Older age was associated with significantly lower fast spindle (effect size f 2  = 0.32) and K-complex density (f 2  = 0.19) during N2 sleep, as well as slow-wave activity (log) in N3 sleep (f 2  = 0.21). Moreover, total sleep time (f 2  = 0.10), N3 sleep (min) (f 2  = 0.10), rapid eye movement sleep (min) (f 2  = 0.11) and sigma (log) (f 2  = 0.05) and slow-wave activity (log) during non-rapid eye movement sleep (f 2  = 0.09) were reduced, and N1 sleep (f 2  = 0.03) was increased in older age. No significant effects of age were observed on slow spindle density, rapid eye movement density and beta power (log) during non-rapid eye movement sleep. In conclusion, effect sizes indicate that traditional sleep stage scoring may underestimate age-related changes in sleep. © 2017 European Sleep Research Society.

  11. Intrinsic H+ ion mobility in the rabbit ventricular myocyte

    PubMed Central

    Vaughan-Jones, R D; Peercy, B E; Keener, J P; Spitzer, K W

    2002-01-01

    The intrinsic mobility of intracellular H+ ions was investigated by confocally imaging the longitudinal movement of acid inside rabbit ventricular myocytes loaded with the acetoxymethyl ester (AM) form of carboxy-seminaphthorhodafluor-1 (carboxy-SNARF-1). Acid was diffused into one end of the cell through a patch pipette filled with an isotonic KCl solution of pH 3.0. Intracellular H+ mobility was low, acid taking 20-30 s to move 40 μm down the cell. Inhibiting sarcolemmal Na+-H+ exchange with 1 mm amiloride had no effect on this time delay. Net Hi+ movement was associated with a longitudinal intracellular pH (pHi) gradient of up to 0.4 pH units. Hi+ movement could be modelled using the equations for diffusion, assuming an apparent diffusion coefficient for H+ ions (DappH) of 3.78 × 10−7 cm2 s−1, a value more than 300-fold lower than the H+ diffusion coefficient in a dilute, unbuffered solution. Measurement of the intracellular concentration of SNARF (≈400 μM) and its intracellular diffusion coefficient (0.9 × 10−7 cm2 s−1) indicated that the fluorophore itself exerted an insignificant effect (between 0.6 and 3.3 %) on the longitudinal movement of H+ equivalents inside the cell. The longitudinal movement of intracellular H+ is discussed in terms of a diffusive shuttling of H+ equivalents on high capacity mobile buffers which comprise about half (≈11 mm) of the total intrinsic buffering capacity within the myocyte (the other half being fixed buffer sites on low mobility, intracellular proteins). Intrinsic Hi+ mobility is consistent with an average diffusion coefficient for the intracellular mobile buffers (Dmob) of ≈9 × 10−7 cm2 s−1. PMID:12015426

  12. Simulating mechanisms for dispersal, production and stranding of small forage fish in temporary wetland habitats

    USGS Publications Warehouse

    Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Jopp, Fred; Donalson, Douglas D.

    2013-01-01

    Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.

  13. Doublet tracer tests to determine the contaminant flushing properties of a municipal solid waste landfill.

    PubMed

    Woodman, N D; Rees-White, T C; Beaven, R P; Stringfellow, A M; Barker, J A

    2017-08-01

    This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5m and 20m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as ~0.02 (~4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting. Copyright © 2017. Published by Elsevier B.V.

  14. Human care system for heart-rate and human-movement trajectory in home and its application to detect mental disease

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi

    2012-06-01

    This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.

  15. Autism and sleep disorders.

    PubMed

    Devnani, Preeti A; Hegde, Anaita U

    2015-01-01

    "Autism Spectrum Disorders" (ASDs) are neurodevelopment disorders and are characterized by persistent impairments in reciprocal social interaction and communication. Sleep problems in ASD, are a prominent feature that have an impact on social interaction, day to day life, academic achievement, and have been correlated with increased maternal stress and parental sleep disruption. Polysomnography studies of ASD children showed most of their abnormalities related to rapid eye movement (REM) sleep which included decreased quantity, increased undifferentiated sleep, immature organization of eye movements into discrete bursts, decreased time in bed, total sleep time, REM sleep latency, and increased proportion of stage 1 sleep. Implementation of nonpharmacotherapeutic measures such as bedtime routines and sleep-wise approach is the mainstay of behavioral management. Treatment strategies along with limited regulated pharmacotherapy can help improve the quality of life in ASD children and have a beneficial impact on the family. PubMed search was performed for English language articles from January 1995 to January 2015. Following key words: Autism spectrum disorder, sleep disorders and autism, REM sleep and autism, cognitive behavioral therapy, sleep-wise approach, melatonin and ASD were used. Only articles reporting primary data relevant to the above questions were included.

  16. Doublet tracer tests to determine the contaminant flushing properties of a municipal solid waste landfill

    NASA Astrophysics Data System (ADS)

    Woodman, N. D.; Rees-White, T. C.; Beaven, R. P.; Stringfellow, A. M.; Barker, J. A.

    2017-08-01

    This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5 m and 20 m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as 0.02 ( 4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting.

  17. [Treatment of fibromyalgia].

    PubMed

    Tabeeva, G R; Levin, Ia I; Korotkova, S B; Khanunov, I G

    1998-01-01

    The paper reports the results of therapy of 23 patients with fibromyalgia (FM). Tetracyclic antidepressant lerivon, was administered to group 1, nonsteroid antiinflammatory (NSAI) preparation nurofen to group 2 and phototherapy (exposure to bright white light) was used in group 3. Clinical effect in the form of a decrease of both the intensivity of algesic syndrome and autonomic manifestations as well as improvement of night sleep were clearly seen in group 1. Manifestations of both anxious and depressive disorders were less pronounced. Treatment by Nurofen resulted in slight decrease of intensivity of pains but didn't lead to pronounced alterations of emotional sphere. Administration of either Lerivon or Nurofen promoted the increase of pain thresholds (according to the data of nociceptive flexory reflex). The data obtained testified the necessity of complex therapy of FM patients including administration of antidepressants and analgetic drugs of NSAI group. Dynamic polysomnographic examination of patients from group 3 revealed the increase of total sleep duration, decrease of the time of falling asleep, the latent period of the phase of the fast sleep, activated movement index, intensivity of movements and the time of being awake in the sleep. The conclusion was made that it was worth while to use phototherapy as alternative, nonmedicine method of phothotherapy.

  18. Bilingual lexical access in context: evidence from eye movements during reading.

    PubMed

    Libben, Maya R; Titone, Debra A

    2009-03-01

    Current models of bilingualism (e.g., BIA+) posit that lexical access during reading is not language selective. However, much of this research is based on the comprehension of words in isolation. The authors investigated whether nonselective access occurs for words embedded in biased sentence contexts (e.g., A. I. Schwartz & J. F. Kroll, 2006). Eye movements were recorded as French-English bilinguals read English sentences containing cognates (e.g., piano), interlingual homographs (e.g., coin, meaning corner in French), or matched control words. Sentences provided a low or high semantic constraint for target-language meanings. Both early-stage comprehension measures (e.g., first fixation duration, gaze duration, and skipping) and late-stage comprehension measures (e.g., go-past time and total reading time) showed significant cognate facilitation and interlingual homograph interference for low-constraint sentences. For high-constraint sentences, however, only early-stage comprehension measures were consistent with nonselective access. There was no evidence of cognate facilitation or interlingual homograph interference for late-stage comprehension measures. Thus, nonselective bilingual lexical access at early stages of comprehension is rapidly resolved in semantically biased contexts at later stages of comprehension. (c) 2009 APA, all rights reserved

  19. The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.).

    PubMed

    Zajączkowska, U; Barlow, P W

    2017-07-01

    Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. A teaching videotape for the assessment of essential tremor.

    PubMed

    Louis, E D; Barnes, L; Wendt, K J; Ford, B; Sangiorgio, M; Tabbal, S; Lewis, L; Kaufmann, P; Moskowitz, C; Comella, C L; Goetz, C C; Lang, A E

    2001-01-01

    Teaching videotapes, developed to aid in the evaluation of several movement disorders, have not been used in essential tremor research. As part of the Washington Heights-Inwood Genetic Study of Essential Tremor (WHIGET), we developed a reliable and valid tremor rating scale. Because this rating scale is currently being used by investigators at other centers, we developed a teaching videotape to aid in the consistent application of this scale. To develop a teaching videotape for a revised version of the WHIGET Tremor Rating Scale and to assess the interrater agreement among raters who used this videotape to rate tremor. The revised WHIGET Tremor Rating Scale was used to rate action tremor from 0 to 4 during six tests: arm extension, pouring, drinking, using a spoon, finger-to-nose, and drawing spirals. A 22-minute teaching videotape was developed that includes a 29-item educational section and a self-assessment section consisting of 20 examples of tremor ratings chosen by the two WHIGET study neurologists. Eight raters, including senior movement disorder specialists, movement disorder fellows, general neurologists, and a movement disorder nurse practitioner, independently viewed the videotape and rated tremor during the self-assessment section. Interobserver reliability was assessed with weighted kappa statistics (kappa(w)). Eight raters each rated 20 items (160 ratings total). Total kappa(w) was 0.97 (nearly perfect agreement). Interrater reliability was as follows: kappa(w) = 0.99 (movement disorder specialists), kappa(w) = 0.98 (movement disorder fellows), and kappa(w) = 0.97 (general neurologists); all kappa(w) were nearly perfect. This teaching videotape may be used to improve the uniform application of the revised WHIGET Tremor Rating Scale by raters with various levels of experience in movement disorders.

  1. Hand reach star excursion balance test: An alternative test for dynamic postural control and functional mobility.

    PubMed

    Eriksrud, Ola; Federolf, Peter; Anderson, Patrick; Cabri, Jan

    2018-01-01

    Tests of dynamic postural control eliciting full-body three-dimensional joint movements in a systematic manner are scarce. The well-established star excursion balance test (SEBT) elicits primarily three-dimensional lower extremity joint movements with minimal trunk and no upper extremity joint movements. In response to these shortcomings we created the hand reach star excursion balance test (HSEBT) based on the SEBT reach directions. The aims of the current study were to 1) compare HSEBT and SEBT measurements, 2) compare joint movements elicited by the HSEBT to both SEBT joint movements and normative range of motion values published in the literature. Ten SEBT and HSEBT reaches for each foot were obtained while capturing full-body kinematics in twenty recreationally active healthy male subjects. HSEBT and SEBT areas and composite scores (sum of reaches) for total, anterior and posterior subsections and individual reaches were correlated. Total reach score comparisons showed fair to moderate correlations (r = .393 to .606), while anterior and posterior subsections comparisons had fair to good correlations (r = .269 to .823). Individual reach comparisons had no to good correlations (r = -.182 to .822) where lateral and posterior reaches demonstrated the lowest correlations (r = -.182 to .510). The HSEBT elicited more and significantly greater joint movements than the SEBT, except for hip external rotation, knee extension and plantarflexion. Comparisons to normative range of motion values showed that 3 of 18 for the SEBT and 8 of 22 joint movements for the HSEBT were within normative values. The findings suggest that the HSEBT can be used for the assessment of dynamic postural control and is particularly suitable for examining full-body functional mobility.

  2. August Wilson's Presentation of Interracial Movements in 1960s

    ERIC Educational Resources Information Center

    Li, Yanghua

    2018-01-01

    August Wilson's "Two Trains Running" tells the life predicaments of the patrons at Memphis' restaurant in the 1960s. Though Wilson avoids addressing the interracial conflicts and movements on stage to eschew protesting and propaganda, they as social background could not be totally ignored in the play. The paper analyses Wilson's use of…

  3. Seasonal movement of brown trout in a southern Appalachian river

    Treesearch

    Kyle H. Burrell; J. Jeffery Isely; David B. Bunnell; David H. Van Lear; C. Andrew Dolloff

    2000-01-01

    Radio telemetry was used to evaluate the seasonal movement, activity level, and home range size of adult brown trout Salmo trutta in the Chattooga River watershed, one of the southernmost coldwater stream systems in the United States. In all, 27 adult brown trout (262-452 mm total length) were successfully monitored from 16 November 1995 to 15...

  4. Motor Skill Interventions to Improve Fundamental Movement Skills of Preschoolers with Developmental Delay

    ERIC Educational Resources Information Center

    Kirk, Megan A.; Rhodes, Ryan E.

    2011-01-01

    Preschoolers with developmental delay (DD) are at risk for poor fundamental movement skills (FMS), but a paucity of early FMS interventions exist. The purpose of this review was to critically appraise the existing interventions to establish direction for future trials targeting preschoolers with DD. A total of 11 studies met the inclusion…

  5. Measuring sperm movement within the female reproductive tract using Fourier analysis.

    PubMed

    Nicovich, Philip R; Macartney, Erin L; Whan, Renee M; Crean, Angela J

    2015-02-01

    The adaptive significance of variation in sperm phenotype is still largely unknown, in part due to the difficulties of observing and measuring sperm movement in its natural, selective environment (i.e., within the female reproductive tract). Computer-assisted sperm analysis systems allow objective and accurate measurement of sperm velocity, but rely on being able to track individual sperm, and are therefore unable to measure sperm movement in species where sperm move in trains or bundles. Here we describe a newly developed computational method for measuring sperm movement using Fourier analysis to estimate sperm tail beat frequency. High-speed time-lapse videos of sperm movement within the female tract of the neriid fly Telostylinus angusticollis were recorded, and a map of beat frequencies generated by converting the periodic signal of an intensity versus time trace at each pixel to the frequency domain using the Fourier transform. We were able to detect small decreases in sperm tail beat frequency over time, indicating the method is sensitive enough to identify consistent differences in sperm movement. Fourier analysis can be applied to a wide range of species and contexts, and should therefore facilitate novel exploration of the causes and consequences of variation in sperm movement.

  6. A new real-time visual assessment method for faulty movement patterns during a jump-landing task.

    PubMed

    Rabin, Alon; Levi, Ran; Abramowitz, Shai; Kozol, Zvi

    2016-07-01

    Determine the interrater reliability of a new real-time assessment of faulty movement patterns during a jump-landing task. Interrater reliability study. Human movement laboratory. 50 healthy females. Assessment included 6 items which were evaluated from a front and a side view. Two Physical Therapy students used a 9-point scale (0-8) to independently rate the quality of movement as good (0-2), moderate (3-5), or poor (6-8). Interrater reliability was expressed by percent agreement and weighted kappa. One examiner rated the quality of movement of 6 subjects as good, 34 subjects as moderate, and 10 subjects as poor. The second examiner rated the quality of movement of 12 subjects as good, 23 subjects as moderate, and 15 subjects as poor. Percent agreement and weighted kappa (95% confidence interval) were 78% and 0.68 (0.51, 0.85), respectively. A new real-time assessment of faulty movement patterns during jump-landing demonstrated adequate interrater reliability. Further study is warranted to validate this method against a motion analysis system, as well as to establish its predictive validity for injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modeling and performance analysis of an improved movement-based location management scheme for packet-switched mobile communication systems.

    PubMed

    Chung, Yun Won; Kwon, Jae Kyun; Park, Suwon

    2014-01-01

    One of the key technologies to support mobility of mobile station (MS) in mobile communication systems is location management which consists of location update and paging. In this paper, an improved movement-based location management scheme with two movement thresholds is proposed, considering bursty data traffic characteristics of packet-switched (PS) services. The analytical modeling for location update and paging signaling loads of the proposed scheme is developed thoroughly and the performance of the proposed scheme is compared with that of the conventional scheme. We show that the proposed scheme outperforms the conventional scheme in terms of total signaling load with an appropriate selection of movement thresholds.

  8. Movement of reservoir-stocked riverine fish between tailwaters and rivers

    USGS Publications Warehouse

    Spoelstra, J.A.; Stein, R.A.; Royle, J. Andrew; Marschall, E.A.

    2008-01-01

    The movement of fish from onstream impoundments into connected streams and rivers has traditionally been overlooked in fish stocking decisions but is critical to the ultimate impact of stocking riverine species into reservoirs. Hybrid saugeyes (female walleye Sander vitreus x male sauger S. canadensis) stocked into Deer Creek Reservoir, Ohio, readily move from the reservoir to the tailwater below. Downstream movement of these saugeyes from the tailwater may have consequences for native prey species and parental stocks downstream. We used fixed-station radiotelemetry to quantify the temporal movement patterns of 203 reservoir-stocked saugeyes from the tailwater of the reservoir, the stream flowing from the tailwater, and the river into which the stream flowed. From October 1998 through July 2000, most (75%) saugeyes never left the tailwater, and those that left returned 75% of the time. Overall, saugeyes spent 90% of their time in the tailwater, 7-8% of their time downstream in small streams, and 2-3% of their time farther downstream in the Scioto River (45 km downstream). No radio-tagged saugeyes moved to the Ohio River (155 km downstream). The probability of downstream movement generally increased with increasing flow and when dissolved oxygen dropped to lethal levels in summer. The probability of movement was highest in winter and spring, when it was probably related to spawning, and low in summer (except when dissolved oxygen was low) and fall. The patterns of movement seemed to reflect the relative suitability of tailwater over stream habitat. The predominant use of and return to tailwater habitat after downstream movement limited overall stream and river residence time. Although the daily movement probability for an individual was low, when we apply these rates to all of the stocked saugeyes in the Ohio River drainage, we cannot safely conclude that only small numbers move from reservoir tailwaters to downstream river systems. We recommend that managers refrain from stocking systems for which there are concerns about native species in connected drainages.

  9. Context effects on smooth pursuit and manual interception of a disappearing target.

    PubMed

    Kreyenmeier, Philipp; Fooken, Jolande; Spering, Miriam

    2017-07-01

    In our natural environment, we interact with moving objects that are surrounded by richly textured, dynamic visual contexts. Yet most laboratory studies on vision and movement show visual objects in front of uniform gray backgrounds. Context effects on eye movements have been widely studied, but it is less well known how visual contexts affect hand movements. Here we ask whether eye and hand movements integrate motion signals from target and context similarly or differently, and whether context effects on eye and hand change over time. We developed a track-intercept task requiring participants to track the initial launch of a moving object ("ball") with smooth pursuit eye movements. The ball disappeared after a brief presentation, and participants had to intercept it in a designated "hit zone." In two experiments ( n = 18 human observers each), the ball was shown in front of a uniform or a textured background that either was stationary or moved along with the target. Eye and hand movement latencies and speeds were similarly affected by the visual context, but eye and hand interception (eye position at time of interception, and hand interception timing error) did not differ significantly between context conditions. Eye and hand interception timing errors were strongly correlated on a trial-by-trial basis across all context conditions, highlighting the close relation between these responses in manual interception tasks. Our results indicate that visual contexts similarly affect eye and hand movements but that these effects may be short-lasting, affecting movement trajectories more than movement end points. NEW & NOTEWORTHY In a novel track-intercept paradigm, human observers tracked a briefly shown object moving across a textured, dynamic context and intercepted it with their finger after it had disappeared. Context motion significantly affected eye and hand movement latency and speed, but not interception accuracy; eye and hand position at interception were correlated on a trial-by-trial basis. Visual context effects may be short-lasting, affecting movement trajectories more than movement end points. Copyright © 2017 the American Physiological Society.

  10. Real-time 3D ultrasound imaging of infant tongue movements during breast-feeding.

    PubMed

    Burton, Pat; Deng, Jing; McDonald, Daren; Fewtrell, Mary S

    2013-09-01

    Whether infants use suction or peristaltic tongue movements or a combination to extract milk during breast-feeding is controversial. The aims of this pilot study were 1] to evaluate the feasibility of using 3D ultrasound scanning to visualise infant tongue movements; and 2] to ascertain whether peristaltic tongue movements could be demonstrated during breast-feeding. 15 healthy term infants, aged 2 weeks to 4 months were scanned during breast-feeding, using a real-time 3D ultrasound system, with a 7 MHz transducer placed sub-mentally. 1] The method proved feasible, with 72% of bi-plane datasets and 56% of real-time 3D datasets providing adequate coverage [>75%] of the infant tongue. 2] Peristaltic tongue movement was observed in 13 of 15 infants [83%] from real-time or reformatted truly mid-sagittal views under 3D guidance. This is the first study to demonstrate the feasibility of using 3D ultrasound to visualise infant tongue movements during breast-feeding. Peristaltic infant tongue movement was present in the majority of infants when the image plane was truly mid-sagittal but was not apparent if the image was slightly off the mid-sagittal plane. This should be considered in studies investigating the relative importance of vacuum and peristalsis for milk transfer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography.

    PubMed

    Tal, Asher; Shinar, Zvika; Shaki, David; Codish, Shlomi; Goldbart, Aviv

    2017-03-15

    To validate a contact-free system designed to achieve maximal comfort during long-term sleep monitoring, together with high monitoring accuracy. We used a contact-free monitoring system (EarlySense, Ltd., Israel), comprising an under-the-mattress piezoelectric sensor and a smartphone application, to collect vital signs and analyze sleep. Heart rate (HR), respiratory rate (RR), body movement, and calculated sleep-related parameters from the EarlySense (ES) sensor were compared to data simultaneously generated by the gold standard, polysomnography (PSG). Subjects in the sleep laboratory underwent overnight technician-attended full PSG, whereas subjects at home were recorded for 1 to 3 nights with portable partial PSG devices. Data were compared epoch by epoch. A total of 63 subjects (85 nights) were recorded under a variety of sleep conditions. Compared to PSG, the contact-free system showed similar values for average total sleep time (TST), % wake, % rapid eye movement, and % non-rapid eye movement sleep, with 96.1% and 93.3% accuracy of continuous measurement of HR and RR, respectively. We found a linear correlation between TST measured by the sensor and TST determined by PSG, with a coefficient of 0.98 (R = 0.87). Epoch-by-epoch comparison with PSG in the sleep laboratory setting revealed that the system showed sleep detection sensitivity, specificity, and accuracy of 92.5%, 80.4%, and 90.5%, respectively. TST estimates with the contact-free sleep monitoring system were closely correlated with the gold-standard reference. This system shows good sleep staging capability with improved performance over accelerometer-based apps, and collects additional physiological information on heart rate and respiratory rate. © 2017 American Academy of Sleep Medicine

  12. Validation of a motor activity system by a robotically controlled vehicle and using standard reference compounds.

    PubMed

    Patterson, John P; Markgraf, Carrie G; Cirino, Maria; Bass, Alan S

    2005-01-01

    A series of experiments were undertaken to evaluate the accuracy, precision, specificity, and sensitivity of an automated, infrared photo beam-based open field motor activity system, the MotorMonitor v. 4.01, Hamilton-Kinder, LLC, for use in a good laboratory practices (GLP) Safety Pharmacology laboratory. This evaluation consisted of two phases: (1) system validation, employing known inputs using the EM-100 Controller Photo Beam Validation System, a robotically controlled vehicle representing a rodent and (2) biologic validation, employing groups of rats treated with the standard pharmacologic agents diazepam or D-amphetamine. The MotorMonitor's parameters that described the open-field activity of a subject were: basic movements, total distance, fine movements, x/y horizontal ambulations, rearing, and total rest time. These measurements were evaluated over a number of zones within each enclosure. System validation with the EM-100 Controller Photo Beam Validation System showed that all the parameters accurately and precisely measured what they were intended to measure, with the exception of fine movements and x/y ambulations. Biologic validation using the central nervous system depressant diazepam at 1, 2, or 5 mg/kg, i.p. produced the expected dose-dependent reduction in rat motor activity. In contrast, the central nervous system stimulant D-amphetamine produced the expected increases in rat motor activity at 0.1 and 1 mg/kg, i.p, demonstrating the specificity and sensitivity of the system. Taken together, these studies of the accuracy, precision, specificity, and sensitivity show the importance of both system and biologic validation in the evaluation of an automated open field motor activity system for use in a GLP compliant laboratory.

  13. Statistical Analysis of Sport Movement Observations: the Case of Orienteering

    NASA Astrophysics Data System (ADS)

    Amouzandeh, K.; Karimipour, F.

    2017-09-01

    Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.

  14. Dissociating motivational direction and affective valence: specific emotions alter central motor processes.

    PubMed

    Coombes, Stephen A; Cauraugh, James H; Janelle, Christopher M

    2007-11-01

    We aimed to clarify the relation between affective valence and motivational direction by specifying how central and peripheral components of extension movements are altered according to specific unpleasant affective states. As predicted, premotor reaction time was quicker for extension movements initiated during exposure to attack than for extension movements initiated during exposure to all other valence categories (mutilation, erotic couples, opposite-sex nudes, neutral humans, household objects, blank). Exposure to erotic couples and mutilations yielded greater peak force than exposure to images of attack, neutral humans, and household objects. Finally, motor reaction time and peak electromyographic amplitude were not altered by valence. These findings indicate that unpleasant states do not unilaterally prime withdrawal movements, and that the quick execution of extension movements during exposure to threatening images is due to rapid premotor, rather than motor, reaction time. Collectively, our findings support the call for dissociating motivational direction and affective valence.

  15. Riparian litter inputs to streams in the central Oregon Coast Range

    USGS Publications Warehouse

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  16. Changes in Articulator Movement Variability during Phonemic Development: A Longitudinal Study

    ERIC Educational Resources Information Center

    Grigos, Maria I.

    2009-01-01

    Purpose: The present study explored articulator movement variability during voicing contrast acquisition. The purpose was to examine whether oral articulator movement trajectories associated with the production of voiced/voiceless bilabial phonemes in children became less variable over time. Method: Jaw, lower lip, and upper lip movements were…

  17. Medications influencing central cholinergic pathways affect fixation stability, saccadic response time and associated eye movement dynamics during a temporally-cued visual reaction time task.

    PubMed

    Naicker, Preshanta; Anoopkumar-Dukie, Shailendra; Grant, Gary D; Modenese, Luca; Kavanagh, Justin J

    2017-02-01

    Anticholinergic medications largely exert their effects due to actions on the muscarinic receptor, which mediates the functions of acetylcholine in the peripheral and central nervous systems. In the central nervous system, acetylcholine plays an important role in the modulation of movement. This study investigated the effects of over-the-counter medications with varying degrees of central anticholinergic properties on fixation stability, saccadic response time and the dynamics associated with this eye movement during a temporally-cued visual reaction time task, in order to establish the significance of central cholinergic pathways in influencing eye movements during reaction time tasks. Twenty-two participants were recruited into the placebo-controlled, human double-blind, four-way crossover investigation. Eye tracking technology recorded eye movements while participants reacted to visual stimuli following temporally informative and uninformative cues. The task was performed pre-ingestion as well as 0.5 and 2 h post-ingestion of promethazine hydrochloride (strong centrally acting anticholinergic), hyoscine hydrobromide (moderate centrally acting anticholinergic), hyoscine butylbromide (anticholinergic devoid of central properties) and a placebo. Promethazine decreased fixation stability during the reaction time task. In addition, promethazine was the only drug to increase saccadic response time during temporally informative and uninformative cued trials, whereby effects on response time were more pronounced following temporally informative cues. Promethazine also decreased saccadic amplitude and increased saccadic duration during the temporally-cued reaction time task. Collectively, the results of the study highlight the significant role that central cholinergic pathways play in the control of eye movements during tasks that involve stimulus identification and motor responses following temporal cues.

  18. Overwintering strategies of migratory birds: a novel approach for estimating seasonal movement patterns of residents and transients

    USGS Publications Warehouse

    Ruiz-Gutierrez, Viviana; Kendall, William L.; Saracco, James F.; White, Gary C.

    2016-01-01

    Our understanding of movement patterns in wildlife populations has played an important role in current ecological knowledge and can inform landscape conservation decisions. Direct measures of movement can be obtained using marked individuals, but this requires tracking individuals across a landscape or multiple sites.We demonstrate how movements can be estimated indirectly using single-site, capture–mark–recapture (CMR) data with a multi-state open robust design with state uncertainty model (MSORD-SU). We treat residence and transience as two phenotypic states of overwintering migrants and use time- and state-dependent probabilities of site entry and persistence as indirect measures of movement. We applied the MSORD-SU to data on eight species of overwintering Neotropical birds collected in 14 countries between 2002 and 2011. In addition to entry and persistence probabilities, we estimated the proportions of residents at a study site and mean residence times.We identified overwintering movement patterns and residence times that contrasted with prior categorizations of territoriality. Most species showed an evidence of residents entering sites at multiple time intervals, with transients tending to enter between peak resident movement times. Persistence and the proportion of residents varied by latitude, but were not always positively correlated for a given species.Synthesis and applications. Our results suggest that migratory songbirds commonly move among habitats during the overwintering period. Substantial proportions of populations appear to be comprised of transient individuals, and residents tend to persist at specific sites for relatively short periods of time. This information on persistence and movement patterns should be explored for specific habitats to guide landscape management on the wintering grounds, such as determining which habitats are conserved or restored as part of certification programmes of tropical agroforestry crops. We suggest that research and conservation efforts on Neotropical migrant songbirds focus on identifying landscape configurations and regional habitat networks that support these diverse overwintering strategies to secure full life cycle conservation.

  19. Quantification of Organ Motion During Chemoradiotherapy of Rectal Cancer Using Cone-Beam Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, Irene; Hawkins, Maria; Hansen, Vibeke

    2011-11-15

    Purpose: There has been no previously published data related to the quantification of rectal motion using cone-beam computed tomography (CBCT) during standard conformal long-course chemoradiotherapy. The purpose of the present study was to quantify the interfractional changes in rectal movement and dimensions and rectal and bladder volume using CBCT and to quantify the bony anatomy displacements to calculate the margins required to account for systematic ({Sigma}) and random ({sigma}) setup errors. Methods and Materials: CBCT images were acquired from 16 patients on the first 3 days of treatment and weekly thereafter. The rectum and bladder were outlined on all CBCTmore » images. The interfraction movement was measured using fixed bony landmarks as references to define the rectal location (upper, mid, and low), The maximal rectal diameter at the three rectal locations was also measured. The bony anatomy displacements were quantified, allowing the calculation of systematic ({Sigma}) and random ({sigma}) setup errors. Results: A total of 123 CBCT data sets were analyzed. Analysis of variance for standard deviation from planning scans showed that rectal anterior and lateral wall movement differed significantly by rectal location. Anterior and lateral rectal wall movements were larger in the mid and upper rectum compared with the low rectum. The posterior rectal wall movement did not change significantly with the rectal location. The rectal diameter changed more in the mid and upper than in the low rectum. No consistent relationship was found between the rectal and bladder volume and time, nor was a significant relationship found between the rectal volume and bladder volume. Conclusions: In the present study, the anterior and lateral rectal movement and rectal diameter were found to change most in the upper rectum, followed by the mid rectum, with the smallest changes seen in the low rectum. Asymmetric margins are warranted to ensure phase 2 coverage.« less

  20. Long Distance Movements and Disjunct Spatial Use of Harbor Seals (Phoca vitulina) in the Inland Waters of the Pacific Northwest

    PubMed Central

    Peterson, Sarah H.; Lance, Monique M.; Jeffries, Steven J.; Acevedo-Gutiérrez, Alejandro

    2012-01-01

    Background Worldwide, adult harbor seals (Phoca vitulina) typically limit their movements and activity to <50 km from their primary haul-out site. As a result, the ecological impact of harbor seals is viewed as limited to relatively small spatial scales. Harbor seals in the Pacific Northwest are believed to remain <30 km from their primary haul-out site, one of several contributing factors to the current stock designation. However, movement patterns within the region are not well understood because previous studies have used radio-telemetry, which has range limitations. Our objective was to use satellite-telemetry to determine the regional spatial scale of movements. Methodology/Principal Findings Satellite tags were deployed on 20 adult seals (n=16 males and 4 females) from two rocky reefs and a mudflat-bay during April–May 2007. Standard filtering algorithms were used to remove outliers, resulting in an average (± SD) of 693 (±377) locations per seal over 110 (±32) days. A particle filter was implemented to interpolate locations temporally and decrease erroneous locations on land. Minimum over-water distances were calculated between filtered locations and each seal's capture site to show movement of seals over time relative to their capture site, and we estimated utilization distributions from kernel density analysis to reflect spatial use. Eight males moved >100 km from their capture site at least once, two of which traveled round trip to and from the Pacific coast, a total distance >400 km. Disjunct spatial use patterns observed provide new insight into general harbor seal behavior. Conclusions/Significance Long-distance movements and disjunct spatial use of adult harbor seals have not been reported for the study region and are rare worldwide in such a large proportion of tagged individuals. Thus, the ecological influence of individual seals may reach farther than previously assumed. PMID:22723925

  1. Effect of shoe insert construction on foot and leg movement.

    PubMed

    Nigg, B M; Khan, A; Fisher, V; Stefanyshyn, D

    1998-04-01

    The purpose of this study was to quantify changes in foot eversion and tibial rotation during running resulting from systematic changes of material composition of five shoe inserts of the same shape. Tests were performed with 12 subjects. The inserts had a bilayer design using two different materials at the top and bottom of the insert. The functional kinematic variables examined in this study were the foot-leg in-eversion angle, beta, and the leg-foot tibial rotation, rho. Additionally, the subject characteristics of arch height, relative arch deformation, and active range of motion were quantified. The statistical analysis used was a two way repeated measures MANOVA (within trials and inserts). The average group changes resulting from the studied inserts in total shoe eversion, total foot eversion, and total internal tibial rotation were typically smaller than 1 degree when compared with the no-insert condition and were statistically not significant. The measured ranges of total foot eversion for all subjects were smallest for the softest and about twice as large for the hardest insert construction. Thus, the soft insert construction was more restrictive, forcing all feet into a similar movement pattern, whereas the harder combinations allowed for more individual variation of foot and leg movement and did not force the foot into a preset movement pattern. The individual results showed substantial differences between subjects and a trend: Subjects who generally showed a reduction of tibial rotation with all tested inserts typically had a flexible foot. However, subjects who generally showed an increase of tibial rotation typically had a stiff foot. The results of this study suggest that subject specific factors such as static, dynamic, and neuro-physiological characteristics of foot and leg are important to match specific feet and shoe inserts optimally.

  2. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation.

    PubMed

    Lee, Michael L; Katsuyama, Ângela M; Duge, Leanne S; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J; de la Iglesia, Horacio O

    2016-11-01

    Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. © 2016 Associated Professional Sleep Societies, LLC.

  3. Ionospheric total electron content seismo-perturbation after Japan's March 11, 2011, M=9.0 Tohoku earthquake under a geomagnetic storm; a nonlinear principal component analysis

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Woei

    2012-10-01

    Nonlinear principal component analysis (NLPCA) is implemented to analyze the spatial pattern of total electron content (TEC) anomalies 3 hours after Japan's Tohoku earthquake that occurred at 05:46:23 on 11 March, 2011 (UTC) ( M w =9). A geomagnetic storm was in progress at the time of the earthquake. NLPCA and TEC data processing were conducted on the global ionospheric map (GIM) for the time between 08:30 to 09:30 UTC, about 3 hours after this devastating earthquake and ensuing tsunami. Analysis results show stark earthquake-associated TEC anomalies that are widespread, and appear to have been induced by two acoustic gravity waves due to strong shaking (vertical acoustic wave) and the generation of the tsunami (horizontal Rayleigh mode gravity wave). The TEC anomalies roughly fit the initial mainshock and movement of the tsunami. Observation of the earthquake-associated TEC anomalies does not appear to be affected by a contemporaneous geomagnetic storm.

  4. Effect of hand paddles and parachute on butterfly coordination.

    PubMed

    Telles, Thiago; Barroso, Renato; Barbosa, Augusto Carvalho; Salgueiro, Diego Fortes de Souza; Colantonio, Emilson; Andries Júnior, Orival

    2015-01-01

    This study investigated the effects of hand paddles, parachute and hand paddles plus parachute on the inter-limb coordination of butterfly swimming. Thirteen male swimmers were evaluated in four random maximal intensity conditions: without equipment, with hand paddles, with parachute and with hand paddles + parachute. Arm and leg stroke phases were identified by 2D video analysis to calculate the total time gap (T1: time between hands' entry in the water and high break-even point of the first undulation; T2: time between the beginning of the hand's backward movement and low break-even point of the first undulation; T3: time between the hand's arrival in a vertical plane to the shoulders and high break-even point of the second undulation; T4: time between the hand's release from the water and low break-even point of the second undulation). The swimming velocity was reduced and T1, T2 and T3 increased in parachute and hand paddles + parachute. No changes were observed in T4. Total time gap decreased in parachute and hand paddles + parachute. It is concluded that hand paddles do not influence the arm-to-leg coordination in butterfly, while parachute and hand paddles + parachute do change it, providing a greater propulsive continuity.

  5. The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle

    PubMed Central

    1991-01-01

    Asymmetric membrane currents and fluxes of Ca2+ release were determined in skeletal muscle fibers voltage clamped in a Vaseline-gap chamber. The conditioning pulse protocol 1 for suppressing Ca2+ release and the "hump" component of charge movement current (I gamma), described in the first paper of this series, was applied at different test pulse voltages. The amplitude of the current suppressed during the ON transient reached a maximum at slightly suprathreshold test voltages (- 50 to -40 mV) and decayed at higher voltages. The component of charge movement current suppressed by 20 microM tetracaine also went through a maximum at low pulse voltages. This anomalous voltage dependence is thus a property of I gamma, defined by either the conditioning protocol or the tetracaine effect. A negative (inward-going) phase was often observed in the asymmetric current during the ON of depolarizing pulses. This inward phase was shown to be an intramembranous charge movement based on (a) its presence in the records of total membrane current, (b) its voltage dependence, with a maximum at slightly suprathreshold voltages, (c) its association with a "hump" in the asymmetric current, (d) its inhibition by interventions that reduce the "hump", (e) equality of ON and OFF areas in the records of asymmetric current presenting this inward phase, and (f) its kinetic relationship with the time derivative of Ca release flux. The nonmonotonic voltage dependence of the amplitude of the hump and the possibility of an inward phase of intramembranous charge movement are used as the main criteria in the quantitative testing of a specific model. According to this model, released Ca2+ binds to negatively charged sites on the myoplasmic face of the voltage sensor and increases the local transmembrane potential, thus driving additional charge movement (the hump). This model successfully predicts the anomalous voltage dependence and all the kinetic properties of I gamma described in the previous papers. It also accounts for the inward phase in total asymmetric current and in the current suppressed by protocol 1. According to this model, I gamma accompanies activating transitions at the same set of voltage sensors as I beta. Therefore it should open additional release channels, which in turn should cause more I gamma, providing a positive feedback mechanism in the regulation of calcium release. PMID:1650812

  6. Applied Research on Laparoscopic Simulator in the Resident Surgical Laparoscopic Operation Technical Training.

    PubMed

    Fu, Shangxi; Liu, Xiao; Zhou, Li; Zhou, Meisheng; Wang, Liming

    2017-08-01

    The purpose of this study was to estimate the effects of surgical laparoscopic operation course on laparoscopic operation skills after the simulated training for medical students with relatively objective results via data gained before and after the practice course of laparoscopic simulator of the resident standardized trainees. Experiment 1: 20 resident standardized trainees with no experience in laparoscopic surgery were included in the inexperienced group and finished simulated cholecystectomy according to simulator videos. Simulator data was collected (total operation time, path length, average speed of instrument movement, movement efficiency, number of perforations, the time cautery is applied without appropriate contact with adhesions, number of serious complications). Ten attending doctors were included in the experienced group and conducted the operation of simulated cholecystectomy directly. Data was collected with simulator. Data of two groups was compared. Experiment 2: Participants in inexperienced group were assigned to basic group (receiving 8 items of basic operation training) and special group (receiving 8 items of basic operation training and 4 items of specialized training), and 10 persons for each group. They received training course designed by us respectively. After training level had reached the expected target, simulated cholecystectomy was performed, and data was collected. Experimental data between basic group and special group was compared and then data between special group and experienced group was compared. Results of experiment 1 showed that there is significant difference between data in inexperienced group in which participants operated simulated cholecystectomy only according to instructors' teaching and operation video and data in experienced group. Result of experiment 2 suggested that, total operation time, number of perforations, number of serious complications, number of non-cauterized bleeding and the time cautery is applied without appropriate contact with adhesions in special group were all superior to those in basic group. There was no statistical difference on other data between special group and basic group. Comparing special group with experienced group, data of total operation time and the time cautery is applied without appropriate contact with adhesions in experienced group was superior to that in special group. There was no statistical difference on other data between special group and experienced group. Laparoscopic simulators are effective for surgical skills training. Basic courses could mainly improve operator's hand-eye coordination and perception of sense of the insertion depth for instruments. Specialized training courses could not only improve operator's familiarity with surgeries, but also reduce operation time and risk, and improve safety.

  7. Timing Processes Are Correlated when Tasks Share a Salient Event

    ERIC Educational Resources Information Center

    Zelaznik, Howard N.; Rosenbaum, David A.

    2010-01-01

    Event timing is manifested when participants make discrete movements such as repeatedly tapping a key. Emergent timing is manifested when participants make continuous movements such as repeatedly drawing a circle. Here we pursued the possibility that providing salient perceptual events to mark the completion of time intervals could allow circle…

  8. The timing of control signals underlying fast point-to-point arm movements.

    PubMed

    Ghafouri, M; Feldman, A G

    2001-04-01

    It is known that proprioceptive feedback induces muscle activation when the facilitation of appropriate motoneurons exceeds their threshold. In the suprathreshold range, the muscle-reflex system produces torques depending on the position and velocity of the joint segment(s) that the muscle spans. The static component of the torque-position relationship is referred to as the invariant characteristic (IC). According to the equilibrium-point (EP) hypothesis, control systems produce movements by changing the activation thresholds and thus shifting the IC of the appropriate muscles in joint space. This control process upsets the balance between muscle and external torques at the initial limb configuration and, to regain the balance, the limb is forced to establish a new configuration or, if the movement is prevented, a new level of static torques. Taken together, the joint angles and the muscle torques generated at an equilibrium configuration define a single variable called the EP. Thus by shifting the IC, control systems reset the EP. Muscle activation and movement emerge following the EP resetting because of the natural physical tendency of the system to reach equilibrium. Empirical and simulation studies support the notion that the control IC shifts and the resulting EP shifts underlying fast point-to-point arm movements are gradual rather than step-like. However, controversies exist about the duration of these shifts. Some studies suggest that the IC shifts cease with the movement offset. Other studies propose that the IC shifts end early in comparison to the movement duration (approximately, at peak velocity). The purpose of this study was to evaluate the duration of the IC shifts underlying fast point-to-point arm movements. Subjects made fast (hand peak velocity about 1.3 m/s) planar arm movements toward different targets while grasping a handle. Hand forces applied to the handle and shoulder/elbow torques were, respectively, measured from a force sensor placed on the handle, or computed with equations of motion. In some trials, an electromagnetic brake prevented movements. In such movements, the hand force and joint torques reached a steady state after a time that was much smaller than the movement duration in unobstructed movements and was approximately equal to the time to peak velocity (mean difference < 80 ms). In an additional experiment, subjects were instructed to rapidly initiate corrections of the pushing force in response to movement arrest. They were able to initiate such corrections only when the joint torques and the pushing force had practically reached a steady state. The latency of correction onset was, however, smaller than the duration of unobstructed movements. We concluded that during the time at which the steady state torques were reached, the control pattern of IC shifts remained the same despite the movement block. Thereby the duration of these shifts did not exceed the time of reaching the steady state torques. Our findings are consistent with the hypothesis that, in unobstructed movements, the IC shifts and resulting shifts in the EP end approximately at peak velocity. In other words, during the latter part of the movement, the control signals responsible for the equilibrium shift remained constant, and the movement was driven by the arm inertial, viscous and elastic forces produced by the muscle-reflex system. Fast movements may thus be completed without continuous control guidance. As a consequence, central corrections and sequential commands may be issued rapidly, without waiting for the end of kinematic responses to each command, which may be important for many motor behaviours including typing, piano playing and speech. Our study also illustrates that the timing of the control signals may be substantially different from that of the resulting motor output and that the same control pattern may produce different motor outputs depending on external conditions.

  9. Speed-Dependent Contribution of Callosal Pathways to Ipsilateral Movements

    PubMed Central

    Tazoe, Toshiki

    2013-01-01

    Transcallosal inhibitory interactions between primary motor cortices are important to suppress unintended movements in a resting limb during voluntary activation of the contralateral limb. The functional contribution of transcallosal inhibition targeting the voluntary active limb remains unknown. Using transcranial magnetic stimulation, we examined transcallosal inhibition [by measuring interhemispheric inhibition (IHI) and the ipsilateral silent period (iSP)] in the preparatory and execution phases of isotonic slower self-paced and ballistic movements performed by the ipsilateral index finger into abduction and the elbow into flexion in intact humans. We demonstrate decreased IHI in the preparatory phase of self-paced and ballistic index finger and elbow movements compared to rest; the decrease in IHI was larger during ballistic than self-paced movements. In contrast, in the execution phase, IHI and the iSP increased during ballistic compared to self-paced movements. Transcallosal inhibition was negatively correlated with reaction times in the preparatory phase and positively correlated with movement amplitude in the execution phase. Together, our results demonstrate a widespread contribution of transcallosal inhibition to ipsilateral movements of different speeds with a functional role during rapid movements; at faster speeds, decreased transcallosal inhibition in the preparatory phase may contribute to start movements rapidly, while the increase in the execution phase may contribute to stop the movement. We argue that transcallosal pathways enable signaling of the time of discrete behavioral events during ipsilateral movements, which is amplified by the speed of a movement. PMID:24107950

  10. Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system.

    PubMed

    Mageras, G S; Yorke, E; Rosenzweig, K; Braban, L; Keatley, E; Ford, E; Leibel, S A; Ling, C C

    2001-01-01

    We report on initial patient studies to evaluate the performance of a commercial respiratory gating radiotherapy system. The system uses a breathing monitor, consisting of a video camera and passive infrared reflective markers placed on the patient's thorax, to synchronize radiation from a linear accelerator with the patient's breathing cycle. Six patients receiving treatment for lung cancer participated in a study of system characteristics during treatment simulation with fluoroscopy. Breathing synchronized fluoroscopy was performed initially without instruction, followed by fluoroscopy with recorded verbal instruction (i.e., when to inhale and exhale) with the tempo matched to the patient's normal breathing period. Patients tended to inhale more consistently when given instruction, as assessed by an external marker movement. This resulted in smaller variation in expiration and inspiration marker positions relative to total excursion, thereby permitting more precise gating tolerances at those parts of the breathing cycle. Breathing instruction also reduced the fraction of session times having irregular breathing as measured by the system software, thereby potentially increasing the accelerator duty factor and decreasing treatment times. Fluoroscopy studies showed external monitor movement to correlate well with that of the diaphragm in four patients, whereas time delays of up to 0.7 s in diaphragm movement were observed in two patients with impaired lung function. From fluoroscopic observations, average patient diaphragm excursion was reduced from 1.4 cm (range 0.7-2.1 cm) without gating and without breathing instruction, to 0.3 cm (range 0.2-0.5 cm) with instruction and with gating tolerances set for treatment at expiration for 25% of the breathing cycle. Patients expressed no difficulty with following instruction for the duration of a session. We conclude that the external monitor accurately predicts internal respiratory motion in most cases; however, it may be important to check with fluoroscopy for possible time delays in patients with impaired lung function. Furthermore, we observe that verbal instruction can improve breathing regularity, thus improving the performance of gated treatments with this system.

  11. Efficacy of the Nance appliance as an anchorage-reinforcement method.

    PubMed

    Al-Awadhi, Ebrahim A; Garvey, Therese M; Alhag, Mohamed; Claffey, Noel M; O'Connell, Brian

    2015-03-01

    The Nance appliance is widely considered to be an efficient method of anchorage reinforcement; however, much of the perceived advantage is based on clinical judgment. The aim of this study was to assess the amounts of anchorage loss and desired tooth movement associated with the Nance appliance. The mandibular arches of 7 beagle dogs were used. The first and third premolars were extracted. Reference miniscrews were placed at the first premolar sites as stable references to measure the amounts of anchorage loss and desired tooth movement. Four beagles were fitted with custom-made Nance appliances on the fourth premolars and orthodontic bands on the second premolars (Nance group). Three beagles were fitted with orthodontic bands on the second and fourth premolars with no anchorage reinforcement (control group). The second premolars were retracted over 15 weeks in both groups. The amounts of second premolar movement (desired tooth movement) and fourth premolar movement (anchorage loss) were recorded at 5, 10, and 15 weeks. The percentages of desired tooth movement and anchorage loss to the total space closure were calculated. The mean desired tooth movement was significantly more in the Nance group than in the control group at 10 weeks (P <0.05) but was not significantly different at 5 and 15 weeks. The mean percentages of anchorage loss to the total space closure at 15 weeks were 45.7% in the control group and 28.8% in the Nance group. The Nance group had 16.9% less anchorage loss and 16.6% more desired tooth movement than did the control group at 15 weeks (P <0.05). Most of the anchorage loss (80%) in the Nance group occurred during the first 10 weeks. The Nance appliance did not provide absolute anchorage, but there was significantly less anchorage loss with it than in the control group. The majority of anchorage loss occurred during the first 10 weeks in the Nance group. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Movements of wolves at the northern extreme of the species' range, including during four months of darkness

    USGS Publications Warehouse

    Mech, L.D.; Cluff, H.D.

    2011-01-01

    Information about wolf (Canis lupus) movements anywhere near the northern extreme of the species' range in the High Arctic (<75??N latitude) are lacking. There, wolves prey primarily on muskoxen (Ovibos moschatus) and must survive 4 months of 24 hr/day winter darkness and temperatures reaching -53 C. The extent to which wolves remain active and prey on muskoxen during the dark period are unknown, for the closest area where information is available about winter wolf movements is >2,250 km south. We studied a pack of ???20 wolves on Ellesmere Island, Nunavut, Canada (80??N latitude) from July 2009 through mid-April 2010 by collaring a lead wolf with a Global Positioning System (GPS)/Argos radio collar. The collar recorded the wolf's precise locations at 6:00 a.m. and 6:00 p.m. daily and transmitted the locations by satellite to our email. Straight-line distances between consecutive 12-hr locations varied between 0 and 76 km. Mean (SE) linear distance between consecutive locations (n = 554) was 11 (0.5) km. Total minimum distance traveled was 5,979 km, and total area covered was 6,640 km2, the largest wolf range reported. The wolf and presumably his pack once made a 263-km (straight-line distance) foray to the southeast during 19-28 January 2010, returning 29 January to 1 February at an average of 41 km/day straight-line distances between 12-hr locations. This study produced the first detailed movement information about any large mammal in the High Arctic, and the average movements during the dark period did not differ from those afterwards. Wolf movements during the dark period in the highest latitudes match those of the other seasons and generally those of wolves in lower latitudes, and, at least with the gross movements measurable by our methods, the 4-month period without direct sunlight produced little change in movements. ?? 2011 Mech, Cluff.

  13. Movements of wolves at the northern extreme of the species' range, including during four months of darkness

    USGS Publications Warehouse

    Mech, L. David; Cluff, H. Dean

    2011-01-01

    Information about wolf (Canis lupus) movements anywhere near the northern extreme of the species' range in the High Arctic (>75°N latitude) are lacking. There, wolves prey primarily on muskoxen (Ovibos moschatus) and must survive 4 months of 24 hr/day winter darkness and temperatures reaching -53 C. The extent to which wolves remain active and prey on muskoxen during the dark period are unknown, for the closest area where information is available about winter wolf movements is >2,250 km south. We studied a pack of ≥20 wolves on Ellesmere Island, Nunavut, Canada (80°N latitude) from July 2009 through mid-April 2010 by collaring a lead wolf with a Global Positioning System (GPS)/Argos radio collar. The collar recorded the wolf's precise locations at 6:00 a.m. and 6:00 p.m. daily and transmitted the locations by satellite to our email. Straight-line distances between consecutive 12-hr locations varied between 0 and 76 km. Mean (SE) linear distance between consecutive locations (n = 554) was 11 (0.5) km. Total minimum distance traveled was 5,979 km, and total area covered was 6,640 km2, the largest wolf range reported. The wolf and presumably his pack once made a 263-km (straight-line distance) foray to the southeast during 19–28 January 2010, returning 29 January to 1 February at an average of 41 km/day straight-line distances between 12-hr locations. This study produced the first detailed movement information about any large mammal in the High Arctic, and the average movements during the dark period did not differ from those afterwards. Wolf movements during the dark period in the highest latitudes match those of the other seasons and generally those of wolves in lower latitudes, and, at least with the gross movements measurable by our methods, the 4-month period without direct sunlight produced little change in movements.

  14. Effect of Daikenchuto, a Traditional Japanese Herbal Medicine, after Total Gastrectomy for Gastric Cancer: A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Phase II Trial.

    PubMed

    Yoshikawa, Kozo; Shimada, Mitsuo; Wakabayashi, Go; Ishida, Koichiro; Kaiho, Takashi; Kitagawa, Yuko; Sakamoto, Junichi; Shiraishi, Norio; Koeda, Keisuke; Mochiki, Erito; Saikawa, Yoshiro; Yamaguchi, Kazuya; Watanabe, Masayuki; Morita, Satoshi; Kitano, Seigo; Saji, Shigetoyo; Kanematsu, Takashi; Kitajima, Masaki

    2015-08-01

    Daikenchuto (DKT) has widely been used to improve abdominal symptoms by being expected to accelerate bowel motility. The purpose of this study is to examine the efficacy and safety of DKT for prevention of ileus and associated gastrointestinal symptoms after total gastrectomy. Two hundred and forty-five gastric cancer patients who underwent total gastrectomy were enrolled. Patients received either DKT (15.0 g/d) or matching placebo from postoperative days 1 to 12. Primary end points were time to first flatus, time to first bowel movement (BM), and frequency of BM. Secondary end points included quality of life, C-reactive protein level, symptoms indicative of a severe gastrointestinal disorder, and incidence of postoperative ileus. A total of 195 patients (DKT, n = 96; placebo, n = 99) were included in the per-protocol set analysis. There were no significant differences between the groups in terms of patient background characteristics. Median time to first BM was shorter in the DKT group than in the placebo group (94.7 hours vs 113.9 hours; p = 0.051). In patients with high medication adherence, median time to first BM was significantly shorter in the DKT group than in the placebo group (93.8 hours vs 115.1 hours; p = 0.014). Significantly fewer patients in the DKT group had ≥2 symptoms of gastrointestinal dysfunction than those in the placebo group on postoperative day 12 (p = 0.026). Administration of DKT during the immediate postoperative period after total gastrectomy appears to promote early recovery of postoperative bowel function. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Relationship between Physical Impairments and Movement Patterns During Gait in Patients With End-stage Hip Osteoarthritis

    PubMed Central

    Zeni, Joseph; Pozzi, Federico; Abujaber, Sumayah; Miller, Laura

    2014-01-01

    Patients with hip osteoarthritis demonstrate limited range of motion, muscle weakness and altered biomechanics; however, few studies have evaluated the relationships between physical impairments and movement asymmetries. The purpose of this study was to identify the physical impairments related to movement abnormalities in patients awaiting total hip arthroplasty. We hypothesized that muscle weakness and pain would be related to greater movement asymmetries. Fifty-six subjects who were awaiting total hip arthroplasty were enrolled. Pain was assessed using a 0 to 10 scale, range of motion was assessed with the Harris Hip Score and isometric hip abductor strength was tested using a hand-held dynamometer. Trunk, pelvis and hip angles and moments in the frontal and sagittal planes were measured during walking using three dimensional motion analysis. During gait, subjects had 3.49 degrees less peak hip flexion and 8.82 degrees less extension angles (p<0.001) and had 0.03 Nm/k*m less hip abduction moment on the affected side (p=0.043). Weaker hip muscles were related to greater pelvis (r=−0.291) and trunk (r=−0.332) rotations in the frontal plane. These findings suggest that hip weakness drives abnormal movement patterns at the pelvis and trunk in patients with hip osteoarthritis to a greater degree than hip pain. PMID:25492583

  16. Leaf movements and their relationship with the lunisolar gravitational force

    PubMed Central

    Barlow, Peter W.

    2015-01-01

    Background Observation of the diurnal ascent and descent of leaves of beans and other species, as well as experimental interventions into these movements, such as exposures to light at different times during the movement cycle, led to the concept of an endogenous ‘clock’ as a regulator of these oscillations. The physiological basis of leaf movement can be traced to processes that modulate cell volume in target tissues of the pulvinus and petiole. However, these elements of the leaf-movement process do not completely account for the rhythms that are generated following germination in constant light or dark conditions, or when plants are transferred to similar free-running conditions. Scope To develop a new perspective on the regulation of leaf-movement rhythms, many of the published time courses of leaf movements that provided evidence for the concept of the endogenous clock were analysed in conjunction with the contemporaneous time courses of the lunisolar tidal acceleration at the relevant experimental locations. This was made possible by application of the Etide program, which estimates, with high temporal resolution, local gravitational changes as a consequence of the diurnal variations of the lunisolar gravitational force due to the orbits and relative positions of Earth, Moon and Sun. In all cases, it was evident that a synchronism exists between the times of the turning points of both the lunisolar tide and of the leaftide when the direction of leaf movement changes. This finding of synchrony leads to the hypothesis that the lunisolar tide is a regulator of the leaftide, and that the rhythm of leaf movement is not necessarily of endogenous origin but is an expression of an exogenous lunisolar ‘clock’ impressed upon the leaf-movement apparatus. Conclusions Correlation between leaftide and Etide time courses holds for leaf movement rhythms in natural conditions of the greenhouse, in conditions of constant light or dark, under microgravity conditions of the International Space Station, and also holds for rhythms that are atypical, such as pendulum and relaxation rhythms whose periods are longer or shorter than usual. Even the apparently spontaneous short-period, small-amplitude rhythms recorded from leaves under unusual growth conditions are consistent with the hypothesis of a lunisolar zeitgeber. Two hypotheses that could account for the synchronism between leaftide and Etide, and which are based on either quantum considerations or on classical Newtonian physics, are presented and discussed. PMID:26205177

  17. Movement skill assessment of typically developing preschool children: a review of seven movement skill assessment tools.

    PubMed

    Cools, Wouter; Martelaer, Kristine De; Samaey, Christiane; Andries, Caroline

    2009-06-01

    The importance of movement is often overlooked because it is such a natural part of human life. It is, however, crucial for a child's physical, cognitive and social development. In addition, experiences support learning and development of fundamental movement skills. The foundations of those skills are laid in early childhood and essential to encourage a physically active lifestyle. Fundamental movement skill performance can be examined with several assessment tools. The choice of a test will depend on the context in which the assessment is planned. This article compares seven assessment tools which are often referred to in European or international context. It discusses the tools' usefulness for the assessment of movement skill development in general population samples. After a brief description of each assessment tool the article focuses on contents, reliability, validity and normative data. A conclusion outline of strengths and weaknesses of all reviewed assessment tools focusing on their use in educational research settings is provided and stresses the importance of regular data collection of fundamental movement skill development among preschool children. Key pointsThis review discusses seven movement skill assessment tool's test content, reliability, validity and normative samples.The seven assessment tools all showed to be of great value. Strengths and weaknesses indicate that test choice will depend on specific purpose of test use.Further data collection should also include larger data samples of able bodied preschool children.Admitting PE specialists in assessment of fundamental movement skill performance among preschool children is recommended.The assessment tool's normative data samples would benefit from frequent movement skill performance follow-up of today's children. MOT 4-6: Motoriktest fur vier- bis sechsjährige Kinder, M-ABC: Movement Assessment Battery for Children, PDMS: Peabody Development Scales, KTK: Körper-Koordinationtest für Kinder, TGDM: Test of Gross Motor Development, MMT: Maastrichtse Motoriektest, BOTMP: Bruininks-Oseretsky Test of Motor Proficiency. ICC: intraclass correlation coefficient, NR: not reported, GM: gross motor, LV: long version, SV: short version, LF: long form, SF: short form, STV: subtest version, SEMs: standard errors of measurement, TMQ: Total Motor Quotient, TMC: Total Motor Composite, CSSA: Comprehensive Scales of Student Abilities MSEL: Mullen Scales of Early learning: AGS Edition AUC: Areas under curve BC: Battery composite ROC: Receiver operating characteristic.

  18. Movement Skill Assessment of Typically Developing Preschool Children: A Review of Seven Movement Skill Assessment Tools

    PubMed Central

    Cools, Wouter; Martelaer, Kristine De; Samaey, Christiane; Andries, Caroline

    2009-01-01

    The importance of movement is often overlooked because it is such a natural part of human life. It is, however, crucial for a child’s physical, cognitive and social development. In addition, experiences support learning and development of fundamental movement skills. The foundations of those skills are laid in early childhood and essential to encourage a physically active lifestyle. Fundamental movement skill performance can be examined with several assessment tools. The choice of a test will depend on the context in which the assessment is planned. This article compares seven assessment tools which are often referred to in European or international context. It discusses the tools’ usefulness for the assessment of movement skill development in general population samples. After a brief description of each assessment tool the article focuses on contents, reliability, validity and normative data. A conclusion outline of strengths and weaknesses of all reviewed assessment tools focusing on their use in educational research settings is provided and stresses the importance of regular data collection of fundamental movement skill development among preschool children. Key pointsThis review discusses seven movement skill assessment tool’s test content, reliability, validity and normative samples.The seven assessment tools all showed to be of great value. Strengths and weaknesses indicate that test choice will depend on specific purpose of test use.Further data collection should also include larger data samples of able bodied preschool children.Admitting PE specialists in assessment of fundamental movement skill performance among preschool children is recommended.The assessment tool’s normative data samples would benefit from frequent movement skill performance follow-up of today’s children. Abbreviations MOT 4-6: Motoriktest fur vier- bis sechsjährige Kinder, M-ABC: Movement Assessment Battery for Children, PDMS: Peabody Development Scales, KTK: Körper-Koordinationtest für Kinder, TGDM: Test of Gross Motor Development, MMT: Maastrichtse Motoriektest, BOTMP: Bruininks-Oseretsky Test of Motor Proficiency. ICC: intraclass correlation coefficient, NR: not reported, GM: gross motor, LV: long version, SV: short version, LF: long form, SF: short form, STV: subtest version, SEMs: standard errors of measurement, TMQ: Total Motor Quotient, TMC: Total Motor Composite, CSSA: Comprehensive Scales of Student Abilities MSEL: Mullen Scales of Early learning: AGS Edition AUC: Areas under curve BC: Battery composite ROC: Receiver operating characteristic PMID:24149522

  19. A Paradigm Shift for Educational Administrators: The Total Quality Movement.

    ERIC Educational Resources Information Center

    Hough, M. J.

    This paper reviews the major ideas of the seminal total quality management theorists, such as Deming, Crosby, Juran, Ishikawa, and Imai, to illustrate how total quality management is applicable to education. It is argued that there is a need for a paradigm shift in educational administration. The first part reviews current Australian societal…

  20. Effects of infrasound on vestibular function

    NASA Astrophysics Data System (ADS)

    Takigawa, H.; Sakamoto, H.; Murata, M.

    1991-12-01

    The present study was undertaken to elucidate subjective symptoms reported by some individuals exposed to various sounds, including infrasound. Narrow band infrasound of 5 Hz at center frequency and wide octave band audible noise were separately applied at an intensity of 95 dB. Parameters such as involuntary eye movement with the eyes visually fixed, body sway and pulse-wave were investigated. The total amount and power percentage in the low-frequency band of involuntary eye movement was significantly increased upon exposure to infrasound. Furthermore, confusion in postural control at the time of transition from opening to closing of the subject's eyes was inhibited by this exposure. Conversely, pulse-wave height decrement was observed upon exposure to both sounds, although this was smaller in the case of infrasound as compared with that of noise. These findings are taken to indicate that the effects taking place via the two different pathways were mixed in the subjective symptoms, and that functional changes caused by infrasound exposure were unrelated to an emotion stimulated by acoustical sensation.

  1. Development and implementation of a virtual reality laparoscopic colorectal training curriculum.

    PubMed

    Wynn, Greg; Lykoudis, Panagis; Berlingieri, Pasquale

    2017-12-12

    Contemporary surgical training can be compromised by fewer practical opportunities. Simulation can fill this gap to optimize skills' development and progress monitoring. A structured virtual reality (VR) laparoscopic sigmoid colectomy curriculum is constructed and its validity and outcomes assessed. Parameters and thresholds were defined by analysing the performance of six expert surgeons completing the relevant module on the LAP Mentor simulator. Fourteen surgical trainees followed the curriculum, performance being recorded and analysed. Evidence of validity was assessed. Time to complete procedure, number of movements of right and left instrument, and total path length of right and left instrument movements demonstrated evidence of validity and clear learning curves, with a median of 14 attempts needed to complete the curriculum. A structured curriculum is proposed for training in laparoscopic sigmoid colectomy in a VR environment based on objective metrics in addition to expert consensus. Validity has been demonstrated for some key metrics. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Alterations in autonomic tone during trauma exposure using eye movement desensitization and reprocessing (EMDR)--results of a preliminary investigation.

    PubMed

    Sack, Martin; Lempa, Wolfgang; Steinmetz, Adrian; Lamprecht, Friedhelm; Hofmann, Arne

    2008-10-01

    EMDR combines stimuli that evoke divided attention--e.g. eye movements--with exposure to traumatic memories. Our objective was to investigate psycho-physiological correlates of EMDR during treatment sessions. A total of 55 treatment sessions from 10 patients with PTSD was monitored applying impedance cardiography. Onset of every stimulation/exposure period (n=811) was marked and effects within and across stimulation sets on heart rate (HR), heart rate variability (HRV), pre-ejection period (PEP) and respiration rate were examined. At stimulation onsets a sharp increase of HRV and a significant decrease of HR was noticed indicating de-arousal. During ongoing stimulation, PEP and HRV decreased significantly while respiration rate significantly increased, indicating stress-related arousal. However, across entire sessions a significant decrease of psycho-physiological activity was noticed, evidenced by progressively decreasing HR and increasing HRV. These findings suggest that EMDR is associated with patterns of autonomic activity associated with substantial psycho-physiological de-arousal over time.

  3. Prosodic structure shapes the temporal realization of intonation and manual gesture movements.

    PubMed

    Esteve-Gibert, Núria; Prieto, Pilar

    2013-06-01

    Previous work on the temporal coordination between gesture and speech found that the prominence in gesture coordinates with speech prominence. In this study, the authors investigated the anchoring regions in speech and pointing gesture that align with each other. The authors hypothesized that (a) in contrastive focus conditions, the gesture apex is anchored in the intonation peak and (b) the upcoming prosodic boundary influences the timing of gesture and intonation movements. Fifteen Catalan speakers pointed at a screen while pronouncing a target word with different metrical patterns in a contrastive focus condition and followed by a phrase boundary. A total of 702 co-speech deictic gestures were acoustically and gesturally analyzed. Intonation peaks and gesture apexes showed parallel behavior with respect to their position within the accented syllable: They occurred at the end of the accented syllable in non-phrase-final position, whereas they occurred well before the end of the accented syllable in phrase-final position. Crucially, the position of intonation peaks and gesture apexes was correlated and was bound by prosodic structure. The results refine the phonological synchronization rule (McNeill, 1992), showing that gesture apexes are anchored in intonation peaks and that gesture and prosodic movements are bound by prosodic phrasing.

  4. Observations of movement dynamics of flying insects using high resolution lidar.

    PubMed

    Kirkeby, Carsten; Wellenreuther, Maren; Brydegaard, Mikkel

    2016-07-04

    Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one summer night in Sweden. We compare lidar recordings with data from a light trap deployed alongside the lidar. A total of 22808 insect were recorded, and the relative temporal quantities measured matched the quantities recorded with the light trap within a radius of 5 m. Lidar records showed that small insects (wing size <2.5 mm(2) in cross-section) moved across the field and clustered near the light trap around 22:00 local time, while larger insects (wing size >2.5 mm(2) in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We could distinguish three insect clusters based on morphology and found that two contained insects predominantly recorded above the field in the evening, whereas the third was formed by insects near the forest at around 21:30. Together our results demonstrate the capability of lidar for distinguishing different types of insect during flight and quantifying their movements.

  5. Observations of movement dynamics of flying insects using high resolution lidar

    PubMed Central

    Kirkeby, Carsten; Wellenreuther, Maren; Brydegaard, Mikkel

    2016-01-01

    Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one summer night in Sweden. We compare lidar recordings with data from a light trap deployed alongside the lidar. A total of 22808 insect were recorded, and the relative temporal quantities measured matched the quantities recorded with the light trap within a radius of 5 m. Lidar records showed that small insects (wing size <2.5 mm2 in cross-section) moved across the field and clustered near the light trap around 22:00 local time, while larger insects (wing size >2.5 mm2 in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We could distinguish three insect clusters based on morphology and found that two contained insects predominantly recorded above the field in the evening, whereas the third was formed by insects near the forest at around 21:30. Together our results demonstrate the capability of lidar for distinguishing different types of insect during flight and quantifying their movements. PMID:27375089

  6. Social coordination in toddler's word learning: interacting systems of perception and action

    NASA Astrophysics Data System (ADS)

    Pereira, Alfredo; Smith, Linda; Yu, Chen

    2008-06-01

    We measured turn-taking in terms of hand and head movements and asked if the global rhythm of the participants' body activity relates to word learning. Six dyads composed of parents and toddlers (M=18 months) interacted in a tabletop task wearing motion-tracking sensors on their hands and head. Parents were instructed to teach the labels of 10 novel objects and the child was later tested on a name-comprehension task. Using dynamic time warping, we compared the motion data of all body-part pairs, within and between partners. For every dyad, we also computed an overall measure of the quality of the interaction, that takes into consideration the state of interaction when the parent uttered an object label and the overall smoothness of the turn-taking. The overall interaction quality measure was correlated with the total number of words learned. In particular, head movements were inversely related to other partner's hand movements, and the degree of bodily coupling of parent and toddler predicted the words that children learned during the interaction. The implications of joint body dynamics to understanding joint coordination of activity in a social interaction, its scaffolding effect on the child's learning and its use in the development of artificial systems are discussed.

  7. The acquisition of socio-motor improvisation in the mirror game.

    PubMed

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-04-01

    Socio-motor improvisation is defined as the creative action of two or more people without a script or anticipated preparation. It is evaluated through two main parameters: movement synchronization and movement richness. Experts in art (e.g., dance, theater or music) are known to exhibit higher synchronization and to perform richer movements during interpersonal improvisation, but how these competences evolve over time is largely unknown. In the present study, we investigated whether performing more synchronized and richer movements over time can promote the acquisition of improvisation. Pairs of novice participants were instructed to play an improvisation mirror game in three different sessions. Between sessions, they performed an unintended interpersonal coordination task in which synchronization and richness were manipulated, resulting in four different groups of dyads. Our results demonstrate that synchronization during improvisation improved for all groups whereas movement richness only enhanced for dyads that performed synchronized movements during unintended coordination tasks. Our findings suggest that movement synchrony contributes more than movement richness to the acquisition of socio-motor improvisation in the mirror game. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Foot loading characteristics during three fencing-specific movements.

    PubMed

    Trautmann, Caroline; Martinelli, Nicolo; Rosenbaum, Dieter

    2011-12-01

    Plantar pressure characteristics during fencing movements may provide more specific information about the influence of foot loading on overload injury patterns. Twenty-nine experienced fencers participated in the study. Three fencing-specific movements (lunge, advance, retreat) and normal running were performed with three different shoe models: Ballestra (Nike, USA), Adistar Fencing Lo (Adidas, Germany), and the fencers' own shoes. The Pedar system (Novel, Munich, Germany) was used to collect plantar pressures at 50 Hz. Peak pressures, force-time integrals and contact times for five foot regions were compared between four athletic tasks in the lunge leg and supporting leg. Plantar pressure analysis revealed characteristic pressure distribution patterns for the fencing movements. For the lunge leg, during the lunge and advance movements the heel is predominantly loaded; during retreat, it is the hallux. For the supporting leg, during the lunge and advance movements the forefoot is predominantly loaded; during retreat, it is the hallux. Fencing-specific movements load the plantar surface in a distinct way compared with running. An effective cushioning in the heel and hallux region would help to minimize foot loading during fencing-specific movements.

  9. Mirror movements in unilateral spastic cerebral palsy: Specific negative impact on bimanual activities of daily living.

    PubMed

    Adler, Caroline; Berweck, Steffen; Lidzba, Karen; Becher, Thomas; Staudt, Martin

    2015-09-01

    Mirror movements are involuntary movements of the other hand during voluntary unimanual movements. Some, but not all children with unilateral spastic cerebral palsy (USCP) show this phenomenon. In this observational study, we investigated whether these mirror movements have a specific negative impact on bimanual activities of daily living. Eighteen children (six girls; age range, 6-16 years; mean age, 12 years 1 month; SD, 3 years 3 month) with USCP, nine with and nine without mirror movements, underwent the Jebsen Taylor Hand Function Test (unimanual capacity) and the Assisting Hand Assessment (bimanual performance). In addition, we measured the time the participants needed for the completion of five activities we had identified as particularly difficult for children with mirror movements. Multivariate analysis demonstrated that mirror movements indeed have a specific negative impact on bimanual performance (Assisting Hand Assessment) and on the time needed for the completion of these five particularly difficult activities. This effect was independent from unimanual capacity. Functional therapies in children with USCP and mirror movements should address this phenomenon. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  10. Estimating the implicit component of visuomotor rotation learning by constraining movement preparation time.

    PubMed

    Leow, Li-Ann; Gunn, Reece; Marinovic, Welber; Carroll, Timothy J

    2017-08-01

    When sensory feedback is perturbed, accurate movement is restored by a combination of implicit processes and deliberate reaiming to strategically compensate for errors. Here, we directly compare two methods used previously to dissociate implicit from explicit learning on a trial-by-trial basis: 1 ) asking participants to report the direction that they aim their movements, and contrasting this with the directions of the target and the movement that they actually produce, and 2 ) manipulating movement preparation time. By instructing participants to reaim without a sensory perturbation, we show that reaiming is possible even with the shortest possible preparation times, particularly when targets are narrowly distributed. Nonetheless, reaiming is effortful and comes at the cost of increased variability, so we tested whether constraining preparation time is sufficient to suppress strategic reaiming during adaptation to visuomotor rotation with a broad target distribution. The rate and extent of error reduction under preparation time constraints were similar to estimates of implicit learning obtained from self-report without time pressure, suggesting that participants chose not to apply a reaiming strategy to correct visual errors under time pressure. Surprisingly, participants who reported aiming directions showed less implicit learning according to an alternative measure, obtained during trials performed without visual feedback. This suggests that the process of reporting can affect the extent or persistence of implicit learning. The data extend existing evidence that restricting preparation time can suppress explicit reaiming and provide an estimate of implicit visuomotor rotation learning that does not require participants to report their aiming directions. NEW & NOTEWORTHY During sensorimotor adaptation, implicit error-driven learning can be isolated from explicit strategy-driven reaiming by subtracting self-reported aiming directions from movement directions, or by restricting movement preparation time. Here, we compared the two methods. Restricting preparation times did not eliminate reaiming but was sufficient to suppress reaiming during adaptation with widely distributed targets. The self-report method produced a discrepancy in implicit learning estimated by subtracting aiming directions and implicit learning measured in no-feedback trials. Copyright © 2017 the American Physiological Society.

  11. A developmental study of the effect of music training on timed movements.

    PubMed

    Braun Janzen, Thenille; Thompson, William F; Ranvaud, Ronald

    2014-01-01

    When people clap to music, sing, play a musical instrument, or dance, they engage in temporal entrainment. We examined the effect of music training on the precision of temporal entrainment in 57 children aged 10-14 years (31 musicians, 26 non-musicians). Performance was examined for two tasks: self-paced finger tapping (discrete movements) and circle drawing (continuous movements). For each task, participants synchronized their movements with a steady pacing signal and then continued the movement at the same rate in the absence of the pacing signal. Analysis of movements during the continuation phase revealed that musicians were more accurate than non-musicians at finger tapping and, to a lesser extent, circle drawing. Performance on the finger-tapping task was positively associated with the number of years of formal music training, whereas performance on the circle-drawing task was positively associated with the age of participants. These results indicate that music training and maturation of the motor system reinforce distinct skills of timed movement.

  12. A Closer Look at the Charter School Movement: Schools, Students, and Management Organizations, 2015-16

    ERIC Educational Resources Information Center

    National Alliance for Public Charter Schools, 2016

    2016-01-01

    Enrollment in charter public schools has grown by 250,000 students in the 2015-16 school year, and more than 400 new charter public schools have opened their doors, according to, "A Closer Look at the Charter School Movement: Schools, Students, and Management Organizations, 2015-16." The report also estimates that the total number of…

  13. From Movement to Metaphor with Manner-of-Movement Verbs

    ERIC Educational Resources Information Center

    Lindstromberg, Seth; Boers, Frank

    2004-01-01

    This paper concerns three two-stage experiments the aim of which was to find out whether enactment- and mime-based (E&M) instruction--a key element both of the method known as Total Physical Response and of some less codified instruction at primary level--can be employed in order to help learners: (1) better acquire English manner-of-movement…

  14. Movement and survival of brown trout and rainbow trout in an ozark tailwater river

    USGS Publications Warehouse

    Quinn, J.W.; Kwak, T.J.

    2011-01-01

    We evaluated the movement of adult brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss in relation to a catch-andrelease area in the White River downstream from Beaver Dam, Arkansas. Nine fish of each species were implanted with radio transmitters and monitored from July 1996 to July 1997. The 1.5- km river length of a catch-and-release area (closed to angler harvest) was greater than the total linear range of 72% of the trout (13 of 18 fish), but it did not include two brown trout spawning riffles, suggesting that it effectively protects resident fish within the catch-and-release area except during spawning. The total detected linear range of movement varied from 172 to 3,559 m for brown trout and from 205 to 3,023mfor rainbow trout. The movements of both species appeared to be generally similar to that in unregulated river systems. The annual apparent survival of both trout species was less than 0.40, and exploitation was 44%.Management to protect fish on spawning riffles may be considered if management for wild brown trout becomes a priority. ?? American Fisheries Society 2011.

  15. Early and Later Life Stress Alter Brain Activity and Sleep in Rats

    PubMed Central

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857

  16. Intraspecific variation in vertical habitat use by tiger sharks (Galeocerdo cuvier) in the western North Atlantic.

    PubMed

    Vaudo, Jeremy J; Wetherbee, Bradley M; Harvey, Guy; Nemeth, Richard S; Aming, Choy; Burnie, Neil; Howey-Jordan, Lucy A; Shivji, Mahmood S

    2014-05-01

    Tiger sharks (Galeocerdo cuvier) are a wide ranging, potentially keystone predator species that display a variety of horizontal movement patterns, making use of coastal and pelagic waters. Far less, however, is known about their vertical movements and use of the water column. We used pop-up satellite archival tags with two data sampling rates (high rate and standard rate tags) to investigate the vertical habitat use and diving behavior of tiger sharks tagged on the Puerto Rico-Virgin Islands platform and off Bermuda between 2008 and 2009. Useable data were received from nine of 14 sharks tagged, tracked over a total of 529 days. Sharks spent the majority of their time making yo-yo dives within the upper 50 m of the water column and considerable time within the upper 5 m of the water column. As a result, sharks typically occupied a narrow daily temperature range (∼2°C). Dives to greater than 200 m were common, and all sharks made dives to at least 250 m, with one shark reaching a depth of 828 m. Despite some similarities among individuals, a great deal of intraspecific variability in vertical habit use was observed. Four distinct depth distributions that were not related to tagging location, horizontal movements, sex, or size were detected. In addition, similar depth distributions did not necessitate similar dive patterns among sharks. Recognition of intraspecific variability in habitat use of top predators can be crucial for effective management of these species and for understanding their influence on ecosystem dynamics.

  17. Intraspecific variation in vertical habitat use by tiger sharks (Galeocerdo cuvier) in the western North Atlantic

    PubMed Central

    Vaudo, Jeremy J; Wetherbee, Bradley M; Harvey, Guy; Nemeth, Richard S; Aming, Choy; Burnie, Neil; Howey-Jordan, Lucy A; Shivji, Mahmood S

    2014-01-01

    Tiger sharks (Galeocerdo cuvier) are a wide ranging, potentially keystone predator species that display a variety of horizontal movement patterns, making use of coastal and pelagic waters. Far less, however, is known about their vertical movements and use of the water column. We used pop-up satellite archival tags with two data sampling rates (high rate and standard rate tags) to investigate the vertical habitat use and diving behavior of tiger sharks tagged on the Puerto Rico–Virgin Islands platform and off Bermuda between 2008 and 2009. Useable data were received from nine of 14 sharks tagged, tracked over a total of 529 days. Sharks spent the majority of their time making yo-yo dives within the upper 50 m of the water column and considerable time within the upper 5 m of the water column. As a result, sharks typically occupied a narrow daily temperature range (∼2°C). Dives to greater than 200 m were common, and all sharks made dives to at least 250 m, with one shark reaching a depth of 828 m. Despite some similarities among individuals, a great deal of intraspecific variability in vertical habit use was observed. Four distinct depth distributions that were not related to tagging location, horizontal movements, sex, or size were detected. In addition, similar depth distributions did not necessitate similar dive patterns among sharks. Recognition of intraspecific variability in habitat use of top predators can be crucial for effective management of these species and for understanding their influence on ecosystem dynamics. PMID:24963376

  18. Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance

    DTIC Science & Technology

    2015-11-01

    somnolence without cataplexy and, in rat, decreases active wake and increases the time spent in non-rapid eye movement (NREM) and (REM) sleep (Brisbare-Roch...system results in a narcoleptic phenotype characterized by excessive sleepiness, fragmented sleep, abnormally timed Rapid- Eye -Movement (REM) sleep, and...spent in non-rapid eye movement (NREM) and (REM) sleep with differential effects on various neurotransmitter systems. To date, no studies have reported

  19. The relationship between adolescents' physical activity, fundamental movement skills and weight status.

    PubMed

    O' Brien, Wesley; Belton, Sarahjane; Issartel, Johann

    2016-01-01

    The aim of this study was to determine if a potential relationship among physical activity (PA), fundamental movement skills and weight status exists amongst early adolescent youth. Participants were a sample of 85 students; 54 boys (mean age = 12.94 ± 0.33 years) and 31 girls (mean age = 12.75 ± 0.43 years). Data gathered during physical education class included PA (accelerometry), fundamental movement skills and anthropometric measurements. Standard multiple regression revealed that PA and total fundamental movement skill proficiency scores explained 16.5% (P < 0.001) of the variance in the prediction of body mass index. Chi-square tests for independence further indicated that compared with overweight or obese adolescents, a significantly higher proportion of adolescents classified as normal weight achieved mastery/near-mastery in fundamental movement skills. Results from the current investigation indicate that weight status is an important correlate of fundamental movement skill proficiency during adolescence. Aligned with most recent research, school- and community-based programmes that include developmentally structured learning experiences delivered by specialists can significantly improve fundamental movement skill proficiency in youth.

  20. Extended Fitts' model of pointing time in eye-gaze input system - Incorporating effects of target shape and movement direction into modeling.

    PubMed

    Murata, Atsuo; Fukunaga, Daichi

    2018-04-01

    This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.

Top